ST7PLUSA5U3 [STMICROELECTRONICS]

8-BIT, FLASH, 8MHz, MICROCONTROLLER, PDSO8, ROHS COMPLIANT, DFN-8;
ST7PLUSA5U3
型号: ST7PLUSA5U3
厂家: ST    ST
描述:

8-BIT, FLASH, 8MHz, MICROCONTROLLER, PDSO8, ROHS COMPLIANT, DFN-8

时钟 微控制器 光电二极管 外围集成电路
文件: 总136页 (文件大小:1705K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ST7LITEUS2  
ST7LITEUS5  
8-bit MCU with single voltage Flash memory, ADC, timers  
Features  
Memories  
– 1 Kbytes single-voltage Flash Program  
memory with readout protection, ICP and  
IAP)  
SO8  
150”  
Plastic DIP8  
Plastic DIP16  
DFN8  
10 K write/erase cycles guaranteed  
data retention: 20 years at 55 °C  
– 128 bytes RAM  
2 Timers  
– One 8-bit Lite timer (LT) with prescaler  
including: watchdog, one realtime base and  
one 8-bit input capture.  
Clock, Reset and Supply management  
– 3-level low-voltage supervisor (LVD) and  
auxiliary voltage detector (AVD) for safe  
power-on/off  
– Clock sources: internal trimmable 8 MHz  
RC oscillator, internal low power, low  
frequency RC oscillator or external clock  
– One 12-bit auto-reload timer (AT) with  
output compare function and PWM  
A/D Converter  
– 10-bit resolution for to V  
– 5 input channls  
DD  
Instruction St  
– Five power saving modes: Halt, Auto-  
wakeup from Halt, Active-halt, Wait, Slow  
– 8-bit data manipulation  
basic instructions with illegal opcode  
detection  
– 17 main addressing modes  
Interrupt management  
– 11 interrupt vectors plus TRAP and RESET  
– 5 external interrupt lines (on 5 vectors)  
– 8x8 unsigned multiply instruction  
I/O ports  
Development Tools  
– 5 multifunctional bidirectional I/O lines  
– 1 additional Output line  
– 6 alternate function lines  
– 5 high sink outputs  
– Full hardware/software development  
package  
– Debug module  
Table 1.  
Device ummary  
ST7LITEUS2  
ST7LITEUS5  
Features  
Program memory  
RAM (sk)  
1 Kbytes  
128 (64) bytes  
pherals  
LT Timer w/ Wdg, AT Timer w/ 1 PWM  
10-bit  
ADC  
-
Operating Supply  
CPU Frequency  
Operating Temperature  
Packages  
2.4 to 3.3 V @fCPU=4 MHz, 3.3 to 5.5 V @fCPU=8 MHz  
up to 8 MHz RC  
-40 to +85 °C / -40 to 125 °C  
SO8 150”, Pastic DIP8, DFN8, Pastic DIP16(1)  
1. For development or tool prototyping purposes only. Not orderable in production quantities.  
February 2009  
Rev 5  
1/136  
www.st.com  
1
Contents  
ST7LITEUS2, ST7LITEUS5  
Contents  
1
2
3
4
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Register and memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Flash program memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
4.1  
4.2  
4.3  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Programming modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
4.3.1  
In-circuit programming (ICP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
4.3.2  
In application programming (IAP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
4.4  
4.5  
I2C interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Memory protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
4.5.1  
4.5.2  
Readout protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Flash Write/Erase protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
4.6  
4.7  
Related documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
4.7.1  
Flash Control/Status register (FCSR) . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
5
Central processing unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
5.1  
5.2  
5.3  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
CPU registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
5.3.1  
5.3.2  
5.3.3  
5.3.4  
5.3.5  
Accumulator (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Index registers (X and Y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Program counter (PC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Condition Code register (CC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Stack Pointer (SP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
6
Supply, reset and clock management . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
6.1  
6.2  
Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Internal RC oscillator adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
2/136  
ST7LITEUS2, ST7LITEUS5  
Contents  
6.3  
6.4  
6.5  
Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
6.3.5  
Main Clock Control/Status register (MCCSR) . . . . . . . . . . . . . . . . . . . . 30  
RC Control register (RCCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
System Integrity (SI) Control/status register (SICSR) . . . . . . . . . . . . . . 31  
AVD Threshold Selection register (AVDTHCR) . . . . . . . . . . . . . . . . . . . 32  
Clock Controller Control/Status register (CKCNTCSR) . . . . . . . . . . . . . 32  
Reset sequence manager (RSM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
6.4.1  
6.4.2  
6.4.3  
6.4.4  
6.4.5  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Asynchronous external RESET pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
External Power-on reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Internal low voltage detector (LVD) reset . . . . . . . . . . . . . . . . . . . . . . . . 36  
Internal watchdog reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
6.5.1  
6.5.2  
Multiplexed I/O Reset Control register 1 (MUXCR1) . . . . . . . . . . . . . . . 37  
Multiplexed I/O Reset Control register 0 (MUXCR0) . . . . . . . . . . . . . . . 37  
7
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
7.1  
7.2  
7.3  
Non maskable software interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
External interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Peripheral interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
7.3.1  
7.3.2  
External Interrupt Control register 1 (EICR1) . . . . . . . . . . . . . . . . . . . . . 41  
External Interrupt Control register 2 (EICR2) . . . . . . . . . . . . . . . . . . . . . 42  
7.4  
System integrity management (SI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
7.4.1  
7.4.2  
7.4.3  
7.4.4  
Low voltage detector (LVD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Auxiliary voltage detector (AVD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
8
Power saving modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
8.1  
8.2  
8.3  
8.4  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Slow mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Wait mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Active-halt and Halt modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
8.4.1  
8.4.2  
Active-halt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Halt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
8.5  
Auto-wakeup from Halt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
3/136  
Contents  
ST7LITEUS2, ST7LITEUS5  
8.5.1  
Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
9
I/O ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
9.1  
9.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
9.2.1  
9.2.2  
9.2.3  
Input modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Output modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
9.3  
9.4  
9.5  
9.6  
Unused I/O pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
I/O port implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
10  
On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
10.1 Lite timer (LT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
10.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
10.1.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
10.1.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
10.1.4  
Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
10.1.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
10.1.6 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
10.2 12-bit auto-reload timer (AT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
10.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
10.2.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
10.2.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
10.2.4 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
10.2.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
10.2.6 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
10.3 10-bit A/D converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
10.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
10.3.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
10.3.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
10.3.4 Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
10.3.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
10.3.6 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
4/136  
ST7LITEUS2, ST7LITEUS5  
Contents  
11  
Instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
11.1 ST7 addressing modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
11.1.1 Inherent mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
11.1.2 Immediate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
11.1.3 Direct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
11.1.4 Indexed mode (no offset, short, long) . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
11.1.5 Indirect modes (short, long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
11.1.6 Indirect indexed modes (short, long) . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
11.1.7 Relative modes (direct, indirect) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
11.2 Instruction groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
11.2.1 Illegal opcode reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
12  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
12.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
12.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
12.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
12.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
12.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
12.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
12.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
12.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
12.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
12.3.2 Operating conditions with low voltage detector (LVD) . . . . . . . . . . . . . . 95  
12.3.3 Auxiliary voltage detector (AVD) thresholds . . . . . . . . . . . . . . . . . . . . . . 96  
12.3.4 Internal RC oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
12.4 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
12.4.1 Supply current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
12.4.2 Internal RC oscillator supply current characteristics . . . . . . . . . . . . . . 100  
12.4.3 On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
12.5 Clock and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
12.6 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
12.7 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
12.7.1 Functional EMS (electromagnetic susceptibility) . . . . . . . . . . . . . . . . . 105  
12.7.2 Electromagnetic Interference (EMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
12.7.3 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 106  
12.8 I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
5/136  
Contents  
ST7LITEUS2, ST7LITEUS5  
12.8.1 General characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
12.8.2 Output driving current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 109  
12.9 Control pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
12.10 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
13  
14  
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
13.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
13.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Device configuration and ordering information . . . . . . . . . . . . . . . . . 123  
14.1 Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
14.1.1 OPTION BYTE 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
14.1.2 OPTION BYTE 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
14.2 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
14.3 Development tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
14.3.1 Starter kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
14.3.2 Development and debugging tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
14.3.3 Programming tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
14.3.4 Order codes for development and programming tools . . . . . . . . . . . . . 128  
14.4 ST7 application notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
Known limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
15  
16  
6/136  
ST7LITEUS2, ST7LITEUS5  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Device pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
FLASH register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Predefined RC oscillator calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Internal RC prescaler selection bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Clock register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Multiplexed IO register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Interrupt mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Interrupt sensitivity bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Description of low power modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Description of interrupt events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
System integrity register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Enabling/disabling Active-halt and Halt modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Configuring the dividing factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
AWU register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
DR register value and output pin status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
I/O port mode options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
I/O port configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Effect of low power modes on I/O ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Description of interrupt events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Port configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
I/O port register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Description of low power modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Interrupt events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Lite timer register map and reset values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Description of low power modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Interrupt events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Counter clock selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Effect of low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Channel selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Configuring the ADC clock speed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
ADC register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Description of addressing modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
ST7 addressing mode overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Instructions supporting inherent addressing mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Instructions supporting inherent immediate addressing mode . . . . . . . . . . . . . . . . . . . . . . 86  
Instructions supporting direct, indexed, indirect and indirect indexed addressing modes . 87  
Instructions supporting relative modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
ST7 instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Illegal opcode detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Operating characteristics with LVD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Operating characteristics with AVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
Table 44.  
Table 45.  
Table 46.  
Table 47.  
Table 48.  
7/136  
List of tables  
ST7LITEUS2, ST7LITEUS5  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
Table 54.  
Table 55.  
Table 56.  
Table 57.  
Table 58.  
Table 59.  
Table 60.  
Table 61.  
Table 62.  
Table 63.  
Table 64.  
Table 65.  
Table 66.  
Table 67.  
Table 68.  
Table 69.  
Table 70.  
Table 71.  
Voltage drop between AVD flag set and LVD reset generation . . . . . . . . . . . . . . . . . . . . . 96  
Internal RC oscillator characteristics (5.0 V calibration) . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Internal RC oscillator characteristics (3.3 V calibration) . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Supply current characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Internal RC oscillator supply current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
On-chip peripheral characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
General timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Auto-wakeup RC oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
RAM and Hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Flash Program memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
General characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Output driving current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Asynchronous RESET pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
10-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
ADC accuracy with VDD = 3.3 to 5.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
ADC accuracy with VDD = 2.7 to 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
ADC accuracy with VDD = 2.4V to 2.7V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
8-lead very thin fine pitch dual flat no-lead package mechanical data . . . . . . . . . . . . . . . 118  
8-pin plastic small outline package, 150-mil width, package mechanical  
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
8-pin plastic dual in-line package, 300-mil width package mechanical data. . . . . . . . . . . 120  
16-pin plastic dual in-line package, 300-mil width, package mechanical  
Table 72.  
Table 73.  
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Startup clock selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
LVD threshold configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
Definition of sector 0 size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
Supported order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Development tool order codes for the ST7LITEUSx family . . . . . . . . . . . . . . . . . . . . . . . 129  
ST7 application notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
Table 74.  
Table 75.  
Table 76.  
Table 77.  
Table 79.  
Table 80.  
Table 81.  
Table 82.  
8/136  
ST7LITEUS2, ST7LITEUS5  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
General block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
8-pin SO and Plastic DIP package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
8-pin DFN package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
16-pin package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
2
Typical I C interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
CPU registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Stack manipulation example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Clock switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 10. Clock management block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 11. Reset sequence phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 12. Reset block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 13. Reset sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 14. Interrupt processing flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 15. Low voltage detector vs reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 16. Reset and supply management block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 17. Using the AVD to monitor VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 18. Power saving mode transitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 19. Slow mode clock transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 20. Wait mode flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 21. Active-halt timing overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 22. Active-halt mode flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 23. Halt timing overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 24. Halt mode flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 25. AWUFH mode block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 26. AWUF Halt timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 27. AWUFH mode flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Figure 28. I/O port general block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Figure 29. Interrupt I/O port state transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Figure 30. Lite timer block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Figure 31. Watchdog timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Figure 32. Input capture timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Figure 33. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Figure 34. PWM function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Figure 35. PWM signal example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Figure 36. ADC block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Figure 37. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Figure 38. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Figure 39. fCPU maximum operating frequency versus V supply voltage. . . . . . . . . . . . . . . . . . . . 95  
DD  
Figure 40. Typical accuracy with RCCR=RCCR0 vs VDD= 2.4-6.0 V and temperature . . . . . . . . . . . 98  
Figure 41. Typical accuracy with RCCR=RCCR1 vs VDD= 2.4-6.0V and temperature. . . . . . . . . . . . 98  
Figure 42. Typical IDD in run mode vs. internal clock frequency and VDD . . . . . . . . . . . . . . . . . . . 101  
Figure 43. Typical IDD in WFI mode vs. internal clock frequency and VDD . . . . . . . . . . . . . . . . . . . 101  
Figure 44. Typical IDD in Slow, Slow-wait and Active-halt mode vs VDD & int  
RC = 8 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Figure 45.  
Figure 46.  
Figure 47.  
I
I
I
vs temp @VDD 5 V & int RC = 8 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
vs temp @VDD 5 V & int RC = 4 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
vs temp @VDD 5 V & int RC = 2 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
DD  
DD  
DD  
9/136  
List of figures  
ST7LITEUS2, ST7LITEUS5  
Figure 48. Two typical applications with unused I/O pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Figure 49. Typical IPU vs. VDD with VIN=VSSl. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Figure 50. Typical VOL at VDD = 2.4 V (standard pins) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Figure 51. Typical VOL at VDD = 3 V (standard pins) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Figure 52. Typical VOL at VDD = 5 V (standard pins) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Figure 53. Typical VOL at VDD = 2.4 V (HS pins) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Figure 54. Typical VOL at VDD = 3 V (HS pins) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Figure 55. Typical VOL at VDD = 5 V (HS pins) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Figure 56. Typical VDD-VOH at VDD = 2.4 V (HS pins) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Figure 57. Typical VDD-VOH at VDD = 3 V (HS pins). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Figure 58. Typical VDD-VOH at VDD = 5 V (HS pins). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Figure 59. Typical VOL vs. VDD (HS pins) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Figure 60. Typical VDD-VOH vs. VDD (HS pins). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Figure 61. RESET pin protection when LVD is enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Figure 62. RESET pin protection when LVD is disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Figure 63. Typical application with ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Figure 64. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Figure 65. 8-lead very thin fine pitch dual flat no-lead package outline . . . . . . . . . . . . . . . . . . . . . . . 118  
Figure 66. 8-pin plastic small outline package, 150-mil width package outline . . . . . . . . . . . . . . . . . 119  
Figure 67. 8-pin plastic dual in-line package, 300-mil width package outline . . . . . . . . . . . . . . . . . . 120  
Figure 68. 16-pin plastic dual in-line package, 300-mil width, package outline . . . . . . . . . . . . . . . . . 121  
Figure 69. Option list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
10/136  
ST7LITEUS2, ST7LITEUS5  
Introduction  
1
Introduction  
The ST7LITEUS2 and ST7LITEUS5 are members of the ST7 microcontroller family. All ST7  
devices are based on a common industry-standard 8-bit core, featuring an enhanced  
instruction set.  
The ST7LITEUS2 and ST7LITEUS5 feature FLASH memory with byte-by-byte In-Circuit  
Programming (ICP) and In-Application Programming (IAP) capability.  
Under software control, the ST7LITEUS2 and ST7LITEUS5 can be placed in Wait, Slow, or  
Halt mode, reducing power consumption when the application is in idle or standby state.  
The enhanced instruction set and addressing modes of the ST7 offer both power and  
flexibility to software developers, enabling the design of highly efficient and compact  
application code. In addition to standard 8-bit data management, all ST7 microcontrollers  
feature true bit manipulation, 8x8 unsigned multiplication and indirect addressing modes.  
For easy reference, all parametric data are located in Section 12 on page 92.  
The devices feature an on-chip debug module (DM) to support in-circuit debugging (ICD).  
2
For a description of the DM registers, refer to the ST7 I C protocol reference manual.  
Figure 1.  
General block diagram  
Internal  
Clock  
AWU RC OSC  
8-MHz RC OSC  
External  
Clock  
LITE TIMER  
with WATCHDOG  
LVD  
V
DD  
POWER  
SUPPLY  
PORT A  
V
SS  
12-BIT AUTO-  
RELOAD TIMER  
PA5:0  
(6 bits)  
PA3 / RESET  
CONTROL  
8-BIT CORE  
ALU  
10-BIT ADC  
1 KByte  
FLASH  
MEMORY  
RAM  
(128 Bytes)  
11/136  
Pin description  
ST7LITEUS2, ST7LITEUS5  
2
Pin description  
Figure 2.  
8-pin SO and Plastic DIP package pinout  
VDD  
PA5 (HS) / AIN4 / CLKIN  
PA4 (HS) / AIN3/MCO  
PA3 / RESET  
1
2
3
4
8
7
6
5
VSS  
ei4  
ei3  
ei0  
ei1  
ei2  
PA0 (HS) / AIN0 / ATPWM / ICCDATA  
PA1 (HS) / AIN1 / ICCCLK  
PA2 (HS) / LTIC / AIN2  
1. HS: High sink capability.  
2. eix : associated external interrupt vector  
Figure 3.  
8-pin DFN package pinout  
VDD  
PA5 (HS) / AIN4 / CLKIN  
PA4 (HS) / AIN3/MCO  
PA3 / RESET  
VSS  
1
2
8
ei4  
ei3  
ei0 7  
ei1 6  
ei2 5  
PA0 (HS) / AIN0 / ATPWM / ICCDATA  
PA1 (HS) / AIN1 / ICCCLK  
PA2 (HS) / LTIC / AIN2  
3
4
1. HS: High sink capability.  
2. eix : associated external interrupt vector  
12/136  
ST7LITEUS2, ST7LITEUS5  
Figure 4. 16-pin package pinout  
Pin description  
Reserved 1)  
VDD  
1
2
3
4
1
1
1
NC  
VSS  
ei0  
ei1  
PA0 (HS) / AIN0 / ATPWM  
PA1 (HS) / AIN1  
NC  
RESET  
ICCCLK  
1
ei4  
12  
PA5 (HS) / AIN4 / CLKIN  
PA4 (HS) / AIN3/MCO  
5
6 ei3  
11  
ICCDATA  
ei210 PA2 (HS) / LTIC / AIN2  
7
8
PA3  
NC  
9
NC  
1. Reserved pins must be tied to ground.  
2. The differences versus the 8-pin packages are listed below:  
The I2C signals (ICCCLK and ICCDATA) are mapped on dedicated pins.  
The RESET signal is mapped on a dedicated pin. It is not multiplexed with PA3.  
PA3 pin is always configured as output. Any change on multiplexed IO reset control registers (MUXCR1  
and MUXCR2) will have no effect on PA3 functionality. Refer to Section 6.5: Register description on  
page 37.  
13/136  
Pin description  
ST7LITEUS2, ST7LITEUS5  
Legend/abbreviations for Table 2  
Type: I = input, O = output, S = supply  
In/Output level: C = CMOS 0.3 V /0.7 V with input trigger  
T
DD  
DD  
Output level: HS = High sink (on N-buffer only)  
Port and control configuration  
Input: float = floating, wpu = weak pull-up, int = interrupt, ana = analog  
Output: OD = open drain, PP = push-pull  
The RESET configuration of each pin is shown in bold which is valid as long as the device is  
in reset state.  
Table 2.  
Device pin description  
Level  
Port/control  
Main  
function  
(after  
Pin  
no.  
Input  
Output  
Pin name  
Alternate function  
reset)  
1
2
VDD  
S
Main power supply  
I/  
O
Analog input 4 or External Clock  
Input  
PA5/AIN4/CLKIN  
CT HS  
CT HS  
X
X
ei4  
X
X
X
X
Port A5  
I/  
O
3
4
5
PA4/AIN3/MCO  
PA3/RESET (1)  
PA2/AIN2/LTIC  
ei3  
X
X
X
X
X
X
X
Port A4  
Port A3  
Port A2  
Analog input 3 or main clock output  
RESET(1)  
O
I/  
O
Analog input 2 or Lite Timer Input  
Capture  
CT HS  
X
X
ei2  
X
X
Analog input 1 or In Circuit  
Communication Clock  
Caution: During normal operation  
this pin must be pulled-up, internally  
or externally (external pull-up of 10k  
mandatory in noisy environment).  
This is to avoid entering I2C mode  
unexpectedly during a reset. In the  
application, even if the pin is  
PA1/AIN1/  
ICCCLK  
I/  
O
6
CT HS  
ei1  
ei0  
X
X
X
X
Port A1  
configured as output, any reset will  
put it back in pull-up  
Analog input 0 or Auto-Reload  
Timer PWM or In Circuit  
Communication Data  
PA0/AIN0/ATPW I/  
M/ICCDATA  
7
8
CT HS  
X
X
Port A0  
Ground  
O
VSS  
S
1. After a reset, the multiplexed PA3/RESET pin will act as RESET. To configure this pin as output (Port A3), write 55h to  
MUXCR0 and AAh to MUXCR1. For further details, please refer to Section 6.5 on page 37.  
14/136  
ST7LITEUS2, ST7LITEUS5  
Register and memory map  
3
Register and memory map  
As shown in Figure 5, the MCU is capable of addressing 64K bytes of memories and I/O  
registers.  
The available memory locations consist of 128 bytes of register locations, 128 bytes of RAM  
and 1 Kbyte of user program memory. The RAM space includes up to 64 bytes for the stack  
from 00C0h to 00FFh.  
The highest address bytes contain the user reset and interrupt vectors.  
The Flash memory contains two sectors (see Figure 5) mapped in the upper part of the ST7  
addressing space so the reset and interrupt vectors are located in Sector 0 (FE00h-FFFFh).  
The size of Flash Sector 0 and other device options are configurable by option byte.  
Warning: Memory locations marked as “Reserved” must never be  
accessed. Accessing a reserved area can have unpredictable  
effects on the device.  
Figure 5.  
Memory map  
0000h  
(1)  
0080h  
HW registers  
Short addressing  
RAM (zero page)  
007Fh  
0080h  
00C0h  
00FFh  
RAM  
64-byte stack  
(128 Bytes)  
b
00FFh  
0100h  
DEE0h  
DEE1h  
DEE2h  
DEE3h  
RCCRH0  
RCCRL0  
RCCRH1  
RCCRL1  
Reserved  
1Kbytes FLASH  
PROGRAM MEMORY  
FBFFh  
FC00h  
FC00h  
0.5 Kbytes  
SECTOR 1  
FDFFh  
FE00h  
0.5 Kbytes  
SECTOR 0  
Flash Memory  
(1 Kbytes)  
FFFFh  
FFDFh  
FFE0h  
(3)  
Interrupt & Reset vectors  
FFFFh  
1. See Table 3.  
2. See Section 6.2 on page 28 for the description of RCCRHx registers.  
3. See Table 9.  
15/136  
Register and memory map  
ST7LITEUS2, ST7LITEUS5  
(1)  
Table 3.  
Address  
Hardware register map  
Register  
label  
Block  
Register name  
Reset status  
Remarks  
R/W  
R/W  
R/W  
0000h  
0001h  
0002h  
PADR  
PADDR  
PAOR  
Port A Data register  
Port A Data Direction register  
Port A Option register  
00h(2)  
08h  
Port A  
02h(3)  
0003h-  
000Ah  
Reserved area (8 bytes)  
000Bh  
000Ch  
LITE  
TIMER LTICR  
LTCSR  
Lite Timer Control/Status register  
Lite Timer Input Capture register  
0xh  
00h  
R/W  
Read only  
000Dh  
000Eh  
000Fh  
0010h  
0011h  
0012h  
0013h  
ATCSR  
CNTRH  
AUTO- CNTRL  
RELOAD ATRH  
TIMER ATRL  
PWMCR  
Timer Control/Status register  
Counter register High  
Counter register Low  
Auto-Reload register High  
Auto-Reload register Low  
PWM Output Control register  
PWM 0 Control/Status register  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
R/W  
Read only  
Read only  
R/W  
R/W  
R/W  
PWM0CSR  
R/W  
0014h to  
0016h  
Reserved area (3 bytes)  
AUTO-  
DCR0H  
RELOAD  
DCR0L  
TIMER  
0017h  
0018h  
PWM 0 Duty Cycle register High  
PWM 0 Duty Cycle register Low  
00h  
00h  
R/W  
R/W  
0019h to  
002Eh  
Reserved area (22 bytes)  
Flash Control/Status register  
Reserved area (4 bytes)  
0002Fh  
FLASH FCSR  
ADCCSR  
00h  
R/W  
0030h to  
0033h  
0034h  
0035h  
0036h  
A/D Control Status register  
A/D Data register High  
A/D Data register Low  
00h  
xxh  
00h  
R/W  
Read only  
R/W  
ADC  
ADCDRH  
ADCDRL  
0037h  
0038h  
ITC  
EICR1  
External Interrupt Control register 1  
Main Clock Control/Status register  
00h  
00h  
FFh  
R/W  
R/W  
R/W  
MCC  
MCCSR  
0039h  
003Ah  
Clock and RCCR  
Reset  
RC oscillator Control register  
System Integrity Control/Status register  
SICSR  
0000 0x00b R/W  
003Bh to  
003Ch  
Reserved area (2 bytes)  
003Dh  
003Eh  
ITC  
EICR2  
External Interrupt Control register 2  
AVD Threshold Selection register  
00h  
03h  
R/W  
R/W  
AVD  
AVDTHCR  
Clock  
controller  
003Fh  
CKCNTCSR Clock Controller Control/Status register  
Reserved area (7 bytes)  
09h  
R/W  
0040h to  
0046h  
0047h  
0048h  
MuxIO- MUXCR0  
reset MUXCR1  
Mux IO-Reset Control register 0  
Mux IO-Reset Control register 1  
00h  
00h  
R/W  
R/W  
16/136  
ST7LITEUS2, ST7LITEUS5  
Register and memory map  
(1)  
Table 3.  
Address  
Hardware register map (continued)  
Register  
label  
Block  
Register name  
Reset status  
Remarks  
R/W  
0049h  
004Ah  
AWUPR  
AWUCSR  
AWU Prescaler register  
AWU Control/Status register  
FFh  
00h  
AWU  
R/W  
004Bh  
004Ch  
004Dh  
004Eh  
004Fh  
0050h  
DMCR  
DMSR  
DMBK1H  
DMBK1L  
DMBK2H  
DMBK2L  
DM Control register  
DM Status register  
DM Breakpoint register 1 High  
DM Breakpoint register 1 Low  
DM Breakpoint register 2 High  
DM Breakpoint register 2 Low  
00h  
00h  
00h  
00h  
00h  
00h  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
DM(4)  
0051h to  
007Fh  
Reserved area (47 bytes)  
1. Legend: x=undefined, R/W=read/write  
2. The contents of the I/O port DR registers are readable only in output configuration. In input configuration, the values of the  
I/O pins are returned instead of the DR register contents.  
3. The bits associated with unavailable pins must always keep their reset value.  
4. For a description of the DM registers, see the ST7 I2C Protocol Reference Manual.  
17/136  
Flash program memory  
ST7LITEUS2, ST7LITEUS5  
4
Flash program memory  
4.1  
Introduction  
The ST7 single voltage extended Flash (XFlash) is a non-volatile memory that can be  
electrically erased and programmed either on a byte-by-byte basis or up to 32 bytes in  
parallel.  
The XFlash devices can be programmed off-board (plugged in a programming tool) or on-  
board using in-circuit programming or in-application programming.  
The array matrix organization allows each sector to be erased and reprogrammed without  
affecting other sectors.  
4.2  
4.3  
Main features  
ICP (in-circuit programming)  
IAP (in-application programming)  
ICT (in-circuit testing) for downloading and executing user application test patterns in  
RAM  
Sector 0 size configurable by option byte  
Readout and write protection  
Programming modes  
The ST7 can be programmed in three different ways:  
Insertion in a programming tool  
In this mode, FLASH sectors 0 and 1 and option byte row can be programmed or  
erased.  
In-circuit programming  
In this mode, FLASH sectors 0 and 1 and option byte row can be programmed or  
erased without removing the device from the application board.  
In-application programming  
In this mode, sector 1 can be programmed or erased without removing the device from  
the application board and while the application is running.  
4.3.1  
In-circuit programming (ICP)  
2
ICP uses a protocol called I C (in-circuit communication) which allows an ST7 plugged on a  
printed circuit board (PCB) to communicate with an external programming device connected  
via cable. ICP is performed in three steps:  
2
Switch the ST7 to I C mode. This is done by driving a specific signal sequence on the  
2
ICCCLK/DATA pins while the RESET pin is pulled low. When the ST7 enters I C mode,  
it fetches a specific RESET vector which points to the ST7 system memory containing  
18/136  
ST7LITEUS2, ST7LITEUS5  
Flash program memory  
2
2
the I C protocol routine. This routine enables the ST7 to receive bytes from the I C  
interface.  
Download ICP driver code in RAM from the ICCDATA pin  
Execute ICP driver code in RAM to program the FLASH memory  
Depending on the ICP driver code downloaded in RAM, FLASH memory programming can  
be fully customized (number of bytes to program, program locations, or selection of the  
serial communication interface for downloading).  
4.3.2  
In application programming (IAP)  
This mode uses an IAP driver program previously programmed in Sector 0 by the user (in  
ICP mode).  
This mode is fully controlled by user software. This allows it to be adapted to the user  
application, (user-defined strategy for entering programming mode, choice of  
communications protocol used to fetch the data to be stored etc).  
IAP mode can be used to program any memory areas except Sector 0, which is write/erase  
protected to allow recovery in case errors occur during the programming operation.  
4.4  
I2C interface  
ICP needs a minimum of 4 and up to 6 pins to be connected to the programming tool. These  
pins are:  
RESET: device reset  
V
: device power supply ground  
SS  
2
ICCCLK: I C output serial clock pin  
2
ICCDATA: I C input serial data pin  
CLKIN: main clock input for external source  
V
: application board power supply  
DD  
2
Refer to Figure 6 for a description of the I C interface.  
If the ICCCLK or ICCDATA pins are only used as outputs in the application, no signal  
isolation is necessary. As soon as the programming tool is plugged to the board, even if an  
2
I C session is not in progress, the ICCCLK and ICCDATA pins are not available for the  
application. If they are used as inputs by the application, isolation such as a serial resistor  
has to be implemented in case another device forces the signal. Refer to the programming  
tool documentation for recommended resistor values.  
During the ICP session, the programming tool must control the RESET pin. This can lead to  
conflicts between the programming tool and the application reset circuit if it drives more than  
5 mA at high level (push pull output or pull-up resistor<1 kΩ). A schottky diode can be used  
to isolate the application RESET circuit in this case. When using a classical RC network with  
R>1 kΩ or a reset management IC with open drain output and pull-up resistor>1 kΩ, no  
additional components are needed. In all cases the user must ensure that no external reset  
2
is generated by the application during the I C session.  
2
The use of Pin 7 of the I C connector depends on the programming tool architecture. This  
pin must be connected when using most ST programming tools (it is used to monitor the  
application power supply). Please refer to the programming tool manual.  
19/136  
Flash program memory  
ST7LITEUS2, ST7LITEUS5  
2
Pin 9 has to be connected to the CLKIN pin of the ST7 when I C mode is selected with  
2
option bytes disabled (35-pulse I C entry mode). When option bytes are enabled (38-pulse  
2
I C entry mode), the internal RC clock (internal RC or AWU RC) is forced. If internal RC is  
selected in the option byte, the internal RC is provided. If AWU RC or external clock is  
selected, the AWU RC oscillator is provided.  
2
A serial resistor must be connected to I C connector pin 6 in order to prevent contention on  
PA3/RESET pin. Contention may occur if a tool forces a state on RESET pin while PA3 pin  
forces the opposite state in output mode. The resistor value is defined to limit the current  
below 2 mA at 5 V. If PA3 is used as output push-pull, then the application must be switched  
off to allow the tool to take control of the RESET pin (PA3). To allow the programming tool to  
drive the RESET pin below V , special care must also be taken when a pull-up is placed on  
IL  
PA3 for application reasons.  
Caution:  
During normal operation, ICCCLK pin must be pulled- up, internally or externally (external  
pull-up of 10 kΩ mandatory in noisy environment). This is to avoid entering I C mode  
2
unexpectedly during a reset. In the application, even if the pin is configured as output, any  
reset will put it back in input pull-up.  
2
Figure 6.  
Typical I C interface  
PROGRAMMING TOOL  
2
I C CONNECTOR  
2
I C Cable  
2
I C CONNECTOR  
HE10 CONNECTOR TYPE  
(See Note 3)  
OPTIONAL  
(See Note 4)  
APPLICATION BOARD  
9
7
5
6
3
1
2
10  
8
4
APPLICATION  
RESET SOURCE  
See Note 2  
3.3kΩ  
(See Note 5)  
APPLICATION  
POWER SUPPLY  
See Note 1 and Caution  
See Note 1  
APPLICATION  
I/O  
ST7  
4.5  
Memory protection  
There are two different types of memory protection: readout protection and Write/Erase  
Protection which can be applied individually.  
4.5.1  
Readout protection  
Readout protection, when selected provides a protection against program memory content  
extraction and against write access to Flash memory. Even if no protection can be  
considered as totally unbreakable, the feature provides a very high level of protection for a  
general purpose microcontroller. Program memory is protected.  
20/136  
ST7LITEUS2, ST7LITEUS5  
Flash program memory  
In flash devices, this protection is removed by reprogramming the option. In this case,  
program memory is automatically erased, and the device can be reprogrammed.  
Readout protection selection depends on the device type:  
In Flash devices it is enabled and removed through the FMP_R bit in the option byte.  
In ROM devices it is enabled by mask option specified in the option list.  
4.5.2  
Flash Write/Erase protection  
Write/erase protection, when set, makes it impossible to both overwrite and erase program  
memory. Its purpose is to provide advanced security to applications and prevent any change  
being made to the memory content.  
Warning: Once set, Write/erase protection can never be removed. A  
write-protected flash device is no longer reprogrammable.  
Write/erase protection is enabled through the FMP_W bit in the option byte.  
4.6  
Related documentation  
2
For details on Flash programming and I C protocol, refer to the ST7 Flash programming  
2
reference manual and to the ST7 I C protocol reference manual.  
21/136  
Flash program memory  
ST7LITEUS2, ST7LITEUS5  
4.7  
Register description  
4.7.1  
Flash Control/Status register (FCSR)  
This register controls the XFlash erasing and programming using ICP, IAP or other  
programming methods.  
1st RASS Key: 0101 0110 (56h)  
2nd RASS Key: 1010 1110 (AEh)  
When an EPB or another programming tool is used (in socket or ICP mode), the RASS keys  
are sent automatically.  
Reset value: 000 0000 (00h)  
7
0
0
0
0
0
0
OPT  
LAT  
PGM  
Read/write  
Table 4.  
FLASH register map and reset values  
Register  
Address  
(Hex.)  
7
6
5
4
3
2
1
0
Label  
FCSR  
OPT  
0
LAT  
0
PGM  
0
002Fh  
Reset  
value  
0
0
0
0
0
22/136  
ST7LITEUS2, ST7LITEUS5  
Central processing unit  
5
Central processing unit  
5.1  
Introduction  
This CPU has a full 8-bit architecture and contains six internal registers allowing efficient 8-  
bit data manipulation.  
5.2  
Main features  
63 basic instructions  
Fast 8-bit by 8-bit multiply  
17 main addressing modes  
Two 8-bit index registers  
16-bit stack pointer  
Low power modes  
Maskable hardware interrupts  
Non-maskable software interrupt  
5.3  
CPU registers  
The six CPU registers shown in Figure 7 are not present in the memory mapping and are  
accessed by specific instructions.  
5.3.1  
5.3.2  
Accumulator (A)  
The Accumulator is an 8-bit general purpose register used to hold operands and the results  
of the arithmetic and logic calculations and to manipulate data.  
Index registers (X and Y)  
In indexed addressing modes, these 8-bit registers are used to create either effective  
addresses or temporary storage areas for data manipulation. (The cross-assembler  
generates a precede instruction (PRE) to indicate that the following instruction refers to the  
Y register.)  
The Y register is not affected by the interrupt automatic procedures (not pushed to and  
popped from the stack).  
5.3.3  
Program counter (PC)  
The program counter is a 16-bit register containing the address of the next instruction to be  
executed by the CPU. It is made of two 8-bit registers PCL (program counter low which is  
the LSB) and PCH (program counter high which is the MSB).  
23/136  
Central processing unit  
Figure 7.  
ST7LITEUS2, ST7LITEUS5  
CPU registers  
7
0
ACCUMULATOR  
RESET VALUE = XXh  
7
0
0
X INDEX REGISTER  
Y INDEX REGISTER  
RESET VALUE = XXh  
7
RESET VALUE = XXh  
PCL  
PCH  
7
8
15  
0
PROGRAM COUNTER  
RESET VALUE = RESET VECTOR @ FFFEh-FFFFh  
7
1
0
1
1
1
1
H
X
I
N
X
Z
X
C
X
CONDITION CODE REGISTER  
STACK POINTER  
RESET VALUE =  
8
1
1
15  
7
0
RESET VALUE = STACK HIGHER ADDRESS  
1. X = Undefined value  
5.3.4  
Condition Code register (CC)  
The 8-bit Condition Code register contains the interrupt mask and four flags representative  
of the result of the instruction just executed. This register can also be handled by the PUSH  
and POP instructions.  
These bits can be individually tested and/or controlled by specific instructions.  
Reset value: 111x1xxx  
7
1
0
1
1
H
I
N
Z
C
Read/Write  
24/136  
ST7LITEUS2, ST7LITEUS5  
Central processing unit  
Bit 7:5 Set to ‘1’  
Bit 4 H Half carry  
This bit is set by hardware when a carry occurs between bits 3 and 4 of the ALU  
during an ADD or ADC instruction. It is reset by hardware during the same  
instructions.  
0: No half carry has occurred.  
1: A half carry has occurred.  
This bit is tested using the JRH or JRNH instruction. The H bit is useful in BCD  
arithmetic subroutines.  
Bit 3 I Interrupt mask  
This bit is set by hardware when entering in interrupt or by software to disable all  
interrupts except the TRAP software interrupt. This bit is cleared by software.  
0: Interrupts are enabled.  
1: Interrupts are disabled.  
This bit is controlled by the RIM, SIM and IRET instructions and is tested by the  
JRM and JRNM instructions.  
Note: Interrupts requested while I is set are latched and can be processed when I  
is cleared. By default an interrupt routine is not interruptible because the I bit  
is set by hardware at the start of the routine and reset by the IRET  
instruction at the end of the routine. If the I bit is cleared by software in the  
interrupt routine, pending interrupts are serviced regardless of the priority  
level of the current interrupt routine.  
Bit 2 N Negative  
This bit is set and cleared by hardware. It is representative of the result sign of the  
last arithmetic, logical or data manipulation. It is a copy of the 7th bit of the result.  
0: The result of the last operation is positive or null.  
1: The result of the last operation is negative  
(that is, the most significant bit is a logic 1).  
This bit is accessed by the JRMI and JRPL instructions.  
Bit 1 Z Zero  
This bit is set and cleared by hardware. This bit indicates that the result of the last  
arithmetic, logical or data manipulation is zero.  
0: The result of the last operation is different from zero.  
1: The result of the last operation is zero.  
This bit is accessed by the JREQ and JRNE test instructions.  
Bit 0 = C Carry/borrow  
This bit is set and cleared by hardware and software. It indicates an overflow or an  
underflow has occurred during the last arithmetic operation.  
0: No overflow or underflow has occurred.  
1: An overflow or underflow has occurred.  
This bit is driven by the SCF and RCF instructions and tested by the JRC and  
JRNC instructions. It is also affected by the “bit test and branch”, shift and rotate  
instructions.  
25/136  
Central processing unit  
ST7LITEUS2, ST7LITEUS5  
5.3.5  
Stack Pointer (SP)  
Reset value: 00 FFh  
15  
8
0
0
1
0
0
0
0
0
0
Read/write  
Read/write  
7
1
0
SP5  
SP4  
SP3  
SP2  
SP1  
SP0  
The Stack Pointer is a 16-bit register which is always pointing to the next free location in the  
stack. It is then decremented after data has been pushed onto the stack and incremented  
before data is popped from the stack (see Figure 8).  
Since the stack is 64 bytes deep, the 10 most significant bits are forced by hardware.  
Following an MCU Reset, or after a Reset Stack Pointer instruction (RSP), the Stack Pointer  
contains its reset value (the SP5 to SP0 bits are set) which is the stack higher address.  
The least significant byte of the Stack Pointer (called S) can be directly accessed by a LD  
instruction.  
Note:  
When the lower limit is exceeded, the Stack Pointer wraps around to the stack upper limit,  
without indicating the stack overflow. The previously stored information is then overwritten  
and therefore lost. The stack also wraps in case of an underflow.  
The stack is used to save the return address during a subroutine call and the CPU context  
during an interrupt. The user may also directly manipulate the stack by means of the PUSH  
and POP instructions. In the case of an interrupt, the PCL is stored at the first location  
pointed to by the SP. Then the other registers are stored in the next locations as shown in  
Figure 8.  
When an interrupt is received, the SP is decremented and the context is pushed on the  
stack.  
On return from interrupt, the SP is incremented and the context is popped from the  
stack.  
A subroutine call is located at two locations and an interrupt five locations in the stack area.  
26/136  
ST7LITEUS2, ST7LITEUS5  
Figure 8. Stack manipulation example  
Central processing unit  
CALL  
subroutine  
RET  
or RSP  
PUSH Y  
POP Y  
IRET  
Interrupt  
event  
@ 00C0h  
SP  
SP  
SP  
Y
CC  
A
CC  
A
CC  
A
X
X
X
PCH  
PCL  
PCH  
PCL  
PCH  
PCL  
PCH  
PCL  
PCH  
PCL  
PCH  
PCL  
SP  
SP  
PCH  
PCL  
PCH  
PCL  
SP  
@ 00FFh  
1. Stack higher address = 00FFh.  
2. Stack lower address = 00C0h.  
27/136  
Supply, reset and clock management  
ST7LITEUS2, ST7LITEUS5  
6
Supply, reset and clock management  
The device includes a range of utility features for securing the application in critical  
situations (for example in case of a power brown-out), and reducing the number of external  
components.  
6.1  
Main features  
Clock management  
8 MHz internal RC oscillator (enabled by option byte)  
External clock Input (enabled by option byte)  
Reset sequence manager (RSM)  
System integrity management (SI)  
Main supply low voltage detection (LVD) with reset generation (enabled by option  
byte)  
Auxiliary voltage detector (AVD) with interrupt capability for monitoring the main  
supply  
6.2  
Internal RC oscillator adjustment  
The ST7 contains an internal RC oscillator with a specific accuracy for a given device,  
temperature and voltage. It can be selected as the start up clock through the CKSEL[1:0]  
option bits (see Section 14.1 on page 123). It must be calibrated to obtain the frequency  
required in the application. This is done by software writing a 10-bit calibration value in the  
RCCR (RC Control register) and in the bits [6:5] in the SICSR (SI Control Status register).  
Whenever the microcontroller is reset, the RCCR returns to its default value (FFh), i.e. each  
time the device is reset, the calibration value must be loaded in the RCCR. Predefined  
calibration values are stored in Flash memory for 3.3 and 5 V V supply voltages at 25°C,  
DD  
as shown in the following table.  
Table 5.  
Predefined RC oscillator calibration values  
Conditions ST7LITEUS2/ST7LITEUS5 address  
DD=5 V  
RCCR  
RCCRH0  
RCCRL0  
RCCRH1  
RCCRL1  
V
DEE0h(1) (CR[9:2] bits)  
DEE1h 1) (CR[1:0] bits)  
DEE2h 1) (CR[9:2] bits)  
DEE3h 1) (CR[1:0] bits)  
TA=25 °C  
fRC=8 MHz  
VDD=3.3 V  
TA=25 °C  
fRC=8 MHz  
1. DEE0h, DEE1h, DEE2h and DEE3h are located in a reserved area butare special bytes containing also  
the RC calibration values which are read-accessible only in user mode. If all the Flash space (including the  
RC calibration value locations) has been erased (after the readout protection removal), then the RC  
calibration values can still be obtained through these two addresses.  
28/136  
ST7LITEUS2, ST7LITEUS5  
Supply, reset and clock management  
2
Note:  
1
2
3
In I C mode, the internal RC oscillator is forced as a clock source, regardless of the  
selection in the option byte. Refer to note 5 in Section 4.4 on page 19 for further details.  
See Section 12: Electrical characteristics for more information on the frequency and  
accuracy of the RC oscillator.  
To improve clock stability and frequency accuracy, it is recommended to place a decoupling  
capacitor, typically 100nF, between the V and V pins as close as possible to the ST7  
DD  
SS  
device.  
Caution:  
If the voltage or temperature conditions change in the application, the frequency may need  
to be recalibrated.  
Refer to application note AN2326 for information on how to calibrate the RC frequency using  
an external reference signal.  
The ST7LITEUS2 and ST7LITEUS5 also contain an Auto-wakeup RC oscillator. This RC  
oscillator should be enabled to enter Auto-wakeup from Halt mode.  
The Auto-wakeup RC oscillator can also be configured as the startup clock through the  
CKSEL[1:0] option bits (see Section 14.1 on page 123).  
This is recommended for applications where very low power consumption is required.  
Switching from one startup clock to another can be done in run mode as follows (see  
Figure 9):  
Case 1  
Switching from internal RC to AWU:  
1. Set the RC/AWU bit in the CKCNTCSR register to enable the AWU RC oscillator  
2. The RC_FLAG is cleared and the clock output is at 1.  
3. Wait 3 AWU RC cycles till the AWU_FLAG is set  
4. The switch to the AWU clock is made at the positive edge of the AWU clock signal  
5. Once the switch is made, the internal RC is stopped  
Case 2  
Switching from AWU RC to internal RC:  
1. Reset the RC/AWU bit to enable the internal RC oscillator  
2. Using a 4-bit counter, wait until 8 internal RC cycles have elapsed. The counter is  
running on internal RC clock.  
3. Wait till the AWU_FLAG is cleared (1AWU RC cycle) and the RC_FLAG is set (2 RC  
cycles)  
4. The switch to the internal RC clock is made at the positive edge of the internal RC clock  
signal  
5. Once the switch is made, the AWU RC is stopped  
Note:  
1
When the internal RC is not selected, it is stopped so as to save power consumption.  
2
When the internal RC is selected, the AWU RC is turned on by hardware when entering  
Auto-wakeup from Halt mode.  
3
When the external clock is selected, the AWU RC oscillator is always on.  
29/136  
Supply, reset and clock management  
Figure 9. Clock switching  
ST7LITEUS2, ST7LITEUS5  
Set RC/AWU  
Internal RC  
AWU RC  
Poll AWU_FLAG until set  
Reset RC/AWU  
AWU RC  
Internal RC  
Poll RC_FLAG until set  
6.3  
Register description  
6.3.1  
Main Clock Control/Status register (MCCSR)  
Reset value: 0000 0000 (00h)  
7
0
0
0
0
0
0
0
MCO  
SMS  
Read / Write  
Bits 7:2 Reserved, must be kept cleared.  
Bit 1 MCO Main Clock Out enable bit  
This bit is read/write by software and cleared by hardware after a reset. This bit  
allows to enable the MCO output clock.  
0: MCO clock disabled, I/O port free for general purpose I/O.  
1: MCO clock enabled.  
Bit 0 SMS Slow Mode select  
This bit is read/write by software and cleared by hardware after a reset. This bit  
selects the input clock fOSC or fOSC/32.  
0: Normal mode (fCPU = OSC  
f
)
1: Slow mode (fCPU = fOSC/32)  
30/136  
ST7LITEUS2, ST7LITEUS5  
Supply, reset and clock management  
6.3.2  
RC Control register (RCCR)  
Reset value: 1111 1111 (FFh)  
7
0
CR9  
CR8  
CR7  
CR6  
CR5  
CR4  
CR3  
CR2  
Read / Write  
Bits 7:0 CR[9:2] RC Oscillator Frequency Adjustment Bits  
These bits, as well as CR[1:0] bits in the SICSR register must be written  
immediately after reset to adjust the RC oscillator frequency and to obtain the  
required accuracy. The application can store the correct value for each voltage  
range in Flash memory and write it to this register at startup.  
00h = maximum available frequency  
FFh = lowest available frequency  
Note: To tune the oscillator, write a series of different values in the register until the  
correct frequency is reached. The fastest method is to use a dichotomy  
starting with 80h.  
6.3.3  
System Integrity (SI) Control/status register (SICSR)  
Reset value: 0000 0x00 (0xh)  
7
0
0
CR1  
CR0  
0
0
LVDRF  
AVDF  
AVDIE  
Read / Write  
Bit 7 Reserved, must be kept cleared.  
Bits 6:5 CR[1:0] RC Oscillator Frequency Adjustment bits  
These bits, as well as CR[9:2] bits in the RCCR register must be written  
immediately after reset to adjust the RC oscillator frequency and to obtain the  
required accuracy. Refer to Section 6.2 on page 28.  
Bits 4:3 Reserved, must be kept cleared.  
Bits 2:0 System Integrity bits. Refer to Section 7.4 on page 43.  
31/136  
Supply, reset and clock management  
ST7LITEUS2, ST7LITEUS5  
6.3.4  
AVD Threshold Selection register (AVDTHCR)  
Reset value: 0000 0011 (03h)  
7
0
CK2  
CK1  
CK0  
0
0
0
AVD1  
AVD0  
Read / Write  
Bits 7:5 CK[2:0] Internal RC Prescaler Selection  
These bits are set by software and cleared by hardware after a reset. These bits  
select the prescaler of the internal RC oscillator. See Figure 10 on page 34 and  
Table 6.  
Bits 4:2 Reserved, must be kept cleared.  
Bits 1:0 AVD Threshold Selection bits. Refer to Section 7.4: System integrity management  
(SI).  
(1)  
Table 6.  
CK2  
Internal RC prescaler selection bits  
CK1  
CK0  
fOSC  
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
fRC  
fRC/2  
fRC/4  
fRC/8  
fRC/16  
1. If the internal RC is used with a supply operating range below 3.3 V, a division ratio of at least 2 must be  
enabled in the RC prescaler.  
6.3.5  
Clock Controller Control/Status register (CKCNTCSR)  
Read/Write  
Reset value: 0000 1001 (09h)  
7
0
0
RC_  
FLAG  
0
0
0
AWU_FLAG  
Read / Write  
0
RC/AWU  
Bits 7:4 Reserved, must be kept cleared.  
Bit 3 AWU_FLAG AWU Selection  
This bit is set and cleared by hardware  
0: No switch from AWU to RC requested  
1: AWU clock activated and temporization completed  
32/136  
ST7LITEUS2, ST7LITEUS5  
Supply, reset and clock management  
Bit 2 RC_FLAG RC Selection  
This bit is set and cleared by hardware  
0: No switch from RC to AWU requested  
1: RC clock activated and temporization completed  
Bit 1 = Reserved, must be kept cleared.  
Bit 0 = RC/AWU RC/AWU Selection  
0: RC enabled  
1: AWU enabled (default value)  
Table 7.  
Clock register map and reset values  
Register  
Address  
(Hex.)  
7
6
5
4
3
2
1
0
label  
MCCSR  
MCO  
0
SMS  
0
0038h  
0039h  
003Ah  
003Eh  
003Fh  
0
0
0
0
0
0
Reset value  
RCCR  
CR9  
1
CR8  
1
CR7  
1
CR6  
1
CR5  
1
CR4  
1
CR3  
1
CR2  
1
reset value  
SICSR  
LVDRF  
x
AVDF  
0
AVDIE  
0
0
CR1  
CR0  
0
0
0
0
0
reset value  
AVDTHCR  
reset value  
CK2  
0
CK1  
0
CK0  
0
AVD1  
1
AVD2  
1
0
CKCNTCSR  
reset value  
AWU_FLAG RC_FLAG  
RC/AWU  
1
0
0
0
0
1
0
33/136  
Supply, reset and clock management  
Figure 10. Clock management block diagram  
ST7LITEUS2, ST7LITEUS5  
CR9 CR8 CR7 CR6 CR5 CR4 CR3  
CR2  
RCCR  
CR1 CR0  
SICSR  
Tunable  
internal RC Oscillator  
CKCNTCSR  
RC/AWU  
Clock  
Controller  
8MHz(f  
)
RC  
f
OSC  
8 MHz RC OSC  
4 MHz  
AWU CK  
Ext Clock  
Prescaler  
2 MHz  
1 MHz  
500 kHz  
33kHz  
AWU  
RC  
CKSEL[1:0]  
Option bits  
/2  
CLKIN  
DIVIDER  
f
CLKIN  
f
LTIMER  
13-BIT  
LITE TIMER COUNTER  
(1ms timebase @ 8 MHz f  
)
OSC  
f
OSC  
0
1
f
CPU  
f
OSC  
TO CPU AND  
PERIPHERALS  
f
/32  
/32 DIVIDER  
OSC  
MCO  
MCCSR  
SMS  
MCO  
34/136  
ST7LITEUS2, ST7LITEUS5  
Supply, reset and clock management  
6.4  
Reset sequence manager (RSM)  
6.4.1  
Introduction  
The reset sequence manager includes three reset sources as shown in Figure 12:  
External RESET source pulse  
Internal LVD reset (low voltage detection)  
Internal WATCHDOG reset  
Note:  
A reset can also be triggered following the detection of an illegal opcode or prebyte code.  
Refer to Figure 12.  
These sources act on the RESET pin and it is always kept low during the delay phase.  
The RESET service routine vector is fixed at addresses FFFEh-FFFFh in the ST7 memory  
map.  
The basic reset sequence consists of 3 phases as shown in Figure 11:  
Active phase depending on the reset source  
64 CPU clock cycle delay  
RESET vector fetch  
Caution:  
When the ST7 is unprogrammed or fully erased, the Flash is blank and the RESET vector is  
not programmed. For this reason, it is recommended to keep the RESET pin in low state  
until programming mode is entered, in order to avoid unwanted behavior.  
The 64 CPU clock cycle delay allows the oscillator to stabilise and ensures that recovery  
has taken place from the Reset state.  
The RESET vector fetch phase duration is 2 clock cycles.  
Figure 11. Reset sequence phases  
RESET  
INTERNAL RESET  
64 CLOCK CYCLES  
FETCH  
VECTOR  
Active phase  
35/136  
Supply, reset and clock management  
Figure 12. Reset block diagram  
ST7LITEUS2, ST7LITEUS5  
V
DD  
RON  
INTERNAL  
RESET  
RESET  
FILTER  
WATCHDOG RESET  
ILLEGAL OPCODE RESET 1)  
LVD RESET  
PULSE  
GENERATOR  
1. Section 11.2.1: Illegal opcode reset for more details on illegal opcode reset conditions  
6.4.2  
Asynchronous external RESET pin  
The RESET pin is both an input and an open-drain output with integrated R weak pull-up  
ON  
resistor. This pull-up has no fixed value but varies in accordance with the input voltage. It  
can be pulled low by external circuitry to reset the device. See Electrical Characteristic  
section for more details.  
A RESET signal originating from an external source must have a duration of at least  
t
in order to be recognized (see Figure 13). This detection is asynchronous and  
h(RSTL)in  
therefore the MCU can enter reset state even in Halt mode.  
The RESET pin is an asynchronous signal which plays a major role in EMS performance. In  
a noisy environment, it is recommended to follow the guidelines mentioned in the electrical  
characteristics section.  
6.4.3  
6.4.4  
External Power-on reset  
If the LVD is disabled by option byte, to start up the microcontroller correctly, the user must  
ensure by means of an external reset circuit that the reset signal is held low until V is over  
the minimum level specified for the selected f  
DD  
frequency.  
CLKIN  
A proper reset signal for a slow rising V supply can generally be provided by an external  
RC network connected to the RESET pin.  
DD  
Internal low voltage detector (LVD) reset  
Two different reset sequences caused by the internal LVD circuitry can be distinguished:  
Power-on reset  
Voltage Drop reset  
The device RESET pin acts as an output that is pulled low when V <V (rising edge) or  
DD  
IT+  
V
<V (falling edge) as shown in Figure 13.  
DD  
IT-  
The LVD filters spikes on V larger than t  
to avoid parasitic resets.  
g(VDD)  
DD  
36/136  
ST7LITEUS2, ST7LITEUS5  
Supply, reset and clock management  
6.4.5  
Internal watchdog reset  
The reset sequence generated by a internal watchdog counter overflow is shown in  
Figure 13.  
Starting from the watchdog counter underflow, the device RESET pin acts as an output that  
is pulled low during at least t  
.
w(RSTL)out  
Figure 13. Reset sequences  
VDD  
V
V
IT+(LVD)  
IT-(LVD)  
LVD  
RESET  
EXTERNAL  
RESET  
WATCHDOG  
RESET  
Run  
Run  
Run  
Run  
ACTIVE  
PHASE  
ACTIVE  
PHASE  
ACTIVE PHASE  
t
w(RSTL)out  
t
h(RSTL)in  
EXTERNAL  
RESET  
SOURCE  
RESET PIN  
WATCHDOG  
RESET  
WATCHDOG UNDERFLOW  
INTERNAL RESET (64 TCPU  
VECTOR FETCH  
)
6.5  
Register description  
6.5.1  
Multiplexed I/O Reset Control register 1 (MUXCR1)  
Reset value: 0000 0000 (00h)  
7
0
MIR15  
MIR14  
MIR13  
MIR12  
MIR11  
MIR10  
MIR9  
MIR8  
Read / Write once  
6.5.2  
Multiplexed I/O Reset Control register 0 (MUXCR0)  
Reset value: 0000 0000 (00h)  
7
0
MIR7  
MIR6  
MIR5  
MIR4  
MIR3  
MIR2  
MIR1  
MIR0  
Read / Write once  
MIR[15:0]  
Bits 15:0  
37/136  
Supply, reset and clock management  
ST7LITEUS2, ST7LITEUS5  
This 16-bit register is read/write by software but can be written only once between two reset  
events. It is cleared by hardware after a reset; When both MUXCR0 and MUXCR1 registers  
are at 00h, the multiplexed PA3/RESET pin will act as RESET. To configure this pin as  
output (Port A3), write 55h to MUXCR0 and AAh to MUXCR1.  
These registers are one-time writable only.  
To configure PA3 as general purpose output:  
After power-on / reset, the application program has to configure the I/O port by writing  
to these registers as described above. Once the pin is configured as an I/O output, it  
cannot be changed back to a reset pin by the application code.  
To configure PA3 as RESET:  
An internally generated reset (such as POR, LVD, WDG, illegal opcode) will clear the  
two registers and the pin will act again as a reset function. Otherwise, a power-down is  
required to put the pin back in reset configuration.  
Table 8.  
Multiplexed IO register map and reset values  
Register  
Address  
(Hex.)  
7
6
5
4
3
2
1
0
label  
MUXCR0  
MIR7  
0
MIR6  
0
MIR5  
0
MIR4  
0
MIR3  
0
MIR2  
0
MIR1  
0
MIR0  
0
0047h  
0048h  
reset  
value  
MUXCR1  
MIR15 MIR14 MIR13 MIR12 MIR11 MIR10  
MIR9  
0
MIR8  
0
reset  
value  
0
0
0
0
0
0
38/136  
ST7LITEUS2, ST7LITEUS5  
Interrupts  
7
Interrupts  
The ST7 core may be interrupted by one of two different methods: Maskable hardware  
interrupts as listed in the “interrupt mapping” table and a non-maskable software interrupt  
(TRAP). The Interrupt processing flowchart is shown in Figure 14.  
The maskable interrupts must be enabled by clearing the I bit in order to be serviced.  
However, disabled interrupts may be latched and processed when they are enabled (see  
external interrupts subsection).  
Note:  
After reset, all interrupts are disabled.  
When an interrupt has to be serviced:  
Normal processing is suspended at the end of the current instruction execution.  
The PC, X, A and CC registers are saved onto the stack.  
The I bit of the CC register is set to prevent additional interrupts.  
The PC is then loaded with the interrupt vector of the interrupt to service and the first  
instruction of the interrupt service routine is fetched (refer to the Interrupt Mapping table  
for vector addresses).  
The interrupt service routine should finish with the IRET instruction which causes the  
contents of the saved registers to be recovered from the stack.  
Note:  
As a consequence of the IRET instruction, the I bit is cleared and the main program  
resumes.  
Priority management  
By default, a servicing interrupt cannot be interrupted because the I bit is set by hardware  
entering in interrupt routine.  
In the case when several interrupts are simultaneously pending, an hardware priority  
defines which one will be serviced first (see Table 9: Interrupt mapping).  
Interrupts and low power mode  
All interrupts allow the processor to leave the Wait low power mode. Only external and  
specifically mentioned interrupts allow the processor to leave the Halt low power mode (refer  
to the “Exit from Halt” column in Table 9: Interrupt mapping).  
7.1  
Non maskable software interrupt  
This interrupt is entered when the TRAP instruction is executed regardless of the state of  
the I bit. It is serviced according to the flowchart in Figure 14.  
39/136  
Interrupts  
ST7LITEUS2, ST7LITEUS5  
7.2  
External interrupts  
External interrupt vectors can be loaded into the PC register if the corresponding external  
interrupt occurred and if the I bit is cleared. These interrupts allow the processor to leave the  
Halt low power mode.  
The external interrupt polarity is selected through the miscellaneous register or interrupt  
register (if available).  
An external interrupt triggered on edge will be latched and the interrupt request  
automatically cleared upon entering the interrupt service routine.  
Caution:  
The type of sensitivity defined in the Miscellaneous or Interrupt register (if available) applies  
to the ei source. In case of a NANDed source (as described in the I/O ports section), a low  
level on an I/O pin, configured as input with interrupt, masks the interrupt request even in  
case of rising-edge sensitivity.  
7.3  
Peripheral interrupts  
Different peripheral interrupt flags in the status register are able to cause an interrupt when  
they are active if both:  
The I bit of the CC register is cleared.  
The corresponding enable bit is set in the control register.  
If any of these two conditions is false, the interrupt is latched and thus remains pending.  
Clearing an interrupt request is done by:  
Writing “0” to the corresponding bit in the status register or  
Access to the status register while the flag is set followed by a read or write of an  
associated register.  
Note:  
The clearing sequence resets the internal latch. A pending interrupt (that is, waiting for  
being enabled) will therefore be lost if the clear sequence is executed.  
Figure 14. Interrupt processing flowchart  
FROM RESET  
N
I BIT SET?  
N
Y
INTERRUPT  
PENDING?  
Y
FETCH NEXT INSTRUCTION  
N
IRET?  
STACK PC, X, A, CC  
SET I BIT  
Y
LOAD PC FROM INTERRUPT VECTOR  
EXECUTE INSTRUCTION  
RESTORE PC, X, A, CC FROM STACK  
THIS CLEARS I BIT BY DEFAULT  
40/136  
ST7LITEUS2, ST7LITEUS5  
Interrupts  
Table 9.  
Interrupt mapping  
Exit  
from  
Halt  
Register Priority  
Address  
vector  
N° Source block  
Description  
label  
order  
RESET  
TRAP  
Reset  
yes  
no  
FFFEh-FFFFh  
FFFCh-FFFDh  
N/A  
Software interrupt  
Auto-wakeup interrupt  
External interrupt 0  
External interrupt 1  
External interrupt 2  
Not used  
0
1
AWU  
ei0  
AWUCSR  
yes(1) FFFAh-FFFBh  
FFF8h-FFF9h  
Highest  
priority  
2
ei1  
yes  
FFF6h-FFF7h  
FFF4h-FFF5h  
FFF2h-FFF3h  
FFF0h-FFF1h  
FFEEh-FFEFh  
FFECh-FFEDh  
3
ei2  
N/A  
4
no  
yes  
no(2)  
no  
5
ei3  
ei4 2)  
SI  
External interrupt 3  
External interrupt 4 2)  
AVD interrupt  
6 2)  
7
SICSR  
PWMxCS  
R or  
ATCSR  
8
AT TIMER Output Compare Interrupt  
no  
FFEAh-FFEBh  
AT TIMER  
9
AT TIMER Overflow Interrupt  
LITE TIMER Input Capture Interrupt  
LITE TIMER RTC1 Interrupt  
Not used  
ATCSR  
LTCSR  
LTCSR  
yes(3) FFE8h-FFE9h  
no FFE6h-FFE7h  
yes(3) FFE4h-FFE5h  
Lowest  
priority  
10  
11  
12  
13  
LITE TIMER  
no  
no  
FFE2h-FFE3h  
FFE0h-FFE1h  
Not used  
1. This interrupt exits the MCU from Auto-wakeup from Halt mode only.  
2. This interrupt exits the MCU from Wait and Active-halt modes only. Moreover, IS4[1:0] = 01 is the only safe configuration to  
avoid spurious interrupt in Halt and AWUFH mode  
3. These interrupts exit the MCU from Active-halt mode only.  
7.3.1  
External Interrupt Control register 1 (EICR1)  
Reset value: 0000 0000 (00h)  
7
0
0
0
IS21  
IS20  
IS11  
IS10  
IS01  
IS00  
Read/Write  
Bits 7:6 Reserved  
Bits 5:4 IS2[1:0] ei2 sensitivity  
These bits define the interrupt sensitivity for ei2 according to Table 10.  
Bits 3:2 IS1[1:0] ei1 sensitivity  
These bits define the interrupt sensitivity for ei1 according to Table 10.  
Bits 1:0 IS0[1:0] ei0 sensitivity  
These bits define the interrupt sensitivity for ei0 according to Table 10.  
41/136  
Interrupts  
ST7LITEUS2, ST7LITEUS5  
These 8 bits can be written only when the I bit in the CC register is set.  
Note:  
1
2
Changing the sensitivity of a particular external interrupt clears this pending interrupt. This  
can be used to clear unwanted pending interrupts. Refer to Section : External interrupt  
function.  
7.3.2  
External Interrupt Control register 2 (EICR2)  
Reset value: 0000 0000 (00h)  
7
0
0
0
0
0
IS41  
IS40  
IS31  
IS30  
Read/Write  
Bits 7:4 Reserved  
Bits 3:2 IS4[1:0] ei4 sensitivity  
These bits define the interrupt sensitivity for ei1 according to Table 10.  
Bits 1:0 IS3[1:0] ei3 sensitivity  
These bits define the interrupt sensitivity for ei0 according to Table 10.  
Note:  
1
2
These 8 bits can be written only when the I bit in the CC register is set.  
Changing the sensitivity of a particular external interrupt clears this pending interrupt. This  
can be used to clear unwanted pending interrupts. Refer to Section : External interrupt  
function.  
3
IS4[1:0] = 01 is the only safe configuration to avoid spurious interrupt in Halt and AWUFH  
modes.  
Table 10. Interrupt sensitivity bits  
ISx1  
ISx0  
External interrupt sensitivity  
0
0
1
1
0
1
0
1
Falling edge & low level  
Rising edge only  
Falling edge only  
Rising and falling edge  
42/136  
ST7LITEUS2, ST7LITEUS5  
Interrupts  
7.4  
System integrity management (SI)  
The System Integrity Management block contains the low voltage detector (LVD) and  
Auxiliary Voltage Detector (AVD) functions. It is managed by the SICSR register.  
Note:  
A reset can also be triggered following the detection of an illegal opcode or prebyte code.  
Refer to Section 11.2.1: Illegal opcode reset for further details.  
7.4.1  
Low voltage detector (LVD)  
The low voltage detector function (LVD) generates a static reset when the V supply  
DD  
voltage is below a V  
reference value. This means that it secures the power-up as well  
IT-(LVD)  
as the power-down keeping the ST7 in reset.  
The V reference value for a voltage drop is lower than the V  
reference value  
IT+(LVD)  
IT-(LVD)  
for power-on in order to avoid a parasitic reset when the MCU starts running and sinks  
current on the supply (hysteresis).  
The LVD Reset circuitry generates a reset when V is below:  
DD  
V
V
when V is rising  
DD  
IT+(LVD)  
IT-(LVD)  
when V is falling  
DD  
The LVD function is illustrated in Figure 15.  
The voltage threshold can be configured by option byte to be low, medium or high. See  
Section 14.1: Option bytes.  
Provided the minimum V value (guaranteed for the oscillator frequency) is above V  
,
DD  
IT-(LVD)  
the MCU can only be in two modes:  
Under full software control  
In static safe reset  
In these conditions, secure operation is always ensured for the application without the need  
for external reset hardware.  
During a low voltage detector reset, the RESET pin is held low, thus permitting the MCU to  
reset other devices.  
Note:  
Use of LVD with capacitive power supply: with this type of power supply, if power cuts occur  
in the application, it is recommended to pull V down to 0V to ensure optimum restart  
DD  
conditions. Refer to circuit example in Figure 62 and note 4.  
The LVD is an optional function which can be selected by option byte. See Section 14.1 on  
page 123. It allows the device to be used without any external RESET circuitry. If the LVD is  
disabled, an external circuitry must be used to ensure a proper Power-on reset.  
It is recommended to make sure that the V supply voltage rises monotonously when the  
DD  
device is exiting from Reset, to ensure the application functions properly.  
Make sure the right combination of LVD and AVD thresholds is used as LVD and AVD levels  
are not correlated. Refer to Table 47 on page 95 and Table 48 on page 96 for more details.  
Caution:  
If an LVD reset occurs after a watchdog reset has occurred, the LVD will take priority and will  
clear the watchdog flag.  
43/136  
Interrupts  
ST7LITEUS2, ST7LITEUS5  
Figure 15. Low voltage detector vs reset  
V
DD  
V
hys  
V
V
IT+  
(LVD)  
IT-  
(LVD)  
RESET  
Figure 16. Reset and supply management block diagram  
WATCHDOG  
STATUS FLAG  
TIMER (WDG)  
SYSTEM INTEGRITY MANAGEMENT  
AVD Interrupt Request  
RESET SEQUENCE  
MANAGER  
RESET  
SICSR  
(RSM)  
LVD AVD AVD  
0
1
1
0
0
RF  
F
IE  
0
7
LOW VOLTAGE  
DETECTOR  
(LVD)  
V
V
SS  
DD  
AUXILIARY VOLTAGE  
DETECTOR  
(AVD)  
44/136  
ST7LITEUS2, ST7LITEUS5  
Interrupts  
7.4.2  
Auxiliary voltage detector (AVD)  
The voltage detector function (AVD) is based on an analog comparison between a V  
IT-(AVD)  
). The V  
AVD IT-(AVD)  
and V  
reference value and the V main supply voltage (V  
IT+(AVD)  
DD  
reference value for falling voltage is lower than the V  
reference value for rising  
IT+(AVD)  
voltage in order to avoid parasitic detection (hysteresis).  
The output of the AVD comparator is directly readable by the application software through a  
real time status bit (AVDF) in the SICSR register. This bit is read only.  
Monitoring the VDD main supply  
The AVD threshold is selected by the AVD[1:0] bits in the AVDTHCR register.  
If the AVD interrupt is enabled, an interrupt is generated when the voltage crosses the  
V
or V  
threshold (AVDF bit is set).  
IT-(AVD)  
IT+(AVD)  
In the case of a drop in voltage, the AVD interrupt acts as an early warning, allowing  
software to shut down safely before the LVD resets the microcontroller. See Figure 17.  
The interrupt on the rising edge is used to inform the application that the V warning state  
DD  
is over  
Note:  
Make sure the right combination of LVD and AVD thresholds is used as LVD and AVD levels  
are not correlated. Refer to Table 47 on page 95 and Table 48 on page 96 for more details.  
Figure 17. Using the AVD to monitor V  
DD  
VDD  
Early Warning Interrupt  
(Power has dropped, MCU not  
not yet in reset)  
V
hyst  
V
IT+(AVD)  
V
IT-(AVD)  
V
V
IT+(LVD)  
IT-(LVD)  
AVDF bit  
0
1
RESET  
1
0
AVD INTERRUPT  
REQUEST  
IF AVDIE bit = 1  
INTERRUPT Cleared by  
reset  
INTERRUPT Cleared by  
hardware  
LVD RESET  
45/136  
Interrupts  
ST7LITEUS2, ST7LITEUS5  
7.4.3  
Low power modes  
Table 11. Description of low power modes  
Mode  
Description  
Wait  
No effect on SI. AVD interrupts cause the device to exit from Wait mode.  
The SICSR register is frozen.  
Halt  
The AVD remains active but the AVD interrupt cannot be used to exit from Halt  
mode.  
Interrupts  
The AVD interrupt event generates an interrupt if the corresponding Enable Control Bit  
(AVDIE) is set and the interrupt mask in the CC register is reset (RIM instruction).  
Table 12. Description of interrupt events  
Enable  
control bit  
Exit from  
Wait  
Exit from  
Halt  
Interrupt Event  
Event flag  
AVD event  
AVDF  
AVDIE  
Yes  
No  
7.4.4  
Register description  
System Integrity (SI) Control/Status register (SICSR)  
Reset value: 0000 0x00 (0xh)  
7
0
0
CR1  
CR0  
0
0
LVDRF  
AVDF  
AVDIE  
Read/write  
Bit 7 Reserved, must be kept cleared.  
Bits 6:5 CR[1:0] RC Oscillator Frequency Adjustment bits  
These bits, as well as CR[9:2] bits in the RCCR register must be written  
immediately after reset to adjust the RC oscillator frequency and to obtain the  
required accuracy. Refer to Section 6.2: Internal RC oscillator adjustment on  
page 28.  
Bits 4:3 Reserved, must be kept cleared.  
46/136  
ST7LITEUS2, ST7LITEUS5  
Interrupts  
Bit 2 LVDRF LVD reset flag  
This bit indicates that the last Reset was generated by the LVD block. It is set by  
hardware (LVD reset) and cleared when read. See WDGRF flag description in  
Section 10.1.6 on page 69 for more details. When the LVD is disabled by OPTION  
BYTE, the LVDRF bit value is undefined.  
Note: If the selected clock source is one of the two internal ones, and if VDD  
remains below the selected LVD threshold during less than TAWU (33us  
typ.), the LVDRF flag cannot be set even if the device is reset by the LVD.  
If the selected clock source is the external clock (CLKIN), the flag is never  
set if the reset occurs during Halt mode. In run mode the flag is set only if  
fCLKIN is greater than 10 MHz.  
Bit 1 AVDF Voltage Detector flag  
This read-only bit is set and cleared by hardware. If the AVDIE bit is set, an  
interrupt request is generated when the AVDF bit is set. Refer to Figure 17 for  
additional details  
0: VDD over AVD threshold  
1: VDD under AVD threshold  
Bit 0 AVDIE Voltage Detector interrupt enable  
This bit is set and cleared by software. It enables an interrupt to be generated when  
the AVDF flag is set. The pending interrupt information is automatically cleared  
when software enters the AVD interrupt routine.  
0: AVD interrupt disabled  
1: AVD interrupt enabled  
AVD Threshold Selection register (AVDTHCR)  
Refer to Section 6.3.4: AVD Threshold Selection register (AVDTHCR) for a full description of  
this register.  
Application notes  
The LVDRF flag is not cleared when another reset type occurs (external or watchdog), the  
LVDRF flag remains set to keep trace of the original failure.  
In this case, a watchdog reset can be detected by software while an external reset can not.  
Table 13. System integrity register map and reset values  
Address  
(Hex.)  
Register  
label  
7
6
5
4
3
2
1
0
SICSR  
LVDRF AVDF  
AVDIE  
0
003Ah  
003Eh  
0
1
1
0
0
reset  
value  
x
0
AVDTHCR  
CK2  
0
CK1  
0
CK0  
0
AVD1  
1
AVD2  
1
0
0
0
reset  
value  
47/136  
Power saving modes  
ST7LITEUS2, ST7LITEUS5  
8
Power saving modes  
8.1  
Introduction  
To give a large measure of flexibility to the application in terms of power consumption, four  
main power saving modes are implemented in the ST7 (see Figure 18):  
Slow  
Wait (and Slow-wait)  
Active-halt  
Auto-wakeup from Halt (AWUFH)  
Halt  
After a reset the normal operating mode is selected by default (Run mode). This mode  
drives the device (CPU and embedded peripherals) by means of a master clock which is  
based on the main oscillator frequency (f  
).  
OSC  
From Run mode, the different power saving modes may be selected by setting the relevant  
register bits or by calling the specific ST7 software instruction whose action depends on the  
oscillator status.  
Figure 18. Power saving mode transitions  
High  
Run  
Slow  
Wait  
Slow wait  
Active halt  
Halt  
Low  
POWER CONSUMPTION  
48/136  
ST7LITEUS2, ST7LITEUS5  
Power saving modes  
8.2  
Slow mode  
This mode has two targets:  
To reduce power consumption by decreasing the internal clock in the device,  
To adapt the internal clock frequency (f ) to the available supply voltage.  
CPU  
Slow mode is controlled by the SMS bit in the MCCSR register which enables or disables  
Slow mode.  
In this mode, the oscillator frequency is divided by 32. The CPU and peripherals are clocked  
at this lower frequency.  
Note:  
Slow-wait mode is activated when entering Wait mode while the device is already in Slow  
mode.  
Figure 19. Slow mode clock transition  
f
/32  
f
OSC  
OSC  
f
CPU  
f
OSC  
SMS  
NORMAL RUN MODE  
REQUEST  
8.3  
Wait mode  
Wait mode places the MCU in a low power consumption mode by stopping the CPU.  
This power saving mode is selected by calling the ‘WFI’ instruction.  
All peripherals remain active. During Wait mode, the I bit of the CC register is cleared, to  
enable all interrupts. All other registers and memory remain unchanged. The MCU remains  
in Wait mode until an interrupt or reset occurs, whereupon the Program Counter branches to  
the starting address of the interrupt or Reset service routine.  
The MCU will remain in Wait mode until a Reset or an Interrupt occurs, causing it to wakeup.  
Refer to Figure 20 for a description of the Wait mode flowchart.  
49/136  
Power saving modes  
Figure 20. Wait mode flowchart  
ST7LITEUS2, ST7LITEUS5  
OSCILLATOR  
PERIPHERALS  
CPU  
ON  
ON  
OFF  
0
WFI INSTRUCTION  
I BIT  
N
RESET  
Y
N
INTERRUPT  
Y
OSCILLATOR  
PERIPHERALS  
CPU  
ON  
OFF  
ON  
0
I BIT  
64 CPU CLOCK CYCLE  
DELAY  
OSCILLATOR  
PERIPHERALS  
CPU  
ON  
ON  
ON  
1)  
X
I BIT  
FETCH RESET VECTOR  
OR SERVICE INTERRUPT  
1. 1. Before servicing an interrupt, the CC register is pushed on the stack. The I bit of the CC register is set  
during the interrupt routine and cleared when the CC register is popped.  
8.4  
Active-halt and Halt modes  
Active-halt and Halt modes are the two lowest power consumption modes of the MCU. They  
are both entered by executing the ‘HALT’ instruction. The decision to enter either in Active-  
halt or Halt mode is given by the LTCSR/ATCSR register status as shown in the following  
table:  
Table 14. Enabling/disabling Active-halt and Halt modes  
LTCSR TBIE ATCSR OVFIE  
ATCSRCK1 bit ATCSRCK0 bit  
Meaning  
bit  
bit  
0
0
0
1
x
x
0
1
x
1
x
x
1
x
0
0
x
1
x
1
Active-halt mode disabled  
Active-halt mode enabled  
50/136  
ST7LITEUS2, ST7LITEUS5  
Power saving modes  
8.4.1  
Active-halt mode  
Active-halt mode is the lowest power consumption mode of the MCU with a real time clock  
available. It is entered by executing the ‘HALT’ instruction when Active-halt mode is enabled.  
The MCU can exit Active-halt mode on reception of a Lite Timer / AT Timer interrupt or a  
reset.  
When exiting Active-halt mode by means of a reset, a 64 CPU cycle delay occurs. After  
the start up delay, the CPU resumes operation by fetching the reset vector which woke  
it up (see Figure 22).  
When exiting Active-halt mode by means of an interrupt, the CPU immediately resumes  
operation by servicing the interrupt vector which woke it up (see Figure 22).  
When entering Active-halt mode, the I bit in the CC register is cleared to enable interrupts.  
Therefore, if an interrupt is pending, the MCU wakes up immediately.  
In Active-halt mode, only the main oscillator and the selected timer counter (LT/AT) are  
running to keep a wakeup time base. All other peripherals are not clocked except those  
which get their clock supply from another clock generator (such as external or auxiliary  
oscillator).  
Caution:  
As soon as Active-halt is enabled, executing a HALT instruction while the watchdog is active  
does not generate a reset if the WDGHALT bit is reset.  
This means that the device cannot spend more than a defined delay in this power saving  
mode.  
Figure 21. Active-halt timing overview  
Active  
halt  
64 CPU  
CYCLE DELAY  
Run  
Run  
1)  
RESET  
OR  
INTERRUPT  
HALT  
INSTRUCTION  
FETCH  
VECTOR  
[Active-halt Enabled]  
51/136  
Power saving modes  
Figure 22. Active-halt mode flowchart  
ST7LITEUS2, ST7LITEUS5  
OSCILLATOR  
ON  
OFF  
OFF  
0
PERIPHERALS 2)  
HALT INSTRUCTION  
(Active-halt enabled)  
CPU  
I BIT  
N
RESET  
Y
N
INTERRUPT 3)  
OSCILLATOR  
PERIPHERALS 2)  
CPU  
Y
ON  
OFF  
ON  
I BIT  
X 4)  
64 CPU CLOCK CYCLE  
DELAY  
OSCILLATOR  
PERIPHERALS  
CPU  
ON  
ON  
ON  
X 4)  
I BITS  
FETCH RESET VECTOR  
OR SERVICE INTERRUPT  
1. This delay occurs only if the MCU exits Active-halt mode by means of a reset.  
2. Peripherals clocked with an external clock source can still be active.  
3. Only the Lite Timer RTC and AT Timer interrupts can exit the MCU from Active-halt mode.  
4. Before servicing an interrupt, the CC register is pushed on the stack. The I bit of the CC register is set  
during the interrupt routine and cleared when the CC register is popped.  
8.4.2  
Halt mode  
The Halt mode is the lowest power consumption mode of the MCU. It is entered by  
executing the ‘HALT’ instruction when Active-halt mode is disabled.  
The MCU can exit Halt mode on reception of either a specific interrupt (see Table 9:  
Interrupt mapping) or a reset. When exiting Halt mode by means of a reset or an interrupt,  
the main oscillator is immediately turned on and the 64 CPU cycle delay is used to stabilize  
it. After the start up delay, the CPU resumes operation by servicing the interrupt or by  
fetching the reset vector which woke it up (see Figure 24).  
When entering Halt mode, the I bit in the CC register is forced to 0 to enable interrupts.  
Therefore, if an interrupt is pending, the MCU wakes immediately.  
In Halt mode, the main oscillator is turned off causing all internal processing to be stopped,  
including the operation of the on-chip peripherals. All peripherals are not clocked except the  
ones which get their clock supply from another clock generator (such as an external or  
auxiliary oscillator).  
The compatibility of watchdog operation with Halt mode is configured by the “WDGHALT”  
option bit of the option byte. The HALT instruction when executed while the watchdog  
system is enabled, can generate a watchdog reset (see Section 14.1: Option bytes for more  
details).  
52/136  
ST7LITEUS2, ST7LITEUS5  
Figure 23. Halt timing overview  
Power saving modes  
64 CPU CYCLE  
DELAY  
Run  
Halt  
Run  
RESET  
OR  
INTERRUPT  
HALT  
INSTRUCTION  
[Active-halt disabled]  
FETCH  
VECTOR  
1. A reset pulse of at least 42µs must be applied when exiting from Halt mode.  
Figure 24. Halt mode flowchart  
HALT INSTRUCTION  
(Active-halt disabled)  
ENABLE  
WATCHDOG  
0
DISABLE  
WDGHALT 1)  
1
WATCHDOG  
RESET  
OSCILLATOR  
OFF  
PERIPHERALS 2)  
OFF  
OFF  
0
CPU  
I BIT  
N
RESET  
Y
N
INTERRUPT 3)  
Y
OSCILLATOR  
PERIPHERALS  
CPU  
ON  
OFF  
ON  
I BIT  
X 4)  
64 CPU CLOCK CYCLE  
DELAY 5)  
OSCILLATOR  
PERIPHERALS  
CPU  
ON  
ON  
ON  
X 4)  
I BITS  
FETCH RESET VECTOR  
OR SERVICE INTERRUPT  
1. WDGHALT is an option bit. See option byte section for more details.  
2. Peripheral clocked with an external clock source can still be active.  
3. Only some specific interrupts can exit the MCU from Halt mode (such as external interrupt). Refer to  
Table 9: Interrupt mapping for more details.  
4. Before servicing an interrupt, the CC register is pushed on the stack. The I bit of the CC register is set  
during the interrupt routine and cleared when the CC register is popped.  
5. The CPU clock must be switched to 1 MHz (RC/8) or AWU RC before entering Halt mode.  
53/136  
Power saving modes  
ST7LITEUS2, ST7LITEUS5  
Halt mode recommendations  
Make sure that an external event is available to wakeup the microcontroller from Halt  
mode.  
When using an external interrupt to wakeup the microcontroller, reinitialize the  
corresponding I/O as “Input Pull-up with Interrupt” before executing the HALT  
instruction. The main reason for this is that the I/O may be wrongly configured due to  
external interference or by an unforeseen logical condition.  
For the same reason, reinitialize the level sensitiveness of each external interrupt as a  
precautionary measure.  
The opcode for the HALT instruction is 0x8E. To avoid an unexpected HALT instruction  
due to a program counter failure, it is advised to clear all occurrences of the data value  
0x8E from memory. For example, avoid defining a constant in ROM with the value  
0x8E.  
As the HALT instruction clears the I bit in the CC register to allow interrupts, the user  
may choose to clear all pending interrupt bits before executing the HALT instruction.  
This avoids entering other peripheral interrupt routines after executing the external  
interrupt routine corresponding to the wakeup event (reset or external interrupt).  
8.5  
Auto-wakeup from Halt mode  
Auto-wakeup from Halt (AWUFH) mode is similar to Halt mode with the addition of a specific  
internal RC oscillator for wakeup (Auto-wakeup from Halt oscillator) which replaces the main  
clock which was active before entering Halt mode. Compared to Active-halt mode, AWUFH  
has lower power consumption (the main clock is not kept running), but there is no accurate  
realtime clock available.  
It is entered by executing the HALT instruction when the AWUEN bit in the AWUCSR  
register has been set.  
Figure 25. AWUFH mode block diagram  
AWU RC  
oscillator  
to 8-bit Timer input capture  
fAWU_RC  
AWUFH  
interrupt  
AWUFH  
prescaler/1 .. 255  
/64  
divider  
(ei0 source)  
As soon as Halt mode is entered, and if the AWUEN bit has been set in the AWUCSR  
register, the AWU RC oscillator provides a clock signal (f ). Its frequency is divided by  
AWU_RC  
a fixed divider and a programmable prescaler controlled by the AWUPR register. The output  
of this prescaler provides the delay time. When the delay has elapsed, the following actions  
are performed:  
The AWUF flag is set by hardware,  
An interrupt wakes-up the MCU from Halt mode,  
The main oscillator is immediately turned on and the 64 CPU cycle delay is used to  
stabilize it.  
54/136  
ST7LITEUS2, ST7LITEUS5  
Power saving modes  
After this startup delay, the CPU resumes operation by servicing the AWUFH interrupt. The  
AWU flag and its associated interrupt are cleared by software reading the AWUCSR  
register.  
To compensate for any frequency dispersion of the AWU RC oscillator, it can be calibrated  
by measuring the clock frequency f  
and then calculating the right prescaler value.  
AWU_RC  
Measurement mode is enabled by setting the AWUM bit in the AWUCSR register in Run  
mode. This connects f to the input capture of the 8-bit lite timer, allowing the  
AWU_RC  
f
to be measured using the main oscillator clock as a reference timebase.  
AWU_RC  
Similarities with Halt mode  
The following AWUFH mode behavior is the same as normal Halt mode:  
The MCU can exit AWUFH mode by means of any interrupt with exit from Halt  
capability or a reset (see Section 8.4: Active-halt and Halt modes).  
When entering AWUFH mode, the I bit in the CC register is forced to 0 to enable  
interrupts. Therefore, if an interrupt is pending, the MCU wakes up immediately.  
In AWUFH mode, the main oscillator is turned off causing all internal processing to be  
stopped, including the operation of the on-chip peripherals. None of the peripherals are  
clocked except those which get their clock supply from another clock generator (such  
as an external or auxiliary oscillator like the AWU oscillator).  
The compatibility of watchdog operation with AWUFH mode is configured by the  
WDGHALT option bit in the option byte. Depending on this setting, the HALT instruction  
when executed while the watchdog system is enabled, can generate a watchdog reset.  
Figure 26. AWUF Halt timing diagram  
tAWU  
RUN MODE  
HALT MODE  
64 tCPU  
RUN MODE  
Clear  
f
CPU  
f
AWU_RC  
by software  
AWUFH interrupt  
55/136  
Power saving modes  
Figure 27. AWUFH mode flowchart  
ST7LITEUS2, ST7LITEUS5  
HALT INSTRUCTION  
(Active-Halt disabled)  
(AWUCSR.AWUEN=1)  
ENABLE  
WATCHDOG  
DISABLE  
0
WDGHALT 1)  
1
AWU RC OSC  
MAIN OSC  
PERIPHERALS 2)  
CPU  
ON  
OFF  
OFF  
OFF  
10  
WATCHDOG  
RESET  
I[1:0] BITS  
N
RESET  
Y
N
INTERRUPT 3)  
AWU RC OSC  
MAIN OSC  
OFF  
ON  
Y
PERIPHERALS  
CPU  
I[1:0] BITS  
OFF  
ON  
XX 4)  
64 CPU CLOCK  
CYCLE DELAY  
AWU RC OSC  
MAIN OSC  
PERIPHERALS  
CPU  
OFF  
ON  
ON  
ON  
I[1:0] BITS  
XX 4)  
FETCH RESET VECTOR  
OR SERVICE INTERRUPT  
1. WDGHALT is an option bit. See option byte section for more details.  
2. Peripheral clocked with an external clock source can still be active.  
3. Only an AWUFH interrupt and some specific interrupts can exit the MCU from Halt mode (such as external  
interrupt). Refer to Table 9: Interrupt mapping for more details.  
4. Before servicing an interrupt, the CC register is pushed on the stack. The I[1:0] bits of the CC register are  
set to the current software priority level of the interrupt routine and recovered when the CC register is  
popped.  
56/136  
ST7LITEUS2, ST7LITEUS5  
Power saving modes  
8.5.1  
Register description  
AWUFH Control/ Status register (AWUCSR)  
Reset value: 0000 0000 (00h)  
7
0
AWU  
F
0
0
0
0
0
AWUM  
AWUEN  
Read/Write  
Bits 7:3 Reserved  
Bit 2 AWUF Auto-wakeup Flag  
This bit is set by hardware when the AWU module generates an interrupt and  
cleared by software on reading AWUCSR. Writing to this bit does not change its  
value.  
0: No AWU interrupt occurred  
1: AWU interrupt occurred  
Bit 1 AWUM Auto-wakeup Measurement  
This bit enables the AWU RC oscillator and connects its output to the input capture  
of the 8-bit Lite timer. This allows the timer to be used to measure the AWU RC  
oscillator dispersion and then compensate this dispersion by providing the right  
value in the AWUPRE register.  
0: Measurement disabled  
1: Measurement enabled  
Bit 0 AWUEN Auto-wakeup From Halt Enabled  
This bit enables the Auto-wakeup From Halt feature: once Halt mode is entered, the  
AWUFH wakes up the microcontroller after a time delay dependent on the AWU  
prescaler value. It is set and cleared by software.  
0: AWUFH (Auto-wakeup From Halt) mode disabled  
1: AWUFH (Auto-wakeup From Halt) mode enabled  
Note: Whatever the clock source, this bit should be set to enable the AWUFH  
mode once the HALT instruction has been executed.  
AWUFH Prescaler register (AWUPR)  
Reset value: 1111 1111 (FFh)  
7
0
AWUPR7  
AWUPR6  
AWUPR5  
AWUPR4  
AWUPR3  
AWUPR2  
AWUPR1  
AWUPR0  
Read/Write  
Bits 7:0 AWUPR[7:0] Auto-wakeup Prescaler  
These 8 bits define the AWUPR Dividing factor (see Table 15: Configuring the  
dividing factor)  
57/136  
Power saving modes  
ST7LITEUS2, ST7LITEUS5  
Table 15. Configuring the dividing factor  
AWUPR[7:0]  
Dividing factor  
00h  
01h  
...  
Forbidden  
1
...  
FEh  
FFh  
254  
255  
In AWU mode, the period that the MCU stays in Halt Mode (t  
in Figure 26) is defined by  
AWU  
1
t
= 64 × AWUPR × ------------------------- + t  
AWU  
RCSTRT  
f
AWURC  
This prescaler register can be programmed to modify the time that the MCU stays in Halt  
mode before waking up automatically.  
Note:  
If 00h is written to AWUPR, depending on the product, an interrupt is generated immediately  
after a HALT instruction, or the AWUPR remains unchanged.  
Table 16. AWU register map and reset values  
Address Register  
7
6
5
4
3
2
1
0
(Hex.)  
label  
AWUPR  
AWUP AWUP AWUP AWUP AWUP AWUP AWUP AWUP  
0049h Reset  
R7  
1
R6  
1
R5  
1
R4  
1
R3  
1
R2  
1
R1  
1
R0  
1
value  
AWUCSR  
004Ah Reset  
AWUE  
N
0
0
0
0
0
AWUF AWUM  
value  
58/136  
ST7LITEUS2, ST7LITEUS5  
I/O ports  
9
I/O ports  
9.1  
Introduction  
The I/O port offers different functional modes:  
Transfer of data through digital inputs and outputs  
and for specific pins:  
External interrupt generation  
Alternate signal input/output for the on-chip peripherals.  
An I/O port contains up to 6 pins. Each pin (except PA3/RESET) can be programmed  
independently as digital input (with or without interrupt generation) or digital output.  
9.2  
Functional description  
Each port has 2 main registers:  
Data register (DR)  
Data Direction register (DDR)  
and one optional register:  
Option register (OR)  
Each I/O pin may be programmed using the corresponding register bits in the DDR and OR  
registers: bit X corresponding to pin X of the port. The same correspondence is used for the  
DR register.  
The following description takes into account the OR register, (for specific ports which do not  
provide this register refer to the I/O Port Implementation section). The generic I/O block  
diagram is shown in Figure 28.  
9.2.1  
Input modes  
The input configuration is selected by clearing the corresponding DDR register bit.  
In this case, reading the DR register returns the digital value applied to the external I/O pin.  
Different input modes can be selected by software through the OR register.  
Note:  
1
2
Writing the DR register modifies the latch value but does not affect the pin status.  
PA3 cannot be configured as input.  
External interrupt function  
When an I/O is configured as Input with Interrupt, an event on this I/O can generate an  
external interrupt request to the CPU.  
Each pin can independently generate an interrupt request. The interrupt sensitivity is  
independently programmable using the sensitivity bits in the EICR register.  
External interrupts are hardware interrupts. Fetching the corresponding interrupt vector  
automatically clears the request latch. Changing the sensitivity of a particular external  
interrupt clears this pending interrupt. This can be used to clear unwanted pending  
interrupts.  
59/136  
I/O ports  
ST7LITEUS2, ST7LITEUS5  
Spurious interrupts  
When enabling/disabling an external interrupt by setting/resetting the related OR register bit,  
a spurious interrupt is generated if the pin level is low and its edge sensitivity includes  
falling/rising edge. This is due to the edge detector input which is switched to '1' when the  
external interrupt is disabled by the OR register.  
To avoid this unwanted interrupt, a "safe" edge sensitivity (rising edge for enabling and  
falling edge for disabling) has to be selected before changing the OR register bit and  
configuring the appropriate sensitivity again.  
Caution:  
In case a pin level change occurs during these operations (asynchronous signal input), as  
interrupts are generated according to the current sensitivity, it is advised to disable all  
interrupts before and to reenable them after the complete previous sequence in order to  
avoid an external interrupt occurring on the unwanted edge.  
This corresponds to the following steps:  
1. To enable an external interrupt:  
a) Set the interrupt mask with the SIM instruction (in cases where a pin level change  
could occur)  
b) Select rising edge  
c) Enable the external interrupt through the OR register  
d) Select the desired sensitivity if different from rising edge  
e) Reset the interrupt mask with the RIM instruction (in cases where a pin level  
change could occur)  
2. To disable an external interrupt:  
a) Set the interrupt mask with the SIM instruction SIM (in cases where a pin level  
change could occur)  
b) Select falling edge  
c) Disable the external interrupt through the OR register  
d) Select rising edge  
9.2.2  
Output modes  
The output configuration is selected by setting the corresponding DDR register bit. In this  
case, writing the DR register applies this digital value to the I/O pin through the latch. Then  
reading the DR register returns the previously stored value.  
Two different output modes can be selected by software through the OR register: Output  
push-pull and open-drain.  
(1)  
Table 17. DR register value and output pin status  
DR  
Push-pull  
Open-drain  
0
1
VSS  
VDD  
VSS  
Floating  
1. When switching from input to output mode, the DR register has to be written first to drive the correct level  
on the pin as soon as the port is configured as an output.  
60/136  
ST7LITEUS2, ST7LITEUS5  
I/O ports  
9.2.3  
Alternate functions  
When an on-chip peripheral is configured to use a pin, the alternate function is automatically  
selected. This alternate function takes priority over the standard I/O programming under the  
following conditions:  
When the signal is coming from an on-chip peripheral, the I/O pin is automatically  
configured in output mode (push-pull or open drain according to the peripheral).  
When the signal is going to an on-chip peripheral, the I/O pin must be configured in  
floating input mode. In this case, the pin state is also digitally readable by addressing  
the DR register.  
Note:  
1
2
Input pull-up configuration can cause unexpected value at the input of the alternate  
peripheral input.  
When an on-chip peripheral use a pin as input and output, this pin has to be configured in  
input floating mode.  
Figure 28. I/O port general block diagram  
ALTERNATE  
OUTPUT  
1
REGISTER  
ACCESS  
P-BUFFER  
(see table below)  
V
DD  
0
ALTERNATE  
ENABLE  
PULL-UP  
(see table below)  
DR  
DDR  
OR  
V
DD  
PULL-UP  
CONDITION  
PAD  
If implemented  
OR SEL  
DDR SEL  
DR SEL  
N-BUFFER  
DIODES  
(see table below)  
ANALOG  
INPUT  
CMOS  
SCHMITT  
TRIGGER  
1
0
ALTERNATE  
INPUT  
EXTERNAL  
INTERRUPT  
SOURCE (ei )  
FROM  
OTHER  
BITS  
x
POLARITY  
SELECTION  
61/136  
I/O ports  
ST7LITEUS2, ST7LITEUS5  
Diodes  
(1)  
Table 18. I/O port mode options  
Configuration mode  
Pull-up  
P-buffer  
to VDD  
to VSS  
Floating with/without Interrupt  
Pull-up with/without Interrupt  
Push-pull  
Off  
On  
Input  
Off  
On  
On  
On  
Off  
Output  
Off  
Open Drain (logic level)  
1. NI stands for not implemented; Off for implemented not activated; On for implemented and activated.  
Table 19. I/O port configurations  
Hardware configuration  
DR REGISTER ACCESS  
V
DD  
PULL-UP  
CONDITION  
R
W
R
PU  
DR  
REGISTER  
DATA BUS  
PAD  
ALTERNATE INPUT  
FROM  
OTHER  
PINS  
EXTERNAL INTERRUPT  
SOURCE (ei )  
x
INTERRUPT  
CONDITION  
POLARITY  
SELECTION  
ANALOG INPUT  
DR REGISTER ACCESS  
V
DD  
R
PU  
R/W  
DR  
REGISTER  
DATA BUS  
PAD  
ALTERNATE  
ENABLE  
ALTERNATE  
OUTPUT  
DR REGISTER ACCESS  
V
DD  
R
PU  
R/W  
DR  
REGISTER  
DATA BUS  
PAD  
ALTERNATE  
ENABLE  
ALTERNATE  
OUTPUT  
1. When the I/O port is in input configuration and the associated alternate function is enabled as an output,  
reading the DR register will read the alternate function output status.  
2. When the I/O port is in output configuration and the associated alternate function is enabled as an input,  
the alternate function reads the pin status given by the DR register content.  
62/136  
ST7LITEUS2, ST7LITEUS5  
I/O ports  
Caution:  
The alternate function must not be activated as long as the pin is configured as input with  
interrupt, in order to avoid generating spurious interrupts.  
Analog alternate function  
When the pin is used as an ADC input, the I/O must be configured as floating input. The  
analog multiplexer (controlled by the ADC registers) switches the analog voltage present on  
the selected pin to the common analog rail which is connected to the ADC input.  
It is recommended not to change the voltage level or loading on any port pin while  
conversion is in progress. Furthermore it is recommended not to have clocking pins located  
close to a selected analog pin.  
Warning: The analog input voltage level must be within the limits  
stated in the absolute maximum ratings.  
9.3  
9.4  
Unused I/O pins  
Unused I/O pins must be connected to fixed voltage levels. Refer to Section 12.8.  
Low power modes  
Table 20. Effect of low power modes on I/O ports  
Mode  
Description  
No effect on I/O ports. External interrupts cause the device to exit from Wait  
mode.  
Wait  
Halt  
No effect on I/O ports. External interrupts cause the device to exit from Halt  
mode.  
9.5  
Interrupts  
The external interrupt event generates an interrupt if the corresponding configuration is  
selected with DDR and OR registers and the interrupt mask in the CC register is not active  
(RIM instruction).  
Table 21. Description of interrupt events  
Enable  
control bit  
Exit from  
Wait  
Exit from  
Halt  
Interrupt event  
Event flag  
External interrupt on selected  
external event  
DDRx  
ORx  
-
Yes  
Yes  
63/136  
I/O ports  
ST7LITEUS2, ST7LITEUS5  
9.6  
I/O port implementation  
The hardware implementation on each I/O port depends on the settings in the DDR and OR  
registers and specific feature of the I/O port such as ADC Input or true open drain.  
Switching these I/O ports from one state to another should be done in a sequence that  
prevents unwanted side effects. Recommended safe transitions are illustrated in Figure 29.  
Other transitions are potentially risky and should be avoided, since they are likely to present  
unwanted side-effects such as spurious interrupt generation.  
Figure 29. Interrupt I/O port state transitions  
01  
00  
10  
11  
INPUT  
floating/pull-up  
interrupt  
INPUT  
floating  
(reset state)  
OUTPUT  
open-drain  
OUTPUT  
push-pull  
= DDR, OR  
XX  
The I/O port register configurations are summarized in Table 22.  
Table 22. Port configuration  
Input (DDR=0)  
Output (DDR=1)  
Port  
Pin name  
OR = 0  
OR = 1  
OR = 0  
OR = 1  
PA0:2,  
PA4:5  
floating  
-
pull-up interrupt  
-
open drain  
open drain  
push-pull  
push-pull  
Port A  
PA3  
After reset, to configure PA3 as a general purpose output, the application has to program  
the MUXCR0 and MUXCR1 registers. See Section 6.5: Register description on page 37  
Table 23. I/O port register map and reset values  
Address  
(Hex.)  
Register  
label  
7
6
5
4
3
2
1
0
PADR  
Reset  
value  
MSB  
0
LSB  
0
0000h  
0001h  
0002h  
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
PADDR  
Reset  
value  
MSB  
0
LSB  
0
PAOR  
Reset  
value  
MSB  
0
LSB  
0
64/136  
ST7LITEUS2, ST7LITEUS5  
On-chip peripherals  
10  
On-chip peripherals  
10.1  
Lite timer (LT)  
10.1.1  
Introduction  
The Lite Timer can be used for general-purpose timing functions. It is based on a free-  
running 13-bit upcounter with two software-selectable timebase periods, an 8-bit input  
capture register and watchdog function.  
10.1.2  
Main features  
Real-time clock  
13-bit upcounter  
1 ms or 2 ms timebase period (@ 8 MHz f  
Maskable timebase interrupt  
)
OSC  
Input capture  
8-bit input capture register (LTICR)  
Maskable interrupt with wakeup from Halt mode capability  
Watchdog  
Enabled by hardware or software (configurable by option byte)  
Optional reset on HALT instruction (configurable by option byte)  
Automatically resets the device unless disable bit is refreshed  
Software reset (forced watchdog reset)  
Watchdog reset status flag  
65/136  
On-chip peripherals  
Figure 30. Lite timer block diagram  
ST7LITEUS2, ST7LITEUS5  
f
LTIMER  
To 12-bit AT TImer  
f
WDG  
WATCHDOG  
WATCHDOG RESET  
f
OSC  
/2  
1
0
Timebase  
1 or 2 ms  
(@ 8MHz  
13-bit UPCOUNTER  
f
LTIMER  
f
)
OSC  
LTICR  
8 MSB  
8-bit  
LTIC  
INPUT CAPTURE  
REGISTER  
LTCSR  
WDG  
RF  
ICIE  
7
ICF  
TB  
TBIE  
TBF  
WDGE WDGD  
0
LTTB INTERRUPT REQUEST  
LTIC INTERRUPT REQUEST  
10.1.3  
Functional description  
The value of the 13-bit counter cannot be read or written by software. After an MCU reset, it  
starts incrementing from 0 at a frequency of f . A counter overflow event occurs when the  
OSC  
counter rolls over from 1F39h to 00h. If f  
= 8 MHz, then the time period between two  
OSC  
counter overflow events is 1 ms. This period can be doubled by setting the TB bit in the  
LTCSR register.  
When the timer overflows, the TBF bit is set by hardware and an interrupt request is  
generated if the TBIE is set. The TBF bit is cleared by software reading the LTCSR register.  
Watchdog  
The watchdog is enabled using the WDGE bit. The normal watchdog timeout is 2 ms (@  
fosc = 8 MHz), after which it then generates a reset.  
To prevent this watchdog reset occurring, software must set the WDGD bit. The WDGD bit is  
cleared by hardware after t  
. This means that software must write to the WDGD bit at  
WDG  
regular intervals to prevent a watchdog reset occurring. Refer to Figure 31.  
If the watchdog is not enabled immediately after reset, the first watchdog timeout will be  
shorter than 2ms, because this period is counted starting from reset. Moreover, if a 2ms  
period has already elapsed after the last MCU reset, the watchdog reset will take place as  
soon as the WDGE bit is set. For these reasons, it is recommended to enable the watchdog  
immediately after reset or else to set the WDGD bit before the WGDE bit so a watchdog  
reset will not occur for at least 2 ms.  
Note:  
Software can use the timebase feature to set the WDGD bit at 1 or 2 ms intervals.  
66/136  
ST7LITEUS2, ST7LITEUS5  
On-chip peripherals  
A watchdog reset can be forced at any time by setting the WDGRF bit. To generate a forced  
watchdog reset, first watchdog has to be activated by setting the WDGE bit and then the  
WDGRF bit has to be set.  
The WDGRF bit also acts as a flag, indicating that the watchdog was the source of the reset.  
It is automatically cleared after it has been read.  
Caution:  
When the WDGRF bit is set, software must clear it, otherwise the next time the watchdog is  
enabled (by hardware or software), the microcontroller will be immediately reset.  
Hardware watchdog option  
If hardware watchdog is selected by option byte, the watchdog is always active and the  
WDGE bit in the LTCSR is not used.  
Refer to the option byte description in the "device configuration and ordering information"  
section.  
Using Halt mode with the watchdog (option)  
If the watchdog reset on Halt option is not selected by option byte, the Halt mode can be  
used when the watchdog is enabled.  
In this case, the HALT instruction stops the oscillator. When the oscillator is stopped, the Lite  
Timer stops counting and is no longer able to generate a watchdog reset until the  
microcontroller receives an external interrupt or a reset.  
If an external interrupt is received, the WDG restarts counting after 256 or 512 CPU clocks.  
If a reset is generated, the watchdog is disabled (reset state).  
If Halt mode with watchdog is enabled by option byte (No watchdog reset on HALT  
instruction), it is recommended before executing the HALT instruction to refresh the WDG  
counter, to avoid an unexpected WDG reset immediately after waking up the microcontroller.  
Figure 31. Watchdog timing diagram  
HARDWARE CLEARS  
WDGD BIT  
t
WDG  
(2ms @ 8 MHz f  
)
OSC  
f
WDG  
WDGD BIT  
INTERNAL  
WATCHDOG  
RESET  
SOFTWARE SETS  
WDGD BIT  
WATCHDOG RESET  
Input capture  
The 8-bit input capture register is used to latch the free-running upcounter after a rising or  
falling edge is detected on the LTIC pin. When an input capture occurs, the ICF bit is set and  
the LTICR register contains the MSB of the free-running upcounter. An interrupt is  
generated if the ICIE bit is set. The ICF bit is cleared by reading the LTICR register.  
The LTICR is a read only register and always contains the data from the last input capture.  
Input capture is inhibited if the ICF bit is set.  
67/136  
On-chip peripherals  
ST7LITEUS2, ST7LITEUS5  
10.1.4  
Low power modes  
Table 24. Description of low power modes  
Mode  
Description  
Wait  
Active-Halt  
Halt  
No effect on Lite timer  
No effect on Lite timer  
Lite timer stops counting  
10.1.5  
Interrupts  
(1)  
Table 25. Interrupt events  
Enable  
Event  
flag  
Exit  
from  
Wait  
Exit  
from  
Halt  
Exit  
from  
Active-halt  
Interrupt event  
control  
bit  
Timebase Event  
IC Event  
TBF  
ICF  
TBIE  
ICIE  
Yes  
Yes  
No  
No  
Yes  
No  
1. The TBF and ICF interrupt events are connected to separate interrupt vectors (see Interrupts chapter).  
They generate an interrupt if the enable bit is set in the LTCSR register and the interrupt  
mask in the CC register is reset (RIM instruction).  
Figure 32. Input capture timing diagram  
125 ns  
(@ 8 MHz f  
)
OSC  
f
CPU  
f
OSC  
CLEARED  
BY S/W  
READING  
LTIC REGISTER  
13-bit COUNTER  
LTIC PIN  
0001h  
0002h  
0003h  
0004h  
0005h  
0006h  
0007h  
ICF FLAG  
07h  
LTICR REGISTER  
xxh  
04h  
t
68/136  
ST7LITEUS2, ST7LITEUS5  
On-chip peripherals  
10.1.6  
Register description  
Lite timer control/status register (LTCSR)  
Reset value: 0000 0x00 (0xh)  
7
0
ICIE  
ICF  
TB  
TBIE  
TBF  
WDGR  
WDGE  
WDGD  
Read / Write  
Bit 7 ICIE Interrupt Enable.  
This bit is set and cleared by software.  
0: Input Capture (IC) interrupt disabled  
1: Input Capture (IC) interrupt enabled  
Bit 6 ICF Input Capture Flag.  
This bit is set by hardware and cleared by software by reading the LTICR register.  
Writing to this bit does not change the bit value.  
0: No input capture  
1: An input capture has occurred  
Note: After an MCU reset, software must initialise the ICF bit by reading the LTICR  
register  
Bit 5 TB Timebase period selection.  
This bit is set and cleared by software.  
0: Timebase period = tOSC * 8000 (1 ms @ 8 MHz)  
1: Timebase period = tOSC * 16000 (2 ms @ 8 MHz)  
Bit 4 TBIE Timebase Interrupt enable.  
This bit is set and cleared by software.  
0: Timebase (TB) interrupt disabled  
1: Timebase (TB) interrupt enabled  
Bit 3 TBF Timebase Interrupt Flag.  
This bit is set by hardware and cleared by software reading the LTCSR register.  
Writing to this bit has no effect.  
0: No counter overflow  
1: A counter overflow has occurred  
69/136  
On-chip peripherals  
ST7LITEUS2, ST7LITEUS5  
Bit 2 WDGRF Force Reset/ Reset Status Flag  
This bit is used in two ways: it is set by software to force a watchdog reset. It is set  
by hardware when a watchdog reset occurs and cleared by hardware or by  
software. It is cleared by hardware only when an LVD reset occurs. It can be cleared  
by software after a read access to the LTCSR register.  
0: No watchdog reset occurred.  
1: Force a watchdog reset (write), or, a watchdog reset occurred (read).  
Bit 1 WDGE Watchdog Enable  
This bit is set and cleared by software.  
0: Watchdog disabled  
1: Watchdog enabled  
Bit 0 WDGD Watchdog Reset Delay  
This bit is set by software. It is cleared by hardware at the end of each tWDG period.  
0: Watchdog reset not delayed  
1: Watchdog reset delayed  
Lite Timer Input Capture register (LTICR)  
Reset value: 0000 0000 (00h)  
7
0
ICR7  
ICR6  
ICR5  
ICR4  
ICR3  
ICR2  
ICR1  
ICR0  
Read only  
Bit 7:0 ICR[7:0] Input capture value  
These bits are read by software and cleared by hardware after a reset. If the ICF bit  
in the LTCSR is cleared, the value of the 8-bit up-counter will be captured when a  
rising or falling edge occurs on the LTIC pin.  
Table 26. Lite timer register map and reset values  
Address  
Register label  
7
6
5
4
3
2
1
0
(Hex.)  
LTCSR  
Reset value  
ICIE  
0
ICF  
0
TB  
0
TBIE  
0
TBF  
0
WDGRF WDGE WDGD  
0B  
x
0
0
LTICR  
Reset value  
ICR7  
0
ICR6  
0
ICR5  
0
ICR4  
0
ICR3  
0
ICR2  
0
ICR1  
0
ICR0  
0
0C  
70/136  
ST7LITEUS2, ST7LITEUS5  
On-chip peripherals  
10.2  
12-bit auto-reload timer (AT)  
10.2.1  
Introduction  
The 12-bit auto-reload timer can be used for general-purpose timing functions. It is based on  
a free-running 12-bit upcounter with a PWM output channel.  
10.2.2  
Main features  
12-bit upcounter with 12-bit auto-reload register (ATR)  
Maskable overflow interrupt  
PWM signal generator  
Frequency range 2 kHz - 4 MHz (@ 8 MHz f  
)
CPU  
Programmable duty-cycle  
Polarity control  
Maskable compare interrupt  
Output compare function  
Figure 33. Block diagram  
OVF INTERRUPT  
REQUEST  
ATCSR  
7
0
0
0
0
CK1 CK0 OVF OVFIECMPIE  
CMP INTERRUPT  
REQUEST  
CMPF0  
f
LTIMER  
(1 ms timebase  
@ 8 MHz)  
f
COUNTER  
12-BIT UPCOUNTER  
CNTR  
ATR  
Update on OVF Event  
f
CPU  
12-BIT AUTO-RELOAD VALUE  
OE0 bit  
DCR0L  
DCR0H  
CMPF0 bit  
OE0 bit  
OP0 bit  
Preload  
Preload  
0
1
POL-  
ARITY  
COMP-  
PARE  
f
PWM  
PWM0  
on OVF Event  
IF OE0=1  
12-BIT DUTY CYCLE VALUE (shadow)  
10.2.3  
Functional description  
PWM mode  
This mode allows a pulse width modulated signals to be generated on the PWM0 output pin  
with minimum core processing overhead. The PWM0 output signal can be enabled or  
disabled using the OE0 bit in the PWMCR register. When this bit is set the PWM I/O pin is  
configured as output push-pull alternate function.  
Note:  
CMPF0 is available in PWM mode (see Section : PWM0 control/status register  
(PWM0CSR)).  
71/136  
On-chip peripherals  
ST7LITEUS2, ST7LITEUS5  
PWM frequency and duty cycle  
The PWM signal frequency (f  
) is controlled by the counter period and the ATR register  
PWM  
value.  
f
= f / (4096 - ATR)  
COUNTER  
PWM  
Following the above formula, if f  
is 8 MHz, the maximum value of f  
is 4 MHz (ATR  
CPU  
PWM  
register value = 4094), and the minimum value is 2 kHz (ATR register value = 0).  
Note:  
The maximum value of ATR is 4094 because it must be lower than the DCR value which  
must be 4095 in this case.  
At reset, the counter starts counting from 0.  
Software must write the duty cycle value in the DCR0H and DCR0L preload registers. The  
DCR0H register must be written first. See caution below.  
When a upcounter overflow occurs (OVF event), the ATR value is loaded in the upcounter,  
the preloaded Duty cycle value is transferred to the Duty Cycle register and the PWM0  
signal is set to a high level. When the upcounter matches the DCRx value the PWM0 signals  
is set to a low level. To obtain a signal on the PWM0 pin, the contents of the DCR0 register  
must be greater than the contents of the ATR register.  
The polarity bit can be used to invert the output signal.  
The maximum available resolution for the PWM0 duty cycle is:  
Resolution = 1 / (4096 - ATR)  
Note:  
To get the maximum resolution (1/4096), the ATR register must be 0. With this maximum  
resolution and assuming that DCR=ATR, a 0% or 100% duty cycle can be obtained by  
changing the polarity.  
Caution:  
As soon as the DCR0H is written, the compare function is disabled and will start only when  
the DCR0L value is written. If the DCR0H write occurs just before the compare event, the  
signal on the PWM output may not be set to a low level. In this case, the DCRx register  
should be updated just after an OVF event. If the DCR and ATR values are close, then the  
DCRx register should be updated just before an OVF event, in order not to miss a compare  
event and to have the right signal applied on the PWM output.  
Figure 34. PWM function  
4095  
DUTY CYCLE  
REGISTER  
(DCR0)  
AUTO-RELOAD  
REGISTER  
(ATR)  
000  
t
WITH OE0=1  
AND OP0=0  
WITH OE0=1  
AND OP0=1  
72/136  
ST7LITEUS2, ST7LITEUS5  
Figure 35. PWM signal example  
On-chip peripherals  
f
COUNTER  
ATR= FFDh  
FFFh  
COUNTER  
FFDh  
FFEh  
FFDh  
FFEh  
FFFh  
FFDh  
FFEh  
DCR0=FFEh  
t
Output compare mode  
To use this function, the OE bit must be 0, otherwise the compare is done with the shadow  
register instead of the DCRx register. Software must then write a 12-bit value in the DCR0H  
and DCR0L registers. This value will be loaded immediately (without waiting for an OVF  
event).  
The DCR0H must be written first, the output compare function starts only when the DCR0L  
value is written.  
When the 12-bit upcounter (CNTR) reaches the value stored in the DCR0H and DCR0L  
registers, the CMPF0 bit in the PWM0CSR register is set and an interrupt request is  
generated if the CMPIE bit is set.  
Note:  
The output compare function is only available for DCRx values other than 0 (reset value).  
Caution:  
At each OVF event, the DCRx value is written in a shadow register, even if the DCR0L value  
has not yet been written (in this case, the shadow register will contain the new DCR0H value  
and the old DCR0L value), then:  
If OE=1 (PWM mode): the compare is done between the timer counter and the  
shadow register (and not DCRx)  
If OE=0 (OCMP mode): the compare is done between the timer counter and  
DCRx. There is no PWM signal.  
The compare between DCRx or the shadow register and the timer counter is  
locked until DCR0L is written.  
10.2.4  
Low power modes  
Table 27. Description of low power modes  
Mode  
Description  
Slow  
Wait  
The input frequency is divided by 32  
No effect on AT timer  
Active-halt  
Halt  
AT timer halted except if CK0=1, CK1=0 and OVFIE=1  
AT timer halted  
73/136  
On-chip peripherals  
ST7LITEUS2, ST7LITEUS5  
10.2.5  
Interrupts  
Table 28. Interrupt events  
Enable  
control  
bit  
Exit  
from  
Wait  
Exit  
from  
Halt  
Exit  
from  
Active-halt  
Event  
flag  
Interrupt event (1)  
Overflow event  
CMP event  
OVF  
OVFIE  
CMPIE  
Yes  
Yes  
No  
No  
Yes(2)  
No  
CMPFx  
1. The interrupt events are connected to separate interrupt vectors (see Interrupts chapter).  
They generate an interrupt if the enable bit is set in the ATCSR register and the interrupt mask in the CC  
register is reset (RIM instruction).  
2. Only if CK0=1 and CK1=0  
10.2.6  
Register description  
Timer control status register (ATCSR)  
Reset value: 0000 0000 (00h)  
7
0
0
0
0
CK1  
CK0  
OVF  
OVFIE  
CMPIE  
Read/write  
Bits 7:5 Reserved, must be kept cleared.  
Bits 4:3 CK[1:0] Counter Clock Selection.  
These bits are set and cleared by software and cleared by hardware after a reset.  
They select the clock frequency of the counter (see Table 29: Counter clock  
selection).  
Bit 2 OVF Overflow flag.  
This bit is set by hardware and cleared by software by reading the ATCSR register.  
It indicates the transition of the counter from FFFh to ATR value.  
0: No counter overflow occurred  
1: Counter overflow occurred  
When set, the OVF bit stays high for 1 fCOUNTER cycle (up to 1ms depending on the  
clock selection) after it has been cleared by software.  
Bit 1 OVFIE Overflow interrupt enable.  
This bit is read/write by software and cleared by hardware after a reset.  
0: OVF interrupt disabled  
1: OVF interrupt enabled  
Bit 0 CMPIE Compare interrupt enable.  
This bit is read/write by software and clear by hardware after a reset. It allows to  
mask the interrupt generation when CMPF bit is set.  
0: CMPF interrupt disabled  
1: CMPF interrupt enabled  
74/136  
ST7LITEUS2, ST7LITEUS5  
On-chip peripherals  
Table 29. Counter clock selection  
Counter clock selection  
CK1  
CK0  
OFF  
0
0
1
1
0
1
0
1
fLTIMER (1 ms timebase @ 8 MHz)  
fCPU  
Reserved  
Counter register high (CNTRH)  
Reset value: 0000 0000 (00h)  
15  
8
0
0
0
0
CN11  
CN10  
CN9  
CN8  
Read only  
Counter register low (CNTRL)  
This 12-bit register is read by software and cleared by hardware after a reset. The counter is  
incremented continuously as soon as a counter clock is selected. To obtain the 12-bit value, software  
should read the counter value in two consecutive read operations. As there is no latch, it is  
recommended to read LSB first. In this case, CNTRH can be incremented between the two read  
operations and to have an accurate result when ftimer = fCPU, special care must be taken when  
CNTRL values close to FFh are read.  
When a counter overflow occurs, the counter restarts from the value specified in the ATR register.  
Reset value: 0000 0000 (00h)  
7
0
CN7  
CN6  
CN5  
CN4  
CN3  
CN2  
CN1  
CN0  
Read only  
Bits 15:12 Reserved, must be kept cleared.  
Bits 11:0 CNTR[11:0] Counter value.  
Auto reload register (ATRH)  
Reset value: 0000 0000 (00h)  
15  
8
0
0
0
0
ATR11  
ATR10  
ATR9  
ATR8  
Read/Write  
75/136  
On-chip peripherals  
ST7LITEUS2, ST7LITEUS5  
Auto reload register (ATRL)  
This is a 12-bit register which is written by software. The ATR register value is automatically  
loaded into the upcounter when an overflow occurs. The register value is used to set the  
PWM frequency.  
Reset value: 0000 0000 (00h)  
7
0
ATR7  
ATR6  
ATR5  
ATR4  
ATR3  
ATR2  
ATR1  
ATR0  
Read/Write  
Bits 15:12 Reserved, must be kept cleared.  
Bits 11:0 ATR[11:0] Auto-reload Register.  
PWM0 duty cycle register high (DCR0H)  
Reset value: 0000 0000 (00h)  
15  
8
0
0
0
0
DCR11  
DCR10  
DCR9  
DCR8  
Read/Write  
PWM0 duty cycle register low (DCR0L)  
This 12-bit value is written by software. The high register must be written first.  
In PWM mode (OE0=1 in the PWMCR register) the DCR[11:0] bits define the duty cycle of  
the PWM0 output signal (see Figure 34). In Output Compare mode, (OE0=0 in the PWMCR  
register) they define the value to be compared with the 12-bit upcounter value.  
Reset value: 0000 0000 (00h)  
7
0
DCR7  
DCR6  
DCR5  
DCR4  
DCR3  
DCR2  
DCR1  
DCR0  
Read/Write  
Bits 15:12 Reserved, must be kept cleared.  
Bits 11:0 DCR[11:0] PWMx duty cycle value  
76/136  
ST7LITEUS2, ST7LITEUS5  
On-chip peripherals  
PWM0 control/status register (PWM0CSR)  
Reset value: 0000 0000 (00h)  
7
0
0
0
0
0
0
0
OP0  
CMPF0  
Read/Write  
Bit 7:2 Reserved, must be kept cleared.  
Bit 1 OP0 PWM0 output polarity.  
This bit is read/write by software and cleared by hardware after a reset. This bit  
selects the polarity of the PWM0 signal.  
0: The PWM0 signal is not inverted.  
1: The PWM0 signal is inverted.  
Bit 0 CMPF0 PWM0 Compare Flag.  
This bit is set by hardware and cleared by software by reading the PWM0CSR  
register. It indicates that the upcounter value matches the DCR0 register value.  
0: Upcounter value does not match DCR value.  
1: Upcounter value matches DCR value.  
PWM output control register (PWMCR)  
Reset value: 0000 0000 (00h)  
7
0
0
0
0
0
0
0
0
OE0  
Read/Write  
Bits 7:1 Reserved, must be kept cleared.  
Bit 0 OE0 PWM0 Output enable.  
This bit is set and cleared by software.  
0: PWM0 output Alternate Function disabled (I/O pin free for general purpose I/O)  
1: PWM0 output enabled  
Table 30. Register map and reset values  
Address  
(Hex.)  
Register  
label  
7
6
5
4
3
2
1
0
ATCSR  
Reset value  
CK1  
0
CK0  
0
OVF  
0
OVFIE CMPIE  
0D  
0E  
0F  
10  
0
0
0
0
0
0
0
0
CNTRH  
Reset value  
CN11  
0
CN10  
0
CN9  
0
CN8  
0
0
CNTRL  
Reset value  
CN7  
0
CN6  
0
CN5  
0
CN4  
0
CN3  
0
CN2  
0
CN1  
0
CN0  
0
ATRH  
Reset value  
ATR11 ATR10  
ATR9  
0
ATR8  
0
0
0
0
0
0
0
77/136  
On-chip peripherals  
Table 30. Register map and reset values (continued)  
ST7LITEUS2, ST7LITEUS5  
Address  
(Hex.)  
Register  
label  
7
6
5
4
3
2
1
0
ATRL  
Reset value  
ATR7  
0
ATR6  
0
ATR5  
0
ATR4  
0
ATR3  
0
ATR2  
0
ATR1  
0
ATR0  
0
11  
12  
13  
17  
18  
PWMCR  
Reset value  
OE0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PWM0CSR  
Reset value  
OP  
0
CMPF0  
0
DCR0H  
Reset value  
DCR11 DCR10 DCR9  
DCR8  
0
0
0
0
DCR0L  
Reset value  
DCR7  
0
DCR6  
0
DCR5  
0
DCR4  
0
DCR3  
0
DCR2  
0
DCR1  
0
DCR0  
0
78/136  
ST7LITEUS2, ST7LITEUS5  
On-chip peripherals  
10.3  
10-bit A/D converter (ADC)  
10.3.1  
Introduction  
The on-chip Analog to Digital Converter (ADC) peripheral is a 10-bit, successive  
approximation converter with internal sample and hold circuitry. This peripheral has up to 5  
multiplexed analog input channels (refer to device pin out description) that allow the  
peripheral to convert the analog voltage levels from up to 5 different sources.  
The result of the conversion is stored in a 10-bit Data register. The A/D converter is  
controlled through a Control/Status register.  
10.3.2  
Main features  
10-bit conversion  
Up to 5 channels with multiplexed input  
Linear successive approximation  
Data register (DR) which contains the results  
Conversion complete status flag  
On/off bit (to reduce consumption)  
The block diagram is shown in Figure 36.  
10.3.3  
Functional description  
Analog power supply  
V
and V  
are the high and low level reference voltage pins. In some devices (refer to  
SSA  
DDA  
device pin out description) they are internally connected to the V and V pins.  
DD  
SS  
Conversion accuracy may therefore be impacted by voltage drops and noise in the event of  
heavily loaded or badly decoupled power supply lines.  
79/136  
On-chip peripherals  
Figure 36. ADC block diagram  
ST7LITEUS2, ST7LITEUS5  
DIV 4  
1
0
fCPU  
fADC  
DIV 2  
0
1
SLOW  
bit  
0
EOC SPEEDADON  
0
CH2 CH1 CH0  
ADCCSR  
3
AIN0  
AIN1  
HOLD CONTROL  
RADC  
ANALOG TO DIGITAL  
CONVERTER  
ANALOG  
MUX  
AINx  
CADC  
ADCDRH  
D9 D8 D7 D6 D5 D4 D3 D2  
0
0
ADCDRL  
0
0
0
SLOW  
D1  
D0  
Digital A/D conversion result  
The conversion is monotonic, meaning that the result never decreases if the analog input  
does not and never increases if the analog input does not.  
If the input voltage (V ) is greater than V  
(high-level voltage reference) then the  
AIN  
DDA  
conversion result is FFh in the ADCDRH register and 03h in the ADCDRL register (without  
overflow indication).  
If the input voltage (V ) is lower than V  
(low-level voltage reference) then the  
SSA  
AIN  
conversion result in the ADCDRH and ADCDRL registers is 00 00h.  
The A/D converter is linear and the digital result of the conversion is stored in the ADCDRH  
and ADCDRL registers. The accuracy of the conversion is described in the Electrical  
Characteristics Section.  
R
is the maximum recommended impedance for an analog input signal. If the impedance  
AIN  
is too high, this will result in a loss of accuracy due to leakage and sampling not being  
completed in the alloted time.  
A/D conversion phases  
The A/D conversion is based on two conversion phases:  
Sample capacitor loading [duration: t  
]
SAMPLE  
During this phase, the V  
input voltage to be measured is loaded into the C  
AIN  
ADC  
sample capacitor.  
A/D conversion [duration: t  
]
HOLD  
During this phase, the A/D conversion is computed (8 successive approximations  
80/136  
ST7LITEUS2, ST7LITEUS5  
cycles) and the C  
On-chip peripherals  
sample capacitor is disconnected from the analog input pin to get  
ADC  
the optimum analog to digital conversion accuracy.  
The total conversion time:  
t
t
+ t  
CONV = SAMPLE HOLD  
While the ADC is on, these two phases are continuously repeated.  
At the end of each conversion, the sample capacitor is kept loaded with the previous  
measurement load. The advantage of this behavior is that it minimizes the current  
consumption on the analog pin in case of single input channel measurement.  
A/D conversion  
The analog input ports must be configured as input, no pull-up, no interrupt. Refer to the “I/O  
ports” chapter. Using these pins as analog inputs does not affect the ability of the port to be  
read as a logic input.  
In the ADCCSR register, select the CS[2:0] bits to assign the analog channel to convert.  
ADC conversion mode  
In the ADCCSR register, set the ADON bit to enable the A/D converter and to start the  
conversion. From this time on, the ADC performs a continuous conversion of the selected  
channel. When a conversion is complete:  
The EOC bit is set by hardware.  
The result is in the ADCDR registers.  
A read to the ADCDRH resets the EOC bit.  
To read the 10 bits, perform the following steps:  
1. Poll EOC bit  
2. Read ADCDRL  
3. Read ADCDRH. This clears EOC automatically.  
To read only 8 bits, perform the following steps:  
1. Poll EOC bit  
1. Read ADCDRH. This clears EOC automatically.  
10.3.4  
Low power modes  
The A/D converter may be disabled by resetting the ADON bit. This feature allows reduced  
power consumption when no conversion is needed and between single shot conversions.  
Table 31. Effect of low power modes  
Mode  
Description  
Wait  
Halt  
No effect on A/D converter  
A/D converter disabled.  
After wakeup from Halt mode, the A/D converter requires a stabilization time  
STAB (see Section 12: Electrical characteristics) before accurate conversions  
can be performed.  
t
81/136  
On-chip peripherals  
ST7LITEUS2, ST7LITEUS5  
10.3.5  
10.3.6  
Interrupts  
None.  
Register description  
Control/Status register (ADCCSR)  
Reset value: 0000 0000 (00h)  
7
0
EOC  
SPEED  
ADON  
0
0
CH2  
CH1  
CH0  
Read/Write (Except bit 7 read only)  
Bit 7 EOC End of Conversion  
This bit is set by hardware. It is cleared by software reading the ADCDRH register.  
0: Conversion is not complete  
1: Conversion complete  
Bit 6 SPEED ADC clock selection  
This bit is set and cleared by software. It is used together with the SLOW bit to  
configure the ADC clock speed. Refer to the table in the SLOW bit description.  
Bit 5 ADON A/D Converter on  
This bit is set and cleared by software.  
0: A/D converter is switched off  
1: A/D converter is switched on  
Bits 4:3 Reserved. Must be kept cleared.  
Bits 2:0 CH[2:0] Channel Selection  
These bits are set and cleared by software. They select the analog input to convert.  
Note:  
A write to the ADCCSR register (with ADON set) aborts the current conversion, resets the  
EOC bit and starts a new conversion.  
Table 32. Channel selection  
Channel pin  
CH2  
CH1  
CH0  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
82/136  
ST7LITEUS2, ST7LITEUS5  
On-chip peripherals  
ADC data register high (ADCDRH)  
Reset value: 0000 0000 (00h)  
7
0
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
Read only  
Bits 7:0 D[9:2] MSB of Analog Converted value  
ADC control/data register Low (ADCDRL)  
Reset value: 0000 0000 (00h)  
7
0
0
0
0
0
SLOW  
Read/write  
0
D1  
D0  
Bits 7:4 Reserved. Forced by hardware to 0.  
Bit 3 SLOW Slow mode  
This bit is set and cleared by software. It is used together with the SPEED bit to  
configure the ADC clock speed as shown on the table below (see Table 33:  
Configuring the ADC clock speed).  
Bit 2 Reserved. Forced by hardware to 0.  
Bits 1:0 D[1:0] LSB of Analog Converted value  
Table 33. Configuring the ADC clock speed  
fADC  
SLOW  
SPEED  
fCPU/2  
fCPU  
0
0
1
0
1
x
fCPU/4  
Table 34. ADC register map and reset values  
Address  
(Hex.)  
Register  
label  
7
6
5
4
3
2
1
0
CH0  
ADCCSR  
Reset value  
EOC SPEED ADON  
0
0
0
0
0
CH2  
0
CH1  
0
0034h  
0035h  
0036h  
0
0
0
ADCDRH  
Reset value  
D9  
0
D8  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
ADCDRL  
Reset value  
0
0
0
0
0
0
0
0
SLOW  
0
0
0
D1  
0
D0  
0
83/136  
Instruction set  
ST7LITEUS2, ST7LITEUS5  
11  
Instruction set  
11.1  
ST7 addressing modes  
The ST7 Core features 17 different addressing modes which can be classified in seven main  
groups:  
Table 35. Description of addressing modes  
Addressing mode  
Example  
Inherent  
Immediate  
Direct  
nop  
ld A,#$55  
ld A,$55  
Indexed  
ld A,($55,X)  
ld A,([$55],X)  
jrne loop  
Indirect  
Relative  
Bit operation  
bset byte,#5  
The ST7 instruction set is designed to minimize the number of bytes required per  
instruction: To do so, most of the addressing modes may be subdivided in two submodes  
called long and short:  
Long addressing mode is more powerful because it can use the full 64 Kbyte address  
space, however it uses more bytes and more CPU cycles.  
Short addressing mode is less powerful because it can generally only access page  
zero (0000h - 00FFh range), but the instruction size is more compact, and faster. All  
memory to memory instructions use short addressing modes only (CLR, CPL, NEG,  
BSET, BRES, BTJT, BTJF, INC, DEC, RLC, RRC, SLL, SRL, SRA, SWAP)  
The ST7 Assembler optimizes the use of long and short addressing modes.  
(1)  
Table 36. ST7 addressing mode overview  
Destination/  
source  
Pointer Pointer  
Length  
(bytes)  
Mode  
Syntax  
address  
size  
Inherent  
Immediate  
Short  
nop  
+ 0  
+ 1  
+ 1  
+ 2  
ld A,#$55  
ld A,$10  
Direct  
Direct  
00..FF  
Long  
ld A,$1000  
0000..FFFF  
00..FF  
+ 0 (with X register)  
+ 1 (with Y register)  
No Offset  
Direct  
Indexed ld A,(X)  
Indexed ld A,($10,X)  
Short  
Long  
Short  
Long  
Short  
Direct  
00..1FE  
+ 1  
+ 2  
+ 2  
+ 2  
+ 2  
Direct  
Indexed ld A,($1000,X) 0000..FFFF  
Indirect  
Indirect  
ld A,[$10]  
00..FF  
00..FF  
00..FF  
00..FF  
byte  
ld A,[$10.w]  
0000..FFFF  
00..1FE  
word  
byte  
Indirect Indexed ld A,([$10],X)  
84/136  
ST7LITEUS2, ST7LITEUS5  
Instruction set  
(1)  
Table 36. ST7 addressing mode overview (continued)  
Destination/  
source  
Pointer Pointer  
Length  
(bytes)  
Mode  
Syntax  
address  
size  
Long  
Relative  
Relative  
Bit  
Indirect Indexed ld A,([$10.w],X) 0000..FFFF  
00..FF  
word  
+ 2  
+ 1  
+ 2  
+ 1  
+ 2  
+ 2  
Direct  
Indirect  
Direct  
jrne loop  
PC-128/PC+1271)  
jrne [$10]  
PC-128/PC+1271) 00..FF  
byte  
byte  
bset $10,#7  
bset [$10],#7  
00..FF  
Bit  
Indirect  
Direct  
00..FF  
00..FF  
00..FF  
Bit  
Relative btjt $10,#7,skip 00..FF  
btjt  
Bit  
Indirect Relative  
00..FF  
byte  
+ 3  
[$10],#7,skip  
1. At the time the instruction is executed, the Program Counter (PC) points to the instruction following JRxx.  
11.1.1  
Inherent mode  
All Inherent instructions consist of a single byte. The opcode fully specifies all the required  
information for the CPU to process the operation.  
Table 37. Instructions supporting inherent addressing mode  
Inherent instruction  
Function  
NOP  
No operation  
S/W Interrupt  
TRAP  
WFI  
Wait For Interrupt (low power mode)  
Halt Oscillator (lowest power mode)  
Subroutine return  
HALT  
RET  
IRET  
SIM  
Interrupt subroutine return  
Set interrupt mask  
Reset interrupt mask  
Set carry flag  
RIM  
SCF  
RCF  
Reset carry flag  
RSP  
Reset stack pointer  
Load  
LD  
CLR  
Clear  
PUSH/POP  
INC/DEC  
TNZ  
Push/Pop to/from the stack  
Increment/Decrement  
Test Negative or Zero  
1 or 2 complement  
Byte multiplication  
CPL, NEG  
MUL  
SLL, SRL, SRA, RLC, RRC  
SWAP  
Shift and rotate operations  
Swap nibbles  
85/136  
Instruction set  
ST7LITEUS2, ST7LITEUS5  
11.1.2  
Immediate  
Immediate instructions have 2 bytes, the first byte contains the opcode, the second byte  
contains the operand value.  
Table 38. Instructions supporting inherent immediate addressing mode  
Immediate instruction  
Function  
LD  
CP  
Load  
Compare  
BCP  
Bit compare  
AND, OR, XOR  
ADC, ADD, SUB, SBC  
Logical operations  
Arithmetic operations  
11.1.3  
Direct  
In Direct instructions, the operands are referenced by their memory address.  
The direct addressing mode consists of two submodes:  
Direct (short) addressing mode  
the address is a byte, thus requires only 1 byte after the opcode, but only allows 00 - FF  
addressing space.  
Direct (long) addressing mode  
The address is a word, thus allowing 64 Kbyte addressing space, but requires 2 bytes after  
the opcode.  
11.1.4  
Indexed mode (no offset, short, long)  
In this mode, the operand is referenced by its memory address, which is defined by the  
unsigned addition of an index register (X or Y) with an offset.  
The indirect addressing mode consists of three submodes:  
Indexed mode (no offset)  
There is no offset (no extra byte after the opcode), and allows 00 - FF addressing space.  
Indexed mode (short)  
The offset is a byte, thus requires only 1 byte after the opcode and allows 00 - 1FE  
addressing space.  
Indexed mode (long)  
The offset is a word, thus allowing 64 Kbyte addressing space and requires 2 bytes after the  
opcode.  
86/136  
ST7LITEUS2, ST7LITEUS5  
Instruction set  
11.1.5  
Indirect modes (short, long)  
The required data byte to do the operation is found by its memory address, located in  
memory (pointer).  
The pointer address follows the opcode. The indirect addressing mode consists of two  
submodes:  
Indirect mode (short)  
The pointer address is a byte, the pointer size is a byte, thus allowing 00 - FF addressing  
space, and requires 1 byte after the opcode.  
Indirect mode (long)  
The pointer address is a byte, the pointer size is a word, thus allowing 64 Kbyte addressing  
space, and requires 1 byte after the opcode.  
11.1.6  
Indirect indexed modes (short, long)  
This is a combination of indirect and short indexed addressing modes. The operand is  
referenced by its memory address, which is defined by the unsigned addition of an index  
register value (X or Y) with a pointer value located in memory. The pointer address follows  
the opcode.  
The indirect indexed addressing mode consists of two submodes:  
Indirect indexed mode (short)  
The pointer address is a byte, the pointer size is a byte, thus allowing 00 - 1FE addressing  
space, and requires 1 byte after the opcode.  
Indirect indexed mode (long)  
The pointer address is a byte, the pointer size is a word, thus allowing 64 Kbyte addressing  
space, and requires 1 byte after the opcode.  
Table 39. Instructions supporting direct, indexed, indirect and indirect indexed  
addressing modes  
Instructions  
Function  
Long and short instructions  
LD  
CP  
Load  
Compare  
AND, OR, XOR  
ADC, ADD, SUB, SBC  
BCP  
Logical operations  
Arithmetic addition/subtraction operations  
Bit compare  
Short instructions only  
CLR  
INC, DEC  
TNZ  
Clear  
Increment/decrement  
Test negative or zero  
87/136  
Instruction set  
ST7LITEUS2, ST7LITEUS5  
Table 39. Instructions supporting direct, indexed, indirect and indirect indexed  
addressing modes (continued)  
Instructions  
Function  
CPL, NEG  
BSET, BRES  
1 or 2 complement  
Bit operations  
BTJT, BTJF  
Bit test and jump operations  
Shift and rotate operations  
Swap nibbles  
SLL, SRL, SRA, RLC, RRC  
SWAP  
CALL, JP  
Call or jump subroutine  
11.1.7  
Relative modes (direct, indirect)  
This addressing mode is used to modify the PC register value by adding an 8-bit signed  
offset to it.  
Table 40. Instructions supporting relative modes  
Available relative direct/indirect instructions  
Function  
JRxx  
Conditional jump  
Call relative  
CALLR  
The relative addressing mode consists of two submodes:  
Relative mode (Direct)  
The offset follows the opcode.  
Relative mode (Indirect)  
The offset is defined in memory, of which the address follows the opcode.  
11.2  
Instruction groups  
The ST7 family devices use an Instruction Set consisting of 63 instructions. The instructions  
may be subdivided into 13 main groups as illustrated in the following table:  
Table 41. ST7 instruction set  
Load and Transfer  
LD  
CLR  
Stack operation  
PUSH POP  
RSP  
Increment/Decrement  
Compare and tests  
Logical operations  
INC  
CP  
DEC  
TNZ  
OR  
BCP  
AND  
XOR CPL NEG  
Bit operation  
BSET BRES  
BTJT BTJF  
Conditional bit test and branch  
Arithmetic operations  
ADC  
ADD  
SUB SBC MUL  
88/136  
ST7LITEUS2, ST7LITEUS5  
Table 41. ST7 instruction set (continued)  
Instruction set  
Shift and rotates  
SLL  
SRL  
SRA RLC RRC SWAP SLA  
JRF JP CALL CALLR NOP RET  
Unconditional jump or call  
Conditional branch  
JRA  
JRT  
JRxx  
TRAP  
SIM  
Interruption management  
Condition code flag modification  
WFI  
RIM  
HALT IRET  
SCF RCF  
Using a prebyte  
The instructions are described with 1 to 4 bytes.  
In order to extend the number of available opcodes for an 8-bit CPU (256 opcodes), three  
different prebyte opcodes are defined. These prebytes modify the meaning of the instruction  
they precede.  
The whole instruction becomes:  
PC-2 End of previous instruction  
PC-1 Prebyte  
PC Opcode  
PC+1 Additional word (0 to 2) according to the number of bytes required to compute  
the effective address  
These prebytes enable instruction in Y as well as indirect addressing modes to be  
implemented. They precede the opcode of the instruction in X or the instruction using direct  
addressing mode. The prebytes are:  
PDY 90 Replace an X based instruction using immediate, direct, indexed, or inherent  
addressing mode by a Y one.  
PIX 92 Replace an instruction using direct, direct bit or direct relative addressing mode  
to an instruction using the corresponding indirect addressing mode.  
It also changes an instruction using X indexed addressing mode to an instruction using  
indirect X indexed addressing mode.  
PIY 91 Replace an instruction using X indirect indexed addressing mode by a Y one.  
11.2.1  
Illegal opcode reset  
In order to provide enhanced robustness to the device against unexpected behavior, a  
system of illegal opcode detection is implemented. If a code to be executed does not  
correspond to any opcode or prebyte value, a reset is generated. This, combined with the  
watchdog, allows the detection and recovery from an unexpected fault or interference.  
Note:  
A valid prebyte associated with a valid opcode forming an unauthorized combination does  
not generate a reset.  
Table 42. Illegal opcode detection  
Mnemo  
Description  
Function/example  
Dst  
Src  
H
I
N
Z
C
ADC  
ADD  
AND  
BCP  
Add with carry  
Addition  
A = A + M + C  
A = A + M  
A = A . M  
A
A
A
A
M
M
M
M
H
H
-
-
-
-
-
N
N
N
N
Z
Z
Z
Z
C
C
-
Logical and  
Bit compare A, Memory  
tst (A . M)  
-
-
89/136  
Instruction set  
ST7LITEUS2, ST7LITEUS5  
Table 42. Illegal opcode detection (continued)  
Mnemo  
Description  
Function/example  
Dst  
Src  
H
I
N
Z
C
BRES  
BSET  
BTJF  
BTJT  
CALL  
CALLR  
CLR  
Bit Reset  
Bit Set  
bres Byte, #3  
bset Byte, #3  
M
-
-
-
-
-
-
-
-
-
-
-
-
H
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
-
-
-
-
-
-
-
-
-
-
0
I
-
-
-
-
-
-
M
-
Jump if bit is false (0)  
Jump if bit is true (1)  
Call subroutine  
Call subroutine relative  
Clear  
btjf Byte, #3, Jmp1  
btjt Byte, #3, Jmp1  
M
-
-
-
C
C
-
M
-
-
-
-
-
-
-
-
-
-
-
-
reg, M  
-
0
N
N
N
-
1
Z
Z
Z
-
-
CP  
Arithmetic compare  
One Complement  
Decrement  
tst(Reg - M)  
A = FFH-A  
dec Y  
reg  
M
C
1
-
CPL  
reg, M  
-
DEC  
reg, M  
-
HALT  
IRET  
INC  
Halt  
-
-
-
Interrupt routine return  
Increment  
Pop CC, A, X, PC  
inc X  
-
-
N
N
-
Z
Z
-
C
-
reg, M  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
JP  
Absolute jump  
Jump relative always  
Jump relative  
jp [TBL.w]  
-
-
-
JRA  
-
-
-
-
-
JRT  
-
-
-
-
-
JRF  
Never jump  
jrf *  
-
-
-
-
-
JRIH  
JRIL  
Jump if ext. interrupt = 1  
Jump if ext. interrupt = 0  
Jump if H = 1  
-
-
-
-
-
-
-
-
-
-
JRH  
H = 1 ?  
H = 0 ?  
-
-
-
-
-
JRNH  
JRM  
Jump if H = 0  
-
-
-
-
-
Jump if I = 1  
I = 1 ?  
-
-
-
-
-
JRNM  
JRMI  
JRPL  
JREQ  
JRNE  
JRC  
Jump if I = 0  
I = 0 ?  
-
-
-
-
-
Jump if N = 1 (minus)  
Jump if N = 0 (plus)  
Jump if Z = 1 (equal)  
Jump if Z = 0 (not equal)  
Jump if C = 1  
N = 1 ?  
-
-
-
-
-
N = 0 ?  
-
-
-
-
-
Z = 1 ?  
-
-
-
-
-
Z = 0 ?  
-
-
-
-
-
C = 1 ?  
-
-
-
-
-
JRNC  
JRULT  
JRUGE  
JRUGT  
JRULE  
LD  
Jump if C = 0  
C = 0 ?  
-
-
-
-
-
Jump if C = 1  
Unsigned <  
Jmp if unsigned ≥  
Unsigned >  
Unsigned ≤  
dst src  
X,A = X * A  
-
-
-
-
-
Jump if C = 0  
-
-
-
-
-
Jump if (C + Z = 0)  
Jump if (C + Z = 1)  
Load  
-
-
-
-
-
-
-
-
-
-
reg, M  
A, X, Y  
M, reg  
X, Y, A  
N
-
Z
-
-
MUL  
Multiply  
0
90/136  
ST7LITEUS2, ST7LITEUS5  
Instruction set  
Table 42. Illegal opcode detection (continued)  
Mnemo  
Description  
Function/example  
Dst  
Src  
H
I
N
Z
C
NEG  
NOP  
OR  
Negate (2's compl)  
No operation  
neg $10  
reg, M  
-
-
-
-
-
H
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
N
-
Z
-
C
-
-
-
OR operation  
A = A + M  
pop reg  
pop CC  
push Y  
C = 0  
A
M
-
N
-
Z
-
-
POP  
Pop from the stack  
reg  
M
-
-
CC  
M
I
N
-
Z
-
C
-
PUSH  
RCF  
RET  
RIM  
Push onto the stack  
Reset carry flag  
Subroutine return  
Enable Interrupts  
Rotate left true C  
Rotate right true C  
Reset Stack Pointer  
Subtract with carry  
Set carry flag  
M
reg, CC  
-
-
-
-
-
-
-
0
-
-
-
-
-
I = 0  
C Dst C  
C Dst C  
S = Max allowed  
A = A - M - C  
C = 1  
-
-
0
-
-
-
-
RLC  
RRC  
RSP  
SBC  
SCF  
SIM  
reg, M  
-
N
N
-
Z
Z
-
C
C
-
reg, M  
-
-
-
-
-
A
M
-
-
N
-
Z
-
C
1
-
-
-
Disable interrupts  
Shift left arithmetic  
Shift left logic  
I = 1  
-
-
1
-
-
-
SLA  
C Dst 0  
C Dst 0  
0 Dst C  
Dst7 Dst C  
A = A - M  
reg, M  
-
N
N
0
N
N
N
N
Z
Z
Z
Z
Z
Z
Z
-
C
C
C
C
C
-
SLL  
reg, M  
-
-
SRL  
SRA  
SUB  
SWAP  
TNZ  
TRAP  
WFI  
Shift right logic  
Shift right arithmetic  
Subtraction  
reg, M  
-
-
reg, M  
-
-
A
M
-
-
SWAP nibbles  
Dst[7..4] ≤ ≥Dst[3..0]  
tnz lbl1  
reg, M  
-
Test for Neg & Zero  
S/W trap  
-
-
-
-
-
S/W interrupt  
-
1
0
-
-
Wait for interrupt  
Exclusive OR  
-
-
-
-
-
XOR  
A = A XOR M  
A
M
N
Z
-
91/136  
Electrical characteristics  
ST7LITEUS2, ST7LITEUS5  
12  
Electrical characteristics  
12.1  
Parameter conditions  
Unless otherwise specified, all voltages are referred to V  
.
SS  
12.1.1  
Minimum and maximum values  
Unless otherwise specified the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T =25 °C and T =T max (given by the  
A
A
A
selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean 3Σ).  
12.1.2  
Typical values  
Unless otherwise specified, typical data are based on TA=25 °C, V =5 V (for the  
DD  
4.5 VV 5.5 V voltage range), V =3.75 V (for the 3 VV 4.5 V voltage range) and  
DD  
DD  
DD  
V
=2.7 V (for the 2.4 VV 3 V voltage range). They are given only as design guidelines  
DD  
DD  
and are not tested.  
12.1.3  
12.1.4  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 37.  
Figure 37. Pin loading conditions  
ST7 PIN  
C
L
92/136  
ST7LITEUS2, ST7LITEUS5  
Electrical characteristics  
12.1.5  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 38.  
Figure 38. Pin input voltage  
ST7 PIN  
V
IN  
12.2  
Absolute maximum ratings  
Stresses above those listed as “absolute maximum ratings” may cause permanent damage  
to the device. This is a stress rating only and functional operation of the device under these  
conditions is not implied. Exposure to maximum rating conditions for extended periods may  
affect device reliability.  
1. Directly connecting the I/O pins to V or V could damage the device if an unexpected  
DD  
SS  
change of the I/O configuration occurs (for example, due to a corrupted program counter).  
To guarantee safe operation, this connection has to be done through a pull-up or pull-down  
resistor (typical: 10 kΩ for I/Os). Unused I/O pins must be tied in the same way to V or  
DD  
V
according to their reset configuration.  
SS  
Table 43. Voltage characteristics  
Symbol  
Ratings  
Maximum value  
Unit  
VDD - VSS  
VIN  
Supply voltage  
7.0  
V
Input voltage on any pin(1)  
VSS-0.3 to VDD+0.3  
Electrostatic discharge voltage (Human Body  
Model)  
VESD(HBM)  
VESD(MM)  
see Section 12.7.2  
see Section 12.7.2  
Electrostatic discharge voltage (Machine  
Model)  
1. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum  
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive  
injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS  
.
93/136  
Electrical characteristics  
ST7LITEUS2, ST7LITEUS5  
Table 44. Current characteristics  
Symbol  
Ratings  
Maximum value  
Unit  
IVDD  
IVSS  
Total current into VDD power lines (source)(1)  
Total current out of VSS ground lines (sink)(1)  
75  
150  
Output current sunk by any standard I/O and  
control pin  
20  
40  
IIO  
Output current sunk by any high sink I/O pin  
mA  
Output current source by any I/Os and control  
pin  
-25  
Injected current on RESET pin  
5
5
(2)(3)  
IINJ(PIN)  
Injected current on any other pin(4)  
Total injected current (sum of all I/O and control  
pins)(4)  
(2)  
ΣIINJ(PIN)  
20  
1. All power (VDD) and ground (VSS) lines must always be connected to the external supply.  
2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum  
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive  
injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS  
.
3. Negative injection disturbs the analog performance of the device. In particular, it induces leakage currents  
throughout the device including the analog inputs. To avoid undesirable effects on the analog functions,  
care must be taken:  
- Analog input pins must have a negative injection less than 0.8 mA (assuming that the impedance of the  
analog voltage is lower than the specified limits)  
- Pure digital pins must have a negative injection less than 1.6 mA. In addition, it is recommended to inject  
the current as far as possible from the analog input pins.  
4. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the  
positive and negative injected currents (instantaneous values). These results are based on  
characterisation with ΣIINJ(PIN) maximum current injection on four I/O port pins of the device.  
Table 45. Thermal characteristics  
Symbol  
Ratings  
value  
Unit  
TSTG  
TJ  
Storage temperature range  
-65 to +150  
°C  
Maximum junction temperature (see Section 13: Package characteristics)  
12.3  
Operating conditions  
12.3.1  
General operating conditions  
T = -40 to +125 °C unless otherwise specified.  
A
Table 46. General operating conditions  
Symbol  
Parameter  
Conditions  
fCPU = 4 MHz max.  
Min  
Max  
Unit  
2.4  
3.3  
5.5  
5.5  
VDD  
Supply voltage  
V
fCPU = 8 MHz max.  
3.3 VVDD5.5 V  
2.4 VVDD<3.3 V  
up to 8  
up to 4  
fCPU  
CPU clock frequency  
MHz  
94/136  
ST7LITEUS2, ST7LITEUS5  
Electrical characteristics  
maximum operating frequency versus V supply voltage  
Figure 39.  
f
CPU  
DD  
FUNCTIONALITY  
GUARANTEED  
IN THIS AREA  
f
[MHz]  
CPU  
(UNLESS OTHERWISE  
STATED IN THE  
TABLES OF  
PARAMETRIC DATA)  
8
FUNCTIONALITY  
NOT GUARANTEED  
IN THIS AREA  
4
2
0
SUPPLY VOLTAGE [V]  
5.5  
2.0  
2.4 2.7 3.3  
3.5  
4.0  
4.5  
5.0  
12.3.2  
Operating conditions with low voltage detector (LVD)  
T = -40 to 125 °C, unless otherwise specified  
A
Table 47. Operating characteristics with LVD  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
High threshold  
Med. threshold  
Low threshold  
3.9  
3.2  
2.5  
4.2  
3.5  
2.7  
4.5  
3.8  
3.0  
Reset release threshold  
(VDD rise)  
VIT+  
(LVD)  
V
High threshold  
Med. threshold  
Low threshold  
3.7  
3.0  
2.4  
4.0  
3.3  
2.6  
4.3  
3.6  
2.9  
Reset generation threshold  
(VDD fall)  
VIT-  
(LVD)  
LVD voltage threshold  
hysteresis  
Vhys  
VIT+(LVD)-VIT-  
150  
mV  
μs/V  
μA  
(LVD)  
VtPOR  
VDD rise time rate (1)(2)  
20  
IDD(LVD)  
LVD/AVD current consumption  
VDD = 5 V  
220  
(3)  
1. Not tested in production. The V rise time rate condition is needed to ensure a correct device power-on and LVD reset  
DD  
release. When the V slope is outside these values, the LVD may not release properly the reset of the MCU  
DD  
2. Use of LVD with capacitive power supply: with this type of power supply, if power cuts occur in the application, it is  
recommended to pull V down to 0V to ensure optimum restart conditions. Refer to circuit example in Figure 61 on  
DD  
page 114.  
3. Not tested in production.  
95/136  
Electrical characteristics  
ST7LITEUS2, ST7LITEUS5  
12.3.3  
Auxiliary voltage detector (AVD) thresholds  
T = 40 to 125°C, unless otherwise specified.  
A
(1)  
Table 48. Operating characteristics with AVD  
Min  
Typ  
Max  
Symbol  
Parameter  
Conditions  
Unit  
(2)  
(2)  
(2)  
High threshold  
Med. threshold  
Low threshold  
4.0  
3.4  
2.6  
4.4  
3.7  
2.9  
4.8  
4.1  
3.2  
1 => 0 AVDF flag toggle threshold  
(VDD rise)  
VIT+  
(AVD)  
V
High threshold  
Med. threshold  
Low threshold  
3.9  
3.3  
2.5  
4.3  
3.6  
2.8  
4.7  
4.0  
3.1  
0 => 1 AVDF flag toggle threshold  
(VDD fall)  
VIT-  
(AVD)  
Vhys  
AVD voltage threshold hysteresis  
VIT+(AVD)-VIT-  
150  
mV  
(AVD)  
1. Refer to Section : Monitoring the VDD main supply.  
2. Not tested in production, guaranteed by characterization.  
Table 49. Voltage drop between AVD flag set and LVD reset generation  
Parameter  
Min (1)  
Typ (1)  
Max (1)  
Unit  
AVD med. threshold - AVD low. threshold  
AVD high. threshold - AVD low threshold  
AVD high. threshold - AVD med. threshold  
AVD low threshold - LVD low threshold  
AVD med. threshold - LVD low threshold  
AVD med. threshold - LVD med. threshold  
AVD high. threshold - LVD low threshold  
AVD high. threshold - LVD med. threshold  
800  
1400  
600  
850  
1450  
650  
950  
1550  
750  
100  
200  
250  
mV  
950  
1050  
300  
1150  
400  
250  
1600  
900  
1700  
1000  
1800  
1050  
1. Not tested in production, guaranteed by characterization.  
12.3.4  
Internal RC oscillator  
To improve clock stability and frequency accuracy, it is recommended to place a decoupling  
capacitor, typically 100 nF, between the V and V pins as close as possible to the ST7  
DD  
SS  
device.  
Internal RC oscillator calibrated at 5.0 V  
The ST7 internal clock can be supplied by an internal RC oscillator (selectable by option  
byte).  
96/136  
ST7LITEUS2, ST7LITEUS5  
Electrical characteristics  
Table 50. Internal RC oscillator characteristics (5.0 V calibration)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
RCCR = FF (reset value),  
TA= 25 °C, VDD= 5 V  
4.4  
Internal RC oscillator  
frequency  
fRC  
MHz  
RCCR = RCCR0(1), TA= 25 °C, VDD  
= 5 V  
8
TA= 25 °C, VDD = 4.5 to 5.5 V (2)  
-2.0  
-2.5  
+2.0  
+4.0  
%
%
TA= 0 to +85 °C,  
VDD = 4.5 to 5.5 V (2)  
Accuracy of internal RC  
ACCRC oscillator with  
TA= 0 to +125 °C,  
RCCR=RCCR0(1)  
-3.0  
-4.0  
+5.0  
+2.5  
%
VDD= 4.5 to 5.5 V (2)  
TA= -40 °C to 0 °C,  
VDD= 4.5 to 5.5 V (2)  
%
tsu(RC)  
RC oscillator setup time  
TA= 25°C, VDD= 5 V  
4 (2)  
μs  
1. See Section 6.2: Internal RC oscillator adjustment  
2. Tested in production at 5.0 V only  
Internal RC oscillator calibrated at 3.3 V  
The ST7 internal clock can be supplied by an internal RC oscillator (selectable by option  
byte).  
Table 51. Internal RC oscillator characteristics (3.3 V calibration)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
RCCR = FF (reset value),  
TA=25 °C,VDD= 3.3 V  
4.3  
Internal RC oscillator  
frequency  
fRC  
MHz  
RCCR = RCCR1(1)  
,
8
TA=25 °C,VDD= 3.3 V  
TA=25°C, VDD = 3.0 to 3.6 V(2)  
TA=0 to +85 °C, VDD = 3.0 to 3.6 V (2)  
-1.0  
-2.5  
+1.0  
+4.0  
+5.0  
%
%
%
Accuracy of internal RC  
TA=0 to +125 °C, VDD = 3.0 to 3.6 V (2) -3.0  
ACCRC oscillator with  
RCCR=RCCR1(1)  
TA = -40 °C to 0 °C,  
-4.0  
+2.5  
%
V
DD = 3.0 to 3.6 V (2)  
tsu(RC) RC oscillator setup time  
TA= 25 °C, VDD = 3.3 V  
4 (2)  
μs  
1. See Section 6.2: Internal RC oscillator adjustment  
2. Tested in production at 3.3 V only  
97/136  
Electrical characteristics  
ST7LITEUS2, ST7LITEUS5  
Figure 40. Typical accuracy with RCCR=RCCR0 vs V = 2.4-6.0 V and temperature  
DD  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
RC5V@-45C  
RC5V@25C  
RC5V@90C  
RC5V@130C  
-1.2  
-1.4  
-1.6  
-1.8  
-2.0  
-2.2  
RC5V@0C  
Figure 41. Typical accuracy with RCCR=RCCR1 vs V = 2.4-6.0V and temperature  
DD  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1.2  
-1.4  
RC3.3V@-45C  
RC3.3V@25C  
RC3.3V@90C  
RC3.3V@130C  
RC3.3V@0C  
98/136  
ST7LITEUS2, ST7LITEUS5  
Electrical characteristics  
12.4  
Supply current characteristics  
The following current consumption specified for the ST7 functional operating modes over  
temperature range does not take into account the clock source current consumption. To get  
the total device consumption, the two current values must be added (except for Halt mode  
for which the clock is stopped). Refer to Section 12.4.2: Internal RC oscillator supply current  
characteristics.  
T = -40 to +125 °C unless otherwise specified.  
A
12.4.1  
Supply current  
Table 52. Supply current characteristics  
Symbol  
Parameter  
Conditions  
fCPU = 4 MHz  
CPU = 8 MHz  
Typ  
Max  
Unit  
2.5  
5.0  
4.5(2)  
Supply current in Run mode (1)  
f
7.5  
mA  
fCPU = 4 MHz  
0.85  
1.2  
2.0(2)  
3.5  
Supply current in Wait mode(3)  
fCPU = 8 MHz  
Supply current in Wait mode(4)  
fCPU/32 = 250 kHz  
fCPU/32 = 250 kHz  
600  
450  
45  
950  
Supply current in Slow-Wait mode(5)  
Supply current in AWUFH mode (6)(7)  
Supply current in Active-halt mode  
750  
100(2)  
μA  
mA  
μA  
100  
0.5  
250  
TA = 85 °C  
3.0  
IDD  
Supply current in Halt mode (8)  
TA = 125 °C  
0.5  
5.0  
Supply current in Run mode(1)  
Supply current in Wait mode(3)  
Supply current in Slow mode(4)  
Supply current in Slow-wait mode (5)  
Supply current in AWUFH mode(6)(7)  
Supply current in Active-halt mode  
fCPU = 4 MHz  
fCPU = 4 MHz  
fCPU/32 = 250 kHz  
fCPU/32 = 250 kHz  
1.30  
0.36  
300  
250  
20  
2.0 (2)  
0.5 (2)  
400(2)  
350(2)  
50 (2)  
150(2)  
2.5 (2)  
4.5 (2)  
90  
TA = 85 °C  
0.25  
0.25  
Supply current in Halt mode(8)  
TA = 125 °C  
1. CPU running with memory access, all I/O pins in input mode with a static value at VDD or VSS (no load), all peripherals in  
reset state; clock input (CLKIN) driven by external square wave, LVD disabled.  
2. Data based on characterization, not tested in production.  
3. All I/O pins in input mode with a static value at VDD or VSS (no load), all peripherals in reset state; clock input (CLKIN)  
driven by external square wave, LVD disabled.  
4. All I/O pins in input mode with a static value at VDD or VSS (no load), all peripherals in reset state; clock input (CLKIN)  
driven by external square wave, LVD disabled.  
5. Slow-Wait mode selected with fCPU based on fOSC divided by 32. All I/O pins in input mode with a static value at VDD or  
VSS (no load), all peripherals in reset state; clock input (CLKIN) driven by external square wave, LVD disabled.  
6. All I/O pins in input mode with a static value at VDD or VSS (no load). Data tested in production at VDD max. and fCPU max.  
7. This consumption refers to the Halt period only and not the associated run period which is software dependent.  
8. All I/O pins in output mode with a static value at VSS (no load), LVD disabled. Data based on characterization results,  
tested in production at VDD max and fCPU max.  
99/136  
Electrical characteristics  
ST7LITEUS2, ST7LITEUS5  
12.4.2  
Internal RC oscillator supply current characteristics  
Table 53. Internal RC oscillator supply current  
Symbol  
Parameter  
Conditions  
Min  
Typ Max (1) Unit  
TA=25 °C, int RC = 4 MHz  
TA=25 °C, int RC = 8 MHz  
TA=25 °C, AWU RC  
3.2  
5.7  
5.5  
8.5  
0.2  
3.0  
4.5  
2.0  
Supply current in Run mode (2)  
0.13  
1.5  
TA=25 °C, int RC = 4 MHz  
TA=25 °C, int RC = 8 MHz  
TA=25 °C, int RC/32 = 250 kHz  
Supply current in Wait mode (3)  
Supply current in Slow mode (4)  
1.9  
IDD  
mA  
1.3  
Supply current in Slow-Wait  
mode (5)  
TA=25 °C, int RC/32 = 250 kHz  
1.1  
0.8  
1.8  
Supply current in Active-halt  
mode  
1.25  
TA=25 °C, int RC = 4 MHz  
TA=25 °C, int RC = 2 MHz  
TA=25 °C, AWU RC  
2.0  
1.3  
3.0  
2.0  
Supply current in Run mode (2)  
0.1  
0.18  
1.6  
TA=25 °C, int RC = 4 MHz  
TA=25 °C, int RC = 2 MHz  
TA=25 °C, int RC/32 = 250 kHz  
1.0  
Supply current in Wait mode (3)  
Supply current in Slow mode (4)  
0.9  
1.5  
IDD  
mA  
0.95  
1.5  
Supply current in Slow-Wait  
mode (5)  
TA=25 °C, int RC/32 = 250 kHz  
0.85  
0.8  
1.4  
1.3  
Supply current in Active-halt  
mode  
1. Data based on characterization results, not tested in production.  
2. CPU running with memory access, all I/O pins in input mode with a static value at VDD or VSS (no load), all peripherals in  
reset state; CPU clock provided by the internal RC, LVD disabled.  
3. All I/O pins in input mode with a static value at VDD or VSS (no load), all peripherals in reset state; CPU clock provided by  
the internal RC, LVD disabled.  
4. Slow mode selected with fCPU based on fOSC divided by 32. All I/O pins in input mode with a static value at VDD or VSS (no  
load), all peripherals in reset state; CPU clock provided by the internal RC, LVD disabled.  
5. Slow-Wait mode selected with fCPU based on fOSC divided by 32. All I/O pins in input mode with a static value at VDD or VSS  
(no load), all peripherals in reset state; CPU clock provided by the internal RC, LVD disabled.  
100/136  
ST7LITEUS2, ST7LITEUS5  
Electrical characteristics  
Figure 42. Typical I in run mode vs. internal clock frequency and V  
DD  
DD  
Idd RUN mode @amb vs int clock freq  
RC 8 MHz  
RC 4 MHz  
RC 2 MHz  
AWU  
6.00  
5.00  
4.00  
3.00  
2.00  
1.00  
0.00  
VDD [V]  
Figure 43. Typical I in WFI mode vs. internal clock frequency and V  
DD  
DD  
Idd WFI mode @amb vs int RC freq  
8 MHz  
2.200  
4 MHz  
2 MHz  
1.700  
1.200  
0.700  
VDD [V]  
Figure 44. Typical I in Slow, Slow-wait and Active-halt mode vs V & int  
DD  
DD  
RC = 8 MHz  
Idd slow, slowwait & acthalt mode,  
int Rc 8Mhz@amb  
Slow  
slowwait  
acthlt  
1.500  
1.300  
1.100  
0.900  
0.700  
VDD [V]  
101/136  
Electrical characteristics  
ST7LITEUS2, ST7LITEUS5  
Figure 45.  
I
vs temp @V 5 V & int RC = 8 MHz  
DD  
DD  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
run  
wfi  
slow  
slowwait  
acthlt  
Temp [°C]  
Figure 46.  
I
vs temp @V 5 V & int RC = 4 MHz  
DD  
DD  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
run  
wfi  
Figure 47.  
I
vs temp @V 5 V & int RC = 2 MHz  
DD  
DD  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
run  
wfi  
Temp [°C]  
102/136  
ST7LITEUS2, ST7LITEUS5  
Electrical characteristics  
12.4.3  
On-chip peripherals  
Table 54. On-chip peripheral characteristics  
Symbol  
Parameter  
Conditions  
fCPU = 4 MHz VDD= 3.0 V  
CPU = 8 MHz VDD= 5.0 V  
fADC = 2 MHz VDD= 3.0 V  
ADC = 4 MHz VDD= 5.0 V  
Typ (1) Unit  
15  
30  
IDD(AT) 12-bit auto-reload timer supply current (2)  
f
μA  
450  
750  
IDD(ADC) ADC supply current when converting (3)  
1. Not tested in production, guaranteed by characterization.  
f
2. Data based on a differential IDD measurement between reset configuration (timer stopped) and the timer running in PWM  
mode at fcpu = 8 MHz.  
3. Data based on a differential IDD measurement between reset configuration and continuous A/D conversions with amplifier  
off.  
12.5  
Clock and timing characteristics  
Subject to general operating conditions for V , f  
, and T .  
A
DD OSC  
Table 55. General timings  
Symbol  
Parameter(1)  
Conditions  
fCPU=8 MHz  
Min  
Typ(2)  
Max  
Unit  
2
3
12  
1500  
22  
tCPU  
ns  
tc(INST) Instruction cycle time  
250  
10  
375  
Interrupt reaction time(3)  
tv(IT)  
tCPU  
μs  
fCPU=8 MHz  
tv(IT) = Δtc(INST) + 10  
1.25  
2.75  
1. Data based on characterization. Not tested in production.  
2. Data based on typical application software.  
3. Time measured between interrupt event and interrupt vector fetch. Δtc(INST) is the number of tCPU cycles  
needed to finish the current instruction execution.  
Table 56. Auto-wakeup RC oscillator  
Parameter  
Supply Voltage Range  
Conditions  
Min  
Typ  
Max  
Unit  
2.4  
-40  
2.0  
5.0  
25  
8.0  
0
5.5  
125  
14.0  
V
°C  
Operating Temperature Range  
Current Consumption(1)  
Consumption(1)  
Without prescaler  
µA  
µA  
kHz  
AWU RC switched off  
Output Frequency(1)  
20  
33  
60  
1. Data guaranteed by design.  
103/136  
Electrical characteristics  
ST7LITEUS2, ST7LITEUS5  
12.6  
Memory characteristics  
T = -40 to 125 °C, unless otherwise specified;  
A
Table 57. RAM and Hardware registers  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VRM  
Data retention mode 1)  
Halt mode (or Reset)  
1.6  
V
Table 58. Flash Program memory  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Operating voltage for Flash  
write/erase  
VDD  
2.4(1)  
5.5  
10  
V
Programming time for 1~32  
bytes(2)  
TA=−40 to +125°C  
5
ms  
tprog  
Programming time for 1 kByte  
Data retention(3)  
TA=+25°C  
TA=+55°C(4)  
TA=+25°C  
0.16 0.32  
s
tRET  
NRW  
20  
years  
cycles  
Write erase cycles  
10k(5)  
Read / Write / Erase  
modes, fCPU = 8 MHz,  
2.6  
mA  
VDD = 5.5 V  
Supply current(6)  
No Read/No Write  
Mode  
IDD  
100  
μA  
μA  
Power down mode /  
Halt  
0
0.1  
1. Minimum VDD supply voltage without losing data stored in RAM (in Halt mode or under reset) or in  
hardware registers (only in Halt mode). Guaranteed by construction, not tested in production.  
2. Up to 32 bytes can be programmed at a time.  
3. Data based on reliability test results and monitored in production.  
4. The data retention time increases when the TA decreases.  
5. Design target value pending full product characterization.  
6. Guaranteed by Design. Not tested in production.  
104/136  
ST7LITEUS2, ST7LITEUS5  
Electrical characteristics  
12.7  
EMC characteristics  
Susceptibility tests are performed on a sample basis during product characterization.  
12.7.1  
Functional EMS (electromagnetic susceptibility)  
Based on a simple running application on the product (toggling 2 LEDs through I/O ports),  
the product is stressed by two electromagnetic events until a failure occurs (indicated by the  
LEDs).  
ESD: Electrostatic discharge (positive and negative) is applied on all pins of the device  
until a functional disturbance occurs. This test conforms with the IEC 1000-4-2  
standard.  
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V and  
DD  
V
through a 100 pF capacitor, until a functional disturbance occurs. This test  
SS  
conforms with the IEC 1000-4-4 standard.  
A device reset allows normal operations to be resumed. The test results are given in the  
table below based on the EMS levels and classes defined in application note AN1709.  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
Software recommendations  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical Data corruption (control registers...)  
Pre-qualification trials  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the RESET pin or the Oscillator pins for 1  
second.  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring (see application note AN1015).  
Table 59. EMC characteristics  
Level/  
class  
Symbol  
Parameter  
Conditions  
VDD=5 V, TA=+25 °C, fOSC=8 MHz,  
SO8 package,  
conforms to IEC 1000-4-2  
Voltage limits to be applied on any I/O pin to  
induce a functional disturbance  
VFESD  
3B  
Fast transient voltage burst limits to be  
VFFTB applied through 100 pF on VDD and VDD  
pins to induce a functional disturbance  
VDD=5 V, TA=+25 °C, fOSC=8 MHz,  
SO8 package,  
conforms to IEC 1000-4-4  
4B  
105/136  
Electrical characteristics  
ST7LITEUS2, ST7LITEUS5  
12.7.2  
Electromagnetic Interference (EMI)  
Based on a simple application running on the product (toggling 2 LEDs through the I/O  
ports), the product is monitored in terms of emission. This emission test is in line with the  
norm SAE J 1752/3 which specifies the board and the loading of each pin.  
(1)  
Table 60. EMI characteristics  
Max vs.  
[fOSC/fCPU  
Monitored  
]
Symbol  
Parameter  
Conditions  
Unit  
frequency band  
-/8 MHz  
0.1 MHz to  
30 MHz  
21  
23  
VDD=5 V, TA=+25 °C,  
SO8 package,  
conforming to SAE J  
1752/3  
30 MHz to  
130 MHz  
dBμV  
SEMI  
Peak level  
130 MHz to  
1 GHz  
10  
3
SAE EMI Level  
-
1. Data based on characterization results, not tested in production.  
12.7.3  
Absolute maximum ratings (electrical sensitivity)  
Based on three different tests (ESD, LU and DLU) using specific measurement methods, the  
product is stressed in order to determine its performance in terms of electrical sensitivity.  
For more details, refer to the application note AN1181.  
Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts*(n+1) supply pin). One model  
can be simulated: Human Body Model. This test conforms to the JESD22-A114A/A115A  
standard.  
Table 61. Absolute maximum ratings  
Maximum  
Symbol  
Ratings  
Conditions  
Unit  
value(1)  
Electrostatic discharge voltage  
(human body model)  
VESD(HBM)  
TA=+25°C  
> 4000  
V
1. Data based on characterization results, not tested in production.  
Static and dynamic latchup  
LU: 3 complementary static tests are required on 10 parts to assess the latchup  
performance. A supply overvoltage (applied to each power supply pin) and a current  
injection (applied to each input, output and configurable I/O pin) are performed on each  
sample. This test conforms to the EIA/JESD 78 IC latchup standard. For more details,  
refer to the application note AN1181.  
DLU: Electrostatic discharges (one positive then one negative test) are applied to each  
pin of 3 samples when the micro is running to assess the latchup performance in  
106/136  
ST7LITEUS2, ST7LITEUS5  
Electrical characteristics  
dynamic mode. Power supplies are set to the typical values, the oscillator is connected  
as near as possible to the pins of the micro and the component is put in reset mode.  
This test conforms to the IEC1000-4-2 and SAEJ1752/3 standards. For more details,  
refer to the application note AN1181.  
Table 62. Electrical sensitivities  
Symbol  
Parameter  
Static latchup class  
Conditions  
TA=+125 °C  
Class(1)  
LU  
A
VDD=5.5 V, fOSC=4 MHz,  
TA=+25 °C  
DLU  
Dynamic latchup class  
A
1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the  
JEDEC specifications, that means when a device belongs to Class A it exceeds the JEDEC standard. B  
Class strictly covers all the JEDEC criteria (international standard).  
107/136  
Electrical characteristics  
ST7LITEUS2, ST7LITEUS5  
12.8  
I/O port pin characteristics  
12.8.1  
General characteristics  
Subject to general operating conditions for V , f  
, and T unless otherwise specified.  
A
DD OSC  
Table 63. General characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VIL  
VIH  
Input low level voltage  
Input high level voltage  
0.3VDD  
V
-40°C to 125°C  
0.7VDD  
Schmitt trigger voltage  
hysteresis(1)  
Vhys  
IL  
400  
400  
mV  
Input leakage current  
Static current  
VSSVINVDD  
1
μA  
IS  
consumption induced by Floating input mode  
each floating input pin(2)  
Weak pull-up equivalent  
VDD=5 V  
VDD=3 V  
80  
120  
200(1)  
5
170  
VIN=VS  
resistor(3)  
RPU  
kΩ  
S
(4)  
CIO  
I/O pin capacitance  
pF  
Output high to low level  
fall time 1)  
tf(IO)out  
25  
25  
CL=50 pF  
Between 10% and 90%  
ns  
Output low to high level  
rise time 1)  
tr(IO)out  
tw(IT)in  
External interrupt pulse  
time(5)  
1
tCPU  
1. Data based on characterization results, not tested in production.  
2. Configuration not recommended, all unused pins must be kept at a fixed voltage: using the output mode of  
the I/O for example or an external pull-up or pull-down resistor (see Figure 48). Static peak current value  
taken at a fixed VIN value, based on design simulation and technology characteristics, not tested in  
production. This value depends on VDD and temperature values.  
3. The RPU pull-up equivalent resistor is based on a resistive transistor (corresponding IPU current  
characteristics described in Figure 49).  
4. RPU not applicable on PA3 because it is multiplexed on RESET pin  
5. To generate an external interrupt, a minimum pulse width has to be applied on an I/O port pin configured  
as an external interrupt source.  
Figure 48. Two typical applications with unused I/O pin  
V
ST7XXX  
DD  
UNUSED I/O PORT  
10kΩ  
10kΩ  
UNUSED I/O PORT  
ST7XXX  
1. Caution: During normal operation the ICCCLK pin must be pulled- up, internally or externally (external pull-  
up of 10k mandatory in noisy environment). This is to avoid entering I2C mode unexpectedly during a reset.  
2. I/O can be left unconnected if it is configured as output (0 or 1) by the software. This has the advantage of  
greater EMC robustness and lower cost.  
108/136  
ST7LITEUS2, ST7LITEUS5  
Electrical characteristics  
Figure 49. Typical I vs. V with V =V l  
SS  
PU  
DD  
IN  
-45°C  
90  
80  
70  
60  
50  
40  
30  
20  
10  
25°C  
90°C  
0
VDD [V]  
12.8.2  
Output driving current characteristics  
Subject to general operating conditions for V , f  
, and T unless otherwise specified.  
A
DD CPU  
Table 64. Output driving current characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max Unit  
IIO= +5 mA,TA125 °C  
IIO = +2 mA,TA125 °C  
IIO=+20 mA,TA125 °C  
1200  
400  
Output low level voltage for PA3/RESET standard  
I/O pin (see Figure 52)  
(1)  
VOL  
1300  
750  
Output low level voltage for a high sink I/O pin  
when 4 pins are sunk at same time (see Figure 55)  
I
IO = +8 mA,TA125 °C  
IIO= -5 mA,TA125 °C VDD-1500  
IIO = -2 mA,TA125 °C VDD-800  
Output high level voltage for an I/O pin when 4 pins  
are sourced at same time (see Figure 58)  
(2)  
VOH  
Output low level voltage for PA3/RESET standard  
I/O pin (see Figure 51)  
IIO = +2 mA,TA125 °C  
IIO = +2 mA,TA125 °C  
500  
(1)(3)  
VOL  
180  
600  
mV  
Output low level voltage for a high sink I/O pin  
when 4 pins are sunk at same time (see Figure 54)  
I
IO = +8 mA,TA125 °C  
VOH  
Output high level voltage for an I/O pin when 4 pins  
are sourced at same time (see Figure 57)  
I
IO = -2 mA,TA125 °C VDD-800  
(2)(3)  
Output low level voltage for PA3/RESET standard  
I/O pin (see Figure 53)  
IIO = +2 mA,TA125 °C  
700  
(1)(3)  
VOL  
IIO = +2 mA,TA125 °C  
IIO=+8 mA,TA125 °C  
200  
800  
Output low level voltage for a high sink I/O pin  
when 4 pins are sunk at same time (see Figure 53)  
VOH  
Output high level voltage for an I/O pin when 4 pins  
are sourced at same time (see Figure 56)  
IIO=-2 mA,TA125 °C  
VDD-900  
(2)(3)  
1. The IIO current sunk must always respect the absolute maximum rating specified in Table 52 and the sum of IIO (I/O ports and control pins)  
must not exceed IVSS  
.
2. The IIO current sourced must always respect the absolute maximum rating specified in Table 52 and the sum of IIO (I/O ports and control pins)  
must not exceed IVDD. True open drain I/O pins do not have VOH  
.
3. Not tested in production, based on characterization results.  
109/136  
Electrical characteristics  
ST7LITEUS2, ST7LITEUS5  
Figure 50. Typical V at V = 2.4 V (standard pins)  
OL  
DD  
1400  
1200  
1000  
800  
600  
400  
200  
0
-45°C  
25°C  
90°C  
130°C  
0
2
4
Iol [mA]  
Figure 51. Typical V at V = 3 V (standard pins)  
OL  
DD  
-45°C  
25°C  
90°C  
130°C  
1400  
1200  
1000  
800  
600  
400  
200  
0
0
2
4
6
8
Iol [mA]  
Figure 52. Typical V at V = 5 V (standard pins)  
OL  
DD  
-45°C  
25°C  
1200  
90°C  
13 0 °C  
1000  
800  
600  
400  
200  
0
0
2
4
6
8
Iol [mA]  
110/136  
ST7LITEUS2, ST7LITEUS5  
Electrical characteristics  
Figure 53. Typical V at V = 2.4 V (HS pins)  
OL  
DD  
1200  
1000  
800  
600  
400  
200  
0
-45°C  
25°C  
90°C  
130°C  
0
2
4
6
8
10  
12  
14  
16  
Iol [mA]  
Figure 54. Typical V at V = 3 V (HS pins)  
OL  
DD  
1400  
1200  
1000  
800  
600  
400  
200  
0
-45°C  
25°C  
90°C  
130°C  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
Iol [mA]  
Figure 55. Typical V at V = 5 V (HS pins)  
OL  
DD  
800  
700  
600  
500  
400  
300  
200  
100  
0
-45°C  
25°C  
90°C  
130°C  
0
2
4
6
8
10  
Iol [mA]  
12  
14  
16  
18  
20  
111/136  
Electrical characteristics  
ST7LITEUS2, ST7LITEUS5  
Figure 56. Typical V -V at V = 2.4 V (HS pins)  
DD OH  
DD  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
-45°C  
25°C  
90°C  
130°C  
0
2
4
6
8
10  
12  
Iol [mA]  
Figure 57. Typical V -V at V = 3 V (HS pins)  
DD OH  
DD  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
-45°C  
25°C  
90°C  
130°C  
0
2
4
6
8
10  
12  
14  
16  
18  
Iol [mA]  
Figure 58. Typical V -V at V = 5 V (HS pins)  
DD OH  
DD  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
-45°C  
25°C  
90°C  
130°C  
0
2
4
6
8
10  
Iol [mA]  
12  
14  
16  
18  
20  
112/136  
ST7LITEUS2, ST7LITEUS5  
Electrical characteristics  
Figure 59. Typical V vs. V (HS pins)  
OL  
DD  
100  
90  
80  
70  
60  
50  
40  
500  
450  
400  
350  
300  
250  
200  
150  
100  
-45°C  
25°C  
-45°C  
25°C  
90°C  
90°C  
130°C  
130°C  
2.4 2.6 2.8  
3
3.2 3.4 3.6 3.8  
4
4.2 4.4 4.6 4.8  
Vdd [V]  
5
5.2 5.4 5.6 5.8  
6
2.4 2.6 2.8  
3
3.2 3.4 3.6 3.8  
4
4.2 4.4 4.6 4.8  
Vdd [V]  
5
5.2 5.4 5.6 5.8  
6
900  
800  
700  
600  
500  
400  
300  
200  
-45°C  
25°C  
90°C  
130°C  
2.4 2.6 2.8  
3
3.2 3.4 3.6 3.8  
4
4.2 4.4 4.6 4.8  
Vdd [V]  
5
5.2 5.4 5.6 5.8  
6
Figure 60. Typical V -V vs. V (HS pins)  
DD OH  
DD  
200  
180  
160  
140  
120  
100  
80  
700  
600  
500  
400  
300  
200  
100  
-45°C  
-45°C  
25°C  
25°C  
90°C  
130°C  
90°C  
130°C  
60  
40  
2.4 2.6 2.8  
3
3.2 3.4 3.6 3.8  
4
4.2 4.4 4.6 4.8  
Vdd [V]  
5
5.2 5.4 5.6 5.8  
6
2.4 2.6 2.8  
3
3.2 3.4 3.6 3.8  
4
4.2 4.4 4.6 4.8  
Vdd [V]  
5
5.2 5.4 5.6 5.8  
6
12.9  
Control pin characteristics  
The reset network protects the device against parasitic resets.  
The output of the external reset circuit must have an open-drain output to drive the ST7  
reset pad. Otherwise the device can be damaged when the ST7 generates an internal reset  
(LVD or watchdog).  
Whatever the reset source is (internal or external), the user must ensure that the level on the  
RESET pin can go below the V max. level specified in Table 65. Otherwise the reset will  
IL  
not be taken into account internally.  
Because the reset circuit is designed to allow the internal reset to be output in the RESET  
pin, the user must ensure that the current sunk on the RESET pin is less than the absolute  
maximum value specified for I  
in Table 44.  
INJ(RESET)  
Refer to Figure 61 and Figure 62 for a description of the RESET pin protection circuit with  
LVD enabled and disabled.  
113/136  
Electrical characteristics  
ST7LITEUS2, ST7LITEUS5  
Refer also to Section 11.2.1: Illegal opcode reset for more details on illegal opcode reset  
conditions.  
(1)  
Table 65. Asynchronous RESET pin characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
VSS  
0.3  
-
VIL  
Input low level voltage  
0.3VDD  
V
VDD  
0.3  
+
VIH  
Input high level voltage  
0.7VDD  
Schmitt trigger voltage  
hysteresis(2)  
Vhys  
VOL  
2
V
Output low level voltage(3)  
VDD=5 V IIO=+2 mA  
400  
70  
mV  
VDD=5 V  
VIN=VSS  
30  
20  
50  
RON  
Pull-up equivalent resistor(4)  
kΩ  
VDD=3 V  
90(2)  
90(2)  
tw(RSTL)out Generated reset pulse duration Internal reset sources  
th(RSTL)in External reset pulse hold time(5)  
μs  
μs  
ns  
tg(RSTL)in Filtered glitch duration  
200  
1.  
2. Data based on characterization results, not tested in production.  
3. The IIO current sunk must always respect the absolute maximum rating specified in Table 44 and the sum  
TA = -40°C to 125°C, unless otherwise specified.  
of IIO (I/O ports and control pins) must not exceed IVSS  
.
4. The RON pull-up equivalent resistor is based on a resistive transistor. Specified for voltages on RESET pin  
between VILmax and VDD.  
5. To guarantee the reset of the device, a minimum pulse has to be applied to the RESET pin. All short pulses  
applied on RESET pin with a duration below th(RSTL)in can be ignored.  
Figure 61. RESET pin protection when LVD is enabled  
VDD  
ST7XXX  
Optional  
(note 3)  
Required  
RON  
INTERNAL  
RESET  
EXTERNAL  
RESET  
Filter  
0.01μF  
1MΩ  
WATCHDOG  
ILLEGALOPCODE 5)  
LVD RESET  
PULSE  
GENERATOR  
1. When the LVD is enabled, it is recommended not to connect a pull-up resistor or capacitor. A 10nF pull-  
down capacitor is required to filter noise on the reset line.  
2. When using the LVD:  
- Check that all recommendations related to ICCCLK and reset circuit have been applied (see caution in  
Table 2 and text above)  
- Check that the power supply is properly decoupled (100nF + 10µF close to the MCU). Refer to AN1709  
and AN2017. If this cannot be done, it is recommended to put a 100nF + 1MΩ pull-down on the RESET  
pin.  
- The capacitors connected on the RESET pin and also the power supply are key to avoid any startup  
marginality. In most cases, steps 1 and 2 above are sufficient for a robust solution. Otherwise: replace  
10nF pull-down on the RESET pin with a 5µF to 20µF capacitor.”  
3. In case a capacitive power supply is used, it is recommended to connect a 1MΩ pull-down resistor to the  
RESET pin to discharge any residual voltage induced by the capacitive effect of the power supply (this will  
add 5µA to the power consumption of the MCU).  
114/136  
ST7LITEUS2, ST7LITEUS5  
Figure 62. RESET pin protection when LVD is disabled  
Electrical characteristics  
VDD  
ST7XXX  
RON  
INTERNAL  
RESET  
USER  
EXTERNAL  
RESET  
Filter  
CIRCUIT  
0.01μF  
WATCHDOG  
PULSE  
GENERATOR  
ILLEGALOPCODE 5)  
Required  
12.10  
ADC characteristics  
Subject to general operating condition for V , f  
, and T unless otherwise specified.  
A
DD OSC  
Table 66. 10-bit ADC characteristics  
Symbol Parameter  
fADC ADC clock frequency(2)  
VAIN  
Conversion voltage range(3)  
Conditions  
Min  
Typ(1)  
Max  
Unit  
4
MHz  
V
VSSA  
VDDA  
8(4)  
VDD = 5 V, fADC=4 MHz  
VDD = 3.3 V,  
fADC=4 MHz  
7(4)  
10(4)  
RAIN External input resistor  
kΩ  
2.7 V VDD 5.5 V,  
fADC=2 MHz  
2.4 V VDD 2.7 V,  
fADC=1 MHz  
TBD(4)  
Internal sample and hold  
capacitor  
CADC  
3
pF  
Stabilization time after ADC  
enable  
tSTAB  
0(5)  
3.5  
μs  
Conversion time  
(Sample+Hold)  
f
CPU=8 MHz,  
fADC=4 MHz  
tADC  
- Sample capacitor loading  
time  
- Hold conversion time  
4
10  
1/fADC  
1. Unless otherwise specified, typical data are based on TA=25°C and VDD-VSS=5 V. They are given only as  
design guidelines and are not tested.  
2. The maximum ADC clock frequency allowed within VDD = 2.4 to 2.7 V operating range is 1 MHz.  
3. When VDDA and VSSA pins are not available on the pinout, the ADC refers to VDD and VSS.  
4. Any added external serial resistor will downgrade the ADC accuracy (especially for resistance greater than  
10kΩ). Data based on characterization results, not tested in production.  
5. The stabilization time of the A/D converter is masked by the first tLOAD. The first conversion after the  
enable is then always valid.  
115/136  
Electrical characteristics  
Figure 63. Typical application with ADC  
ST7LITEUS2, ST7LITEUS5  
V
DD  
V
T
0.6V  
R
AIN  
AINx  
10-Bit A/D  
Conversion  
V
AIN  
V
0.6V  
T
I
C
ADC  
L
1μA  
ST7LITEUSx  
Table 67. ADC accuracy with V = 3.3 to 5.5 V  
DD  
Symbol  
Parameter  
Conditions  
Typ  
Max  
Unit  
(1)  
|ET|  
|EO|  
|EG|  
|ED|  
|EL|  
Total unadjusted error  
Offset error  
2.1  
0.2  
0.3  
1.9  
1.9  
5.0  
2.5  
1.5  
3.5  
4.5  
fCPU=8 MHz,  
fADC=4 MHz(1)  
Gain Error  
LSB  
Differential linearity error  
Integral linearity error  
1. Data based on characterization results over the whole temperature range.  
Table 68. ADC accuracy with V = 2.7 to 3.3 V  
DD  
Symbol  
Parameter  
Conditions  
Typ  
Max  
Unit  
(1)  
|ET|  
|EO|  
|EG|  
|ED|  
|EL|  
Total unadjusted error  
Offset error  
2.0  
0.1  
0.4  
1.8  
1.7  
3.0  
1.5  
1.4  
2.5  
2.5  
fCPU=4 MHz,  
fADC=2 MHz(1)  
Gain Error  
LSB  
Differential linearity error  
Integral linearity error  
1. Data based on characterization results over the whole temperature range.  
Table 69. ADC accuracy with V = 2.4V to 2.7V  
DD  
Symbol  
Parameter  
Conditions  
Typ  
Max  
Unit  
(1)  
|ET|  
|EO|  
|EG|  
|ED|  
|EL|  
Total unadjusted error  
Offset error  
2.2  
0.5  
0.5  
1.8  
1.8  
3.5  
1.5  
1.5  
2.5  
2.5  
fCPU=2 MHz,  
fADC=1 MHz(1)  
Gain Error  
LSB  
Differential linearity error  
Integral linearity error  
1. Data based on characterization results at a temperature 25°C.  
116/136  
ST7LITEUS2, ST7LITEUS5  
Figure 64. ADC accuracy characteristics  
Electrical characteristics  
Digital Result ADCDR  
E
G
1023  
V
V  
1022  
DD  
SS  
1LSB  
= -------------------------------  
IDEAL  
1021  
1024  
(2)  
E
T
(3)  
7
6
5
4
3
2
1
(1)  
E
E
O
L
E
D
1 LSB  
IDEAL  
Vin (LSBIDEAL  
)
0
1
2
3
4
5
6
7
1021 1022 1023 1024  
V
V
DD  
SS  
1. Example of an actual transfer curve  
2. The ideal transfer curve  
3. End point correlation line  
4. ET=Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves.  
5. EO=Offset Error: deviation between the first actual transition and the first ideal one.  
6. EG=Gain Error: deviation between the last ideal transition and the last actual one.  
7. ED=Differential Linearity Error: maximum deviation between actual steps and the ideal one.  
8. EL=Integral Linearity Error: maximum deviation between any actual transition and the end point correlation  
line.  
117/136  
Package characteristics  
ST7LITEUS2, ST7LITEUS5  
13  
Package characteristics  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
ECOPACK® is an ST trademark.  
13.1  
Package mechanical data  
Figure 65. 8-lead very thin fine pitch dual flat no-lead package outline  
D
INDEX AREA  
(D/2 x E/2)  
e
b
E
E2  
TOP VIEW  
SIDE VIEW  
INDEX AREA  
(D/2 x E/2)  
L
A
D2  
BOTTOM VIEW  
Table 70. 8-lead very thin fine pitch dual flat no-lead package mechanical data  
mm  
Typ  
inches(1)  
Dim.  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A3  
b
0.80  
0.00  
0.90  
0.02  
0.20  
0.30  
4.50  
3.65  
3.50  
2.11  
0.80  
0.40  
1.00  
0.05  
0.0310  
0.0000  
0.0350  
0.0010  
0.0080  
0.0120  
0.1770  
0.1440  
0.1380  
0.0830  
0.0310  
0.0160  
0.0390  
0.0020  
0.25  
3.50  
1.96  
0.30  
0.35  
3.75  
2.21  
0.50  
0.0100  
0.1380  
0.0770  
0.0120  
0.0140  
0.1480  
0.0870  
0.0200  
D
D2  
E
E2  
e
L
Number of pins  
8
N
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
118/136  
ST7LITEUS2, ST7LITEUS5  
Package characteristics  
Figure 66. 8-pin plastic small outline package, 150-mil width package outline  
D
h x 45°  
A2  
A
A1  
C
α
B
L
E
H
e
Table 71. 8-pin plastic small outline package, 150-mil width, package mechanical  
data  
mm  
Typ  
inches(1)  
Dim.  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
B
1.35  
0.10  
1.10  
0.33  
0.19  
4.80  
3.80  
1.75  
0.25  
1.65  
0.51  
0.25  
5.00  
4.00  
0.0530  
0.0040  
0.0430  
0.0130  
0.0070  
0.1890  
0.1500  
0.0690  
0.0100  
0.0650  
0.0200  
0.0100  
0.1970  
0.1580  
C
D
E
e
1.27  
0.0500  
H
h
5.80  
0.25  
0d  
6.20  
0.50  
8d  
0.2280  
0.0100  
0.2440  
0.0200  
α
L
0.40  
1.27  
0.0160  
0.0500  
Number of pins  
N
8
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
119/136  
Package characteristics  
ST7LITEUS2, ST7LITEUS5  
Figure 67. 8-pin plastic dual in-line package, 300-mil width package outline  
E
A2  
A
L
A1  
b2  
b3  
b
eB  
e
D1  
D
D
8
5
4
E1  
1
Table 72. 8-pin plastic dual in-line package, 300-mil width package mechanical data  
mm  
Typ  
inches(1)  
Dim.  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
5.33  
0.2100  
0.38  
2.92  
0.36  
1.14  
0.76  
0.20  
9.02  
0.13  
0.0150  
0.1150  
0.0140  
0.0450  
0.0300  
0.0080  
0.3550  
0.0050  
3.30  
0.46  
1.52  
0.99  
0.25  
9.27  
4.95  
0.56  
1.78  
1.14  
0.36  
10.16  
0.1300  
0.0180  
0.0600  
0.0390  
0.0100  
0.3650  
0.1950  
0.0220  
0.0700  
0.0450  
0.0140  
0.4000  
b2  
b3  
c
D
D1  
e
2.54  
0.1000  
eB  
E
10.92  
8.26  
7.11  
3.81  
0.4300  
0.3250  
0.2800  
0.1500  
7.62  
6.10  
2.92  
7.87  
6.35  
3.30  
0.3000  
0.2400  
0.1150  
0.3100  
0.2500  
0.1300  
E1  
L
Number of pins  
N
8
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
120/136  
ST7LITEUS2, ST7LITEUS5  
Package characteristics  
Figure 68. 16-pin plastic dual in-line package, 300-mil width, package outline  
E
b2  
A2  
A1  
A
L
c
e
b
eA  
eB  
e1  
D
8
E1  
1
17_ME  
Table 73. 16-pin plastic dual in-line package, 300-mil width, package mechanical  
data  
mm  
Typ  
inches(1)  
Dim.  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
5.33  
0.2100  
0.38  
2.92  
0.36  
1.14  
0.20  
18.67  
7.62  
6.10  
0.0150  
0.1150  
0.0140  
0.0450  
0.0080  
0.7350  
0.3000  
0.2400  
3.30  
0.46  
1.52  
0.25  
19.18  
7.87  
6.35  
2.54  
17.78  
7.62  
4.95  
0.56  
1.78  
0.36  
19.69  
8.26  
7.11  
0.1300  
0.0180  
0.0600  
0.0100  
0.7550  
0.3100  
0.2500  
0.1000  
0.7  
0.1950  
0.0220  
0.0700  
0.0140  
0.7750  
0.3250  
0.2800  
b2  
c
D
E
E1  
e
e1  
eA  
eB  
L
0.3000  
0.4300  
0.1500  
10.92  
3.81  
2.92  
3.30  
0.1150  
0.1300  
Number of pins  
16  
N
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
121/136  
Package characteristics  
ST7LITEUS2, ST7LITEUS5  
13.2  
Thermal characteristics  
Table 74. Thermal characteristics  
Symbol  
Ratings  
Value  
Unit  
Plastic DIP8  
SO8  
82  
130  
Package thermal resistance  
(junction to ambient)  
RthJA  
°C/W  
DFN8 (on 4-layer  
PCB)  
50  
DFN8 (on 2-layer  
PCB)  
106  
Maximum junction  
temperature(1)  
TJmax  
150  
°C  
Plastic DIP8  
SO8  
300  
180  
Power dissipation(2)  
mW  
DFN8 (on 4-layer  
PCB)  
PDmax  
500  
250  
DFN8 (on 2-layer  
PCB)  
1. The maximum chip-junction temperature is based on technology characteristics.  
2. The maximum power dissipation is obtained from the formula PD = (TJ -TA) / RthJA  
.
The power dissipation of an application can be defined by the user with the formula: PD=PINT+PPORT  
where PINT is the chip internal power (IDD x VDD) and PPORT is the port power dissipation depending on the  
ports used in the application.  
122/136  
ST7LITEUS2, ST7LITEUS5  
Device configuration and ordering information  
14  
Device configuration and ordering information  
Each device is available for production in user programmable versions (FLASH) as well as in  
factory coded versions (FASTROM). Refer to Table 79 for the full list of supported part  
numbers:  
ST7FLITEUSA2xx and ST7FLITEUSA5xx XFlash devices are shipped to customers  
with a default program memory content (FFh).  
Factory Advanced Service Technique ROM (FASTROM) versions are also available:  
they are factory-programmed XFlash devices.  
The FASTROM factory coded parts contain the code supplied by the customer. This implies  
that FLASH devices have to be configured by the customer using the Option Bytes while the  
FASTROM devices are factory-configured.  
14.1  
Option bytes  
The two option bytes allow the hardware configuration of the microcontroller to be selected.  
The option bytes can be accessed only in programming mode (for example using a standard  
ST7 programming tool).  
14.1.1  
OPTION BYTE 1  
Bit 7:6 CKSEL[1:0] Startup clock selection.  
This bit is used to select the startup frequency. By default, the internal RC is  
selected (see Table 75: Startup clock selection).  
Bit 5 Reserved, must always be 1.  
Bit 4 Reserved, must always be 0.  
Bits 3:2 LVD[1:0] Low Voltage Detection selection  
These option bits enable the LVD block with a selected threshold as shown in  
Table 76: LVD threshold configuration.  
Bit 1 WDG SW Hardware or software watchdog  
This option bit selects the watchdog type.  
0: Hardware (watchdog always enabled)  
1: Software (watchdog to be enabled by software)  
Bit 0 WDG HALT Watchdog Reset on Halt  
This option bit determines if a reset is generated when entering Halt mode while the  
watchdog is active.  
0: No Reset generation when entering Halt mode  
1: Reset generation when entering Halt mode  
123/136  
Device configuration and ordering information  
ST7LITEUS2, ST7LITEUS5  
Table 75. Startup clock selection  
Configuration  
CKSEL1  
CKSEL0  
Internal RC as Startup Clock  
Reserved  
0
0
0
1
1
0
0
1
0
1
AWU RC as a Startup Clock  
Reserved  
External Clock on pin PA5  
Table 76. LVD threshold configuration  
Configuration  
LVD1  
LVD0  
LVD Off  
1
1
0
0
1
0
1
0
Highest voltage threshold  
Medium voltage threshold  
Lowest voltage threshold  
14.1.2  
OPTION BYTE 0  
Bits 7:4 Reserved, must always be 1.  
Bit 3 Reserved, must always be 0.  
Bit 2 SEC0 Sector 0 size definition  
This option bit indicates the size of sector 0 according to the following table (see  
Table 77: Definition of sector 0 size).  
Bit 1 FMP_R Readout protection  
Readout protection, when selected provides a protection against program memory  
content extraction and against write access to Flash memory. Erasing the option  
bytes when the FMP_R option is selected will cause the whole memory to be  
erased first, and the device can be reprogrammed. Refer to Section 4.5 and the  
ST7 Flash Programming Reference Manual for more details.  
0: Readout protection off  
1: Readout protection on  
Bit 0 FMP_W FLASH write protection  
This option indicates if the FLASH program memory is write protected.  
Warning: When this option is selected, the program memory (and the option bit  
itself) can never be erased or programmed again.  
0: Write protection off  
1: Write protection on  
Table 77. Definition of sector 0 size  
Sector 0 Size  
SEC0  
0.5k  
1k  
0
1
124/136  
ST7LITEUS2, ST7LITEUS5  
Device configuration and ordering information  
Table 78:  
OPTION BYTE 0  
OPTION BYTE 1  
7
0
7
0
CKSEL CKSEL  
WDG WDG  
SW HALT  
Reserved  
1
SEC0 FMPR FMPW  
Res Res LVD1 LVD0  
1
0
Default  
value  
1
1
1
0
0
0
0
0
0
1
0
1
1
1
1
14.2  
Ordering information  
Customer code is made up of the FASTROM contents and the list of the selected options (if  
any). The FASTROM contents are to be sent on diskette, or by electronic means, with the  
S19 hexadecimal file generated by the development tool. All unused bytes must be set to  
FFh. The selected options are communicated to STMicroelectronics using the correctly  
completed option list appended.  
Refer to application note AN1635 for information on the counter listing returned by ST after  
code has been transferred.  
The STMicroelectronics Sales Organization will be pleased to provide detailed information  
on contractual points.  
(1)  
Table 79. Supported order codes  
Program  
RAM  
(bytes)  
Temperature  
range  
Order code  
memory  
(bytes)  
ADC  
Package  
Conditioning  
ST7FLITEUSA2B6  
ST7FLITEUSA2M6  
ST7FLITEUSA2M6TR  
ST7FLITEUSA2U6TR  
ST7FLITEUSA5B6  
ST7FLITEUSA5M6  
ST7FLITEUSA5M6TR  
ST7FLITEUSA5U6  
ST7FLITEUSA5U6TR  
-
DIP8  
SO8  
Tube  
Tube  
-
1 Kbyte  
FLASH  
128  
128  
-40°C +85°C  
-40°C +85°C  
-
SO8  
Tape & Reel  
Tape & Reel  
Tube  
-
DFN8  
DIP8  
SO8  
10-bit  
10-bit  
10-bit  
10-bit  
10-bit  
Tube  
1 Kbyte  
FLASH  
SO8  
Tape & Reel  
Tray  
DFN8  
DFN8  
Tape & Reel  
1 Kbyte  
FLASH  
ST7FLITEUSICD  
128  
128  
-
-40°C +125°C DIP16(2)  
DIP8  
Tube  
ST7PLUSA2B6  
ST7PLUSA2M6  
-
-
-
-
Tube  
SO8  
-40°C +85°C  
SO8  
Tube  
1 Kbyte  
FASTROM  
ST7PLUSA2M6TR  
ST7PLUSA2U6TR  
Tape & Reel  
Tape & Reel  
DFN8  
125/136  
Device configuration and ordering information  
ST7LITEUS2, ST7LITEUS5  
(1)  
Table 79. Supported order codes  
Program  
(continued)  
RAM  
(bytes)  
Temperature  
range  
Order code  
memory  
(bytes)  
ADC  
Package  
Conditioning  
ST7PLUSA5B6  
ST7PLUSA5M6  
ST7PLUSA5M6TR  
ST7PLUSA5U6  
ST7PLUSA5U6TR  
ST7PLUSA2B3  
10-bit  
10-bit  
10-bit  
10-bit  
10-bit  
-
DIP8  
SO8  
Tube  
Tube  
1 Kbyte  
FASTROM  
128  
128  
128  
128  
128  
-40°C +85°C  
-40°C +125°C  
-40°C +125°C  
-40°C +125°C  
-40°C +125°C  
SO8  
Tape & Reel  
Tray  
DFN8  
DFN8  
DIP8  
SO8  
Tape & Reel  
Tube  
ST7PLUSA2M3  
ST7PLUSA2M3TR  
ST7PLUSA2U3TR  
ST7PLUSA5B3  
-
Tube  
1 Kbyte  
FLASH  
-
SO8  
Tape & Reel  
Tape & Reel  
Tube  
-
DFN8  
DIP8  
SO8  
10-bit  
10-bit  
10-bit  
10-bit  
10-bit  
-
ST7PLUSA5M3  
ST7PLUSA5M3TR  
ST7PLUSA5U3  
ST7PLUSA5U3TR  
ST7PLUSA2B3  
Tube  
1 Kbyte  
FLASH  
SO8  
Tape & Reel  
Tray  
DFN8  
DFN8  
DIP8  
SO8  
Tape & Reel  
Tube  
ST7PLUSA2M3  
ST7PLUSA2M3TR  
ST7PLUSA2U3TR  
ST7PLUSA5B3  
-
Tube  
1 Kbyte  
FASTROM  
-
SO8  
Tape & Reel  
Tape & Reel  
Tube  
-
DFN8  
DIP8  
SO8  
10-bit  
10-bit  
10-bit  
10-bit  
10-bit  
ST7PLUSA5M3  
ST7PLUSA5M3TR  
ST7PLUSA5U3  
ST7PLUSA5U3TR  
Tube  
1 Kbyte  
FASTROM  
SO8  
Tape & Reel  
Tray  
DFN8  
DFN8  
Tape & Reel  
1. Contact ST sales office for product availability.  
2. For development or tool prototyping purposes only, not orderable in production quantities.  
126/136  
ST7LITEUS2, ST7LITEUS5  
Figure 69. Option list  
Device configuration and ordering information  
ST7LITEUS FASTROM MICROCONTROLLER OPTION LIST  
(Last update: February 2009)  
Customer: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Address: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Contact: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Phone No: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Reference/FASTROM Code*:. . . . . . . . . . . . . . . . . . . . . . . . . .  
*FASTROM code name is assigned by STMicroelectronics.  
FASTROM code must be sent in .S19 format. .Hex extension cannot be processed.  
Device Type/Memory Size/Package (check only one option):  
------------------|-----------------------|  
FASTROM DEVICE:  
|
1K FASTROM  
|
------------------|-----------------------|  
PDIP8  
SO8  
|
|
|
[ ]  
[ ]  
[ ]  
|
|
|
DFN8  
Conditioning (check only one option):  
---------------------------------------------------------------------------  
DIP package: [ ] Tube  
SO package: [ ] Tape & Reel [ ] Tube  
DFN package: [ ] Tape & Reel [ ] Tray (for ST7PLUSA5U6xxx and ST7PLUSA5U3xxx  
only)  
Special Marking: [ ] No  
[ ] Yes "_ _ _ _ _ _ _ _"  
Authorized characters are letters, digits, '.', '-', '/' and spaces only.  
Maximum character count:  
PDIP8/SO8/DFN8 (8 char. max) : _ _ _ _ _ _ _ _  
Temperature range  
[ ] -40°C to +85°C  
[ ] -40°C to +125°C  
Clock Source Selection: [ ] External Clock  
[ ] AWU RC oscillator  
[ ] Internal RC  
oscillator  
Sector 0 size:  
[ ] 0.5K  
[ ] 1K  
Readout protection:  
[ ] Disabled  
[ ] Enabled  
FLASH Write Protection: [ ] Disabled  
[ ] Enabled  
LVD Reset  
[ ] Disabled  
[ ] Highest threshold  
[ ] Medium threshold  
[ ] Lowest threshold  
Watchdog Selection:  
[ ] Software Activation [ ] Hardware Activation  
Watchdog Reset on Halt: [ ] Disabled  
[ ] Enabled  
Comments: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Supply Operating Range in the application:. . . . . . . . . . . . . . . . .  
Notes:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Date: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Signature:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Important note: Not all configurations are available. Refer to datasheet for  
authorized option byte combinations.  
Please download the latest version of this option list from:  
http://www.st.com/mcu > downloads > ST7 microcontrollers > Option list  
127/136  
Device configuration and ordering information  
ST7LITEUS2, ST7LITEUS5  
14.3  
Development tools  
Development tools for the ST7 microcontrollers include a complete range of hardware  
systems and software tools from STMicroelectronics and third-party tool suppliers. The  
range of tools includes solutions to help you evaluate microcontroller peripherals, develop  
and debug your application, and program your microcontrollers.  
14.3.1  
14.3.2  
Starter kits  
ST offers complete, affordable starter kits. Starter kits are complete, affordable  
hardware/software tool packages that include features and samples to help you quickly start  
developing your application.  
Development and debugging tools  
Application development for ST7 is supported by fully optimizing C Compilers and the ST7  
Assembler-Linker toolchain, which are all seamlessly integrated in the ST7 integrated  
development environments in order to facilitate the debugging and fine-tuning of your  
application. The Cosmic C Compiler is available in a free version that outputs up to  
16 Kbytes of code.  
The range of hardware tools includes full-featured ST7-EMU3 series emulators, cost  
effective ST7-DVP3 series emulators and the low-cost RLink in-circuit  
debugger/programmer. These tools are supported by the ST7 Toolset from  
STMicroelectronics, which includes the STVD7 integrated development environment (IDE)  
with high-level language debugger, editor, project manager and integrated programming  
interface.  
14.3.3  
Programming tools  
During the development cycle, the ST7-DVP3 and ST7-EMU3 series emulators and the  
RLink provide in-circuit programming capability for programming the Flash microcontroller  
on your application board.  
ST also provides a low-cost dedicated in-circuit programmer, the ST7-STICK, as well as  
ST7 Socket Boards which provide all the sockets required for programming any of the  
devices in a specific ST7 sub-family on a platform that can be used with any tool with in-  
circuit programming capability for ST7.  
For production programming of ST7 devices, ST’s third-party tool partners also provide a  
complete range of gang and automated programming solutions, which are ready to integrate  
into your production environment.  
14.3.4  
Order codes for development and programming tools  
Table 80 below lists the ordering codes for the ST7LITEUSx development and programming  
tools. For additional ordering codes for spare parts and accessories, refer to the online  
product selector at www.st.com/mcu.  
128/136  
ST7LITEUS2, ST7LITEUS5  
Device configuration and ordering information  
Table 80. Development tool order codes for the ST7LITEUSx family  
In-circuit Debugger, RLink  
Emulator  
Programming tool  
series(1)  
Supported  
products  
Starter kit  
without demo  
board  
ST socket  
boards and  
EPBs  
Starter kit with  
Demo Board  
In-circuit  
programmer  
DVP series EMU series  
STX-RLINK  
ST7-  
ST7FLITEUS2  
ST7FLITEUS5  
STFLITE-  
ST7MDT10- ST7MDT10-  
ST7SB10-  
SU0(5)  
STX-RLINK(2)  
SK/RAIS(2)  
DVP3(3)  
EMU3  
STICK(5)(4)  
1. Available from ST or from Raisonance, www.raisonance.com.  
2. USB connection to PC.  
3. Includes connection kit for Plastic DIP16/SO16 only. See “How to order an EMU or DVP” in ST product and tool selection  
guide for connection kit ordering information.  
4. Parallel port connection to PC.  
5. Add suffix /EU, /UK or /US for the power supply for your region.  
14.4  
ST7 application notes  
Table 81. ST7 application notes  
Identification  
Description  
Application examples  
AN1658  
AN1720  
AN1755  
AN1756  
AN1812  
Serial numbering implementation  
Managing the readout protection in flash microcontrollers  
A high resolution/precision thermometer using ST7 and NE555  
Choosing a DALI Implementation strategy with ST7DALI  
A high precision, low cost, single supply ADC for positive and negative input voltages  
Example drivers  
AN 969  
AN 970  
AN 971  
AN 972  
AN 973  
AN 974  
AN 976  
AN 979  
AN 980  
AN1017  
AN1041  
AN1042  
SCI communication between ST7 and PC  
SPI communication between ST7 and EEPROM  
I²C communication between ST7 and M24Cxx EEPROM  
ST7 software SPI master communication  
SCI software communication with a PC using ST72251 16-bit timer  
Real time clock with ST7 Timer Output Compare  
Driving a buzzer through ST7 timer PWM function  
Driving an analog keyboard with the ST7 ADC  
ST7 keypad decoding techniques, implementing wakeup on keystroke  
Using the ST7 universal serial bus microcontroller  
Using ST7 PWM signal to generate analog output (sinusoïd)  
ST7 routine for I²C slave mode management  
129/136  
Device configuration and ordering information  
ST7LITEUS2, ST7LITEUS5  
Table 81. ST7 application notes (continued)  
Identification  
Description  
AN1044  
AN1045  
AN1046  
AN1047  
AN1048  
AN1078  
AN1082  
AN1083  
AN1105  
AN1129  
AN1130  
AN1148  
AN1149  
AN1180  
AN1276  
AN1321  
AN1325  
AN1445  
AN1475  
AN1504  
AN1602  
AN1633  
AN1712  
AN1713  
AN1753  
AN1947  
Multiple interrupt sources management for ST7 MCUs  
ST7 S/W implementation of I²C bus master  
UART emulation software  
Managing reception errors with the ST7 SCI peripherals  
ST7 software LCD driver  
PWM duty cycle switch implementing true 0% & 100% duty cycle  
Description of the ST72141 motor control peripherals registers  
ST72141 BLDC motor control software and flowchart example  
ST7 pCAN peripheral driver  
PWM management for BLDC motor drives using the ST72141  
An introduction to sensorless brushless DC motor drive applications with the ST72141  
Using the ST7263 for designing a USB mouse  
Handling Suspend mode on a USB mouse  
Using the ST7263 Kit to implement a USB game pad  
BLDC motor start routine for the ST72141 microcontroller  
Using the ST72141 motor control MCU in sensor mode  
Using the ST7 USB low-speed firmware V4.x  
Emulated 16-bit slave SPI  
Developing an ST7265X mass storage application  
Starting a PWM signal directly at high level using the ST7 16-bit timer  
16-bit timing operations using ST7262 or ST7263B ST7 USB MCUs  
Device firmware upgrade (DFU) implementation in ST7 non-USB applications  
Generating a high resolution sinewave using ST7 PWMART  
SMBus slave driver for ST7 I2C peripherals  
Software UART using 12-bit ART  
ST7MC PMAC sine wave motor control software library  
General purpose  
AN1476  
AN1526  
AN1709  
AN1752  
Low cost power supply for home appliances  
ST7FLITE0 quick reference note  
EMC design for ST Microcontrollers  
ST72324 quick reference note  
Product evaluation  
AN 910  
AN 990  
Performance benchmarking  
ST7 benefits vs industry standard  
130/136  
ST7LITEUS2, ST7LITEUS5  
Device configuration and ordering information  
Description  
Table 81. ST7 application notes (continued)  
Identification  
AN1077  
AN1086  
AN1103  
AN1150  
AN1151  
AN1278  
Overview of enhanced CAN controllers for ST7 and ST9 MCUs  
U435 can-do solutions for car multiplexing  
Improved B-EMF detection for low speed, low voltage with ST72141  
Benchmark ST72 vs PC16  
Performance comparison between ST72254 & PC16F876  
LIN (local interconnect network) solutions  
Product migration  
AN1131  
AN1322  
AN1365  
AN1604  
AN2200  
Migrating applications from ST72511/311/214/124 to ST72521/321/324  
Migrating an application from ST7263 Rev.B to ST7263B  
Guidelines for migrating ST72C254 applications to ST72F264  
How to use ST7MDT1-TRAIN with ST72F264  
Guidelines for migrating ST7LITE1x applications to ST7FLITE1xB  
Product optimization  
Using ST7 with ceramic resonator  
AN 982  
AN1014  
AN1015  
AN1040  
AN1070  
AN1181  
AN1324  
AN1502  
AN1529  
AN1530  
AN1605  
AN1636  
AN1828  
AN1946  
AN1953  
AN1971  
How to Minimize the ST7 power consumption  
Software techniques for improving microcontroller EMC performance  
Monitoring the Vbus signal for USB Self-powered devices  
ST7 checksum self-checking capability  
Electrostatic Discharge sensitive measurement  
Calibrating the RC oscillator of the ST7FLITE0 MCU using the mains  
Emulated data EEPROM with ST7 HDFLASH memory  
Extending the current & voltage capability on the ST7265 VDDF supply  
Accurate timebase for low-cost ST7 applications with internal RC oscillator  
Using an active RC to wakeup the ST7LITE0 from power saving mode  
Understanding and minimizing ADC conversion errors  
PIR (passive Infrared) detector using the ST7FLITE05/09/SUPERLITE  
Sensorless BLDC motor control and BEMF sampling methods with ST7MC  
PFC for ST7MC starter kit  
ST7LITE0 microcontrolled ballast  
Programming and tools  
AN 978  
AN 983  
AN 985  
AN 986  
ST7 Visual Develop software key debugging features  
Key features of the Cosmic ST7 C-compiler package  
Executing code In ST7 RAM  
Using the indirect addressing mode with ST7  
131/136  
Device configuration and ordering information  
ST7LITEUS2, ST7LITEUS5  
Table 81. ST7 application notes (continued)  
Identification  
Description  
AN 987  
AN 988  
AN1039  
AN1071  
AN1106  
AN1179  
AN1446  
AN1477  
AN1527  
AN1575  
AN1576  
AN1577  
AN1601  
AN1603  
AN1635  
AN1754  
AN1796  
AN1900  
AN1904  
AN1905  
ST7 serial test controller programming  
Starting with ST7 assembly tool chain  
ST7 math utility routines  
Half duplex USB-to-serial bridge using the ST72611 USB microcontroller  
Translating assembly code from HC05 to ST7  
Programming ST7 Flash microcontrollers in remote ISP mode (In-situ programming)  
Using the ST72521 emulator to debug an ST72324 target application  
Emulated data EEPROM with Xflash memory  
Developing a USB smartcard reader with ST7SCR  
On-board programming methods for XFLASH and HDFLASH ST7 MCUs  
In-application programming (IAP) drivers for ST7 HDFLASH or XFLASH MCUs  
Device firmware upgrade (DFU) implementation for ST7 USB applications  
Software implementation for ST7DALI-EVAL  
Using the ST7 USB device firmware upgrade development kit (DFU-DK)  
ST7 customer ROM code release information  
Data logging program for testing ST7 applications via I2C  
Field updates for FLASH based ST7 applications using a PC comm port  
Hardware implementation for ST7DALI-EVAL  
ST7MC three-phase AC induction motor control software library  
ST7MC three-phase BLDC motor control software library  
System optimization  
AN1711  
AN1827  
AN2009  
AN2030  
Software techniques for compensating ST7 ADC errors  
Implementation of SIGMA-DELTA ADC with ST7FLITE05/09  
PWM Management for 3-phase BLDC motor drives using the ST7FMC  
Back EMF detection during PWM on time by ST7MC  
132/136  
ST7LITEUS2, ST7LITEUS5  
Known limitations  
15  
Known limitations  
External interrupt 2 (ei2)  
Whatever the external interrupt sensitivity configured through EICR1 register, ei2 cannot exit  
the MCU from Halt, Active-halt and AWUFH modes when a falling edge occurs.  
Workaround  
None  
133/136  
Revision history  
ST7LITEUS2, ST7LITEUS5  
16  
Revision history  
Table 82. Document revision history  
Date  
Revision  
Changes  
06-Feb-06  
1
Initial release  
Removed references to 3% RC  
Added note below Figure 4  
Modified presentation of Section 4.3.1  
Added notes to Section 6.2 (above Figure 9), replaced 8-bit calibration value to  
10-bit calibration value and changed application note reference (AN2326  
instead of AN1324)  
Modifed Table 7: Clock register map and reset values and added bit 1 in the  
description of CKCNTCSR register  
Modified Figure 13 (added CKCNTCSR register)  
Added note 2 to EICRx description  
Modified caution in section 7.2 on page 25  
Replaced VIT+(LVD) by VIT+(LVD) in Section : Monitoring the VDD main supply  
Modified LVDRF bit description in Section 7.4.4: Register description  
Replaced “oscillator” by “main oscillator” in the second paragraph of  
Section 8.4.2: Halt mode  
Added note 1 to Figure 23 and added note 5 to Figure 24  
Modified Section 8.5: Auto-wakeup from Halt mode  
Replaced bit 1 by bit 2 for AWUF bit in Section 8.5.1: Register description  
Modified Section 9.1: Introduction. Modified Section : External interrupt  
function.Updated Section 9.5: Interrupts. Modified Section Table 47.: Operating  
conditions with low voltage detector (LVD).  
18-Apr-06  
2
Modified Table 48: Auxiliary Voltage Detector (AVD) Thresholds. Modified  
Table 49: Voltage drop between AVD flag set and LVD reset generation.  
Modified Table 50: Internal RC oscillator calibrated at 5 V. Modified Table 53:  
Supply current. Modified Table 54: On-chip peripherals. Modified Table 63:  
General characteristics. Modified Table 64: Output driving current. Modified  
Table 65: Asynchronous RESET pin characteristics. Modified Section 12.10:  
ADC characteristics.  
Added Figure 49. Modified Figure 61. Removed EMC protection circuitry in  
Figure 62 (device works correctly without these components). Added  
ECOPACK text in Section 13: Package characteristics. Modified first paragraph  
in Section 14: Device configuration and ordering information. Modified  
Table 79. Modified conditioning option in option list. Modified Section 14.3:  
Development tools. Added Section 14.4: ST7 application notes. Added  
Section : . Added erratasheet at the end of the document.  
134/136  
ST7LITEUS2, ST7LITEUS5  
Revision history  
Table 82. Document revision history (continued)  
Date  
Revision  
Changes  
Modified description of AVD[1:0] bits in the AVDTRH register in Section 7.4.4  
Modified description of CNTR[11:0] bits in Section 10.2.6: Register description  
Modified values in Table 44  
LVD and AVD tables updated, Table 47, Table 48 and Table 49  
Internal RC oscillator data modified in Table 50 and new table added Table 51  
Typical data in Table 54 (on chip peripherals) modified  
EMC characteristics updated, Section 12.7  
RPU data corrected in Table 63 including additional notes  
Output driving current table updated, Table 64  
RON data corrected in Table 65.  
18-Sep-06  
3
Modified ADC accuracy tables in Section 12.10  
Section : updated  
Errata sheet removed from document  
Notes modified for low voltage detector Section 7.4.1  
Notes updated in Section 4.4 (I2C Interface)  
Thermal characteristics table updated, Table 74  
Modified option list on Section 14.2: Ordering information  
Modified Section 14.3: Development tools  
Modified text in Section :  
Added -40°C to 125°C temperature range  
Modified note on ei4 in Table 9: Interrupt mapping  
Added note 3 to Section 7.3.2: External Interrupt Control register 2 (EICR2)  
Added Figure 41 and Figure 40  
Added a note to LVDRF in Section 7.4.4: Register description  
Section 6.4.1: Introduction  
26-Jan-07  
4
Modified Table 47 and Table 48  
Modified Table 50Updated Table 53  
Updated Table 64  
Modified RAIN and ADC accuracy tables in Section 12.10: ADC characteristics  
Modified Table 80  
Modified Table 79  
Modified option list on Figure 69: Option list  
Document reformatted.  
Replaced ST7ULTRALITE by ST7LITEUS2 and ST7LITEUS5.  
Removed limitations in user and in I2C mode from Section 15: Known  
limitations, and added External interrupt 2 (ei2).  
Added MCO on pin 3.  
Updated Section 12.3.2: Operating conditions with low voltage detector (LVD),  
Section 12.3.3: Auxiliary voltage detector (AVD) thresholds, Section 12.3.4:  
Internal RC oscillator, Section 12.4: Supply current characteristics, and  
Section 12.8.2: Output driving current characteristics.  
06-Feb-2009  
5
Updated internal RC prescaler to add 500 KHz.  
Updated ECOPACK text in Section 13.1: Package mechanical data. Added  
PDIP16 silhouette on cover page, and updated Table 73: 16-pin plastic dual in-  
line package, 300-mil width, package mechanical data and Figure 68: 16-pin  
plastic dual in-line package, 300-mil width, package outline.  
Changed order codes to die A version in Table 79: Supported order codes.  
Removed soldering information section.  
Updated option list.  
135/136  
ST7LITEUS2, ST7LITEUS5  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2009 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
136/136  

相关型号:

ST7PLUSA5U3TR

8-BIT, FLASH, 8MHz, MICROCONTROLLER, PDSO8, ROHS COMPLIANT, DFN-8
STMICROELECTR

ST7PMC1K2B3

8-bit MCU with nested interrupts, Flash, 10-bit ADC, brushless motor control, five timers, SPI, LINSCI™
STMICROELECTR

ST7PMC1K2B6

8-BIT MCU WITH NESTED INTERRUPTS, FLASH, 10-BIT ADC, BRUSHLESS MOTOR CONTROL, FIVE TIMERS, SPI, LINSCI
STMICROELECTR

ST7PMC1K2B6/XXX

8-BIT, MROM, 8MHz, MICROCONTROLLER, PDIP32, 0.400 INCH, PLASTIC, SDIP-32
STMICROELECTR

ST7PMC1K2T3

8-bit MCU with nested interrupts, Flash, 10-bit ADC, brushless motor control, five timers, SPI, LINSCI™
STMICROELECTR

ST7PMC1K2T6

8-BIT MCU WITH NESTED INTERRUPTS, FLASH, 10-BIT ADC, BRUSHLESS MOTOR CONTROL, FIVE TIMERS, SPI, LINSCI
STMICROELECTR

ST7PMC1K2T6/ST7PMC1K2

8-BIT MCU WITH NESTED INTERRUPTS, FLASH, 10-BIT ADC, BRUSHLESS MOTOR CONTROL, FIVE TIMERS, SPI, LINSCI
STMICROELECTR

ST7PMC1K2TC

8-BIT MCU WITH NESTED INTERRUPTS, FLASH, 10-BIT ADC, BRUSHLESS MOTOR CONTROL, FIVE TIMERS, SPI, LINSCI
STMICROELECTR

ST7PMC1K2TC/ST7PMC1K2

8-BIT MCU WITH NESTED INTERRUPTS, FLASH, 10-BIT ADC, BRUSHLESS MOTOR CONTROL, FIVE TIMERS, SPI, LINSCI
STMICROELECTR

ST7PMC1K2TC/XXX

8-BIT, MROM, 8MHz, MICROCONTROLLER, PQFP32, 7 X 7 MM, ROHS COMPLIANT, LQFP-32
STMICROELECTR

ST7PMC1K4B3

8-bit MCU with nested interrupts, Flash, 10-bit ADC, brushless motor control, five timers, SPI, LINSCI™
STMICROELECTR

ST7PMC1K4B6

8-bit MCU with nested interrupts, Flash, 10-bit ADC, brushless motor control, five timers, SPI, LINSCI™
STMICROELECTR