STA518 [STMICROELECTRONICS]

40V 3.5A quad power half bridge; 40V 3.5A四路电源半桥
STA518
型号: STA518
厂家: ST    ST
描述:

40V 3.5A quad power half bridge
40V 3.5A四路电源半桥

文件: 总19页 (文件大小:350K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STA518  
40V 3.5A quad power half bridge  
Feature  
Multipower BCD technology  
Minimum input output pulse width distortion  
200mR  
complementary dmos output  
dsON  
stage  
CMOS compatible logic inputs  
Thermal protection  
PSSO36 (slug up)  
Thermal warning output  
Under voltage protection  
Short circuit protection  
The device is particularly designed to make the  
output stage of a stereo All-Digital High Efficiency  
(DDX™) amplifier capable to deliver an output  
power of 24W x 4 channels @ THD = 10% at Vcc  
30V on 4W load in single ended configuration.  
It can also deliver 50 + 50W @ THD = 10% at Vcc  
29V as output power on 8W load in BTL  
Description  
STA518 is a monolithic quad half bridge stage in  
Multipower BCD Technology. The device can be  
used also as dual bridge or reconfigured, by  
connecting CONFIG pin to Vdd pin, as single  
bridge with double current capability.  
configuration and 70W @ THD = 10% at Vcc 34V  
on 8W in single paralleled BTL configuration.  
The input pins have threshold proportional to VL  
pin voltage  
.
Order codes  
Part number  
Temp range, °C  
Package  
Packing  
STA518  
-40 to 90  
-40 to 90  
PowerSSO36 (slug up)  
PowerSSO36 (slug up)  
Tube  
STA51813TR  
Tape & reel  
May 2006  
Rev 3  
1/19  
www.st.com  
1
Contents  
STA518  
Contents  
1
2
3
Audio application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pins description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.1  
3.2  
3.3  
3.4  
3.5  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Thermal information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Electrical characteristcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
4
Technical information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
4.1  
4.2  
4.3  
4.4  
Logic interface and decode: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Power outputs: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Parallel output / high current operation: . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Additional informations: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5
6
7
Characterization curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2/19  
STA518  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Pin Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Functional Pin Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Electrical Characteristcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
VLOW, VHIGH variation with I  
bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Logic Truth Table (see Figure 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
3/19  
List of figures  
STA518  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Audio application circuit ( Quad single ended) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin Connection (top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Low current dead time for Single End application: test circuit. . . . . . . . . . . . . . . . . . . . . . . 11  
High current dead time for Bridge application: block diagram . . . . . . . . . . . . . . . . . . . . . . 11  
High current dead time for Bridge application: test circuit. . . . . . . . . . . . . . . . . . . . . . . . . . 11  
STA518 Block Diagram Full-Bridge DDX® or Binary Modes . . . . . . . . . . . . . . . . . . . . . . . 12  
STA518 Block Diagram Binary Half-Bridge Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Typical Stereo Full Bridge Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Typical Single BTL Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 10. Power Dissipation vs Output Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 11. Power Derating Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 12. THD+N vs Output Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 13. Output Power vs Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 14. THD vs Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 15. Output Power vs Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 16. THD+N vs Output Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 17. Power Dissipation vs Output Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 18. THD+N vs Output Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 19. PSSO36 (Slug Up) Mechanical Data & Package Dimensions . . . . . . . . . . . . . . . . . . . . . . 17  
4/19  
STA518  
1
Audio application circuit  
Audio application circuit  
Figure 1.  
Audio application circuit ( Quad single ended)  
5/19  
Pins description  
STA518  
2
Pins description  
Figure 2.  
Pin Connection (top view)  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
1
2
V
CCSign  
GND-SUB  
OUT2B  
OUT2B  
VCC2B  
VCCSign  
VSS  
3
4
VSS  
5
IN2B  
GND2B  
GND2A  
VCC2A  
6
IN2A  
7
IN1B  
8
IN1A  
OUT2A  
OUT2A  
OUT1B  
OUT1B  
9
TH_WAR  
FAULT  
TRI-STATE  
PWRDN  
CONFIG  
VL  
10  
11  
12  
13  
14  
15  
16  
17  
18  
V
CC1B  
GND1B  
GND1A  
VCC1A  
OUT1A  
OUT1A  
N.C.  
V
V
DD  
DD  
GND-Reg  
GND-Clean  
D01AU1273  
Table 1.  
N°  
Pin Function  
Pin  
Description  
1
2 ; 3  
4
GND-SUB  
OUT2B  
Vcc2B  
Substrate ground  
Output half bridge 2B  
Positive supply  
5
GND2B  
GND2A  
Vcc2A  
Negative Supply  
Negative Supply  
Positive supply  
6
7
8 ; 9  
10 ; 11  
12  
OUT2A  
OUT1B  
Vcc1B  
Output half bridge 2A  
Output half bridge 1B  
Positive supply  
13  
GND1B  
GND1A  
Vcc1A  
Negative Supply  
Negative Supply  
Positive supply  
14  
15  
16 ; 17  
35 ; 36  
OUT1A  
Vcc Sign  
Output half bridge 1A  
Signal Positive supply  
6/19  
STA518  
Pins description  
Table 1.  
N°  
Pin Function (continued)  
Pin  
Description  
18  
19  
NC  
GND-clean  
GND-Reg  
Vdd  
Not connected  
Logical ground  
20  
Ground for regulator Vdd  
21 ; 22  
23  
5V Regulator referred to ground  
Logic Reference Voltage  
Configuration pin  
VL  
24  
CONFIG  
PWRDN  
TRI-STATE  
FAULT  
TH-WAR  
IN1A  
25  
Stand-by pin  
26  
Hi-Z pin  
27  
Fault pin advisor  
28  
Thermal warning advisor  
Input of half bridge 1A  
Input of half bridge 1B  
Input of half bridge 2A  
Input of half bridge 2B  
5V Regulator referred to +Vcc  
Signal Positive supply  
29  
30  
IN1B  
31  
IN2A  
32  
IN2B  
33 ; 34  
35 ; 36  
Vss  
Vcc Sign  
Table 2.  
Functional Pin Status  
Pin Name  
Pin N.  
Logical value  
IC - STATUS  
Fault detected (Short circuit,  
or Thermal.)  
FAULT  
27  
0
FAULT *  
TRI-STATE  
TRI-STATE  
PWRDN  
27  
26  
26  
25  
25  
28  
28  
24  
1
0
1
0
1
0
1
0
Normal Operation  
All powers in Hi-Z state  
Normal operation  
Low consumption  
PWRDN  
Normal operation  
THWAR  
Temperature of the IC =130C  
Normal operation  
THWAR(1)  
CONFIG  
Normal Operation  
OUT1A=OUT1B ;  
OUT2A=OUT2B  
CONFIG(2)  
24  
1
(IF IN1A = IN1B; IN2A = IN2B)  
1. The pin is open collector. To have the high logic value, it needs to be pulled up by a resistor.  
2. To put CONFIG = 1 means connect Pin 24 (CONFIG) to Pins 21, 22 (Vdd) to implemented single BTL  
(MONO MODE) operation for high current.  
7/19  
Electrical specifications  
STA518  
3
Electrical specifications  
3.1  
Absolute maximum ratings  
Table 3.  
Symbol  
Absolute maximum ratings  
Parameter  
Value  
Unit  
VCC  
Vmax  
Top  
DC Supply Voltage (Pin 4,7,12,15)  
Maximum Voltage on pins 23 to 32  
Operating Temperature Range  
Power Dissipation (Tcase = 70°C)  
40  
5.5  
V
V
-40 to 90  
21  
°C  
W
°C  
Ptot  
Tstg, Tj Storage and Junction Temperature  
-40 to 150  
3.2  
Recommended operating conditions  
Table 4.  
Symbol  
Recommended operating conditions (*)  
Parameter  
Min. Typ. Max.  
Unit  
VCC  
VL  
DC Supply Voltage  
10  
2.7  
0
36.0  
5.0  
70  
V
V
Input Logic Reference  
Ambient Temperature  
3.3  
Tamb  
°C  
(*) performances not guaranteed beyond recommended operating conditions  
3.3  
Thermal data  
Table 5.  
Symbol  
Thermal data (*)  
Parameter  
Min.  
Typ. Max. Unit  
Tj-case  
TjSD  
Twarn  
thSD  
Thermal Resistance Junction to Case (thermal pad)  
Thermal shut-down junction temperature  
Thermal warning temperature  
1.5  
°C/W  
°C  
150  
130  
25  
°C  
Thermal shut-down hysteresis  
°C  
(*) see Thermal information  
3.4  
Thermal information  
The power dissipated within the device depends primarly on the supply voltage, load  
impedance and output modulation level. The PSSO36 Package of the STA518 includes an  
exposed thermal slug on the top of the device to provide a direct thermal path from the IC to  
the heatsink. For the Quad single ended application the Dissipated Power vs Ouptut Power  
is shown in Figure 10.  
8/19  
STA518  
Electrical specifications  
Considering that for the STA518 the Thermal resistance Junction to slug is 1.5°C/W and the  
extimated Thermal resistance due to the grease placed between slug and heat sink is  
2.3°C/W ( the use of thermal pads for this package is not recommended), the suitable Heat  
Sink Rth to be used can be drawn from the following graph Figure 11, where is shown the  
Derating Power vs.Tambient for different heatsinkers.  
3.5  
Electrical characteristcs  
Table 6.  
Electrical Characteristcs  
Refer to circuit in Figure 3 (V = 3.3V; V = 30V; R = 8; f = 384KHz;  
L
CC  
L
sw  
T
= 25°C unless otherwise specified)  
amb  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
Power Pchannel/Nchannel  
MOSFET RdsON  
RdsON  
Id = 1A  
200  
270  
mΩ  
Power Pchannel/Nchannel  
leakage Idss  
Idss  
gN  
VCC = 35V  
Id = 1A  
50  
µA  
%
Power Pchannel RdsON  
Matching  
95  
95  
Power Nchannel RdsON  
Matching  
gP  
Id = 1A  
%
ns  
ns  
Dt_s  
Dt_d  
td ON  
Low current Dead Time (static)  
see test circuit Figure 3  
10  
20  
50  
L = 22µH; C = 470nF; RL = 8 Ω  
Id = 3A; seeFigure 5  
High current Dead Time  
(dinamic)  
Turn-on delay time  
Resistive load; VCC = 30V  
Resistive load; VCC = 30V  
100  
100  
25  
ns  
ns  
ns  
ns  
V
td OFF Turn-off delay time  
tr  
tf  
Rise time  
Resistive load; as Figure 3  
Fall time  
25  
VCC  
Supply voltage operating voltage  
10  
36  
VL/2  
+300mV  
VIN-H  
VIN-L  
High level input voltage  
Low level input voltage  
V
V
VL/2  
300mV  
-
IIN-H  
IIN-L  
Hi level Input current  
Low level input current  
Pin voltage = VL  
1
1
µA  
µA  
Pin voltage = 0.3V  
IPWRDN-  
Hi level PWRDN pin input current VL = 3.3V  
35  
µA  
V
H
Low logical state voltage VLow  
VL = 3.3V  
VLOW  
VHIGH  
0.8  
(pin PWRDN, TRISTATE) (1)  
High logical state voltage VHigh  
VL = 3.3V  
1.7  
3
V
(pin PWRDN, TRISTATE) (1)  
IVCC-  
Supply current from Vcc in Power  
PWRDN = 0  
Down  
mA  
PWRDN  
9/19  
Electrical specifications  
STA518  
Table 6.  
Symbol  
Electrical Characteristcs (continued)  
Refer to circuit in Figure 3 (V = 3.3V; V = 30V; R = 8; f = 384KHz;  
L
CC  
L
sw  
T
= 25°C unless otherwise specified)  
amb  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
Output Current pins  
IFAULT FAULT -TH-WARN when  
FAULT CONDITIONS  
Vpin = 3.3V  
1
mA  
Supply current from Vcc in Tri-  
IVCC-hiz  
state  
V
CC = 30V; Tri-state = 0  
22  
50  
mA  
mA  
VCC = 30V;  
Supply current from VCC in  
operation  
Input pulse width = 50% Duty;  
Switching Frequency = 384kHz;  
No LC filters;  
IVCC  
(both channel switching)  
IVCC-q Isc (short circuit current limit) (2) VCC = 30V  
3.5  
70  
6
7
A
V
Undervoltage protection  
threshold  
VUV  
tpw_min Output minimum pulse width  
No Load  
150  
ns  
1. The Table 7 explains the VLOW, VHIGH variation with Ibias.  
2. See relevant Application Note AN1994  
Table 7.  
V
, V  
variation with I  
LOW HIGH bias  
VL  
VLow min  
VHigh max  
Unit  
2.7  
3.3  
5
0.7  
0.8  
1.5  
1.7  
V
V
V
0.85  
1.85  
Table 8.  
Logic Truth Table (see Figure 4)  
OUTPUT  
MODE  
TRI-STATE  
INxA  
INxB  
Q1  
Q2  
Q3  
Q4  
0
1
1
1
1
x
0
0
1
1
x
0
1
0
1
OFF  
OFF  
OFF  
ON  
OFF  
OFF  
ON  
OFF  
ON  
OFF  
ON  
Hi-Z  
DUMP  
ON  
OFF  
ON  
NEGATIVE  
POSITIVE  
Not used  
OFF  
ON  
OFF  
OFF  
ON  
OFF  
10/19  
STA518  
Electrical specifications  
Low current dead time for Single End application: test circuit.  
Figure 3.  
OUTxY  
Vcc  
(3/4)Vcc  
Low current dead time = MAX(DTr,DTf)  
(1/2)Vcc  
(1/4)Vcc  
+Vcc  
t
DTr  
DTf  
Duty cycle = 50%  
M58  
M57  
OUTxY  
R 8  
INxY  
+
-
V67 =  
vdc = Vcc/2  
gnd  
D03AU1458  
Figure 4.  
High current dead time for Bridge application: block diagram  
+VCC  
Q1  
Q2  
OUTxA  
OUTxB  
INxA  
INxB  
Q3  
Q4  
GND  
D00AU1134  
Figure 5.  
High current dead time for Bridge application: test circuit  
High Current Dead time for Bridge application = ABS(DTout(A)-DTin(A))+ABS(DTOUT(B)-DTin(B))  
+VCC  
Duty cycle=A  
Duty cycle=B  
DTout(A)  
M58  
M57  
M64  
M63  
Q1  
OUTA  
Iout=4A  
Q2  
OUTB  
DTin(A)  
INA  
DTout(B)  
L68 22µ  
DTin(B)  
INB  
Rload=8Ω  
L67 22µ  
Iout=4A  
Q3  
C69  
470nF  
C70  
470nF  
Q4  
C71 470nF  
Duty cycle A and B: Fixed to have DC output current of 4A in the direction shown in figure  
D03AU1517  
11/19  
Technical information  
STA518  
4
Technical information  
The STA518 is a dual channel H-Bridge that is able to deliver 50W per channel (@  
THD=10% R = 8,  
L
V
= 29V) of audio output power in high efficiency.  
CC  
The STA518 converts both DDX and binary-controlled PWM signals into audio power at the  
load. It includes a logic interface , integrated bridge drivers, high efficiency MOSFET outputs  
and thermal and short circuit protection circuitry.  
In DDX mode, two logic level signals per channel are used to control high-speed MOSFET  
switches to connect the speaker load to the input supply or to ground in a Bridge  
configuration, according to the damped ternary Modulation operation.  
In Binary Mode operation , both Full Bridge and Half Bridge Modes are supported. The  
STA518 includes over-current and thermal protection as well as an under-voltage  
Lockout with automatic recovery. A thermal warning status is also provided.  
®
Figure 6.  
STA518 Block Diagram Full-Bridge DDX or Binary Modes  
INL[1:2]  
INR[1:2]  
VL  
OUTPL  
Left  
H-Bridge  
Logic I/F  
and Decode  
PWRDN  
OUTNL  
TRI-STATE  
Protection  
Circuitry  
FAULT  
OUTPR  
OUTNR  
TWARN  
Right  
H-Bridge  
Regulators  
Figure 7.  
STA518 Block Diagram Binary Half-Bridge Mode  
INL[1:2]  
LeftA  
OUTPL  
-Bridge  
INR[1:2]  
Logic I/F  
and Decode  
VL  
LeftB  
PWRDN  
OUTNL  
-Bridge  
TRI-STATE  
Protection  
Circuitry  
FAULT  
RightA  
-Bridge  
OUTPR  
TWARN  
RightB  
-Bridge  
Regulators  
OUTNR  
4.1  
Logic interface and decode:  
The STA518 power outputs are controlled using one or two logic level timing signals. In  
order to provide a proper logic interface, the Vbias input must operate at the dame voltage  
as the DDX control logic supply.  
Protection circuitry:  
12/19  
STA518  
Technical information  
The STA518 includes protection circuitry for over-current and thermal overload conditions. A  
thermal warning pin (pin.28) is activated low (open drain MOSFET) when the IC  
temperature exceeds 130°C, in advance of the thermal shutdown protection. When a fault  
condition is detected , an internal fault signal acts to immediately disable the output power  
MOSFETs, placing both H-Bridges in high impedance state. At the same time an open-drain  
MOSFET connected to the fault pin (pin.27) is switched on.  
There are two possible modes subsequent to activating a fault:  
1. SHUTDOWN mode: with FAULT (pull-up resistor) and TRI-STATE pins independent,  
an activated fault will disable the device, signaling low at the FAULT output.  
The device may subsequently be reset to normal operation by toggling the TRI-STATE  
pin from High to Low to High using an external logic signal.  
2. AUTOMATIC recovery mode: This is shown in the Audio Application Circuit of Quad  
single Ended). The FAULT and TRI-STATE pins are shorted together and connected to  
a time constant circuit comprising R59 and C58.  
An activated FAULT will force a reset on the TRI-STATE pin causing normal operation to  
resume following a delay determined by the time constant of the circuit.  
If the fault condition is still present , the circuit operation will continue repeating until the  
fault condition is removed .  
An increase in the time constant of the circuit will produce a longer recovery interval.  
Care must be taken in the overall system design as not to exceed the protection  
thesholds under normal operation.  
4.2  
4.3  
Power outputs:  
The STA518 power and output pins are duplicated to provide a low impedance path for the  
device's bridged outputs. All duplicate power, ground and output pins must be connected for  
proper operation.  
The PWRDN or TRI-STATE pins should be used to set all MOSFETS to the Hi-Z state  
during power-up until the logic power supply, V , is settled.  
L
Parallel output / high current operation:  
When using DDX Mode output , the STA518 outputs can be connected in parallel in order to  
increase the output current capability to a load. In this configuration the STA518 can provide  
70W into 8 ohm.  
This mode of operation is enabled with the CONFIG pin (pin.24) connected to VREG1 and  
the inputs combined INLA=INLB, INRA=INRB and the outputs combined OUTLA=OTLB,  
OUTRA=OUTRB.  
4.4  
Additional informations:  
Output Filter: A passive 2nd-order passive filter is used on the STA518 power outputs to  
reconstruct an analog Audio Signal . System performance can be significantly affected by  
the output filter design and choice of passive components. A filter design for 6ohm/8ohm  
loads is shown in the Typical Application circuit of Figure 9.  
Quad Single ended circuit (Figure 1) shows a filter for ½ bridge mode, 4 ohm loads.  
13/19  
Technical information  
Figure 8.  
STA518  
Typical Stereo Full Bridge Configuration to Obtain 50+50W @ THD = 10%,  
RL = 8, VCC =29V  
+VCC  
VCC1A  
15  
17  
16  
C30  
1µF  
C55  
1000µF  
IN1A  
29  
M3  
M2  
M5  
M4  
IN1A  
L18 22µH  
C20  
V
23  
24  
L
+3.3V  
OUT1A  
CONFIG  
PWRDN  
FAULT  
100nF  
OUT1A  
GND1A  
C52  
330pF  
PWRDN  
25  
C99  
100nF  
14  
12  
R98  
6
PROTECTIONS  
R57  
10K  
R59  
10K  
27  
26  
&
C23  
470nF  
8Ω  
LOGIC  
VCC1B  
R63 R100  
C101  
100nF  
TRI-STATE  
20  
6
C58  
100nF  
C31  
1µF  
11  
10  
C21  
100nF  
TH_WAR  
IN1B  
28  
30  
OUT1B  
OUT1B  
GND1B  
TH_WAR  
L19 22µH  
IN1B  
VDD  
VDD  
VSS  
VSS  
21  
22  
33  
34  
13  
7
REGULATORS  
V
CC2A  
C32  
1µF  
M17  
M15  
M16  
M14  
C58  
100nF  
C53  
100nF  
L113 22µH  
VCCSIGN  
VCCSIGN  
8
9
35  
OUT2A  
C60  
100nF  
C110  
100nF  
36  
31  
20  
19  
OUT2A  
GND2A  
C109  
330pF  
C107  
100nF  
6
4
R103  
6
IN2A  
IN2B  
IN2A  
C108  
470nF  
GND-Reg  
8Ω  
V
CC2B  
R104  
20  
R102  
6
C106  
100nF  
GND-Clean  
C33  
1µF  
3
2
C111  
100nF  
OUT2B  
OUT2B  
GND2B  
IN2B  
32  
1
L112 22µH  
GNDSUB  
5
D00AU1148B  
Figure 9.  
Typical Single BTL Configuration to Obtain 70W @ THD 10%, R = 8,  
L
V
= 34V (note 1))  
CC  
V
L
+3.3V  
23  
18  
N.C.  
22µH  
100nF  
GND-Clean  
GND-Reg  
17  
16  
OUT1A  
OUT1A  
19  
20  
100nF  
FILM  
11  
10  
100nF  
X7R  
10K  
100nF  
X7R  
470nF  
FILM  
100nF  
OUT1B  
OUT1B  
OUT2A  
OUT2A  
22Ω  
6.2  
1/2W  
VDD  
VDD  
1/2W  
21  
22  
24  
8Ω  
6.2  
1/2W  
CONFIG  
9
8
330pF  
X7R  
32V  
32V  
TH_WAR  
PWRDN  
FAULT  
TH_WAR  
OUT2B  
OUT2B  
28  
25  
100nF  
FILM  
3
2
nPWRDN  
22µH  
10K  
VCC1A  
27  
26  
15  
TRI-STATE  
IN1A  
1µF  
2200µF  
63V  
100nF  
X7R  
VCC1B  
VCC2A  
29  
30  
31  
32  
12  
7
IN1B  
IN1A  
IN1B  
IN2A  
IN2B  
1µF  
X7R  
VSS  
VSS  
VCC2B  
33  
34  
4
14  
13  
GND1A  
GND1B  
100nF  
X7R  
VCCSIGN  
35  
100nF  
X7R  
V
CCSIGN  
GND2A  
GND2B  
36  
1
6
5
Add.  
GNDSUB  
D04AU1549  
Note:  
1
"A PWM modulator as driver is needed . In particular, this result is performed using the  
STA308+STA518+STA50X demo board". Peak Power for t 1sec  
14/19  
STA518  
Characterization curves  
5
Characterization curves  
The following characterization are obtained using the quad single ended configuration (Figure 1) with  
STA308A controller  
Figure 10. Power Dissipation vs Output Power Figure 11. Power Derating Curve  
Pd(W)  
Pd (W)  
16  
14  
12  
10  
8
25  
20  
15  
10  
5
1
1)Infinite  
2) 1.5 C/W  
3) 3 C/W  
4) 4.5 C/W  
5) 6 C/W  
Vcc=30V  
Rl=4ohm  
F =1Kz  
3
2
4
6
5
4
2
0
0
4
8
12  
16  
20  
24  
20 40 60 80 100 120 140 160  
Tambient(C)  
0
4 x Pout (W)  
Figure 12. THD+N vs Output Power  
Figure 13. Output Power vs Supply Voltage  
Pout(W)  
30  
THD(%)  
10  
27.5  
Vcc = 26V  
Rl = 4 ohm  
F = 1KHz  
5
Rl=4 ohm  
25  
F=1KHz  
22.5  
Single Ended  
20  
2
1
Single Ended  
17.5  
15  
THD=10%  
12.5  
0.5  
10  
THD=1%  
7.5  
5
0.2  
0.1  
2.5  
100m  
200m  
500m  
1
2
5
10  
20 30  
Pout(W)  
+10  
+12  
+14  
+16  
+18  
+20  
Vdc  
+22  
+24  
+26  
+28 +30  
Figure 14. THD vs Frequency  
THD(%)  
1
0.5  
0.2  
Rl=4 ohm  
0.1  
Pout=1W  
Single Ended  
0.05  
0.02  
0.01  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k 20k  
Freq(Hz)  
15/19  
Characterization curves  
STA518  
The following characterizations are obtained using the stereo full bridge configuration (Figure 8) with  
STA308A controller.  
Figure 15. Output Power vs Supply Voltage  
Figure 16. THD+N vs Output Power  
THD(%)  
10  
90  
80  
o(W)  
5
Rl=8ohm  
F=1KHz  
Vcc=29V  
2
70  
60  
50  
40  
30  
20  
10  
Rl=8ohm  
1
F=1KHz  
THD=10%  
0.5  
Double BTL  
Stereo Full  
BTL  
0.2  
0.1  
Single  
Parallel BTL  
THD=1%  
0.05  
0.02  
0.01  
0
+10  
100m  
200m  
500m  
1
2
5
10  
20  
60  
+12  
+14  
+16  
+18  
+20  
+22  
+24  
+26  
+28  
+30  
+32  
+34 +36  
Pout(W)  
Vsupply(V)  
Figure 17. Power Dissipation vs Output Power  
Pd (W)  
12  
Vcc=29V  
10  
Rl=8ohm  
8
6
4
2
0
F=1KHz  
0
10  
20  
30  
40  
50  
2 X Pout (W)  
The following characterizations are obtained using the single BTL configuration (Figure 9) with STA308A  
controller.  
Figure 18. THD+N vs Output Power  
THD(%)  
10  
5
Vcc=34V  
2
Rl=8ohm  
1
F=1KHz  
0.5  
Single BTL  
0.2  
0.1  
0.05  
0.02  
0.01  
100m 200m  
500m  
1
2
5
10  
20  
50 80  
Pout(W)  
16/19  
STA518  
Package information  
6
Package information  
®
In order to meet environmental requirements, ST offers these devices in ECOPACK  
packages. These packages have a Lead-free second level interconnect. The category of  
second Level Interconnect is marked on the package and on the inner box label, in  
compliance with JEDEC Standard JESD97. The maximum ratings related to soldering  
conditions are also marked on the inner box label. ECOPACK is an ST trademark.  
ECOPACK specifications are available at: www.st.com.  
Figure 19. PSSO36 (Slug Up) Mechanical Data & Package Dimensions  
mm  
inch  
TYP. MAX.  
0.097  
DIM.  
MIN.  
2.15  
2.15  
0
0.18  
0.23  
10.10  
TYP. MAX. MIN.  
2.47 0.084  
2.40 0.084  
OUTLINE AND  
MECHANICAL DATA  
A
A2  
a1  
b
0.094  
0.003  
0.014  
0.012  
0.075  
0
0.36 0.007  
0.32 0.009  
10.50 0.398  
c
(1)  
0.413  
D
(1)  
E
7.4  
7.6  
0.291  
0.299  
e
e3  
F
G
G1  
H
h
0.50  
8.50  
2.3  
0.020  
0.035  
0.090  
0.004  
0.002  
0.413  
0.016  
0.033  
0.169  
0.10  
0.06  
10.50 0.398  
0.40  
10.10  
0.55  
L
0.85 0.022  
M
N
O
Q
S
T
U
X
4.3  
10˚ (max)  
1.2  
0.8  
2.9  
3.65  
1.0  
0.047  
0.031  
0.114  
0.144  
0.039  
0.185  
0.279  
4.10  
6.50  
4.70 0.161  
7.10 0.256  
Y
PowerSSO-36  
(slug-up)  
(1) “D and E” do not include mold flash or protusions.  
Mold flash or protusions shall not exceed 0.15mm (0.006”)  
(2) No intrusion allowed inwards the leads.  
(3) Flash or bleeds on exposed die pad shall not exceed 0.4 mm  
per side  
7618147 A  
17/19  
Revision history  
STA518  
7
Revision history  
Table 9.  
Date  
Document revision history  
Revision  
Changes  
19-Aug-2004  
11-Nov-2004  
1
2
Initial release.  
Changed symbol in “Electrical Characteristics”.  
Changed operating temperature range value to -40 to 90°C  
(seeTable 3).  
18-May-2006  
3
18/19  
STA518  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED,  
AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS,  
NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR  
SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2006 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
19/19  

相关型号:

STA51813TR

40V 3.5A quad power half bridge
STMICROELECTR

STA521A

Power Field-Effect Transistor, 7A I(D), 200V, 0.48ohm, 4-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, STA, 10 PIN
SANKEN

STA529

2 x 100 mW class-D amplifier with analog or digital input 2.0 multichannel digital audio processor with FFX
STMICROELECTR

STA529B

2 x 100 mW class-D amplifier with analog or digital input 2.0 multichannel digital audio processor with FFX
STMICROELECTR

STA529Q

2 x 100 mW class-D amplifier with analog or digital input 2.0 multichannel digital audio processor with FFX
STMICROELECTR

STA529_07

2 x 100 mW class-D amplifier with analog or digital input 2.0 multichannel digital audio processor with FFX
STMICROELECTR

STA529_12

FFX™ audio codec with analog and digital inputs and 2 x 1.2 W (or 2 x 100 mW HP) class-D amplifier
STMICROELECTR

STA530

4 X 50W STEREO BASH POWER AMPLIFIER
STMICROELECTR

STA533WF

Multipower BCD technology
STMICROELECTR

STA533WF13TR

Multipower BCD technology
STMICROELECTR

STA533WF_11

18-volt, 3-amp, quad power half-bridge
STMICROELECTR

STA538

2 x 1.3 W class-D amplifier with analog or digital input 2.0 multichannel digital audio processor with FFX
STMICROELECTR