STM32479VI [STMICROELECTRONICS]

ARMCortex-M4 32b MCUFPU, 225DMIPS, up to 2MB Flash/3844KB RAM, USB OTG HS/FS, Ethernet, FMC, dual Quad-SPI, Crypto, Graphical accelerator, Camera IF, LCD-TFT & MIPI DSI;
STM32479VI
型号: STM32479VI
厂家: ST    ST
描述:

ARMCortex-M4 32b MCUFPU, 225DMIPS, up to 2MB Flash/3844KB RAM, USB OTG HS/FS, Ethernet, FMC, dual Quad-SPI, Crypto, Graphical accelerator, Camera IF, LCD-TFT & MIPI DSI

CD
文件: 总208页 (文件大小:3020K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM32F479xx  
®
®
ARM Cortex -M4 32b MCU+FPU, 225DMIPS, up to 2MB Flash/384+4KB RAM, USB OTG HS/FS,  
Ethernet, FMC, dual Quad-SPI, Crypto, Graphical accelerator, Camera IF, LCD-TFT & MIPI DSI  
Datasheet - production data  
Features  
&"'!  
®
®
Core: ARM 32-bit Cortex -M4 CPU with FPU,  
Adaptive real-time accelerator (ART  
Accelerator™) allowing 0-wait state execution  
from Flash memory, frequency up to 180 MHz,  
MPU, 225 DMIPS/1.25 DMIPS/MHz  
(Dhrystone 2.1), and DSP instructions  
Memories  
UFBGA169 (7 × 7 mm)  
UFBGA176 (10 x 10 mm)  
TFBGA216 (13 x 13 mm)  
LQFP176 (24 × 24 mm)  
LQFP208 (28 x 28 mm)  
WLCSP168  
Debug mode  
SWD & JTAG interfaces  
Cortex -M4 Trace Macrocell™  
®
Up to 2 MB of Flash memory organized into two  
banks allowing read-while-write  
Up to 161 I/O ports with interrupt capability  
Up to 157 fast I/Os up to 90 MHz  
Up to 159 5 V-tolerant I/Os  
Up to 384+4 KB of SRAM including 64-KB of  
CCM (core coupled memory) data RAM  
Flexible external memory controller with up to  
32-bit data bus: SRAM, PSRAM,  
Up to 21 communication interfaces  
Up to 3 × I2C interfaces (SMBus/PMBus)  
Up to 4 USARTs and 4 UARTs (11.25 Mbit/s,  
ISO7816 interface, LIN, IrDA, modem control)  
Up to 6 SPIs (45 Mbits/s), 2 with muxed full-  
duplex I2S for audio class accuracy via internal  
audio PLL or external clock  
SDRAM/LPSDR, SDRAM, Flash NOR/NAND  
memories  
Dual-flash mode Quad-SPI interface  
Graphics:  
Chrom-ART Accelerator™ (DMA2D), graphical  
hardware accelerator enabling enhanced  
graphical user interface with minimum CPU load  
LCD parallel interface, 8080/6800 modes  
LCD TFT controller supporting up to XGA  
resolution  
1 x SAI (serial audio interface)  
2 × CAN (2.0B Active)  
SDIO interface  
Advanced connectivity  
USB 2.0 full-speed device/host/OTG controller  
with on-chip PHY  
USB 2.0 high-speed/full-speed device/host/OTG  
controller with dedicated DMA, on-chip full-  
speed PHY and ULPI  
Dedicated USB power rail enabling on-chip  
PHYs operation throughout the entire MCU  
power supply range  
10/100 Ethernet MAC with dedicated DMA:  
supports IEEE 1588v2 hardware, MII/RMII  
®
MIPI DSI host controller supporting up to 720p  
30Hz resolution  
Clock, reset and supply management  
1.7 V to 3.6 V application supply and I/Os  
POR, PDR, PVD and BOR  
4-to-26 MHz crystal oscillator  
Internal 16 MHz factory-trimmed RC (1%  
accuracy)  
32 kHz oscillator for RTC with calibration  
Internal 32 kHz RC with calibration  
8- to 14-bit parallel camera interface up to  
54 Mbytes/s  
Cryptographic accelerator  
Low power  
Sleep, Stop and Standby modes  
VBAT supply for RTC, 20×32 bit backup registers  
+ optional 4 KB backup SRAM  
3×12-bit, 2.4 MSPS ADC: up to 24 channels  
and 7.2 MSPS in triple interleaved mode  
2×12-bit D/A converters  
Hardware accelerator for AES 128, 192 256,  
Triple DES, HASH (MD5, SHA-1, SHA-2) and  
HMAC  
True random number generator  
CRC calculation unit  
RTC: subsecond accuracy, hardware calendar  
96-bit unique ID  
General-purpose DMA: 16-stream DMA  
controller with FIFOs and burst support  
Up to 17 timers: up to twelve 16-bit and two 32-  
bit timers up to 180 MHz, each with up to 4  
IC/OC/PWM or pulse counter and quadrature  
(incremental) encoder input. 2x watchdogs and  
SysTick timer  
Table 1. Device summary  
Reference  
Part numbers  
STM32F479AI, STM32F479AG, STM32F479BI,  
STM32F479xx STM32F479BG, STM32F479II, STM32F479IG  
STM32F479NI, STM32F479NG  
October 2015  
DocID028010 Rev 2  
1/208  
This is information on a product in full production.  
www.st.com  
 
Contents  
STM32F479xx  
Contents  
1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
1.1  
Compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
1.1.1  
1.1.2  
1.1.3  
1.1.4  
LQFP176 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
LQFP208 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
UFBGA176 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
TFBGA216 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
ARM® Cortex®-M4 with FPU and embedded Flash and SRAM . . . . . . . 19  
Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . . 19  
Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 20  
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Flexible Memory Controller (FMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
2.10 Quad-SPI memory interface (QUADSPI) . . . . . . . . . . . . . . . . . . . . . . . . . 23  
2.11 LCD-TFT controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
2.12 DSI Host (DSIHOST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
2.13 Chrom-ART Accelerator™ (DMA2D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
2.14 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 25  
2.15 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . . . 25  
2.16 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
2.17 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
2.18 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
2.19 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
2.19.1 Internal reset ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
2.19.2 Internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
2.20 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
2.20.1 Regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
2.20.2 Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
2/208  
DocID028010 Rev 2  
STM32F479xx  
Contents  
2.20.3 Regulator ON/OFF and internal reset ON/OFF availability . . . . . . . . . . 32  
2.21 Real-time clock (RTC), backup SRAM and backup registers . . . . . . . . . . 33  
2.22 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
2.23  
VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
2.24 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
2.24.1 Advanced-control timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . 35  
2.24.2 General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
2.24.3 Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
2.24.4 Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
2.24.5 Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
2.24.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
2.25 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
2.26 Universal synchronous/asynchronous receiver transmitters (USART) . . 37  
2.27 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
2.28 Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
2.29 Serial Audio interface (SAI1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
2.30 Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
2.31 Audio and LCD PLL(PLLSAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
2.32 Secure digital input/output interface (SDIO) . . . . . . . . . . . . . . . . . . . . . . . 40  
2.33 Ethernet MAC interface with dedicated DMA and IEEE 1588 support . . . 40  
2.34 Controller area network (bxCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
2.35 Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . . 41  
2.36 Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . . . 41  
2.37 Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
2.38 Cryptographic accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
2.39 Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
2.40 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
2.41 Analog-to-digital converters (ADCs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
2.42 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
2.43 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
2.44 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
2.45 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
3
Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
DocID028010 Rev 2  
3/208  
5
Contents  
STM32F479xx  
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
4
5
5.1  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
5.1.1  
5.1.2  
5.1.3  
5.1.4  
5.1.5  
5.1.6  
5.1.7  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
5.2  
5.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
5.3.1  
5.3.2  
5.3.3  
5.3.4  
5.3.5  
5.3.6  
5.3.7  
5.3.8  
5.3.9  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
VCAP1/VCAP2 external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Operating conditions at power-up / power-down (regulator ON) . . . . . . 92  
Operating conditions at power-up / power-down (regulator OFF) . . . . . 92  
Reset and power control block characteristics . . . . . . . . . . . . . . . . . . . 92  
Over-drive switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Wakeup time from low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
5.3.10 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
5.3.11 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
5.3.12 PLL spread spectrum clock generation (SSCG) characteristics . . . . . 119  
5.3.13 MIPI D-PHY characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
5.3.14 MIPI D-PHY PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
5.3.15 MIPI D-PHY regulator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 124  
5.3.16 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
5.3.17 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
5.3.18 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 128  
5.3.19 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
5.3.20 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
5.3.21 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
5.3.22 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
5.3.23 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
5.3.24 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
4/208  
DocID028010 Rev 2  
STM32F479xx  
Contents  
5.3.25 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
5.3.26  
V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
BAT  
5.3.27 Reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
5.3.28 DAC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
5.3.29 FMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
5.3.30 Quad-SPI interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
5.3.31 Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 182  
5.3.32 LCD-TFT controller (LTDC) characteristics . . . . . . . . . . . . . . . . . . . . . 183  
5.3.33 SD/SDIO MMC card host interface (SDIO) characteristics . . . . . . . . . 185  
5.3.34 RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
6
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188  
6.1  
6.2  
6.3  
6.4  
6.5  
6.6  
6.7  
WLCSP168 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188  
UFBGA169 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190  
LQFP176 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
UFBGA176+25 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
LQFP208 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198  
TFBGA216 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204  
7
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
Appendix A Recommendations when using internal reset OFF . . . . . . . . . . . 206  
A.1  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206  
8
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
DocID028010 Rev 2  
5/208  
5
List of tables  
STM32F479xx  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
STM32F479xx features and peripheral counts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Voltage regulator configuration mode versus device operating mode . . . . . . . . . . . . . . . . 30  
Regulator ON/OFF and internal reset ON/OFF availability. . . . . . . . . . . . . . . . . . . . . . . . . 32  
Voltage regulator modes in stop mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
USART feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
STM32F479xx pin and ball definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
FMC pin definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Alternate function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
STM32F479xx register boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . . 91  
VCAP1/VCAP2 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . . 92  
Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . . 92  
Reset and power control block characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Over-drive switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Typical and maximum current consumption in Run mode, code with data processing  
running from Flash memory (ART accelerator enabled except prefetch) or RAM,  
regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Typical and maximum current consumption in Run mode, code with data processing  
running from Flash memory (ART accelerator disabled), regulator ON . . . . . . . . . . . . . . . 97  
Typical and maximum current consumption in Run mode, code with data  
Table 25.  
Table 26.  
processing running from Flash memory (ART accelerator enabled except prefetch),  
regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Typical and maximum current consumption in Sleep mode, regulator ON. . . . . . . . . . . . . 99  
Typical and maximum current consumption in Sleep mode, regulator OFF. . . . . . . . . . . 100  
Typical and maximum current consumption in Stop mode. . . . . . . . . . . . . . . . . . . . . . . . 101  
Typical and maximum current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . 102  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
Typical and maximum current consumption in V  
mode. . . . . . . . . . . . . . . . . . . . . . . . 103  
BAT  
Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
HSE 4-26 MHz oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
LSE oscillator characteristics (f  
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
LSE  
HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
PLLI2S (audio PLL) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
PLLSAI (audio and LCD-TFT PLL) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
6/208  
DocID028010 Rev 2  
STM32F479xx  
List of tables  
Table 44.  
Table 45.  
Table 46.  
Table 47.  
Table 48.  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
Table 54.  
Table 55.  
Table 56.  
Table 57.  
Table 58.  
Table 59.  
Table 60.  
Table 61.  
Table 62.  
Table 63.  
Table 64.  
Table 65.  
Table 66.  
Table 67.  
Table 68.  
Table 69.  
Table 70.  
Table 71.  
Table 72.  
Table 73.  
Table 74.  
Table 75.  
Table 76.  
Table 77.  
Table 78.  
Table 79.  
Table 80.  
Table 81.  
Table 82.  
Table 83.  
Table 84.  
Table 85.  
Table 86.  
Table 87.  
Table 88.  
Table 89.  
Table 90.  
Table 91.  
Table 92.  
Table 93.  
Table 94.  
Table 95.  
SSCG parameters constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
MIPI D-PHY characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
MIPI D-PHY AC characteristics LP mode and HS/LP transitions . . . . . . . . . . . . . . . . . . . 122  
DSI-PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
DSI regulator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Flash memory programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Flash memory programming with V  
PP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126  
Flash memory endurance and data retention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
SPI dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
2
I S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
USB OTG full speed startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
USB OTG full speed DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
USB OTG full speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
USB HS DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
USB HS clock timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
Dynamic characteristics: USB ULPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
Ethernet DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
Dynamics characteristics: Ethernet MAC signals for SMI. . . . . . . . . . . . . . . . . . . . . . . . . 150  
Dynamics characteristics: Ethernet MAC signals for RMII . . . . . . . . . . . . . . . . . . . . . . . . 151  
Dynamics characteristics: Ethernet MAC signals for MII . . . . . . . . . . . . . . . . . . . . . . . . . 151  
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
ADC static accuracy at f  
ADC static accuracy at f  
ADC static accuracy at f  
= 18 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
= 30 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
= 36 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
ADC  
ADC  
ADC  
ADC dynamic accuracy at f  
ADC dynamic accuracy at f  
= 18 MHz - limited test conditions . . . . . . . . . . . . . . . . . 155  
= 36 MHz - limited test conditions . . . . . . . . . . . . . . . . . 155  
ADC  
ADC  
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
BAT  
internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
Asynchronous non-multiplexed SRAM/PSRAM/NOR - read timings . . . . . . . . . . . . . . . . 163  
Asynchronous non-multiplexed SRAM/PSRAM/NOR read - NWAIT timings . . . . . . . . . . 163  
Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 164  
Asynchronous non-multiplexed SRAM/PSRAM/NOR write - NWAIT timings. . . . . . . . . . 165  
Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . 166  
Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
DocID028010 Rev 2  
7/208  
8
List of tables  
STM32F479xx  
Table 96.  
Table 97.  
Table 98.  
Table 99.  
Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . 168  
Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 173  
Table 100. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
Table 101. Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
Table 102. Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
Table 103. SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
Table 104. LPSDR SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
Table 105. SDRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
Table 106. LPSDR SDRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
Table 107. Quad-SPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
Table 108. Quad-SPI characteristics in DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
Table 109. DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
Table 110. LTDC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
Table 111. Dynamic characteristics: SD / MMC characteristics, VDD = 2.7 to 3.6 V . . . . . . . . . . . . . 186  
Table 112. Dynamic characteristics: SD / MMC characteristics, VDD = 1.71 to 1.9 V . . . . . . . . . . . . 187  
Table 113. RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
Table 114. WLCSP168 - 168-pin, 4.891 x 5.692 mm, 0.4 mm pitch wafer level chip scale  
package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
Table 115. UFBGA169 - 169-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array  
package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190  
Table 116. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package  
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
Table 117. UFBGA176+25, - 201-ball, 10 x 10 mm, 0.65 mm pitch,  
ultra fine pitch ball grid array package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . 196  
Table 118. UFBGA176+25 recommended PCB design rules (0.65 mm pitch BGA) . . . . . . . . . . . . . 197  
Table 119. LQFP208, 28 x 28 mm, 208-pin low-profile quad flat package  
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198  
Table 120. TFBGA216 - thin fine pitch ball grid array 13 × 13 × 0.8mm  
package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
Table 121. Package thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204  
Table 122. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
Table 123. Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . 206  
Table 124. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
8/208  
DocID028010 Rev 2  
STM32F479xx  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Incompatible board design for LQFP176 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Incompatible board design for LQFP208 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
UFBGA176 port-to-terminal assignment differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
TFBGA216 port-to-terminal assignment differences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
STM32F479xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
STM32F479xx Multi-AHB matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
VDDUSB connected to an external independent power supply . . . . . . . . . . . . . . . . . . . . . 27  
Power supply supervisor interconnection with internal reset OFF . . . . . . . . . . . . . . . . . . . 28  
PDR_ON control with internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 10. Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 11. Startup in regulator OFF: slow V slope  
DD  
- power-down reset risen after V  
V
stabilization . . . . . . . . . . . . . . . . . . . . . . . 32  
CAP_1 , CAP_2  
Figure 12. Startup in regulator OFF mode: fast V slope  
DD  
- power-down reset risen before V  
V
stabilization. . . . . . . . . . . . . . . . . . . . . . 32  
CAP_1 , CAP_2  
Figure 13. STM32F47x WLCSP168 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 14. STM32F47x UFBGA169 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 15. STM32F47x UFBGA176 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 16. STM32F47x LQFP176 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 17. STM32F47x LQFP208 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 18. STM32F47x TFBGA216 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 19. Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Figure 20. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Figure 21. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Figure 22. Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Figure 23. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Figure 24. External capacitor C  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
EXT  
Figure 25. Typical V  
current consumption  
BAT  
(RTC ON / backup SRAM ON and LSE in Low drive mode) . . . . . . . . . . . . . . . . . . . . . . 103  
Figure 26. Typical V current consumption  
BAT  
(RTC ON / backup SRAM ON and LSE in High drive mode) . . . . . . . . . . . . . . . . . . . . . . 104  
Figure 27. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Figure 28. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Figure 29. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Figure 30. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Figure 31. HSI deviation vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Figure 32. ACC versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
LSI  
Figure 33. PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Figure 34. PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Figure 35. MIPI D-PHY HS/LP clock lane transition timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . 123  
Figure 36. MIPI D-PHY HS/LP data lane transition timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . 123  
Figure 37. FT I/O input characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
Figure 38. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
Figure 39. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
Figure 40. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
(1)  
Figure 41. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
(1)  
Figure 42. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
2
(1)  
Figure 43. I S slave timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
2
(1)  
Figure 44. I S master timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
DocID028010 Rev 2  
9/208  
10  
List of figures  
STM32F479xx  
Figure 45. SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
Figure 46. SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
Figure 47. USB OTG full speed timings: definition of data signal rise and fall time. . . . . . . . . . . . . . 147  
Figure 48. ULPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
Figure 49. Ethernet SMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
Figure 50. Ethernet RMII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
Figure 51. Ethernet MII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
Figure 52. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
Figure 53. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
Figure 54. Power supply and reference decoupling (V  
Figure 55. Power supply and reference decoupling (V  
not connected to V  
). . . . . . . . . . . . . 157  
). . . . . . . . . . . . . . . . 157  
REF+  
DDA  
connected to V  
REF+  
DDA  
Figure 56. 12-bit buffered/non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Figure 57. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 162  
Figure 58. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 164  
Figure 59. Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 165  
Figure 60. Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 167  
Figure 61. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
Figure 62. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
Figure 63. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 173  
Figure 64. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
Figure 65. NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
Figure 66. NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
Figure 67. NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 176  
Figure 68. NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 177  
Figure 69. SDRAM read access waveforms (CL = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
Figure 70. SDRAM write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
Figure 71. Quad-SPI SDR timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
Figure 72. Quad-SPI DDR timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
Figure 73. DCMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
Figure 74. LCD-TFT horizontal timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
Figure 75. LCD-TFT vertical timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
Figure 76. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
Figure 77. SD default mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
Figure 78. WLCSP168 - 168-pin, 4.891 x 5.692 mm, 0.4 mm pitch wafer level chip  
scale package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188  
Figure 79. UFBGA169 - 169-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid  
array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190  
Figure 80. UFBGA169 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
Figure 81. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 192  
Figure 82. LQFP176 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
Figure 83. LQFP176 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
Figure 84. UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm pitch,  
ultra fine pitch ball grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
Figure 85. UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball  
grid array package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
Figure 86. LQFP208, 28 x 28 mm, 208-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 198  
Figure 87. LQFP208 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200  
Figure 88. LQFP208 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201  
Figure 89. TFBGA216 - thin fine pitch ball grid array 13 × 13 × 0.8mm, package outline . . . . . . . . . 202  
Figure 90. TFBGA216 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203  
10/208  
DocID028010 Rev 2  
STM32F479xx  
Description  
1
Description  
®
®
The STM32F479xx devices are based on the high-performance ARM Cortex -M4 32-bit  
®
RISC core operating at a frequency of up to 180 MHz. The Cortex -M4 core features a  
®
Floating point unit (FPU) single precision which supports all ARM single-precision data-  
processing instructions and data types. It also implements a full set of DSP instructions and  
a memory protection unit (MPU) which enhances application security.  
The STM32F479xx devices incorporate high-speed embedded memories (Flash memory  
up to 2 Mbytes, up to 384 Kbytes of SRAM), up to 4 Kbytes of backup SRAM, and an  
extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB  
buses and a 32-bit multi-AHB bus matrix.  
All devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-purpose  
16-bit timers including two PWM timers for motor control, two general-purpose 32-bit timers,  
a true random number generator (RNG), and a cryptographic acceleration cell. They also  
feature standard and advanced communication interfaces:  
2
Up to three I Cs  
2
2
Six SPIs, two I Ss full duplex. To achieve audio class accuracy, the I S peripherals can  
be clocked via a dedicated internal audio PLL or via an external clock to allow  
synchronization.  
Four USARTs plus four UARTs  
An USB OTG full-speed and a USB OTG high-speed with full-speed capability (with the  
ULPI),  
Two CANs  
One SAI serial audio interface  
An SDMMC host interface  
Ethernet and camera interface  
LCD-TFT display controller  
Chrom-ART Accelerator™  
DSI Host.  
Advanced peripherals include an SDMMC interface, a flexible memory control (FMC)  
interface, a Quad-SPI Flash memory, camera interface for CMOS sensors and a  
cryptographic acceleration cell. Refer to Table 2 for the list of peripherals available on each  
part number.  
The STM32F479xx devices operate in the –40 to +105 °C temperature range from a 1.7 to  
3.6 V power supply. A dedicated supply input for USB (OTG_FS and OTG_HS) only in full  
speed mode, is available on all packages.  
The supply voltage can drop to 1.7 V (refer to Section 2.19.2). A comprehensive set of  
power-saving mode allows the design of low-power applications.  
The STM32F479xx devices are offered in 5 packages, ranging from 168 pins to 216 pins.  
The set of included peripherals changes with the device chosen, according to Table 2.  
DocID028010 Rev 2  
11/208  
44  
Description  
STM32F479xx  
These features make the STM32F479xx microcontrollers suitable for a wide range of  
applications:  
Motor drive and application control  
Medical equipment  
Industrial applications: PLC, inverters, circuit breakers  
Printers, and scanners  
Alarm systems, video intercom, and HVAC  
Home audio appliances  
Figure 5 shows the general block diagram of the device family.  
Table 2. STM32F479xx features and peripheral counts  
Peripherals  
STM32F479Ax STM32F479Ix STM32F479Bx STM32F479Nx  
1024 2048 1024 2048 1024 2048 1024 2048  
Flash memory in Kbytes  
System  
384(160+32+128+64)  
SRAM in  
Kbytes  
Backup  
4
FMC memory controller  
Quad-SPI  
Yes  
Yes  
Yes  
Ethernet  
No  
General-  
purpose  
10  
2
Timers  
Advanced-  
control  
Basic  
2
Random number generator  
Yes  
SPI / I2S  
I2C  
6/2(full duplex)(1)  
3
USART/UART  
4/4  
Yes  
Yes  
2
USB OTG FS  
USB OTG HS  
CAN  
Communication  
interfaces  
SAI  
1
SDIO  
Yes  
Yes  
Yes  
Yes  
Camera interface  
MIPI-DSI Host  
LCD-TFT  
Chrom-ART Accelerator™  
(DMA2D)  
Yes  
Yes  
Cryptography  
GPIOs  
114  
131  
161  
161  
12/208  
DocID028010 Rev 2  
STM32F479xx  
Description  
Table 2. STM32F479xx features and peripheral counts (continued)  
Peripherals  
STM32F479Ax STM32F479Ix STM32F479Bx STM32F479Nx  
3
12-bit ADC  
Number of channels  
24  
12-bit DAC  
Number of channels  
Yes  
2
Maximum CPU frequency  
Operating voltage  
180 MHz  
1.7 to 3.6V(2)  
Ambient operating temperature: 40 to 85 °C / 40 to 105 °C  
Junction temperature: 40 to 105 °C / 40 to 125 °C  
Operating temperatures  
Package  
UFBGA169  
WLCSP168  
LQFP176  
UFBGA176  
LQFP208  
TFBGA216  
1. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the  
I2S audio mode.  
2. VDD/VDDA minimum value of 1.7 V is obtained when the internal reset is OFF (refer to Section 2.19.2).  
DocID028010 Rev 2  
13/208  
44  
Description  
STM32F479xx  
1.1  
Compatibility throughout the family  
STM32F479xx devices are not compatible with other STM32F4xx devices. Figure 1 and  
Figure 2 show incompatible board designs, respectively, for LQFP176 and LQFP208  
packages (highlighted pins). The UFBGA176 and TFBGA216 ballouts are compatible with  
other STM32F4xx devices, only few IO port pins are substituted, as shown in Figure 3 and  
Figure 4. The UFBGA169 package is incompatible with other STM32F4xx devices.  
1.1.1  
LQFP176 package  
Figure 1. Incompatible board design for LQFP176 package  
ꢅꢀꢆ ꢅꢀꢄ ꢅꢀꢀ  
ꢅꢀꢆ ꢅꢀꢄ ꢅꢀꢀ  
3,ꢇ  
9''  
966  
9&$3ꢂ  
3$ꢅꢀ  
3$ꢅꢂ  
3$ꢅꢅ  
3$ꢅꢇ  
3$ꢃ  
3$ꢁ  
3&ꢃ  
3&ꢁ  
3&ꢈ  
3&ꢉ  
9''86%  
966  
3*ꢁ  
3*ꢈ  
ꢅꢀꢂ  
ꢅꢀꢅ  
ꢅꢀꢇ  
ꢅꢂꢃ  
ꢅꢂꢁ  
ꢅꢂꢈ  
ꢅꢂꢉ  
ꢅꢂꢆ  
ꢅꢂꢄ  
ꢅꢂꢀ  
ꢅꢂꢂ  
ꢅꢂꢅ  
ꢅꢂꢇ  
ꢅꢅꢃ  
ꢅꢅꢁ  
ꢅꢅꢈ  
ꢅꢅꢉ  
ꢅꢅꢆ  
3,ꢅ  
3,ꢇ  
3+ꢅꢆ  
3+ꢅꢄ  
3+ꢅꢀ  
9''  
966  
ꢅꢀꢂ  
ꢅꢀꢅ  
ꢅꢀꢇ  
ꢅꢂꢃ  
ꢅꢂꢁ  
ꢅꢂꢈ  
ꢅꢂꢉ  
ꢅꢂꢆ  
ꢅꢂꢄ  
ꢅꢂꢀ  
ꢅꢂꢂ  
ꢅꢂꢅ  
ꢅꢂꢇ  
ꢅꢅꢃ  
ꢅꢅꢁ  
ꢅꢅꢈ  
ꢅꢅꢉ  
ꢅꢅꢆ  
ꢅꢅꢄ  
ꢅꢅꢀ  
ꢅꢅꢂ  
ꢅꢅꢅ  
ꢅꢅꢇ  
ꢅꢇꢃ  
ꢅꢇꢁ  
ꢅꢇꢈ  
ꢅꢇꢉ  
ꢅꢇꢆ  
ꢅꢇꢄ  
ꢅꢇꢀ  
ꢅꢇꢂ  
ꢅꢇꢅ  
ꢅꢇꢇ  
ꢃꢃ  
9&$3ꢂ  
3$ꢅꢀ  
3$ꢅꢂ  
3$ꢅꢅ  
3$ꢅꢇ  
3$ꢃ  
3$ꢁ  
3&ꢃ  
3&ꢁ  
3&ꢈ  
3&ꢉ  
9''  
966  
3*ꢁ  
670ꢀꢂ)ꢄꢉꢃ[[ꢊꢄꢈꢃ[[  
/4)3ꢅꢈꢉ  
670ꢀꢂ)ꢄ[[  
/4)3ꢅꢈꢉ  
3*ꢉ  
3*ꢆ  
3*ꢄ  
3*ꢀ  
ꢅꢅꢄ  
ꢅꢅꢀ  
ꢅꢅꢂ  
ꢅꢅꢅ  
ꢅꢅꢇ  
ꢅꢇꢃ  
ꢅꢇꢁ  
ꢅꢇꢈ  
ꢅꢇꢉ  
ꢅꢇꢆ  
ꢅꢇꢄ  
ꢅꢇꢀ  
ꢅꢇꢂ  
ꢅꢇꢅ  
ꢅꢇꢇ  
ꢃꢃ  
3*ꢈ  
3*ꢂ  
3*ꢉ  
966'6,  
'6,+267B'ꢅ1  
'6,+267B'ꢅ3  
9''ꢅꢂ'6,  
'6,+267B&.1  
'6,+267B&.3  
966'6,  
'6,+267B'ꢇ1  
'6,+267B'ꢇ3  
9&$3'6,  
9''6,  
3'ꢅꢆ  
3'ꢅꢄ  
9''  
966  
3'ꢅꢀ  
3'ꢅꢂ  
3'ꢅꢅ  
3'ꢅꢇ  
3'ꢃ  
3*ꢆ  
3*ꢄ  
3*ꢀ  
3*ꢂ  
3'ꢅꢆ  
3'ꢅꢄ  
9''  
966  
3'ꢅꢀ  
3'ꢅꢂ  
3'ꢅꢅ  
3'ꢅꢇ  
3'ꢃ  
ꢃꢁ  
ꢃꢈ  
ꢃꢉ  
ꢃꢆ  
ꢃꢄ  
ꢃꢀ  
ꢃꢂ  
ꢃꢅ  
ꢃꢇ  
ꢁꢃ  
ꢃꢁ  
ꢃꢈ  
ꢃꢉ  
ꢃꢆ  
ꢃꢄ  
ꢃꢀ  
ꢃꢂ  
ꢃꢅ  
ꢃꢇ  
ꢁꢃ  
3'ꢁ  
3%ꢅꢆ  
3%ꢅꢄ  
3%ꢅꢀ  
3%ꢅꢂ  
9''  
966  
3'ꢁ  
3+ꢅꢂ  
ꢁꢄ ꢁꢆ  
ꢁꢉ ꢁꢈ ꢁꢁ  
ꢁꢄ ꢁꢆ ꢁꢉ ꢁꢈ ꢁꢁ  
06ꢀꢁꢂꢃꢄ9ꢅ  
1. Pins from 86 to 133 are not compatible.  
14/208  
DocID028010 Rev 2  
 
STM32F479xx  
Description  
1.1.2  
LQFP208 package  
Figure 2. Incompatible board design for LQFP208 package  
3&ꢉ  
9''86%  
966  
3*ꢁ  
3*ꢈ  
3*ꢉ  
3*ꢆ  
3*ꢄ  
3*ꢀ  
ꢅꢀꢁ  
ꢅꢀꢈ  
ꢅꢀꢉ  
ꢅꢀꢆ  
ꢅꢀꢄ  
ꢅꢀꢀ  
ꢅꢀꢂ  
ꢅꢀꢅ  
3&ꢉ  
9''  
966  
3*ꢁ  
3*ꢈ  
3*ꢉ  
3*ꢆ  
3*ꢄ  
ꢅꢀꢁ  
ꢅꢀꢈ  
ꢅꢀꢉ  
ꢅꢀꢆ  
ꢅꢀꢄ  
ꢅꢀꢀ  
ꢅꢀꢂ  
ꢅꢀꢅ  
670ꢀꢂ)ꢄꢉꢃ[[ꢊꢄꢈꢃ[[  
/4)3ꢂꢇꢁ  
670ꢀꢂ)ꢄꢂ[ꢊ670ꢀꢂ)ꢄꢀ[  
/4)3ꢂꢇꢁ  
ꢅꢀꢇ  
ꢅꢂꢃ  
ꢅꢂꢁ  
ꢅꢀꢇ  
ꢅꢂꢃ  
ꢅꢂꢁ  
3*ꢀ  
3*ꢂ  
3.ꢂ  
3*ꢂ  
966'6,  
'6,+267B'ꢅ1  
'6,+267B'ꢅ3  
9''ꢅꢂ'6,  
'6,+267B&.1  
'6,+267B&.3  
966'6,  
'6,+267B'ꢇ1  
'6,+267B'ꢇ3  
9&$3'6,  
9'''6,  
3'ꢅꢆ  
3'ꢅꢄ  
ꢅꢂꢈ  
ꢅꢂꢉ  
ꢅꢂꢆ  
ꢅꢂꢄ  
ꢅꢂꢀ  
ꢅꢂꢂ  
ꢅꢂꢅ  
ꢅꢂꢇ  
ꢅꢅꢃ  
ꢅꢅꢁ  
ꢅꢅꢈ  
ꢅꢅꢉ  
ꢅꢂꢈ  
ꢅꢂꢉ  
ꢅꢂꢆ  
ꢅꢂꢄ  
ꢅꢂꢀ  
ꢅꢂꢂ  
ꢅꢂꢅ  
ꢅꢂꢇ  
ꢅꢅꢃ  
ꢅꢅꢁ  
ꢅꢅꢈ  
ꢅꢅꢉ  
3.ꢅ  
3.ꢇ  
966  
9''  
3-ꢅꢅ  
3-ꢅꢇ  
3-ꢃ  
3-ꢁ  
3-ꢈ  
3-ꢉ  
3'ꢅꢆ  
3'ꢅꢄ  
06ꢀꢁꢂꢃꢆ9ꢅ  
1. Pins from 118 to 128 and pin 137 are not compatible  
DocID028010 Rev 2  
15/208  
44  
Description  
STM32F479xx  
1.1.3  
UFBGA176 package  
Figure 3. UFBGA176 port-to-terminal assignment differences  
ꢅꢇ  
ꢅꢅ  
ꢅꢂ  
ꢅꢀ  
ꢅꢄ  
ꢅꢆ  
$
%
3(ꢀ  
3(ꢂ  
3(  
3(ꢇ  
3%ꢃ  
3%ꢁ  
3%ꢈ  
3%ꢆ  
3*ꢅꢄ  
3*ꢅꢆ  
3*ꢅꢀ  
3*ꢅꢂ  
3%  
3*ꢅꢅ  
3%ꢀ  
3*ꢅꢇ  
3'ꢈ  
3'ꢉ  
3&ꢅꢂ  
3'ꢇ  
3$ꢅꢆ  
3&ꢅꢅ  
3$ꢅꢄ  
3&ꢅꢇ  
3$ꢅꢀ  
3$ꢅꢂ  
3(  
3,ꢉ  
3%ꢉ  
3(ꢄ  
9%$7  
3&ꢅꢀ  
3(ꢆ  
3,ꢈ  
3'5  
B21  
9''  
966  
3,ꢆ  
3,ꢄ  
9''  
966  
3,ꢅ  
3,ꢇ  
9''  
966  
3*ꢃ  
3'ꢄ  
3'ꢆ  
3'ꢀ  
3'ꢅ  
3'ꢂ  
3,ꢀ  
3$ꢅꢅ  
3$ꢅꢇ  
3$   
9''  
966  
&
'
3,ꢁ  
3,ꢃ  
%227ꢇ  
',  
'
3&ꢅꢄ  
3&ꢅꢆ  
3+ꢇ  
3)ꢇ  
966  
3,ꢅꢇ  
9''  
(
)
3,ꢅꢅ  
3+ꢂ  
966  
966  
966  
966  
966  
966  
966  
966  
966  
966  
966  
966  
966  
966  
966  
966  
966  
9&$3ꢂ  
9''  
3&ꢃ  
3&ꢁ  
3$   
3&ꢈ  
*
+
966  
3)ꢂ  
9''  
3)ꢅ  
3+ꢀ  
3+ꢄ  
3+ꢅ  
3*ꢁ  
3*ꢈ  
3&ꢉ  
3*ꢉ  
3)ꢄ  
3)ꢆ  
966  
966  
966  
966  
966  
966  
966  
966  
966  
966  
1567  
3)ꢈ  
3)ꢀ  
3)ꢉ  
3+ꢆ  
9''  
9''  
-
.
3*ꢆ  
3*ꢄ  
3'ꢅꢆ  
3'ꢅꢄ  
3*ꢀ  
3*ꢂ  
%<3$66  
B5(*  
/
3)ꢃ  
3)ꢁ  
3&ꢅ  
3)ꢅꢇ  
,  
9&$3  
Bꢅ  
3+ꢉ  
3'ꢅꢀ  
966  
966  
3%ꢂ  
3*ꢅ  
0
1
966$  
3&ꢇ  
3&ꢂ  
3&ꢀ  
95()ꢋ  
3$ꢅ  
3$ꢂ  
3$ꢀ  
3$ꢇ  
3$ꢉ  
3$ꢈ  
3*ꢇ  
3)ꢅꢆ  
3)ꢅꢄ  
9''  
3(  
3(ꢈ  
9''  
3(  
3)ꢅꢇ  
9''  
3(ꢅꢀ  
3(ꢅꢄ  
3+ꢈ  
3'ꢅꢂ  
3'ꢅꢅ  
3'ꢃ  
3'ꢅꢇ  
3'ꢁ  
3$ꢄ  
3$ꢆ  
3%ꢅ  
3&ꢄ  
3&ꢆ  
3)ꢅꢀ  
3)ꢅꢂ  
95()ꢌ  
9''$  
3(ꢅꢅ  
3%ꢅꢂ  
3%ꢅꢇ  
3%ꢅꢀ  
3%ꢅꢅ  
3
3)ꢅꢅ  
3%ꢇ  
3(ꢅꢂ  
3(ꢅꢆ  
3%ꢅꢄ  
3%ꢅꢆ  
5
^dDϯϮ&ϰϮdždžͬϯdždž  
^dDϯϮ&ϰϬdždžͬϰϭdždž  
^dDϯϮ&ϰϲϵdždž  
^dDϯϮ&ϰϳϵdždž  
3,ꢂ  
3,ꢅ  
3,ꢇ  
1&  
3,ꢅ  
3,ꢇ  
3'ꢅ  
3,ꢀ  
3'ꢅ  
3,ꢀ  
9''ꢅꢂ  
'6,  
3'ꢂ  
3'ꢂ  
'6,  
+267B +267B  
'ꢅ3  
3+ꢅꢆ  
3+ꢅꢄ  
'6,  
3+ꢅꢀ  
'ꢅ1  
966 9&$3ꢂ  
3&ꢃ  
3&ꢁ  
966 9&$3ꢂ  
3&ꢃ  
3&ꢁ  
966  
966  
9''  
9''  
9''  
966  
9''  
966  
'6,  
9''B  
86%  
3*ꢁ  
3*ꢈ  
3*ꢁ  
3*ꢈ  
9''  
'6,  
9''  
3+ꢅꢂ  
9''  
9&$3  
'6,  
3*ꢆ  
3+ꢅꢇ  
3+ꢃ  
3*ꢄ  
3'ꢅꢆ  
3'ꢅꢄ  
3*ꢆ  
'6,  
3*ꢄ  
3'ꢅꢆ  
3'ꢅꢄ  
'6,  
3+ꢅꢅ  
3+ꢁ  
+267B +267B  
&.3  
'6,  
&.1  
'6,  
+267B +267B  
'ꢇ3 'ꢇ1  
06ꢀꢃꢄꢇꢀ9ꢅ  
1. The highlighted pins are substituted with dedicated DSI IO pins on STM32F469xx/479xx devices.  
16/208  
DocID028010 Rev 2  
STM32F479xx  
Description  
1.1.4  
TFBGA216 package  
Figure 4. TFBGA216 port-to-terminal assignment differences  
ꢅꢇ  
ꢅꢅ  
ꢅꢂ  
ꢅꢀ  
ꢅꢄ  
ꢅꢆ  
3(ꢄ  
3(ꢀ  
3(ꢂ  
3(ꢅ  
3*ꢅꢄ  
3(ꢇ  
3%ꢁ  
3%ꢄ  
3%ꢀ  
3'ꢈ  
3%ꢆ  
3&ꢅꢂ  
3$ꢅꢆ  
$
%
3$ꢅꢄ  
3$ꢅꢀ  
3(ꢆ  
3(ꢉ  
3*ꢅꢀ  
3%ꢃ  
3%ꢈ  
3%ꢉ  
3*ꢅꢆ  
3-ꢅꢂ  
3'ꢉ  
3'ꢇ  
3&ꢅꢅ  
3&ꢅꢇ  
3$ꢅꢂ  
3*ꢅꢅ  
3-ꢅꢀ  
9%$7  
3&ꢅꢀ  
3&ꢅꢄ  
3&ꢅꢆ  
3,ꢁ  
3)ꢇ  
3)ꢅ  
966  
3,ꢄ  
3,ꢆ  
3.ꢈ  
3,ꢈ  
3.ꢉ  
3,ꢅꢇ  
3.ꢆ  
3,ꢉ  
3*ꢅꢂ  
3.ꢄ  
3*ꢅꢇ  
3.ꢀ  
3-ꢅꢄ  
3*ꢃ  
9''  
966  
3'ꢆ  
3-ꢅꢆ  
9''  
966  
3'ꢀ  
3'ꢄ  
3'ꢅ  
3'ꢂ  
&
'
3,ꢀ  
3,ꢂ  
3,ꢅ  
3$ꢅꢅ  
3$ꢅꢇ  
3+ꢅꢆ  
3'5  
21  
3,ꢅꢂ  
3,ꢅꢅ  
3,ꢃ  
%227ꢇ  
966  
9''  
966  
9''  
966  
9&$3ꢂ  
9''  
3+ꢅꢀ  
3+ꢅꢄ  
3,ꢇ  
3$ꢃ  
3$ꢁ  
(
)
9''  
9''  
3&ꢃ  
966  
966  
966  
966  
966  
966  
3&ꢁ  
3*ꢁ  
3*ꢈ  
3&ꢈ  
3&ꢉ  
3*ꢉ  
9''  
9''  
9''  
*
3+ꢇ  
3+ꢅꢍꢍ  
1567  
3)ꢂ  
3)ꢀ  
3,ꢅꢀ  
3,ꢅꢄ  
3,ꢅꢆ  
+
-
3+ꢄ  
3+ꢀ  
9''  
3)ꢄꢍꢍ  
3+ꢆ  
3)ꢉ  
3)ꢃ  
3)ꢆꢍꢍ  
3)ꢁ  
3+ꢂ  
3&ꢀ  
9''  
966  
966  
966  
9''  
966  
9''  
966  
9''  
966  
9''  
9''  
3'ꢅꢆ  
3%ꢅꢂ  
3'ꢅꢇ  
3'ꢁ  
3)ꢈ  
.
/
3%ꢅꢀ  
3'ꢃ  
%<3$66  
ꢋ5(*  
3)ꢅꢇ  
9&$3ꢅ  
3'ꢅꢄ  
966$  
95()ꢋ  
95()ꢌ  
9''$  
3&ꢇ  
3$ꢅ  
3$ꢂ  
3$ꢀ  
3&ꢅ  
3$ꢇ  
3$ꢉ  
3&ꢂ  
3$ꢄ  
3$ꢆ  
3%ꢂ  
3&ꢄ  
3&ꢆ  
3%ꢇ  
3)ꢅꢂ  
3)ꢅꢀ  
3)ꢅꢄ  
3-ꢇ  
3*ꢅ  
3*ꢇ  
3-ꢂ  
3)ꢅꢆ  
3-ꢀ  
3-ꢄ  
3(ꢁ  
3(ꢃ  
3(ꢅꢇ  
3'ꢅꢂ  
3'ꢅꢅ  
3(ꢅꢅ  
3(ꢅꢂ  
3'ꢅꢀ  
3*ꢆ  
3*ꢀ  
3*ꢄ  
3*ꢂ  
3+ꢈ  
3+ꢉ  
3%ꢅꢅ  
3-ꢆ  
3+ꢅꢂ  
3+ꢅꢅ  
3+ꢅꢇ  
0
1
3
3+ꢃ  
3(ꢅꢄ  
3)ꢅꢅ  
3(ꢈ  
3%ꢅꢇ  
3+ꢁ  
3$ꢈ  
3%ꢅ  
3-ꢅ  
3(ꢅꢆ  
3(ꢅꢀ  
3%ꢅꢄꢍꢍ  
3%ꢅꢆꢍꢍ  
5
^dDϯϮ&ϰϮdždžͬϯdždž  
^dDϯϮ&ϰϬdždžͬϰϭdždž  
^dDϯϮ&ϰϲϵdždž  
^dDϯϮ&ϰϳϵdždž  
'6,  
+267B  
'ꢅ3  
'6,  
+267Bꢍ  
'ꢅ1  
9''  
9''  
3.ꢅ  
3/ꢂ  
9'''  
86%  
966  
'6,  
9''ꢅꢂ  
'6,  
9''  
9''  
9''  
3-ꢅꢅ  
3-ꢁ  
3-ꢈ  
3.ꢇ  
3-ꢅꢇ  
3-ꢃ  
'6,  
+267B  
&.3  
'6,  
+267B  
&.1  
9''  
'6,  
'6,  
+267B  
'ꢇ3  
'6,  
+267B  
'ꢇ1  
9''  
9''  
9&$3  
'6,  
3'ꢅꢆ  
3-ꢉ  
3'ꢅꢆ  
9''  
06Yꢀꢃꢄꢇꢄ9ꢅ  
1. The highlighted pins are substituted with dedicated DSI IO pins on STM32F469xx/479xx devices.  
DocID028010 Rev 2  
17/208  
44  
*3,23257ꢀ$  
9''$ꢒꢍ966$ꢒ  
1567  
*3,23  
257ꢀ'  
257ꢀ(  
26&,1  
26&287  
*3,23  
;7$/ꢀ26&ꢀꢀꢀꢀ  
ꢉꢌꢁꢆ0+]  
*3,23  
257ꢀ*  
257ꢀ+  
6WDQGE\LQWHUIDFH  
*3,23  
*3,2ꢀ3  
257ꢀ-  
257ꢀ.  
*3,23  
7,0(5ꢀꢃ  
ꢀꢄꢀ3:0
ꢀꢄꢀ3:0
7,0(5ꢀꢅ  
7,0(5ꢀꢑ
8  
6$57ꢀꢃ  
6$57ꢀꢆ  
63,ꢃꢄ,ꢁ6
63,ꢀꢉ
6$,ꢀꢃꢀ  
                                                                 
                                                                 
Description  
STM32F479xx  
Figure 5. STM32F479xx block diagram  
&&0ꢍGDWDꢍ5$0ꢍꢉꢄꢍ.%  
-7567ꢍ-7',ꢒ  
&/.ꢒꢍ1(>ꢀꢎꢇ@ꢒꢍ$>ꢂꢀꢎꢇ@ꢒꢍ'>ꢀꢅꢎꢇ@ꢒ  
-7&.ꢊ6:&/.  
12(ꢒꢍ1:(1ꢒꢍ1%/>ꢀꢎꢇ@ꢒꢍ  
6'&/.(>ꢅꢎꢇ@ꢒꢍ6'1(>ꢅꢎꢇ@ꢒ  
15$6ꢒꢍ1&$6ꢒꢍ1$'9  
1:$,7ꢒꢍ,175  
-7$*ꢍꢓꢍ6:  
(70  
038)38  
19,&  
(;7ꢀ0(0ꢀ&75/ꢀꢍ)0&ꢎ  
65$0ꢒꢍ365$0ꢒꢍ125ꢍ)ODVK  
1$1'ꢍ)ODVKꢒꢍ6'5$0ꢀꢀ  
-7'2ꢊ6:'ꢒꢍ-7'2ꢍꢍꢍꢍ  
75$&(&.  
75$&('ꢐꢀꢎꢇꢑ  
$50  
&RUWH[ꢀ0ꢉ  
ꢃꢅꢇꢀ0+]ꢀꢀꢀꢀ  
'ꢋ%86  
&/.ꢒ  
4XDG63,  
%.ꢅB1&6ꢒꢍ%.ꢂB1&6ꢒꢍ  
'>ꢈꢎꢇ@  
,ꢋ%86  
ꢈ'(6ꢐꢀ  
6ꢋ%86  
)ODVKꢀꢃ0%ꢀꢀꢀꢀ  
)ODVKꢀꢃ0%ꢀꢀꢀꢀ  
$(6ꢁꢊꢆ  
'ꢌꢒꢍ'ꢋ  
9''86%ꢍ ꢍꢀꢏꢇꢍWRꢍꢀꢏꢉꢍ9  
8/3,ꢍꢎꢍ&/.ꢒꢍ'ꢐꢈꢎꢇꢑꢒ  
',5ꢒꢍ673ꢍ1;7  
6&/ꢊ6'$ꢒꢍ,17ꢍ,'ꢒꢍ9%86ꢍꢍꢍꢍ  
86%  
'0$ꢄ  
),)2  
+$6+  
51*  
&$0(5$  
,7)  
27*ꢀ+6  
65$0ꢃꢀꢃꢆꢇ.%  
ꢅꢀ6WUHDPV  
),)2  
ꢅꢀ6WUHDPV  
),)2  
+6<1&ꢒꢍ96<1&  
3,;&.ꢒꢍ'ꢐꢅꢀꢎꢇꢑ  
*3ꢌ'0$ꢁ  
*3ꢌ'0$ꢃ  
/&'ꢌ7)7  
'0$ꢌꢁ'  
65$0ꢁꢀꢈꢁ.%  
65$0ꢈꢀꢃꢁꢅ.%  
86%  
'ꢌꢒꢍ'ꢋꢒ  
9''86%ꢍ ꢍꢀꢏꢇꢍWRꢍꢀꢏꢉꢍ9  
6&/ꢒꢍ6'$ꢒꢍ,17ꢍ,'ꢒꢍ9%86  
27*ꢀ)6  
$+%ꢂꢍꢅꢁꢇꢍ0+]  
),)2  
),)2  
$+%ꢅꢍꢅꢁꢇꢍ0+]ꢍꢍꢍꢍ  
3$>ꢅꢆꢎꢇ@  
3%>ꢅꢆꢎꢇ@  
#9''$  
325  
6833/<ꢀꢀꢀꢀ  
5&ꢀ+6  
5&ꢀ/6  
683(59,6,21  
*3,2ꢀ3257ꢀ%  
5HVHW  
,QW  
325ꢄ3'5ꢄ  
3&>ꢅꢆꢎꢇ@  
3'>ꢅꢆꢎꢇ@  
%25  
*3,2ꢀ3257ꢀ&  
3//ꢃꢐꢁꢐꢈ  
39'  
#9''$ꢍ#9''  
3(>ꢅꢆꢎꢇ@  
3)>ꢅꢆꢎꢇ@  
5(6(7ꢏ  
&/2&.  
&75/ꢀꢀꢀꢀ  
*3,2ꢀ3257ꢀ)  
,:'*  
3*>ꢅꢆꢎꢇ@  
3+>ꢅꢆꢎꢇ@  
9%$7ꢍ ꢍꢅꢏꢁꢍWRꢍꢀꢏꢉꢍ9  
#9%$7  
26&ꢀꢂB,1  
26&ꢀꢂB287  
;7$/ꢀꢈꢁN+]  
3,>ꢅꢆꢎꢇ@  
3->ꢅꢆꢎꢇ@  
3.>ꢈꢎꢇ@  
*3,23257ꢀ,  
57&  
$:8  
57&B7$03ꢅ  
57&B7$03ꢂ  
57&B287  
&5&  
%DFNXSꢍ5HJLVWHU  
57&B5(),1  
57&B76  
ꢄ.%ꢍ%.35$0  
'6,+267B'ꢇꢍ3ꢊ1  
'6,+267B'ꢅꢍ3ꢊ1  
'6,+267B&.ꢍ3ꢊ1  
9''ꢅꢂ'6,ꢒꢍ9''6,ꢒꢍ966'6,  
9&$3'6,  
ꢀꢂE  
ꢄꢍ&KDQQHOVꢒꢍ(75ꢍDVꢍ$)  
ꢄꢍ&KDQQHOVꢒꢍ(75ꢍDVꢍ$)  
ꢄꢍ&KDQQHOVꢒꢍ(75ꢍDVꢍ$)  
ꢄꢍ&KDQQHOV  
7,0ꢁ  
'6,ꢀ+RVW  
ꢅꢉE  
7,0ꢈ  
'6,+267B7(  
ꢅꢉE  
'0$ꢂ  
'0$ꢅ  
7,0ꢉ  
ꢅꢉꢁꢍ$)  
(;7ꢀ,7ꢀ:.83  
'>ꢈꢎꢇ@  
&0'ꢒꢍ&.ꢍDVꢍ$)  
ꢀꢂE  
7,0ꢊ  
6',2ꢀꢄꢀ00&  
$+%ꢊ$3%ꢂ $+%ꢊ$3%ꢅ  
ꢄꢍFRPSOꢏꢍFKDQꢏꢍꢐ7,0ꢅB&+ꢅ>ꢅꢎꢄ@1ꢑꢒ  
ꢄꢍFKDQꢏꢍꢐ7,0ꢁB&+ꢅ>ꢅꢎꢄ@(75ꢑꢒꢍ  
%.,1ꢍDVꢍ$)ꢍꢍ  
ꢄꢍFRPSOꢏꢍFKDQꢏꢍꢐ7,0ꢅB&+ꢅ>ꢅꢎꢄ@1ꢑꢒ  
ꢄꢍFKDQꢏꢍꢐ7,0ꢁB&+ꢅ>ꢅꢎꢄ@(75ꢑꢒꢍ  
%.,1ꢍDVꢍ$)ꢍꢍ  
ꢂꢍ&KDQQHOVꢍꢍDVꢍ$)  
ꢅꢍ&KDQQHOVꢍDVꢍ$)  
ꢅꢍ&+ꢍDVꢍ$)  
ꢅꢉE  
7,0ꢃꢁ  
ꢅꢉE  
ꢅꢉE  
7,0ꢃꢈ  
ꢅꢉE  
ꢅꢉE  
7,0ꢃꢉ  
86$57ꢁ  
86$57ꢈ  
8$57ꢉ  
ꢅꢉE  
ꢂꢍFKDQQHOVꢍDVꢍ$)  
ꢅꢍFKDQQHOꢍDVꢍ$)  
VPFDUG  
LU'$  
5;ꢒꢍ7;ꢒꢍ6&.ꢒꢍꢍꢍꢍ  
&76ꢒꢍ576ꢍDVꢍ$)  
ꢅꢉE  
7,0(5ꢃꢇ  
VPFDUG  
LU'$  
5;ꢒꢍ7;ꢒꢍ6&.  
&76ꢒꢍ576ꢍDVꢍ$)  
ꢅꢉE  
ꢅꢍFKDQQHOꢍDVꢍ$)  
7,0(5ꢃꢃ  
::'*  
5;ꢒꢍ7;ꢍDVꢍ$)  
VPFDUG  
5;ꢒꢍ7;ꢒꢍ6&.ꢒ  
&76ꢒꢍ576ꢍDVꢍ$)  
LU'$  
5;ꢒꢍ7;ꢍDVꢍ$)  
5;ꢒꢍ7;ꢍDVꢍ$)  
8$57ꢊ  
8$57ꢋ  
VPFDUG  
8  
LU'$  
5;ꢒꢍ7;ꢒꢍ6&.ꢒ  
&76ꢒꢍ576ꢍDVꢍ$)  
026,ꢒꢍ0,62ꢒꢍ6&.ꢒꢍ  
166ꢍDVꢍ$)  
5;ꢒꢍ7;ꢍDVꢍ$)  
8$57ꢅ  
026,ꢒꢍ0,62ꢒꢍ6&.  
026,ꢒꢍ0,62ꢒꢍ6&.ꢒꢍ  
166ꢍDVꢍ$)  
ꢅꢉE  
ꢅꢉE  
63,ꢁꢄ,ꢁ6  
ꢍꢍ166ꢊ:6ꢒꢍ0&.ꢍDVꢍ$)  
7,0(5ꢆ  
7,0(5ꢋ  
026,ꢒꢍ0,62ꢒꢍ6&.ꢒꢍ  
166ꢍDVꢍ$)  
63,ꢊ  
026,ꢒꢍ0,62ꢒꢍ6&.  
166ꢊ:6ꢒꢍ0&.ꢍDVꢍ$)  
63,ꢈꢄ,ꢁ6  
026,ꢒꢍ0,62ꢒꢍ6&.ꢒꢍ  
166ꢍDVꢍ$)  
63,ꢆ  
6&/ꢒꢍ6'$ꢒꢍ60%$ꢍDVꢍ$)  
6&/ꢒꢍ6'$ꢒꢍ60%$ꢍDVꢍ$)  
6&/ꢒꢍ6'$ꢒꢍ60%$ꢍDVꢍ$)  
,ꢁ&ꢃꢄ60%86  
6'ꢒꢍ6&.ꢒꢍ)6  
0&/.ꢍDVꢍ$)  
,ꢁ&ꢁꢄ60%86  
,ꢁ&ꢈꢄ60%86  
#9''$  
9 ''5()B$'&  
7(03ꢀ6(1625  
#9''$  
ꢁꢍDQDORJꢍLQSXWVꢍFRPPRQ  
WRꢍWKHꢍꢀꢍ$'&V  
$'&ꢃ  
$'&ꢁ  
'$&ꢃ  
'$&ꢁ  
,7)  
7;ꢒꢍ5;  
7;ꢒꢍ5;  
E[&$1ꢃ  
E[&$1ꢁ  
ꢁꢍDQDORJꢍLQSXWVꢍFRPPRQ  
WRꢍWKHꢍ$'&ꢅꢍꢓꢍꢂ  
,)  
$'&ꢀꢈ  
ꢁꢍDQDORJꢍLQSXWVꢍWRꢍ$'&ꢀ  
'$&ꢅꢍDVꢍ$)  
'$&ꢂꢍDVꢍ$)  
06ꢀꢁꢂꢃꢈ9ꢅ  
1. The timers connected to APB2 are clocked from TIMxCLK up to 180 MHz, while the timers connected to  
APB1 are clocked from TIMxCLK either up to 90 MHz or 180 MHz depending on TIMPRE bit configuration  
in the RCC_DCKCFGR register.  
18/208  
DocID028010 Rev 2  
 
STM32F479xx  
Functional overview  
2
Functional overview  
2.1  
ARM® Cortex®-M4 with FPU and embedded Flash and SRAM  
®
®
The ARM Cortex -M4 with FPU processor is the latest generation of ARM processors for  
embedded systems. It was developed to provide a low-cost platform that meets the needs of  
MCU implementation, with a reduced pin count and low-power consumption, while  
delivering outstanding computational performance and an advanced response to interrupts.  
®
®
The ARM Cortex -M4 with FPU core is a 32-bit RISC processor that features exceptional  
code-efficiency, delivering the high-performance expected from an ARM core in the memory  
size usually associated with 8- and 16-bit devices.  
The processor supports a set of DSP instructions which allow efficient signal processing and  
complex algorithm execution.  
Its single precision FPU (floating point unit) speeds up software development by using  
metalanguage development tools, while avoiding saturation.  
The STM32F47x line is compatible with all ARM tools and software.  
Figure 5 shows the general block diagram of the STM32F47x line.  
®
®
Note:  
Cortex -M4 with FPU core is binary compatible with the Cortex -M3 core.  
2.2  
Adaptive real-time memory accelerator (ART Accelerator™)  
The ART Accelerator™ is a memory accelerator optimized for STM32 industry-standard  
®
®
ARM Cortex -M4 with FPU processors. It balances the inherent performance advantage  
®
®
of the ARM Cortex -M4 with FPU over Flash memory technologies, which normally require  
the processor to wait for the Flash memory at higher frequencies.  
To release the processor full 225 DMIPS performance at this frequency, the accelerator  
implements an instruction prefetch queue and branch cache, which increases program  
®
execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the  
performance achieved thanks to the ART Accelerator is equivalent to 0 wait state program  
execution from Flash memory at a CPU frequency up to 180 MHz.  
2.3  
Memory protection unit  
The memory protection unit (MPU) is used to manage the CPU accesses to memory to  
prevent one task to accidentally corrupt the memory or resources used by any other active  
task. This memory area is organized into up to 8 protected areas that can in turn be divided  
up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4  
gigabytes of addressable memory.  
The MPU is especially helpful for applications where some critical or certified code has to be  
protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-  
time operating system). If a program accesses a memory location that is prohibited by the  
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can  
dynamically update the MPU area setting, based on the process to be executed.  
The MPU is optional and can be bypassed for applications that do not need it.  
DocID028010 Rev 2  
19/208  
44  
Functional overview  
STM32F479xx  
2.4  
Embedded Flash memory  
The devices embed a Flash memory of up to 2 Mbytes available for storing programs and  
data.  
2.5  
CRC (cyclic redundancy check) calculation unit  
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit  
data word and a fixed generator polynomial.  
Among other applications, CRC-based techniques are used to verify data transmission or  
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of  
verifying the Flash memory integrity. The CRC calculation unit helps compute a software  
signature during runtime, to be compared with a reference signature generated at link-time  
and stored at a given memory location.  
2.6  
Embedded SRAM  
All devices embed:  
Up to 384Kbytes of system SRAM including 64 Kbytes of CCM (core coupled memory)  
data RAM  
RAM memory is accessed (read/write) at CPU clock speed with 0 wait states.  
4 Kbytes of backup SRAM  
This area is accessible only from the CPU. Its content is protected against possible  
unwanted write accesses, and is retained in Standby or VBAT mode.  
2.7  
Multi-AHB bus matrix  
The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, Ethernet, USB  
HS, LCD-TFT, and DMA2D) and the slaves (Flash memory, RAM, FMC, QUADSPI, AHB  
and APB peripherals) and ensures a seamless and efficient operation even when several  
high-speed peripherals work simultaneously.  
20/208  
DocID028010 Rev 2  
STM32F479xx  
Functional overview  
Figure 6. STM32F479xx Multi-AHB matrix  
ꢀZD  
ꢁŽƌƚĞdžͲDϰ  
'W  
ꢂDꢀϮ  
Dꢀꢁ  
ꢃƚŚĞƌŶĞƚ  
ꢁŚƌŽŵꢅꢀZdꢅ  
ꢀĐĐĞůĞƌĂƚŽƌ;ꢂDꢀϮꢂͿ  
ϲϰͲ<ďLJƚĞ  
ꢁꢁDꢅĚĂƚĂꢅZꢀDꢅꢅ  
h^ꢄꢅKd'  
,^  
'W  
>ꢁꢂͲd&d  
ꢂDꢀϭ  
/ꢁKꢂꢃ  
ꢂꢁKꢂꢃ  
&ůĂƐŚ  
ŵĞŵŽƌLJ  
^ZꢀDϭꢅꢅ  
ϭϲϬꢅ<ďLJƚĞ  
^ZꢀDϮ  
ϯϮꢅ<ďLJƚĞ  
^ZꢀDϯꢅꢅ  
ϭϮϴꢅ<ďLJƚĞ  
ꢀ,ꢄϮ  
ƉĞƌŝƉŚĞƌĂůƐ  
ꢀ,ꢄϭ  
ƉĞƌŝƉŚĞƌĂůƐ  
ꢀWꢄϭ  
ꢀWꢄϮ  
&DꢁꢅĞdžƚĞƌŶĂů  
DĞŵꢁƚů  
YƵĂĚ^W/  
ꢄƵƐꢅŵĂƚƌŝdžͲ^  
D^ϯϯϴϲϮsϭ  
2.8  
DMA controller (DMA)  
The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8  
streams each. They are able to manage memory-to-memory, peripheral-to-memory and  
memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals,  
support burst transfer and are designed to provide the maximum peripheral bandwidth  
(AHB/APB).  
The two DMA controllers support circular buffer management, so that no specific code is  
needed when the controller reaches the end of the buffer. The two DMA controllers also  
have a double buffering feature, which automates the use and switching of two memory  
buffers without requiring any special code.  
Each stream is connected to dedicated hardware DMA requests, with support for software  
trigger on each stream. Configuration is made by software and transfer sizes between  
source and destination are independent.  
DocID028010 Rev 2  
21/208  
44  
Functional overview  
STM32F479xx  
The DMA can be used with the main peripherals:  
2
SPI and I S  
2
I C  
USART  
General-purpose, basic and advanced-control timers TIMx  
DAC  
SDIO  
Camera interface (DCMI)  
ADC  
SAI1  
QUADSPI.  
2.9  
Flexible Memory Controller (FMC)  
The Flexible memory controller (FMC) includes three memory controllers:  
The NOR/PSRAM memory controller  
The NAND/memory controller  
The Synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) controller  
The main features of the FMC controller are the following:  
Interface with static-memory mapped devices including:  
Static random access memory (SRAM)  
NOR Flash memory/OneNAND Flash memory  
PSRAM  
NAND Flash memory with ECC hardware to check up to 8 Kbytes of data  
Interface with synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) memories  
8-,16-,32-bit data bus width  
Independent Chip Select control for each memory bank  
Independent configuration for each memory bank  
Write FIFO  
Read FIFO for SDRAM controller  
The Maximum FMC_CLK/FMC_SDCLK frequency for synchronous accesses is  
HCLK/2.  
LCD parallel interface  
The FMC can be configured to interface seamlessly with most graphic LCD controllers. It  
supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to  
specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost  
effective graphic applications using LCD modules with embedded controllers or high  
performance solutions using external controllers with dedicated acceleration.  
22/208  
DocID028010 Rev 2  
STM32F479xx  
Functional overview  
2.10  
Quad-SPI memory interface (QUADSPI)  
All STM32F479xx devices embeds a Quad-SPI memory interface, which is a specialized  
communication interface targeting Single, Dual, Quad or Dual-flash SPI memories. It can  
work in direct mode through registers, external flash status register polling mode and  
memory mapped mode. Up to 256 Mbytes external Flash memory are mapped, supporting  
8, 16 and 32-bit access. Code execution is supported.  
The opcode and the frame format are fully programmable. Communication can be either in  
Single Data Rate or Dual Data Rate.  
2.11  
LCD-TFT controller  
The LCD-TFT display controller provides a 24-bit parallel digital RGB (Red, Green, Blue)  
and delivers all signals to interface directly to a broad range of LCD and TFT panels up to  
XGA (1024x768) resolution with the following features:  
2 displays layers with dedicated FIFO (64x32-bit)  
Color Look-Up table (CLUT) up to 256 colors (256x24-bit) per layer  
Up to 8 Input color formats selectable per layer  
Flexible blending between two layers using alpha value (per pixel or constant)  
Flexible programmable parameters for each layer  
Color keying (transparency color)  
Up to 4 programmable interrupt events.  
2.12  
DSI Host (DSIHOST)  
®
The DSI Host is a dedicated peripheral for interfacing with MIPI DSI compliant displays. It  
includes a dedicated video interface internally connected to the LTDC and a generic APB  
interface that can be used to transmit information to the display.  
These interfaces are as follows:  
LTDC interface:  
Used to transmit information in Video Mode, in which the transfers from the host  
processor to the peripheral take the form of a real-time pixel stream (DPI).  
Through a customized for mode, this interface can be used to transmit information  
in full bandwidth in the Adapted Command Mode (DBI).  
APB slave interface:  
Allows the transmission of generic information in Command mode, and follows a  
proprietary register interface.  
Can operate concurrently with either LTDC interface in either Video Mode or  
Adapted Command Mode.  
Video mode pattern generator:  
Allows the transmission of horizontal/vertical color bar and D-PHY BER testing  
pattern without any kind of stimuli.  
DocID028010 Rev 2  
23/208  
44  
Functional overview  
STM32F479xx  
The DSI Host main features:  
®
Compliant with MIPI Alliance standards  
®
Interface with MIPI D-PHY  
®
Supports all commands defined in the MIPI Alliance specification for DCS:  
Transmission of all Command mode packets through the APB interface  
Transmission of commands in low-power and high-speed during Video Mode  
Supports up to two D-PHY data lanes  
Bidirectional communication and escape mode support through data lane 0  
Supports non-continuous clock in D-PHY clock lane for additional power saving  
Supports Ultra Low-Power mode with PLL disabled  
ECC and Checksum capabilities  
Support for End of Transmission Packet (EoTp)  
Fault recovery schemes  
3D transmission support  
Configurable selection of system interfaces:  
AMBA APB for control and optional support for Generic and DCS commands  
Video Mode interface through LTDC  
Adapted Command Mode interface through LTDC  
Independently programmable Virtual Channel ID in  
Video Mode  
Adapted Command Mode  
APB Slave  
Video Mode interfaces features:  
LTDC interface color coding mappings into 24-bit interface:  
16-bit RGB, configurations 1, 2, and 3  
18-bit RGB, configurations 1 and 2  
24-bit RGB  
Programmable polarity of all LTDC interface signals  
Extended resolutions beyond the DPI standard maximum resolution of 800x480 pixels:  
maximum resolution is limited by available DSI physical link bandwidth:  
Number of lanes: 2  
Maximum speed per lane: 500Mbps  
Adapted interface features:  
Support for sending large amounts of data through the memory_write_start (WMS) and  
memory_write_continue (WMC) DCS commands  
LTDC interface color coding mappings into 24-bit interface:  
16-bit RGB, configurations 1, 2, and 3  
18-bit RGB, configurations 1 and 2  
24-bit RGB  
24/208  
DocID028010 Rev 2  
STM32F479xx  
Functional overview  
Video mode pattern generator:  
Vertical and horizontal color bar generation without LTDC stimuli  
BER pattern without LTDC stimuli  
2.13  
Chrom-ART Accelerator™ (DMA2D)  
The Chrom-Art Accelerator™ (DMA2D) is a graphic accelerator which offers advanced bit  
blitting, row data copy and pixel format conversion. It supports the following functions:  
Rectangle filling with a fixed color  
Rectangle copy  
Rectangle copy with pixel format conversion  
Rectangle composition with blending and pixel format conversion.  
Various image format coding are supported, from indirect 4bpp color mode up to 32bpp  
direct color. It embeds dedicated memory to store color lookup tables.  
An interrupt can be generated when an operation is complete or at a programmed  
watermark.  
All the operations are fully automatized and are running independently from the CPU or the  
DMAs.  
2.14  
Nested vectored interrupt controller (NVIC)  
The devices embed a nested vectored interrupt controller able to manage 16 priority levels,  
®
and handle up to 93 maskable interrupt channels plus the 16 interrupt lines of the Cortex -  
M4 with FPU core.  
Closely coupled NVIC gives low-latency interrupt processing  
Interrupt entry vector table address passed directly to the core  
Allows early processing of interrupts  
Processing of late arriving, higher-priority interrupts  
Support tail chaining  
Processor state automatically saved  
Interrupt entry restored on interrupt exit with no instruction overhead  
This hardware block provides flexible interrupt management features with minimum interrupt  
latency.  
2.15  
External interrupt/event controller (EXTI)  
The external interrupt/event controller consists of 23 edge-detector lines used to generate  
interrupt/event requests. Each line can be independently configured to select the trigger  
event (rising edge, falling edge, both) and can be masked independently. A pending register  
maintains the status of the interrupt requests. The EXTI can detect an external line with a  
pulse width shorter than the Internal APB2 clock period. Up to 159 GPIOs can be connected  
to the 16 external interrupt lines.  
DocID028010 Rev 2  
25/208  
44  
Functional overview  
STM32F479xx  
2.16  
Clocks and startup  
On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The  
16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy over the full  
temperature range. The application can then select as system clock either the RC oscillator  
or an external 4-26 MHz clock source. This clock can be monitored for failure. If a failure is  
detected, the system automatically switches back to the internal RC oscillator and a  
software interrupt is generated (if enabled). This clock source is input to a PLL thus allowing  
to increase the frequency up to 180 MHz. Similarly, full interrupt management of the PLL  
clock entry is available when necessary (for example if an indirectly used external oscillator  
fails).  
Several prescalers allow the configuration of the two AHB buses, the high-speed APB  
(APB2) and the low-speed APB (APB1) domains. The maximum frequency of the two AHB  
buses is 180 MHz while the maximum frequency of the high-speed APB domains is  
90 MHz. The maximum allowed frequency of the low-speed APB domain is 45 MHz.  
The devices embed a dedicated PLL (PLLI2S) and PLLSAI which allows to achieve audio  
2
class performance. In this case, the I S master clock can generate all standard sampling  
frequencies from 8 kHz to 192 kHz.  
2.17  
Boot modes  
At startup, boot pins are used to select one out of three boot options:  
Boot from user Flash  
Boot from system memory  
Boot from embedded SRAM  
The boot loader is located in system memory. It is used to reprogram the Flash memory  
through a serial interface. Refer to application note AN2606 for details.  
2.18  
Power supply schemes  
V
= 1.7 to 3.6 V: external power supply for I/Os and the internal regulator (when  
DD  
enabled), provided externally through V pins.  
DD  
V
, V  
= 1.7 to 3.6 V: external analog power supplies for ADC, DAC, Reset  
DDA  
SSA  
blocks, RCs and PLL. V  
and V  
must be connected to V and V , respectively.  
DDA  
SSA DD SS  
Note:  
V
/V  
minimum value of 1.7 V is obtained when the internal reset is OFF (refer to  
DD DDA  
Section 2.19.2). Refer to Table 3 to identify the packages supporting this option.  
V
= 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and  
BAT  
backup registers (through power switch) when V is not present.  
DD  
V
can be connected either to VDD or an external independent power supply (3.0  
DDUSB  
to 3.6V) for USB transceivers.  
For example, when device is powered at 1.8V, an independent power supply 3.3V can  
be connected to V  
. When the V  
is connected to a separated power supply,  
DDUSB  
DDUSB  
it is independent from V or V  
but it must be the last supply to be provided and the  
DD  
DDA  
first to disappear.  
26/208  
DocID028010 Rev 2  
 
STM32F479xx  
Functional overview  
The following conditions must be respected:  
During power-on phase (V < V  
), V should be always lower than  
DDUSB  
DD  
DD_MIN  
V
DD  
During power-down phase (V < V  
), V  
should be always lower than  
DD  
DD_MIN  
DDUSB  
V
DD  
V
rising and falling time rate specifications must be respected.  
DDUSB  
In operating mode phase, V  
could be lower or higher than VDD:  
DDUSB  
– If USB (USB OTG_HS/OTG_FS) is used, the associated GPIOs powered by  
are operating between V and V .The V  
V
DDUSB  
DDUSB_MIN  
DDUSB_MAX  
DDUSB  
supplies both USB transceivers (USB OTG_HS and USB OTG_FS).  
– If only one USB transceiver is used in the application, the GPIOs associated to  
the other USB transceiver are still supplied by V  
.
DDUSB  
– If USB (USB OTG_HS/OTG_FS) is not used, the associated GPIOs powered  
by V are operating between V and V  
.
DD_MAX  
DDUSB  
DD_MIN  
Figure 7. V  
connected to an external independent power supply  
DDUSB  
9''86%B0$;  
86% IXQFWLRQDOꢀDUHD  
9''86%  
9''86%B0,1  
86%ꢍQRQꢍ  
86%ꢍQRQꢍ  
IXQFWLRQDOꢍ  
DUHD  
IXQFWLRQDOꢍ  
9''ꢍ ꢍ9''$  
DUHD  
9''B0,1  
WLPH  
3RZHUꢋGRZQ  
2SHUDWLQJꢍPRGH  
3RZHUꢋRQ  
06ꢀꢈꢆꢃꢇ9ꢅ  
The DSI (Display Serial Interface) sub-system uses several power supply pins which are  
independent from the other supply pins:  
VDDDSI is an independent DSI power supply dedicated for DSI Regulator and MIPI D-  
PHY. This supply must be connected to global VDD.  
VCAPDSI pin is the output of DSI Regulator (1.2V) which must be connected externally  
to VDD12DSI.  
VDD12DSI pin is used to supply the MIPI D-PHY, and to supply clock and data lanes  
pins. An external capacitor of 2.2 uF must be connected on VDD12DSI pin.  
VSSDSI pin is an isolated supply ground used for DSI sub-system.  
If DSI functionality is not used at all, then:  
VDDDSI pin must be connected to global VDD.  
VCAPDSI pin must be connected externally to VDD12DSI but the external  
capacitor is no more needed.  
VSSDSI pin must be grounded.  
DocID028010 Rev 2  
27/208  
44  
Functional overview  
STM32F479xx  
2.19  
Power supply supervisor  
2.19.1  
Internal reset ON  
On packages embedding the PDR_ON pin, the power supply supervisor is enabled by  
holding PDR_ON high. On the other package, the power supply supervisor is always  
enabled.  
The device has an integrated power-on reset (POR)/ power-down reset (PDR) circuitry  
coupled with a Brownout reset (BOR) circuitry. At power-on, POR/PDR is always active and  
ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is  
reached, the option byte loading process starts, either to confirm or modify default BOR  
thresholds, or to disable BOR permanently. Three BOR thresholds are available through  
option bytes. The device remains in reset mode when V is below a specified threshold,  
DD  
V
or V  
, without the need for an external reset circuit.  
POR/PDR  
BOR  
The device also features an embedded programmable voltage detector (PVD) that monitors  
the V /V power supply and compares it to the V threshold. An interrupt can be  
DD DDA  
PVD  
generated when V /V  
drops below the V  
threshold and/or when V /V  
is  
DD DDA  
PVD  
DD DDA  
higher than the V  
threshold. The interrupt service routine can then generate a warning  
PVD  
message and/or put the MCU into a safe state. The PVD is enabled by software.  
2.19.2  
Internal reset OFF  
This feature is available only on packages featuring the PDR_ON pin. The internal power-on  
reset (POR) / power-down reset (PDR) circuitry is disabled through the PDR_ON pin.  
An external power supply supervisor should monitor V and NRST and should maintain  
DD  
the device in reset mode as long as V is below a specified threshold. PDR_ON must be  
DD  
connected to VSS, as shown in Figure 8.  
Figure 8. Power supply supervisor interconnection with internal reset OFF  
9''  
670ꢀꢂ)ꢄꢈꢃ[[  
$SSOLFDWLRQꢍUHVHW  
VLJQDOꢍꢐRSWLRQDOꢑ  
9%$7  
3'5B21  
966  
3'5ꢍQRWꢍDFWLYHꢍꢎꢍꢅꢏꢈꢍ9ꢍꢔꢍꢍ9''ꢍꢔꢍꢀꢏꢉꢍ9  
06Yꢀꢉꢆꢁꢃ9ꢅ  
The V specified threshold, below which the device must be maintained under reset, is  
DD  
1.7 V (see Figure 9).  
A comprehensive set of power-saving mode allows to design low-power applications.  
28/208  
DocID028010 Rev 2  
 
 
 
 
STM32F479xx  
Functional overview  
When the internal reset is OFF, the following integrated features are no more supported:  
The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled  
The brownout reset (BOR) circuitry must be disabled  
The embedded programmable voltage detector (PVD) is disabled  
V
functionality is no more available and V  
pin should be connected to V  
.
DD  
BAT  
BAT  
All packages allow to disable the internal reset through the PDR_ON signal when connected  
to VSS.  
Figure 9. PDR_ON control with internal reset OFF  
9
''  
3'5ꢍ ꢍꢅꢏꢈꢍ9ꢍꢍꢍꢍ  
WLPH  
5HVHWꢍE\ꢍRWKHUꢍVRXUFHꢍWKDQꢍ  
SRZHUꢍVXSSO\ꢍVXSHUYLVRUꢍꢍꢍꢍ  
1567  
3'5B21  
3'5B21 WLPH  
06ꢅꢃꢇꢇꢃ9ꢈ  
1. PDR_ON signal to be kept always low.  
2.20  
Voltage regulator  
The regulator has four operating modes:  
Regulator ON  
Main regulator mode (MR)  
Low power regulator (LPR)  
Power-down  
Regulator OFF  
2.20.1  
Regulator ON  
On packages embedding the BYPASS_REG pin, the regulator is enabled by holding  
BYPASS_REG low. On all other packages, the regulator is always enabled.  
DocID028010 Rev 2  
29/208  
44  
 
Functional overview  
STM32F479xx  
There are three power modes configured by software when the regulator is ON:  
MR mode used in Run/sleep modes or in Stop modes  
In Run/Sleep mode  
The MR mode is used either in the normal mode (default mode) or the over-drive  
mode (enabled by software). Different voltages scaling are provided to reach the  
best compromise between maximum frequency and dynamic power consumption.  
The over-drive mode allows operating at a higher frequency than the normal mode  
for a given voltage scaling.  
In Stop modes  
The MR can be configured in two ways during stop mode:  
MR operates in normal mode (default mode of MR in stop mode)  
MR operates in under-drive mode (reduced leakage mode).  
LPR is used in the Stop modes:  
The LP regulator mode is configured by software when entering Stop mode.  
Like the MR mode, the LPR can be configured in two ways during stop mode:  
LPR operates in normal mode (default mode when LPR is ON)  
LPR operates in under-drive mode (reduced leakage mode).  
Power-down is used in Standby mode.  
The Power-down mode is activated only when entering in Standby mode. The regulator  
output is in high impedance and the kernel circuitry is powered down, inducing zero  
consumption. The contents of the registers and SRAM are lost.  
Refer to Table 3 for a summary of voltage regulator modes versus device operating modes.  
Two external ceramic capacitors should be connected on V  
and V  
pin. Refer to  
CAP_1  
CAP_2  
Section 2.18 and Table 123.  
All packages have the regulator ON feature.  
(1)  
Table 3. Voltage regulator configuration mode versus device operating mode  
Voltage regulator  
Run mode  
Sleep mode  
Stop mode  
Standby mode  
configuration  
Normal mode  
MR  
MR  
-
MR  
MR  
-
MR or LPR  
-
Over-drive  
mode(2)  
-
-
-
Under-drive mode  
MR or LPR  
-
Power-down  
mode  
-
-
Yes  
1. ‘-’ means that the corresponding configuration is not available.  
2. The over-drive mode is not available when VDD = 1.7 to 2.1 V.  
2.20.2  
Regulator OFF  
This feature is available only on packages featuring the BYPASS_REG pin. The regulator is  
disabled by holding BYPASS_REG high. The regulator OFF mode allows to supply  
externally a V voltage source through V  
and V  
pins.  
12  
CAP_1  
CAP_2  
30/208  
DocID028010 Rev 2  
 
STM32F479xx  
Functional overview  
Since the internal voltage scaling is not managed internally, the external voltage value must  
be aligned with the targeted maximum frequency. Refer to Operating conditions.The two  
2.2 µF ceramic capacitors should be replaced by two 100 nF decoupling capacitors. Refer  
to Section 2.18.  
When the regulator is OFF, there is no more internal monitoring on V . An external power  
12  
supply supervisor should be used to monitor the V of the logic power domain. PA0 pin  
12  
should be used for this purpose, and act as power-on reset on V power domain.  
12  
In regulator OFF mode, the following features are no more supported:  
PA0 cannot be used as a GPIO pin since it allows to reset a part of the V logic power  
domain which is not reset by the NRST pin.  
12  
As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As  
a consequence, PA0 and NRST pins must be managed separately if the debug  
connection under reset or pre-reset is required.  
The over-drive and under-drive modes are not available.  
The Standby mode is not available.  
Figure 10. Regulator OFF  
9ꢅꢂ  
([WHUQDOꢍ9&$3BꢅꢊꢂꢍSRZHUꢍ  
$SSOLFDWLRQꢍUHVHWꢍ  
VLJQDOꢍꢐRSWLRQDOꢑꢍꢍ  
VXSSO\ꢍVXSHUYLVRU  
([WꢏꢍUHVHWꢍFRQWUROOHUꢍDFWLYHꢍ  
ꢍꢍ  
ZKHQꢍ9&$3Bꢅꢊꢂꢍꢍꢔꢍ0LQꢍ9ꢅꢂ  
9''  
3$ꢇ  
9''  
1567ꢍꢍ  
%<3$66B5(*  
9ꢅꢂ  
9&$3Bꢅ  
9&$3Bꢂ  
DLꢅꢁꢄꢃꢁ9ꢀ  
The following conditions must be respected:  
V
should always be higher than V  
and V  
to avoid current injection  
CAP_2  
DD  
CAP_1  
between power domains.  
If the time for V and V  
to reach V minimum value is faster than the time for  
CAP_1  
CAP_2  
12  
V
to reach 1.7 V, then PA0 should be kept low to cover both conditions: until V  
DD  
CAP_1  
and V  
reach V minimum value and until V reaches 1.7 V (see Figure 11).  
12 DD  
CAP_2  
Otherwise, if the time for V  
and V  
to reach V minimum value is slower  
CAP_2 12  
CAP_1  
than the time for V to reach 1.7 V, then PA0 could be asserted low externally (see  
DD  
Figure 12).  
If V  
and V  
go below V minimum value and V is higher than 1.7 V, then a  
CAP_2 12 DD  
CAP_1  
reset must be asserted on PA0 pin.  
Note:  
The minimum value of V depends on the maximum frequency targeted in the application  
12  
(see Operating conditions).  
DocID028010 Rev 2  
31/208  
44  
Functional overview  
STM32F479xx  
Figure 11. Startup in regulator OFF: slow V slope  
DD  
- power-down reset risen after V  
, V  
stabilization  
CAP_1  
CAP_2  
9''  
3'5ꢍ ꢍꢅꢏꢈꢍRUꢍꢅꢏꢁꢍ9  
9&$3Bꢅ9&$3Bꢂ  
9ꢅꢂ  
0LQꢍ9ꢅꢂ  
WLPH  
1567  
3$ꢇ  
WLPH  
DLꢅꢁꢄꢃꢅJ  
1. This figure is valid whatever the internal reset mode (ON or OFF).  
Figure 12. Startup in regulator OFF mode: fast V slope  
DD  
- power-down reset risen before V  
, V  
stabilization  
CAP_1  
CAP_2  
9''  
3'5ꢍ ꢍꢅꢏꢈꢍRUꢍꢅꢏꢁꢍ9ꢍꢐꢂꢑ  
9&$3Bꢅꢒꢍ9&$3Bꢂ  
9ꢅꢂ  
0LQꢍ9ꢅꢂ  
WLPH  
WLPH  
1567  
3$ꢇꢍꢍ  
DLꢅꢁꢄꢃꢂI  
1. This figure is valid whatever the internal reset mode (ON or OFF).  
2.20.3  
Regulator ON/OFF and internal reset ON/OFF availability  
Table 4. Regulator ON/OFF and internal reset ON/OFF availability  
Package  
Regulator ON  
Regulator OFF  
Internal reset ON Internal reset OFF  
WLCSP168  
UFBGA169  
LQFP208  
Yes  
Yes  
No  
Yes  
Yes  
PDR_ON set to VDD PDR_ON set to VSS  
Yes  
LQFP176  
UFBGA176  
TFBGA216  
BYPASS_REG set BYPASS_REG set  
to VSS  
to VDD  
32/208  
DocID028010 Rev 2  
 
STM32F479xx  
Functional overview  
2.21  
Real-time clock (RTC), backup SRAM and backup registers  
The backup domain includes:  
The real-time clock (RTC)  
4 Kbytes of backup SRAM  
20 backup registers  
The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain  
the second, minute, hour (in 12/24 hour), week day, date, month, year, in BCD (binary-  
coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are  
performed automatically. The RTC provides a programmable alarm and programmable  
periodic interrupts with wakeup from Stop and Standby modes. The sub-seconds value is  
also available in binary format.  
It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power  
RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC  
has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz  
output to compensate for any natural quartz deviation.  
Two alarm registers are used to generate an alarm at a specific time and calendar fields can  
be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit  
programmable binary auto-reload downcounter with programmable resolution is available  
and allows automatic wakeup and periodic alarms from every 120 µs to every 36 hours.  
A 20-bit prescaler is used for the time base clock. It is by default configured to generate a  
time base of 1 second from a clock at 32.768 kHz.  
The 4-Kbyte backup SRAM is an EEPROM-like memory area. It can be used to store data  
which need to be retained in VBAT and standby mode. This memory area is disabled by  
default to minimize power consumption (see Section 2.22). It can be enabled by software.  
The backup registers are 32-bit registers used to store 80 bytes of user application data  
when V power is not present. Backup registers are not reset by a system, a power reset,  
DD  
or when the device wakes up from the Standby mode (see Section 2.22).  
Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes,  
hours, day, and date.  
Like backup SRAM, the RTC and backup registers are supplied through a switch that is  
powered either from the V supply when present or from the V  
pin.  
DD  
BAT  
DocID028010 Rev 2  
33/208  
44  
Functional overview  
STM32F479xx  
2.22  
Low-power modes  
The devices support three low-power modes to achieve the best compromise between low  
power consumption, short startup time and available wakeup sources:  
Sleep mode  
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can  
wake up the CPU when an interrupt/event occurs.  
Stop mode  
The Stop mode achieves the lowest power consumption while retaining the contents of  
SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC  
and the HSE crystal oscillators are disabled.  
The voltage regulator can be put either in main regulator mode (MR) or in low-power  
mode (LPR). Both modes can be configured as follows (see Table 5):  
Normal mode (default mode when MR or LPR is enabled)  
Under-drive mode.  
The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line  
source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup /  
tamper / time stamp events, the USB OTG FS/HS wakeup or the Ethernet wakeup).  
Table 5. Voltage regulator modes in stop mode  
Voltage regulator  
Main regulator (MR)  
Low-power regulator (LPR)  
configuration  
Normal mode  
MR ON  
LPR ON  
Under-drive mode  
MR in under-drive mode  
LPR in under-drive mode  
Standby mode  
The Standby mode is used to achieve the lowest power consumption. The internal  
voltage regulator is switched off so that the entire 1.2 V domain is powered off. The  
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering  
Standby mode, the SRAM and register contents are lost except for registers in the  
backup domain and the backup SRAM when selected.  
The device exits the Standby mode when an external reset (NRST pin), an IWDG reset,  
a rising edge on the WKUP pin, or an RTC alarm / wakeup / tamper /time stamp event  
occurs.  
The standby mode is not supported when the embedded voltage regulator is bypassed  
and the 1.2 V domain is controlled by an external power.  
2.23  
VBAT operation  
The V  
pin allows to power the device V  
domain from an external battery, an external  
BAT  
BAT  
supercapacitor, or from V when no external battery and an external supercapacitor are  
DD  
present.  
V
operation is activated when V is not present.  
DD  
BAT  
The V  
pin supplies the RTC, the backup registers and the backup SRAM.  
BAT  
34/208  
DocID028010 Rev 2  
 
STM32F479xx  
Functional overview  
Note:  
When the microcontroller is supplied from V , external interrupts and RTC alarm/events  
BAT  
do not exit it from V  
operation.  
BAT  
When PDR_ON pin is connected to V (Internal Reset OFF), the V  
functionality is no  
BAT  
SS  
more available and V  
pin should be connected to VDD.  
BAT  
2.24  
Timers and watchdogs  
The devices include two advanced-control timers, eight general-purpose timers, two basic  
timers and two watchdog timers.  
All timer counters can be frozen in debug mode.  
Table 6 compares the features of the advanced-control, general-purpose and basic timers.  
Table 6. Timer feature comparison  
Max  
Max  
DMA  
request  
generation channels  
Capture/  
compare  
Timer  
type  
Counter Counter Prescaler  
Complementary interface timer  
Timer  
resolution  
type  
factor  
output  
clock  
(MHz) (MHz)  
clock  
(1)  
Up,  
Down,  
Up/down and 65536  
Anyinteger  
between 1  
Advanced TIM1,  
16-bit  
32-bit  
16-bit  
16-bit  
16-bit  
16-bit  
16-bit  
16-bit  
Yes  
Yes  
Yes  
No  
4
4
4
2
1
2
1
0
Yes  
No  
No  
No  
No  
No  
No  
No  
90  
45  
45  
90  
90  
45  
45  
45  
180  
control  
TIM8  
Up,  
Down,  
Up/down and 65536  
Anyinteger  
between 1  
TIM2,  
TIM5  
90/180  
90/180  
180  
Up,  
Down,  
Up/down and 65536  
Anyinteger  
between 1  
TIM3,  
TIM4  
Anyinteger  
between 1  
and 65536  
TIM9  
Up  
Up  
Up  
Up  
Up  
General  
purpose  
TIM10  
,
Anyinteger  
between 1  
and 65536  
No  
180  
TIM11  
Anyinteger  
between 1  
and 65536  
TIM12  
No  
90/180  
90/180  
90/180  
TIM13  
,
TIM14  
Anyinteger  
between 1  
and 65536  
No  
Anyinteger  
between 1  
and 65536  
TIM6,  
TIM7  
Basic  
Yes  
1. The maximum timer clock is either 90 or 180 MHz depending on TIMPRE bit configuration in the  
RCC_DCKCFGR register.  
2.24.1  
Advanced-control timers (TIM1, TIM8)  
The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators  
multiplexed on 6 channels. They have complementary PWM outputs with programmable  
DocID028010 Rev 2  
35/208  
44  
 
Functional overview  
STM32F479xx  
inserted dead times. They can also be considered as complete general-purpose timers.  
Their 4 independent channels can be used for:  
Input capture  
Output compare  
PWM generation (edge- or center-aligned modes)  
One-pulse mode output  
If configured as standard 16-bit timers, they have the same features as the general-purpose  
TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0-  
100%).  
The advanced-control timer can work together with the TIMx timers via the Timer Link  
feature for synchronization or event chaining.  
TIM1 and TIM8 support independent DMA request generation.  
2.24.2  
General-purpose timers (TIMx)  
There are ten synchronizable general-purpose timers embedded in the STM32F47x devices  
(see Table 6 for differences).  
TIM2, TIM3, TIM4, TIM5  
The STM32F47x include 4 full-featured general-purpose timers: TIM2, TIM5, TIM3,  
and TIM4.The TIM2 and TIM5 timers are based on a 32-bit auto-reload up/down  
counter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on a 16-bit auto-  
reload up/down counter and a 16-bit prescaler. They all feature 4 independent  
channels for input capture/output compare, PWM or one-pulse mode output. This gives  
up to 16 input capture/output compare/PWMs on the largest packages.  
The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the  
other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the  
Timer Link feature for synchronization or event chaining.  
Any of these general-purpose timers can be used to generate PWM outputs.  
TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are  
capable of handling quadrature (incremental) encoder signals and the digital outputs  
from 1 to 4 hall-effect sensors.  
TIM9, TIM10, TIM11, TIM12, TIM13, and TIM14  
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.  
TIM10, TIM11, TIM13, and TIM14 feature one independent channel, whereas TIM9  
and TIM12 have two independent channels for input capture/output compare, PWM or  
one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5  
full-featured general-purpose timers. They can also be used as simple time bases.  
2.24.3  
Basic timers TIM6 and TIM7  
These timers are mainly used for DAC trigger and waveform generation. They can also be  
used as a generic 16-bit time base.  
TIM6 and TIM7 support independent DMA request generation.  
2.24.4  
Independent watchdog  
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is  
clocked from an independent 32 kHz internal RC and as it operates independently from the  
36/208  
DocID028010 Rev 2  
STM32F479xx  
Functional overview  
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog  
to reset the device when a problem occurs, or as a free-running timer for application timeout  
management. It is hardware- or software-configurable through the option bytes.  
2.24.5  
2.24.6  
Window watchdog  
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It  
can be used as a watchdog to reset the device when a problem occurs. It is clocked from  
the main clock. It has an early warning interrupt capability and the counter can be frozen in  
debug mode.  
SysTick timer  
This timer is dedicated to real-time operating systems, but could also be used as a standard  
downcounter. It features:  
A 24-bit downcounter  
Autoreload capability  
Maskable system interrupt generation when the counter reaches 0  
Programmable clock source.  
2.25  
Inter-integrated circuit interface (I2C)  
Up to three I²C bus interfaces can operate in multimaster and slave modes. They can  
support the standard (up to 100 KHz), and fast (up to 400 KHz) modes. They support the  
7/10-bit addressing mode and the 7-bit dual addressing mode (as slave). A hardware CRC  
generation/verification is embedded.  
They can be served by DMA and they support SMBus 2.0/PMBus.  
The devices also include programmable analog and digital noise filters (see Table 7).  
Table 7. Comparison of I2C analog and digital filters  
Analog filter  
Digital filter  
Pulse width of  
suppressed spikes  
Programmable length from 1 to 15  
I2C peripheral clocks  
50 ns  
2.26  
Universal synchronous/asynchronous receiver transmitters  
(USART)  
The devices embed four universal synchronous/asynchronous receiver transmitters  
(USART1, USART2, USART3 and USART6) and four universal asynchronous receiver  
transmitters (UART4, UART5, UART7, and UART8).  
These six interfaces provide asynchronous communication, IrDA SIR ENDEC support,  
multiprocessor communication mode, single-wire half-duplex communication mode and  
have LIN Master/Slave capability. The USART1 and USART6 interfaces are able to  
communicate at speeds of up to 11.25 Mbit/s. The other available interfaces communicate  
at up to 5.62 bit/s.  
DocID028010 Rev 2  
37/208  
44  
 
Functional overview  
STM32F479xx  
USART1, USART2, USART3 and USART6 also provide hardware management of the CTS  
and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication  
capability. All interfaces can be served by the DMA controller.  
(1)  
Table 8. USART feature comparison  
Max. baud  
Max. baud  
USART Standard  
Modem  
SPI  
master  
Smartcard rate in Mbit/s rate in Mbit/s APB  
(ISO 7816) (oversampling (oversampling mapping  
LIN  
irDA  
name  
features (RTS/CTS)  
by 16)  
by 8)  
APB2  
(max.  
90 MHz)  
USART1  
USART2  
USART3  
UART4  
X
X
X
X
X
X
X
X
X
X
X
-
X
X
X
X
X
X
X
X
X
X
X
-
X
X
X
X
X
X
X
X
X
X
X
-
5.62  
11.25  
APB1  
(max.  
45 MHz)  
2.81  
2.81  
2.81  
2.81  
5.62  
2.81  
2.81  
5.62  
5.62  
5.62  
5.62  
11.25  
5.62  
5.62  
APB1  
(max.  
45 MHz)  
APB1  
(max.  
45 MHz)  
APB1  
(max.  
45 MHz)  
UART5  
-
-
-
APB2  
(max.  
90 MHz)  
USART6  
UART7  
X
-
X
-
X
-
APB1  
(max.  
45 MHz)  
APB1  
(max.  
UART8  
-
-
-
45 MHz)  
1. X = feature supported.  
2.27  
Serial peripheral interface (SPI)  
The devices feature up to six SPIs in slave and master modes in full-duplex and simplex  
communication modes. SPI1, SPI4, SPI5, and SPI6 can communicate at up to 45 Mbits/s,  
SPI2 and SPI3 can communicate at up to 22.5 Mbit/s. The 3-bit prescaler gives 8 master  
mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC  
generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the  
DMA controller.  
The SPI interface can be configured to operate in TI mode for communications in master  
mode and slave mode.  
38/208  
DocID028010 Rev 2  
STM32F479xx  
Functional overview  
2.28  
Inter-integrated sound (I2S)  
2
Two standard I S interfaces (multiplexed with SPI2 and SPI3) are available. They can be  
operated in master or slave mode, in full duplex and simplex communication modes, and  
can be configured to operate with a 16-/32-bit resolution as an input or output channel.  
Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of  
2
the I S interfaces is/are configured in master mode, the master clock can be output to the  
external DAC/CODEC at 256 times the sampling frequency.  
All I2Sx can be served by the DMA controller.  
Note:  
For I2S2 full-duplex mode, I2S2_CK and I2S2_WS signals can be used only on GPIO Port  
B and GPIO Port D.  
2.29  
Serial Audio interface (SAI1)  
The serial audio interface (SAI1) is based on two independent audio sub-blocks which can  
operate as transmitter or receiver with their FIFO. Many audio protocols are supported by  
each block: I2S standards, LSB or MSB-justified, PCM/DSP, TDM, AC’97 and SPDIF  
output, supporting audio sampling frequencies from 8 kHz up to 192 kHz. Both sub-blocks  
can be configured in master or in slave mode.  
In master mode, the master clock can be output to the external DAC/CODEC at 256 times of  
the sampling frequency.  
The two sub-blocks can be configured in synchronous mode when full-duplex mode is  
required.  
SAI1 can be served by the DMA controller.  
2.30  
Audio PLL (PLLI2S)  
2
The devices feature an additional dedicated PLL for audio I S and SAI applications. It allows  
2
to achieve error-free I S sampling clock accuracy without compromising on the CPU  
performance, while using USB peripherals.  
2
The PLLI2S configuration can be modified to manage an I S/SAI sample rate change  
without disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces.  
The audio PLL can be programmed with very low error to obtain sampling rates ranging  
from 8 KHz to 192 KHz.  
In addition to the audio PLL, a master clock input pin can be used to synchronize the  
2
I S/SAI flow with an external PLL (or Codec output).  
2.31  
Audio and LCD PLL(PLLSAI)  
An additional PLL dedicated to audio and LCD-TFT is used for SAI1 peripheral in case the  
PLLI2S is programmed to achieve another audio sampling frequency (49.152 MHz or  
11.2896 MHz) and the audio application requires both sampling frequencies simultaneously.  
The PLLSAI is also used to generate the LCD-TFT clock.  
DocID028010 Rev 2  
39/208  
44  
Functional overview  
STM32F479xx  
2.32  
Secure digital input/output interface (SDIO)  
An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System  
Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.  
The interface allows data transfer at up to 48 MHz, and is compliant with the SD Memory  
Card Specification Version 2.0.  
The SDIO Card Specification Version 2.0 is also supported with two different databus  
modes: 1-bit (default) and 4-bit.  
The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack  
of MMC4.1 or previous.  
In addition to SD/SDIO/MMC, this interface is fully compliant with the CE-ATA digital  
protocol Rev1.1.  
2.33  
Ethernet MAC interface with dedicated DMA and IEEE 1588  
support  
The devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for  
ethernet LAN communications through an industry-standard medium-independent interface  
(MII) or a reduced medium-independent interface (RMII). The microcontroller requires an  
external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair,  
fiber, etc.). The PHY is connected to the device MII port using 17 signals for MII or 9 signals  
for RMII, and can be clocked using the 25 MHz (MII) from the microcontroller.  
The devices include the following features:  
Supports 10 and 100 Mbit/s rates  
Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM  
and the descriptors (see the STM32F4xx reference manual for details)  
Tagged MAC frame support (VLAN support)  
Half-duplex (CSMA/CD) and full-duplex operation  
MAC control sublayer (control frames) support  
32-bit CRC generation and removal  
Several address filtering modes for physical and multicast address (multicast and  
group addresses)  
32-bit status code for each transmitted or received frame  
Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the  
receive FIFO are both 2 Kbytes.  
Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008  
(PTP V2) with the time stamp comparator connected to the TIM2 input  
Triggers interrupt when system time becomes greater than target time  
2.34  
Controller area network (bxCAN)  
The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1  
Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as  
extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive  
40/208  
DocID028010 Rev 2  
STM32F479xx  
Functional overview  
FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one  
CAN is used). 256 bytes of SRAM are allocated for each CAN.  
2.35  
Universal serial bus on-the-go full-speed (OTG_FS)  
The device embeds an USB OTG full-speed device/host/OTG peripheral with integrated  
transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and  
with the OTG 2.0 specification. It has software-configurable endpoint setting and supports  
suspend/resume. The USB OTG controller requires a dedicated 48 MHz clock that is  
generated by a PLL connected to the HSE oscillator.  
The major features are:  
Combined Rx and Tx FIFO size of 1.28 KB with dynamic FIFO sizing  
Supports the session request protocol (SRP) and host negotiation protocol (HNP)  
1 bidirectional control endpoint + 5 IN endpoints + 5 OUT endpoints  
12 host channels with periodic OUT support  
Software configurable to OTG1.3 and OTG2.0 modes of operation  
USB 2.0 LPM (Link Power Management) support  
Internal FS OTG PHY support  
HNP/SNP/IP inside (no need for any external resistor)  
For OTG/Host modes, a power switch is needed in case bus-powered devices are  
connected  
2.36  
Universal serial bus on-the-go high-speed (OTG_HS)  
The device embeds a USB OTG high-speed (up to 480 Mb/s) device/host/OTG peripheral.  
The USB OTG HS supports both full-speed and high-speed operations. It integrates the  
transceivers for full-speed operation (12 MB/s) and features a UTMI low-pin interface (ULPI)  
for high-speed operation (480 MB/s). When using the USB OTG HS in HS mode, an  
external PHY device connected to the ULPI is required.  
The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG  
2.0 specification. It has software-configurable endpoint setting and supports  
suspend/resume. The USB OTG controller requires a dedicated 48 MHz clock that is  
generated by a PLL connected to the HSE oscillator.  
DocID028010 Rev 2  
41/208  
44  
Functional overview  
STM32F479xx  
The major features are:  
Combined Rx and Tx FIFO size of 4 KB with dynamic FIFO sizing  
Supports the session request protocol (SRP) and host negotiation protocol (HNP)  
8 bidirectional endpoints  
16 host channels with periodic OUT support  
Software configurable to OTG1.3 and OTG2.0 modes of operation  
USB 2.0 LPM (Link Power Management) support  
Internal FS OTG PHY support  
External HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is  
connected to the microcontroller ULPI port through 12 signals. It can be clocked using  
the 60 MHz output.  
Internal USB DMA  
HNP/SNP/IP inside (no need for any external resistor)  
for OTG/Host modes, a power switch is needed in case bus-powered devices are  
connected  
2.37  
Digital camera interface (DCMI)  
The devices embed a camera interface that can connect with camera modules and CMOS  
sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera  
interface can sustain a data transfer rate up to 54 Mbyte/s at 54 MHz. It features:  
Programmable polarity for the input pixel clock and synchronization signals  
Parallel data communication can be 8-, 10-, 12- or 14-bit  
Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2  
progressive video, RGB 565 progressive video or compressed data (like JPEG)  
Supports continuous mode or snapshot (a single frame) mode  
Capability to automatically crop the image black & white.  
2.38  
Cryptographic accelerator  
The devices embed a cryptographic accelerator. This cryptographic accelerator provides a  
set of hardware acceleration for the advanced cryptographic algorithms usually needed to  
provide confidentiality, authentication, data integrity and non repudiation when exchanging  
messages with a peer.  
These algorithms consists of:  
Encryption/Decryption  
DES/TDES (data encryption standard/triple data encryption standard): ECB  
(electronic codebook) and CBC (cipher block chaining) chaining algorithms, 64-  
,128- or 192-bit key  
AES (advanced encryption standard): ECB, CBC, GCM, CCM, and CTR (counter  
mode) chaining algorithms, 128, 192 or 256-bit key  
42/208  
DocID028010 Rev 2  
STM32F479xx  
Functional overview  
Universal hash  
SHA-1 and SHA-2 (secure hash algorithms)  
MD5  
HMAC  
The cryptographic accelerator supports DMA request generation.  
2.39  
2.40  
Random number generator (RNG)  
All devices embed an RNG that delivers 32-bit random numbers generated by an integrated  
analog circuit.  
General-purpose input/outputs (GPIOs)  
Each of the GPIO pins can be configured by software as output (push-pull or open-drain,  
with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down)  
or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog  
alternate functions. All GPIOs are high-current-capable and have speed selection to better  
manage internal noise, power consumption and electromagnetic emission.  
The I/O configuration can be locked if needed by following a specific sequence in order to  
avoid spurious writing to the I/Os registers.  
Fast I/O handling allowing maximum I/O toggling up to 90 MHz.  
2.41  
Analog-to-digital converters (ADCs)  
Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16  
external channels, performing conversions in the single-shot or scan mode. In scan mode,  
automatic conversion is performed on a selected group of analog inputs.  
Additional logic functions embedded in the ADC interface allow:  
Simultaneous sample and hold  
Interleaved sample and hold  
The ADC can be served by the DMA controller. An analog watchdog feature allows very  
precise monitoring of the converted voltage of one, some or all selected channels. An  
interrupt is generated when the converted voltage is outside the programmed thresholds.  
To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1,  
TIM2, TIM3, TIM4, TIM5, or TIM8 timer.  
2.42  
Temperature sensor  
The temperature sensor has to generate a voltage that varies linearly with temperature. The  
conversion range is between 1.7 V and 3.6 V. The temperature sensor is internally  
connected to the same input channel as V , ADC1_IN18, which is used to convert the  
BAT  
sensor output voltage into a digital value. When the temperature sensor and V  
BAT  
conversion are enabled at the same time, only V  
conversion is performed.  
BAT  
DocID028010 Rev 2  
43/208  
44  
Functional overview  
STM32F479xx  
As the offset of the temperature sensor varies from chip to chip due to process variation, the  
internal temperature sensor is mainly suitable for applications that detect temperature  
changes instead of absolute temperatures. If an accurate temperature reading is needed,  
then an external temperature sensor part should be used.  
2.43  
Digital-to-analog converter (DAC)  
The two 12-bit buffered DAC channels can be used to convert two digital signals into two  
analog voltage signal outputs.  
This dual digital Interface supports the following features:  
two DAC converters: one for each output channel  
8-bit or 10-bit monotonic output  
left or right data alignment in 12-bit mode  
synchronized update capability  
noise-wave generation  
triangular-wave generation  
dual DAC channel independent or simultaneous conversions  
DMA capability for each channel  
external triggers for conversion  
input voltage reference V  
REF+  
Eight DAC trigger inputs are used in the device. The DAC channels are triggered through  
the timer update outputs that are also connected to different DMA streams.  
2.44  
2.45  
Serial wire JTAG debug port (SWJ-DP)  
The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug  
port that enables either a serial wire debug or a JTAG probe to be connected to the target.  
Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could  
be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with  
SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to  
switch between JTAG-DP and SW-DP.  
Embedded Trace Macrocell™  
The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data  
flow inside the CPU core by streaming compressed data at a very high rate from the  
STM32F47x through a small number of ETM pins to an external hardware trace port  
analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or  
any other high-speed channel. Real-time instruction and data flow activity can be recorded  
and then formatted for display on the host computer that runs the debugger software. TPA  
hardware is commercially available from common development tool vendors.  
The Embedded Trace Macrocell operates with third party debugger software tools.  
44/208  
DocID028010 Rev 2  
STM32F479xx  
Pinouts and pin description  
3
Pinouts and pin description  
Figure 13. STM32F47x WLCSP168 pinout  
ꢅꢂ  
ꢅꢅ  
ꢅꢇ  
3,ꢈ  
9''  
3(ꢇ  
3%ꢈ  
3%ꢀ  
9''  
3*ꢅꢂ  
3'ꢈ  
966  
3'ꢅ  
3$ꢅꢆ  
3,ꢂ  
$
%
&
'
(
)
3%ꢆ  
3%ꢄ  
966  
3*ꢅꢇ  
3*ꢃ  
3*ꢅꢅ  
3'ꢆ  
3'ꢀ  
3'ꢇ  
3$ꢅꢂ  
9''  
3'ꢂ  
3&ꢅꢇ  
3,ꢇ  
3'ꢄ  
3&ꢅꢂ  
3$ꢅꢄ  
3+ꢅꢆ  
3&ꢁ  
3&ꢅꢅ  
3,ꢅ  
3,ꢀ  
9''  
9&$3ꢂ  
3$ꢃ  
3+ꢅꢀ  
966  
3$ꢅꢀ  
3$ꢁ  
3(ꢆ  
9%$7  
3&ꢅꢀ  
3&ꢅꢆ  
966  
3,ꢉ  
3(ꢄ  
3(ꢉ  
3&ꢅꢄ  
3,ꢅꢅ  
966  
3,ꢆ  
3%ꢁ  
3(ꢅ  
3'5B  
21  
3*ꢅꢆ  
3*ꢅꢀ  
%227ꢇ  
3+ꢅꢄ  
3$ꢅꢇ  
3&ꢉ  
3,ꢄ  
3'ꢉ  
3(ꢀ  
3,ꢅꢇ  
3%ꢃ  
3(ꢂ  
3,ꢃ  
9''  
86%  
3$ꢅꢅ  
3&ꢃ  
966  
3%ꢉ  
3&ꢈ  
3*ꢁ  
3*ꢂ  
3*ꢀ  
3*ꢉ  
3*ꢄ  
3*ꢆ  
3)ꢂ  
9''  
3)ꢇ  
*
'6,  
'6,  
966  
'6,  
3)ꢅꢆ  
3$ꢈ  
966  
3*ꢈ  
3*ꢇ  
3%ꢅꢂ  
3(ꢅꢄ  
3'ꢅꢀ  
3'ꢅꢅ  
+267  
B'ꢅ3  
+267  
B'ꢅ1  
3)ꢆ  
3)ꢀ  
966  
3)ꢅ  
3)ꢄ  
1567  
3&ꢇ  
+
-
'6,  
+267  
B'ꢇ1  
'6,  
+267  
B&.1  
'6,  
+267  
B&.3  
3)ꢅꢀ  
9''  
'6,  
9&$3  
'6,  
9''ꢅꢂ  
'6,  
3+ꢆ  
3$ꢆ  
3)ꢅꢅ  
3)ꢅꢄ  
3(ꢁ  
3(ꢃ  
3(ꢅꢀ  
3(ꢅꢂ  
3(ꢅꢅ  
3(ꢅꢇ  
3%ꢅꢅ  
3+ꢃ  
3%ꢅꢀ  
3'ꢁ  
+267  
B'ꢇ3  
3+ꢅ  
3&ꢅ  
3+ꢇ  
966$  
3+ꢂ  
3)ꢅꢇ  
3$ꢇ  
3+ꢄ  
3$ꢀ  
3%ꢇ  
3$ꢅ  
3$ꢂ  
3$ꢄ  
3%ꢅ  
3%ꢂ  
.
/
9''  
'6,  
3'ꢅꢄ  
3'ꢅꢇ  
3+ꢅꢅ  
9''  
3'ꢅꢆ  
3'ꢅꢂ  
3%ꢅꢆ  
3+ꢅꢂ  
3)ꢅꢂ  
966  
9''  
3+ꢁ  
3+ꢅꢇ  
9&$3ꢅ  
966  
966  
3'ꢃ  
9''$  
3+ꢀ  
0
1
3
3(ꢈ  
3%ꢅꢇ  
3(ꢅꢆ  
966  
3$ꢉ  
3*ꢅ  
3%ꢅꢄ  
9''  
06Yꢀꢆꢈꢂꢃ9ꢂ  
1. The above figure shows the package bottom view.  
DocID028010 Rev 2  
45/208  
79  
Pinouts and pin description  
STM32F479xx  
Figure 14. STM32F47x UFBGA169 ballout  
ꢅꢇ  
ꢅꢅ  
ꢅꢂ  
ꢅꢀ  
3,ꢉ  
3,ꢆꢍꢍ  
3(ꢅꢍꢍ  
3(ꢇꢍꢍ  
%227ꢇ  
3*ꢅꢀ  
3*ꢅꢂ  
3'ꢈ  
3&ꢅꢂꢍꢍ  
3$ꢅꢄ  
3$ꢅꢀ  
3$ꢅꢂ  
3$ꢅꢅ  
$
%
&
'
(
)
*
+
-
3,ꢈ  
3(ꢂꢍꢍ  
3,ꢄꢍꢍ  
3%ꢈ  
3%ꢀ  
3*ꢅꢅ  
3'ꢆ  
3'ꢂ  
3&ꢅꢅ  
3$,ꢀ  
3$ꢅꢆ  
3,ꢂ  
3,ꢇ  
3'5B  
21  
3(ꢀ  
3(ꢆ  
3(ꢄ  
3(ꢉ  
3,ꢃ  
3%ꢃ  
3%ꢁ  
3,ꢅꢇ  
3%ꢉ  
3%ꢆ  
3'ꢄ  
3%ꢄ  
3*ꢃ  
3'ꢅ  
3'ꢉ  
3'ꢀ  
3$ꢁ  
3$ꢃ  
3'ꢇ  
3+ꢅꢀ  
3$ꢅꢇ  
3&ꢅꢇ  
9''  
3&ꢁ  
3,ꢅ  
966  
3*ꢈ  
3+ꢅꢆ  
9&$3ꢂ  
3*ꢆ  
3+ꢅꢄ  
3*ꢁ  
3*ꢄ  
9''  
966  
3)ꢇ  
3)ꢅ  
3&ꢅꢄ  
9%$7  
3*ꢅꢇ  
3&ꢅꢆ  
3+ꢅ  
3,ꢅꢅ  
3+ꢇ  
9''  
966  
3)ꢂ  
3*ꢅꢆ  
3(ꢁ  
9''  
966  
966  
9''  
3+ꢁ  
3&ꢉ  
966  
3&ꢈ  
3&ꢃ  
3+ꢅꢂ  
966  
9''  
3'ꢁ  
3*ꢉ  
3*ꢀ  
3*ꢂ  
'6,  
+267B  
'ꢅ3  
'6,  
+267B  
'ꢅ1  
9''  
86%  
3&ꢅꢀ  
'6,  
+267B  
&.3  
'6,B  
+267  
&.1  
3(ꢃ  
3(ꢅꢇ  
966  
3+ꢃ  
966'6,  
1567  
966$  
3$ꢂ  
3)ꢀ  
9''  
3$ꢈ  
3)ꢄ  
3)ꢆ  
9''$  
3$ꢀ  
3)ꢅꢄ  
3$ꢇ  
3%ꢅ  
3%ꢂ  
3)ꢅꢇ  
966  
'6,  
+267B  
'ꢇ3  
'6,  
+267B  
'ꢇ1  
9''ꢅꢂ  
'6,  
966  
9''  
9''  
3(ꢅꢀ  
3(ꢅꢄ  
3(ꢅꢆ  
3+ꢅꢇ  
3+ꢅꢅ  
9''  
9&$3  
'6,  
9''  
'6,  
3$ꢅ  
3+ꢀ  
3(ꢅꢅ  
3(ꢅꢂ  
966'6,  
3'ꢅꢇ  
.
/
3+ꢂ  
3+ꢆ  
3'ꢅꢄ  
3'ꢅꢀ  
3%ꢅꢄ  
3'ꢅꢆ  
3'ꢅꢂ  
3%ꢅꢇ  
3%ꢅꢅ  
3&ꢇ  
3&ꢅ  
3+ꢄ  
3$ꢄ  
3$ꢆ  
3$ꢉ  
3)ꢅꢀ  
3%ꢇ  
3)ꢅꢅ  
3)ꢅꢂ  
3)ꢅꢆ  
3*ꢇ  
3*ꢅ  
3(ꢈ  
966  
3'ꢃ  
3'ꢅꢅ  
3%ꢅꢀ  
0
1
9&$3ꢅ  
3%ꢅꢂ  
3%ꢅꢆ  
06Yꢀꢆꢈꢀꢇ9ꢂ  
1. The above figure shows the package top view.  
46/208  
DocID028010 Rev 2  
STM32F479xx  
Pinouts and pin description  
Figure 15. STM32F47x UFBGA176 ballout  
   
   
   
   
   
   
$
%
3 (   
3 (   
3 (   
3(  
3 (   
3 %   
3 %   
3 *    
3 *    
3 *    
3 *    
3%  
3 %   
3 *    
3 '   
3 '   
3 &    
3 '   
3 $    
3 &    
3 $    
3 &    
3 $ ꢅꢀ  
3 $    
3 %   
3 ,  
3 %   
9''  
966  
3 %   
3(ꢉ  
3 ,  
3 *    
9''  
3 (   
3 ,ꢈ  
3'5  
B21  
3$ꢅꢅ  
3$ꢅꢇ  
9%$7  
1&  
3,ꢅ  
9''  
9''  
3 *   
3 '   
3 '   
3 '   
3 '   
3 '   
3 ,ꢀ  
&
'
9''ꢅꢂ  
'6,  
3 & ꢅꢀ  
%227ꢇ  
9 6 6  
9 6 6  
9 6 6  
3,ꢁ  
3 ,  
3,ꢅꢇ  
9 ' '  
3 ,  
'6,  
+267B  
'ꢅ3  
'6,  
+267B  
'ꢅ1  
3 ,ꢇ  
3$  
3$  
3 & ꢅꢄ  
3 & ꢅꢆ  
3 )   
9 6 6  
(
)
3 ,ꢅ   
3 +   
966  
966  
966  
966  
966  
9 66  
9 66  
9&$3ꢂ  
9 ' '  
3 &   
3 &   
3 &   
3 &   
3 *   
966  
966  
966  
966  
966  
966  
966  
966  
966  
966  
*
+
3 +   
3+ꢅ  
9 6 6  
3 )   
9 ''  
3)ꢅ  
3 +   
3 +   
966  
'6,  
9''B  
86%  
3 *   
3 *   
9''  
'6,  
3 )ꢄ  
3)ꢆ  
1567  
3 )   
966  
966  
966  
966  
966  
966  
966  
966  
966  
966  
3 )   
3 )   
3 +   
9 ''  
9''  
-
9&$3  
'6,  
.
3 *   
3 *   
3'ꢅꢆ  
3'ꢅꢄ  
3 *   
3 *   
'6,  
+267B  
&.3  
'6,  
+267B  
&.1  
%<3$66  
B5(*  
/
3)ꢃ  
3)ꢁ  
3&ꢅ  
3 )    
'6,  
+267B  
'ꢇ3  
'6,  
+267B  
'ꢇ1  
9&$3  
Bꢅ  
3 +   
966  
966  
3'ꢅꢀ  
3%ꢂ  
3)ꢅꢀ  
3)ꢅꢂ  
3)ꢅꢅ  
3*ꢅ  
0
1
9 6 6 $  
3 &   
3 &   
3 &   
9 5 ( )   
3(ꢅꢀ  
3(ꢅꢄ  
3(ꢅꢆ  
3$ꢅ  
3 $   
3$ꢀ  
3$ꢇ  
3$ꢉ  
3$ꢈ  
3 *   
3 )    
3)ꢅꢄ  
9 ''  
9 ''  
9 ''  
3 (    
3(ꢅꢂ  
3 +   
3 '    
3 %    
3 '    
3 '   
3 ' ꢅꢇ  
3 '   
3 $   
3 $   
3 &   
3 &   
95()ꢌ  
9''$  
3(  
3(  
3%    
3
3(ꢅꢇ  
3(ꢈ  
3%ꢅ  
3%ꢇ  
3 %    
3 % ꢅꢄ  
3 % ꢅꢆ  
3%ꢅꢇ  
5
06ꢀꢃꢄꢇꢇ9ꢂ  
1. The above figure shows the package top view.  
DocID028010 Rev 2  
47/208  
79  
 
Pinouts and pin description  
STM32F479xx  
Figure 16. STM32F47x LQFP176 pinout  
3(ꢂ  
3(ꢀ  
3(ꢄ  
3(ꢆ  
3(ꢉ  
9%$7  
3,ꢁ  
3&ꢅꢀ  
3&ꢅꢄ  
3&ꢅꢆ  
3,ꢃ  
ꢅꢀꢂ  
3,ꢇ  
ꢅꢀꢅ  
ꢅꢀꢇ  
ꢅꢂꢃ  
ꢅꢂꢁ  
ꢅꢂꢈ  
ꢅꢂꢉ  
ꢅꢂꢆ  
ꢅꢂꢄ  
ꢅꢂꢀ  
ꢅꢂꢂ  
ꢅꢂꢅ  
ꢅꢂꢇ  
ꢅꢅꢃ  
ꢅꢅꢁ  
ꢅꢅꢈ  
ꢅꢅꢉ  
ꢅꢅꢆ  
ꢅꢅꢄ  
ꢅꢅꢀ  
ꢅꢅꢂ  
ꢅꢅꢅ  
ꢅꢅꢇ  
ꢅꢇꢃ  
ꢅꢇꢁ  
9''  
966  
9&$3ꢂ  
3$ꢅꢀꢍꢍ  
3$ꢅꢂ  
3$ꢅꢅ  
3$ꢅꢇ  
3$ꢃ  
ꢅꢇ  
ꢅꢅ  
ꢅꢂ  
ꢅꢀ  
ꢅꢄ  
ꢅꢆ  
ꢅꢉ  
ꢅꢈ  
ꢅꢁ  
ꢅꢃ  
ꢂꢇ  
ꢂꢅ  
ꢂꢂ  
ꢂꢀ  
ꢂꢄ  
ꢂꢆ  
ꢂꢉ  
ꢂꢈ  
ꢂꢁ  
ꢂꢃ  
ꢀꢇ  
ꢀꢅ  
ꢀꢂ  
ꢀꢀ  
ꢀꢄ  
ꢀꢆ  
ꢀꢉ  
3$ꢁ  
3&ꢃ  
3,ꢅꢇ  
3,ꢅꢅ  
966  
9''  
3)ꢇ  
3&ꢁ  
3&ꢈ  
3&ꢉ  
9''86%  
966  
3)ꢅ  
3*ꢁ  
3)ꢂ  
3*ꢈ  
3)ꢀ  
3*ꢉ  
3)ꢄ  
3*ꢆ  
3)ꢆ  
3*ꢄ  
966  
9''  
3)ꢉ  
3*ꢀ  
/4)3ꢅꢈꢉ  
3*ꢂ  
966'6,  
'6,+267B'ꢅ1  
'6,+267B'ꢅ3  
9''ꢅꢂ'6,  
'6,+267B&.1  
'6,+267B&.3  
966'6,  
'6,+267B'ꢇ1  
'6,+267B'ꢇ3  
9&$3'6,  
9'''6,  
3'ꢅꢆꢍꢍ  
3'ꢅꢄ  
3)ꢈ  
3)ꢁ  
ꢅꢇꢈ  
ꢅꢇꢉ  
ꢅꢇꢆ  
ꢅꢇꢄ  
ꢅꢇꢀ  
ꢅꢇꢂ  
ꢅꢇꢅ  
ꢅꢇꢇ  
ꢃꢃ  
3)ꢃ  
3)ꢅꢇ  
3+ꢇ  
3+ꢅ  
1567  
3&ꢇ  
3&ꢅ  
3&ꢂ  
3&ꢀ  
9''  
966$  
95()ꢌ  
9''$  
3$ꢇ  
ꢃꢁ  
ꢃꢈ  
ꢀꢈ  
ꢀꢁ  
ꢀꢃ  
ꢄꢇ  
ꢄꢅ  
ꢄꢂ  
ꢄꢀ  
ꢄꢄ  
9''  
ꢃꢉ  
966  
ꢃꢆ  
3'ꢅꢀ  
ꢃꢄ  
3'ꢅꢂ  
ꢃꢀ  
3$ꢅ  
3$ꢂ  
3+ꢂ  
3+ꢀ  
3'ꢅꢅ  
ꢃꢂ  
3'ꢅꢇ  
ꢃꢅ  
3'ꢃ  
3'ꢁ  
ꢃꢇ  
ꢁꢃ  
06ꢀꢀꢁꢈꢇ9ꢀ  
1. The above figure shows the package top view.  
48/208  
DocID028010 Rev 2  
STM32F479xx  
Pinouts and pin description  
Figure 17. STM32F47x LQFP208 pinout  
3(ꢂ  
3(ꢀ  
3(ꢄ  
3(ꢆ  
3(ꢉ  
9%$7  
3,ꢁ  
3&ꢅꢀ  
3&ꢅꢄ  
3&ꢅꢆ  
3,ꢃ  
3,ꢅꢇ  
3,ꢅꢅ  
966  
9''  
3)ꢇ  
3)ꢅ  
3)ꢂ  
ꢅꢆꢉ  
ꢅꢆꢆ  
ꢅꢆꢄ  
ꢅꢆꢀ  
ꢅꢆꢂ  
ꢅꢆꢅ  
ꢅꢆꢇ  
ꢅꢄꢃ  
ꢅꢄꢁ  
ꢅꢄꢈ  
ꢅꢄꢉ  
ꢅꢄꢆ  
ꢅꢄꢄ  
ꢅꢄꢀ  
ꢅꢄꢂ  
ꢅꢄꢅ  
ꢅꢄꢇ  
ꢅꢀꢃ  
ꢅꢀꢁ  
ꢅꢀꢈ  
ꢅꢀꢉ  
ꢅꢀꢆ  
ꢅꢀꢄ  
ꢅꢀꢀ  
ꢅꢀꢂ  
ꢅꢀꢅ  
ꢅꢀꢇ  
ꢅꢂꢃ  
ꢅꢂꢁ  
ꢅꢂꢈ  
ꢅꢂꢉ  
ꢅꢂꢆ  
ꢅꢂꢄ  
ꢅꢂꢀ  
ꢅꢂꢂ  
ꢅꢂꢅ  
ꢅꢂꢇ  
ꢅꢅꢃ  
ꢅꢅꢁ  
ꢅꢅꢈ  
ꢅꢅꢉ  
ꢅꢅꢆ  
ꢅꢅꢄ  
ꢅꢅꢀ  
ꢅꢅꢂ  
ꢅꢅꢅ  
ꢅꢅꢇ  
ꢅꢇꢃ  
ꢅꢇꢁ  
ꢅꢇꢈ  
ꢅꢇꢉ  
ꢅꢇꢆ  
3,ꢂ  
3,ꢅ  
3,ꢇ  
3+ꢅꢆ  
3+ꢅꢄ  
3+ꢅꢀ  
9''  
966  
9&$3ꢂꢍꢍ  
3$ꢅꢀ  
ꢅꢇ  
ꢅꢅ  
ꢅꢂ  
ꢅꢀ  
ꢅꢄ  
ꢅꢆ  
ꢅꢉ  
ꢅꢈ  
ꢅꢁ  
ꢅꢃ  
ꢂꢇ  
ꢂꢅ  
ꢂꢂ  
ꢂꢀ  
ꢂꢄ  
ꢂꢆ  
ꢂꢉ  
ꢂꢈ  
ꢂꢁ  
ꢂꢃ  
ꢀꢇ  
ꢀꢅ  
ꢀꢂ  
ꢀꢀ  
ꢀꢄ  
ꢀꢆ  
ꢀꢉ  
ꢀꢈ  
ꢀꢁ  
ꢀꢃ  
ꢄꢇ  
ꢄꢅ  
ꢄꢂ  
ꢄꢀ  
ꢄꢄ  
ꢄꢆ  
ꢄꢉ  
ꢄꢈ  
ꢄꢁ  
ꢄꢃ  
ꢆꢇ  
ꢆꢅ  
ꢆꢂ  
3$ꢅꢂ  
3$ꢅꢅ  
3$ꢅꢇ  
3$ꢃ  
3$ꢁ  
3&ꢃ  
3&ꢁ  
3&ꢈ  
3,ꢅꢂ  
3,ꢅꢀ  
3,ꢅꢄ  
3)ꢀ  
3&ꢉ  
9''86%  
966  
3*ꢁ  
3)ꢄ  
3*ꢈ  
3)ꢆ  
3*ꢉ  
966  
9''  
3)ꢉ  
3*ꢆ  
3*ꢄ  
/4)3ꢂꢇꢁ  
3*ꢀ  
3)ꢈ  
3*ꢂ  
3)ꢁ  
966'6,  
'6,+267B'ꢅ1  
'6,+267B'ꢅ3  
9''ꢅꢂ'6,  
'6,+267B&.1  
'6,+267B&.3  
966'6,  
'6,+267B'ꢇ1  
'6,+267B'ꢇ3  
9&$3'6,  
9'''6,  
3'ꢅꢆ  
3)ꢃ  
3)ꢅꢇ  
3+ꢇ  
3+ꢅ  
1567  
3&ꢇ  
3&ꢅ  
3&ꢂ  
3&ꢀ  
9''  
966$  
95()ꢌ  
9''$  
3$ꢇ  
3'ꢅꢄ  
9''  
966  
3$ꢅ  
3$ꢂ  
3'ꢅꢀ  
3'ꢅꢂ  
3+ꢂ  
3+ꢀ  
3+ꢄ  
3+ꢆ  
3$ꢀ  
3'ꢅꢅ  
3'ꢅꢇ  
3'ꢃ  
3'ꢁ  
3%ꢅꢆ  
966  
9''  
3%ꢅꢄ  
3%ꢅꢀ  
06Yꢀꢀꢁꢈꢉ9ꢆ  
1. The above figure shows the package top view.  
DocID028010 Rev 2  
49/208  
79  
Pinouts and pin description  
STM32F479xx  
Figure 18. STM32F47x TFBGA216 ballout  
ꢅꢇ  
ꢅꢅ  
ꢅꢂ  
ꢅꢀ  
ꢅꢄ  
ꢅꢆ  
3(ꢄ  
3(ꢀ  
3(ꢂ  
3(ꢅ  
3*ꢅꢄ  
3(ꢇ  
3%ꢁ  
3%ꢄ  
3%ꢀ  
3'ꢈ  
3%ꢆ  
3&ꢅꢂ  
3$ꢅꢆ  
$
%
3$ꢅꢄ  
3$ꢅꢀ  
3(ꢆ  
3(ꢉ  
3*ꢅꢀ  
3%ꢃ  
3%ꢈ  
3%ꢉ  
3*ꢅꢆ  
3-ꢅꢂ  
3'ꢉ  
3'ꢇ  
3&ꢅꢅ  
3&ꢅꢇ  
3$ꢅꢂ  
3*ꢅꢅ  
3-ꢅꢀ  
9%$7  
3&ꢅꢀ  
3&ꢅꢄ  
3&ꢅꢆ  
3,ꢁ  
3)ꢇ  
3)ꢅ  
966  
3,ꢄ  
3,ꢆ  
3.ꢈ  
3,ꢈ  
3.ꢉ  
3,ꢅꢇ  
3.ꢆ  
3,ꢉ  
3*ꢅꢂ  
3.ꢄ  
3*ꢅꢇ  
3.ꢀ  
3-ꢅꢄ  
3*ꢃ  
9''  
966  
3'ꢆ  
3-ꢅꢆ  
9''  
966  
3'ꢀ  
3'ꢄ  
3'ꢅ  
3'ꢂ  
&
'
3,ꢀ  
3,ꢂ  
3,ꢅ  
3$ꢅꢅ  
3$ꢅꢇ  
3+ꢅꢆ  
3'5  
21  
3,ꢅꢂ  
3,ꢅꢅ  
3,ꢃ  
%227ꢇ  
966  
9''  
966  
9''  
966  
9&$3ꢂ  
9''  
3+ꢅꢀ  
3+ꢅꢄ  
3,ꢇ  
3$ꢃ  
3$ꢁ  
(
)
'6,  
+267B  
'ꢅ3  
'6,  
+267Bꢍ  
'ꢅ1  
9''  
9''  
3&ꢃ  
966  
'6,  
9''ꢅꢂ  
'6,  
9'''  
86%  
966  
966  
966  
966  
966  
966  
3&ꢁ  
3*ꢁ  
3*ꢈ  
3&ꢈ  
3&ꢉ  
3*ꢉ  
9''  
9''  
9''  
*
3+ꢇ  
3+ꢅꢍꢍ  
1567  
3)ꢂ  
3)ꢀ  
3,ꢅꢀ  
3,ꢅꢄ  
3,ꢅꢆ  
'6,  
+267B  
&.3  
'6,  
+267B  
&.1  
9''  
'6,  
+
-
3+ꢄ  
3+ꢀ  
'6,  
+267B  
'ꢇ3  
'6,  
+267B  
'ꢇ1  
9''  
3)ꢄꢍꢍ  
3+ꢆ  
9&$3  
'6,  
3)ꢉ  
3)ꢃ  
3)ꢆꢍꢍ  
3)ꢁ  
3+ꢂ  
3&ꢀ  
9''  
966  
966  
966  
9''  
966  
9''  
966  
9''  
966  
9''  
9''  
3'ꢅꢆ  
3%ꢅꢂ  
3'ꢅꢇ  
3'ꢁ  
3)ꢈ  
.
/
3%ꢅꢀ  
3'ꢃ  
%<3$66ꢋ  
5(*  
3)ꢅꢇ  
9&$3ꢅ  
3'ꢅꢄ  
966$  
95()ꢋ  
95()ꢌ  
3&ꢇ  
3$ꢅ  
3$ꢂ  
3$ꢀ  
3&ꢅ  
3$ꢇ  
3$ꢉ  
3&ꢂ  
3$ꢄ  
3$ꢆ  
3%ꢂ  
3&ꢄ  
3&ꢆ  
3)ꢅꢂ  
3)ꢅꢀ  
3)ꢅꢄ  
3-ꢇ  
3*ꢅ  
3*ꢇ  
3-ꢂ  
3)ꢅꢆ  
3-ꢀ  
3-ꢄ  
3(ꢁ  
3(ꢃ  
3'ꢅꢂ  
3'ꢅꢅ  
3(ꢅꢅ  
3(ꢅꢂ  
3'ꢅꢀ  
3*ꢆ  
3*ꢀ  
3*ꢄ  
3*ꢂ  
3+ꢈ  
3+ꢉ  
3-ꢆ  
3+ꢅꢂ  
3+ꢅꢅ  
3+ꢅꢇ  
0
1
3
3+ꢃ  
3(ꢅꢄ  
3)ꢅꢅ  
3%ꢅꢇ  
3+ꢁ  
9''$  
3$ꢈ  
3%ꢅ  
3%ꢇ  
3-ꢅ  
3(ꢈ  
3(ꢅꢇ  
3(ꢅꢆ  
3(ꢅꢀ  
3%ꢅꢅ  
3%ꢅꢄꢍꢍ  
3%ꢅꢆꢍꢍ  
5
06Yꢀꢀꢁꢈꢅ9ꢄ  
1. The above figure shows the package top view.  
50/208  
DocID028010 Rev 2  
STM32F479xx  
Pinouts and pin description  
Table 9. Legend/abbreviations used in the pinout table  
Abbreviation Definition  
Name  
Unless otherwise specified in brackets below the pin name, the pin function during and after  
reset is the same as the actual pin name  
Pin name  
S
I
Supply pin  
Input only pin  
Pin type  
I/O  
FT  
TTa  
B
Input / output pin  
5 V tolerant I/O  
3.3 V tolerant I/O directly connected to analog parts  
Dedicated BOOT0 pin  
I/O structure  
Notes  
RST  
Bidirectional reset pin with weak pull-up resistor  
Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset  
Functions selected through GPIOx_AFR registers  
Alternate  
functions  
Additional  
functions  
Functions directly selected/enabled through peripheral registers  
DocID028010 Rev 2  
51/208  
79  
Pinouts and pin description  
STM32F479xx  
Table 10. STM32F479xx pin and ball definitions  
Pin Number  
Pin name  
(function after  
reset)(1)  
Additional  
functions  
Alternate functions  
TRACECLK, SPI4_SCK,  
SAI1_MCLK_A,  
B2  
F9  
A2  
1
1
A3  
PE2  
I/O FT  
-
QUADSPI_BK1_IO2,  
ETH_MII_TXD3,  
-
FMC_A23, EVENTOUT  
TRACED0, SAI1_SD_B,  
FMC_A19, EVENTOUT  
C1 E10 A1  
C2 C11 B1  
2
3
2
3
A2  
A1  
PE3  
PE4  
I/O FT  
I/O FT  
-
-
-
-
TRACED1, SPI4_NSS,  
SAI1_FS_A, FMC_A20,  
DCMI_D4, LCD_B0,  
EVENTOUT  
TRACED2, TIM9_CH1,  
SPI4_MISO,  
D1 B12 B2  
4
5
4
5
B1  
B2  
PE5  
PE6  
I/O FT  
I/O FT  
-
-
SAI1_SCK_A, FMC_A21,  
DCMI_D6, LCD_G0,  
EVENTOUT  
-
-
TRACED3, TIM9_CH2,  
SPI4_MOSI, SAI1_SD_A,  
FMC_A22, DCMI_D7,  
LCD_G1, EVENTOUT  
D2 D11 B3  
-
-
-
-
-
-
-
-
-
-
G6  
F5  
C1  
VSS  
VDD  
VBAT  
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
E5 C12 C1  
6
6
RTC_TAMP1/  
RTC_TAMP2/  
RTC_TS  
(2)  
(3)  
-
-
D2  
7
8
9
7
8
9
C2  
D1  
E1  
PI8  
I/O FT  
I/O FT  
I/O FT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
RTC_TAMP1/  
RTC_TS/  
RTC_OUT  
(2)  
(3)  
G4 D12 D1  
E1 E11 E1  
F1 E12 F1  
PC13  
PC14-  
OSC32_IN  
(PC14)  
(2)  
(3)  
OSC32_IN  
PC15-  
OSC32_OUT I/O FT  
(PC15)  
(2)  
(3)  
10  
-
10  
-
F1  
G5  
E4  
EVENTOUT  
-
OSC32_OUT  
-
-
-
VDD  
S
-
-
-
-
CAN1_RX, FMC_D30,  
LCD_VSYNC,  
E2  
G9  
D3  
11  
11  
PI9  
I/O FT  
EVENTOUT  
52/208  
DocID028010 Rev 2  
STM32F479xx  
Pinouts and pin description  
Table 10. STM32F479xx pin and ball definitions (continued)  
Pin Number  
Pin name  
(function after  
reset)(1)  
Additional  
functions  
Alternate functions  
ETH_MII_RX_ER,  
FMC_D31, LCD_HSYNC,  
EVENTOUT  
E4 F10 E3  
F2 F11 E4  
12  
13  
12  
13  
D5  
F3  
PI10  
PI11  
I/O FT  
I/O FT  
-
-
LCD_G6,  
OTG_HS_ULPI_DIR,  
EVENTOUT  
F5 F12 F2  
F4 G11 F3  
14  
15  
14  
15  
F2  
F4  
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
I2C2_SDA, FMC_A0,  
EVENTOUT  
F3 G10 E2  
G3 H10 H3  
G5 G12 H2  
16  
17  
18  
-
16  
17  
18  
19  
20  
D2  
E2  
G2  
E3  
G3  
PF0  
PF1  
PF2  
PI12  
PI13  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
-
I2C2_SCL, FMC_A1,  
EVENTOUT  
I2C2_SMBA, FMC_A2,  
EVENTOUT  
LCD_HSYNC,  
EVENTOUT  
-
-
-
LCD_VSYNC,  
EVENTOUT  
-
-
-
-
-
-
-
-
21  
22  
23  
24  
25  
26  
H3  
H2  
J2  
PI14  
PF3  
PF4  
PF5  
VSS  
VDD  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
LCD_CLK, EVENTOUT  
-
(4)  
(4)  
(4)  
H4 H11 J2  
L4 J10 J3  
H3 H12 K3  
19  
20  
21  
FMC_A3, EVENTOUT  
ADC3_IN9  
FMC_A4, EVENTOUT  
ADC3_IN14  
K3  
H6  
H5  
FMC_A5, EVENTOUT  
ADC3_IN15  
G7 J11 G2 22  
G8 J12 G3 23  
S
S
-
-
-
-
-
-
-
-
TIM10_CH1, SPI5_NSS,  
SAI1_SD_B, UART7_Rx,  
QUADSPI_BK1_IO3,  
EVENTOUT  
(4)  
-
-
-
-
K2  
K1  
24  
25  
27  
28  
K2  
K1  
PF6  
PF7  
I/O FT  
I/O FT  
ADC3_IN4  
ADC3_IN5  
TIM11_CH1, SPI5_SCK,  
SAI1_MCLK_B,  
UART7_Tx,  
(4)  
QUADSPI_BK1_IO2,  
EVENTOUT  
SPI5_MISO,  
SAI1_SCK_B,  
TIM13_CH1,  
(4)  
-
-
L3  
26  
29  
L3  
PF8  
I/O FT  
ADC3_IN6  
QUADSPI_BK1_IO0,  
EVENTOUT  
DocID028010 Rev 2  
53/208  
79  
Pinouts and pin description  
STM32F479xx  
Table 10. STM32F479xx pin and ball definitions (continued)  
Pin Number  
Pin name  
(function after  
reset)(1)  
Additional  
functions  
Alternate functions  
SPI5_MOSI, SAI1_FS_B,  
TIM14_CH1,  
QUADSPI_BK1_IO1,  
EVENTOUT  
(4)  
-
-
L2  
27  
28  
30  
L2  
PF9  
I/O FT  
ADC3_IN7  
ADC3_IN8  
QUADSPI_CLK,  
DCMI_D11, LCD_DE,  
EVENTOUT  
(4)  
H1 K10 L1  
31  
32  
L1  
PF10  
I/O FT  
I/O FT  
PH0-OSC_IN  
(PH0)  
G2 K11 G1 29  
G1  
-
EVENTOUT  
EVENTOUT  
OSC_IN  
PH1-OSC_OUT  
(PH1)  
G1 K12 H1  
30  
31  
33  
34  
H1  
J1  
I/O FT  
-
-
OSC_OUT  
H2  
M1  
H9  
J9  
J1  
NRST  
I/O RST  
OTG_HS_ULPI_STP,  
FMC_SDNWE, LCD_R5, ADC123_IN10  
EVENTOUT  
(4)  
M2 32  
35  
36  
M2  
M3  
PC0  
I/O FT  
I/O FT  
TRACED0,  
SPI2_MOSI/I2S2_SD,  
SAI1_SD_A, ETH_MDC,  
(4)  
N1 L12 M3 33  
PC1  
PC2  
ADC123_IN11  
EVENTOUT  
SPI2_MISO, I2S2ext_SD,  
OTG_HS_ULPI_DIR,  
(4)  
(4)  
-
-
-
-
M4 34  
37  
38  
M4  
L4  
I/O FT  
ETH_MII_TXD2,  
FMC_SDNE0,  
EVENTOUT  
ADC123_IN12  
ADC123_IN13  
SPI2_MOSI/I2S2_SD,  
OTG_HS_ULPI_NXT,  
ETH_MII_TX_CLK,  
FMC_SDCKE0,  
M5 35  
PC3  
I/O FT  
EVENTOUT  
-
-
-
-
-
-
36  
-
39  
-
J5  
J6  
VDD  
VSS  
S
S
S
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
J2  
-
L11 M1 37  
40  
-
M1  
N1  
P1  
R1  
VSSA  
VREF-  
VREF+  
VDDA  
-
-
N1  
P1  
-
-
38  
39  
41  
42  
J3 M12 R1  
TIM2_CH1/TIM2_ETR,  
TIM5_CH1, TIM8_ETR,  
USART2_CTS,  
PA0-  
WKUP(PA0)  
ADC123_IN0,  
WKUP  
(5)  
J5  
L10 N3  
40  
43  
N3  
I/O FT  
UART4_TX,  
ETH_MII_CRS,  
EVENTOUT  
54/208  
DocID028010 Rev 2  
STM32F479xx  
Pinouts and pin description  
Table 10. STM32F479xx pin and ball definitions (continued)  
Pin Number  
Pin name  
(function after  
reset)(1)  
Additional  
functions  
Alternate functions  
TIM2_CH2, TIM5_CH2,  
USART2_RTS,  
UART4_RX,  
(4)  
(4)  
K1  
K2  
K9  
L9  
N2  
P2  
41  
44  
N2  
PA1  
I/O FT  
QUADSPI_BK1_IO3,  
ETH_MII_RX_CLK/ETH_  
RMII_REF_CLK, LCD_R2,  
EVENTOUT  
ADC123_IN1  
TIM2_CH3, TIM5_CH3,  
TIM9_CH1, USART2_TX,  
ETH_MDIO, LCD_R1,  
EVENTOUT  
42  
43  
45  
46  
47  
P2  
K4  
J4  
PA2  
PH2  
PH3  
I/O FT  
I/O FT  
I/O FT  
ADC123_IN2  
QUADSPI_BK2_IO0,  
ETH_MII_CRS,  
FMC_SDCKE0, LCD_R0,  
EVENTOUT  
L2 M11 F4  
-
-
-
-
QUADSPI_BK2_IO1,  
ETH_MII_COL,  
FMC_SDNE0, LCD_R1,  
EVENTOUT  
L1 N12 G4 44  
I2C2_SCL, LCD_G5,  
OTG_HS_ULPI_NXT,  
LCD_G4, EVENTOUT  
M2 M10 H4  
45  
46  
48  
49  
H4  
J3  
PH4  
PH5  
I/O FT  
I/O FT  
-
-
-
-
I2C2_SDA, SPI5_NSS,  
FMC_SDNWE,  
L3  
K8  
J4  
EVENTOUT  
TIM2_CH4, TIM5_CH4,  
TIM9_CH2, USART2_RX,  
LCD_B2,  
OTG_HS_ULPI_D0,  
ETH_MII_COL, LCD_B5,  
EVENTOUT  
(4)  
K3 N10 R2  
47  
50  
R2  
PA3  
I/O FT  
ADC123_IN3  
J1 N11  
-
-
51  
-
K6  
L5  
K5  
VSS  
BYPASS_REG  
VDD  
S
I
-
FT  
-
-
-
-
-
-
-
-
-
-
-
-
L4  
48  
49  
J4 P12 K4  
52  
S
SPI1_NSS,  
SPI3_NSS/I2S3_WS,  
USART2_CK,  
ADC12_IN4,  
DAC_OUT1  
N2  
M9  
N4  
50  
53  
N4  
PA4  
I/O TTa  
-
OTG_HS_SOF,  
DCMI_HSYNC,  
LCD_VSYNC,  
EVENTOUT  
DocID028010 Rev 2  
55/208  
79  
Pinouts and pin description  
STM32F479xx  
Table 10. STM32F479xx pin and ball definitions (continued)  
Pin Number  
Pin name  
(function after  
reset)(1)  
Additional  
functions  
Alternate functions  
TIM2_CH1/TIM2_ETR,  
TIM8_CH1N, SPI1_SCK,  
OTG_HS_ULPI_CK,  
ADC12_IN5,  
DAC_OUT2  
M3  
L8  
P4  
51  
52  
54  
55  
P4  
P3  
PA5  
PA6  
I/O TTa  
I/O FT  
-
LCD_R4, EVENTOUT  
TIM1_BKIN, TIM3_CH1,  
TIM8_BKIN, SPI1_MISO,  
TIM13_CH1,  
DCMI_PIXCLK, LCD_G2,  
EVENTOUT  
(4)  
N3 P11 P3  
ADC12_IN6  
ADC12_IN7  
TIM1_CH1N, TIM3_CH2,  
TIM8_CH1N, SPI1_MOSI,  
TIM14_CH1,  
QUADSPI_CLK,  
ETH_MII_RX_DV/ETH_R  
MII_CRS_DV,  
(4)  
K4  
J8  
R3  
53  
56  
R3  
PA7  
I/O FT  
FMC_SDNWE,  
EVENTOUT  
ETH_MII_RXD0/ETH_RMI  
I_RXD0, FMC_SDNE0,  
EVENTOUT  
(4)  
(4)  
-
-
-
-
N5  
P5  
54  
55  
57  
58  
N5  
P5  
PC4  
PC5  
I/O FT  
I/O FT  
ADC12_IN14  
ADC12_IN15  
ETH_MII_RXD1/ETH_RMI  
I_RXD1, FMC_SDCKE0,  
EVENTOUT  
-
-
-
-
-
-
-
-
59  
60  
L7  
L6  
VDD  
VSS  
S
S
-
-
-
-
-
-
-
-
TIM1_CH2N, TIM3_CH3,  
TIM8_CH2N, LCD_R3,  
OTG_HS_ULPI_D1,  
ETH_MII_RXD2,LCD_G1,  
EVENTOUT  
(4)  
N4 P10 R5  
56  
57  
61  
62  
R5  
R4  
PB0  
PB1  
I/O FT  
ADC12_IN8  
ADC12_IN9  
TIM1_CH3N, TIM3_CH4,  
TIM8_CH3N, LCD_R6,  
OTG_HS_ULPI_D2,  
ETH_MII_RXD3,LCD_G0,  
EVENTOUT  
(4)  
K5  
N9  
R4  
I/O FT  
PB2-  
BOOT1(PB2)  
L5  
-
P9  
-
M6 58  
63  
64  
M5  
G4  
I/O FT  
I/O FT  
-
-
EVENTOUT  
-
-
LCD_G2, LCD_R0,  
EVENTOUT  
-
-
PI15  
LCD_R7, LCD_R1,  
EVENTOUT  
-
-
-
-
-
-
-
-
65  
66  
R6  
R7  
PJ0  
PJ1  
I/O FT  
I/O FT  
-
-
-
-
LCD_R2, EVENTOUT  
56/208  
DocID028010 Rev 2  
STM32F479xx  
Pinouts and pin description  
Table 10. STM32F479xx pin and ball definitions (continued)  
Pin Number  
Pin name  
(function after  
reset)(1)  
Additional  
functions  
Alternate functions  
DSIHOST_TE, LCD_R3,  
EVENTOUT  
-
-
-
-
67  
P7  
PJ2  
I/O FT  
-
-
-
-
-
-
-
-
-
-
68  
69  
N8  
M9  
PJ3  
PJ4  
I/O FT  
I/O FT  
-
-
LCD_R4, EVENTOUT  
LCD_R5, EVENTOUT  
-
-
SPI5_MOSI,  
FMC_SDNRAS,  
M5  
K7  
R6  
59  
70  
P8  
PF11  
I/O FT  
-
-
DCMI_D12, EVENTOUT  
N5  
J6  
M8  
N8  
P8  
J7  
P6  
60  
71  
72  
73  
74  
75  
76  
77  
78  
M6  
K7  
L8  
PF12  
VSS  
I/O FT  
-
-
-
-
-
-
-
-
FMC_A6, EVENTOUT  
-
-
-
-
-
-
-
-
-
M8 61  
S
S
-
-
K6  
M4  
H5  
M6  
N6  
M7  
N8  
N6  
R7  
P7  
N7  
62  
63  
64  
65  
66  
VDD  
PF13  
PF14  
PF15  
PG0  
-
N6  
P6  
M8  
N7  
M7  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
FMC_A7, EVENTOUT  
FMC_A8, EVENTOUT  
FMC_A9, EVENTOUT  
FMC_A10, EVENTOUT  
FMC_A11, EVENTOUT  
L7  
H8  
J6  
P7  
M7 67  
PG1  
TIM1_ETR, UART7_Rx,  
QUADSPI_BK2_IO0,  
FMC_D4, EVENTOUT  
N7  
G6  
H6  
N7  
M7  
K6  
R8  
P8  
P9  
68  
69  
70  
79  
80  
81  
R8  
N9  
P9  
PE7  
PE8  
PE9  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
-
-
TIM1_CH1N, UART7_Tx,  
QUADSPI_BK2_IO1,  
FMC_D5, EVENTOUT  
TIM1_CH1,  
QUADSPI_BK2_IO2,  
FMC_D6, EVENTOUT  
J7  
L6  
-
-
M9 71  
82  
83  
K8  
L9  
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
N9  
72  
TIM1_CH2N,  
H7  
K7  
L7  
J8  
P6  
R9  
73  
84  
R9  
PE10  
PE11  
PE12  
PE13  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
QUADSPI_BK2_IO3,  
FMC_D7, EVENTOUT  
-
-
-
-
TIM1_CH2, SPI4_NSS,  
FMC_D8, LCD_G3,  
EVENTOUT  
N6 P10 74  
M6 R10 75  
L6 N11 76  
85 P10  
86 R10  
87 R12  
TIM1_CH3N, SPI4_SCK,  
FMC_D9, LCD_B4,  
EVENTOUT  
TIM1_CH3, SPI4_MISO,  
FMC_D10, LCD_DE,  
EVENTOUT  
DocID028010 Rev 2  
57/208  
79  
Pinouts and pin description  
STM32F479xx  
Table 10. STM32F479xx pin and ball definitions (continued)  
Pin Number  
Pin name  
(function after  
reset)(1)  
Additional  
functions  
Alternate functions  
TIM1_CH4, SPI4_MOSI,  
FMC_D11, LCD_CLK,  
EVENTOUT  
K8  
L8  
J5 P11 77  
P5 R11 78  
88 P11  
89 R11  
PE14  
PE15  
I/O FT  
I/O FT  
-
-
-
-
TIM1_BKIN, FMC_D12,  
LCD_R7, EVENTOUT  
TIM2_CH3, I2C2_SCL,  
SPI2_SCK/I2S2_CK,  
USART3_TX,  
M8  
N8  
N5 R12 79  
90 P12  
PB10  
PB11  
I/O FT  
-
-
QUADSPI_BK1_NCS,  
OTG_HS_ULPI_D3,  
ETH_MII_RX_ER,  
-
-
LCD_G4, EVENTOUT  
TIM2_CH4, I2C2_SDA,  
USART3_RX,  
OTG_HS_ULPI_D4,  
ETH_MII_TX_EN/ETH_R  
MII_TX_EN,  
K5 R13 80  
N4 M10 81  
91 R13  
92 L11  
I/O FT  
DSIHOST_TE, LCD_G5,  
EVENTOUT  
N9  
M9  
L9  
-
VCAP1  
VSS  
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
P4  
-
-
93  
K9  
-
P3 N10 82  
94 L10  
95 M14  
VDD  
PJ5  
-
-
-
-
-
I/O FT  
LCD_R6, EVENTOUT  
I2C2_SMBA, SPI5_SCK,  
TIM12_CH1,  
ETH_MII_RXD2,  
FMC_SDNE1, DCMI_D8,  
EVENTOUT  
-
-
M11 83  
N12 84  
96 P13  
97 N13  
PH6  
PH7  
I/O FT  
-
-
-
-
I2C3_SCL, SPI5_MISO,  
ETH_MII_RXD3,  
-
I/O FT  
FMC_SDCKE1,  
DCMI_D9, EVENTOUT  
I2C3_SDA, FMC_D16,  
DCMI_HSYNC, LCD_R2,  
EVENTOUT  
H8  
H9  
J9  
M5  
L5  
-
-
-
-
-
-
98 P14  
99 N14  
100 P15  
PH8  
PH9  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
-
-
I2C3_SMBA, TIM12_CH2,  
FMC_D17, DCMI_D0,  
LCD_R3, EVENTOUT  
TIM5_CH1, FMC_D18,  
DCMI_D1, LCD_R4,  
EVENTOUT  
M4  
PH10  
58/208  
DocID028010 Rev 2  
STM32F479xx  
Pinouts and pin description  
Table 10. STM32F479xx pin and ball definitions (continued)  
Pin Number  
Pin name  
(function after  
reset)(1)  
Additional  
functions  
Alternate functions  
TIM5_CH2, FMC_D19,  
DCMI_D2, LCD_R5,  
EVENTOUT  
K9  
N3  
-
-
-
-
101 N15  
102 M15  
PH11  
PH12  
I/O FT  
I/O FT  
-
-
-
-
TIM5_CH3, FMC_D20,  
DCMI_D3, LCD_R6,  
EVENTOUT  
H10 P2  
-
-
H7  
-
-
-
-
-
-
K10  
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
103 K11  
TIM1_BKIN, I2C2_SMBA,  
SPI2_NSS/I2S2_WS,  
USART3_CK, CAN2_RX,  
OTG_HS_ULPI_D5,  
ETH_MII_TXD0/ETH_RMI  
I_TXD0, OTG_HS_ID,  
EVENTOUT  
N10 H5 P12 85 104 L13  
N11 K4 P13 86 105 K14  
N12 P1 R14 87 106 R14  
N13 N2 R15 88 107 R15  
PB12  
PB13  
PB14  
PB15  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
-
TIM1_CH1N,  
SPI2_SCK/I2S2_CK,  
USART3_CTS, CAN2_TX, OTG_HS_VBU  
OTG_HS_ULPI_D6,  
ETH_MII_TXD1/ETH_RMI  
I_TXD1, EVENTOUT  
S
TIM1_CH2N,  
TIM8_CH2N, SPI2_MISO,  
I2S2ext_SD,  
USART3_RTS,  
TIM12_CH1,  
OTG_HS_DM,  
-
EVENTOUT  
RTC_REFIN,  
TIM1_CH3N,  
TIM8_CH3N,  
-
SPI2_MOSI/I2S2_SD,  
TIM12_CH2,  
OTG_HS_DP, EVENTOUT  
USART3_TX, FMC_D13,  
EVENTOUT  
L10 L4 P15 89 108 L15  
M10 N1 P14 90 109 L14  
L11 M3 N15 91 110 K15  
PD8  
PD9  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
-
-
USART3_RX, FMC_D14,  
EVENTOUT  
USART3_CK, FMC_D15,  
LCD_B3, EVENTOUT  
PD10  
DocID028010 Rev 2  
59/208  
79  
Pinouts and pin description  
STM32F479xx  
Table 10. STM32F479xx pin and ball definitions (continued)  
Pin Number  
Pin name  
(function after  
reset)(1)  
Additional  
functions  
Alternate functions  
USART3_CTS,  
QUADSPI_BK1_IO0,  
FMC_A16/FMC_CLE,  
EVENTOUT  
M11 J4 N14 92 111 N10  
PD11  
I/O FT  
-
-
TIM4_CH1,  
USART3_RTS,  
M13 M2 N13 93 112 M10  
M12 H4 M15 94 113 M11  
PD12  
PD13  
I/O FT  
I/O FT  
-
-
QUADSPI_BK1_IO1,  
FMC_A17/FMC_ALE,  
EVENTOUT  
-
-
TIM4_CH2,  
QUADSPI_BK1_IO3,  
FMC_A18, EVENTOUT  
J10 M1  
K10  
-
95 114 J10  
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
-
J13 96 115 J11  
TIM4_CH3, FMC_D0,  
EVENTOUT  
L12 L3 M14 97 116 L12  
PD14  
PD15  
I/O FT  
I/O FT  
-
-
-
-
TIM4_CH4, FMC_D1,  
EVENTOUT  
L13 L2 L14 98 117 K13  
K13 L1 J12 99 118 H11  
VDDDSI  
VSS  
S
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
H10  
K12 K1 K12 100 119 K12  
K2 D13 G13  
-
VCAPDSI  
VDD12DSI  
-
-
-
-
-
J12 K3 M12 101 120 J12 DSIHOST_D0P I/O  
J13 J3 M13 102 121 J13 DSIHOST_D0N I/O  
K11 H1 H12 103 122 G12 VSSDSI  
-
-
S
-
H12 J1 L12 104 123 H12 DSIHOST_CKP I/O  
H13 J2 L13 105 124 H13 DSIHOST_CKN I/O  
-
-
J11  
-
D13 106 125  
-
VDD12DSI  
S
-
G12 H3 E12 107 126 F12 DSIHOST_D1P I/O  
G13 H2 E13 108 127 F13 DSIHOST_D1N I/O  
-
-
H11  
-
H12 109 128  
-
VSSDSI  
PG2  
S
-
F13 G5 L15 110 129 M13  
F12 G4 K15 111 130 M12  
I/O FT  
I/O FT  
FMC_A12, EVENTOUT  
FMC_A13, EVENTOUT  
PG3  
FMC_A14/FMC_BA0,  
EVENTOUT  
E13 G2 K14 112 131 N12  
PG4  
I/O FT  
-
-
60/208  
DocID028010 Rev 2  
STM32F479xx  
Pinouts and pin description  
Table 10. STM32F479xx pin and ball definitions (continued)  
Pin Number  
Pin name  
(function after  
reset)(1)  
Additional  
functions  
Alternate functions  
FMC_A15/FMC_BA1,  
EVENTOUT  
E12 G1 K13 113 132 N11  
F11 G3 J15 114 133 J15  
PG5  
PG6  
I/O FT  
I/O FT  
-
-
-
-
DCMI_D12, LCD_R7,  
EVENTOUT  
SAI1_MCLK_A,  
USART6_CK, FMC_INT,  
DCMI_D13, LCD_CLK,  
EVENTOUT  
E11 H6 J14 115 134 J14  
PG7  
PG8  
I/O FT  
I/O FT  
-
-
-
-
SPI6_NSS,  
USART6_RTS,  
ETH_PPS_OUT,  
FMC_SDCLK, LCD_G7,  
EVENTOUT  
D13 G6 H14 116 135 H14  
G9  
F2 G12 117 136 G10  
VSS  
S
S
-
-
-
-
-
-
-
-
G11 F1 H13 118 137 G11  
VDDUSB  
TIM3_CH1, TIM8_CH1,  
I2S2_MCK, USART6_TX,  
SDIO_D6, DCMI_D0,  
LCD_HSYNC,  
F9  
F3 H15 119 138 H15  
PC6  
I/O FT  
-
-
EVENTOUT  
TIM3_CH2, TIM8_CH2,  
I2S3_MCK, USART6_RX,  
SDIO_D7, DCMI_D1,  
F10 G7 G15 120 139 G15  
E10 F4 G14 121 140 G14  
PC7  
PC8  
I/O FT  
I/O FT  
-
-
-
-
LCD_G6, EVENTOUT  
TRACED1, TIM3_CH3,  
TIM8_CH3, USART6_CK,  
SDIO_D0, DCMI_D2,  
EVENTOUT  
MCO2, TIM3_CH4,  
TIM8_CH4, I2C3_SDA,  
I2S_CKIN,  
QUADSPI_BK1_IO0,  
SDIO_D1, DCMI_D3,  
EVENTOUT  
G10 F5 F14 122 141 F14  
PC9  
I/O FT  
-
-
-
MCO1, TIM1_CH1,  
I2C3_SCL, USART1_CK,  
OTG_FS_SOF, LCD_R6,  
EVENTOUT  
D8  
E8  
E1 F15 123 142 F15  
E2 E15 124 143 E15  
PA8  
PA9  
I/O FT  
I/O FT  
-
-
TIM1_CH2, I2C3_SMBA,  
SPI2_SCK/I2S2_CK,  
USART1_TX, DCMI_D0,  
EVENTOUT  
OTG_FS_VBU  
S
DocID028010 Rev 2  
61/208  
79  
Pinouts and pin description  
STM32F479xx  
Table 10. STM32F479xx pin and ball definitions (continued)  
Pin Number  
Pin name  
(function after  
reset)(1)  
Additional  
functions  
Alternate functions  
TIM1_CH3, USART1_RX,  
OTG_FS_ID, DCMI_D1,  
EVENTOUT  
E9  
E3 D15 125 144 D15  
PA10  
PA11  
I/O FT  
I/O FT  
-
-
-
-
TIM1_CH4,  
USART1_CTS,  
CAN1_RX, OTG_FS_DM,  
LCD_R4, EVENTOUT  
A13 F7 C15 126 145 C15  
TIM1_ETR,  
USART1_RTS, CAN1_TX,  
OTG_FS_DP, LCD_R5,  
EVENTOUT  
A12 F6 B15 127 146 B15  
A11 D1 A15 128 147 A15  
PA12  
I/O FT  
I/O FT  
-
-
-
-
PA13(JTMS-  
SWDIO)  
JTMS-SWDIO,  
EVENTOUT  
D12 D2 F13 129 148 E11  
D11 C1 F12 130 149 F10  
D10 C2 G13 131 150 F11  
VCAP2  
VSS  
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
VDD  
TIM8_CH1N, CAN1_TX,  
FMC_D21, LCD_G2,  
EVENTOUT  
D9  
B1  
-
-
-
-
-
-
151 E12  
152 E13  
153 D13  
PH13  
PH14  
PH15  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
-
-
TIM8_CH2N, FMC_D22,  
DCMI_D4, LCD_G3,  
EVENTOUT  
C13 D3  
C12 E4  
TIM8_CH3N, FMC_D23,  
DCMI_D11, LCD_G4,  
EVENTOUT  
TIM5_CH4,  
SPI2_NSS/I2S2_WS(6)  
FMC_D24, DCMI_D13,  
LCD_G5, EVENTOUT  
,
B13 E5 E14 132 154 E14  
PI0  
PI1  
PI2  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
-
-
SPI2_SCK/I2S2_CK(6)  
FMC_D25, DCMI_D8,  
LCD_G6, EVENTOUT  
,
C11 C3 D14 133 155 D14  
TIM8_CH4, SPI2_MISO,  
I2S2ext_SD, FMC_D26,  
DCMI_D9, LCD_G7,  
EVENTOUT  
NC  
B12 A1  
-
156 C14  
(7)  
TIM8_ETR,  
SPI2_MOSI/I2S2_SD,  
FMC_D27, DCMI_D10,  
EVENTOUT  
B10 B2 C13 134 157 C13  
PI3  
I/O FT  
-
-
-
-
-
-
D9 135  
-
F9  
VSS  
S
-
-
62/208  
DocID028010 Rev 2  
STM32F479xx  
Pinouts and pin description  
Table 10. STM32F479xx pin and ball definitions (continued)  
Pin Number  
Pin name  
(function after  
reset)(1)  
Additional  
functions  
Alternate functions  
-
B5  
C9 136 158 E10  
VDD  
S
-
-
-
-
-
-
PA14(JTCK-  
SWCLK)  
JTCK-SWCLK,  
EVENTOUT  
A10 D4 A14 137 159 A14  
I/O FT  
JTDI,  
TIM2_CH1/TIM2_ETR,  
SPI1_NSS,  
SPI3_NSS/I2S3_WS,  
EVENTOUT  
B11 A2 A13 138 160 A13  
PA15(JTDI)  
PC10  
I/O FT  
-
-
-
-
-
-
-
-
SPI3_SCK/I2S3_CK,  
USART3_TX, UART4_TX,  
QUADSPI_BK1_IO1,  
SDIO_D2, DCMI_D8,  
LCD_R2, EVENTOUT  
C10 D5 B14 139 161 B14  
I/O FT  
I/O FT  
I/O FT  
I2S3ext_SD, SPI3_MISO,  
USART3_RX,UART4_RX,  
QUADSPI_BK2_NCS,  
SDIO_D3, DCMI_D4,  
EVENTOUT  
B9  
A9  
B3 B13 140 162 B13  
PC11  
TRACED3,  
SPI3_MOSI/I2S3_SD,  
USART3_CK, UART5_TX,  
SDIO_CK, DCMI_D9,  
EVENTOUT  
C4 A12 141 163 A12  
PC12  
CAN1_RX, FMC_D2,  
EVENTOUT  
C9  
C7  
E6 B12 142 164 B12  
A3 C12 143 165 C12  
PD0  
PD1  
I/O FT  
I/O FT  
-
-
-
-
CAN1_TX, FMC_D3,  
EVENTOUT  
TRACED2, TIM3_ETR,  
UART5_RX, SDIO_CMD,  
DCMI_D11, EVENTOUT  
B8  
C8  
C5 D12 144 166 D12  
D6 D11 145 167 C11  
PD2  
PD3  
I/O FT  
I/O FT  
-
-
-
-
SPI2_SCK/I2S2_CK,  
USART2_CTS,  
FMC_CLK, DCMI_D5,  
LCD_G7, EVENTOUT  
USART2_RTS,  
FMC_NOE, EVENTOUT  
C6  
B7  
B4 D10 146 168 D11  
C6 C11 147 169 C10  
PD4  
PD5  
I/O FT  
I/O FT  
-
-
-
-
USART2_TX, FMC_NWE,  
EVENTOUT  
F8  
F7  
A4  
-
D8 148 170 F8  
C8 149 171 E9  
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
DocID028010 Rev 2  
63/208  
79  
Pinouts and pin description  
STM32F479xx  
Table 10. STM32F479xx pin and ball definitions (continued)  
Pin Number  
Pin name  
(function after  
reset)(1)  
Additional  
functions  
Alternate functions  
SPI3_MOSI/I2S3_SD,  
SAI1_SD_A,  
D7  
E7 B11 150 172 B11  
A5 A11 151 173 A11  
PD6  
I/O FT  
-
USART2_RX,  
FMC_NWAIT, DCMI_D10,  
LCD_B2, EVENTOUT  
-
USART2_CK, FMC_NE1,  
EVENTOUT  
A8  
PD7  
PJ12  
PJ13  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
-
-
LCD_G3, LCD_B0,  
EVENTOUT  
-
-
-
-
-
-
-
-
174 B10  
175 B9  
LCD_G4, LCD_B1,  
EVENTOUT  
-
-
-
-
-
-
-
-
176 C9  
177 D10  
PJ14  
PJ15  
I/O FT  
I/O FT  
-
-
LCD_B2, EVENTOUT  
LCD_B3, EVENTOUT  
-
-
USART6_RX,  
QUADSPI_BK2_IO2,  
FMC_NE2/FMC_NCE,  
DCMI_VSYNC,  
E6  
D7 C10 152 178 D9  
C7 B10 153 179 C8  
PG9  
I/O FT  
-
-
EVENTOUT  
LCD_G3, FMC_NE3,  
DCMI_D2, LCD_B2,  
EVENTOUT  
E7  
B6  
PG10  
PG11  
I/O FT  
I/O FT  
-
-
-
-
ETH_MII_TX_EN/ETH_R  
MII_TX_EN, DCMI_D3,  
LCD_B3, EVENTOUT  
B6  
A6  
B9 154 180 B8  
B8 155 181 C7  
SPI6_MISO,  
USART6_RTS, LCD_B4,  
FMC_NE4, LCD_B1,  
EVENTOUT  
A7  
A6  
PG12  
PG13  
I/O FT  
I/O FT  
-
-
-
-
TRACED0, SPI6_SCK,  
USART6_CTS,  
ETH_MII_TXD0/ETH_RMI  
I_TXD0, FMC_A24,  
E8  
A8 156 182 B3  
LCD_R0, EVENTOUT  
TRACED1, SPI6_MOSI,  
USART6_TX,  
QUADSPI_BK2_IO3,  
ETH_MII_TXD1/ETH_RMI  
I_TXD1, FMC_A25,  
LCD_B0, EVENTOUT  
-
-
A7 157 183 A4  
PG14  
I/O FT  
-
-
-
-
B7  
A7  
D7 158 184 F7  
C7 159 185 E8  
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
64/208  
DocID028010 Rev 2  
STM32F479xx  
Pinouts and pin description  
Table 10. STM32F479xx pin and ball definitions (continued)  
Pin Number  
Pin name  
(function after  
reset)(1)  
Additional  
functions  
Alternate functions  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
186 D8  
187 D7  
188 C6  
189 C5  
190 C4  
PK3  
PK4  
PK5  
PK6  
PK7  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
-
LCD_B4, EVENTOUT  
LCD_B5, EVENTOUT  
LCD_B6, EVENTOUT  
LCD_B7, EVENTOUT  
LCD_DE, EVENTOUT  
-
-
-
-
-
USART6_CTS,  
FMC_SDNCAS,  
DCMI_D13, EVENTOUT  
F6  
B5  
D6  
D8  
B7 160 191 B7  
PG15  
I/O FT  
I/O FT  
-
-
-
-
-
-
JTDO/TRACESWO,  
TIM2_CH2, SPI1_SCK,  
SPI3_SCK/I2S3_CK,  
EVENTOUT  
PB3(JTDO/TRA  
CESWO)  
A8 A10 161 192 A10  
NJTRST, TIM3_CH1,  
SPI1_MISO, SPI3_MISO,  
I2S3ext_SD, EVENTOUT  
C8  
B8  
A9 162 193 A9  
PB4(NJTRST) I/O FT  
TIM3_CH2, I2C1_SMBA,  
SPI1_MOSI,  
SPI3_MOSI/I2S3_SD,  
CAN2_RX,  
OTG_HS_ULPI_D7,  
ETH_PPS_OUT,  
FMC_SDCKE1,  
DCMI_D10, LCD_G7,  
EVENTOUT  
D5  
C5  
A6 163 194 A8  
PB5  
PB6  
I/O FT  
-
-
-
-
TIM4_CH1, I2C1_SCL,  
USART1_TX, CAN2_TX,  
QUADSPI_BK1_NCS,  
FMC_SDNE1, DCMI_D5,  
EVENTOUT  
G8  
B6 164 195 B6  
I/O FT  
I/O FT  
TIM4_CH2, I2C1_SDA,  
USART1_RX, FMC_NL,  
DCMI_VSYNC,  
B4  
A5  
A9  
F8  
B5 165 196 B5  
D6 166 197 E6  
PB7  
-
-
-
EVENTOUT  
BOOT0  
I
B
-
VPP  
TIM4_CH3, TIM10_CH1,  
I2C1_SCL, CAN1_RX,  
ETH_MII_TXD3,  
D4  
B9  
A5 167 198 A7  
PB8  
I/O FT  
-
-
SDIO_D4, DCMI_D6,  
LCD_B6, EVENTOUT  
DocID028010 Rev 2  
65/208  
79  
Pinouts and pin description  
STM32F479xx  
Table 10. STM32F479xx pin and ball definitions (continued)  
Pin Number  
Pin name  
(function after  
reset)(1)  
Additional  
functions  
Alternate functions  
TIM4_CH4, TIM11_CH1,  
I2C1_SDA,  
SPI2_NSS/I2S2_WS,  
CAN1_TX, SDIO_D5,  
DCMI_D7, LCD_B7,  
EVENTOUT  
C4  
E9  
B4 168 199 B4  
PB9  
I/O FT  
-
-
TIM4_ETR, UART8_Rx,  
FMC_NBL0, DCMI_D2,  
EVENTOUT  
A4 A10 A4 169 200 A6  
PE0  
PE1  
I/O FT  
I/O FT  
-
-
-
-
UART8_Tx, FMC_NBL1,  
DCMI_D3, EVENTOUT  
A3  
C9  
A3 170 201 A5  
E3 B10 D5  
-
202 F6  
VSS  
PDR_ON  
VDD  
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
C3 D9 C6 171 203 E5  
D3 A11 C5 172 204 E7  
B3 D10 D4 173 205 C3  
TIM8_BKIN, FMC_NBL2,  
DCMI_D5, LCD_B4,  
EVENTOUT  
PI4  
PI5  
PI6  
PI7  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
-
-
-
-
TIM8_CH1, FMC_NBL3,  
DCMI_VSYNC, LCD_B5,  
EVENTOUT  
A2 C10 C4 174 206 D3  
A1 B11 C3 175 207 D6  
B1 A12 C2 176 208 D4  
TIM8_CH2, FMC_D28,  
DCMI_D6, LCD_B6,  
EVENTOUT  
TIM8_CH3, FMC_D29,  
DCMI_D7, LCD_B7,  
EVENTOUT  
1. Function availability depends on the chosen device.  
2. PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current (3  
mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited:  
- The speed should not exceed 2 MHz with a maximum load of 30 pF.  
- These I/Os must not be used as a current source (e.g. to drive an LED).  
3. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after  
reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC  
register description sections in the STM32F4xx reference manual, available from the STMicroelectronics website:  
www.st.com.  
4. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).  
5. If the device is delivered in an WLCSP168, UFBGA169, UFBGA176, LQFP176 or TFBGA216 package, and the  
BYPASS_REG pin is set to VDD (Regulator OFF/internal reset ON mode), then PA0 is used as an internal Reset (active low).  
6. PI0 and PI1 cannot be used for I2S2 full-duplex mode.  
7. NC (not-connected) pins are not bonded. They must be configured by software to output push-pull and forced to 0 in the  
output data register to avoid extra current consumption in low power modes.  
66/208  
DocID028010 Rev 2  
STM32F479xx  
Pinouts and pin description  
Table 11. FMC pin definition  
NOR/PSRAM/SR  
NOR/PSRAM  
Mux  
Pin name  
NAND16  
SDRAM  
AM  
PF0  
PF1  
A0  
A1  
-
-
-
A0  
A1  
-
PF2  
A2  
-
-
A2  
PF3  
A3  
-
-
A3  
PF4  
A4  
-
-
A4  
PF5  
A5  
-
-
A5  
PF12  
PF13  
PF14  
PF15  
PG0  
PG1  
PG2  
PG3  
PG4  
PG5  
PD11  
PD12  
PD13  
PE3  
A6  
-
-
A6  
A7  
-
-
A7  
A8  
-
-
A8  
A9  
-
-
A9  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
D0  
-
-
A10  
A11  
A12  
-
-
-
-
-
-
-
-
BA0  
BA1  
-
-
-
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
DA0  
DA1  
DA2  
DA3  
DA4  
DA5  
DA6  
DA7  
CLE  
ALE  
-
-
-
-
-
PE4  
-
-
PE5  
-
-
PE6  
-
-
PE2  
-
-
PG13  
PG14  
PD14  
PD15  
PD0  
PD1  
PE7  
-
-
-
-
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D1  
D2  
D3  
D4  
PE8  
D5  
PE9  
D6  
PE10  
D7  
DocID028010 Rev 2  
67/208  
79  
Pinouts and pin description  
Pin name  
STM32F479xx  
SDRAM  
Table 11. FMC pin definition (continued)  
NOR/PSRAM/SR  
NOR/PSRAM  
Mux  
NAND16  
AM  
PE11  
PE12  
PE13  
PE14  
PE15  
PD8  
PD9  
PD10  
PH8  
PH9  
PH10  
PH11  
PH12  
PH13  
PH14  
PH15  
PI0  
D8  
D9  
DA8  
D8  
D8  
D9  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
D26  
D27  
D28  
D29  
D30  
D31  
-
DA9  
D9  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
D26  
D27  
D28  
D29  
D30  
D31  
NE1  
NE2  
NE3  
-
DA10  
D10  
DA11  
D11  
DA12  
D12  
DA13  
D13  
DA14  
D14  
DA15  
D15  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PI1  
-
-
PI2  
-
-
PI3  
-
-
PI6  
-
-
-
PI7  
-
PI9  
-
-
PI10  
PD7  
PG9  
PG10  
PG11  
PG12  
PD3  
PD4  
PD5  
PD6  
PB7  
-
-
NE1  
NE2  
NE3  
-
-
NCE  
-
-
-
-
-
NE4  
CLK  
NOE  
NWE  
NWAIT  
NADV  
-
-
-
-
CLK  
NOE  
NWE  
NWAIT  
NADV  
-
NOE  
NWE  
NWAIT  
-
-
-
-
-
68/208  
DocID028010 Rev 2  
STM32F479xx  
Pinouts and pin description  
Table 11. FMC pin definition (continued)  
NOR/PSRAM/SR  
AM  
NOR/PSRAM  
Mux  
Pin name  
NAND16  
SDRAM  
PF6  
PF7  
PF8  
PF9  
PF10  
PG6  
PG7  
PE0  
PE1  
PI4  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
INT  
-
NBL0  
NBL0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
NBL1  
NBL1  
NBL1  
NBL2  
NBL3  
SDCLK  
SDNWE  
SDNRAS  
SDNCAS  
SDCKE0  
SDNE0  
SDNE1  
SDCKE1  
SDNWE  
SDNE0  
SDCKE0  
SDCKE1  
SDNE1  
NBL2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PI5  
NBL3  
PG8  
PC0  
PF11  
PG15  
PH2  
PH3  
PH6  
PH7  
PH5  
PC2  
PC3  
PB5  
PB6  
-
-
-
-
-
-
-
-
-
-
-
-
-
DocID028010 Rev 2  
69/208  
79  
Table 12. Alternate function  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
ETH  
AF12  
AF13  
AF14  
LCD  
AF15  
SYS  
CAN1/2/ QUAD  
TIM12/1 SPI/OT  
3/14/QU G2_HS  
ADSPI/L /OTG1  
USAR  
T6/UA  
RT4/5  
/7/8  
Port  
SPI2/3/  
USART  
1/2/3  
FMC/SD DCMI/  
IO/OTG2  
_FS  
TIM3/4/ TIM8/9/  
10/11  
SPI1/2/3 SPI2/3/  
/4/5/6  
TIM1/2  
I2C1/2/3  
DSI  
HOST  
5
SAI1  
CD  
_FS  
TIM2_CH1/  
TIM2_ETR  
USART2_ UART4_  
CTS TX  
EVENT  
OUT  
PA0  
-
TIM5_CH1 TIM8_ETR  
-
-
-
-
-
ETH_MII_CRS  
-
-
-
ETH_MII_RX_  
CLK/ETH_RMI  
I_REF_CLK  
USART2_ UART4_ QUADSPI_  
EVENT  
OUT  
PA1  
TIM2_CH2  
TIM5_CH2  
LCD_R2  
-
-
-
-
-
-
-
-
-
RTS  
RX  
BK1_IO3  
USART2_T  
X
EVENT  
OUT  
PA2  
PA3  
PA4  
TIM2_CH3  
TIM2_CH4  
-
TIM5_CH3 TIM9_CH1  
TIM5_CH4 TIM9_CH2  
ETH_MDIO  
ETH_MII_COL  
-
LCD_R1  
LCD_B5  
-
-
-
-
-
-
-
-
-
-
-
LCD_B2  
-
-
-
-
-
USART2_  
RX  
OTG_HS  
_ULPI_D0  
EVENT  
OUT  
-
-
SPI3_NSS/ USART2_  
OTG_HS_S DCMI_HS  
LCD_VSY  
NC  
EVENT  
OUT  
SPI1_NSS  
-
-
-
-
I2S3_WS  
CK  
OF  
YNC  
OTG_HS  
_ULPI_C  
K
TIM2_CH1/  
TIM2_ETR  
TIM8_CH1  
N
EVENT  
OUT  
PA5  
PA6  
PA7  
-
SPI1_SCK  
-
-
LCD_R4  
LCD_G2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TIM8_BKI  
N
SPI1_  
MISO  
DCMI_PIX  
CLK  
EVENT  
OUT  
TIM1_BKIN TIM3_CH1  
TIM13_CH1  
TIM14_CH1  
-
-
-
-
-
-
ETH_MII_RX_  
DV/ETH_RMII  
_CRS_DV  
TIM1_  
TIM8_CH1  
N
SPI1_  
MOSI  
QUADSPI  
_CLK  
FMC_SDN  
WE  
EVENT  
OUT  
TIM3_CH2  
CH1N  
-
Port A  
USART1_  
CK  
OTG_FS_  
SOF  
EVENT  
OUT  
PA8  
PA9  
MCO1  
TIM1_CH1  
I2C3_SCL  
-
LCD_R6  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SPI2_SCK/I  
2S2_CK  
USART1_T  
X
EVENT  
OUT  
TIM1_CH2  
I2C3_SMBA  
DCMI_D0  
-
-
-
-
-
-
-
-
USART1_  
RX  
OTG_FS_  
ID  
EVENT  
OUT  
PA10  
PA11  
PA12  
PA13  
PA14  
PA15  
TIM1_CH3  
DCMI_D1  
-
-
-
-
-
-
-
-
-
-
USART1_  
CTS  
OTG_FS_  
DM  
EVENT  
OUT  
TIM1_CH4  
CAN1_RX  
-
-
LCD_R4  
-
-
USART1_  
RTS  
OTG_FS_  
DP  
EVENT  
OUT  
TIM1_ETR  
CAN1_TX  
LCD_R5  
-
-
JTMS-  
SWDIO  
EVENT  
OUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
JTCK-  
SWCLK  
EVENT  
OUT  
-
TIM2_CH1/  
TIM2_ETR  
SPI3_NSS/  
I2S3_WS  
EVENT  
‘OUT  
JTDI  
SPI1_NSS  
Table 12. Alternate function (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
ETH  
AF12  
AF13  
AF14  
LCD  
AF15  
SYS  
CAN1/2/ QUAD  
TIM12/1 SPI/OT  
3/14/QU G2_HS  
ADSPI/L /OTG1  
USAR  
T6/UA  
RT4/5  
/7/8  
Port  
SPI2/3/  
USART  
1/2/3  
FMC/SD DCMI/  
IO/OTG2  
_FS  
TIM3/4/ TIM8/9/  
SPI1/2/3 SPI2/3/  
/4/5/6  
TIM1/2  
I2C1/2/3  
DSI  
HOST  
5
10/11  
SAI1  
CD  
_FS  
TIM8_CH2  
N
OTG_HS  
_ULPI_D1  
ETH_MII_  
RXD2  
EVENT  
OUT  
PB0  
-
TIM1_CH2N TIM3_CH3  
TIM1_CH3N TIM3_CH4  
-
-
-
-
-
LCD_R3  
-
-
LCD_G1  
LCD_G0  
-
TIM8_CH3  
N
OTG_HS  
_ULPI_D2  
ETH_MII_  
RXD3  
EVENT  
OUT  
PB1  
PB2  
LCD_R6  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT  
OUT  
-
-
-
-
-
-
-
-
-
-
-
JTDO/T  
RACES  
WO  
SPI3_SCK/  
I2S3_CK  
EVENT  
OUT  
PB3  
TIM2_CH2  
SPI1_SCK  
-
-
-
-
-
-
-
-
-
SPI3_MIS  
O
I2S3ext_S  
D
EVENT  
OUT  
PB4 NJTRST  
TIM3_CH1  
TIM3_CH2  
SPI1_MISO  
-
-
-
-
-
-
-
-
-
SPI3_MOS  
I/I2S3_SD  
OTG_HS  
_ULPI_D7  
ETH_PPS  
OUT  
FMC_  
SDCKE1  
EVENT  
OUT  
PB5  
I2C1_SMBA SPI1_MOSI  
CAN2_RX  
DCMI_D10  
LCD_G7  
-
QUADSPI  
_BK1_NC  
S
USART1_T  
X
FMC_  
SDNE1  
EVENT  
OUT  
PB6  
TIM4_CH1  
I2C1_SCL  
CAN2_TX  
DCMI_D5  
-
-
-
-
-
-
-
-
-
USART1_  
RX  
DCMI_VS  
YNC  
EVENT  
OUT  
PB7  
TIM4_CH2  
TIM4_CH3  
TIM4_CH4  
-
I2C1_SDA  
-
FMC_NL  
SDIO_D4  
SDIO_D5  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Port B  
TIM10_CH  
1
ETH_MII_  
TXD3  
EVENT  
OUT  
PB8  
I2C1_SCL  
CAN1_RX  
CAN1_TX  
DCMI_D6  
DCMI_D7  
-
LCD_B6  
LCD_B7  
LCD_G4  
-
-
-
-
-
TIM11_CH  
1
SPI2_NSS/I  
I2C1_SDA  
EVENT  
OUT  
PB9  
-
-
-
2S2_WS  
SPI2_SCK/I  
I2C2_SCL  
USART3_T  
X
QUADSPI_  
BK1_NCS  
OTG_HS ETH_MII_RX_  
_ULPI_D3  
EVENT  
OUT  
PB10  
TIM2_CH3  
-
-
-
2S2_CK  
ER  
ETH_MII_TX_  
EN/ETH_RMII  
_TX_EN  
USART3_  
RX  
OTG_HS  
_ULPI_D4  
DSIHOST_  
TE  
EVENT  
OUT  
PB11  
TIM2_CH4  
TIM1_BKIN  
TIM1_CH1N  
I2C2_SDA  
LCD_G5  
-
-
-
-
-
-
-
-
-
-
-
ETH_MII_TXD  
0/ETH_RMII_T  
XD0  
SPI2_NSS/I  
I2C2_SMBA  
USART3_  
CK  
OTG_HS  
_ULPI_D5  
OTG_HS_  
ID  
EVENT  
OUT  
PB12  
CAN2_RX  
CAN2_TX  
-
-
-
-
-
-
-
2S2_WS  
ETH_MII_TXD  
1/ETH_RMII_T  
XD1  
SPI2_SCK/I  
2S2_CK  
USART3_  
CTS  
OTG_HS  
_ULPI_D6  
EVENT  
OUT  
PB13  
-
-
-
TIM8_CH2  
N
I2S2ext_S  
D
USART3_  
RTS  
OTG_HS_  
‘DM  
EVENT  
OUT  
PB14  
TIM1_CH2N  
TIM1_CH3N  
SPI2_MISO  
TIM12_CH1  
TIM12_CH2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
RTC_RE  
TIM8_CH3  
N
SPI2_MOSI  
/I2S2_SD  
OTG_HS_  
DP  
EVENT  
‘OUT  
PB15  
FIN  
-
-
-
Table 12. Alternate function (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
ETH  
AF12  
AF13  
AF14  
LCD  
AF15  
SYS  
CAN1/2/ QUAD  
TIM12/1 SPI/OT  
3/14/QU G2_HS  
ADSPI/L /OTG1  
USAR  
T6/UA  
RT4/5  
/7/8  
Port  
SPI2/3/  
USART  
1/2/3  
FMC/SD DCMI/  
IO/OTG2  
_FS  
TIM3/4/ TIM8/9/  
SPI1/2/3 SPI2/3/  
/4/5/6  
TIM1/2  
I2C1/2/3  
DSI  
HOST  
5
10/11  
SAI1  
CD  
_FS  
OTG_HS  
_ULPI_ST  
P
FMC_SDN  
WE  
EVENT  
OUT  
PC0  
-
-
-
-
-
-
-
-
-
-
-
-
LCD_R5  
TRACED  
0
SPI2_MOSI SAI1_SD_  
EVENT  
OUT  
PC1  
PC2  
ETH_MDC  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
/I2S2_SD  
A
OTG_HS  
_ULPI_DI  
R
I2S2ext_S  
D
ETH_MII_TXD FMC_SDN  
EVENT  
OUT  
SPI2_MISO  
-
-
-
-
2
E0  
OTG_HS  
_ULPI_N  
XT  
SPI2_MOSI  
/I2S2_SD  
ETH_MII_TX_  
CLK  
FMC_SDC  
KE0  
EVENT  
OUT  
PC3  
PC4  
PC5  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ETH_MII_RXD  
0/ETH_RMII_R  
XD0  
FMC_SDN  
E0  
EVENT  
OUT  
-
-
-
-
ETH_MII_RXD  
1/ETH_RMII_R  
XD1  
FMC_SDC  
KE0  
EVENT  
OUT  
USART6  
_TX  
LCD_HSY  
NC  
EVENT  
OUT  
PC6  
PC7  
TIM3_CH1 TIM8_CH1  
TIM3_CH2 TIM8_CH2  
TIM3_CH3 TIM8_CH3  
TIM3_CH4 TIM8_CH4  
-
I2S2_MCK  
SDIO_D6  
SDIO_D7  
SDIO_D0  
SDIO_D1  
SDIO_D2  
SDIO_D3  
SDIO_CK  
-
DCMI_D0  
DCMI_D1  
DCMI_D2  
DCMI_D3  
DCMI_D8  
DCMI_D4  
DCMI_D9  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Port C  
USART6  
_RX  
EVENT  
OUT  
I2S3_MCK  
LCD_G6  
-
-
TRACED  
1
USART6  
_CK  
EVENT  
OUT  
PC8  
-
-
-
-
-
QUADSPI_  
BK1_IO0  
EVENT  
OUT  
PC9  
MCO2  
I2C3_SDA  
I2S_CKIN  
-
-
SPI3_SCK/ USART3_ UART4_ QUADSPI_  
EVENT  
OUT  
PC10  
PC11  
PC12  
PC13  
PC14  
PC15  
-
-
LCD_R2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
I2S3_CK  
TX  
TX  
BK1_IO1  
SPI3_MIS  
O
USART3_ UART4_ QUADSPI_  
EVENT  
OUT  
I2S3ext_SD  
-
-
-
-
-
RX  
RX  
BK2_NCS  
TRACED  
3
SPI3_MOS USART3_ UART5_  
EVENT  
OUT  
-
-
I/I2S3_SD  
CK  
TX  
EVENT  
OUT  
-
-
-
-
-
-
-
-
-
-
-
-
EVENT  
OUT  
-
-
-
-
-
-
-
-
EVENT  
‘OUT  
-
-
Table 12. Alternate function (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
ETH  
AF12  
AF13  
AF14  
LCD  
AF15  
SYS  
CAN1/2/ QUAD  
TIM12/1 SPI/OT  
3/14/QU G2_HS  
ADSPI/L /OTG1  
USAR  
T6/UA  
RT4/5  
/7/8  
Port  
SPI2/3/  
USART  
1/2/3  
FMC/SD DCMI/  
IO/OTG2  
_FS  
TIM3/4/ TIM8/9/  
SPI1/2/3 SPI2/3/  
/4/5/6  
TIM1/2  
I2C1/2/3  
DSI  
HOST  
5
10/11  
SAI1  
CD  
_FS  
EVENT  
OUT  
PD0  
-
-
-
-
-
-
-
-
-
CAN1_RX  
-
-
FMC_D2  
FMC_D3  
-
-
EVENT  
OUT  
PD1  
PD2  
CAN1_TX  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TRACED  
2
UART5_  
RX  
EVENT  
OUT  
TIM3_ETR  
SDIO_CMD DCMI_D11  
-
-
-
-
-
-
-
-
-
-
SPI2_SCK/I  
2S2_CK  
USART2_  
CTS  
EVENT  
OUT  
PD3  
FMC_CLK  
FMC_NOE  
FMC_NWE  
DCMI_D5  
LCD_G7  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
USART2_  
RTS  
EVENT  
OUT  
PD4  
-
-
-
-
-
USART2_T  
X
EVENT  
OUT  
PD5  
-
-
-
SPI3_MOSI SAI1_SD_  
/I2S3_SD  
USART2_  
RX  
FMC_NWAI  
T
EVENT  
OUT  
PD6  
DCMI_D10  
LCD_B2  
-
A
USART2_  
CK  
EVENT  
OUT  
PD7  
FMC_NE1  
FMC_D13  
FMC_D14  
FMC_D15  
-
-
-
-
-
-
-
-
-
-
-
-
-
Port D  
USART3_T  
X
EVENT  
OUT  
PD8  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
USART3_  
RX  
EVENT  
OUT  
PD9  
-
-
USART3_  
CK  
EVENT  
OUT  
PD10  
PD11  
PD12  
PD13  
PD14  
PD15  
LCD_B3  
-
USART3_  
CTS  
QUADSPI_  
BK1_IO0  
FMC_A16/F  
MC_CLE  
EVENT  
OUT  
-
-
-
-
-
-
USART3_  
RTS  
QUADSPI_  
BK1_IO1  
FMC_A17/F  
MC_ALE  
EVENT  
OUT  
TIM4_CH1  
TIM4_CH2  
TIM4_CH3  
TIM4_CH4  
QUADSPI_  
BK1_IO3  
EVENT  
OUT  
FMC_A18  
FMC_D0  
FMC_D1  
-
-
-
EVENT  
OUT  
-
-
EVENT  
‘OUT  
Table 12. Alternate function (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
ETH  
AF12  
AF13  
AF14  
LCD  
AF15  
SYS  
CAN1/2/ QUAD  
TIM12/1 SPI/OT  
3/14/QU G2_HS  
ADSPI/L /OTG1  
USAR  
T6/UA  
RT4/5  
/7/8  
Port  
SPI2/3/  
USART  
1/2/3  
FMC/SD DCMI/  
IO/OTG2  
_FS  
TIM3/4/ TIM8/9/  
SPI1/2/3 SPI2/3/  
/4/5/6  
TIM1/2  
I2C1/2/3  
DSI  
HOST  
5
10/11  
SAI1  
CD  
_FS  
UART8_  
Rx  
EVENT  
OUT  
PE0  
-
-
TIM4_ETR  
-
-
-
-
-
-
-
-
FMC_NBL0 DCMI_D2  
FMC_NBL1 DCMI_D3  
-
UART8_  
Tx  
EVENT  
OUT  
PE1  
PE2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TRACEC  
LK  
SAI1_MCL  
K_A  
QUADSPI_  
BK1_IO2  
ETH_MII_TXD  
3
EVENT  
OUT  
SPI4_SCK  
FMC_A23  
-
-
-
-
-
-
-
-
-
-
TRACED  
0
SAI1_SD_  
B
EVENT  
OUT  
PE3  
-
FMC_A19  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TRACED  
1
SAI1_FS_  
A
EVENT  
OUT  
PE4  
SPI4_NSS  
FMC_A20  
FMC_A21  
FMC_A22  
FMC_D4  
FMC_D5  
FMC_D6  
FMC_D7  
FMC_D8  
FMC_D9  
FMC_D10  
FMC_D11  
FMC_D12  
DCMI_D4  
LCD_B0  
LCD_G0  
LCD_G1  
-
-
-
TRACED  
2
SAI1_SCK  
_A  
EVENT  
OUT  
PE5  
TIM9_CH1  
SPI4_MISO  
DCMI_D6  
-
TRACED  
3
SAI1_SD_  
A
EVENT  
OUT  
PE6  
TIM9_CH2  
SPI4_MOSI  
DCMI_D7  
-
UART7_  
Rx  
QUADSPI  
_BK2_IO0  
EVENT  
OUT  
PE7  
TIM1_ETR  
TIM1_CH1N  
TIM1_CH1  
TIM1_CH2N  
TIM1_CH2  
TIM1_CH3N  
TIM1_CH3  
TIM1_CH4  
TIM1_BKIN  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Port E  
UART7_  
Tx  
QUADSPI  
_BK2_IO1  
EVENT  
OUT  
PE8  
-
-
QUADSPI  
_BK2_IO2  
EVENT  
OUT  
PE9  
-
-
-
-
-
-
-
-
-
QUADSPI  
_BK2_IO3  
EVENT  
OUT  
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
-
-
EVENT  
OUT  
SPI4_NSS  
SPI4_SCK  
SPI4_MISO  
SPI4_MOSI  
-
LCD_G3  
LCD_B4  
LCD_DE  
LCD_CLK  
LCD_R7  
-
-
-
-
-
EVENT  
OUT  
EVENT  
OUT  
EVENT  
OUT  
EVENT  
‘OUT  
Table 12. Alternate function (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
ETH  
AF12  
AF13  
AF14  
LCD  
AF15  
SYS  
CAN1/2/ QUAD  
TIM12/1 SPI/OT  
3/14/QU G2_HS  
ADSPI/L /OTG1  
USAR  
T6/UA  
RT4/5  
/7/8  
Port  
SPI2/3/  
USART  
1/2/3  
FMC/SD DCMI/  
IO/OTG2  
_FS  
TIM3/4/ TIM8/9/  
SPI1/2/3 SPI2/3/  
/4/5/6  
TIM1/2  
I2C1/2/3  
DSI  
HOST  
5
10/11  
SAI1  
CD  
_FS  
EVENT  
OUT  
PF0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
I2C2_SDA  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A0  
-
-
EVENT  
OUT  
PF1  
PF2  
I2C2_SCL  
-
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A1  
-
-
EVENT  
OUT  
I2C2_SMBA  
-
FMC_A2  
-
-
EVENT  
OUT  
PF3  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A3  
-
-
EVENT  
OUT  
PF4  
-
FMC_A4  
-
-
EVENT  
OUT  
PF5  
-
FMC_A5  
-
-
TIM10_CH  
1
SAI1_  
SD_B  
UART7_ QUADSPI_  
Rx BK1_IO3  
EVENT  
OUT  
PF6  
SPI5_NSS  
-
-
-
-
-
-
-
TIM11_CH  
1
SAI1_  
MCLK_B  
UART7_ QUADSPI_  
Tx  
EVENT  
OUT  
PF7  
SPI5_SCK  
-
-
BK1_IO2  
Port F  
SAI1_  
SCK_B  
QUADSPI  
_BK1_IO0  
EVENT  
OUT  
PF8  
-
-
-
-
-
-
-
-
SPI5_MISO  
-
TIM13_CH1  
-
-
SAI1_  
FS_B  
QUADSPI  
_BK1_IO1  
EVENT  
OUT  
PF9  
SPI5_MOSI  
-
-
-
-
-
-
-
TIM14_CH1  
-
-
QUADSPI_  
CLK  
EVENT  
OUT  
PF10  
PF11  
PF12  
PF13  
PF14  
PF15  
-
-
-
-
-
-
-
DCMI_D11  
LCD_DE  
FMC_SDN  
RAS  
EVENT  
OUT  
SPI5_MOSI  
-
-
-
-
-
-
-
-
-
-
DCMI_D12  
-
-
-
-
-
EVENT  
OUT  
-
-
-
-
FMC_A6  
FMC_A7  
FMC_A8  
FMC_A9  
-
-
-
-
EVENT  
OUT  
EVENT  
OUT  
EVENT  
‘OUT  
Table 12. Alternate function (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
ETH  
AF12  
AF13  
AF14  
LCD  
AF15  
SYS  
CAN1/2/ QUAD  
TIM12/1 SPI/OT  
3/14/QU G2_HS  
ADSPI/L /OTG1  
USAR  
T6/UA  
RT4/5  
/7/8  
Port  
SPI2/3/  
USART  
1/2/3  
FMC/SD DCMI/  
IO/OTG2  
_FS  
TIM3/4/ TIM8/9/  
SPI1/2/3 SPI2/3/  
/4/5/6  
TIM1/2  
I2C1/2/3  
DSI  
HOST  
5
10/11  
SAI1  
CD  
_FS  
EVENT  
OUT  
PG0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A10  
FMC_A11  
FMC_A12  
FMC_A13  
-
-
EVENT  
OUT  
PG1  
PG2  
PG3  
PG4  
PG5  
PG6  
PG7  
PG8  
PG9  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT  
OUT  
-
-
EVENT  
OUT  
-
-
FMC_A14/F  
MC_BA0  
EVENT  
OUT  
-
-
-
FMC_A15/F  
MC_BA1  
EVENT  
OUT  
-
EVENT  
OUT  
DCMI_D12  
LCD_R7  
SAI1_MCL  
K_A  
USART6  
_CK  
EVENT  
OUT  
FMC_INT  
DCMI_D13 LCD_CLK  
LCD_G7  
Port  
G
USART6  
_RTS  
ETH_PPS_OU FMC_SDCL  
EVENT  
OUT  
SPI6_NSS  
-
-
-
-
-
-
T
K
USART6 QUADSPI_  
_RX  
FMC_NE2/  
FMC_NCE  
DCMI_VS  
YNC  
EVENT  
OUT  
-
-
-
BK2_IO2  
PG1  
0
EVENT  
OUT  
LCD_G3  
-
FMC_NE3  
-
DCMI_D2  
LCD_B2  
LCD_B3  
LCD_B1  
LCD_R0  
ETH_MII_TX_  
EN/ETH_RMII  
_TX_EN  
EVENT  
OUT  
PG11  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
DCMI_D3  
PG1  
2
USART6  
_RTS  
EVENT  
OUT  
SPI6_MISO  
SPI6_SCK  
LCD_B4  
-
-
FMC_NE4  
FMC_A24  
-
-
ETH_MII_TXD  
0/ETH_RMII_T  
XD0  
PG1 TRACED  
3
USART6  
_CTS  
EVENT  
OUT  
0
PG1 TRACED  
USART6 QUADSPI_  
EVENT  
OUT  
-
-
-
-
-
-
-
-
SPI6_MOSI  
-
-
-
-
-
-
-
-
-
FMC_A25  
-
-
LCD_B0  
-
4
1
_TX  
BK2_IO3  
PG1  
5
USART6  
_CTS  
EVENT  
‘OUT  
-
-
DCMI_D13  
Table 12. Alternate function (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
ETH  
AF12  
AF13  
AF14  
LCD  
-
AF15  
SYS  
CAN1/2/ QUAD  
TIM12/1 SPI/OT  
3/14/QU G2_HS  
ADSPI/L /OTG1  
USAR  
T6/UA  
RT4/5  
/7/8  
Port  
SPI2/3/  
USART  
1/2/3  
FMC/SD DCMI/  
IO/OTG2  
_FS  
TIM3/4/ TIM8/9/  
SPI1/2/3 SPI2/3/  
/4/5/6  
TIM1/2  
I2C1/2/3  
DSI  
HOST  
5
10/11  
SAI1  
CD  
_FS  
EVENT  
OUT  
PH0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT  
OUT  
PH1  
PH2  
PH3  
-
-
-
-
-
QUADSPI_  
BK2_IO0  
FMC_SDC  
KE0  
EVENT  
OUT  
ETH_MII_CRS  
ETH_MII_COL  
LCD_R0  
LCD_R1  
QUADSPI_  
BK2_IO1  
FMC_SDN  
E0  
EVENT  
OUT  
OTG_HS  
_ULPI_N  
XT  
EVENT  
OUT  
PH4  
-
-
-
-
I2C2_SCL  
I2C2_SDA  
-
-
-
-
LCD_G5  
-
-
-
-
LCD_G4  
FMC_SDN  
WE  
EVENT  
OUT  
PH5  
PH6  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SPI5_NSS  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ETH_MII_RXD FMC_SDN  
E1  
EVENT  
OUT  
-
I2C2_SMBA SPI5_SCK  
TIM12_CH1  
-
-
2
ETH_MII_RXD FMC_SDC  
EVENT  
OUT  
PH7  
-
I2C3_SCL  
SPI5_MISO  
-
DCMI_D9  
-
3
KE1  
Port H  
DCMI_HS  
YNC  
EVENT  
OUT  
PH8  
-
I2C3_SDA  
-
-
-
-
-
-
-
-
-
-
FMC_D16  
LCD_R2  
LCD_R3  
LCD_R4  
LCD_R5  
LCD_R6  
LCD_G2  
LCD_G3  
LCD_G4  
EVENT  
OUT  
PH9  
-
I2C3_SMBA  
TIM12_CH2  
-
-
-
-
-
-
-
FMC_D17  
FMC_D18  
FMC_D19  
FMC_D20  
FMC_D21  
FMC_D22  
FMC_D23  
DCMI_D0  
DCMI_D1  
DCMI_D2  
DCMI_D3  
-
EVENT  
OUT  
PH10  
PH11  
PH12  
PH13  
PH14  
PH15  
TIM5_CH1  
-
-
-
-
-
-
-
EVENT  
OUT  
TIM5_CH2  
-
EVENT  
OUT  
TIM5_CH3  
-
TIM8_CH1  
N
EVENT  
OUT  
-
-
-
CAN1_TX  
TIM8_CH2  
N
EVENT  
OUT  
-
-
DCMI_D4  
DCMI_D11  
TIM8_CH3  
N
EVENT  
‘OUT  
Table 12. Alternate function (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
ETH  
AF12  
AF13  
AF14  
LCD  
AF15  
SYS  
CAN1/2/ QUAD  
TIM12/1 SPI/OT  
3/14/QU G2_HS  
ADSPI/L /OTG1  
USAR  
T6/UA  
RT4/5  
/7/8  
Port  
SPI2/3/  
USART  
1/2/3  
FMC/SD DCMI/  
IO/OTG2  
_FS  
TIM3/4/ TIM8/9/  
SPI1/2/3 SPI2/3/  
/4/5/6  
TIM1/2  
I2C1/2/3  
DSI  
HOST  
5
10/11  
SAI1  
CD  
_FS  
SPI2_NSS/I  
2S2_WS  
EVENT  
OUT  
PI0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TIM5_CH4  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FMC_D24  
FMC_D25  
FMC_D26  
FMC_D27  
DCMI_D13  
DCMI_D8  
DCMI_D9  
DCMI_D10  
LCD_G5  
LCD_G6  
LCD_G7  
SPI2_SCK/I  
2S2_CK  
EVENT  
OUT  
PI1  
PI2  
PI3  
PI4  
PI5  
PI6  
PI7  
PI8  
PI9  
PI10  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
I2S2ext_S  
D
EVENT  
OUT  
TIM8_CH4  
TIM8_ETR  
SPI2_MISO  
-
SPI2_MOSI  
/I2S2_SD  
EVENT  
OUT  
-
-
-
-
-
-
-
-
-
TIM8_BKI  
N
EVENT  
OUT  
-
-
-
-
-
-
-
-
FMC_NBL2 DCMI_D5  
LCD_B4  
LCD_B5  
LCD_B6  
LCD_B7  
DCMI_VS  
FMC_NBL3  
EVENT  
OUT  
TIM8_CH1  
-
YNC  
EVENT  
OUT  
TIM8_CH2  
-
FMC_D28  
FMC_D29  
-
DCMI_D6  
EVENT  
OUT  
TIM8_CH3  
-
DCMI_D7  
Port I  
EVENT  
OUT  
-
-
-
-
-
-
-
LCD_VSY  
NC  
EVENT  
OUT  
CAN1_RX  
-
FMC_D30  
FMC_D31  
ETH_MII_RX_  
ER  
LCD_HSY  
NC  
EVENT  
OUT  
OTG_HS  
_ULPI  
_DIR  
EVENT  
OUT  
PI11  
-
-
-
-
-
-
-
-
-
LCD_G6  
-
-
-
-
LCD_HSY  
NC  
EVENT  
OUT  
PI12  
PI13  
PI14  
PI15  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_VSY  
NC  
EVENT  
OUT  
-
EVENT  
OUT  
-
LCD_CLK  
LCD_R0  
EVENT  
‘OUT  
LCD_G2  
Table 12. Alternate function (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
ETH  
AF12  
AF13  
AF14  
LCD  
AF15  
SYS  
CAN1/2/ QUAD  
TIM12/1 SPI/OT  
3/14/QU G2_HS  
ADSPI/L /OTG1  
USAR  
T6/UA  
RT4/5  
/7/8  
Port  
SPI2/3/  
USART  
1/2/3  
FMC/SD DCMI/  
IO/OTG2  
_FS  
TIM3/4/ TIM8/9/  
SPI1/2/3 SPI2/3/  
/4/5/6  
TIM1/2  
I2C1/2/3  
DSI  
HOST  
5
10/11  
SAI1  
CD  
_FS  
EVENT  
OUT  
PJ0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_R7  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_R1  
LCD_R2  
LCD_R3  
LCD_R4  
LCD_R5  
LCD_R6  
LCD_B0  
LCD_B1  
LCD_B2  
LCD_B3  
LCD_B4  
LCD_B5  
LCD_B6  
LCD_B7  
LCD_DE  
EVENT  
OUT  
PJ1  
PJ2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
DSIHOST  
_TE  
EVENT  
OUT  
-
EVENT  
OUT  
PJ3  
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT  
OUT  
PJ4  
-
Port J  
EVENT  
OUT  
PJ5  
-
EVENT  
OUT  
PJ12  
PJ13  
PJ14  
PJ15  
PK3  
PK4  
LCD_G3  
EVENT  
OUT  
LCD_G4  
EVENT  
OUT  
-
-
-
-
-
-
-
EVENT  
OUT  
EVENT  
OUT  
EVENT  
OUT  
EVENT  
OUT  
Port K PK5  
PK6  
EVENT  
OUT  
EVENT  
OUT  
PK7  
Memory mapping  
STM32F479xx  
4
Memory mapping  
The memory map is shown in Figure 19.  
Figure 19. Memory map  
5HVHUYHG  
ꢇ[(ꢇꢅꢇꢍꢇꢇꢇꢇꢍꢋꢍꢇ[))))ꢍ))))  
Š
&RUWH[ ꢋ0ꢄꢍ  
LQWHUQDOꢍSHULSKHUDOꢍꢍ  
ꢇ[(ꢇꢇꢇꢍꢇꢇꢇꢇꢍꢋꢍꢇ[(ꢇꢇ)ꢍ))))  
ꢇ[ꢉꢇꢇꢇꢍꢇꢇꢇꢇꢍꢋꢍꢇ[')))ꢍ))))  
$+%ꢀ  
5HVHUYHG  
ꢇ[ꢆꢇꢇꢉꢍꢇ&ꢇꢇꢍꢋꢍꢇ[ꢆ)))ꢍ))))  
ꢇ[ꢆꢇꢇꢉꢍꢇ%))  
$+%ꢂ  
ꢇ[))))ꢍ))))  
ꢆꢅꢂꢋ0E\WH  
%ORFNꢍꢈ  
Š
ꢇ[ꢆꢇꢇꢇꢍꢇꢇꢇꢇ  
ꢇ[ꢄꢇꢇꢁꢍꢇꢇꢇꢇꢍꢋꢍꢇ[ꢄ)))ꢍ))))  
ꢇ[ꢄꢇꢇꢈꢍ))))  
&RUWH[ ꢋꢄ  
,QWHUQDO  
5HVHUYHG  
SHULSKHUDOV  
ꢇ[(ꢇꢇꢇꢍꢇꢇꢇꢇ  
ꢇ[')))ꢍ))))  
ꢆꢅꢂꢋ0E\WH  
%ORFNꢍꢉ  
)0&  
ꢇ['ꢇꢇꢇꢍꢇꢇꢇꢇ  
ꢇ[&)))ꢍ))))  
$+%ꢅ  
ꢆꢅꢂꢋ0E\WH  
%ORFNꢍꢆ  
)0&ꢍDQGꢍ  
48$'63,  
ꢇ[$ꢇꢇꢇꢍꢇꢇꢇꢇ  
ꢇ[ꢃ)))ꢍ))))  
ꢆꢅꢂꢋ0E\WH  
%ORFNꢍꢄ  
ꢇ[ꢄꢇꢇꢂꢍꢇꢇꢇꢇ  
)0&ꢍEDQNꢀꢍDQGꢍ  
48$'63,ꢍEDQN  
5HVHUYHG  
ꢇ[ꢄꢇꢇꢅꢍꢈꢄꢇꢇꢍꢋꢍꢇ[ꢄꢇꢇꢅꢍ))))  
ꢇ[ꢄꢇꢇꢅꢍꢈꢀ))  
ꢇ[ꢁꢇꢇꢇꢍꢇꢇꢇꢇ  
ꢇ[ꢈ)))ꢍ))))  
ꢆꢅꢂꢋ0E\WH  
%ORFNꢍꢀ  
)0&ꢍEDQNꢅꢍWRꢍ  
48$'63,ꢍEDQNꢍꢂ  
ꢇ[ꢉꢇꢇꢇꢍꢇꢇꢇꢇ  
ꢇ[ꢆ)))ꢍ))))  
ꢆꢅꢂꢋ0E\WH  
%ORFNꢍꢂ  
3HULSKHUDOV  
$3%ꢂ  
ꢇ[ꢄꢇꢇꢇꢍꢇꢇꢇꢇ  
ꢇ[ꢀ)))ꢍ))))  
ꢆꢅꢂꢋ0E\WH  
%ORFNꢍꢅ  
65$0  
5HVHUYHG  
65$0ꢀꢍ  
ꢐꢅꢂꢁꢍ.%ꢍDOLDVHGꢍE\ꢍELWꢋEDQGLQJꢑ  
65$0ꢂꢍ  
ꢐꢀꢂꢍ.%ꢍDOLDVHGꢍE\ꢍELWꢋEDQGLQJꢑ  
ꢇ[ꢂꢇꢇꢆꢍꢇꢇꢇꢇꢍꢋꢍꢇ[ꢀ)))ꢍ))))  
ꢇ[ꢂꢇꢇꢀꢍꢇꢇꢇꢇꢍꢋꢍꢇ[ꢂꢇꢇꢄꢍ))))  
ꢇ[ꢂꢇꢇꢂꢍꢁꢇꢇꢇꢍꢋꢍꢇ[ꢂꢇꢇꢂꢍ))))  
ꢇ[ꢄꢇꢇꢅꢍꢇꢇꢇꢇ  
ꢇ[ꢄꢇꢇꢇꢍꢁꢇꢇꢇꢍꢋꢍꢇ[ꢄꢇꢇꢇꢍ))))  
ꢇ[ꢄꢇꢇꢇꢍꢈ)))  
ꢇ[ꢂꢇꢇꢇꢍꢇꢇꢇꢇ  
ꢇ[ꢅ)))ꢍ))))  
5HVHUYHG  
ꢆꢅꢂꢋ0E\WH  
%ORFNꢍꢇ  
65$0  
65$0ꢅꢍ  
ꢐꢅꢉꢇꢍ.%ꢍDOLDVHGꢍE\ꢍELWꢋEDQGLQJꢑ  
ꢇ[ꢂꢇꢇꢇꢍꢇꢇꢇꢇꢍꢋꢍꢇ[ꢂꢇꢇꢂꢍꢈ)))  
ꢇ[ꢇꢇꢇꢇꢍꢇꢇꢇꢇ  
5HVHUYHG  
ꢇ[ꢅ)))ꢍ&ꢇꢇꢁꢍꢋꢍꢇ[ꢅ)))ꢍ))))  
ꢇ[ꢅ)))ꢍ&ꢇꢇꢇꢍꢋꢍꢇ[ꢅ)))ꢍ&ꢇ)  
2SWLRQꢍ%\WHV  
5HVHUYHG  
6\VWHPꢍPHPRU\  
5HVHUYHG  
ꢇ[ꢅ)))ꢍꢈ$ꢅꢇꢍꢋꢍꢇ[ꢅ)))ꢍꢈ)))  
ꢇ[ꢅ)))ꢍꢇꢇꢇꢇꢍꢋꢍꢇ[ꢅ)))ꢍꢈ$ꢇ)  
ꢇ[ꢅ))(ꢍ&ꢇꢇꢁꢍꢋꢍꢇ[ꢅ))(ꢍ))))  
ꢇ[ꢅ))(ꢍ&ꢇꢇꢇꢍꢋꢍꢇ[ꢅ))(ꢍ&ꢇ)  
$3%ꢅ  
2SWLRQꢍE\WHV  
5HVHUYHG  
&&0ꢍGDWDꢍ5$0  
ꢐꢉꢄꢍ.%ꢍGDWDꢍ65$0ꢑ  
ꢇ[ꢅꢇꢇꢅꢍꢇꢇꢇꢇꢍꢋꢍꢇ[ꢅ))(ꢍ%)))  
ꢇ[ꢅꢇꢇꢇꢍꢇꢇꢇꢇꢍꢋꢍꢇ[ꢅꢇꢇꢇꢍ))))  
ꢇ[ꢇꢁꢂꢇꢍꢇꢇꢇꢇꢍꢋꢍꢇ[ꢇ)))ꢍ))))  
ꢇ[ꢇꢁꢇꢇꢍꢇꢇꢇꢇꢍꢋꢍꢇ[ꢇꢁꢅ)ꢍ))))ꢍꢍꢍꢍ  
ꢇ[ꢇꢇꢂꢇꢍꢇꢇꢇꢇꢍꢋꢍꢇ[ꢇꢈ))ꢍ))))  
5HVHUYHG  
)ODVKꢍPHPRU\  
5HVHUYHG  
$OLDVHGꢍWRꢍ)ODVKꢒꢍV\VWHP  
PHPRU\ꢍRUꢍ65$0ꢍGHSHQGLQJ  
RQꢍWKHꢍ%227ꢍSLQV  
ꢇ[ꢄꢇꢇꢇꢍꢇꢇꢇꢇ  
ꢇ[ꢇꢇꢇꢇꢍꢇꢇꢇꢇꢍꢋꢍꢇ[ꢇꢇꢅ)ꢍ))))  
06Yꢀꢀꢁꢉꢀ9ꢂ  
80/208  
DocID028010 Rev 2  
 
STM32F479xx  
Memory mapping  
(1)  
Table 13. STM32F479xx register boundary addresses  
Bus  
Boundary address  
Peripheral  
-
0xE00F FFFF - 0xFFFF FFFF  
0xE000 0000 - 0xE00F FFFF  
0xD000 0000 - 0xDFFF FFFF  
0xC000 0000 - 0xCFFF FFFF  
0xA000 1000 - 0xA0001FFF  
0xA000 2000 - 0xBFFF FFFF  
0xA000 0000- 0xA000 0FFF  
0x9000 0000 - 0x9FFF FFFF  
0x8000 0000 - 0x8FFF FFFF  
0x7000 0000 - 0x7FFF FFFF  
0x6000 0000 - 0x6FFF FFFF  
0x5006 0C00- 0x5FFF FFFF  
0x5006 0800 - 0x5006 0BFF  
0x5006 0400 - 0x5006 07FF  
0x5006 0000 - 0x5006 03FF  
0x5005 0400 - 0x5005 FFFF  
0x5005 0000 - 0x5005 03FF  
0x5004 0000- 0x5004 FFFF  
0x5000 0000 - 0x5003 FFFF  
Reserved  
Cortex®-M4  
Cortex®-M4 internal peripherals  
FMC bank 6  
FMC bank 5  
Quad-SPI control register  
Reserved  
AHB3  
FMC control register  
Quad-SPI bank  
FMC bank 3  
FMC bank 2 (reserved)  
FMC bank 1  
Reserved  
-
RNG  
HASH  
CRYP  
AHB2  
Reserved  
DCMI  
Reserved  
USB OTG FS  
DocID028010 Rev 2  
81/208  
84  
Memory mapping  
STM32F479xx  
(1)  
Table 13. STM32F479xx register boundary addresses (continued)  
Bus  
Boundary address  
Peripheral  
-
0x4008 0000- 0x4FFF FFFF  
0x4004 0000 - 0x4007 FFFF  
0x4002 BC00- 0x4003 FFFF  
0x4002 B000 - 0x4002 BBFF  
0x4002 9400 - 0x4002 AFFF  
0x4002 9000 - 0x4002 93FF  
0x4002 8C00 - 0x4002 8FFF  
0x4002 8800 - 0x4002 8BFF  
0x4002 8400 - 0x4002 87FF  
0x4002 8000 - 0x4002 83FF  
0x4002 6800 - 0x4002 7FFF  
0x4002 6400 - 0x4002 67FF  
0x4002 6000 - 0x4002 63FF  
0x4002 5000 - 0x4002 5FFF  
0x4002 4000 - 0x4002 4FFF  
0x4002 3C00 - 0x4002 3FFF  
0x4002 3800 - 0x4002 3BFF  
0x4002 3400 - 0x4002 37FF  
0x4002 3000 - 0x4002 33FF  
0x4002 2C00 - 0x4002 2FFF  
0x4002 2800 - 0x4002 2BFF  
0x4002 2400 - 0x4002 27FF  
0x4002 2000 - 0x4002 23FF  
0x4002 1C00 - 0x4002 1FFF  
0x4002 1800 - 0x4002 1BFF  
0x4002 1400 - 0x4002 17FF  
0x4002 1000 - 0x4002 13FF  
0x4002 0C00 - 0x4002 0FFF  
0x4002 0800 - 0x4002 0BFF  
0x4002 0400 - 0x4002 07FF  
0x4002 0000 - 0x4002 03FF  
Reserved  
USB OTG HS  
Reserved  
Chrom (DMA2D)  
Reserved  
ETHERNET MAC  
Reserved  
DMA2  
DMA1  
Reserved  
BKPSRAM  
Flash interface register  
RCC  
AHB1  
Reserved  
CRC  
Reserved  
GPIOK  
GPIOJ  
GPIOI  
GPIOH  
GPIOG  
GPIOF  
GPIOE  
GPIOD  
GPIOC  
GPIOB  
GPIOA  
82/208  
DocID028010 Rev 2  
STM32F479xx  
Memory mapping  
(1)  
Table 13. STM32F479xx register boundary addresses (continued)  
Bus  
Boundary address  
Peripheral  
0x4001 7400 - 0x4001 FFFF  
0x4001 6C00 - 0x4001 73FF  
0x4001 6800 - 0x4001 6BFF  
0x4001 5C00 - 0x4001 67FF  
0x4001 5800 - 0x4001 5BFF  
0x4001 5400 - 0x4001 57FF  
0x4001 5000 - 0x4001 53FF  
0x4001 4C00 - 0x4001 4FFF  
0x4001 4800 - 0x4001 4BFF  
0x4001 4400 - 0x4001 47FF  
0x4001 4000 - 0x4001 43FF  
0x4001 3C00 - 0x4001 3FFF  
0x4001 3800 - 0x4001 3BFF  
0x4001 3400 - 0x4001 37FF  
0x4001 3000 - 0x4001 33FF  
0x4001 2C00 - 0x4001 2FFF  
0x4001 2400 - 0x4001 2BFF  
0x4001 2000 - 0x4001 23FF  
0x4001 1800 - 0x4001 1FFF  
0x4001 1400 - 0x4001 17FF  
0x4001 1000 - 0x4001 13FF  
0x4001 0800 - 0x4001 0FFF  
0x4001 0400 - 0x4001 07FF  
0x4001 0000 - 0x4001 03FF  
Reserved  
DSI Host  
LCD-TFT  
Reserved  
SAI1  
SPI6  
SPI5  
Reserved  
TIM11  
TIM10  
TIM9  
EXTI  
APB2  
SYSCFG  
SPI4  
SPI1  
SDIO  
Reserved  
ADC1 - ADC2 - ADC3  
Reserved  
USART6  
USART1  
Reserved  
TIM8  
TIM1  
DocID028010 Rev 2  
83/208  
84  
Memory mapping  
STM32F479xx  
(1)  
Table 13. STM32F479xx register boundary addresses (continued)  
Bus  
Boundary address  
Peripheral  
-
0x4000 8000- 0x4000 FFFF  
0x4000 7C00 - 0x4000 7FFF  
0x4000 7800 - 0x4000 7BFF  
0x4000 7400 - 0x4000 77FF  
0x4000 7000 - 0x4000 73FF  
0x4000 6C00 - 0x4000 6FFF  
0x4000 6800 - 0x4000 6BFF  
0x4000 6400 - 0x4000 67FF  
0x4000 6000 - 0x4000 63FF  
0x4000 5C00 - 0x4000 5FFF  
0x4000 5800 - 0x4000 5BFF  
0x4000 5400 - 0x4000 57FF  
0x4000 5000 - 0x4000 53FF  
0x4000 4C00 - 0x4000 4FFF  
0x4000 4800 - 0x4000 4BFF  
0x4000 4400 - 0x4000 47FF  
0x4000 4000 - 0x4000 43FF  
0x4000 3C00 - 0x4000 3FFF  
0x4000 3800 - 0x4000 3BFF  
0x4000 3400 - 0x4000 37FF  
0x4000 3000 - 0x4000 33FF  
0x4000 2C00 - 0x4000 2FFF  
0x4000 2800 - 0x4000 2BFF  
0x4000 2400 - 0x4000 27FF  
0x4000 2000 - 0x4000 23FF  
0x4000 1C00 - 0x4000 1FFF  
0x4000 1800 - 0x4000 1BFF  
0x4000 1400 - 0x4000 17FF  
0x4000 1000 - 0x4000 13FF  
0x4000 0C00 - 0x4000 0FFF  
0x4000 0800 - 0x4000 0BFF  
0x4000 0400 - 0x4000 07FF  
0x4000 0000 - 0x4000 03FF  
Reserved  
UART8  
UART7  
DAC  
PWR  
Reserved  
CAN2  
CAN1  
Reserved  
I2C3  
I2C2  
I2C1  
UART5  
UART4  
USART3  
USART2  
I2S3ext  
SPI3 / I2S3  
SPI2 / I2S2  
I2S2ext  
IWDG  
APB1  
WWDG  
RTC & BKP Registers  
Reserved  
TIM14  
TIM13  
TIM12  
TIM7  
TIM6  
TIM5  
TIM4  
TIM3  
TIM2  
1. The reserved boundary address are shown in grayed cells  
84/208  
DocID028010 Rev 2  
STM32F479xx  
Electrical characteristics  
5
Electrical characteristics  
5.1  
Parameter conditions  
Unless otherwise specified, all voltages are referenced to V  
.
SS  
5.1.1  
Minimum and maximum values  
Unless otherwise specified the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T = 25 °C and T = T max (given by  
A
A
A
the selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean±3σ).  
5.1.2  
5.1.3  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = 3.3 V (for the  
A
DD  
1.7 V V 3.6 V voltage range). They are given only as design guidelines and are not  
DD  
tested.  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range, where 95% of the devices have an  
error less than or equal to the value indicated (mean±2σ).  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
5.1.4  
5.1.5  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 20.  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 21.  
Figure 20. Pin loading conditions  
Figure 21. Pin input voltage  
-#5 PIN  
-#5 PIN  
6
# ꢄ ꢅꢂ P&  
).  
-3ꢀꢁꢂꢀꢀ6ꢃ  
-3ꢀꢁꢂꢀꢂ6ꢃ  
DocID028010 Rev 2  
85/208  
187  
 
 
Electrical characteristics  
STM32F479xx  
5.1.6  
Power supply scheme  
Figure 22. Power supply scheme  
9%$7  
%DFNXSꢍFLUFXLWU\  
ꢐ26&ꢀꢂ.ꢒ57&ꢒ  
:DNHXSꢍORJLF  
%DFNXSꢍUHJLVWHUVꢒ  
EDFNXSꢍ5$0ꢑ  
3RZHUꢍ  
VZLWFK  
9%$7ꢍ ꢍꢅꢏꢉꢆꢍWRꢍꢀꢏꢉꢍ9  
287  
,1  
,2  
/RJLF  
*3,2V  
9&$3Bꢅ  
9&$3Bꢂ  
.HUQHOꢍORJLFꢍ  
ꢐ&38ꢒꢍGLJLWDOꢍ  
ꢓꢍ5$0ꢑꢍꢍ  
ꢂꢍîꢍꢂꢏꢂꢍ—)  
9''  
9''  
ꢅꢊꢂꢊꢏꢏꢏꢅꢃꢊꢂꢇ  
9ROWDJHꢍ  
UHJXODWRU  
ꢂꢇꢍîꢍꢅꢇꢇꢍQ)  
ꢌꢍꢅꢍîꢍꢄꢏꢈꢍ—)  
966  
ꢅꢊꢂꢊꢏꢏꢏꢅꢃꢊꢂꢇ  
%<3$66B5(*  
9''86%  
)ODVKꢍPHPRU\  
9''86%  
27*ꢋ)6  
3+<  
ꢅꢇꢇꢍQ)  
9'''6,  
'6,  
9ROWDJHꢍ  
UHJXODWRU  
9&$3'6,  
9''ꢅꢂ'6,  
966'6,  
'6,  
3+<  
ꢂꢏꢂꢍ—)  
5HVHWꢍ  
FRQWUROOHU  
3'5B21  
9''$  
9''  
95()  
95()ꢌ  
$QDORJꢎ  
5&Vꢒꢍ3//ꢒꢏꢏ  
ꢅꢇꢇꢍQ)  
ꢌꢍꢅꢍ—)  
ꢅꢇꢇꢍQ)  
ꢌꢍꢅꢍ—)  
$'&  
95()ꢋ  
966$  
06ꢀꢁꢂꢆꢉ9ꢅ  
1. To connect BYPASS_REG and PDR_ON pins, refer to Section 2.19 and Section 2.20.  
2. The two 2.2 µF ceramic capacitors on VCAP_1 and VCAP_2 should be replaced by two 100 nF decoupling  
capacitors when the voltage regulator is OFF.  
3. The 4.7 µF ceramic capacitor must be connected to one of the VDD pin.  
4. VDDA and VSSA must be connected to VDD and VSS, respectively.  
Caution:  
Each power supply pair (V /V , V  
/V  
...) must be decoupled with filtering ceramic  
DD SS  
DDA SSA  
capacitors as shown above. These capacitors must be placed as close as possible to, or  
below, the appropriate pins on the underside of the PCB to ensure good operation of the  
device. It is not recommended to remove filtering capacitors to reduce PCB size or cost.  
This might cause incorrect operation of the device.  
86/208  
DocID028010 Rev 2  
STM32F479xx  
Electrical characteristics  
5.1.7  
Current consumption measurement  
Figure 23. Current consumption measurement scheme  
)
?6  
$$ "!4  
6
"!4  
)
$$  
6
$$  
6
$$!  
AIꢀꢆꢀꢃꢇ  
5.2  
Absolute maximum ratings  
Stresses above the absolute maximum ratings listed in Table 14, Table 15, and Table 16  
may cause permanent damage to the device. These are stress ratings only and functional  
operation of the device at these conditions is not implied. Exposure to maximum rating  
conditions for extended periods may affect device reliability.  
Table 14. Voltage characteristics  
Symbol  
Ratings  
Min  
Max  
Unit  
External main supply voltage  
(including VDDA, VDD, VDDUSB, VDDDSI and VBAT  
VDD–VSS  
0.3  
4.0  
(1)  
)
Input voltage on FT pins(2)  
VSS 0.3 VDD+4.0  
V
Input voltage on TTa pins  
VSS 0.3  
4.0  
4.0  
9.0  
50  
VIN  
Input voltage on any other pin  
VSS 0.3  
Input voltage on BOOT pin  
VSS  
|ΔVDDx  
|VSSX VSS  
VESD(HBM)  
|
Variations between different VDD power pins  
Variations between all the different ground pins  
-
-
mV  
|
50  
Electrostatic discharge voltage (human body model)  
see Section 5.3.18  
1. All main power (VDD, VDDA, VDDUSB, VDDDSI) and ground (VSS, VSSA) pins must always be connected to  
the external power supply, in the permitted range.  
2. VIN maximum value must always be respected. Refer to Table 15 for the values of the maximum allowed  
injected current.  
DocID028010 Rev 2  
87/208  
187  
 
 
 
Electrical characteristics  
Symbol  
STM32F479xx  
Table 15. Current characteristics  
Ratings  
Max.  
Unit  
ΣIVDD  
Σ IVSS  
Total current into sum of all VDD_x power lines (source)(1)  
Total current out of sum of all VSS_x ground lines (sink)(1)  
290  
290  
25  
Σ IVDDUSB Total current into VDDUSB power line (source)  
IVDD  
IVSS  
Maximum current into each VDD_x power line (source)(1)  
Maximum current out of each VSS_x ground line (sink)(1)  
Output current sunk by any I/O and control pin  
100  
100  
25  
IIO  
Output current sourced by any I/Os and control pin  
Total output current sunk by sum of all I/O and control pins (2)  
Total output current sunk by sum of all USB I/Os  
Total output current sourced by sum of all I/Os and control pins(2)  
Injected current on FT pins (4)  
25  
120  
25  
mA  
ΣIIO  
120  
5/+0  
Injected current on NRST and BOOT0 pins (4)  
(3)  
(5)  
IINJ(PIN)  
Injected current on TTa pins(5)  
±5  
ΣIINJ(PIN)  
Total injected current (sum of all I/O and control pins)(6)  
±25  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power  
supply, in the permitted range.  
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output  
current must not be sunk/sourced between two consecutive power supply pins referring to high pin count  
LQFP packages.  
3. Negative injection disturbs the analog performance of the device. See note in Section 5.3.24.  
4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the  
specified maximum value.  
5. A positive injection is induced by VIN>VDDA while a negative injection is induced by VIN<VSS. IINJ(PIN) must  
never be exceeded. Refer to Table 14 for the values of the maximum allowed input voltage.  
6. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the  
positive and negative injected currents (instantaneous values).  
Table 16. Thermal characteristics  
Symbol  
Ratings  
Value  
Unit  
TSTG  
TJ  
Storage temperature range  
65 to +150  
°C  
°C  
Maximum junction temperature  
125  
88/208  
DocID028010 Rev 2  
 
 
 
 
STM32F479xx  
Electrical characteristics  
5.3  
Operating conditions  
5.3.1  
General operating conditions  
Table 17. General operating conditions  
Symbol  
Parameter  
Conditions(1)  
Min Typ Max Unit  
Power Scale 3 (VOS[1:0] bits in PWR_CR  
register = 0x01),  
Regulator ON, over-drive OFF  
0
0
-
120  
Over-drive  
-
-
-
-
144  
168  
168  
180  
Power Scale 2 (VOS[1:0] bits  
OFF  
in PWR_CR register = 0x10),  
Regulator ON  
fHCLK  
Internal AHB clock frequency  
Over-drive  
ON  
Over-drive  
OFF  
MHz  
Power Scale 1 (VOS[1:0] bits  
in PWR_CR register= 0x11),  
Regulator ON  
0
Over-drive  
ON  
Over-drive OFF  
Over-drive ON  
Over-drive OFF  
Over-drive ON  
-
0
-
-
-
-
-
42  
45  
84  
90  
3.6  
fPCLK1 Internal APB1 clock frequency  
fPCLK2 Internal APB2 clock frequency  
0
0
0
VDD  
Standard operating voltage  
1.7(2)  
Analog operating voltage  
1.7(2)  
-
-
2.4  
3.6  
(ADC limited to 1.2 M samples)  
(3)(4)  
(5)  
VDDA  
Must be the same potential as VDD  
Analog operating voltage  
2.4  
(ADC limited to 2.4 M samples)  
V
USB supply voltage  
VDDUSB (supply voltage for PA11, PA12,  
PB14 and PB15 pins)  
USB not used  
USB used  
1.7  
3.0  
3.3  
-
3.6  
3.6  
VDDDSI DSI system operating voltage  
-
-
1.7(2)  
1.65  
-
-
3.6  
3.6  
VBAT  
Backup operating voltage  
DocID028010 Rev 2  
89/208  
187  
 
Electrical characteristics  
STM32F479xx  
Table 17. General operating conditions (continued)  
Symbol  
Parameter  
Conditions(1)  
Min Typ Max Unit  
Power Scale 3 ((VOS[1:0] bits in  
PWR_CR register = 0x01), 120 MHz  
HCLK max frequency  
1.08 1.14 1.20  
Power Scale 2 ((VOS[1:0] bits in  
PWR_CR register = 0x10), 144 MHz  
HCLK max frequency with over-drive OFF  
or 168 MHz with over-drive ON  
Regulator ON: 1.2 V internal  
voltage on VCAP_1/VCAP_2 pins  
1.20 1.26 1.32  
V12  
V
Power Scale 1 ((VOS[1:0] bits in  
PWR_CR register = 0x11), 168 MHz  
HCLK max frequency with over-drive OFF  
or 180 MHz with over-drive ON  
1.26 1.32 1.40  
Regulator OFF: 1.2 V external Max frequency 120 MHz  
1.10 1.14 1.20  
1.20 1.26 1.32  
1.26 1.32 1.38  
voltage must be supplied from  
Max frequency 144 MHz  
external regulator on  
VCAP_1/VCAP_2 pins(6)  
Max frequency 168 MHz  
2 V VDD 3.6 V  
VDD 2 V  
0.3  
0.3  
-
-
5.5  
5.2  
Input voltage on RST and FT  
pins(7)  
VIN  
V
VDDA  
+0.3  
Input voltage on TTa pins  
-
-
0.3  
-
Input voltage on BOOT0 pin  
0
-
-
-
-
-
-
-
-
-
-
-
-
-
9
WLCSP168  
UFBGA169  
LQFP176  
-
-
645  
385  
526  
513  
1053  
690  
85  
Power dissipation at TA = 85 °C  
for suffix 6 or TA = 105 °C for  
suffix 7(8)  
-
PD  
mW  
UFBGA176  
LQFP208  
-
-
TFBGA216  
-
Maximum power dissipation  
Low power dissipation(9)  
Maximum power dissipation  
Low power dissipation(9)  
6 suffix version  
40  
40  
40  
40  
40  
40  
Ambient temperature for 6  
suffix version  
105  
105  
125  
105  
125  
TA  
TJ  
Ambient temperature for 7  
suffix version  
°C  
Junction temperature range  
7 suffix version  
1. The over-drive mode is not supported at the voltage ranges from 1.7 to 2.1 V.  
2. VDD/VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 2.19.2).  
3. When the ADC is used, refer to Table 77.  
4. If VREF+ pin is present, it must respect the following condition: VDDA-VREF+ < 1.2 V.  
5. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and  
V
DDA can be tolerated during power-up and power-down operation.  
6. The over-drive mode is not supported when the internal regulator is OFF.  
7. To sustain a voltage higher than VDD+0.3, the internal Pull-up and Pull-Down resistors must be disabled  
8. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax  
.
9. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax  
.
90/208  
DocID028010 Rev 2  
STM32F479xx  
Electrical characteristics  
Possible Flash  
Table 18. Limitations depending on the operating power supply range  
Maximum Flash  
memory access  
frequency with  
no wait states  
Maximum HCLK  
frequency  
Operating  
power  
supply range  
ADC  
operation  
vs.  
I/O operation  
memory  
Flash memory wait  
operations  
(fFlashmax  
)
states (1)(2)  
168 MHz  
with 8 wait states  
and over-drive OFF  
8-bit erase  
and program  
operations only  
VDD  
=
20 MHz(4)  
22 MHz  
24 MHz  
30 MHz  
1.7 to 2.1 V(3)  
Conversion time  
up to 1.2 Msps  
No I/O  
compensation  
180 MHz  
with 8 wait states  
and over-drive ON  
16-bit erase  
and program  
operations  
VDD  
2.1 to 2.4 V  
=
180 MHz  
with 7 wait states  
and over-drive ON  
16-bit erase  
and program  
operations  
VDD  
2.4 to 2.7 V  
=
Conversion time  
up to 2.4 Msps  
I/O compensation  
works  
180 MHz  
with 5 wait states  
and over-drive ON  
32-bit erase  
and program  
operations  
VDD  
=
2.7 to 3.6 V(5)  
1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no wait state is  
required.  
2. Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the  
execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state  
program execution.  
3. VDD/VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 2.19.2).  
4. Prefetch is not available.  
5. When VDDUSB is connected to VDD, the voltage range for USB full speed PHYs can drop down to 2.7 V. However the  
electrical characteristics of D- and D+ pins will be degraded between 2.7 and 3 V.  
5.3.2  
VCAP1/VCAP2 external capacitor  
Stabilization for the main regulator is achieved by connecting an external capacitor C  
to  
EXT  
the VCAP1/VCAP2 pins. C  
is specified in Table 19.  
EXT  
Figure 24. External capacitor C  
EXT  
&
(65  
5ꢍ/HDN  
06ꢅꢃꢇꢄꢄ9ꢂ  
1. Legend: ESR is the equivalent series resistance.  
DocID028010 Rev 2  
91/208  
187  
 
Electrical characteristics  
Symbol  
STM32F479xx  
(1)  
Table 19. VCAP1/VCAP2 operating conditions  
Parameter  
Conditions  
CEXT  
ESR  
Capacitance of external capacitor  
ESR of external capacitor  
2.2 µF  
< 2 Ω  
1. When bypassing the voltage regulator, the two 2.2 µF VCAP capacitors are not required and should be  
replaced by two 100 nF decoupling capacitors.  
5.3.3  
Operating conditions at power-up / power-down (regulator ON)  
Subject to general operating conditions for T .  
A
Table 20. Operating conditions at power-up / power-down (regulator ON)  
Symbol  
Parameter  
VDD rise time rate  
VDD fall time rate  
Min  
Max  
Unit  
20  
20  
tVDD  
µs/V  
5.3.4  
Operating conditions at power-up / power-down (regulator OFF)  
Subject to general operating conditions for T .  
A
(1)  
Table 21. Operating conditions at power-up / power-down (regulator OFF)  
Symbol  
Parameter  
VDD rise time rate  
DD fall time rate  
Conditions  
Power-up  
Power-down  
Min  
Max  
Unit  
20  
20  
20  
20  
tVDD  
V
µs/V  
VCAP_1 and VCAP_2 rise time rate Power-up  
VCAP_1 and VCAP_2 fall time rate Power-down  
tVCAP  
1. To reset the internal logic at power-down, a reset must be applied on pin PA0 when VDD reach below  
1.08 V.  
5.3.5  
Reset and power control block characteristics  
The parameters given in Table 22 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 17.  
DD  
92/208  
DocID028010 Rev 2  
STM32F479xx  
Symbol  
Electrical characteristics  
Table 22. Reset and power control block characteristics  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
PLS[2:0]=000 (rising edge)  
PLS[2:0]=000 (falling edge)  
PLS[2:0]=001 (rising edge)  
PLS[2:0]=001 (falling edge)  
PLS[2:0]=010 (rising edge)  
PLS[2:0]=010 (falling edge)  
PLS[2:0]=011 (rising edge)  
PLS[2:0]=011 (falling edge)  
PLS[2:0]=100 (rising edge)  
PLS[2:0]=100 (falling edge)  
PLS[2:0]=101 (rising edge)  
PLS[2:0]=101 (falling edge)  
PLS[2:0]=110 (rising edge)  
PLS[2:0]=110 (falling edge)  
PLS[2:0]=111 (rising edge)  
PLS[2:0]=111 (falling edge)  
-
2.09  
1.98  
2.23  
2.13  
2.39  
2.29  
2.54  
2.44  
2.70  
2.59  
2.86  
2.65  
2.96  
2.85  
3.07  
2.95  
-
2.14  
2.04  
2.30  
2.19  
2.45  
2.35  
2.60  
2.51  
2.76  
2.66  
2.93  
2.84  
3.03  
2.93  
3.14  
3.03  
100  
2.19  
2.08  
2.37  
2.25  
2.51  
2.39  
2.65  
2.56  
2.82  
2.71  
2.99  
2.92  
3.10  
2.99  
3.21  
3.09  
-
Programmable voltage  
detector level selection  
VPVD  
V
(1)  
VPVDhyst  
PVD hysteresis  
mV  
V
Falling edge  
1.60  
1.64  
-
1.68  
1.72  
40  
1.76  
1.80  
-
Power-on/power-down  
reset threshold  
VPOR/PDR  
Rising edge  
(1)  
VPDRhyst  
PDR hysteresis  
-
mV  
Falling edge  
2.13  
2.23  
2.44  
2.53  
2.75  
2.85  
-
2.19  
2.29  
2.50  
2.59  
2.83  
2.92  
100  
2.24  
2.33  
2.56  
2.63  
2.88  
2.97  
-
VBOR1  
VBOR2  
VBOR3  
Brownout level 1 threshold  
Rising edge  
Falling edge  
Brownout level 2 threshold  
Brownout level 3 threshold  
V
Rising edge  
Falling edge  
Rising edge  
(1)  
VBORhyst  
BOR hysteresis  
-
mV  
ms  
(1)(2)  
TRSTTEMPO  
POR reset temporization  
-
0.5  
1.5  
3.0  
InRush current on voltage  
regulator power-on (POR or  
wakeup from Standby)  
(1)  
IRUSH  
-
-
-
160  
-
200  
5.4  
mA  
µC  
InRush energy on voltage  
regulator power-on (POR or  
wakeup from Standby)  
VDD = 1.7 V, TA = 105 °C,  
IRUSH = 171 mA for 31 µs  
(1)  
ERUSH  
1. Guaranteed by design.  
2. The reset temporization is measured from the power-on (POR reset or wakeup from VBAT) to the instant when first  
instruction is read by the user application code.  
DocID028010 Rev 2  
93/208  
187  
Electrical characteristics  
STM32F479xx  
5.3.6  
Over-drive switching characteristics  
When the over-drive mode switches from enabled to disabled or disabled to enabled, the  
system clock is stalled during the internal voltage set-up.  
The over-drive switching characteristics are given in Table 23. They are subject to general  
operating conditions for T .  
A
(1)  
Table 23. Over-drive switching characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
HSI  
-
45  
-
HSE max for 4 MHz  
and min for 26 MHz  
Over_drive switch  
enable time  
45  
-
100  
Tod_swen  
External HSE  
50 MHz  
-
-
40  
20  
-
-
-
µs  
HSI  
HSE max for 4 MHz  
and min for 26 MHz.  
Over_drive switch  
disable time  
20  
80  
Tod_swdis  
External HSE  
50 MHz  
-
15  
-
1. Guaranteed by design.  
5.3.7  
Supply current characteristics  
The current consumption is a function of several parameters and factors such as the  
operating voltage, ambient temperature, I/O pin loading, device software configuration,  
operating frequencies, I/O pin switching rate, program location in memory and executed  
binary code.  
The current consumption is measured as described in Figure 23.  
All the run-mode current consumption measurements given in this section are performed  
®
with a reduced code that gives a consumption equivalent to CoreMark code.  
94/208  
DocID028010 Rev 2  
 
STM32F479xx  
Electrical characteristics  
Typical and maximum current consumption  
The MCU is placed under the following conditions:  
All I/O pins are in input mode with a static value at V or V (no load).  
DD SS  
All peripherals are disabled except if it is explicitly mentioned.  
The Flash memory access time is adjusted both to f frequency and V range  
HCLK  
DD  
(see Table 18: Limitations depending on the operating power supply range).  
When the regulator is OFF, the V is provided externally, as described in Table 17:  
General operating conditions.  
12  
The voltage scaling and over-drive mode are adjusted to f  
frequency as follows:  
HCLK  
Scale 3 for f  
120 MHz  
HCLK  
Scale 2 for 120 MHz < f  
Scale 1 for 144 MHz < f  
144 MHz  
HCLK  
HCLK  
PCLK1  
180 MHz. The over-drive is only ON at 180 MHz.  
= f /4, and f = f /2.  
The system clock is HCLK, f  
HCLK  
PCLK2  
HCLK  
External clock frequency is 25 MHz and PLL is ON when f  
is higher than 25 MHz.  
HCLK  
The typical current consumption values are obtained for 1.7 V V 3.6 V voltage  
DD  
range and for ambient temperature T = 25 °C unless otherwise specified.  
A
The maximum values are obtained for 1.7 V V 3.6 V voltage range and a  
DD  
maximum ambient temperature (T ), unless otherwise specified.  
A
For the voltage range 1.7 V V 2.1 V the maximum frequency is 168 MHz.  
DD  
DocID028010 Rev 2  
95/208  
187  
Electrical characteristics  
STM32F479xx  
Table 24. Typical and maximum current consumption in Run mode, code with data processing  
running from Flash memory (ART accelerator enabled except prefetch) or RAM,  
regulator ON  
Max(1)  
Symbol  
Parameter Conditions fHCLK (MHz)  
Typ  
Unit  
TA =  
TA =  
TA =  
25 °C  
85 °C  
105 °C  
180  
168  
150  
144  
120  
103  
94  
84  
77  
57  
43  
30  
16  
14  
7
109(4)  
99  
89  
81  
60  
46  
33  
19  
16  
10  
7
142  
124  
114  
104  
79  
64  
51  
37  
34  
28  
26  
24  
23  
89  
75  
70  
63  
49  
42  
36  
29  
28  
25  
22  
23  
23  
175(4)  
149  
140  
127  
98  
90  
84  
All  
Peripherals  
60  
30  
25  
16  
8
70  
enabled(2)(3)  
57  
54  
48  
4
46  
4
3
6
44  
Supply  
current in  
RUN mode  
2
3
5
43  
IDD  
mA  
180  
168  
150  
144  
120  
90  
60  
30  
25  
16  
8
50  
45  
41  
37  
28  
21  
15  
9
56(4)  
51  
46  
42  
31  
24  
17  
11  
10  
7
124(4)  
102  
97  
88  
69  
63  
All  
Peripherals  
56  
disabled(2)  
49  
7
48  
4
45  
3
6
44  
4
3
5
43  
2
2
5
43  
1. Guaranteed based on test during characterization.  
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption  
should be considered.  
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC  
for the analog part.  
4. Guaranteed by test in production.  
96/208  
DocID028010 Rev 2  
 
 
STM32F479xx  
Electrical characteristics  
Table 25. Typical and maximum current consumption in Run mode, code with data processing  
running from Flash memory (ART accelerator disabled), regulator ON  
Max(1)  
fHCLK  
(MHz)  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
TA =  
TA =  
TA =  
25 °C  
85 °C  
105 °C  
168  
150  
144  
120  
90  
97  
87  
80  
65  
51  
37  
21  
18  
49  
44  
40  
36  
29  
22  
13  
11  
102  
92  
84  
68  
54  
41  
23  
20  
55  
49  
45  
39  
32  
25  
15  
13  
128  
118  
108  
88  
73  
59  
42  
39  
79  
44  
68  
58  
51  
44  
34  
32  
154  
143  
131  
108  
93  
All Peripherals  
enabled(2)(3)  
60  
79  
30  
62  
25  
59  
Supply current in  
RUN mode  
IDD  
mA  
168  
150  
144  
120  
90  
105  
100  
92  
78  
All Peripherals  
disabled  
71  
60  
64  
30  
54  
25  
52  
1. Guaranteed based on test during characterization.  
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption  
should be considered.  
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC  
for the analog part.  
DocID028010 Rev 2  
97/208  
187  
Electrical characteristics  
STM32F479xx  
Table 26. Typical and maximum current consumption in Run mode, code with data  
processing running from Flash memory (ART accelerator enabled except prefetch),  
regulator OFF  
Typ  
Max(1)  
fHCLK  
(MHz)  
Symbol  
Parameter  
Conditions  
TA = 25 °C  
TA = 85 °C TA = 105 °C Unit  
IDD12 IDD  
IDD12 IDD IDD12 IDD IDD12 IDD  
168  
150  
144  
120  
90  
93  
83  
76  
56  
43  
29  
15  
13  
44  
40  
36  
27  
20  
14  
8
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
98  
88  
80  
59  
45  
32  
18  
15  
50  
45  
40  
30  
23  
16  
10  
9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
123  
113  
103  
78  
64  
50  
36  
34  
72  
68  
62  
48  
41  
35  
28  
27  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
148  
138  
126  
97  
83  
70  
56  
53  
94  
90  
82  
66  
60  
53  
47  
46  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
AllPeripherals  
enabled(2) (3)  
60  
30  
Supplycurrent  
in RUN mode  
from V12 and  
VDD supply  
25  
IDD12 / IDD  
mA  
168  
150  
144  
120  
90  
AllPeripherals  
disabled  
60  
30  
25  
7
1. Guaranteed based on test during characterization.  
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, DSI regulator, an additional power  
consumption should be considered.  
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC  
for the analog part.  
98/208  
DocID028010 Rev 2  
STM32F479xx  
Electrical characteristics  
Table 27. Typical and maximum current consumption in Sleep mode, regulator ON  
Max(1)(2)(3)  
Symbol  
Parameter Conditions fHCLK (MHz)  
Typ  
Unit  
TA = 25 °C TA = 85 °C TA = 105 °C  
180  
168  
150  
144  
120  
78  
71  
64  
58  
43  
33  
23  
13  
11  
5
88(4)  
76  
71  
62  
46  
37  
25  
15  
13  
8
118  
101  
94  
85  
65  
54  
44  
34  
32  
27  
25  
24  
23  
63  
50  
48  
43  
34  
31  
28  
25  
25  
23  
23  
23  
23  
151(4)  
127  
119  
109  
85  
90  
74  
All  
Peripherals  
enabled  
60  
30  
25  
16  
8
63  
53  
52  
47  
4
7
45  
4
3
5
44  
Supply  
current in  
Sleep mode  
2
2
5
43  
IDD  
mA  
180  
168  
150  
144  
120  
90  
60  
30  
25  
16  
8
23  
21  
19  
17  
13  
10  
7
29(4)  
25  
23  
31  
16  
13  
10  
7
96(4)  
76  
74  
67  
54  
51  
All  
Peripherals  
disabled  
48  
5
45  
4
7
45  
2
5
43  
2
5
43  
4
2
5
43  
2
2
4
42  
1. Guaranteed based on test during characterization.  
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption  
should be considered.  
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC  
for the analog part.  
4. Guaranteed by test in production.  
DocID028010 Rev 2  
99/208  
187  
Electrical characteristics  
STM32F479xx  
Table 28. Typical and maximum current consumption in Sleep mode, regulator OFF  
Typ  
Max(1)  
fHCLK  
(MHz)  
Symbol  
Parameter  
Conditions  
TA = 25 °C TA = 85 °C TA = 105 °C Unit  
IDD12 IDD IDD12 IDD IDD12 IDD  
IDD12 IDD  
168  
150  
144  
120  
90  
70  
63  
57  
42  
32  
22  
12  
10  
20  
18  
16  
12  
10  
7
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
75  
70  
61  
45  
36  
24  
14  
12  
24  
22  
19  
14  
12  
9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
100  
93  
84  
64  
53  
43  
33  
31  
49  
47  
42  
33  
30  
27  
24  
24  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
126  
118  
108  
84  
73  
63  
53  
51  
75  
73  
66  
53  
50  
47  
44  
44  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
All  
Peripherals  
enabled  
60  
30  
Supply current  
in RUN mode  
from V12 and  
VDD supply  
25  
IDD12 / IDD  
mA  
168  
150  
144  
120  
90  
All  
Peripherals  
disabled  
60  
30  
4
6
25  
4
6
1. Guaranteed based on test during characterization.  
100/208  
DocID028010 Rev 2  
STM32F479xx  
Symbol  
Electrical characteristics  
Table 29. Typical and maximum current consumption in Stop mode  
Max(1)  
Parameter  
Conditions  
Typ  
Unit  
TA =  
TA =  
TA =  
25 °C 85 °C 105 °C  
Flash memory in Stop mode, all  
oscillators OFF, no independent  
watchdog  
0.63  
0.58  
0.50  
0.44  
3
3
2
2
17  
17  
15  
15  
33  
33  
28  
28  
Supply current in Stop  
mode with voltage  
regulator in main  
regulator mode  
Flash memory in Deep power  
down mode, all oscillators OFF,  
no independent watchdog  
IDD_STOP_NM  
(normal mode)  
Flash memory in Stop mode, all  
oscillators OFF, no independent  
watchdog  
Supply current in Stop  
mode with voltage  
regulator in Low Power  
regulator mode  
Flash memory in Deep power  
down mode, all oscillators OFF,  
no independent watchdog  
mA  
Supply current in Stop  
mode with voltage  
regulator in main  
regulator and under-  
drive mode  
Flash memory in Deep power  
down mode, main regulator in  
under-drive mode, all oscillators  
OFF, no independent watchdog  
0.21  
0.14  
1
1
6
6
12  
13  
IDD_STOP_UDM  
(under-drive  
mode)  
Supply current in Stop Flash memory in Deep power  
mode with voltage down mode, Low Power regulator  
regulator in Low Power in under-drive mode, all  
regulator and under-  
drive mode  
oscillators OFF, no independent  
watchdog  
1. Data based on characterization, tested in production.  
DocID028010 Rev 2  
101/208  
187  
Electrical characteristics  
STM32F479xx  
Table 30. Typical and maximum current consumption in Standby mode  
Typ(1)  
Max(2)  
TA =  
TA =  
TA =  
TA = 25 °C  
Symbol  
Parameter  
Conditions  
25 °C 85 °C 105 °C Unit  
VDD  
1.7 V  
=
VDD  
2.4 V  
=
VDD =  
3.3 V  
VDD = 3.3 V  
Backup SRAM ON, RTC and  
LSE oscillator OFF  
1.7  
2.5  
2.9  
6(3)  
5(3)  
18  
15  
35(3)  
30(3)  
Backup SRAM OFF, RTC and  
LSE oscillator OFF  
1.0  
1.7  
1.8  
2.7  
2.20  
3.2  
Backup SRAM OFF, RTC ON  
and LSE oscillator in Power  
Drive mode  
7
8
20  
25  
29  
25  
39  
48  
57  
48  
Supply current  
in Standby  
mode  
Backup SRAM ON, RTC ON  
and LSE oscillator in Power  
Drive mode  
IDD_STBY  
µA  
2.4  
3.2  
2.5  
3.4  
4.2  
3.5  
4.0  
4.8  
4.1  
Backup SRAM ON, RTC ON  
and LSE oscillator in High  
Drive mode  
10  
8
Backup SRAM OFF, RTC ON  
and LSE oscillator in High  
Drive mode  
1. PDR is off for VDD=1.7 V. When the PDR is OFF (internal reset OFF), the typical current consumption is reduced by  
additional 1.2 μA  
2. Based on characterization, not tested in production unless otherwise specified.  
3. Based on characterization, tested in production.  
102/208  
DocID028010 Rev 2  
STM32F479xx  
Electrical characteristics  
Table 31. Typical and maximum current consumption in V  
Typ  
mode  
Max(2)  
BAT  
TA =  
25 °C  
TA =  
TA =  
TA = 25 °C  
Symbol Parameter  
Conditions(1)  
85 °C 105 °C Unit  
VBAT = VBAT= VBAT  
1.7 V 2.4 V 3.3 V  
=
VBAT = 3.3 V  
Backup SRAM ON, RTC ON  
and LSE oscillator in Low  
Power mode  
1.431 1.577 1.825  
1.9  
1.1  
12.0  
24.0  
13.9  
34.6  
24.5  
Backup SRAM OFF, RTC ON  
and LSE oscillator in Low  
Power mode  
0.720 0.849 1.060  
2.212 2.368 2.630  
1.499 1.637 1.862  
7.0  
Backup SRAM ON, RTC ON  
and LSE oscillator in High  
Drive mode  
Backup  
IDD_VBAT domainsupply  
current  
2.80  
2.0  
17.3  
12.3  
µA  
Backup SRAM OFF, RTC ON  
and LSE oscillator in High  
Drive mode  
Backup SRAM ON, RTC and  
LSE OFF  
0.710 0.720 0.760 0.8(3)  
0.018 0.020 0.024 0.2(3)  
5.0  
2.0  
10.0(3)  
4.0(3)  
Backup SRAM OFF, RTC and  
LSE OFF  
1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values.  
2. Based on characterization, tested in production.  
3. Based on test during characterization.  
Figure 25. Typical V  
current consumption  
BAT  
(RTC ON / backup SRAM ON and LSE in Low drive mode)  
DocID028010 Rev 2  
103/208  
187  
 
Electrical characteristics  
STM32F479xx  
Figure 26. Typical V  
current consumption  
BAT  
(RTC ON / backup SRAM ON and LSE in High drive mode)  
I/O system current consumption  
The current consumption of the I/O system has two components: static and dynamic.  
I/O static current consumption  
All the I/Os used as inputs with pull-up generate current consumption when the pin is  
externally held low. The value of this current consumption can be simply computed by using  
the pull-up/pull-down resistors values given in Table 58.  
For the output pins, any external pull-down or external load must also be considered to  
estimate the current consumption.  
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate  
voltage level is externally applied. This current consumption is caused by the input Schmitt  
trigger circuits used to discriminate the input value. Unless this specific configuration is  
required by the application, this supply current consumption can be avoided by configuring  
these I/Os in analog mode. This is notably the case of ADC input pins which should be  
configured as analog inputs.  
Caution:  
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,  
as a result of external electromagnetic noise. To avoid current consumption related to  
floating pins, they must either be configured in analog mode, or forced internally to a definite  
digital value. This can be done either by using pull-up/down resistors or by configuring the  
pins in output mode.  
I/O dynamic current consumption  
In addition to the internal peripheral current consumption (see Table 33), the I/Os used by  
an application also contribute to the current consumption. When an I/O pin switches, it uses  
104/208  
DocID028010 Rev 2  
STM32F479xx  
Electrical characteristics  
the current from the MCU supply voltage to supply the I/O pin circuitry and to  
charge/discharge the capacitive load (internal or external) connected to the pin:  
ISW = VDD × fSW × C  
where  
I
is the current sunk by a switching I/O to charge/discharge the capacitive load  
is the MCU supply voltage  
SW  
V
DD  
f
is the I/O switching frequency  
SW  
C is the total capacitance seen by the I/O pin: C = C + C  
INT  
EXT  
The test pin is configured in push-pull output mode and is toggled by software at a fixed  
frequency.  
(1)  
Table 32. Switching output I/O current consumption  
I/O toggling  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
frequency  
(fsw)  
2 MHz  
8 MHz  
0.0  
0.2  
25 MHz  
50 MHz  
60 MHz  
84 MHz  
90 MHz  
2 MHz  
0.6  
VDD = 3.3 V  
1.1  
(2)  
C= CINT  
1.3  
1.8  
1.9  
I/O switching  
Current  
IDDIO  
mA  
0.1  
8 MHz  
0.4  
25 MHz  
50 MHz  
60 MHz  
84 MHz  
90 MHz  
1.23  
2.43  
2.93  
3.86  
4.07  
VDD = 3.3 V  
CEXT = 0 pF  
C = CINT + CEXT + CS  
DocID028010 Rev 2  
105/208  
187  
Electrical characteristics  
STM32F479xx  
(1)  
Table 32. Switching output I/O current consumption (continued)  
I/O toggling  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
frequency  
(fsw)  
2 MHz  
8 MHz  
0.18  
0.67  
2.09  
3.6  
25 MHz  
50 MHz  
60 MHz  
84 MHz  
90 MHz  
2 MHz  
VDD = 3.3 V  
CEXT = 10 pF  
C = CINT + CEXT + CS  
4.5  
7.8  
9.8  
0.26  
1.01  
3.14  
6.39  
10.68  
0.33  
1.29  
4.23  
11.02  
I/O switching  
Current  
IDDIO  
mA  
8 MHz  
VDD = 3.3 V  
CEXT = 22 pF  
25 MHz  
50 MHz  
60 MHz  
2 MHz  
C = CINT + CEXT + CS  
VDD = 3.3 V  
8 MHz  
CEXT = 33 pF  
25 MHz  
50 MHz  
C = CINT + Cext + CS  
1. CS is the PCB board capacitance including the pad pin. CS = 7 pF (estimated value).  
2. This test is performed by cutting the LQFP176 package pin (pad removal).  
On-chip peripheral current consumption  
The MCU is placed under the following conditions:  
At startup, all I/O pins are in analog input configuration.  
All peripherals are disabled unless otherwise mentioned.  
I/O compensation cell enabled.  
The ART accelerator is ON.  
Scale 1 mode selected, internal digital voltage V12 = 1.32 V.  
HCLK is the system clock. f  
= f  
/4, and f  
= f  
/2.  
PCLK1  
HCLK  
PCLK2  
HCLK  
The given value is calculated by measuring the difference of current consumption  
with all peripherals clocked off  
with only one peripheral clocked on  
f
f
= 180 MHz (Scale1 + over-drive ON), f  
= 120 MHz (Scale 3)  
= 144 MHz (Scale 2),  
HCLK  
HCLK  
HCLK  
Ambient operating temperature is 25 °C and V =3.3 V.  
DD  
106/208  
DocID028010 Rev 2  
STM32F479xx  
Electrical characteristics  
Table 33. Peripheral current consumption  
I
DD(Typ)(1)  
Peripheral  
Unit  
Scale 1  
Scale 2  
Scale 3  
GPIOA  
3.16  
2.67  
3.00  
2.62  
2.31  
2.10  
2.48  
2.27  
2.13  
2.20  
2.37  
2.03  
2.06  
33.89  
0.55  
0.74  
2.58  
2.25  
2.10  
1.79  
2.23  
2.08  
1.98  
2.02  
2.17  
1.86  
GPIOB  
GPIOC  
2.42  
GPIOD  
2.22  
GPIOE  
2.60  
GPIOF  
2.39  
GPIOG  
2.27  
GPIOH  
2.34  
GPIOI  
2.52  
AHB1  
(up to  
GPIOJ  
2.16  
µA/MHz  
GPIOK  
2.20  
1.89  
180 MHz)  
OTG_HS+ULPI  
CRC  
36.49  
0.62  
29.90  
0.50  
BKPSRAM  
DMA1(2)  
DMA2(2)  
DMA2D  
0.83  
0.63  
3.3 x N + 6.8  
3.4 x N + 5.7  
33.33  
3 x N + 6.3  
3.1 x N + 5.3  
30.66  
2.7 x N + 5.5  
2.8 x N + 4.6  
26.98  
ETH_MAC  
ETH_MAC_TX  
ETH_MAC_RX  
ETH_MAC_PTP  
22.30  
20.69  
18.19  
USB_OTG_FS  
DVCMI  
RNG  
34.33  
3.61  
1.94  
2.42  
4.14  
31.96  
3.35  
1.82  
2.24  
3.80  
28.35  
2.98  
AHB2  
1.61  
2.00  
3.35  
µA/MHz  
(up to  
180 MHz)  
CRYP  
HASH  
AHB3  
QUADSPI  
FMC  
16.83  
15.57  
13.83  
µA/MHz  
µA/MHz  
(up to  
180 MHz)  
17.22  
12.17  
15.92  
11.19  
14.00  
9.97  
Bus matrix(3)  
DocID028010 Rev 2  
107/208  
187  
Electrical characteristics  
STM32F479xx  
Table 33. Peripheral current consumption (continued)  
I
DD(Typ)(1)  
Peripheral  
Unit  
Scale 1  
Scale 2  
Scale 3  
TIM2  
19.11  
15.62  
16.22  
18.44  
3.18  
3.11  
8.67  
6.11  
6.44  
17.44  
5.44  
5.51  
5.22  
5.33  
5.56  
5.24  
4.78  
5.11  
4.78  
4.11  
4.33  
8.89  
7.22  
2.89  
1.73  
17.56  
14.22  
14.64  
16.72  
2.69  
2.56  
7.56  
5.33  
5.61  
15.61  
4.64  
4.72  
4.64  
4.64  
4.78  
4.64  
4.08  
4.50  
4.08  
3.53  
3.67  
7.83  
6.44  
2.69  
1.44  
15.33  
12.17  
12.83  
14.00  
2.17  
2.00  
6.50  
4.43  
4.67  
13.53  
3.93  
4.00  
3.83  
3.83  
4.10  
3.93  
3.43  
3.73  
3.43  
3.00  
3.17  
6.87  
5.50  
2.40  
1.00  
TIM3  
TIM4  
TIM5  
TIM6  
TIM7  
TIM12  
TIM13  
TIM14  
PWR  
USART2  
USART3  
UART4  
UART5  
UART7  
UART8  
I2C1  
APB1  
µA/MHz  
(up to  
45 MHz)  
I2C2  
I2C3  
SPI2/I2S2(4)  
SPI3/I2S3(4)  
CAN1  
CAN2  
DAC(5)  
WWDG  
108/208  
DocID028010 Rev 2  
STM32F479xx  
Electrical characteristics  
Table 33. Peripheral current consumption (continued)  
I
DD(Typ)(1)  
Peripheral  
Unit  
Scale 1  
Scale 2  
Scale 3  
SDIO  
7.94  
19.44  
19.44  
8.44  
5.67  
5.72  
5.06  
5.00  
5.26  
4.83  
4.83  
2.11  
7.18  
17.81  
17.81  
7.60  
5.03  
5.10  
4.54  
4.47  
4.75  
4.33  
4.33  
1.76  
1.69  
1.76  
1.76  
1.35  
34.53  
3.01  
30.32  
6.37  
15.80  
15.80  
6.77  
4.50  
4.55  
4.05  
3.97  
4.17  
TIM1  
TIM8  
TIM9  
TIM10  
TIM11  
ADC1(6)  
ADC2(6)  
ADC3(6)  
USART1  
USART6  
SPI1  
APB2  
(up to  
3.83  
3.83  
1.60  
1.60  
1.60  
1.60  
1.22  
30.60  
2.72  
26.87  
µA/MHz  
90 MHz)  
SPI4  
2.11  
SPI5  
2.11  
SPI6  
2.11  
SYSCFG  
LTDC  
1.72  
37.61  
3.44  
32.98  
SAI1  
DSI  
1. When the I/O compensation cell is ON, IDD typical value increases by 0.22 mA.  
2. DMA1/DMA2 current consumption is calculated by the equation. N: is the number of streams enabled,  
N= [1..8]  
3. The BusMatrix is automatically active when at least one master is ON.  
4. To enable an I2S peripheral, first set the I2SMOD bit and then the I2SE bit in the SPI_I2SCFGR register.  
5. When the DAC is ON and EN1/2 bits are set in DAC_CR register, add an additional power consumption of  
0.8 mA per DAC channel for the analog part.  
6. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of  
1.6 mA per ADC for the analog part.  
DocID028010 Rev 2  
109/208  
187  
Electrical characteristics  
STM32F479xx  
5.3.8  
Wakeup time from low-power modes  
The wakeup times given in Table 34 are measured starting from the wakeup event trigger up  
to the first instruction executed by the CPU:  
For Stop or Sleep modes: the wakeup event is WFE.  
WKUP (PA0) pin is used to wakeup from Standby, Stop and Sleep modes.  
All timings are derived from tests performed under ambient temperature and V =3.3 V.  
DD  
Table 34. Low-power mode wakeup timings  
Typ(1) Max(1)  
Symbol  
Parameter  
Conditions  
Unit  
CPU clock  
cycles  
(2)  
tWUSLEEP  
Wakeup from Sleep  
-
5
6
Main regulator is ON  
12.9  
13.0  
Main regulator is ON and Flash  
memory in Deep power down mode  
105  
109  
Wakeup from Stop mode  
with MR/LP regulator in  
normal mode  
(2)  
tWUSTOP  
Low power regulator is ON  
22  
25.4  
121  
Low power regulator is ON and Flash  
memory in Deep power down mode  
114  
µs  
Main regulator in under-drive mode  
(Flash memory in Deep power-down  
mode)  
107  
111  
Wakeup from Stop mode  
with MR/LP regulator in  
Under-drive mode  
(2)  
tWUSTOP  
Low power regulator in under-drive  
mode (Flash memory in Deep  
power-down mode)  
115  
318  
121  
371  
(2)(3)  
tWUSTDBY  
Wakeup from Standby mode  
-
1. Based on test during characterization.  
2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first  
3. tWUSTDBY maximum value is given at –40 °C.  
5.3.9  
External clock source characteristics  
High-speed external user clock generated from an external source  
In bypass mode the HSE oscillator is switched off and the input pin is a standard I/O. The  
external clock signal has to respect the Table 58. However, the recommended clock input  
waveform is shown in Figure 27.  
The characteristics given in Table 35 result from tests performed using an high-speed  
external clock source, and under ambient temperature and supply voltage conditions  
110/208  
DocID028010 Rev 2  
 
 
STM32F479xx  
Electrical characteristics  
summarized in Table 17.  
Table 35. High-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
External user clock source  
frequency(1)  
fHSE_ext  
1
-
50  
MHz  
VHSEH  
VHSEL  
tw(HSE)  
OSC_IN input pin high level voltage  
OSC_IN input pin low level voltage  
0.7VDD  
VSS  
-
-
VDD  
V
0.3VDD  
-
OSC_IN high or low time(1)  
OSC_IN rise or fall time(1)  
5
-
-
-
-
tw(HSE)  
ns  
tr(HSE)  
tf(HSE)  
10  
Cin(HSE) OSC_IN input capacitance(1)  
-
-
45  
-
5
-
-
pF  
%
DuCy(HSE) Duty cycle  
-
55  
±1  
IL  
OSC_IN Input leakage current  
VSS VIN VDD  
-
µA  
1. Guaranteed by design.  
Low-speed external user clock generated from an external source  
In bypass mode the LSE oscillator is switched off and the input pin is a standard I/O. The  
external clock signal has to respect the Table 58. However, the recommended clock input  
waveform is shown in Figure 28.  
The characteristics given in Table 36 result from tests performed using an low-speed  
external clock source, and under ambient temperature and supply voltage conditions  
summarized in Table 17.  
Table 36. Low-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fLSE_ext  
VLSEH  
VLSEL  
User External clock source frequency(1)  
OSC32_IN input pin high level voltage  
OSC32_IN input pin low level voltage  
-
32.768  
1000  
VDD  
kHz  
0.7VDD  
VSS  
-
-
V
0.3VDD  
-
tw(LSE)  
tf(LSE)  
OSC32_IN high or low time(1)  
450  
-
-
-
-
ns  
tr(LSE)  
tf(LSE)  
OSC32_IN rise or fall time(1)  
50  
Cin(LSE)  
OSC32_IN input capacitance(1)  
-
-
30  
-
5
-
-
pF  
%
DuCy(LSE) Duty cycle  
-
70  
±1  
IL  
OSC32_IN Input leakage current  
VSS VIN VDD  
-
µA  
1. Guaranteed by design.  
DocID028010 Rev 2  
111/208  
187  
 
Electrical characteristics  
STM32F479xx  
Figure 27. High-speed external clock source AC timing diagram  
6
(3%(  
ꢍ  
ꢀꢂ ꢍ  
(3%,  
6
T
T
T
7ꢋ(3%ꢌ  
T
T
7ꢋ(3%ꢌ  
Rꢋ(3%ꢌ  
Fꢋ(3%ꢌ  
4
(3%  
F
(3%?EXT  
%XTERNAL  
CLOCK SOURCE  
)
,
/3# ?) .  
34-ꢊꢃ&  
AIꢀꢈꢅꢃꢉ  
Figure 28. Low-speed external clock source AC timing diagram  
9
/6(+  
ꢃꢇꢕ  
 
9
/6(/  
W
W
W
:ꢐ/6(ꢑ  
W
W
:ꢐ/6(ꢑ  
Uꢐ/6(ꢑ  
Iꢐ/6(ꢑ  
7
/6(  
I
/6(BH[W  
([WHUQDO  
,
/
26&ꢀꢂB,1  
FORFNꢍVRXUFH  
670ꢀꢂ)  
DLꢅꢈꢆꢂꢃ  
High-speed external clock generated from a crystal/ceramic resonator  
The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on  
characterization results obtained with typical external components specified in Table 37. In  
the application, the resonator and the load capacitors have to be placed as close as  
possible to the oscillator pins in order to minimize output distortion and startup stabilization  
time. Refer to the crystal resonator manufacturer for more details on the resonator  
characteristics (frequency, package, accuracy).  
(1)  
Table 37. HSE 4-26 MHz oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
fOSC_IN  
RF  
Oscillator frequency  
Feedback resistor  
-
-
4
-
-
26  
-
MHz  
200  
kΩ  
112/208  
DocID028010 Rev 2  
 
STM32F479xx  
Electrical characteristics  
(1)  
Table 37. HSE 4-26 MHz oscillator characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
VDD=3.3 V,  
ESR= 30 ,  
-
450  
-
CL=5 pF@25 MHz  
IDD  
HSE current consumption  
HSE accuracy  
µA  
VDD=3.3 V,  
ESR= 30 ,  
CL=10 pF@25 MHz  
-
530  
-
(2)  
ACCHSE  
-
500  
-
-
500  
ppm  
mA/V  
ms  
Gm_crit_max Maximum critical crystal gm  
Startup  
-
-
1
-
(3)  
tSU(HSE)  
Startup time  
VDD is stabilized  
2
1. Guaranteed by design.  
2. This parameter depends on the crystal used in the application. The minimum and maximum values must  
be respected to comply with USB standard specifications.  
3. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz  
oscillation is reached. This value is based on characterization and not tested in production. It is measured  
for a standard crystal resonator and it can vary significantly with the crystal manufacturer.  
For C and C , it is recommended to use high-quality external ceramic capacitors in the  
L1  
L2  
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match  
the requirements of the crystal or resonator (see Figure 29). C and C are usually the  
L1  
L2  
same size. The crystal manufacturer typically specifies a load capacitance which is the  
series combination of C and C . PCB and MCU pin capacitance must be included (10 pF  
L1  
L2  
can be used as a rough estimate of the combined pin and board capacitance) when sizing  
and C .  
C
L1  
L2  
Note:  
For information on selecting the crystal, refer to the application note AN2867 “Oscillator  
design guide for ST microcontrollers” available from www.st.com.  
Figure 29. Typical application with an 8 MHz crystal  
5HVRQDWRUꢍZLWK  
LQWHJUDWHGꢍFDSDFLWRUV  
&
/ꢅ  
I
26&B,1  
+6(  
%LDVꢍ  
FRQWUROOHG  
JDLQ  
ꢁꢍ0+]  
UHVRQDWRU  
5
)
26&B287  
ꢐꢅꢑ  
670ꢀꢂ)  
5
(;7  
&
/ꢂ  
DLꢅꢈꢆꢀꢇ  
1. REXT value depends on the crystal characteristics.  
Low-speed external clock generated from a crystal/ceramic resonator  
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic  
resonator oscillator. All the informations given in this paragraph are based on  
characterization results obtained with typical external components specified in Table 38.  
In the application, the resonator and the load capacitors have to be placed as close as  
possible to the oscillator pins in order to minimize output distortion and startup stabilization  
time. Refer to the crystal resonator manufacturer for more details on the resonator  
characteristics (frequency, package, accuracy).  
DocID028010 Rev 2  
113/208  
187  
 
Electrical characteristics  
STM32F479xx  
(1)  
Table 38. LSE oscillator characteristics (fLSE = 32.768 kHz)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
RF  
Feedback resistor  
-
-
18.4  
-
1
MΩ  
µA  
Low power mode(2)  
High drive mode(2)  
-
-
-
-
IDD  
LSE current consumption  
LSE accuracy  
-
3
(3)  
ACCLSE  
500  
-
500  
0.56  
1.5  
-
ppm  
µA/V  
s
Low power mode(2)  
High drive mode(2)  
VDD is stabilized  
-
-
-
-
Gm_crit_max Maximum critical crystal gm  
-
(4)  
tSU(LSE)  
Startup time  
2
1. Guaranteed by design.  
2. LSE mode cannot be changed “on the fly” otherwise, a glitch can be generated on OSCIN pin.  
3. This parameter depends on the crystal used in the application. Refer to application note AN2867.  
4. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized  
32.768 kHz oscillation is reached. This value is based on characterization and not tested in production. It is  
measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.  
Note:  
For information on selecting the crystal, refer to the application note AN2867 “Oscillator  
design guide for ST microcontrollers” available from www.st.com.  
Figure 30. Typical application with a 32.768 kHz crystal  
5HVRQDWRUꢍZLWK  
LQWHJUDWHGꢍFDSDFLWRUV  
&
/ꢅ  
I
26&ꢀꢂB,1  
/6(  
%LDVꢍ  
FRQWUROOHG  
JDLQ  
ꢀꢂꢏꢈꢉꢁꢍN+]  
UHVRQDWRU  
5
)
26&ꢀꢂB287  
670ꢀꢂ)  
&
/ꢂ  
DLꢅꢈꢆꢀꢅ  
5.3.10  
Internal clock source characteristics  
The parameters given in Table 39 and Table 40 are derived from tests performed under  
ambient temperature and V supply voltage conditions summarized in Table 17.  
DD  
High-speed internal (HSI) RC oscillator  
(1)  
Table 39. HSI oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min Typ Max Unit  
fHSI  
Frequency  
-
-
16  
-
-
1
MHz  
%
HSI user trimming step(2)  
HSI oscillator accuracy  
-
-
TA = –40 to 105 °C(3)  
TA = –10 to 85 °C(3)  
TA = 25 °C(4)  
8  
4  
1  
-
4.5  
4
%
ACCHSI  
-
%
-
1
%
114/208  
DocID028010 Rev 2  
 
 
STM32F479xx  
Electrical characteristics  
(1)  
Table 39. HSI oscillator characteristics  
(continued)  
Symbol  
Parameter  
Conditions  
Min Typ Max Unit  
(2)  
tsu(HSI)  
HSI oscillator startup time  
-
-
-
-
2.2  
60  
4
µs  
(2)  
IDD(HSI)  
HSI oscillator power consumption  
80  
µA  
1. VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified.  
2. Guaranteed by design  
3. Based on test during characterization.  
4. Factory calibrated, parts not soldered.  
Figure 31. HSI deviation vs. temperature  
1. Based on test during characterization.  
DocID028010 Rev 2  
115/208  
187  
 
Electrical characteristics  
STM32F479xx  
Low-speed internal (LSI) RC oscillator  
(1)  
Table 40. LSI oscillator characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
(2)  
fLSI  
Frequency  
17  
-
32  
15  
47  
40  
kHz  
µs  
(3)  
tsu(LSI)  
Startup time  
(3)  
IDD(LSI)  
Power consumption  
-
0.4  
0.6  
µA  
1.  
VDD = 3 V, TA = –40 to 105 °C unless otherwise specified.  
2. Based on test during characterization.  
3. Guaranteed by design.  
Figure 32. ACC versus temperature  
LSI  
-3ꢀꢁꢂꢀꢊ6ꢀ  
5.3.11  
PLL characteristics  
The parameters given in Table 41 and Table 42 are derived from tests performed under  
temperature and V supply voltage conditions summarized in Table 17.  
DD  
Table 41. Main PLL characteristics  
Symbol  
Parameter  
PLL input clock(1)  
PLL multiplier output clock  
Conditions  
Min  
Typ  
Max Unit  
fPLL_IN  
-
-
-
-
0.95(2)  
24  
1
-
2.10  
fPLL_OUT  
180  
MHz  
75  
fPLL48_OUT 48 MHz PLL multiplier output clock  
fVCO_OUT PLL VCO output  
-
48  
-
192  
432  
116/208  
DocID028010 Rev 2  
 
STM32F479xx  
Symbol  
Electrical characteristics  
Table 41. Main PLL characteristics (continued)  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VCO freq = 192 MHz  
VCO freq = 432 MHz  
75  
-
200  
tLOCK  
PLL lock time  
µs  
100  
-
300  
RMS  
-
-
-
-
25  
150  
15  
200  
-
-
-
-
Cycle-to-cycle jitter  
Period Jitter  
peak to peak  
RMS  
System clock  
120 MHz  
peak to peak  
Jitter(3)  
ps  
Main clock output (MCO) for RMII Cycle to cycle at 50 MHz on  
-
-
-
32  
40  
330  
-
-
-
-
Ethernet  
1000 samples  
Main clock output (MCO) for MII  
Ethernet  
Cycle to cycle at 25 MHz on  
1000 samples  
Cycle to cycle at 1 MHz on  
1000 samples  
Bit Time CAN jitter  
VCO freq = 192 MHz  
VCO freq = 432 MHz  
0.15  
0.45  
0.40  
0.75  
(4)  
IDD(PLL)  
PLL power consumption on VDD  
PLL power consumption on VDDA  
mA  
VCO freq = 192 MHz  
VCO freq = 432 MHz  
0.30  
0.55  
0.40  
0.85  
(4)  
IDDA(PLL)  
-
1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared  
between PLL and PLLI2S.  
2. Guaranteed by design.  
3. The use of 2 PLLs in parallel can degrade the Jitter up to +30%.  
4. Based on test during characterization.  
Table 42. PLLI2S (audio PLL) characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
fPLLI2S_IN  
PLLI2S input clock(1)  
-
0.95(2)  
1
2.10  
PLLI2S multiplier output  
clock  
fPLLI2S_OUT  
fVCO_OUT  
-
-
-
-
216 MHz  
432  
PLLI2S VCO output  
192  
75  
100  
-
-
-
VCO freq = 192 MHz  
200  
µs  
300  
tLOCK  
PLLI2S lock time  
VCO freq = 432 MHz  
-
Cycle to cycle at  
RMS  
90  
-
-
-
12.288 MHz on 48KHz  
period, N=432, R=5  
peak to peak  
-
280  
ps  
Master I2S clock jitter  
WS I2S clock jitter  
Average frequency of 12.288 MHz,  
N=432, R=5  
Jitter(3)  
-
90  
-
-
ps  
ps  
on 1000 samples  
Cycle to cycle at 48 KHz  
on 1000 samples  
-
400  
DocID028010 Rev 2  
117/208  
187  
Electrical characteristics  
STM32F479xx  
Table 42. PLLI2S (audio PLL) characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
VCO freq = 192 MHz  
0.15  
0.45  
0.40  
PLLI2S power consumption  
on VDD  
(4)  
IDD(PLLI2S)  
-
VCO freq = 432 MHz  
0.75  
mA  
0.40  
VCO freq = 192 MHz  
VCO freq = 432 MHz  
0.30  
0.55  
PLLI2S power consumption  
on VDDA  
(4)  
IDDA(PLLI2S)  
-
0.85  
1. Take care of using the appropriate division factor M to have the specified PLL input clock values.  
2. Guaranteed by design.  
3. Value given with main PLL running.  
4. Based on test during characterization.  
Table 43. PLLSAI (audio and LCD-TFT PLL) characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fPLLSAI_IN  
fPLLSAI_OUT  
fVCO_OUT  
PLLSAI input clock(1)  
-
0.95(2)  
1
-
2.10  
216  
432  
200  
300  
-
PLLSAI multiplier output clock  
PLLSAI VCO output  
-
-
-
MHz  
192  
75  
100  
-
-
VCO freq = 192 MHz  
VCO freq = 432 MHz  
-
tLOCK  
PLLSAI lock time  
µs  
ps  
-
RMS  
90  
Cycle to cycle at  
12.288 MHz on  
48KHz period,  
N=432, R=5  
peak  
to  
peak  
-
280  
90  
-
Main SAI clock jitter  
Average frequency of  
12.288 MHz  
Jitter(3)  
-
-
-
-
ps  
ps  
N = 432, R = 5  
on 1000 samples  
Cycle to cycle at 48 KHz  
on 1000 samples  
FS clock jitter  
400  
VCO freq = 192 MHz  
VCO freq = 432 MHz  
0.15  
0.45  
0.40  
0.75  
PLLSAI power consumption on  
VDD  
(4)  
IDD(PLLSAI)  
-
-
mA  
VCO freq = 192 MHz  
VCO freq = 432 MHz  
0.30  
0.55  
0.40  
0.85  
PLLSAI power consumption on  
VDDA  
(4)  
IDDA(PLLSAI)  
1. Take care of using the appropriate division factor M to have the specified PLL input clock values.  
2. Guaranteed by design.  
3. Value given with main PLL running.  
4. Based on test during characterization.  
118/208  
DocID028010 Rev 2  
STM32F479xx  
Electrical characteristics  
5.3.12  
PLL spread spectrum clock generation (SSCG) characteristics  
The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic  
interferences (see Table 54). It is available only on the main PLL.  
Table 44. SSCG parameters constraint  
Symbol  
Parameter  
Min  
Typ  
Max(1)  
Unit  
fMod  
md  
Modulation frequency  
-
0.25  
-
-
-
-
10  
2
KHz  
%
Peak modulation depth  
-
MODEPER * INCSTEP  
1. Guaranteed by design.  
2
15 1  
-
Equation 1  
The frequency modulation period (MODEPER) is given by the equation below:  
MODEPER = round[fPLL_IN ⁄ (4 × fMod)]  
f
and f  
must be expressed in Hz.  
PLL_IN  
Mod  
As an example:  
If f = 1 MHz, and f  
= 1 kHz, the modulation depth (MODEPER) is given by  
PLL_IN  
MOD  
equation 1:  
MODEPER = round[106 ⁄ (4 × 103)] = 250  
Equation 2  
Equation 2 allows to calculate the increment step (INCSTEP):  
INCSTEP = round[((215 1) × md × PLLN) ⁄ (100 × 5 × MODEPER)]  
f
must be expressed in MHz.  
VCO_OUT  
With a modulation depth (md) = ±2 % (4 % peak to peak), and PLLN = 240 (in MHz):  
INCSTEP = round[((215 1) × 2 × 240) ⁄ (100 × 5 × 250)] = 126md(quantitazed)%  
An amplitude quantization error may be generated because the linear modulation profile is  
obtained by taking the quantized values (rounded to the nearest integer) of MODPER and  
INCSTEP. As a result, the achieved modulation depth is quantized. The percentage  
quantized modulation depth is given by the following formula:  
mdquantized% = (MODEPER × INCSTEP × 100 × 5) ⁄ ((215 1) × PLLN)  
As a result:  
mdquantized% = (250 × 126 × 100 × 5) ⁄ ((215 1) × 240) = 2.002%(peak)  
DocID028010 Rev 2  
119/208  
187  
Electrical characteristics  
STM32F479xx  
Figure 33 and Figure 34 show the main PLL output clock waveforms in center spread and  
down spread modes, where:  
F0 is f  
nominal.  
PLL_OUT  
T
is the modulation period.  
mode  
md is the modulation depth.  
Figure 33. PLL output clock waveforms in center spread mode  
)UHTXHQF\ꢍ  
ꢐ3//B287ꢑ  
PG  
)ꢇ  
PG  
7LPH  
WPRGH  
ꢂ[ꢍWPRGH  
06ꢀꢃꢃꢁꢀ9ꢅ  
Figure 34. PLL output clock waveforms in down spread mode  
)UHTXHQF\ꢍ  
ꢐ3//B287ꢑ  
)ꢇ  
ꢂ[ꢍPG  
7LPH  
WPRGH  
ꢂ[ꢍWPRGH  
06ꢀꢃꢃꢁꢂ9ꢅ  
5.3.13  
MIPI D-PHY characteristics  
The parameters given in Table 45 and Table 46 are derived from tests performed under  
temperature and V supply voltage conditions summarized in Table 17.  
DD  
(1)  
Table 45. MIPI D-PHY characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Hi-Speed Input/Output Characteristics  
UINST  
UI instantaneous  
-
2
-
12.5  
ns  
120/208  
DocID028010 Rev 2  
 
 
 
 
 
STM32F479xx  
Electrical characteristics  
(1)  
Table 45. MIPI D-PHY characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
HS transmit common mode  
voltage  
VCMTX  
-
150  
200  
250  
VCMTX mismatch when output  
is Differential-1 or Differential-0  
|VCMTX  
|
-
-
-
-
-
-
140  
-
-
200  
-
5
mV  
|VOD  
|VOD  
VOHHS  
ZOS  
|
HS transmit differential voltage  
270  
14  
VOD mismatch when output is  
Differential-1 or Differential-0  
|
HS output high voltage  
-
-
360  
62.5  
Single ended output  
impedance  
40  
50  
Single ended output  
impedance mismatch  
ZOS  
-
-
-
-
-
10  
%
tHSr & tHSf 20%-80% rise and fall time  
100  
0.35*UI  
ps  
LP Receiver Input Characteristics  
Logic 0 input voltage (not in  
ULP State)  
VIL  
-
-
-
-
-
-
550  
300  
Logic 0 input voltage in ULP  
State  
VIL-ULPS  
mV  
VIH  
Input high level voltage  
Voltage hysteresis  
-
-
880  
25  
-
-
-
-
Vhys  
LP Emitter Output Characteristics  
VIL  
Output low level voltage  
-
-
1.1  
-50  
1.2  
-
1.2  
50  
V
VIL-ULPS Output high level voltage  
mV  
Output impedance of LP  
transmitter  
VIH  
-
-
110  
-
-
-
-
Vhys  
15%-85% rise and fall time  
25  
ns  
LP Contention Detector Characteristics  
VILCD  
VIHCD  
Logic 0 contention threshold  
Logic 0 contention threshold  
-
-
-
-
-
200  
-
mV  
450  
1. Guaranteed based on test during characterization.  
DocID028010 Rev 2  
121/208  
187  
Electrical characteristics  
STM32F479xx  
(1)  
Table 46. MIPI D-PHY AC characteristics LP mode and HS/LP transitions  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Transmitted length of any Low-  
Power state period  
TLPX  
-
50  
-
-
Time that the transmitter drives  
the Clock Lane LP-00 Line  
TCLK-PREPARE state immediately before the  
HS-0 Line state starting the HS  
transmission.  
-
-
-
38  
300  
8
-
-
-
95  
-
ns  
TCLK-PREPARE Time that the transmitter drives  
+
the HS-0 state prior to starting  
the clock.  
TCLK-ZERO  
Time that the HS clock shall be  
driven by the transmitter prior to  
any associated Data Lane  
beginning the transition from  
LP to HS mode.  
TCLK-PRE  
-
UI  
Time that the transmitter  
continues to send HS clock  
after the last associated Data  
Lane has transitioned to LP  
Mode.  
TCLK-POST  
-
-
-
62+52*UI  
-
-
-
-
Time that the transmitter drives  
the HS-0 state after the last  
payload clock bit of an HS  
transmission burst.  
TCLK-TRAIL  
60  
-
Time that the transmitter drives  
the Data Lane LP-00 Line state  
THS-PREPARE immediately before the HS-0  
Line state starting the HS  
transmission.  
40+4*UI  
145+10*UI  
85+6*UI  
THS-PREPARE+ Time that the  
transmitter drives the HS-0  
THS-PREPARE  
ns  
+
-
-
-
-
-
-
state prior to transmitting the  
THS-ZERO  
Sync sequence.  
Time that the transmitter drives  
the flipped differential state  
after last payload data bit of a  
HS transmission burst.  
Max  
(n*8*UI,  
60+n*4*UI)  
THS-TRAIL  
Time that the transmitter drives  
THS-EXIT  
-
-
100  
-
-
-
-
LP-11 following a HS burst.  
TREOT  
30%-85% rise time and fall time  
35  
Transmitted time interval from  
the start of THS-TRAIL or  
TCLK-TRAIL, to the start of the  
LP-11 state following a HS  
burst.  
105+  
n*12UI  
TEOT  
-
-
-
1. Guaranteed based on test during characterization.  
122/208  
DocID028010 Rev 2  
STM32F479xx  
Electrical characteristics  
Figure 35. MIPI D-PHY HS/LP clock lane transition timing diagram  
7&/.ꢋ3267  
7(27  
9,/  
&ORFN  
/DQH  
7&/.ꢋ75$,/ 7+6ꢋ(;,7  
7/3; 7&/.ꢋ35(3$5( 7&/.ꢋ=(52 7&/.ꢋ35(  
7/3; 7+6ꢋ35(3$5(  
9,/  
'DWD  
/DQH  
06ꢀꢁꢂꢁꢂ9ꢅ  
Figure 36. MIPI D-PHY HS/LP data lane transition timing diagram  
&ORFN  
/DQH  
7/3;  
7+6ꢋ35(3$5( 7+6ꢋ=(52  
'DWD  
/DQH  
9,/  
75(27  
/3ꢋꢅꢅ  
/3ꢋꢇꢅ /3ꢋꢇꢇ  
7(27  
7+6ꢋ75$,/  
7+6ꢋ(;,7  
06ꢀꢁꢂꢁꢀ9ꢅ  
5.3.14  
MIPI D-PHY PLL characteristics  
The parameters given in Table 47 are derived from tests performed under temperature and  
V
supply voltage conditions summarized in Table 17.  
DD  
(1)  
Table 47. DSI-PLL characteristics  
Symbol  
Parameter  
Conditions  
Min Typ  
Max Unit  
fPLL_IN PLL input clock  
-
-
-
-
-
4
4
-
-
-
-
-
100  
fPLL_INFIN PFD input clock  
25  
MHz  
500  
fPLL_OUT PLL multiplier output clock  
fVCO_OUT PLL VCO output  
31.25  
500  
-
1000  
tLOCK  
PLL lock time  
200  
µs  
DocID028010 Rev 2  
123/208  
187  
 
Electrical characteristics  
Symbol  
STM32F479xx  
Min Typ Max Unit  
(1)  
Table 47. DSI-PLL characteristics (continued)  
Parameter  
Conditions  
fVCO_OUT = 500 MHz  
-
-
-
0.55 0.70  
0.65 0.80  
0.95 1.20  
IDD(PLL) PLL power consumption on VDD12  
1. Based on test during characterization.  
f
VCO_OUT = 600 MHz  
mA  
fVCO_OUT = 1000 MHz  
5.3.15  
MIPI D-PHY regulator characteristics  
The parameters given in Table 48 are derived from tests performed under temperature and  
V
supply voltage conditions summarized in Table 17.  
DD  
(1)  
Table 48. DSI regulator characteristics  
Symbol  
Parameter  
Conditions  
Min Typ Max Unit  
VDD12DSI 1.2 V internal voltage on VDD12DSI  
-
-
-
-
1.15 1.20 1.30  
V
CEXT  
ESR  
External capacitor on VCAPDSI  
External Serial Resistor  
1.1  
0
2.2  
25  
3.3  
μF  
600 mΩ  
IDDDSIREG Regulator power consumption  
100 120 125  
µA  
µA  
Ultra Low Power Mode  
(Reg. ON + PLL OFF)  
-
-
-
-
-
-
-
-
290 600  
290 600  
DSI system (regulator, PLL and  
IDDDSI  
D-PHY) current consumption on VDDDSI  
Stop State  
(Reg. ON + PLL OFF)  
10 MHz escape clock  
(Reg. ON + PLL OFF)  
4.3  
4.3  
8.0  
5.0  
5.0  
8.8  
DSI system current consumption on  
IDDDSILP  
mA  
VDDDSI in LP mode communication(2)  
20 MHz escape clock  
(Reg. ON + PLL OFF)  
300 Mbps - 1 data lane  
(Reg. ON + PLL ON)  
300 Mbps - 2data lane  
(Reg. ON + PLL ON)  
11.4 12.5  
13.5 14.7  
18.0 19.6  
DSI system (regulator, PLL and  
D-PHY) current consumption on VDDDSI  
in HS mode communication(3)  
IDDDSIHS  
500 Mbps - 1 data lane  
(Reg. ON + PLL ON)  
mA  
500 Mbps - 2data lane  
(Reg. ON + PLL ON)  
DSI system (regulator, PLL and  
D-PHY) current consumption on VDDDSI  
in HS mode with CLK like payload  
500 Mbps - 2data lane  
(Reg. ON + PLL ON)  
-
21.4 23.3  
C
EXT = 2.2 µF  
-
-
-
110  
-
-
tWAKEUP Startup delay  
µs  
CEXT = 3.3 µF  
160  
200  
IINRUSH  
Inrush current on VDDDSI  
External capacitor load at start  
60  
mA  
1. Based on test during characterization.  
2. Values based on an average traffic in LP Command Mode.  
3. Values based on an average traffic (3/4 HS traffic & 1/4 LP) in Video Mode.  
124/208  
DocID028010 Rev 2  
 
STM32F479xx  
Electrical characteristics  
5.3.16  
Memory characteristics  
Flash memory  
The characteristics are given at TA = –40 to 105 °C unless otherwise specified.  
The devices are shipped to customers with the Flash memory erased.  
Table 49. Flash memory characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
Write / Erase 8-bit mode, VDD = 1.7 V  
-
-
-
5
8
-
IDD  
Supply current Write / Erase 16-bit mode, VDD = 2.1 V  
Write / Erase 32-bit mode, VDD = 3.3 V  
-
-
mA  
12  
Table 50. Flash memory programming  
Symbol  
Parameter  
Conditions  
Min(1) Typ Max(1) Unit  
Program/eraseparallelism  
(PSIZE) = x 8/16/32  
tprog  
Word programming time  
-
-
-
-
-
-
-
-
-
-
16  
100(2) µs  
800  
Program/eraseparallelism  
(PSIZE) = x 8  
400  
300  
250  
Program/eraseparallelism  
(PSIZE) = x 16  
tERASE16KB Sector (16 KB) erase time  
tERASE64KB Sector (64 KB) erase time  
tERASE128KB Sector (128 KB) erase time  
600  
500  
ms  
ms  
s
Program/eraseparallelism  
(PSIZE) = x 32  
Program/eraseparallelism  
(PSIZE) = x 8  
1200 2400  
Program/eraseparallelism  
(PSIZE) = x 16  
700  
550  
2
1400  
1100  
4
Program/eraseparallelism  
(PSIZE) = x 32  
Program/eraseparallelism  
(PSIZE) = x 8  
Program/eraseparallelism  
(PSIZE) = x 16  
1.3  
1
2.6  
2
Program/eraseparallelism  
(PSIZE) = x 32  
DocID028010 Rev 2  
125/208  
187  
Electrical characteristics  
Symbol  
STM32F479xx  
Table 50. Flash memory programming (continued)  
Parameter  
Conditions  
Min(1) Typ Max(1) Unit  
Program/eraseparallelism  
(PSIZE) = x 8  
-
-
-
-
-
-
16  
11  
8
32  
22  
16  
32  
22  
16  
Program/eraseparallelism  
(PSIZE) = x 16  
tME  
Mass erase time  
Program/eraseparallelism  
(PSIZE) = x 32  
s
Program/eraseparallelism  
(PSIZE) = x 8  
16  
11  
8
Program/eraseparallelism  
(PSIZE) = x 16  
tBE  
Bank erase time  
Program/eraseparallelism  
(PSIZE) = x 32  
32-bit program operation  
16-bit program operation  
8-bit program operation  
2.7  
2.1  
1.7  
-
-
-
3.6  
3.6  
3.6  
Vprog  
Programming voltage  
V
1. Based on test during characterization.  
2. The maximum programming time is measured after 100K erase operations.  
Table 51. Flash memory programming with V  
PP  
Symbol  
Parameter  
Conditions  
Min(1)  
Typ  
Max(1) Unit  
tprog  
Double word programming  
-
-
16  
230  
490  
875  
6.9  
6.9  
-
100(2)  
µs  
tERASE16KB Sector (16 KB) erase time  
tERASE64KB Sector (64 KB) erase time  
tERASE128KB Sector (128 KB) erase time  
-
-
TA = 0 to +40 °C  
VDD = 3.3 V  
-
ms  
VPP = 8.5 V  
-
-
tME  
tBE  
Mass erase time  
Bank erase time  
-
-
s
s
-
-
-
-
-
Vprog  
VPP  
Programming voltage  
VPP voltage range  
2.7  
7
3.6  
9
V
-
Minimum current sunk on  
the VPP pin  
IPP  
-
-
10  
-
-
-
-
mA  
Cumulative time during  
which VPP is applied  
(3)  
tVPP  
1
hour  
1. Guaranteed by design.  
2. The maximum programming time is measured after 100K erase operations.  
3. VPP should only be connected during programming/erasing.  
126/208  
DocID028010 Rev 2  
STM32F479xx  
Electrical characteristics  
Table 52. Flash memory endurance and data retention  
Value  
Min(1)  
Symbol  
Parameter  
Conditions  
Unit  
TA = –40 to +85 °C (6 suffix versions)  
TA = –40 to +105 °C (7 suffix versions)  
NEND Endurance  
kcycles  
10  
1 kcycle(2) at TA = 85 °C  
30  
10  
20  
tRET  
Data retention 1 kcycle(2) at TA = 105 °C  
Years  
10 kcycles(2) at TA = 55 °C  
1. Based on test during characterization.  
2. Cycling performed over the whole temperature range.  
5.3.17  
EMC characteristics  
Susceptibility tests are performed on a sample basis during device characterization.  
Functional EMS (electromagnetic susceptibility)  
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).  
the device is stressed by two electromagnetic events until a failure occurs. The failure is  
indicated by the LEDs:  
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until  
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.  
FTB: A burst of fast transient voltage (positive and negative) is applied to V and V  
through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant  
with the IEC 61000-4-4 standard.  
DD  
SS  
A device reset allows normal operations to be resumed.  
The test results are given in Table 53. They are based on the EMS levels and classes  
defined in application note AN1709.  
Table 53. EMS characteristics  
Symbol  
Parameter  
Conditions  
Level/Class  
VDD = 3.3 V, TFBGA216,  
TA = +25 °C, fHCLK = 168 MHz,  
conforming to IEC 61000-4-2  
Voltage limits to be applied on any I/O pin  
to induce a functional disturbance  
VFESD  
2B  
Fast transient voltage burst limits to be  
VEFTB applied through 100 pF on VDD and VSS TA = +25 °C, fHCLK = 168 MHz,  
VDD = 3.3 V, TFBGA216,  
4A  
pins to induce a functional disturbance  
conforming to IEC 61000-4-2  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
DocID028010 Rev 2  
127/208  
187  
 
Electrical characteristics  
STM32F479xx  
Software recommendations  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical Data corruption (control registers...)  
Prequalification trials  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1  
second.  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring (see application note AN1015).  
Electromagnetic Interference (EMI)  
The electromagnetic field emitted by the device are monitored while a simple application,  
?
executing EEMBC code, is running. This emission test is compliant with SAE IEC61967-2  
standard which specifies the test board and the pin loading.  
Table 54. EMI characteristics  
Max vs. [fHSE/fCPU  
]
Monitored  
Symbol Parameter  
Conditions  
Unit  
frequency band  
8/168 MHz 8/180 MHz  
0.1 to 30 MHz  
30 to 130 MHz  
130 MHz to 1GHz  
SAE EMI Level  
0.1 to 30 MHz  
2
4
2
1
V
DD = 3.3 V, TA = 25 °C, TFBGA216  
dBµV  
package, conforming to SAE J1752/3  
EEMBC, ART ON, all peripheral clocks  
enabled, clock dithering disabled.  
10  
3
10  
3
-
dBµV  
-
SEMI  
Peak level  
5
-10  
-15  
0
VDD = 3.3 V, TA = 25 °C, TFBGA216  
package, conforming to SAE J1752/3  
EEMBC, ART ON, all peripheral clocks  
enabled, clock dithering enabled  
30 to 130 MHz  
130 MHz to 1GHz  
SAE EMI level  
3
8
2
2
5.3.18  
Absolute maximum ratings (electrical sensitivity)  
Based on three different tests (ESD, LU) using specific measurement methods, the device is  
stressed in order to determine its performance in terms of electrical sensitivity.  
Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test  
conforms to the ANSI/ESDA/JEDEC JS-001 and ANSI/ESD S5.3.1 standards.  
128/208  
DocID028010 Rev 2  
 
STM32F479xx  
Symbol  
Electrical characteristics  
Maximum  
Table 55. ESD absolute maximum ratings  
Conditions  
Ratings  
Class  
Unit  
value(1)  
Electrostatic discharge  
voltage  
(human body model)  
TA = +25 °C  
conforming to ANSI/ESDA/JEDEC JS-001  
VESD(HBM)  
2
2000  
V
Electrostatic discharge  
voltage  
(charge device model)  
TA = +25 °C conforming to ANSI/ESD S5.3.1,  
LQFP176, LQFP208, UFBGA169, UFBGA176,  
TFBGA216 and WLCSP148 packages  
VESD(CDM)  
C3  
250  
1. Guaranteed based on test during characterization.  
Static latchup  
Two complementary static tests are required on six parts to assess the latchup  
performance:  
A supply overvoltage is applied to each power supply pin  
A current injection is applied to each input, output and configurable I/O pin  
These tests are compliant with EIA/JESD 78A IC latchup standard.  
(1)  
Table 56. Electrical sensitivities  
Symbol  
Parameter  
Conditions  
Class  
LU  
Static latch-up class  
TA = +105 °C conforming to JESD78A  
II level A  
1. MSV on PA4 and PA5 is 5 V, versus 5.4 V on all IOs.  
5.3.19  
I/O current injection characteristics  
As a general rule, current injection to the I/O pins, due to external voltage below V or  
SS  
above V (for standard, 3 V-capable I/O pins) should be avoided during normal product  
DD  
operation. However, in order to give an indication of the robustness of the microcontroller in  
cases when abnormal injection accidentally happens, susceptibility tests are performed on a  
sample basis during device characterization.  
Functional susceptibility to I/O current injection  
While a simple application is executed on the device, the device is stressed by injecting  
current into the I/O pins programmed in floating input mode. While current is injected into  
the I/O pin, one at a time, the device is checked for functional failures.  
The failure is indicated by an out of range parameter: ADC error above a certain limit (>5  
LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of –  
5 µA/+0 µA range), or other functional failure (for example reset, oscillator frequency  
deviation).  
Negative induced leakage current is caused by negative injection and positive induced  
leakage current by positive injection.  
The test results are given in Table 57.  
DocID028010 Rev 2  
129/208  
187  
Electrical characteristics  
STM32F479xx  
Table 57. I/O current injection susceptibility(1)  
Functional susceptibility  
Symbol  
Description  
Negative  
Unit  
Positive  
injection  
injection  
Injected current on BOOT0 and NRST pins  
0  
0  
NA  
0
Injected current on DSIHOST_D0P,  
DSIHOST_D0N, DSIHOST_D1P, DSIHOST_D0N,  
DSIHOST_CKP, DSIHOST_CKN pins  
IINJ  
mA  
Injected current on PA0 and PC0 pins  
Injected current on any other FT pin  
Injected current on any other pin  
0  
5  
5  
NA  
NA  
+ 5  
1. NA = not applicable.  
Note:  
It is recommended to add a Schottky diode (pin to ground) to analog pins which may  
potentially inject negative currents.  
5.3.20  
I/O port characteristics  
General input/output characteristics  
Unless otherwise specified, the parameters given in Table 58 are derived from tests  
performed under the conditions summarized in Table 17. All I/Os are CMOS and TTL  
compliant.  
Table 58. I/O static characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
0.35VDD0.04(1)  
FT, TTa and NRST I/O input low  
level voltage  
1.7 VVDD3.6 V  
-
-
(2)  
0.3VDD  
1.75 VVDD 3.6 V,  
–40 °CTA 105 °C  
VIL  
-
-
-
BOOT0 I/O input low level  
voltage  
0.1VDD+0.1(1)  
1.7 VVDD 3.6 V,  
0 °CTA 105 °C  
-
V
0.45VDD+0.3(1)  
FT, TTa and NRST I/O input  
high level voltage(5)  
1.7 VVDD3.6 V  
-
-
-
-
(2)  
0.7VDD  
1.75 VVDD 3.6 V,  
–40 °CTA 105 °C  
VIH  
BOOT0 I/O input high level  
voltage  
0.17VDD+0.7(1)  
1.7 VVDD 3.6 V,  
0 °CTA 105 °C  
130/208  
DocID028010 Rev 2  
 
 
 
STM32F479xx  
Symbol  
Electrical characteristics  
Table 58. I/O static characteristics (continued)  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
FT, TTa and NRST I/O input  
hysteresis  
(3)  
1.7 VVDD3.6 V  
10%VDD  
-
-
1.75 VVDD 3.6 V, –  
40 °CTA 105 °C  
VHYS  
V
BOOT0 I/O input hysteresis  
0.1  
-
-
1.7 VVDD 3.6 V,  
0 °CTA 105 °C  
I/O input leakage current (4)  
VSS VIN VDD  
VIN = 5 V  
-
-
-
-
1
3
Ilkg  
µA  
I/O FT input leakage current (5)  
All pins  
except for  
PA10/PB12  
(OTG_FS_ID,  
30  
7
40  
10  
40  
50  
14  
50  
Weak pull-up  
equivalent  
resistor(6)  
RPU  
VIN = VSS  
OTG_HS_ID)  
PA10/PB12  
(OTG_FS_ID,  
OTG_HS_ID)  
kΩ  
All pins  
except for  
PA10/PB12  
(OTG_FS_ID,  
OTG_HS_ID)  
30  
Weak pull-  
down  
RPD  
VIN = VDD  
equivalent  
resistor(7)  
PA10/PB12  
(OTG_FS_ID,  
OTG_HS_ID)  
7
-
10  
5
14  
-
(8)  
CIO  
I/O pin capacitance  
-
pF  
1. Guaranteed by design.  
2. Tested in production.  
3. With a minimum of 200 mV.  
4. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins, Refer to Table 57  
5. To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled. Leakage could be  
higher than the maximum value, if negative current is injected on adjacent pins.Refer to Table 57  
6. Pull-up resistors are designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the  
series resistance is minimum (~10% order).  
7. Pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS contribution to the  
series resistance is minimum (~10% order).  
8. Hysteresis voltage between Schmitt trigger switching levels. Based on test during characterization.  
DocID028010 Rev 2  
131/208  
187  
Electrical characteristics  
STM32F479xx  
All I/Os are CMOS and TTL compliant (no software configuration required). Their  
characteristics cover more than the strict CMOS-technology or TTL parameters. The  
coverage of these requirements for FT I/Os is shown in Figure 37.  
Figure 37. FT I/O input characteristics  
9,/ꢊ9,+ꢍꢐ9ꢑ  
ꢂꢏꢆꢂ  
77/ꢍUHTXLUHPHQWꢍ  
9,+PLQꢍ ꢍꢂ9  
ꢂꢏꢇ  
ꢅꢏꢃꢂ  
ꢅꢏꢈ  
ꢅꢏꢂꢂ  
ꢅꢏꢅꢃ  
$UHDꢍQRWꢍ  
GHWHUPLQHG  
ꢅꢏꢇꢉꢆ  
ꢇꢏꢁ  
77/ꢍUHTXLUHPHQWꢍ9,/PD[ꢍ  
ꢇꢏꢆꢆ  
 ꢍꢇꢏꢁ9  
ꢇꢏꢆꢅ  
7HVWHGꢀLQꢀSURGXFWLRQꢀꢀꢌꢀ&026ꢀUHTXLUHPHQWꢀ9,/PD[ꢀ ꢀꢇꢂꢈ9''  
9''ꢍꢐ9ꢑ  
ꢅꢏꢈ  
ꢂꢏꢇ  
ꢂꢏꢄ  
ꢂꢏꢈ  
ꢀꢏꢀ  
ꢀꢏꢉ  
06ꢀꢀꢈꢄꢉ9ꢅ  
Output driving current  
The GPIOs (general purpose input/outputs) can sink or source up to 8 mA, and sink or  
source up to ±20 mA (with a relaxed V /V ) except PC13, PC14, PC15 and PI8 which  
OL OH  
can sink or source up to ±3mA. When using the PC13 to PC15 and PI8 GPIOs in output  
mode, the speed should not exceed 2 MHz with a maximum load of 30 pF.  
In the user application, the number of I/O pins which can drive current must be limited to  
respect the absolute maximum rating specified in Section 5.2. In particular:  
The sum of the currents sourced by all the I/Os on V  
plus the maximum Run  
DD,  
consumption of the MCU sourced on V  
cannot exceed the absolute maximum rating  
DD,  
ΣI  
(see Table 15).  
VDD  
The sum of the currents sunk by all the I/Os on V plus the maximum Run  
SS  
consumption of the MCU sunk on V cannot exceed the absolute maximum rating  
SS  
ΣI  
(see Table 15).  
VSS  
132/208  
DocID028010 Rev 2  
 
STM32F479xx  
Electrical characteristics  
Output voltage levels  
Unless otherwise specified, the parameters given in Table 59 are derived from tests  
performed under ambient temperature and V supply voltage conditions summarized in  
DD  
Table 17. All I/Os are CMOS and TTL compliant.  
Table 59. Output voltage characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max Unit  
(1)  
VOL  
Output low level voltage for an I/O pin  
CMOS port(2)  
IIO = +8 mA  
-
0.4  
(3)  
VOH  
Output high level voltage for an I/O pin  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
VDD 0.4  
-
0.4  
-
2.7 V VDD 3.6 V  
(1)  
VOL  
TTL port(2)  
IIO =+ 8mA  
-
(3)  
VOH  
2.4  
2.7 V VDD 3.6 V  
(1)  
VOL  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
-
1.3(4)  
V
IIO = +20 mA  
(3)  
VDD1.3(4)  
-
2.7 V VDD 3.6 V  
VOH  
VOL  
-
0.4(4)  
(1)  
IIO = +6 mA  
(3)  
VDD0.4(4)  
-
-
0.4(5)  
-
1.8 V VDD 3.6 V  
VOH  
(1)  
VOL  
IIO = +4 mA  
VOH  
VDD0.4(5)  
(3)  
1.7 V VDD 3.6V  
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 15.  
and the sum of IIO (I/O ports and control pins) must not exceed IVSS  
.
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.  
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in  
Table 15 and the sum of IIO (I/O ports and control pins) must not exceed IVDD  
.
4. Based on characterization data.  
5. Guaranteed by design.  
Input/output AC characteristics  
The definition and values of input/output AC characteristics are given in Figure 38 and  
Table 60, respectively.  
Unless otherwise specified, the parameters given in Table 60 are derived from tests  
performed under the ambient temperature and V supply voltage conditions summarized  
DD  
in Table 17.  
DocID028010 Rev 2  
133/208  
187  
 
Electrical characteristics  
OSPEEDRy  
STM32F479xx  
Max Unit  
(1)(2)  
Table 60. I/O AC characteristics  
[1:0] bit  
Symbol  
Parameter  
Conditions  
Min  
Typ  
value(1)  
CL = 50 pF, VDD 2.7 V  
CL = 50 pF, VDD 1.7 V  
CL = 10 pF, VDD 2.7 V  
CL = 10 pF, VDD 1.8 V  
CL = 10 pF, VDD 1.7 V  
-
-
-
-
-
-
-
-
-
-
4
2
fmax(IO)out Maximum frequency(3)  
8
4
3
MHz  
ns  
00  
Output high to low level fall  
time and output low to high  
level rise time  
tf(IO)out  
/
CL = 50 pF, VDD = 1.7 V to  
3.6 V  
-
-
100  
tr(IO)out  
CL = 50 pF, VDD2.7 V  
CL = 50 pF, VDD1.8 V  
CL = 50 pF, VDD1.7 V  
CL = 10 pF, VDD 2.7 V  
CL = 10 pF, VDD1.8 V  
CL = 10 pF, VDD1.7 V  
CL = 50 pF, VDD 2.7 V  
CL = 10 pF, VDD 2.7 V  
CL = 50 pF, VDD 1.7 V  
CL = 10 pF, VDD 1.7 V  
CL = 40 pF, VDD 2.7 V  
CL = 10 pF, VDD 2.7 V  
CL = 40 pF, VDD 1.7 V  
CL = 10 pF, VDD 1.8 V  
CL = 10 pF, VDD 1.7 V  
CL = 40 pF, VDD 2.7 V  
CL = 10 pF, VDD 2.7 V  
CL = 40 pF, VDD 1.7 V  
CL = 10 pF, VDD 1.7 V  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
25  
12.5  
10  
fmax(IO)out Maximum frequency(3)  
MHz  
50  
20  
01  
12.5  
10  
Output high to low level fall  
time and output low to high  
level rise time  
6
tf(IO)out  
tr(IO)out  
/
ns  
MHz  
ns  
20  
10  
50(4)  
100(4)  
25  
fmax(IO)out Maximum frequency(3)  
50  
10  
42.5  
6
Output high to low level fall  
time and output low to high  
level rise time  
4
tf(IO)out  
tr(IO)out  
/
10  
6
134/208  
DocID028010 Rev 2  
STM32F479xx  
Electrical characteristics  
(1)(2)  
Table 60. I/O AC characteristics  
(continued)  
OSPEEDRy  
[1:0] bit  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
value(1)  
CL = 30 pF, VDD 2.7 V  
CL = 30 pF, VDD 1.8 V  
CL = 30 pF, VDD 1.7 V  
CL = 10 pF, VDD2.7 V  
CL = 10 pF, VDD 1.8 V  
CL = 10 pF, VDD 1.7 V  
CL = 30 pF, VDD 2.7 V  
CL = 30 pF, VDD 1.8 V  
CL = 30 pF, VDD 1.7 V  
CL = 10 pF, VDD 2.7 V  
CL = 10 pF, VDD 1.8 V  
CL = 10 pF, VDD 1.7 V  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
100(4)  
50  
42.5  
MHz  
fmax(IO)out Maximum frequency(3)  
180(4)  
100  
72.5  
4
11  
6
Output high to low level fall  
time and output low to high  
level rise time  
7
tf(IO)out  
/
ns  
2.5  
tr(IO)out  
3.5  
4
Pulse width of external signals  
-
tEXTIpw detected by the EXTI  
controller  
-
10  
-
-
ns  
1. Guaranteed by design.  
2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F4xx reference manual for a description of  
the GPIOx_SPEEDR GPIO port output speed register.  
3. The maximum frequency is defined in Figure 38.  
4. For maximum frequencies above 50 MHz and VDD > 2.4 V, the compensation cell should be used.  
Figure 38. I/O AC characteristics definition  
ꢃꢇꢕ  
ꢅꢇꢕ  
ꢆꢇꢕ  
ꢆꢇꢕ  
ꢃꢇꢕ  
W
ꢅꢇꢕ  
W
(;7(51$/  
287387  
21ꢍ&/  
Uꢐ,2ꢑRXW  
Iꢐ,2ꢑRXW  
7
0D[LPXPꢍIUHTXHQF\ꢍLVꢍDFKLHYHGꢍLIꢍꢐW ꢌꢍW ꢑꢍ”ꢍꢐꢂꢊꢀꢑ7ꢍDQGꢍLIꢍWKHꢍGXW\ꢍF\FOHꢍLVꢍꢐꢄꢆꢋꢆꢆꢕꢑꢍ  
Uꢍ  
I
ZKHQꢍORDGHGꢍE\ꢍ&  
/
ꢍVSHFLILHGꢍLQꢍWKHꢍWDEOHꢍ³ꢍ,ꢀ2ꢁ$&ꢁFKDUDFWHULVWLFV´ꢏꢍ  
DLꢅꢄꢅꢀꢅG  
DocID028010 Rev 2  
135/208  
187  
 
 
Electrical characteristics  
STM32F479xx  
5.3.21  
NRST pin characteristics  
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up  
resistor, R (see Table 58).  
PU  
Unless otherwise specified, the parameters given in Table 61 are derived from tests  
performed under the ambient temperature and V supply voltage conditions summarized  
DD  
in Table 17.  
Table 61. NRST pin characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
RPU  
Weak pull-up equivalent resistor(1)  
NRST Input filtered pulse  
VIN = VSS  
-
30  
-
40  
-
50  
kΩ  
(2)  
VF(NRST)  
100  
ns  
µs  
(2)  
VNF(NRST)  
NRST Input not filtered pulse  
VDD > 2.7 V  
Internal Reset source  
300  
20  
-
-
-
TNRST_OUT Generated reset pulse duration  
-
1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series  
resistance must be minimum (~10% order).  
2. Guaranteed by design.  
Figure 39. Recommended NRST pin protection  
9
''  
([WHUQDO  
UHVHWꢍFLUFXLW  
ꢐꢅꢑ  
5
38  
ꢐꢂꢑ  
,QWHUQDOꢍ5HVHW  
1567  
)LOWHU  
ꢇꢏꢅꢍ—)  
670ꢀꢂ)  
DLꢅꢄꢅꢀꢂF  
1. The reset network protects the device against parasitic resets.  
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in  
Table 61. Otherwise the reset is not taken into account by the device.  
136/208  
DocID028010 Rev 2  
 
 
STM32F479xx  
Electrical characteristics  
5.3.22  
TIM timer characteristics  
The parameters given in Table 62 are guaranteed by design. Refer to Section 5.3.20 for  
details on the input/output alternate function characteristics (output compare, input capture,  
external clock, PWM output).  
(1)(2)  
Table 62. TIMx characteristics  
Conditions(3)  
Symbol  
Parameter  
Min  
Max  
Unit  
AHB/APBx prescaler=1  
or 2 or 4, fTIMxCLK  
=
tTIMxCLK  
1
-
180 MHz  
tres(TIM)  
Timer resolution time  
AHB/APBx prescaler>4,  
fTIMxCLK = 90 MHz  
tTIMxCLK  
1
-
Timer external clock  
frequency on CH1 to CH4  
fEXT  
fTIMxCLK/2  
16/32  
0
-
MHz  
bit  
f
TIMxCLK = 180 MHz  
ResTIM  
Timer resolution  
Maximum possible count  
with 32-bit counter  
65536 ×  
65536  
tMAX_COUNT  
tTIMxCLK  
-
1. TIMx is used as a general term to refer to the TIM1 to TIM12 timers.  
2. Guaranteed by design.  
3. The maximum timer frequency on APB1 or APB2 is up to 180 MHz, by setting the TIMPRE bit in the  
RCC_DCKCFGR register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = HCKL, otherwise TIMxCLK =  
4x PCLKx.  
5.3.23  
Communications interfaces  
I2C interface characteristics  
2
2
The I C interface meets the timings requirements of the I C-bus specification and user  
manual rev. 03 for:  
Standard-mode (Sm): with a bit rate up to 100 kbit/s  
Fast-mode (Fm): with a bit rate up to 400 kbit/s.  
2
The I C timings requirements are guaranteed by design when the I2C peripheral is properly  
configured (refer to RM0386 reference manual).  
The SDA and SCL I/O requirements are met with the following restrictions: the SDA and  
SCL I/O pins are not “true” open-drain. When configured as open-drain, the PMOS  
connected between the I/O pin and V is disabled, but is still present. Refer to  
DD  
2
for more details on the I C I/O characteristics  
Section 5.3.20  
.
2
All I C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog  
filter characteristics:  
(1)  
Table 63. I2C analog filter characteristics  
Symbol  
Parameter  
Min  
Max  
Unit  
Maximum pulse width of spikes  
that are suppressed by the analog  
filter  
tAF  
50(2)  
150(3)  
ns  
DocID028010 Rev 2  
137/208  
187  
 
Electrical characteristics  
STM32F479xx  
1. Guaranteed based on test during characterization.  
2. Spikes with widths below tAF(min) are filtered.  
3. Spikes with widths above tAF(max) are not filtered  
SPI interface characteristics  
Unless otherwise specified, the parameters given in Table 64 for the SPI interface are  
derived from tests performed under the ambient temperature, f frequency and V  
PCLKx  
DD  
supply voltage conditions summarized in Table 17, with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C = 30 pF  
Measurement points are done at CMOS levels: 0.5 V  
DD  
Refer to Section 5.3.20 for more details on the input/output alternate function characteristics  
(NSS, SCK, MOSI, MISO for SPI).  
(1)  
Table 64. SPI dynamic characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Master mode, 2.7 VVDD3.6 V,  
SPI1,4,5,6,  
-
-
45  
Master mode, 1.71 VVDD3.6 V,  
SPI1,4,5,6  
-
-
-
-
22.5(2)  
45  
Master transmitter mode,  
1.7 VVDD3.6 V, SPI1,4,5,6  
fSCK  
Slave full duplex mode,  
2.7 VVDD3.6 V, SPI1,4,5,6  
SPI clock frequency  
-
-
22.5  
33  
MHz  
1/tc(SCK)  
Slave transmitter mode,  
1.71 VVDD3.6 V, SPI1,4,5,6  
-
-
Slave transmitter mode,  
2.7 VVDD3.6 V, SPI1,4,5,6  
-
-
45  
Slave mode, 1.71 VVDD3.6 V,  
SPI2,3  
-
-
22.5  
70  
Duty cycle of SPI clock  
frequency  
Duty(SCK)  
Slave mode  
30  
50  
%
138/208  
DocID028010 Rev 2  
 
STM32F479xx  
Electrical characteristics  
(1)  
Table 64. SPI dynamic characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tw(SCKH)  
TPCLK  
SCK high and low time Master mode, SPI presc = 2  
TPCLK 1.5  
TPCLK+1.5  
tw(SCKL)  
tsu(NSS)  
th(NSS)  
tsu(MI)  
tsu(SI)  
NSS setup time  
NSS hold time  
Slave mode, SPI presc = 2  
Slave mode, SPI presc = 2  
Master mode  
4TPCLK  
-
-
2TPCLK  
2
3
4
2
7
5
-
-
-
-
-
-
-
-
Data input setup time  
Data input hold time  
Slave mode  
th(MI)  
Master mode  
-
th(SI)  
Slave mode  
-
ns  
ta(SO  
)
Data output access time Slave mode, SPI presc = 2  
Data output disable time Slave mode  
Slave mode (after enable edge),  
21  
12  
tdis(SO)  
-
-
11  
11  
15  
2.7V VDD 3.6V  
Data output valid time  
tv(SO)  
Slave mode (after enable edge),  
1.71 VVDD3.6 V  
11.5  
th(SO)  
tv(MO)  
th(MO)  
Data output hold time Slave mode (after enable edge)  
Data output valid time Master mode (after enable edge)  
Data output hold time Master mode (after enable edge)  
6
-
-
4.5  
-
-
5
-
2
1. Guaranteed based on test during characterization.  
2. Maximum frequency in Slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit into SCK low or  
high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master  
having tsu(MI) = 0 while Duty(SCK) = 50%  
DocID028010 Rev 2  
139/208  
187  
Electrical characteristics  
STM32F479xx  
Figure 40. SPI timing diagram - slave mode and CPHA = 0  
NSS input  
t
c(SCK)  
t
t
h(NSS)  
SU(NSS)  
CPHA=0  
CPOL=0  
t
t
w(SCKH)  
w(SCKL)  
CPHA=0  
CPOL=1  
t
t
t
t
t
t
dis(SO)  
r(SCK)  
f(SCK)  
v(SO)  
a(SO)  
h(SO)  
MISO  
OUT PUT  
MSB O UT  
BI T6 OUT  
BIT1 IN  
LSB OUT  
t
su(SI)  
MOSI  
M SB IN  
LSB IN  
INPUT  
t
h(SI)  
ai14134c  
(1)  
Figure 41. SPI timing diagram - slave mode and CPHA = 1  
NSS input  
t
t
t
h(NSS)  
SU(NSS)  
t
c(SCK)  
CPHA=1  
CPOL=0  
w(SCKH)  
CPHA=1  
CPOL=1  
t
w(SCKL)  
t
t
r(SCK)  
f(SCK)  
t
t
t
v(SO)  
h(SO)  
dis(SO)  
t
a(SO)  
MISO  
OUT PUT  
MSB O UT  
BI T6 OUT  
LSB OUT  
t
t
su(SI)  
h(SI)  
MOSI  
M SB IN  
BIT1 IN  
LSB IN  
INPUT  
ai14135  
140/208  
DocID028010 Rev 2  
STM32F479xx  
Electrical characteristics  
(1)  
Figure 42. SPI timing diagram - master mode  
High  
NSS input  
t
c(SCK)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
t
t
t
t
w(SCKH)  
w(SCKL)  
r(SCK)  
f(SCK)  
t
su(MI)  
MISO  
MSBIN  
t
BIT6 IN  
LSB IN  
INPUT  
h(MI)  
MOSI  
M SB OUT  
BIT1 OUT  
LSB OUT  
OUTUT  
t
t
v(MO)  
h(MO)  
ai14136  
DocID028010 Rev 2  
141/208  
187  
Electrical characteristics  
STM32F479xx  
I2S interface characteristics  
2
Unless otherwise specified, the parameters given in Table 65 for the I S interface are  
derived from tests performed under the ambient temperature, f frequency and V  
PCLKx  
DD  
supply voltage conditions summarized in Table 17, with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C = 30 pF  
Measurement points are done at CMOS levels: 0.5 V  
DD  
Refer to Section 5.3.20 for more details on the input/output alternate function characteristics  
(CK, SD, WS).  
2
(1)  
Table 65. I S dynamic characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
fMCK  
I2S Main clock output  
I2S clock frequency  
-
256x8K  
256xFs(2)  
Master data  
Slave data  
-
-
64xFs  
MHz  
%
fCK  
64xFs  
DCK  
I2S clock frequency duty cycle Slave receiver  
30  
0
70  
5
-
tv(WS)  
th(WS)  
WS valid time  
WS hold time  
Master mode  
Master mode  
Slave mode  
0
3.5  
-
tsu(WS)  
WS setup time  
WS hold time  
Slave mode  
3.5  
0.5  
1
-
-
-
PCM short pulse mode(3)  
Slave mode  
th(WS)  
Slave mode  
PCM short pulse mode(3)  
ns  
tsu(SD_MR)  
tsu(SD_SR)  
th(SD_MR)  
th(SD_SR)  
tv(SD_ST)  
tv(SD_MT)  
th(SD_ST)  
th(SD_MT)  
Master receiver  
Slave receiver  
Master receiver  
Slave receiver  
5
1.5  
5
-
Data input setup time  
Data input hold time  
Data output valid time  
Data output hold time  
-
-
1.5  
-
-
19  
2.50  
-
Slave transmitter (after enable edge)  
Master transmitter (after enable edge)  
Slave transmitter (after enable edge)  
Master transmitter (after enable edge)  
-
5
0
-
1. Guaranteed based on test during characterization.  
2. 128xFs maximum is 24.756 MHz (APB1 Maximum frequency).  
3. Measurement done with respect to I2S_CK rising edge.  
Note:  
Refer to the I2S section of RM0386 reference manual for more details on the sampling  
frequency (F ).  
S
f
, f , and D values reflect only the digital peripheral behavior, source clock precision  
CK  
MCK CK  
might slightly change the values. The values of these parameters might be slightly impacted  
by the source clock precision. D depends mainly on the value of ODD bit. The digital  
CK  
142/208  
DocID028010 Rev 2  
 
 
STM32F479xx  
Electrical characteristics  
contribution leads to a minimum value of (I2SDIV/(2*I2SDIV+ODD) and a maximum value of  
(I2SDIV+ODD)/(2*I2SDIV+ODD). F maximum value is supported for each mode/condition.  
S
2
(1)  
Figure 43. I S slave timing diagram (Philips protocol)  
t
c(CK)  
CPOL = 0  
CPOL = 1  
WS input  
t
t
t
t
w(CKL)  
h(WS)  
w(CKH)  
t
t
t
v(SD_ST)  
h(SD_ST)  
su(WS)  
SD  
transmit  
(2)  
LSB transmit  
MSB transmit  
MSB receive  
Bitn transmit  
LSB transmit  
t
su(SD_SR)  
h(SD_SR)  
(2)  
LSB receive  
Bitn receive  
LSB receive  
SD  
receive  
ai14881b  
1. .LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first  
byte.  
2
(1)  
Figure 44. I S master timing diagram (Philips protocol)  
t
t
r(CK)  
f(CK)  
t
c(CK)  
CPOL = 0  
CPOL = 1  
WS output  
t
w(CKH)  
t
t
h(WS)  
t
v(WS)  
w(CKL)  
t
t
v(SD_MT)  
h(SD_MT)  
(2)  
SD  
transmit  
receive  
LSB transmit  
MSB transmit  
MSB receive  
Bitn transmit  
LSB transmit  
t
t
h(SD_MR)  
su(SD_MR)  
(2)  
SD  
LSB receive  
Bitn receive  
LSB receive  
ai14884b  
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first  
byte.  
DocID028010 Rev 2  
143/208  
187  
Electrical characteristics  
STM32F479xx  
SAI characteristics  
Unless otherwise specified, the parameters given in Table 66 for SAI are derived from tests  
performed under the ambient temperature, f frequency and VDD supply voltage  
PCLKx  
conditions summarized in Table 17, with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C=30 pF  
Measurement points are performed at CMOS levels: 0.5 V  
DD  
Refer to Section 5.3.20 for more details on the input/output alternate function  
characteristics (SCK,SD,WS).  
(1)  
Table 66. SAI characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
fMCKL  
SAI Main clock output  
-
256 x 8K  
256xFs  
128xFs(3)  
128xFs  
Master data: 32 bits  
Slave data: 32 bits  
-
-
MHz  
fCK  
SAI clock frequency(2)  
FS valid time  
Master mode,  
2.7V VDD 3.6V  
-
-
17  
23  
tv(FS)  
Master mode,  
1.71V VDD 3.6V  
tsu(FS)  
th(FS)  
FS setup time  
FS hold time  
Slave mode  
Slave mode  
10  
0
-
-
-
-
-
-
tsu(SD_MR)  
tsu(SD_SR)  
th(SD_MR)  
th(SD_SR)  
Master receiver  
Slave receiver  
Master receiver  
Slave receiver  
1
Data input setup time  
Data input hold time  
2
6
1
ns  
Slave transmitter (after enable edge),  
-
14  
2.7V VDD 3.6V  
th(SD_B_ST)  
th(SD_B_ST)  
tv(SD_A_MT)  
th(SD_A_MT)  
Data output valid time  
Data output hold time  
Data output valid time  
Data output hold time  
Slave transmitter (after enable edge),  
-
9
-
23  
-
1.71V VDD 3.6V  
Slave transmitter (after enable edge)  
Master transmitter (after enable edge),  
20  
2.7V VDD 3.6V  
Master transmitter (after enable edge),  
-
26  
-
1.71V VDD 3.6V  
Master transmitter (after enable edge)  
10  
1. Guaranteed based on test during characterization.  
2. APB clock frequency must be at least twice SAI clock frequency.  
3. With Fs = 192 kHz.  
144/208  
DocID028010 Rev 2  
 
STM32F479xx  
Electrical characteristics  
Figure 45. SAI master timing waveforms  
ꢀꢏF  
3#+  
3!)?3#+?8  
T
Hꢋ&3ꢌ  
3!)?&3?8  
ꢋOUTPUTꢌ  
T
T
T
Hꢋ3$?-4ꢌ  
Vꢋ&3ꢌ  
Vꢋ3$?-4ꢌ  
3!)?3$?8  
ꢋTRANSMITꢌ  
3LOT N  
3LOT Nꢐꢃ  
T
T
Hꢋ3$?-2ꢌ  
SUꢋ3$?-2ꢌ  
3!)?3$?8  
ꢋRECEIVEꢌ  
3LOT N  
-3ꢊꢃꢈꢈꢀ6ꢀ  
Figure 46. SAI slave timing waveforms  
ꢀꢏF  
3#+  
3!)?3#+?8  
T
T
T
Hꢋ&3ꢌ  
Wꢋ#+(?8ꢌ  
Wꢋ#+,?8ꢌ  
3!)?&3?8  
ꢋINPUTꢌ  
T
T
T
Hꢋ3$?34ꢌ  
SUꢋ&3ꢌ  
Vꢋ3$?34ꢌ  
3!)?3$?8  
ꢋTRANSMITꢌ  
3LOT N  
3LOT Nꢐꢃ  
T
T
Hꢋ3$?32ꢌ  
SUꢋ3$?32ꢌ  
3!)?3$?8  
ꢋRECEIVEꢌ  
3LOT N  
-3ꢊꢃꢈꢈꢃ6ꢀ  
DocID028010 Rev 2  
145/208  
187  
Electrical characteristics  
STM32F479xx  
USB OTG full speed (FS) characteristics  
This interface is present in both the USB OTG HS and USB OTG FS controllers.  
Table 67. USB OTG full speed startup time  
Symbol  
Parameter  
Max  
Unit  
(1)  
tSTARTUP  
USB OTG full speed transceiver startup time  
1
µs  
1. Guaranteed by design.  
Table 68. USB OTG full speed DC electrical characteristics  
Symbol  
Parameter  
Conditions  
Min.(1) Typ. Max.(1) Unit  
USB OTG full speed  
VDD transceiver operating  
voltage  
-
3.0(2)  
-
3.6  
I(USB_FS_DP/DM,  
USB_HS_DP/DM)  
(3)  
VDI  
Differential input sensitivity  
0.2  
0.8  
1.3  
-
-
-
-
Input  
levels  
Differential common mode  
range  
(3)  
V
VCM  
Includes VDI range  
2.5  
2.0  
Single ended receiver  
threshold  
(3)  
VSE  
-
VOL Static output level low  
VOH Static output level high  
RL of 1.5 kΩto 3.6 V(4)  
-
-
-
0.3  
3.6  
Output  
levels  
(4)  
RL of 15 kΩto VSS  
2.8  
PA11, PA12, PB14, PB15  
(USB_FS_DP/DM,  
17  
21  
24  
USB_HS_DP/DM)  
RPD  
VIN = VDD  
PA9, PB13  
(OTG_FS_VBUS,  
OTG_HS_VBUS)  
0.65  
1.5  
1.1  
1.8  
2.0  
2.1  
kΩ  
PA12, PB15 (USB_FS_DP,  
USB_HS_DP)  
VIN = VSS  
VIN = VSS  
RPU  
PA9, PB13  
(OTG_FS_VBUS,  
OTG_HS_VBUS)  
0.25 0.37 0.55  
1. All the voltages are measured from the local ground potential.  
2. The USB OTG full speed transceiver functionality is ensured down to 2.7 V but not the full USB full speed  
electrical characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range.  
3. Guaranteed by design.  
RL is the load connected on the USB OTG full speed drivers.  
4.  
When VBUS sensing feature is enabled, PA9 and PB13 should be left at their default state  
(floating input), not as alternate function. A typical 200 µA current consumption of the  
sensing block (current to voltage conversion to determine the different sessions) can be  
observed on PA9 and PB13 when the feature is enabled.  
Note:  
146/208  
DocID028010 Rev 2  
STM32F479xx  
Electrical characteristics  
Figure 47. USB OTG full speed timings: definition of data signal rise and fall time  
Crossover  
points  
Differential  
Data Lines  
V
CR S  
V
SS  
t
t
r
f
ai14137  
Table 69. USB OTG full speed electrical characteristics(1)  
Driver characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
tr  
tf  
Rise time(2)  
Fall time(2)  
CL = 50 pF  
4
4
20  
20  
ns  
CL = 50 pF  
trfm  
VCRS  
Rise/ fall time matching  
tr/tf  
-
90  
1.3  
110  
2.0  
%
V
Output signal crossover voltage  
Driving  
high or low  
ZDRV  
Output driver impedance(3)  
28  
44  
Ω
1. Guaranteed by design.  
Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB  
Specification - Chapter 7 (version 2.0).  
2.  
3. No external termination series resistors are required on DP (D+) and DM (D-) pins since the matching  
impedance is included in the embedded driver.  
USB high speed (HS) characteristics  
Unless otherwise specified, the parameters given in Table 72 for ULPI are derived from  
tests performed under the ambient temperature, fHCLK frequency summarized in Table 71  
and V supply voltage conditions summarized in Table 70, with the following configuration:  
DD  
Output speed is set to OSPEEDRy[1:0] = 11, unless otherwise specified  
Capacitive load C = 20 pF / 15 pF, unless otherwise specified  
Measurement points are done at CMOS levels: 0.5 V  
.
DD  
Refer to Section 5.3.20 for more details on the input/output characteristics.  
Table 70. USB HS DC electrical characteristics  
Symbol  
Input level  
Parameter  
Min.(1)  
Max.(1)  
Unit  
VDD  
USB OTG HS operating voltage  
1.7  
3.6  
V
1. All the voltages are measured from the local ground potential.  
DocID028010 Rev 2  
147/208  
187  
 
Electrical characteristics  
STM32F479xx  
(1)  
Table 71. USB HS clock timing parameters  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
f
HCLK value to guarantee proper operation of  
-
30  
-
-
USB HS interface  
MHz  
FSTART_8BIT  
FSTEADY  
DSTART_8BIT  
DSTEADY  
Frequency (first transition)  
8-bit ±10%  
54  
59.97  
40  
60  
60  
50  
50  
66  
60.03  
60  
Frequency (steady state) ±500 ppm  
Duty cycle (first transition)  
8-bit ±10%  
%
ms  
ms  
µs  
Duty cycle (steady state) ±500 ppm  
49.975  
50.025  
Time to reach the steady state frequency and  
duty cycle after the first transition  
tSTEADY  
-
-
1.4  
tSTART_DEV  
Peripheral  
-
-
-
-
5.6  
-
Clock startup time after the  
de-assertion of SuspendM  
tSTART_HOST  
Host  
PHY preparation time after the first transition  
of the input clock  
tPREP  
-
-
-
1. Guaranteed by design.  
Figure 48. ULPI timing diagram  
#LOCK  
T
T
(#  
3#  
#ONTROL )N  
ꢋ5,0)?$)2ꢑ  
5,0)?.84ꢌ  
T
T
($  
3$  
DATA )N  
ꢋꢉꢎBITꢌ  
T
T
$#  
$#  
#ONTROL OUT  
ꢋ5,0)?340ꢌ  
T
$$  
DATA OUT  
ꢋꢉꢎBITꢌ  
AIꢀꢈꢊꢇꢀC  
148/208  
DocID028010 Rev 2  
STM32F479xx  
Electrical characteristics  
(1)  
Table 72. Dynamic characteristics: USB ULPI  
Symbol  
Parameter  
Conditions  
Min.  
Typ. Max. Unit  
Control in (ULPI_DIR, ULPI_NXT)  
setup time  
tSC  
tHC  
-
2.0  
-
-
-
-
Control in (ULPI_DIR, ULPI_NXT)  
hold time  
-
1.5  
tSD  
tHD  
Data in setup time  
Data in hold time  
-
-
1.0  
1.0  
-
-
-
-
ns  
2.7 V < VDD < 3.6 V,  
CL = 20 pF  
-
-
7.5  
7.5  
9.0  
2.7 V < VDD < 3.6 V,  
CL = 15 pF and  
12.0  
t
DC/tDD Data/control output delay  
-40 < T < 125°C  
1.7 V < VDD < 3.6 V,  
CL = 15 pF and  
-40 < T < 90°C  
-
7.5  
11.5  
1. Guaranteed based on test during characterization.  
Ethernet characteristics  
Unless otherwise specified, the parameters given in Table 74, Table 75 and Table 76 for  
SMI, RMII and MII are derived from tests performed under the ambient temperature, fHCLK  
frequency summarized in Table 17 and V supply voltage conditions summarized in  
DD  
Table 73, with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C = 30 pF  
Measurement points are done at CMOS levels: 0.5 V  
.
DD  
Refer to Section 5.3.20 for more details on the input/output characteristics.  
Table 73. Ethernet DC electrical characteristics  
Symbol  
Input level  
Parameter  
Min.(1)  
Max.(1)  
Unit  
VDD  
Ethernet operating voltage  
2.7  
3.6  
V
1. All the voltages are measured from the local ground potential.  
Table 74 gives the list of Ethernet MAC signals for the SMI (station management interface)  
and Figure 49 shows the corresponding timing diagram.  
DocID028010 Rev 2  
149/208  
187  
 
Electrical characteristics  
STM32F479xx  
Figure 49. Ethernet SMI timing diagram  
W0'&  
(7+B0'&  
WGꢐ0',2ꢑ  
(7+B0',2ꢐ2ꢑ  
WVXꢐ0',2ꢑ  
WKꢐ0',2ꢑ  
(7+B0',2ꢐ,ꢑ  
06ꢀꢅꢀꢁꢄ9ꢅ  
(1)  
Table 74. Dynamics characteristics: Ethernet MAC signals for SMI  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
tMDC  
MDC cycle time(2.38 MHz)  
400  
THCLK - 1  
12.5  
400  
403  
Td(MDIO) Write data valid time  
tsu(MDIO) Read data setup time  
THCLK  
THCLK + 1.5  
ns  
-
-
-
-
th(MDIO) Read data hold time  
0
1. Guaranteed based on test during characterization.  
Table 75 gives the list of Ethernet MAC signals for the RMII and Figure 50 shows the  
corresponding timing diagram.  
Figure 50. Ethernet RMII timing diagram  
RMII_REF_CLK  
td(TXEN)  
td(TXD)  
RMII_TX_EN  
RMII_TXD[1:0]  
tsu(RXD)  
tsu(CRS)  
tih(RXD)  
tih(CRS)  
RMII_RXD[1:0]  
RMII_CRS_DV  
ai15667  
150/208  
DocID028010 Rev 2  
 
STM32F479xx  
Electrical characteristics  
(1)  
Table 75. Dynamics characteristics: Ethernet MAC signals for RMII  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
tsu(RXD) Receive data setup time  
tih(RXD) Receive data hold time  
tsu(CRS) Carrier sense setup time  
tih(CRS) Carrier sense hold time  
td(TXEN) Transmit enable valid delay time  
2.5  
2.0  
0.5  
1.5  
5.5  
6.0  
-
-
-
-
-
-
ns  
-
-
6.5  
6.5  
11  
11  
td(TXD)  
Transmit data valid delay time  
1. Guaranteed based on test during characterization.  
Table 76 gives the list of Ethernet MAC signals for MII and Figure 50 shows the  
corresponding timing diagram.  
Figure 51. Ethernet MII timing diagram  
MII_RX_CLK  
t
t
t
t
t
t
su(RXD)  
su(ER)  
su(DV)  
ih(RXD)  
ih(ER)  
ih(DV)  
MII_RXD[3:0]  
MII_RX_DV  
MII_RX_ER  
MII_TX_CLK  
t
t
d(TXEN)  
d(TXD)  
MII_TX_EN  
MII_TXD[3:0]  
ai15668  
(1)  
Table 76. Dynamics characteristics: Ethernet MAC signals for MII  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
tsu(RXD) Receive data setup time  
tih(RXD) Receive data hold time  
1
3
-
-
-
-
tsu(DV)  
tih(DV)  
tsu(ER)  
tih(ER)  
Data valid setup time  
Data valid hold time  
Error setup time  
0
-
-
2.5  
0
-
-
ns  
-
-
Error hold time  
2
-
-
td(TXEN) Transmit enable valid delay time  
td(TXD) Transmit data valid delay time  
0
7
7
13  
13  
0
1. Guaranteed based on test during characterization.  
DocID028010 Rev 2  
151/208  
187  
 
Electrical characteristics  
STM32F479xx  
CAN (controller area network) interface  
Refer to Section 5.3.20 for more details on the input/output alternate function characteristics  
(CANx_TX and CANx_RX).  
5.3.24  
12-bit ADC characteristics  
Unless otherwise specified, the parameters given in Table 77 are derived from tests  
performed under the ambient temperature, f  
frequency and V  
supply voltage  
PCLK2  
DDA  
conditions summarized in Table 17.  
Table 77. ADC characteristics  
Conditions  
Symbol  
Parameter  
Power supply  
Min  
Typ  
Max  
Unit  
VDDA  
1.7(1)  
1.7(1)  
0.6  
-
-
3.6  
VDDA  
18  
VDDA VREF+ < 1.2 V  
V
VREF+  
Positive reference voltage  
VDDA = 1.7(1) to 2.4 V  
15  
30  
fADC  
ADC clock frequency  
MHz  
VDDA = 2.4 to 3.6 V  
0.6  
36  
f
ADC = 30 MHz,  
-
-
-
1764  
17  
kHz  
(2)  
12-bit resolution  
fTRIG  
External trigger frequency  
Conversion voltage range(3)  
-
-
1/fADC  
0
VAIN  
-
-
VREF+  
V
(VSSA or VREF-  
tied to ground)  
(2)  
RAIN  
External input impedance  
Sampling switch resistance  
Details in Equation 1  
-
-
-
-
50  
6
kΩ  
kΩ  
(2)(4)  
RADC  
-
Internal sample and hold  
capacitor  
(2)  
CADC  
-
-
4
7
pF  
f
f
ADC = 30 MHz  
-
-
-
0.100  
3(5)  
0.067  
2(5)  
16  
µs  
1/fADC  
µs  
Injection trigger conversion  
latency  
(2)  
tlat  
-
-
ADC = 30 MHz  
-
-
Regular trigger conversion  
latency  
(2)  
tlatr  
-
-
1/fADC  
µs  
fADC = 30 MHz  
0.100  
-
(2)  
tS  
Sampling time  
Power-up time  
-
-
3
-
-
480  
3
1/fADC  
µs  
(2)  
tSTAB  
2
152/208  
DocID028010 Rev 2  
 
STM32F479xx  
Symbol  
Electrical characteristics  
Table 77. ADC characteristics (continued)  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fADC = 30 MHz  
12-bit resolution  
0.50  
-
16.40  
f
ADC = 30 MHz  
0.43  
0.37  
0.30  
-
-
-
16.34  
16.27  
16.20  
10-bit resolution  
µs  
Total conversion time  
fADC = 30 MHz  
8-bit resolution  
(2)  
tCONV  
(including sampling time)  
fADC = 30 MHz  
6-bit resolution  
9 to 492  
1/fADC  
(tS for sampling +n-bit resolution for successive approximation)  
12-bit resolution  
-
-
-
-
2
Single ADC  
12-bit resolution  
Sampling rate  
3.75  
Interleave Dual ADC  
mode  
(2)  
fS  
Msps  
(fADC = 30 MHz, and  
tS = 3 ADC cycles)  
12-bit resolution  
-
-
-
-
6
Interleave Triple ADC  
mode  
ADC VREF  
DC current consumption in  
conversion mode  
(2)  
IVREF+  
-
-
300  
1.6  
500  
1.8  
µA  
ADC VDDA  
DC current consumption in  
conversion mode  
(2)  
IVDDA  
mA  
1. VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 2.19.2).  
2. Based on test during characterization.  
3. VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA  
.
4. RADC maximum value is given for VDD=1.7 V, and minimum value for VDD=3.3 V.  
5. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 77.  
Equation 1: R  
max formula  
AIN  
(k 0.5)  
----------------------------------------------------------------  
RADC  
RAIN  
=
fADC × CADC × ln(2N + 2  
)
The formula above (Equation 1) is used to determine the maximum external impedance  
allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of  
sampling periods defined in the ADC_SMPR1 register.  
DocID028010 Rev 2  
153/208  
187  
Electrical characteristics  
Symbol  
STM32F479xx  
(1)  
Table 78. ADC static accuracy at f  
= 18 MHz  
Typ  
ADC  
Parameter  
Test conditions  
Max(2)  
Unit  
ET  
Total unadjusted error  
±3  
±4  
f
ADC =18 MHz  
EO  
EG  
ED  
EL  
Offset error  
±2  
±1  
±1  
±2  
±3  
±3  
±2  
±3  
VDDA = 1.7 to 3.6 V  
VREF = 1.7 to 3.6 V  
VDDA VREF < 1.2 V  
LSB  
Gain error  
Differential linearity error  
Integral linearity error  
1. Better performance could be achieved in restricted VDD, frequency and temperature ranges.  
2. Based on test during characterization.  
a
(1)  
Table 79. ADC static accuracy at f  
= 30 MHz  
Typ  
ADC  
Symbol  
Parameter  
Test conditions  
Max(2)  
Unit  
ET  
EO  
EG  
ED  
EL  
Total unadjusted error  
Offset error  
±2  
±5  
±2.5  
±3  
f
ADC = 30 MHz,  
±1.5  
±1.5  
±1  
RAIN < 10 kΩ,  
Gain error  
VDDA = 2.4 to 3.6 V,  
VREF = 1.7 to 3.6 V,  
VDDA VREF < 1.2 V  
LSB  
Differential linearity error  
Integral linearity error  
±2  
±1.5  
±3  
1. Better performance could be achieved in restricted VDD, frequency and temperature ranges.  
2. Based on test during characterization.  
(1)  
Table 80. ADC static accuracy at f  
= 36 MHz  
ADC  
Symbol  
Parameter  
Test conditions  
Typ  
Max(2)  
Unit  
ET  
Total unadjusted error  
±4  
±7  
f
ADC =36 MHz,  
EO  
EG  
ED  
EL  
Offset error  
±2  
±3  
±2  
±3  
±3  
±6  
±3  
±6  
V
DDA = 2.4 to 3.6 V,  
LSB  
Gain error  
VREF = 1.7 to 3.6 V  
Differential linearity error  
Integral linearity error  
VDDA VREF < 1.2 V  
1. Better performance could be achieved in restricted VDD, frequency and temperature ranges.  
2. Based on test during characterization.  
154/208  
DocID028010 Rev 2  
 
STM32F479xx  
Electrical characteristics  
(1)  
Table 81. ADC dynamic accuracy at f  
= 18 MHz - limited test conditions  
ADC  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max Unit  
ENOB  
SINAD  
SNR  
Effective number of bits  
Signal-to-noise and distortion ratio  
Signal-to-noise ratio  
10.3  
64  
10.4  
64.2  
65  
-
-
-
-
bits  
fADC =18 MHz  
VDDA = VREF+= 1.7 V  
Input Frequency = 20 KHz  
Temperature = 25 °C  
64  
dB  
THD  
Total harmonic distortion  
67  
72  
1. Guaranteed based on test during characterization.  
(1)  
Table 82. ADC dynamic accuracy at f  
= 36 MHz - limited test conditions  
ADC  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max Unit  
ENOB  
SINAD  
SNR  
Effective number of bits  
Signal-to noise and distortion ratio  
Signal-to noise ratio  
10.6  
66  
10.8  
67  
-
-
-
-
bits  
fADC =36 MHz  
VDDA = VREF+ = 3.3 V  
Input Frequency = 20 KHz  
Temperature = 25 °C  
64  
68  
dB  
THD  
Total harmonic distortion  
70  
72  
1. Guaranteed based on test during characterization.  
Note:  
ADC accuracy vs. negative injection current: injecting a negative current on any analog  
input pins should be avoided as this significantly reduces the accuracy of the conversion  
being performed on another analog input. It is recommended to add a Schottky diode (pin to  
ground) to analog pins which may potentially inject negative currents.  
Any positive injection current within the limits specified for I  
Section 5.3.20 does not affect the ADC accuracy.  
and ΣI  
in  
INJ(PIN)  
INJ(PIN)  
DocID028010 Rev 2  
155/208  
187  
Electrical characteristics  
STM32F479xx  
Figure 52. ADC accuracy characteristics  
6
6
$$!  
2%&ꢐ  
;ꢀ,3"  
ꢋOR  
DEPENDING ON PACKAGEꢌ=  
)$%!,  
ꢆꢂꢁꢇ  
ꢆꢂꢁꢇ  
%
'
ꢆꢂꢁꢅ  
ꢆꢂꢁꢆ  
ꢆꢂꢁꢊ  
ꢋꢃꢌ  
%
4
ꢋꢊꢌ  
ꢋꢀꢌ  
%
%
/
,
%
$
ꢀ, 3"  
)$%!,  
ꢆꢅꢇ  
ꢆꢂꢁꢊ ꢆꢂꢁꢆ ꢆꢂꢁꢅ ꢆꢂꢁꢇ  
6
6
$$!  
33!  
AIꢀꢁꢂꢃꢄC  
1. See also Table 79.  
2. Example of an actual transfer curve.  
3. Ideal transfer curve.  
4. End point correlation line.  
5. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves.  
EO = Offset Error: deviation between the first actual transition and the first ideal one.  
EG = Gain Error: deviation between the last ideal transition and the last actual one.  
ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.  
EL = Integral Linearity Error: maximum deviation between any actual transition and the end point  
correlation line.  
Figure 53. Typical connection diagram using the ADC  
670ꢀꢂ)  
9
''  
6DPSOHꢍDQGꢍKROGꢍ$'&ꢍ  
9
7
FRQYHUWHU  
ꢇꢏꢉꢍ9  
ꢐꢅꢑ  
$,1  
ꢐꢅꢑ  
5
5
$'&  
$,1[  
ꢅꢂꢋELW  
FRQYHUWHU  
9
ꢇꢏꢉꢍ9  
7
9
$,1  
&
ꢐꢅꢑ  
$'&  
&
SDUDVLWLF  
, “ꢅꢍ—$  
/
DLꢅꢈꢆꢀꢄ  
1. Refer to Table 77 for the values of RAIN, RADC and CADC  
.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the  
pad capacitance (roughly 5 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this,  
f
ADC should be reduced.  
156/208  
DocID028010 Rev 2  
STM32F479xx  
Electrical characteristics  
General PCB design guidelines  
Power supply decoupling should be performed as shown in Figure 54 or Figure 55,  
depending on whether V is connected to V or not. The 10 nF capacitors should be  
REF+  
DDA  
ceramic (good quality). They should be placed them as close as possible to the chip.  
Figure 54. Power supply and reference decoupling (V not connected to V  
)
DDA  
REF+  
670ꢀꢂ)  
95()ꢌꢐꢅꢑ  
ꢅꢍ—)ꢍꢊꢊꢍꢅꢇꢍQ)  
9''$  
ꢅꢍ—)ꢍꢊꢊꢍꢅꢇꢍQ)  
966$ꢊ95()ꢌꢐꢅꢑ  
06ꢀꢁꢂꢈꢁ9ꢅ  
1. VREF+ and VREF– inputs are both available on UFBGA176. VREF+ is also available on LQFP100, LQFP144,  
and LQFP176. When VREF+ and VREF– are not available, they are internally connected to VDDA and VSSA  
.
Figure 55. Power supply and reference decoupling (V  
connected to V  
)
DDA  
REF+  
670ꢀꢂ)  
95()ꢌꢊ9''$ꢐꢅꢑ  
ꢅꢍ—)ꢍꢊꢊꢍꢅꢇꢍQ)  
95()ꢋꢊ9''$ꢐꢅꢑ  
06ꢀꢁꢂꢈꢃ9ꢅ  
1. VREF+ and VREF– inputs are both available on UFBGA176. VREF+ is also available on LQFP100, LQFP144,  
and LQFP176. When VREF+ and VREF– are not available, they are internally connected to VDDA and VSSA  
.
DocID028010 Rev 2  
157/208  
187  
 
 
Electrical characteristics  
STM32F479xx  
5.3.25  
Temperature sensor characteristics  
Table 83. Temperature sensor characteristics  
Parameter  
Symbol  
Min  
Typ Max  
Unit  
(1)  
TL  
VSENSE linearity with temperature  
-
-
1
2.5  
0.76  
6
2
°C  
mV/°C  
V
Avg_Slope(1) Average slope  
-
(1)  
V25  
Voltage at 25 °C  
-
-
10  
-
(2)  
tSTART  
Startup time  
-
µs  
(2)  
TS_temp  
ADC sampling time when reading the temperature (1 °C accuracy)  
10  
-
1. Based on test during characterization.  
2. Guaranteed by design.  
Table 84. Temperature sensor calibration values  
Symbol  
Parameter  
Memory address  
0x1FFF 7A2C - 0x1FFF 7A2D  
TS_CAL1  
TS_CAL2  
TS ADC raw data acquired at temperature of 30 °C, VDDA= 3.3 V  
TS ADC raw data acquired at temperature of 110 °C, VDDA= 3.3 V 0x1FFF 7A2E - 0x1FFF 7A2F  
5.3.26  
V
monitoring characteristics  
BAT  
Table 85. V  
monitoring characteristics  
BAT  
Symbol  
Parameter  
Resistor bridge for VBAT  
Min  
Typ  
Max  
Unit  
R
Q
-
-
50  
4
-
-
KΩ  
Ratio on VBAT measurement  
Error on Q  
Er(1)  
–1  
-
+1  
%
ADC sampling time when reading the VBAT  
1 mV accuracy  
(2)(2)  
TS_vbat  
5
-
-
µs  
1. Guaranteed by design.  
2. Shortest sampling time can be determined in the application by multiple iterations.  
5.3.27  
Reference voltage  
The parameters given in Table 86 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 17.  
DD  
Table 86. internal reference voltage  
Symbol  
VREFINT  
Parameter  
Conditions  
Min  
Max  
Unit  
Typ  
Internal reference voltage  
–40 °C < TA < +105 °C 1.18 1.21  
1.24  
V
ADC sampling time when reading the  
internal reference voltage  
(1)  
TS_vrefint  
10  
-
-
-
µs  
Internal reference voltage spread over the  
temperature range  
(2)  
VRERINT_s  
VDD = 3V 10mV  
3
5
mV  
158/208  
DocID028010 Rev 2  
 
STM32F479xx  
Electrical characteristics  
Table 86. internal reference voltage (continued)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Typ  
(2)  
TCoeff  
Temperature coefficient  
Startup time  
-
-
30  
6
50  
10  
ppm/°C  
µs  
(2)  
tSTART  
1. Shortest sampling time can be determined in the application by multiple iterations.  
2. Guaranteed by design  
Table 87. Internal reference voltage calibration values  
Parameter Memory address  
VREFIN_CAL Raw data acquired at temperature of 30 °C VDDA = 3.3 V  
Symbol  
0x1FFF 7A2A - 0x1FFF 7A2B  
5.3.28  
DAC electrical characteristics  
Table 88. DAC characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Comments  
VDDA  
Analog supply voltage  
1.7(1)  
-
3.6  
V
-
VREF+  
VSSA  
Reference supply voltage  
Ground  
1.7(1)  
-
-
-
3.6  
0
V
V
VREF+ VDDA  
0
5
-
(2)  
RLOAD  
Resistive load with buffer ON  
-
kΩ  
-
When the buffer is OFF, the Minimum  
Impedance output with buffer  
OFF  
(2)  
RO  
-
-
-
-
15  
50  
kΩ resistive load between DAC_OUT and  
SS to have a 1% accuracy is 1.5 MΩ  
V
Maximum capacitive load at DAC_OUT  
pin (when the buffer is ON).  
(2)  
CLOAD  
Capacitive load  
pF  
It gives the maximum output excursion of  
the DAC.  
DAC_OUT Lower DAC_OUT voltage  
min(2)  
with buffer ON  
0.2  
-
-
V
It corresponds to 12-bit input code  
(0x0E0) to (0xF1C) at VREF+ = 3.6 V and  
(0x1C7) to (0xE38) at VREF+ = 1.7 V  
DAC_OUT Higher DAC_OUT voltage  
max(2)  
with buffer ON  
VDDA  
0.2  
-
-
-
-
0.5  
-
V
mV  
V
DAC_OUT Lower DAC_OUT voltage  
min(2)  
with buffer OFF  
-
It gives the maximum output excursion of  
the DAC.  
DAC_OUT Higher DAC_OUT voltage  
VREF+  
1LSB  
max(2)  
with buffer OFF  
With no load, worst code (0x800) at  
-
-
170  
50  
240  
VREF+ = 3.6 V in terms of DC  
consumption on the inputs  
DAC DC VREF current  
consumption in quiescent  
mode (Standby mode)  
(4)  
IVREF+  
µA  
With no load, worst code (0xF1C) at  
75  
VREF+ = 3.6 V in terms of DC  
consumption on the inputs  
DocID028010 Rev 2  
159/208  
187  
Electrical characteristics  
STM32F479xx  
Table 88. DAC characteristics (continued)  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Comments  
With no load, middle code (0x800) on the  
inputs  
-
280  
380  
µA  
DAC DC VDDA current  
consumption in quiescent  
mode(3)  
(4)  
IDDA  
With no load, worst code (0xF1C) at  
µA VREF+ = 3.6 V in terms of DC  
consumption on the inputs  
-
-
475  
-
625  
Differential non linearity  
Difference between two  
consecutive code-1LSB)  
±0.5  
LSB Given for the DAC in 10-bit configuration.  
DNL(4)  
-
-
-
-
±2  
±1  
LSB Given for the DAC in 12-bit configuration.  
LSB Given for the DAC in 10-bit configuration.  
Integral non linearity  
(difference between  
measured value at Code i  
and the value at Code i on a  
line drawn between Code 0  
and last Code 1023)  
INL(4)  
-
-
±4  
LSB Given for the DAC in 12-bit configuration.  
-
-
-
-
±10  
±3  
mV Given for the DAC in 12-bit configuration  
Offset error  
Given for the DAC in 10-bit at VREF+  
3.6 V  
=
=
(difference between  
measured value at Code  
(0x800) and the ideal value =  
VREF+/2)  
LSB  
LSB  
%
Offset(4)  
Given for the DAC in 12-bit at VREF+  
3.6 V  
-
-
-
-
±12  
Gain  
Gain error  
±0.5  
Given for the DAC in 12-bit configuration  
error(4)  
Settling time (full scale: for a  
10-bit input code transition  
between the lowest and the  
highest input codes when  
DAC_OUT reaches final  
value ±4LSB  
CLOAD 50 pF,  
RLOAD 5 kΩ  
(4)  
tSETTLING  
-
3
6
µs  
Total Harmonic Distortion  
Buffer ON  
CLOAD 50 pF,  
RLOAD 5 kΩ  
THD(4)  
-
-
-
-
-
dB  
Max frequency for a correct  
Update DAC_OUT change when  
CLOAD 50 pF,  
RLOAD 5 kΩ  
1
MS/s  
rate(2)  
small variation in the input  
code (from code i to i+1LSB)  
CLOAD 50 pF, RLOAD 5 kΩ  
input code between lowest and highest  
possible ones.  
Wakeup time from off state  
(Setting the ENx bit in the  
DAC Control register)  
(4)  
tWAKEUP  
-
-
6.5  
10  
µs  
Power supply rejection ratio  
PSRR+ (2) (to VDDA) (static DC  
measurement)  
–67  
–40  
dB No RLOAD, CLOAD = 50 pF  
1. VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 2.19.2).  
2. Guaranteed by design.  
3. The quiescent mode corresponds to a state where the DAC maintains a stable output level to ensure that no dynamic  
consumption occurs.  
4. Guaranteed based on test during characterization.  
160/208  
DocID028010 Rev 2  
STM32F479xx  
Electrical characteristics  
Figure 56. 12-bit buffered/non-buffered DAC  
%XIIHUHGꢊ1RQꢋEXIIHUHGꢍ'$&  
%XIIHUꢐꢅꢑ  
5 /  
'$&B287[  
ꢅꢂꢋELWꢍ  
GLJLWDOꢍWR  
DQDORJꢍ  
FRQYHUWHUꢍ  
&
/
DLꢅꢈꢅꢆꢈ9ꢂ  
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external  
loads directly without the use of an external operational amplifier. The buffer can be bypassed by  
configuring the BOFFx bit in the DAC_CR register.  
5.3.29  
FMC characteristics  
Unless otherwise specified, the parameters given in Tables 89 through 102 for the FMC  
interface are derived from tests performed under the ambient temperature, f  
frequency  
HCLK  
and V supply voltage conditions summarized in Table 17, with the following configuration:  
DD  
Output speed is set to OSPEEDRy[1:0] = 11  
Measurement points are done at CMOS levels: 0.5 V  
DD  
Refer to Section 5.3.20 for more details on the input/output characteristics.  
Asynchronous waveforms and timings  
Figures 57 through 60 represent asynchronous waveforms, and Tables 89 through 96  
provide the corresponding timings. The results shown in these tables are obtained with the  
following FMC configuration:  
AddressSetupTime = 0x1  
AddressHoldTime = 0x1  
DataSetupTime = 0x1 (except for asynchronous NWAIT mode , DataSetupTime = 0x5)  
BusTurnAroundDuration = 0x0  
Capacitive load C = 30 pF  
L
DocID028010 Rev 2  
161/208  
187  
Electrical characteristics  
STM32F479xx  
Figure 57. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms  
T
Wꢋ.%ꢌ  
&-#?.%  
T
T
T
Hꢋ.%?./%ꢌ  
Wꢋ./%ꢌ  
Vꢋ./%?.%ꢌ  
&-#?./%  
&-#?.7%  
TVꢋ!?.%ꢌ  
T
Hꢋ!?./%ꢌ  
&-#?!;ꢃꢅꢒꢂ=  
!DDRESS  
TVꢋ",?.%ꢌ  
T
Hꢋ",?./%ꢌ  
&-#?.",;ꢀꢒꢂ=  
T
Hꢋ$ATA?.%ꢌ  
T
T
SUꢋ$ATA?./%ꢌ  
Hꢋ$ATA?./%ꢌ  
T
SUꢋ$ATA?.%ꢌ  
$ATA  
&-#?$;ꢀꢅꢒꢂ=  
T
Vꢋ.!$6?.%ꢌ  
T
Wꢋ.!$6ꢌ  
ꢋꢀꢌ  
&-#?.!$6  
&-#?.7!)4  
THꢋ.%?.7!)4ꢌ  
TSUꢋ.7!)4?.%ꢌ  
-3ꢊꢃꢈꢅꢊ6ꢀ  
1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.  
162/208  
DocID028010 Rev 2  
STM32F479xx  
Electrical characteristics  
(1)  
Table 89. Asynchronous non-multiplexed SRAM/PSRAM/NOR - read timings  
Symbol  
Parameter  
FMC_NE low time  
Min  
Max  
Unit  
tw(NE)  
tv(NOE_NE)  
tw(NOE)  
2THCLK 0.5 2 THCLK+0.5  
FMC_NEx low to FMC_NOE low  
FMC_NOE low time  
0
1
2THCLK  
2THCLK+ 0.5  
th(NE_NOE)  
tv(A_NE)  
th(A_NOE)  
tv(BL_NE)  
FMC_NOE high to FMC_NE high hold time  
FMC_NEx low to FMC_A valid  
Address hold time after FMC_NOE high  
FMC_NEx low to FMC_BL valid  
FMC_BL hold time after FMC_NOE high  
Data to FMC_NEx high setup time  
Data to FMC_NOEx high setup time  
Data hold time after FMC_NOE high  
Data hold time after FMC_NEx high  
FMC_NEx low to FMC_NADV low  
FMC_NADV low time  
0
-
-
2
0
-
-
2
ns  
th(BL_NOE)  
tsu(Data_NE)  
tsu(Data_NOE)  
th(Data_NOE)  
th(Data_NE)  
tv(NADV_NE)  
tw(NADV)  
0
-
THCLK + 2.5  
-
THCLK +2  
-
0
0
-
-
-
0
-
THCLK +1  
1. Based on test during characterization.  
Table 90. Asynchronous non-multiplexed SRAM/PSRAM/NOR read - NWAIT  
(1)  
timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
FMC_NE low time  
7THCLK+0.5  
7THCLK+1  
tw(NOE)  
FMC_NWE low time  
5THCLK 1.5 5THCLK +2  
ns  
tsu(NWAIT_NE)  
FMC_NWAIT valid before FMC_NEx high  
5THCLK+1.5  
-
FMC_NEx hold time after FMC_NWAIT  
invalid  
th(NE_NWAIT)  
4THCLK+1  
-
1. Based on test during characterization.  
DocID028010 Rev 2  
163/208  
187  
Electrical characteristics  
STM32F479xx  
Figure 58. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms  
T
Wꢋ.%ꢌ  
&-#?.%X  
&-#?./%  
&-#?.7%  
T
T
Wꢋ.7%ꢌ  
T
Hꢋ.%?.7%ꢌ  
Vꢋ.7%?.%ꢌ  
T
THꢋ!?.7%ꢌ  
Vꢋ!?.%ꢌ  
&-#?!;ꢃꢅꢒꢂ=  
!DDRESS  
T
T
Vꢋ",?.%ꢌ  
Hꢋ",?.7%ꢌ  
&-#?.",;ꢀꢒꢂ=  
.",  
T
T
Vꢋ$ATA?.%ꢌ  
Hꢋ$ATA?.7%ꢌ  
$ATA  
&-#?$;ꢀꢅꢒꢂ=  
T
Vꢋ.!$6?.%ꢌ  
T
Wꢋ.!$6ꢌ  
ꢋꢀꢌ  
&-#?.!$6  
&-#?.7!)4  
THꢋ.%?.7!)4ꢌ  
TSUꢋ.7!)4?.%ꢌ  
-3ꢊꢃꢈꢅꢆ6ꢀ  
1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.  
(1)  
Table 91. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings  
Symbol  
tw(NE)  
Parameter  
Min  
Max  
Unit  
FMC_NE low time  
3THCLK  
3THCLK+1  
tv(NWE_NE)  
tw(NWE)  
th(NE_NWE)  
tv(A_NE)  
FMC_NEx low to FMC_NWE low  
FMC_NWE low time  
THCLK 0.5 THCLK+ 0.5  
THCLK  
THCLK+ 0.5  
FMC_NWE high to FMC_NE high hold time  
FMC_NEx low to FMC_A valid  
THCLK +1.5  
-
-
0
th(A_NWE)  
tv(BL_NE)  
th(BL_NWE)  
tv(Data_NE)  
Address hold time after FMC_NWE high  
FMC_NEx low to FMC_BL valid  
FMC_BL hold time after FMC_NWE high  
Data to FMC_NEx low to Data valid  
THCLK+0.5  
-
ns  
-
1.5  
THCLK+0.5  
-
THCLK+ 2  
-
-
th(Data_NWE) Data hold time after FMC_NWE high  
tv(NADV_NE) FMC_NEx low to FMC_NADV low  
THCLK+0.5  
-
-
0.5  
tw(NADV)  
FMC_NADV low time  
THCLK+ 0.5  
1. Based on test during characterization.  
164/208  
DocID028010 Rev 2  
STM32F479xx  
Electrical characteristics  
Table 92. Asynchronous non-multiplexed SRAM/PSRAM/NOR write - NWAIT  
(1)  
timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
FMC_NE low time  
FMC_NWE low time  
8THCLK+1  
8THCLK+2  
tw(NWE)  
6THCLK 1  
6THCLK+1.5  
4THCLK+1  
6THCLK+2  
ns  
tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high  
th(NE_NWAIT) FMC_NEx hold time after FMC_NWAIT invalid  
1. Based on test during characterization.  
-
-
Figure 59. Asynchronous multiplexed PSRAM/NOR read waveforms  
T
Wꢋ.%ꢌ  
&-#? .%  
&-#?./%  
T
T
Hꢋ.%?./%ꢌ  
Vꢋ./%?.%ꢌ  
T
Wꢋ./%ꢌ  
T
&-#?.7%  
T
Hꢋ!?./%ꢌ  
Vꢋ!?.%ꢌ  
&-#? !;ꢃꢅꢒꢀꢇ=  
!DDRESS  
.",  
T
T
Vꢋ",?.%ꢌ  
Hꢋ",?./%ꢌ  
&-#? .",;ꢀꢒꢂ=  
T
Hꢋ$ATA?.%ꢌ  
T
SUꢋ$ATA?.%ꢌ  
T
T
T
Hꢋ$ATA?./%ꢌ  
Vꢋ!?.%ꢌ  
!DDRESS  
SUꢋ$ATA?./%ꢌ  
$ATA  
&-#? !$;ꢀꢅꢒꢂ=  
T
T
Hꢋ!$?.!$6ꢌ  
Vꢋ.!$6?.%ꢌ  
T
Wꢋ.!$6ꢌ  
&-#?.!$6  
&-#?.7!)4  
THꢋ.%?.7!)4ꢌ  
TSUꢋ.7!)4?.%ꢌ  
-3ꢊꢃꢈꢅꢅ6ꢀ  
DocID028010 Rev 2  
165/208  
187  
Electrical characteristics  
STM32F479xx  
(1)  
Table 93. Asynchronous multiplexed PSRAM/NOR read timings  
Symbol  
Parameter  
FMC_NE low time  
Min  
Max  
Unit  
tw(NE)  
tv(NOE_NE)  
ttw(NOE)  
3THCLK 1 3THCLK+0.5  
FMC_NEx low to FMC_NOE low  
FMC_NOE low time  
2THCLK 0.5  
2THCLK  
THCLK 1  
THCLK+1  
th(NE_NOE)  
tv(A_NE)  
tv(NADV_NE)  
tw(NADV)  
FMC_NOE high to FMC_NE high hold time  
FMC_NEx low to FMC_A valid  
FMC_NEx low to FMC_NADV low  
FMC_NADV low time  
1
-
-
2
2
0
THCLK 0.5 THCLK+0.5  
FMC_AD(address) valid hold time after  
FMC_NADV high)  
th(AD_NADV)  
0
-
ns  
th(A_NOE)  
th(BL_NOE)  
tv(BL_NE)  
Address hold time after FMC_NOE high  
FMC_BL time after FMC_NOE high  
FMC_NEx low to FMC_BL valid  
THCLK 0.5  
-
-
0
-
2
-
tsu(Data_NE)  
tsu(Data_NOE)  
th(Data_NE)  
th(Data_NOE)  
Data to FMC_NEx high setup time  
Data to FMC_NOE high setup time  
Data hold time after FMC_NEx high  
Data hold time after FMC_NOE high  
THCLK+1.5  
THCLK+1  
-
0
0
-
-
1. Based on test during characterization.  
(1)  
Table 94. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
FMC_NE low time  
FMC_NWE low time  
8THCLK+0.5  
8THCLK+2  
ns  
tw(NOE)  
5THCLK 1 5THCLK +1.5  
tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high  
th(NE_NWAIT) FMC_NEx hold time after FMC_NWAIT invalid  
1. Based on test during characterization.  
5THCLK +1.5  
4THCLK+1  
-
-
166/208  
DocID028010 Rev 2  
STM32F479xx  
Electrical characteristics  
Figure 60. Asynchronous multiplexed PSRAM/NOR write waveforms  
T
Wꢋ.%ꢌ  
&-#? .%X  
&-#?./%  
T
T
Wꢋ.7%ꢌ  
T
Hꢋ.%?.7%ꢌ  
Vꢋ.7%?.%ꢌ  
&-#?.7%  
T
T
Hꢋ!?.7%ꢌ  
Vꢋ!?.%ꢌ  
&-#? !;ꢃꢅꢒꢀꢇ=  
!DDRESS  
T
T
Vꢋ",?.%ꢌ  
Hꢋ",?.7%ꢌ  
&-#? .",;ꢀꢒꢂ=  
.",  
T
T
Hꢋ$ATA?.7%ꢌ  
T
Vꢋ!?.%ꢌ  
!DDRESS  
Vꢋ$ATA?.!$6ꢌ  
$ATA  
&-#? !$;ꢀꢅꢒꢂ=  
T
T
Hꢋ!$?.!$6ꢌ  
Vꢋ.!$6?.%ꢌ  
T
Wꢋ.!$6ꢌ  
&-#?.!$6  
&-#?.7!)4  
THꢋ.%?.7!)4ꢌ  
TSUꢋ.7!)4?.%ꢌ  
-3ꢊꢃꢈꢅꢇ6ꢀ  
(1)  
Table 95. Asynchronous multiplexed PSRAM/NOR write timings  
Symbol  
Parameter  
Min  
Max  
4THCLK+0.5  
Unit  
tw(NE)  
FMC_NE low time  
4THCLK  
tv(NWE_NE) FMC_NEx low to FMC_NWE low  
tw(NWE) FMC_NWE low time  
th(NE_NWE) FMC_NWE high to FMC_NE high hold time  
tv(A_NE) FMC_NEx low to FMC_A valid  
tv(NADV_NE) FMC_NEx low to FMC_NADV low  
THCLK 1 THCLK+0.5  
2THCLK  
THCLK  
-
2THCLK+0.5  
-
0
1
0.5  
tw(NADV)  
FMC_NADV low time  
THCLK 0.5 THCLK+ 0.5  
ns  
FMC_AD (address) valid hold time  
after FMC_NADV high  
th(AD_NADV)  
THCLK 2  
-
th(A_NWE) Address hold time after FMC_NWE high  
th(BL_NWE) FMC_BL hold time after FMC_NWE high  
THCLK  
-
THCLK 2  
-
tv(BL_NE)  
FMC_NEx low to FMC_BL valid  
-
2
tv(Data_NADV) FMC_NADV high to Data valid  
th(Data_NWE) Data hold time after FMC_NWE high  
1. Based on test during characterization.  
-
THCLK +1.5  
-
THCLK +0.5  
DocID028010 Rev 2  
167/208  
187  
Electrical characteristics  
STM32F479xx  
(1)  
Table 96. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
FMC_NE low time  
FMC_NWE low time  
9THCLK  
9THCLK+0.5  
tw(NWE)  
7THCLK  
6THCLK+1.5  
4THCLK–1  
7THCLK+2  
ns  
tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high  
th(NE_NWAIT) FMC_NEx hold time after FMC_NWAIT invalid  
1. Based on test during characterization.  
-
-
Synchronous waveforms and timings  
Figures 61 through 64 represent synchronous waveforms and Table 97 through Table 100  
provide the corresponding timings. The results shown in these tables are obtained with the  
following FMC configuration:  
BurstAccessMode = FMC_BurstAccessMode_Enable;  
MemoryType = FMC_MemoryType_CRAM;  
WriteBurst = FMC_WriteBurst_Enable;  
CLKDivision = 1;  
DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM  
C = 30 pF on data and address lines. C = 10 pF on FMC_CLK unless otherwise  
L
L
specified.  
In all timing tables, the THCLK is the HCLK clock period:  
For 2.7 VV 3.6 V, maximum FMC_CLK = 90 MHz at C = 30 pF (on FMC_CLK).  
DD L  
For 1.71 VV <1.9 V, maximum FMC_CLK = 60 MHz at C = 10 pF (on FMC_CLK).  
DD  
L
168/208  
DocID028010 Rev 2  
STM32F479xx  
Electrical characteristics  
Figure 61. Synchronous multiplexed NOR/PSRAM read timings  
"53452. ꢄ ꢂ  
T
T
Wꢋ#,+ꢌ  
Wꢋ#,+ꢌ  
&-#?#,+  
$ATA LATENCY ꢄ ꢂ  
Dꢋ#,+,ꢎ.%X,ꢌ  
T
TDꢋ#,+(ꢎ.%X(ꢌ  
&-#?.%X  
T
T
Dꢋ#,+,ꢎ.!$6,ꢌ  
Dꢋ#,+,ꢎ.!$6(ꢌ  
&-#?.!$6  
T
TDꢋ#,+(ꢎ!)6ꢌ  
Dꢋ#,+,ꢎ!6ꢌ  
&-#?!;ꢃꢅꢒꢀꢇ=  
T
TDꢋ#,+(ꢎ./%(ꢌ  
Dꢋ#,+,ꢎ./%,ꢌ  
&-#?./%  
T
T
T
Hꢋ#,+(ꢎ!$6ꢌ  
Dꢋ#,+,ꢎ!$)6ꢌ  
T
T
T
SUꢋ!$6ꢎ#,+(ꢌ  
SUꢋ!$6ꢎ#,+(ꢌ  
Dꢋ#,+,ꢎ!$6ꢌ  
Hꢋ#,+(ꢎ!$6ꢌ  
&-#?!$;ꢀꢅꢒꢂ=  
!$;ꢀꢅꢒꢂ=  
T
$ꢀ  
$ꢃ  
T
SUꢋ.7!)46ꢎ#,+(ꢌ  
Hꢋ#,+(ꢎ.7!)46ꢌ  
&-#?.7!)4  
ꢋ7!)4#&' ꢄ ꢀBꢑ  
7!)40/, ꢐ ꢂBꢌ  
T
T
SUꢋ.7!)46ꢎ#,+(ꢌ  
Hꢋ#,+(ꢎ.7!)46ꢌ  
&-#?.7!)4  
ꢋ7!)4#&' ꢄ ꢂBꢑ  
7!)40/, ꢐ ꢂBꢌ  
T
T
Hꢋ#,+(ꢎ.7!)46ꢌ  
SUꢋ.7!)46ꢎ#,+(ꢌ  
-3ꢊꢃꢈꢅꢈ6ꢀ  
DocID028010 Rev 2  
169/208  
187  
Electrical characteristics  
STM32F479xx  
(1)  
Table 97. Synchronous multiplexed NOR/PSRAM read timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(CLK)  
FMC_CLK period  
2THCLK 1  
-
0
-
td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2)  
td(CLKH_NExH) FMC_CLK high to FMC_NEx high (x= 0…2)  
td(CLKL-NADVL) FMC_CLK low to FMC_NADV low  
td(CLKL-NADVH) FMC_CLK low to FMC_NADV high  
-
THCLK  
-
0
-
0
td(CLKL-AV)  
td(CLKH-AIV)  
FMC_CLK low to FMC_Ax valid (x=16…25)  
FMC_CLK high to FMC_Ax invalid (x=16…25)  
-
0
-
0
td(CLKL-NOEL) FMC_CLK low to FMC_NOE low  
td(CLKH-NOEH) FMC_CLK high to FMC_NOE high  
td(CLKL-ADV) FMC_CLK low to FMC_AD[15:0] valid  
td(CLKL-ADIV) FMC_CLK low to FMC_AD[15:0] invalid  
tsu(ADV-CLKH) FMC_A/D[15:0] valid data before FMC_CLK high  
th(CLKH-ADV) FMC_A/D[15:0] valid data after FMC_CLK high  
tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high  
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high  
1. Based on test during characterization.  
-
THCLK+0.5 ns  
THCLK 0.5  
-
-
0
5
0
4
0
0.5  
-
-
-
-
-
170/208  
DocID028010 Rev 2  
STM32F479xx  
Electrical characteristics  
Figure 62. Synchronous multiplexed PSRAM write timings  
"53452. ꢄ ꢂ  
T
T
Wꢋ#,+ꢌ  
Wꢋ#,+ꢌ  
&-#?#,+  
$ATA LATENCY ꢄ ꢂ  
Dꢋ#,+,ꢎ.%X,ꢌ  
T
T
Dꢋ#,+(ꢎ.%X(ꢌ  
&-#?.%X  
T
T
Dꢋ#,+,ꢎ.!$6,ꢌ  
Dꢋ#,+,ꢎ.!$6(ꢌ  
&-#?.!$6  
T
Dꢋ#,+(ꢎ!)6ꢌ  
T
T
Dꢋ#,+,ꢎ!6ꢌ  
&-#?!;ꢃꢅꢒꢀꢇ=  
T
Dꢋ#,+(ꢎ.7%(ꢌ  
Dꢋ#,+,ꢎ.7%,ꢌ  
&-#?.7%  
T
T
T
Dꢋ#,+,ꢎ!$)6ꢌ  
T
Dꢋ#,+,ꢎ$ATAꢌ  
Dꢋ#,+,ꢎ$ATAꢌ  
Dꢋ#,+,ꢎ!$6ꢌ  
&-#?!$;ꢀꢅꢒꢂ=  
!$;ꢀꢅꢒꢂ=  
$ꢀ  
$ꢃ  
&-#?.7!)4  
ꢋ7!)4#&' ꢄ ꢂBꢑ  
7!)40/, ꢐ ꢂBꢌ  
T
T
Hꢋ#,+(ꢎ.7!)46ꢌ  
SUꢋ.7!)46ꢎ#,+(ꢌ  
T
Dꢋ#,+(ꢎ.",(ꢌ  
&-#?.",  
-3ꢊꢃꢈꢅꢉ6ꢀ  
DocID028010 Rev 2  
171/208  
187  
Electrical characteristics  
STM32F479xx  
(1)  
Table 98. Synchronous multiplexed PSRAM write timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(CLK)  
FMC_CLK period, VDD range= 2.7 to 3.6 V  
2THCLK 1  
-
1.5  
-
td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0…2)  
td(CLKH-NExH) FMC_CLK high to FMC_NEx high (x= 0…2)  
td(CLKL-NADVL) FMC_CLK low to FMC_NADV low  
td(CLKL-NADVH) FMC_CLK low to FMC_NADV high  
-
THCLK  
-
0
-
0
td(CLKL-AV)  
td(CLKH-AIV)  
FMC_CLK low to FMC_Ax valid (x=16…25)  
FMC_CLK high to FMC_Ax invalid (x=16…25)  
-
0
-
THCLK  
td(CLKL-NWEL) FMC_CLK low to FMC_NWE low  
t(CLKH-NWEH) FMC_CLK high to FMC_NWE high  
td(CLKL-ADV) FMC_CLK low to FMC_AD[15:0] valid  
td(CLKL-ADIV) FMC_CLK low to FMC_AD[15:0] invalid  
td(CLKL-DATA) FMC_A/D[15:0] valid data after FMC_CLK low  
td(CLKL-NBLL) FMC_CLK low to FMC_NBL low  
td(CLKH-NBLH) FMC_CLK high to FMC_NBL high  
tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high  
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high  
1. Based on test during characterization.  
-
0
-
ns  
THCLK0.5  
-
3
-
0
-
3
-
0
THCLK0.5  
-
4
0
-
-
172/208  
DocID028010 Rev 2  
STM32F479xx  
Electrical characteristics  
Figure 63. Synchronous non-multiplexed NOR/PSRAM read timings  
T
T
Wꢋ#,+ꢌ  
Wꢋ#,+ꢌ  
&-#?#,+  
T
T
Dꢋ#,+(ꢎ.%X(ꢌ  
Dꢋ#,+,ꢎ.%X,ꢌ  
$ATA LATENCY ꢄ ꢂ  
Dꢋ#,+,ꢎ.!$6(ꢌ  
&-#?.%X  
T
T
Dꢋ#,+,ꢎ.!$6,ꢌ  
&-#?.!$6  
&-#?!;ꢃꢅꢒꢂ=  
T
T
Dꢋ#,+(ꢎ!)6ꢌ  
Dꢋ#,+,ꢎ!6ꢌ  
T
T
Dꢋ#,+,ꢎ./%,ꢌ  
Dꢋ#,+(ꢎ./%(ꢌ  
&-#?./%  
T
T
SUꢋ$6ꢎ#,+(ꢌ  
Hꢋ#,+(ꢎ$6ꢌ  
T
T
Hꢋ#,+(ꢎ$6ꢌ  
SUꢋ$6ꢎ#,+(ꢌ  
&-#?$;ꢀꢅꢒꢂ=  
&-#?.7!)4  
$ꢀ  
$ꢃ  
T
T
T
SUꢋ.7!)46ꢎ#,+(ꢌ  
Hꢋ#,+(ꢎ.7!)46ꢌ  
ꢋ7!)4#&' ꢄ ꢀBꢑ  
7!)40/, ꢐ ꢂBꢌ  
T
T
Hꢋ#,+(ꢎ.7!)46ꢌ  
SUꢋ.7!)46ꢎ#,+(ꢌ  
&-#?.7!)4  
ꢋ7!)4#&' ꢄ ꢂBꢑ  
7!)40/, ꢐ ꢂBꢌ  
T
SUꢋ.7!)46ꢎ#,+(ꢌ  
Hꢋ#,+(ꢎ.7!)46ꢌ  
-3ꢊꢃꢈꢅꢁ6ꢀ  
(1)  
Table 99. Synchronous non-multiplexed NOR/PSRAM read timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(CLK)  
FMC_CLK period  
2THCLK 1  
-
t(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0…2)  
td(CLKH-NExH) FMC_CLK high to FMC_NEx high (x= 0…2)  
td(CLKL-NADVL) FMC_CLK low to FMC_NADV low  
td(CLKL-NADVH) FMC_CLK low to FMC_NADV high  
-
0.5  
THCLK  
-
-
0
0
-
td(CLKL-AV)  
td(CLKH-AIV)  
FMC_CLK low to FMC_Ax valid (x=16…25)  
FMC_CLK high to FMC_Ax invalid (x=16…25)  
-
0
THCLK 0.5  
-
ns  
td(CLKL-NOEL) FMC_CLK low to FMC_NOE low  
-
THCLK+2  
td(CLKH-NOEH) FMC_CLK high to FMC_NOE high  
tsu(DV-CLKH) FMC_D[15:0] valid data before FMC_CLK high  
THCLK 0.5  
-
-
-
-
-
5
0
4
0
th(CLKH-DV)  
FMC_D[15:0] valid data after FMC_CLK high  
t(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high  
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high  
1. Based on test during characterization.  
DocID028010 Rev 2  
173/208  
187  
Electrical characteristics  
STM32F479xx  
Figure 64. Synchronous non-multiplexed PSRAM write timings  
T
T
Wꢋ#,+ꢌ  
Wꢋ#,+ꢌ  
&-#?#,+  
T
T
Dꢋ#,+,ꢎ.%X,ꢌ  
&-#?.%X  
Dꢋ#,+(ꢎ.%X(ꢌ  
$ATA LATENCY ꢄ ꢂ  
Dꢋ#,+,ꢎ.!$6(ꢌ  
T
T
Dꢋ#,+,ꢎ.!$6,ꢌ  
&-#?.!$6  
&-#?!;ꢃꢅꢒꢂ=  
&-#?.7%  
T
Dꢋ#,+(ꢎ!)6ꢌ  
T
T
Dꢋ#,+,ꢎ!6ꢌ  
TDꢋ#,+(ꢎ.7%(ꢌ  
Dꢋ#,+,ꢎ.7%,ꢌ  
T
T
Dꢋ#,+,ꢎ$ATAꢌ  
Dꢋ#,+,ꢎ$ATAꢌ  
&-#?$;ꢀꢅꢒꢂ=  
$ꢀ  
$ꢃ  
&-#?.7!)4  
ꢋ7!)4#&' ꢄ ꢂBꢑ 7!)40/, ꢐ ꢂBꢌ  
&-#?.",  
T
T
Dꢋ#,+(ꢎ.",(ꢌ  
SUꢋ.7!)46ꢎ#,+(ꢌ  
T
Hꢋ#,+(ꢎ.7!)46ꢌ  
-3ꢊꢃꢈꢇꢂ6ꢀ  
(1)  
Table 100. Synchronous non-multiplexed PSRAM write timings  
Symbol  
Parameter  
Min  
Max  
Unit  
t(CLK)  
FMC_CLK period  
2THCLK 1  
-
0.5  
-
td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0…2)  
t(CLKH-NExH) FMC_CLK high to FMC_NEx high (x= 0…2)  
td(CLKL-NADVL) FMC_CLK low to FMC_NADV low  
td(CLKL-NADVH) FMC_CLK low to FMC_NADV high  
-
THCLK  
-
0
-
0
td(CLKL-AV)  
td(CLKH-AIV)  
FMC_CLK low to FMC_Ax valid (x=16…25)  
FMC_CLK high to FMC_Ax invalid (x=16…25)  
-
0
-
0
ns  
td(CLKL-NWEL) FMC_CLK low to FMC_NWE low  
td(CLKH-NWEH) FMC_CLK high to FMC_NWE high  
td(CLKL-Data) FMC_D[15:0] valid data after FMC_CLK low  
td(CLKL-NBLL) FMC_CLK low to FMC_NBL low  
td(CLKH-NBLH) FMC_CLK high to FMC_NBL high  
tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high  
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high  
1. Based on test during characterization.  
-
0
-
THCLK0.5  
-
2.5  
-
0
THCLK0.5  
-
4
0
-
-
174/208  
DocID028010 Rev 2  
STM32F479xx  
Electrical characteristics  
NAND controller waveforms and timings  
Figures 65 through 68 represent synchronous waveforms, and Table 101 and Table 102  
provide the corresponding timings. The results shown in this table are obtained with the  
following FMC configuration:  
COM.FMC_SetupTime = 0x01;  
COM.FMC_WaitSetupTime = 0x03;  
COM.FMC_HoldSetupTime = 0x02;  
COM.FMC_HiZSetupTime = 0x01;  
ATT.FMC_SetupTime = 0x01;  
ATT.FMC_WaitSetupTime = 0x03;  
ATT.FMC_HoldSetupTime = 0x02;  
ATT.FMC_HiZSetupTime = 0x01;  
Bank = FMC_Bank_NAND;  
MemoryDataWidth = FMC_MemoryDataWidth_16b;  
ECC = FMC_ECC_Enable;  
ECCPageSize = FMC_ECCPageSize_512Bytes;  
TCLRSetupTime = 0;  
TARSetupTime = 0;  
Capacitive load C = 30 pF.  
L
In all timing tables, the THCLK is the HCLK clock period.  
Figure 65. NAND controller waveforms for read access  
&-#?.#%X  
!,% ꢋ&-#?!ꢀꢈꢌ  
#,% ꢋ&-#?!ꢀꢇꢌ  
&-#?.7%  
T
THꢋ./%ꢎ!,%ꢌ  
Dꢋ!,%ꢎ./%ꢌ  
&-#?./% ꢋ.2%ꢌ  
&-#?$;ꢀꢅꢒꢂ=  
T
T
Hꢋ./%ꢎ$ꢌ  
SUꢋ$ꢎ./%ꢌ  
-3ꢊꢃꢈꢇꢈ6ꢀ  
DocID028010 Rev 2  
175/208  
187  
 
Electrical characteristics  
STM32F479xx  
Figure 66. NAND controller waveforms for write access  
&-#?.#%X  
!,% ꢋ&-#?!ꢀꢈꢌ  
#,% ꢋ&-#?!ꢀꢇꢌ  
T
T
Hꢋ.7%ꢎ!,%ꢌ  
Dꢋ!,%ꢎ.7%ꢌ  
&-#?.7%  
&-#?./% ꢋ.2%ꢌ  
&-#?$;ꢀꢅꢒꢂ=  
T
T
Hꢋ.7%ꢎ$ꢌ  
Vꢋ.7%ꢎ$ꢌ  
-3ꢊꢃꢈꢇꢉ6ꢀ  
Figure 67. NAND controller waveforms for common memory read access  
&-#?.#%X  
!,% ꢋ&-#?!ꢀꢈꢌ  
#,% ꢋ&-#?!ꢀꢇꢌ  
T
T
Hꢋ./%ꢎ!,%ꢌ  
Dꢋ!,%ꢎ./%ꢌ  
&-#?.7%  
&-#?./%  
T
Wꢋ./%ꢌ  
T
T
Hꢋ./%ꢎ$ꢌ  
SUꢋ$ꢎ./%ꢌ  
&-#?$;ꢀꢅꢒꢂ=  
-3ꢊꢃꢈꢇꢁ6ꢀ  
176/208  
DocID028010 Rev 2  
STM32F479xx  
Electrical characteristics  
Figure 68. NAND controller waveforms for common memory write access  
&-#?.#%X  
!,% ꢋ&-#?!ꢀꢈꢌ  
#,% ꢋ&-#?!ꢀꢇꢌ  
T
T
T
Hꢋ./%ꢎ!,%ꢌ  
Dꢋ!,%ꢎ./%ꢌ  
Wꢋ.7%ꢌ  
&-#?.7%  
&-#?. /%  
T
Dꢋ$ꢎ.7%ꢌ  
T
T
Vꢋ.7%ꢎ$ꢌ  
Hꢋ.7%ꢎ$ꢌ  
&-#?$;ꢀꢅꢒꢂ=  
-3ꢊꢃꢈꢈꢂ6ꢀ  
Table 101. Switching characteristics for NAND Flash read cycles  
Parameter Min Max  
FMC_NOE low width 4THCLK 0.5 4THCLK+0.5  
Symbol  
Unit  
tw(N0E)  
tsu(D-NOE) FMC_D[15-0] valid data before FMC_NOE high  
th(NOE-D) FMC_D[15-0] valid data after FMC_NOE high  
9
-
0
-
ns  
td(ALE-NOE) FMC_ALE valid before FMC_NOE low  
th(NOE-ALE) FMC_NWE high to FMC_ALE invalid  
-
3THCLK 0.5  
3THCLK 2  
-
Table 102. Switching characteristics for NAND Flash write cycles  
Symbol  
Parameter  
FMC_NWE low width  
Min  
Max  
Unit  
tw(NWE)  
tv(NWE-D)  
th(NWE-D)  
td(D-NWE)  
td(ALE-NWE)  
th(NWE-ALE)  
4THCLK  
0
4THCLK+1  
FMC_NWE low to FMC_D[15-0] valid  
FMC_NWE high to FMC_D[15-0] invalid  
FMC_D[15-0] valid before FMC_NWE high  
FMC_ALE valid before FMC_NWE low  
FMC_NWE high to FMC_ALE invalid  
-
3THCLK 1  
5THCLK 3  
-
-
ns  
-
3THCLK0.5  
3THCLK 1  
-
SDRAM waveforms and timings  
C = 30 pF on data and address lines.  
L
C = 10 pF on FMC_SDCLK unless otherwise specified.  
L
DocID028010 Rev 2  
177/208  
187  
Electrical characteristics  
STM32F479xx  
In all timing tables, the THCLK is the HCLK clock period.  
For 2.7 V V 3.6 V, maximum FMC_SDCLK = 90 MHz, at C = 30 pF (on  
DD L  
FMC_SDCLK).  
For 1.71 VV <1.9 V, maximum FMC_SDCLK = 75 MHz when CAS Latency = 3 and  
DD  
60 MHz for CAS latency 1 or 2. C = 10 pF (on FMC_SDCLK).  
L
Figure 69. SDRAM read access waveforms (CL = 1)  
&-#?3$#,+  
TDꢋ3$#,+,?!DD#ꢌ  
THꢋ3$#,+,?!DD2ꢌ  
TDꢋ3$#,+,?!DD2ꢌ  
2OW N  
#OLꢀ  
#OLꢃ  
#OLI  
#OLN  
&-#?!>ꢅꢂꢎꢇ@  
THꢋ3$#,+,?!DD#ꢌ  
THꢋ3$#,+,?3.$%ꢌ  
THꢋ3$#,+,?.#!3ꢌ  
TDꢋ3$#,+,?3.$%ꢌ  
&-#?3$.%;ꢀꢒꢂ=  
TDꢋ3$#,+,?.2!3ꢌ  
THꢋ3$#,+,?.2!3ꢌ  
&-#?3$.2!3  
&-#?3$.#!3  
TDꢋ3$#,+,?.#!3ꢌ  
&-#?3$.7%  
&-#?$;ꢊꢀꢒꢂ=  
TSUꢋ3$#,+(?$ATAꢌ  
THꢋ3$#,+(?$ATAꢌ  
$ATAꢀ $ATAꢃ  
$ATAI  
$ATAN  
-3ꢊꢃꢈꢅꢀ6ꢃ  
(1)  
Table 103. SDRAM read timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(SDCLK)  
FMC_SDCLK period  
Data input setup time  
Data input hold time  
Address valid time  
Chip select valid time  
Chip select hold time  
SDNRAS valid time  
SDNRAS hold time  
SDNCAS valid time  
SDNCAS hold time  
2THCLK 0.5  
2THCLK+0.5  
tsu(SDCLKH _Data)  
th(SDCLKH_Data)  
td(SDCLKL_Add)  
2
0
-
-
-
1.5  
0.5  
-
td(SDCLKL- SDNE)  
th(SDCLKL_SDNE)  
td(SDCLKL_SDNRAS)  
th(SDCLKL_SDNRAS)  
td(SDCLKL_SDNCAS)  
th(SDCLKL_SDNCAS)  
-
ns  
0
-
0.5  
-
0
-
0.5  
-
0
1. Guaranteed based on test during characterization.  
178/208  
DocID028010 Rev 2  
STM32F479xx  
Electrical characteristics  
(1)  
Table 104. LPSDR SDRAM read timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tW(SDCLK)  
FMC_SDCLK period  
Data input setup time  
Data input hold time  
Address valid time  
Chip select valid time  
Chip select hold time  
SDNRAS valid time  
SDNRAS hold time  
SDNCAS valid time  
SDNCAS hold time  
2THCLK 0.5  
2THCLK+0.5  
tsu(SDCLKH_Data)  
th(SDCLKH_Data)  
td(SDCLKL_Add)  
2.5  
0
-
-
-
1
1
-
td(SDCLKL_SDNE)  
th(SDCLKL_SDNE)  
td(SDCLKL_SDNRAS  
th(SDCLKL_SDNRAS)  
td(SDCLKL_SDNCAS)  
th(SDCLKL_SDNCAS)  
-
ns  
1
-
1
-
1
-
1
-
1
1. Guaranteed based on test during characterization.  
Figure 70. SDRAM write access waveforms  
&-#?3$#,+  
TDꢋ3$#,+,?!DD#ꢌ  
THꢋ3$#,+,?!DD2ꢌ  
TDꢋ3$#,+,?!DD2ꢌ  
2OW N  
#OLꢀ  
#OLꢃ  
#OLI  
#OLN  
&-#?!>ꢅꢂꢎꢇ@  
THꢋ3$#,+,?!DD#ꢌ  
THꢋ3$#,+,?3.$%ꢌ  
TDꢋ3$#,+,?3.$%ꢌ  
&-#?3$.%;ꢀꢒꢂ=  
TDꢋ3$#,+,?.2!3ꢌ  
THꢋ3$#,+,?.2!3ꢌ  
&-#?3$.2!3  
&-#?3$.#!3  
&-#?3$.7%  
THꢋ3$#,+,?.#!3ꢌ  
THꢋ3$#,+,?.7%ꢌ  
TDꢋ3$#,+,?.#!3ꢌ  
TDꢋ3$#,+,?.7%ꢌ  
TDꢋ3$#,+,?$ATAꢌ  
$ATAꢀ  
$ATAꢃ  
$ATAI  
$ATAN  
&-#?$;ꢊꢀꢒꢂ=  
TDꢋ3$#,+,?.",ꢌ  
&-#?.",;ꢊꢒꢂ=  
THꢋ3$#,+,?$ATAꢌ  
-3ꢊꢃꢈꢅꢃ6ꢃ  
DocID028010 Rev 2  
179/208  
187  
Electrical characteristics  
Symbol  
STM32F479xx  
(1)  
Table 105. SDRAM write timings  
Parameter  
Min  
Max  
Unit  
tw(SDCLK)  
FMC_SDCLK period  
Data output valid time  
Data output hold time  
Address valid time  
SDNWE valid time  
SDNWE hold time  
Chip select valid time  
Chip select hold time  
SDNRAS valid time  
SDNRAS hold time  
SDNCAS valid time  
SDNCAS hold time  
NBL valid time  
2THCLK 0.5  
2THCLK+0.5  
td(SDCLKL _Data  
)
-
3.5  
-
2.5  
-
th(SDCLKL _Data)  
td(SDCLKL_Add)  
1.5  
1
td(SDCLKL_SDNWE)  
th(SDCLKL_SDNWE)  
td(SDCLKL_ SDNE)  
th(SDCLKL-_SDNE)  
td(SDCLKL_SDNRAS)  
th(SDCLKL_SDNRAS)  
td(SDCLKL_SDNCAS)  
td(SDCLKL_SDNCAS)  
td(SDCLKL_NBL)  
-
0
-
-
0.5  
-
ns  
0
-
2
0
-
-
0.5  
-
0
-
0.5  
-
th(SDCLKL_NBL)  
NBL output time  
0
1. Guaranteed based on test during characterization.  
(1)  
Table 106. LPSDR SDRAM write timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(SDCLK)  
FMC_SDCLK period  
Data output valid time  
Data output hold time  
Address valid time  
SDNWE valid time  
SDNWE hold time  
Chip select valid time  
Chip select hold time  
SDNRAS valid time  
SDNRAS hold time  
SDNCAS valid time  
SDNCAS hold time  
NBL valid time  
2THCLK 0.5  
2THCLK+0.5  
td(SDCLKL _Data  
)
-
2
5
-
th(SDCLKL _Data)  
td(SDCLKL_Add)  
-
2.8  
2
td(SDCLKL-SDNWE)  
th(SDCLKL-SDNWE)  
td(SDCLKL- SDNE)  
th(SDCLKL- SDNE)  
td(SDCLKL-SDNRAS)  
th(SDCLKL-SDNRAS)  
td(SDCLKL-SDNCAS)  
td(SDCLKL-SDNCAS)  
td(SDCLKL_NBL)  
-
1
-
-
1.5  
-
ns  
1
-
1.5  
-
1.5  
-
1.5  
-
1.5  
-
1.5  
-
th(SDCLKL-NBL)  
NBL output time  
1.5  
1. Guaranteed based on test during characterization.  
180/208  
DocID028010 Rev 2  
STM32F479xx  
Electrical characteristics  
5.3.30  
Quad-SPI interface characteristics  
Unless otherwise specified, the parameters given in Table 107 and Table 108 for Quad-SPI  
are derived from tests performed under the ambient temperature, f  
frequency and V  
AHB  
DD  
supply voltage conditions summarized in Table xx, with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 11  
Measurement points are done at CMOS levels: 0.5 V  
DD  
Refer to Section 5.3.20 for more details on the input/output alternate function  
characteristics.  
(1)  
Table 107. Quad-SPI characteristics in SDR mode  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
90  
Unit  
2.7 V VDD 3.6 V, CL = 20 pF  
1.71 V VDD 3.6 V, CL = 15 pF  
-
-
-
-
Fck  
1/t(CK)  
Quad-SPI clock frequency  
MHz  
84  
tw(CKH)  
tw(CKL)  
ts(IN)  
Quad-SPI clock high time  
Quad-SPI clock low time  
Data input set-up time  
Data input hold time  
t(CK)/2-1  
-
-
t(CK)/2  
t(CK)/2  
t(CK)/2+1  
0.5  
3
-
-
-
ns  
th(IN)  
-
tv(OUT)  
th(OUT)  
Data output valid time  
Data output hold time  
-
3
-
4
-
2.5  
1. Guaranteed based on test during characterization.  
Figure 71. Quad-SPI SDR timing diagram  
WUꢐ&.ꢑ  
Wꢐ&.ꢑ  
WZꢐ&.+ꢑ  
WZꢐ&./ꢑ  
WIꢐ&.ꢑ  
&ORFN  
WYꢐ287ꢑ  
WKꢐ287ꢑ  
'DWDꢍRXWSXW  
'ꢇ  
'ꢅ  
'ꢂ  
WVꢐ,1ꢑ  
WKꢐ,1ꢑ  
'DWDꢍLQSXW  
'ꢇ  
'ꢅ  
'ꢂ  
06Yꢀꢉꢁꢈꢁ9ꢅ  
DocID028010 Rev 2  
181/208  
187  
 
Electrical characteristics  
STM32F479xx  
(1)  
Table 108. Quad-SPI characteristics in DDR mode  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
2.7 V VDD 3.6 V,  
-
-
80  
CL = 20 pF  
Fck  
1/t(CK)  
Quad-SPI clock frequency  
MHz  
1.71 V VDD 3.6 V,  
-
-
-
70  
CL = 15 pF  
tw(CKH) Quad-SPI clock high time  
t(CK)/2-1  
t(CK)/2  
tw(CKL)  
Quad-SPI clock low time  
Data input set-up time  
-
t(CK)/2  
-
-
t(CK)/2+1  
2.7 V VDD 3.6 V  
1.71 V VDD 3.6 V  
2.7 V VDD 3.6 V  
1.71 V VDD 3.6 V  
DHHC=0  
2
0.5  
3
-
tsr(IN)  
tsf(IN)  
-
-
-
-
-
thr(IN)  
thf(IN)  
Data input hold time  
Data output valid time  
4.5  
-
-
ns  
8
10.5  
tvr(OUT)  
tvf(OUT)  
DHHC=1  
-
Thclk/2+2 Thclk/2+2.5  
Pres=1,2…  
DHHC=0  
7
-
-
-
-
th(OUT)  
tf(OUT)  
Data output hold time  
DHHC=1  
Thclk/2+0.5  
Pres=1,2…  
1. Guaranteed based on test during characterization.  
Figure 72. Quad-SPI DDR timing diagram  
WUꢐ&.ꢑ  
Wꢐ&.ꢑ  
WZꢐ&.+ꢑ  
WZꢐ&./ꢑ  
WIꢐ&.ꢑ  
&ORFN  
WYIꢐ287ꢑ WKUꢐ287ꢑ  
'ꢇ  
WYUꢐ287ꢑ  
WKIꢐ287ꢑ  
'ꢀ  
'DWDꢍRXWSXW  
'ꢅ  
'ꢂ  
'ꢄ  
'ꢆ  
WVIꢐ,1ꢑ WKIꢐ,1ꢑ  
WVUꢐ,1ꢑ WKUꢐ,1ꢑ  
'DWDꢍLQSXW  
'ꢇ  
'ꢅ  
'ꢂ  
'ꢀ  
'ꢄ  
'ꢆ  
06Yꢀꢉꢁꢈꢃ9ꢅ  
5.3.31  
Camera interface (DCMI) timing specifications  
Unless otherwise specified, the parameters given in Table 109 for DCMI are derived  
from tests performed under the ambient temperature, fHCLK frequency and VDD supply  
voltage summarized in Table 17, with the following configuration:  
DCMI_PIXCLK polarity: falling  
DCMI_VSYNC and DCMI_HSYNC polarity: high  
Data formats: 14 bits  
Capacitive load C = 30 pF  
Measurement points are done at CMOS levels: 0.5 V  
DD  
182/208  
DocID028010 Rev 2  
STM32F479xx  
Electrical characteristics  
(1)  
Table 109. DCMI characteristics  
Parameter  
Symbol  
Min  
Max  
Unit  
-
Frequency ratio DCMI_PIXCLK/f  
-
-
0.4  
54  
70  
-
-
HCLK  
DCMI_PIXCLK Pixel clock input  
MHz  
%
DPixel  
tsu(DATA)  
th(DATA)  
Pixel clock input duty cycle  
30  
4
Data input setup time  
Data input hold time  
1
-
tsu(HSYNC)  
tsu(VSYNC)  
th(HSYNC)  
th(VSYNC)  
ns  
DCMI_HSYNC/DCMI_VSYNC input setup time  
DCMI_HSYNC/DCMI_VSYNC input hold time  
3.5  
0
-
-
1. 1.Guaranteed based on test during characterization.  
Figure 73. DCMI timing diagram  
ꢅꢊ'&0,B3,;&/.  
'&0,B3,;&/.  
'&0,B+6<1&  
'&0,B96<1&  
'$7$>ꢇꢎꢅꢀ@  
WKꢐ+6<1&ꢑ  
WVXꢐ+6<1&ꢑ  
WKꢐ+6<1&ꢑ  
WVXꢐ96<1&ꢑ  
WVXꢐ'$7$ꢑ WKꢐ'$7$ꢑ  
06ꢀꢂꢄꢅꢄ9ꢂ  
5.3.32  
LCD-TFT controller (LTDC) characteristics  
Unless otherwise specified, the parameters given in Table 110 for LCD-TFT are derived  
from tests performed under the ambient temperature, fHCLK frequency and VDD supply  
voltage summarized in Table 17, with the following configuration:  
LCD_CLK polarity: high  
LCD_DE polarity: low  
LCD_VSYNC and LCD_HSYNC polarity: high  
Pixel formats: 24 bits  
Output speed is set to OSPEEDRy[1:0] = 11  
Capacitive load C = 30 pF  
L
Measurement points are done at CMOS levels: 0.5 V  
DD  
DocID028010 Rev 2  
183/208  
187  
Electrical characteristics  
Symbol  
STM32F479xx  
Unit  
(1)  
Table 110. LTDC characteristics  
Parameter  
Min  
Max  
fCLK  
LTDC clock output frequency  
LTDC clock output duty cycle  
-
65  
55  
MHz  
%
DCLK  
45  
tw(CLKH)  
tw(CLKL)  
Clock High time, low time  
tw(CLK)/2 0.5 tw(CLK)/2+0.5  
tv(DATA)  
th(DATA)  
tv(HSYNC)  
tv(VSYNC)  
tv(DE)  
Data output valid time  
Data output hold time  
-
1.5  
-
0
ns  
HSYNC/VSYNC/DE output valid time  
HSYNC/VSYNC/DE output hold time  
-
0.5  
-
th(HSYNC)  
th(VSYNC)  
0
th(DE)  
1. Based on test during characterization.  
Figure 74. LCD-TFT horizontal timing diagram  
W&/.  
/&'B&/.  
/&'B96<1&  
WYꢐ+6<1&ꢑ  
WYꢐ+6<1&ꢑ  
/&'B+6<1&  
WKꢐ'(ꢑ  
WYꢐ'(ꢑ  
/&'B'(  
WYꢐ'$7$ꢑ  
/&'B5>ꢇꢎꢈ@  
/&'B*>ꢇꢎꢈ@  
/&'B%>ꢇꢎꢈ@  
1JYFM 1JYFM  
1JYFM  
/
WKꢐ'$7$ꢑ  
$FWLYHꢍZLGWK  
+6<1& +RUL]RQWDO  
ZLGWK EDFNꢍSRUFK  
+RUL]RQWDO  
EDFNꢍSRUFK  
2QHꢍOLQH  
06ꢀꢂꢈꢄꢃ9ꢅ  
184/208  
DocID028010 Rev 2  
STM32F479xx  
Electrical characteristics  
Figure 75. LCD-TFT vertical timing diagram  
W&/.  
/&'B&/.  
WYꢐ96<1&ꢑ  
WYꢐ96<1&ꢑ  
/&'B96<1&  
/&'B5>ꢇꢎꢈ@  
/&'B*>ꢇꢎꢈ@  
/&'B%>ꢇꢎꢈ@  
- LINES DATA  
96<1& 9HUWLFDO  
ZLGWK EDFNꢍSRUFK  
$FWLYHꢍZLGWK  
2QHꢍIUDPH  
9HUWLFDO  
EDFNꢍSRUFK  
06ꢀꢂꢈꢆꢇ9ꢅ  
5.3.33  
SD/SDIO MMC card host interface (SDIO) characteristics  
Unless otherwise specified, the parameters given in Table 111 for the SDIO/MMC interface  
are derived from tests performed under the ambient temperature, f  
frequency and V  
PCLK2  
DD  
supply voltage conditions summarized in Table 17, with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 11  
Capacitive load C = 30 pF  
Measurement points are done at CMOS levels: 0.5 V  
DD  
Refer to Section 5.3.20 for more details on the input/output characteristics.  
Figure 76. SDIO high-speed mode  
T
T
R
F
T
#
T
T
7ꢋ#+(ꢌ  
7ꢋ#+,ꢌ  
#+  
T
T
/6  
/(  
$ꢑ #-$  
ꢋOUTPUTꢌ  
T
T
)(  
)35  
$ꢑ #-$  
ꢋINPUTꢌ  
AIꢀꢆꢉꢉꢈ  
DocID028010 Rev 2  
185/208  
187  
Electrical characteristics  
STM32F479xx  
Figure 77. SD default mode  
#+  
T
T
/6$  
/($  
$ꢑ #-$  
ꢋOUTPUTꢌ  
AIꢀꢆꢉꢉꢉ  
(1)  
Table 111. Dynamic characteristics: SD / MMC characteristics, V = 2.7 to 3.6 V  
DD  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fPP  
-
tW(CKL)  
tW(CKH)  
Clock frequency in data transfer mode  
SDIO_CK/fPCLK2 frequency ratio  
Clock low time  
-
-
0
-
-
-
50  
8/3  
-
MHz  
-
9.5  
8.5  
10.5  
9.5  
fpp =50 MHz  
ns  
ns  
ns  
Clock high time  
-
CMD, D inputs (referenced to CK) in MMC and SD HS mode  
tISU  
tIH  
Input setup time HS  
Input hold time HS  
2.0  
2.0  
-
-
-
-
fpp =50 MHz  
CMD, D outputs (referenced to CK) in MMC and SD HS mode  
tOV  
tOH  
Output valid time HS  
Output hold time HS  
-
13  
-
13.5  
-
fpp =50 MHz  
12.5  
CMD, D inputs (referenced to CK) in SD default mode  
Input setup time SD  
Input hold time SD  
2.0  
2.5  
-
-
-
-
tISUD  
tIHD  
fpp =25 MHz  
ns  
ns  
CMD, D outputs (referenced to CK) in SD default mode  
Output valid default time SD  
Output hold default time SD  
-
1.5  
-
2.0  
-
tOVD  
tOHD  
fpp =25 MHz  
1.0  
1. Guaranteed based on test during characterization.  
186/208  
DocID028010 Rev 2  
STM32F479xx  
Electrical characteristics  
(1)(2)  
Table 112. Dynamic characteristics: SD / MMC characteristics, V = 1.71 to 1.9 V  
DD  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fPP  
-
tW(CKL)  
tW(CKH)  
Clock frequency in data transfer mode  
SDIO_CK/fPCLK2 frequency ratio  
Clock low time  
-
-
0
-
-
-
50  
8/3  
-
MHz  
-
9.5  
8.5  
10.5  
9.5  
fpp =50 MHz  
fpp =50 MHz  
fpp =50 MHz  
ns  
ns  
ns  
Clock high time  
-
CMD, D inputs (referenced to CK) in eMMC mode  
tISU  
tIH  
Input setup time HS  
Input hold time HS  
0.5  
3.5  
-
-
-
-
CMD, D outputs (referenced to CK) in eMMC mode  
tOV  
tOH  
Output valid time HS  
Output hold time HS  
-
13.5  
-
14.5  
-
13.0  
1. Guaranteed based on test during characterization.  
2. Cload = 20 pF.  
5.3.34  
RTC characteristics  
Table 113. RTC characteristics  
Conditions  
Symbol  
Parameter  
Min  
Max  
-
fPCLK1/RTCCLK frequency ratio Any read/write operation from/to an RTC register  
4
-
DocID028010 Rev 2  
187/208  
187  
Package information  
STM32F479xx  
6
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
6.1  
WLCSP168 package information  
Figure 78. WLCSP168 - 168-pin, 4.891 x 5.692 mm, 0.4 mm pitch wafer level chip  
scale package outline  
$ꢅꢍEDOOꢍORFDWLRQ  
Hꢅ  
EEE =  
)
*
'HWDLOꢍ$  
Hꢂ  
H
$ꢀ  
$ꢂ  
$
H
%RWWRPꢍYLHZ  
%XPSꢍVLGH  
6LGHꢍYLHZ  
;
<
'
%XPS  
$ꢀ  
$ꢅ  
HHH  
=
(
E
= ; <  
6HDWLQJꢍ  
SODQH  
FFF  
GGG  
=
$ꢅꢍRULHQWDWLRQ  
UHIHUHQFH  
=
'HWDLOꢍ$  
5RWDWHGꢍꢃꢇƒ  
DDD  
ꢐꢄ;ꢑ  
7RSꢍYLHZ  
:DIHUꢍEDFNꢍVLGH  
$ꢇꢂ6B0(B9ꢂ  
188/208  
DocID028010 Rev 2  
STM32F479xx  
Package information  
Table 114. WLCSP168 - 168-pin, 4.891 x 5.692 mm, 0.4 mm pitch wafer level chip scale  
package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
A3(2)  
b(3)  
D
0.525  
0.555  
0.170  
0.380  
0.025  
0.250  
4.891  
5.692  
0.400  
4.400  
5.200  
0.2455  
0.246  
-
0.585  
0.0207  
0.0219  
0.0067  
0.0150  
0.0010  
0.0098  
0.1926  
0.2241  
0.0157  
0.1732  
0.2047  
0.0097  
0.0097  
-
0.0230  
-
-
-
-
-
-
-
-
-
-
-
-
0.220  
0.280  
4.926  
5.727  
-
0.0087  
0.0110  
0.1939  
0.2255  
-
4.856  
0.1912  
E
5.657  
0.2227  
e
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
e1  
-
-
e2  
-
-
F
-
-
G
-
-
aaa  
bbb  
ccc  
ddd  
eee  
0.100  
0.100  
0.100  
0.050  
0.050  
0.0039  
0.0039  
0.0039  
0.0020  
0.0020  
-
-
-
-
-
-
-
-
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
2. Back side coating.  
3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.  
DocID028010 Rev 2  
189/208  
206  
Package information  
STM32F479xx  
6.2  
UFBGA169 package information  
Figure 79. UFBGA169 - 169-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid  
array package outline  
=
6HDWLQJꢍSODQH  
$ꢄ  
$ꢂ  
GGG  
=
$
$ꢀ  
$ꢅ  
E
6,'(ꢍ9,(:  
$ꢅꢍEDOOꢍ  
LQGH[ꢍDUHD  
$ꢅꢍEDOOꢍ  
LGHQWLILHU  
;
(
(ꢅ  
H
)
$
)
'
'ꢅ  
H
<
1
ꢅꢀ  
‘EꢍꢐꢃꢍE OOVꢑꢍ  
%27720ꢍ9,(:  
723ꢍ9,(:  
‘ HHH 0  
‘ III  
=
=
; <  
0
$ꢇ<9B0(B9ꢂ  
1. Drawing is not in scale.  
Table 115. UFBGA169 - 169-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid  
array  
package mechanical data  
millimeters  
Typ.  
inches(1)  
Typ.  
Symbol  
Min.  
Max.  
Min.  
Max.  
A
A1  
A2  
A3  
A4  
b
0.460  
0.050  
0.400  
-
0.530  
0.080  
0.450  
0.130  
0.320  
0.280  
7.000  
6.000  
7.000  
6.000  
0.500  
0.600  
0.110  
0.500  
-
0.0181  
0.0020  
0.0157  
-
0.0209  
0.0031  
0.0177  
0.0051  
0.0126  
0.0110  
0.2756  
0.2362  
0.2756  
0.2362  
0.0197  
0.0236  
0.0043  
0.0197  
-
0.270  
0.230  
6.950  
5.950  
6.950  
5.950  
-
0.370  
0.330  
7.050  
6.050  
7.050  
6.050  
-
0.0106  
0.0091  
0.2736  
0.2343  
0.2736  
0.2343  
-
0.0146  
0.0130  
0.2776  
0.2382  
0.2776  
0.2382  
-
D
D1  
E
E1  
e
190/208  
DocID028010 Rev 2  
STM32F479xx  
Package information  
Table 115. UFBGA169 - 169-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid  
array  
package mechanical data (continued)  
millimeters  
Typ.  
inches(1)  
Typ.  
Symbol  
Min.  
Max.  
Min.  
Max.  
F
0.450  
0.500  
0.550  
0.100  
0.150  
0.050  
0.0177  
0.0197  
0.0217  
0.0039  
0.0059  
0.0020  
ddd  
eee  
fff  
-
-
-
-
-
-
-
-
-
-
-
-
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Device Marking for UFBGA169  
The following figure gives an example of topside marking orientation versus ball A1 identifier  
location.  
Figure 80. UFBGA169 marking example (package top view)  
3LQꢍꢅ  
LGHQWLILHU  
^dDϯϮ&  
3URGXFWꢍLGHQWLILFDWLRQꢐꢅꢑ  
ϰϳϵꢀ/,ϲ  
'DWHꢍFRGH  
tt  
z
5HYLVLRQꢍFRGH  
06Yꢀꢉꢆꢄꢀ9ꢅ  
1. Samples marked "ES" are to be considered as “Engineering Samples”: i.e. they are intended to be sent to  
customer for electrical compatibility evaluation and may be used to start customer qualification where  
specifically authorized by ST in writing. In no event ST will be liable for any customer usage in production.  
Only if ST has authorized in writing the customer qualification Engineering Samples can be used for  
reliability qualification trials.  
DocID028010 Rev 2  
191/208  
206  
Package information  
STM32F479xx  
6.3  
LQFP176 package information  
Figure 81. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package outline  
3EATING PLANE  
#
ꢂꢓꢃꢅ MM  
GAUGE PLANE  
K
!ꢀ  
,
($  
,ꢀ  
0). ꢀ  
$
)$%.4)&)#!4)/.  
:%  
%
(%  
E
:$  
B
ꢀ4?-%?6ꢃ  
1. Drawing is not to scale.  
Table 116. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package  
mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
-
-
-
-
-
-
-
-
1.600  
0.150  
1.450  
0.270  
0.200  
24.100  
24.100  
-
-
-
-
-
-
-
-
0.0630  
0.0059  
0.0060  
0.0106  
0.0079  
0.9488  
0.9488  
0.050  
1.350  
0.170  
0.090  
23.900  
23.900  
0.0020  
0.0531  
0.0067  
0.0035  
0.9409  
0.9409  
C
D
E
192/208  
DocID028010 Rev 2  
STM32F479xx  
Package information  
Table 116. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package  
mechanical data (continued)  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
e
HD  
HE  
L
-
0.500  
-
-
0.0197  
-
25.900  
-
26.100  
1.0200  
-
1.0276  
25.900  
-
26.100  
1.0200  
-
1.0276  
0.450  
-
0.750  
0.0177  
-
0.0295  
L1  
ZD  
ZE  
ccc  
k
-
-
1.000  
1.250  
1.250  
-
-
-
-
0.0394  
0.0492  
0.0492  
-
-
-
-
-
-
-
-
-
0.080  
7 °  
-
0.0031  
7 °  
0 °  
-
0 °  
-
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
DocID028010 Rev 2  
193/208  
206  
Package information  
STM32F479xx  
Figure 82. LQFP176 recommended footprint  
ꢀꢓꢃ  
ꢀꢈꢇ  
ꢀꢊꢊ  
ꢀꢊꢃ  
ꢂꢓꢅ  
ꢂꢓꢊ  
ꢆꢆ  
ꢆꢅ  
ꢉꢁ  
ꢉꢉ  
ꢀꢓꢃ  
ꢃꢀꢓꢉ  
ꢃꢇꢓꢈ  
ꢀ4?&0?6ꢀ  
1. Dimensions are expressed in millimeters.  
194/208  
DocID028010 Rev 2  
STM32F479xx  
Package information  
Device Marking for LQFP176  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Figure 83. LQFP176 marking example (package top view)  
3URGXFWꢍLGHQWLILFDWLRQꢐꢅꢑ  
ꢃ^ϯϮ&ϰϳϵ//dϲh  
5HYLVLRQꢍFRGH  
z tt  
'DWHꢍFRGH  
3LQꢍꢅ  
LGHQWLILHU  
06Yꢀꢉꢆꢄꢄ9ꢅ  
1. Samples marked “ES” are to be considered as “Engineering Samples”: i.e. they are intended to be sent to  
customer for electrical compatibility evaluation and may be used to start customer qualification where  
specifically authorized by ST in writing. In no event ST will be liable for any customer usage in production.  
Only if ST has authorized in writing the customer qualification Engineering Samples can be used for  
reliability qualification trials.  
DocID028010 Rev 2  
195/208  
206  
Package information  
STM32F479xx  
6.4  
UFBGA176+25 package information  
Figure 84. UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm pitch,  
ultra fine pitch ball grid array package outline  
&
^ĞĂƚŝŶŐꢅƉůĂŶĞ  
ꢀϮ ꢀϰ  
ĚĚĚ  
ꢀϭ  
ď
$ꢅꢍEDOOꢍ  
LQGH[ꢍ  
DUHD  
$
$ꢅꢍEDOOꢍ  
LGHQWLILHU  
Ğ
&
&
Ğ
Z
ϭϱ  
ϭ
‘EꢍꢐꢅꢈꢉꢍꢌꢍꢂꢆꢍꢍEDOOVꢑ  
ꢄKddKDꢅs/ꢃt  
dKWꢅs/ꢃt  
‘ HHH 0  
‘ III  
&
&
$ ꢄ  
0
ꢀϬꢃϳͺDꢃͺsϲ  
1. Drawing is not to scale.  
Table 117. UFBGA176+25, - 201-ball, 10 x 10 mm, 0.65 mm pitch,  
ultra fine pitch ball grid array package mechanical data  
millimeters  
Typ.  
inches(1)  
Symbol  
Min.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
A2  
A4  
b
0.460  
0.050  
0.400  
0.270  
0.230  
9.950  
9.950  
-
0.530  
0.080  
0.450  
0.320  
0.280  
10.000  
10.000  
0.650  
0.450  
-
0.600  
0.110  
0.500  
0.370  
0.330  
10.050  
10.050  
-
0.0181  
0.0020  
0.0157  
0.0106  
0.0091  
0.3917  
0.3917  
-
0.0209  
0.0031  
0.0177  
0.0126  
0.0110  
0.3937  
0.3937  
0.0256  
0.0177  
-
0.0236  
0.0043  
0.0197  
0.0146  
0.0130  
0.3957  
0.3957  
-
D
E
e
F
0.400  
-
0.500  
0.080  
0.150  
0.080  
0.0157  
-
0.0197  
0.0031  
0.0059  
0.0031  
ddd  
eee  
fff  
-
-
-
-
-
-
-
-
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
196/208  
DocID028010 Rev 2  
STM32F479xx  
Package information  
Figure 85. UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball  
grid array package recommended footprint  
'SDG  
'VP  
ꢀϬꢃϳͺ&Wͺsϭ  
Table 118. UFBGA176+25 recommended PCB design rules (0.65 mm pitch BGA)  
Dimension  
Recommended values  
Pitch  
0.65 mm  
Dpad  
Dsm  
0.300 mm  
0.400 mm typ. (depends on the soldermask  
registration tolerance)  
Stencil opening  
Stencil thickness  
Pad trace width  
0.300 mm  
Between 0.100 mm and 0.125 mm  
0.100 mm  
DocID028010 Rev 2  
197/208  
206  
Package information  
STM32F479xx  
6.5  
LQFP208 package information  
Figure 86. LQFP208, 28 x 28 mm, 208-pin low-profile quad flat package outline  
6($7,1*  
3/$1(  
&
FFF  
&
ꢇꢏꢂꢆꢍPP  
*$8*(ꢍ3/$1(  
.
/
'
/ꢅ  
'ꢅ  
'ꢀ  
ꢅꢇꢆ  
ꢅꢆꢉ  
ꢅꢇꢄ  
ꢅꢆꢈ  
ꢂꢇꢁ  
ꢆꢀ  
3,1ꢍꢅ  
,'(17,),&$7,21  
ꢆꢂ  
H
6)@.&@7ꢁ  
1. Drawing is not to scale.  
Table 119. LQFP208, 28 x 28 mm, 208-pin low-profile quad flat package  
mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
-
-
-
1.600  
0.150  
1.450  
0.270  
--  
-
0.0630  
0.0059  
0.0571  
0.0106  
0.050  
1.350  
0.170  
0.0020  
0.0531  
0.0067  
-
1.400  
0.220  
0.0551  
0.0087  
198/208  
DocID028010 Rev 2  
STM32F479xx  
Package information  
Table 119. LQFP208, 28 x 28 mm, 208-pin low-profile quad flat package  
mechanical data (continued)  
millimeters  
inches(1)  
Typ  
Symbol  
Min  
Typ  
Max  
Min  
Max  
c
D
0.090  
-
0.200  
30.200  
28.200  
-
0.0035  
-
0.0079  
1.1890  
1.1102  
-
29.800  
30.000  
28.000  
25.500  
30.000  
28.000  
25.500  
0.500  
0.600  
1.000  
3.5°  
1.1732  
1.1811  
1.1024  
1.0039  
1.1811  
1.1024  
1.0039  
0.0197  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
27.800  
1.0945  
-
-
29.800  
30.200  
28.200  
-
1.1732  
1.1890  
1.1102  
-
E1  
E3  
e
27.800  
1.0945  
-
-
-
-
-
-
L
0.450  
0.750  
-
0.0177  
0.0295  
-
L1  
k
-
0°  
-
-
0°  
-
7.0°  
0.080  
7.0°  
ccc  
-
-
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
DocID028010 Rev 2  
199/208  
206  
Package information  
STM32F479xx  
Figure 87. LQFP208 recommended footprint  
ꢃꢂꢉ  
ꢀꢅꢈ  
ꢀꢓꢃꢅ  
ꢂꢓꢅ  
ꢀꢅꢇ  
ꢂꢓꢊ  
ꢅꢃ  
ꢀꢂꢅ  
ꢀꢓꢃ  
ꢅꢊ  
ꢀꢂꢆ  
ꢃꢅꢓꢉ  
ꢊꢂꢓꢈ  
-3ꢊꢂꢆꢃꢅ6ꢀ  
1. Dimensions are expressed in millimeters.  
200/208  
DocID028010 Rev 2  
STM32F479xx  
Package information  
Device Marking for LQFP208  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Figure 88. LQFP208 marking example (package top view)  
5HYLVLRQꢍFRGH  
3URGXFWꢍLGHQWLILFDWLRQꢐꢅꢑ  
^dDϯϮ&ϰϳϵꢄ/dϲ  
3LQꢍꢅ  
LGHQWLILHU  
'DWHꢍFRGH  
tt  
z
06Yꢀꢉꢆꢄꢆ9ꢅ  
1. Samples marked “ES” are to be considered as “Engineering Samples”: i.e. they are intended to be sent to  
customer for electrical compatibility evaluation and may be used to start customer qualification where  
specifically authorized by ST in writing. In no event ST will be liable for any customer usage in production.  
Only if ST has authorized in writing the customer qualification Engineering Samples can be used for  
reliability qualification trials.  
DocID028010 Rev 2  
201/208  
206  
Package information  
STM32F479xx  
6.6  
TFBGA216 package information  
Figure 89. TFBGA216 - thin fine pitch ball grid array 13 × 13 × 0.8mm, package outline  
=
6HDWLQJꢍSODQH  
GGG =  
$ꢂ  
$ꢅ  
$
(ꢅ  
;
$ꢅꢍEDOOꢍ  
$ꢅꢍEDOOꢍ  
(
LGHQWLILHU LQGH[ꢍDUHD  
H
)
$
)
'ꢅ  
'
H
<
5
ꢅꢆ  
‘EꢍꢐꢂꢅꢉꢍEDOOVꢑ  
‘ HHH 0 = < ;  
‘ III 0 =  
%27720ꢍ9,(:  
723ꢍ9,(:  
$ꢇ/ꢂB0(B9ꢂ  
1. Drawing is not to scale.  
Table 120. TFBGA216 - thin fine pitch ball grid array 13 × 13 × 0.8mm  
package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
A4  
b
-
-
1.100  
-
-
0.0433  
0.150  
-
-
0.0059  
-
-
-
0.760  
0.210  
0.400  
13.000  
11.200  
13.000  
11.200  
0.800  
0.900  
-
-
-
0.0299  
0.0083  
0.0157  
0.5118  
0.4409  
0.5118  
0.4409  
0.0315  
0.0354  
-
-
-
-
-
-
0.350  
0.450  
0.0138  
0.0177  
D
12.850  
13.150  
0.5118  
0.5177  
D1  
E
-
-
-
-
12.850  
13.150  
0.5118  
0.5177  
E1  
e
-
-
-
-
-
-
-
-
-
-
-
-
-
F
-
ddd  
0.080  
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
202/208  
DocID028010 Rev 2  
 
STM32F479xx  
Package information  
Device Marking for TFBGA216  
The following figure gives an example of topside marking orientation versus ball A1 identifier  
location.  
Figure 90. TFBGA216 marking example (package top view)  
3URGXFWꢍLGHQWLILFDWLRQꢐꢅꢑ  
ꢃ^ϯϮ&  
5HYLVLRQꢍFRGH  
ϰϳϵE/,ϲh  
'DWHꢍFRGH  
%DOOꢍꢅ  
LGHQWLILHU  
z tt  
06Yꢀꢉꢆꢄꢉ9ꢅ  
1. Samples marked “ES” are to be considered as “Engineering Samples”: i.e. they are intended to be sent to  
customer for electrical compatibility evaluation and may be used to start customer qualification where  
specifically authorized by ST in writing. In no event ST will be liable for any customer usage in production.  
Only if ST has authorized in writing the customer qualification Engineering Samples can be used for  
reliability qualification trials.  
DocID028010 Rev 2  
203/208  
206  
Package information  
STM32F479xx  
6.7  
Thermal characteristics  
The maximum chip-junction temperature, T max, in degrees Celsius, may be calculated  
J
using the following equation:  
T max = T max + (P max x Θ )  
J
A
D
JA  
Where:  
T max is the maximum ambient temperature in ° C,  
A
Θ
is the package junction-to-ambient thermal resistance, in °C/W,  
JA  
P max is the sum of P  
max and P max (P max = P  
max + P max),  
INT I/O  
D
INT  
I/O  
D
P
max is the product of I and V , expressed in Watts. This is the maximum chip  
DD DD  
INT  
internal power.  
P
max represents the maximum power dissipation on output pins where:  
I/O  
P
max = Σ (V × I ) + Σ((V – V ) × I ),  
OL OL DD OH OH  
I/O  
taking into account the actual V / I and V / I of the I/Os at low and high level in the  
OL OL  
OH OH  
application.  
Table 121. Package thermal characteristics  
Symbol  
Parameter  
Value  
Unit  
Thermal resistance junction-ambient  
WLCSP168  
31  
38  
19  
52  
39  
29  
Thermal resistance junction-ambient  
LQFP176 - 24 × 24 mm / 0.5 mm pitch  
Thermal resistance junction-ambient  
LQFP208 - 28 × 28 mm / 0.5 mm pitch  
Θ
°C/W  
JA  
Thermal resistance junction-ambient  
UFBGA169 - 7 × 7mm / 0.5 mm pitch  
Thermal resistance junction-ambient  
UFBGA176 - 10 × 10 mm / 0.5 mm pitch  
Thermal resistance junction-ambient  
TFBGA216 - 13 × 13 mm / 0.8 mm pitch  
Reference document  
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural  
Convection (Still Air). Available from www.jedec.org.  
204/208  
DocID028010 Rev 2  
STM32F479xx  
Part numbering  
7
Part numbering  
Table 122. Ordering information scheme  
Example:  
STM32 F  
479 V  
I
T
6
xxx  
Device family  
STM32 = ARM-based 32-bit microcontroller  
Product type  
F = general-purpose  
Device subfamily  
479= STM32F479xx, USB OTG FS/HS, camera interface,  
Ethernet, LCD-TFT, DSIHost, cryptographic acceleration,  
Quad-SPI,  
Chrom-ART graphical accelerator.  
Pin count  
A = 168 and 169 pins  
I = 176 pins  
B = 208 pins  
N = 216 pins  
Flash memory size  
G = 1024 Kbytes of Flash memory  
I = 2048 Kbytes of Flash memory  
Package  
T = LQFP  
H = BGA  
Y = WLCSP  
Temperature range  
6 = Industrial temperature range, –40 to 85 °C.  
7 = Industrial temperature range, –40 to 105 °C.  
Options  
xxx = programmed parts  
TR = tape and reel  
For a list of available options (speed, package, etc.) or for further information on any aspect  
of this device, please contact your nearest ST sales office.  
DocID028010 Rev 2  
205/208  
206  
Recommendations when using internal reset OFF  
STM32F479xx  
Appendix A  
Recommendations when using internal reset  
OFF  
When the internal reset is OFF, the following integrated features are no longer supported:  
The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled.  
The brownout reset (BOR) circuitry must be disabled.  
The embedded programmable voltage detector (PVD) is disabled.  
V
functionality is no more available and VBAT pin should be connected to V  
.
BAT  
DD  
The over-drive mode is not supported.  
A.1  
Operating conditions  
Table 123. Limitations depending on the operating power supply range  
Maximum  
Flash  
Operating  
power  
supply  
range  
memory  
access  
frequency  
Maximum Flash  
memory access  
frequency with  
PossibleFlash  
memory  
operations  
ADC  
operation  
I/O operation  
with no wait wait states (1)(2)  
states  
(fFlashmax  
)
Conversion  
time up to  
1.2 Msps  
168 MHz with 8  
wait states and  
over-drive OFF  
8-bit erase and  
program  
operations only  
VDD =1.7 to  
2.1 V(3)  
– No I/O  
compensation  
20 MHz(4)  
1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no  
wait state is required.  
2. Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does  
not impact the execution speed from Flash memory since the ART accelerator allows to achieve a  
performance equivalent to 0 wait state program execution.  
3. VDD/VDDA minimum value of 1.7 V, with the use of an external power supply supervisor (refer to  
Section 2.19.1: Internal reset ON).  
4. Prefetch is not available. Refer to AN3430 application note for details on how to adjust performance and  
power.  
206/208  
DocID028010 Rev 2  
STM32F479xx  
Revision history  
8
Revision history  
Table 124. Document revision history  
Changes  
Date  
Revision  
01-Sep-2015  
1
Initial release.  
Updated Table 4: Regulator ON/OFF and internal reset ON/OFF  
availability and Table 54: EMI characteristics.  
Updated Figure 15: STM32F47x UFBGA176 ballout, Figure 33: PLL  
output clock waveforms in center spread mode and Figure 34: PLL  
output clock waveforms in down spread mode.  
19-Oct-2015  
2
Updated title of Section 6.6: TFBGA216 package information.  
DocID028010 Rev 2  
207/208  
207  
STM32F479xx  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and  
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on  
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order  
acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or  
the design of Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2015 STMicroelectronics – All rights reserved  
208/208  
DocID028010 Rev 2  

相关型号:

STM32479ZG

ARMCortex-M4 32b MCUFPU, 225DMIPS, up to 2MB Flash/3844KB RAM, USB OTG HS/FS, Ethernet, FMC, dual Quad-SPI, Crypto, Graphical accelerator, Camera IF, LCD-TFT & MIPI DSI
STMICROELECTR

STM32479ZI

ARMCortex-M4 32b MCUFPU, 225DMIPS, up to 2MB Flash/3844KB RAM, USB OTG HS/FS, Ethernet, FMC, dual Quad-SPI, Crypto, Graphical accelerator, Camera IF, LCD-TFT & MIPI DSI
STMICROELECTR

STM326-2

RF POWER MODULE WIRELESS LOCAL LOOP APPLICATIONS
STMICROELECTR

STM32F030C6

Value-line ARM-based 32-bit MCU with 16 to 64-KB Flash, timers, ADC, communication interfaces, 2.4-3.6 V operation
STMICROELECTR

STM32F030C8

Value-line ARM-based 32-bit MCU with 16 to 64-KB Flash, timers, ADC, communication interfaces, 2.4-3.6 V operation
STMICROELECTR

STM32F030CC

Value-line Arm®-based 32-bit MCU with up to 256 KB Flash, timers, ADC, communication interfaces, 2.4-3.6 V operation
STMICROELECTR

STM32F030F4

Value-line ARM-based 32-bit MCU with 16 to 64-KB Flash, timers, ADC, communication interfaces, 2.4-3.6 V operation
STMICROELECTR

STM32F030K6

Value-line ARM-based 32-bit MCU with 16 to 64-KB Flash, timers, ADC, communication interfaces, 2.4-3.6 V operation
STMICROELECTR

STM32F030R8

Value-line ARM-based 32-bit MCU with 16 to 64-KB Flash, timers, ADC, communication interfaces, 2.4-3.6 V operation
STMICROELECTR

STM32F030R8T6

STM32 Nucleo-64 boards
STMICROELECTR

STM32F030RC

Value-line Arm®-based 32-bit MCU with up to 256 KB Flash, timers, ADC, communication interfaces, 2.4-3.6 V operation
STMICROELECTR

STM32F030RCT6

Value-line Arm®-based 32-bit MCU with up to 256 KB Flash, timers, ADC, communication interfaces, 2.4-3.6 V operation
STMICROELECTR