STM32F101T6U6AXX [STMICROELECTRONICS]

32-BIT, FLASH, 36MHz, RISC MICROCONTROLLER, QCC36, 6 X 6 MM, 0.50 MM PITCH, ROHS COMPLIANT, VFQFPN-36;
STM32F101T6U6AXX
型号: STM32F101T6U6AXX
厂家: ST    ST
描述:

32-BIT, FLASH, 36MHz, RISC MICROCONTROLLER, QCC36, 6 X 6 MM, 0.50 MM PITCH, ROHS COMPLIANT, VFQFPN-36

文件: 总75页 (文件大小:1552K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM32F101x6  
STM32F101x8 STM32F101xB  
Access line, advanced ARM-based 32-bit MCU with Flash memory,  
six 16-bit timers, ADC and seven communication interfaces  
Features  
Core: ARM 32-bit Cortex™-M3 CPU  
– 36 MHz maximum frequency,  
1.25 DMIPS/MHz (Dhrystone 2.1)  
VFQFPN36  
6 × 6 mm  
LQFP48  
7 x 7 mm  
LQFP64  
10 x 10 mm  
LQFP100  
14 x 14 mm  
performance at 0 wait state memory  
access  
– Single-cycle multiplication and hardware  
division  
Up to 6 timers  
– Up to three 16-bit timers, each with up to 4  
IC/OC/PWM or pulse counter  
Memories  
– 2 watchdog timers (Independent and  
Window)  
– 32 to 128 Kbytes of Flash memory  
– 6 to 16 Kbytes of SRAM  
– SysTick timer: 24-bit downcounter  
Clock, reset and supply management  
Up to 7 communication interfaces  
– 2.0 to 3.6 V application supply and I/Os  
– POR, PDR and programmable voltage  
detector (PVD)  
– 4-to-16 MHz crystal oscillator  
– Internal 8 MHz factory-trimmed RC  
– Internal 40 kHz RC  
2
– Up to 2 x I C interfaces (SMBus/PMBus)  
– Up to 3 USARTs (ISO 7816 interface, LIN,  
IrDA capability, modem control)  
– Up to 2 SPIs (18 Mbit/s)  
CRC calculation unit, 96-bit unique ID  
– PLL for CPU clock  
– 32 kHz oscillator for RTC with calibration  
®
ECOPACK packages  
Table 1.  
Device summary  
Root part number  
Low power  
– Sleep, Stop and Standby modes  
Reference  
– V  
supply for RTC and backup registers  
BAT  
STM32F101C6, STM32F101R6,  
STM32F101T6  
STM32F101x6  
STM32F101x8  
STM32F101xB  
Debug mode  
STM32F101C8, STM32F101R8  
STM32F101V8, STM32F101T8  
– Serial wire debug (SWD) and JTAG  
interfaces  
STM32F101RB, STM32F101VB,  
STM32F101CB  
DMA  
– 7-channel DMA controller  
– Peripherals supported: timers, ADC, SPIs,  
2
I Cs and USARTs  
1 × 12-bit, 1 µs A/D converter (up to 16  
channels)  
– Conversion range: 0 to 3.6 V  
Temperature sensor  
Up to 80 fast I/O ports  
– 26/37/51/80 I/Os, all mappable on 16  
external interrupt vectors, all 5 V-tolerant  
except for analog inputs  
May 2008  
Rev 7  
1/75  
www.st.com  
1
Contents  
STM32F101x6, STM32F101x8, STM32F101xB  
Contents  
1
2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
2.1  
2.2  
2.3  
Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3
4
5
Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
5.1  
Test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
5.1.1  
5.1.2  
5.1.3  
5.1.4  
5.1.5  
5.1.6  
5.1.7  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
5.2  
5.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
5.3.1  
5.3.2  
5.3.3  
5.3.4  
5.3.5  
5.3.6  
5.3.7  
5.3.8  
5.3.9  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 29  
Embedded reset and power control block characteristics . . . . . . . . . . . 30  
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
5.3.10 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
5.3.11 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 47  
5.3.12 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
2/75  
STM32F101x6, STM32F101x8, STM32F101xB  
Contents  
5.3.13 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
5.3.14 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
5.3.15 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
5.3.16 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
5.3.17 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
6
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
6.1  
6.2  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
6.2.1  
6.2.2  
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Evaluating the maximum junction temperature for an application . . . . . 69  
7
8
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
7.1  
Future family enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
3/75  
List of tables  
STM32F101x6, STM32F101x8, STM32F101xB  
List of tables  
Table 1.  
Table 2.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Device features and peripheral counts (STM32F101xx High-density  
access line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
STM32F101xx family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Maximum current consumption in Run mode, code with data processing  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Maximum current consumption in Run mode, code with data processing  
Table 13.  
running from RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Maximum current consumption in Sleep mode, code running from Flash or RAM. . . . . . . 33  
Typical and maximum current consumptions in Stop and Standby modes . . . . . . . . . . . . 34  
Typical current consumption in Run mode, code with data processing  
Table 14.  
Table 15.  
Table 16.  
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Typical current consumption in Sleep mode, code with data processing  
Table 17.  
code running from Flash or RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Typical current consumption in Standby mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
High-speed user external (HSE) clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Low-speed user external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
HSE 4-16 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
LSE oscillator characteristics (  
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
fLSE  
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Flash memory endurance and data retention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
2
I C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
SCL frequency (f  
= 36 MHz, V = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
PCLK1  
DD  
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
R
max for f  
= 10 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
AIN  
ADC  
4/75  
STM32F101x6, STM32F101x8, STM32F101xB  
List of tables  
Table 44.  
Table 45.  
Table 46.  
Table 47.  
Table 48.  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
ADC accuracy - limited test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
VFQFPN36 6 x 6 mm, 0.5 mm pitch, package mechanical data . . . . . . . . . . . . . . . . . . . . 64  
LQPF100 – 100-pin low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . 65  
LQFP64 – 64-pin low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . 66  
LQFP48 – 48-pin low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . 67  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
5/75  
List of figures  
STM32F101x6, STM32F101x8, STM32F101xB  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
STM32F101xx Medium-density access line block diagram . . . . . . . . . . . . . . . . . . . . . . . . 15  
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
STM32F101xx Medium-density access line LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . 17  
STM32F101xx Medium-density access line LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . 18  
STM32F101xx Medium-density access line LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . 18  
STM32F101xx access line VFQPFN36 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 10. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 11. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 12. Typical current consumption in Run mode versus frequency (at 3.6 V) -  
code with data processing running from RAM, peripherals enabled. . . . . . . . . . . . . . . . . . 32  
Figure 13. Typical current consumption in Run mode versus frequency (at 3.6 V) -  
code with data processing running from RAM, peripherals disabled . . . . . . . . . . . . . . . . . 33  
Figure 14. Current consumption in Stop mode with regulator in Run mode versus temperature at  
V
= 3.3 V and 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
DD  
Figure 15. Current consumption in Stop mode with regulator in Low-power mode versus  
temperature at V = 3.3 V and 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
DD  
Figure 16. Current consumption in Standby mode versus temperature at V = 3.3 V and 3.6 V . . . 35  
DD  
Figure 17. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 18. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Figure 19. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 20. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 21. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 22. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
2
(1)  
Figure 23. I C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 24. SPI timing diagram - slave mode and CPHA=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
(1)  
Figure 25. SPI timing diagram - slave mode and CPHA=1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Figure 26. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
(1)  
Figure 27. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Figure 28. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Figure 29. Power supply and reference decoupling (V  
not connected to V  
). . . . . . . . . . . . . . 61  
REF+  
DDA  
Figure 30. Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . 62  
(1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
Figure 31. VFQFPN36 6 x 6 mm, 0.5 mm pitch, package outline  
Figure 32. Recommended footprint (dimensions in mm)  
(1)(2)(3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
Figure 33. LQFP100, 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
(1)  
Figure 34. Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Figure 35. LQFP64 – 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
(1)  
Figure 36. Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Figure 37. LQFP48 – 48-pin low-profile quad flat  
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
(1)  
Figure 38. Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Figure 39. LQFP64 P max vs. T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
D
A
6/75  
STM32F101x6, STM32F101x8, STM32F101xB  
Introduction  
1
Introduction  
This datasheet provides the ordering information and mechanical device characteristics of  
the STM32F101x6, STM32F101xB and STM32F101x8 Medium-density access line  
microcontrollers. For more details on the whole STMicroelectronics STM32F101xx family,  
please refer to Section 2.2: Full compatibility throughout the family.  
The Medium-density STM32F101xx datasheet should be read in conjunction with the  
Medium- and High-density STM32F10xxx reference manual.  
For information on programming, erasing and protection of the internal Flash memory  
please refer to the STM32F10xxx Flash programming manual.  
The reference and Flash programming manuals are both available from the  
STMicroelectronics website www.st.com.  
For information on the Cortex™-M3 core please refer to the Cortex™-M3 Technical  
Reference Manual, available from the www.arm.com website at the following address:  
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/.  
2
Description  
The STM32F101x6, STM32F101xB and STM32F101x8 Medium-density access line family  
incorporates the high-performance ARM Cortex™-M3 32-bit RISC core operating at a  
36 MHz frequency, high-speed embedded memories (Flash memory up to 128 Kbytes and  
SRAM up to 16 Kbytes), and an extensive range of enhanced peripherals and I/Os  
2
connected to two APB buses. All devices offer standard communication interfaces (two I Cs,  
two SPIs, and up to three USARTs), one 12-bit ADC and three general purpose 16-bit  
timers.  
The STM32F101xx Medium-density access line family operates in the –40 to +85 °C  
temperature range, from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving  
mode allows the design of low-power applications.  
The STM32F101xx Medium-density access line family includes devices in four different  
package types: from 36 pins to 100 pins. Depending on the device chosen, different sets of  
peripherals are included, the description below gives an overview of the complete range of  
peripherals proposed in this family.  
These features make the STM32F101xx High-density access line microcontroller family  
suitable for a wide range of applications:  
Application control and user interface  
Medical and handheld equipment  
PC peripherals, gaming and GPS platforms  
Industrial applications: PLC, inverters, printers, and scanners  
Alarm systems, Video intercom, and HVAC  
Figure 1 shows the general block diagram of the device family.  
7/75  
Description  
STM32F101x6, STM32F101x8, STM32F101xB  
2.1  
Device overview  
Table 2.  
Device features and peripheral counts (STM32F101xx High-density  
access line)  
STM32F101Tx STM32F101Cx STM32F101Rx STM32F101Vx  
Peripheral  
Flash - Kbytes  
SRAM - Kbytes  
32  
6
64  
10  
32 64 128 32  
64 128  
10 16  
64  
10  
128  
16  
6
2
10 16  
6
2
General purpose  
2
3
3
3
3
3
SPI  
I2C  
1
1
1
1
1
1
2
2
2
2
1
1
2
2
2
2
USART  
2
2
2
3
3
2
3
3
12-bit synchronized ADC  
number of channels  
1
1
1
1
10 channels  
10 channels  
37  
16 channels  
16 channels  
80  
GPIOs  
26  
51  
CPU frequency  
Operating voltage  
36 MHz  
2.0 to 3.6 V  
Ambient temperature: –40 to +85 °C (see Table 8)  
Junction temperature: –40 to +105 °C (see Table 8)  
Operating temperatures  
Packages  
VFQFPN36  
LQFP48  
LQFP64  
LQFP100  
8/75  
STM32F101x6, STM32F101x8, STM32F101xB  
Description  
2.2  
Full compatibility throughout the family  
The STM32F101xx is a complete family whose members are fully pin-to-pin, software and  
feature compatible. In the reference manual, the STM32F101x6, STM32F101x8 and  
STM32F101xB are referred to as Medium-density devices, while the STM32F101xC,  
STM32F101xD and STM32F101xE are referred to as High-density devices.  
High-density devices are an extension of the STM32F101x6/8/B devices, they are specified  
in the STM32F101xC/D/E datasheet. They feature higher Flash memory and RAM  
densities, and additional peripherals like FSMC and DAC, while remaining fully compatible  
with the other members of the family.  
The STM32F101xC, STM32F101xD and STM32F101xE are a drop-in replacement for the  
STM32F101x6/8/B devices, allowing the user to try different memory densities and  
providing a greater degree of freedom during the development cycle.  
Table 3.  
STM32F101xx family  
Memory size  
Medium-density STM32F101xx devices  
High-density STM32F101xx devices  
Pinout  
128 KB  
32 KB Flash 64 KB Flash  
Flash  
256 KB  
Flash  
384 KB  
Flash  
512 KB  
Flash  
6 KB RAM  
10 KB RAM 16 KB RAM 32 KB RAM 48 KB RAM 48 KB RAM  
144  
100  
64  
5 × USARTs  
4 × 16-bit timers, 2 × basic timers  
3 × SPIs, 2 × I2Cs, 1 × ADC, 1 × DAC  
3 × USARTs  
3 × 16-bit timers  
2 × SPIs, 2 × I2Cs, 1 × ADC  
FSMC (100 and 144 pins)  
2 × USARTs  
2 × 16-bit timers  
1 × SPI, 1 × I2C  
1 × ADC  
48  
36  
9/75  
Description  
STM32F101x6, STM32F101x8, STM32F101xB  
2.3  
Overview  
ARM® CortexTM-M3 core with embedded Flash and SRAM  
The ARM Cortex™-M3 processor is the latest generation of ARM processors for embedded  
systems. It has been developed to provide a low-cost platform that meets the needs of MCU  
implementation, with a reduced pin count and low-power consumption, while delivering  
outstanding computational performance and an advanced system response to interrupts.  
The ARM Cortex™-M3 32-bit RISC processor features exceptional code-efficiency,  
delivering the high-performance expected from an ARM core in the memory size usually  
associated with 8- and 16-bit devices.  
The STM32F101xx Medium-density access line family having an embedded ARM core, is  
therefore compatible with all ARM tools and software.  
Embedded Flash memory  
Up to 128 Kbytes of embedded Flash is available for storing programs and data.  
CRC (cyclic redundancy check) calculation unit  
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit  
data word and a fixed generator polynomial.  
Among other applications, CRC-based techniques are used to verify data transmission or  
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of  
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of  
the software during runtime, to be compared with a reference signature generated at link-  
time and stored at a given memory location.  
Embedded SRAM  
Up to 16 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait  
states.  
Nested vectored interrupt controller (NVIC)  
The STM32F101xx Medium-density access line embeds a nested vectored interrupt  
controller able to handle up to 43 maskable interrupt channels (not including the 16 interrupt  
lines of Cortex™-M3) and 16 priority levels.  
Closely coupled NVIC gives low latency interrupt processing  
Interrupt entry vector table address passed directly to the core  
Closely coupled NVIC core interface  
Allows early processing of interrupts  
Processing of late arriving higher priority interrupts  
Support for tail-chaining  
Processor state automatically saved  
Interrupt entry restored on interrupt exit with no instruction overhead  
This hardware block provides flexible interrupt management features with minimal interrupt  
latency.  
10/75  
STM32F101x6, STM32F101x8, STM32F101xB  
Description  
External interrupt/event controller (EXTI)  
The external interrupt/event controller consists of 19 edge detector lines used to generate  
interrupt/event requests. Each line can be independently configured to select the trigger  
event (rising edge, falling edge, both) and can be masked independently. A pending register  
maintains the status of the interrupt requests. The EXTI can detect an external line with a  
pulse width shorter than the Internal APB2 clock period. Up to 80 GPIOs can be connected  
to the 16 external interrupt lines.  
Clocks and startup  
System clock selection is performed on startup, however the internal RC 8 MHz oscillator is  
selected as default CPU clock on reset. An external 4-16 MHz clock can be selected, in  
which case it is monitored for failure. If failure is detected, the system automatically switches  
back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full  
interrupt management of the PLL clock entry is available when necessary (for example on  
failure of an indirectly used external crystal, resonator or oscillator).  
Several prescalers allow the configuration of the AHB frequency, the High Speed APB  
(APB2) and the low Speed APB (APB1) domains. The maximum frequency of the AHB and  
the APB domains is 36 MHz. See Figure 2 for details on the clock tree.  
Boot modes  
At startup, boot pins are used to select one of five boot options:  
Boot from User Flash  
Boot from System Memory  
Boot from embedded SRAM  
The boot loader is located in System Memory. It is used to reprogram the Flash memory by  
using USART1. For further details please refer to AN2606.  
Power supply schemes  
V
= 2.0 to 3.6 V: External power supply for I/Os and the internal regulator.  
DD  
Provided externally through V pins.  
DD  
V
, V  
= 2.0 to 3.6 V: External analog power supplies for ADC, Reset blocks, RCs  
DDA  
SSA  
and PLL (minimum voltage to be applied to V  
is 2.4 V when the ADC is used).  
DDA  
V
and V  
must be connected to V and V , respectively.  
DDA  
SSA DD SS  
V
= 1.8 to 3.6 V: Power supply for RTC, external clock 32 kHz oscillator and backup  
BAT  
registers (through power switch) when V is not present.  
DD  
For more details on how to connect power pins, refer to Figure 10: Power supply scheme.  
Power supply supervisor  
The device has an integrated power on reset (POR)/power down reset (PDR) circuitry. It is  
always active, and ensures proper operation starting from/down to 2 V. The device remains  
in reset mode when V is below a specified threshold, V  
, without the need for an  
DD  
POR/PDR  
external reset circuit.  
The device features an embedded programmable voltage detector (PVD) that monitors the  
power supply and compares it to the V threshold. An interrupt can be generated  
V
DD  
PVD  
when V drops below the V  
and/or when V is higher than the V  
threshold. The  
DD  
PVD  
DD  
PVD  
11/75  
Description  
STM32F101x6, STM32F101x8, STM32F101xB  
interrupt service routine can then generate a warning message and/or put the MCU into a  
safe state. The PVD is enabled by software.  
Refer to Table 10: Embedded reset and power control block characteristics for the values of  
V
and V  
.
POR/PDR  
PVD  
Voltage regulator  
The regulator has three operation modes: main (MR), low power (LPR) and power down.  
MR is used in the nominal regulation mode (Run)  
LPR is used in the Stop mode  
Power down is used in Standby mode: the regulator output is in high impedance: the  
kernel circuitry is powered down, inducing zero consumption (but the contents of the  
registers and SRAM are lost)  
This regulator is always enabled after reset. It is disabled in Standby mode, providing high  
impedance output.  
Low-power modes  
The STM32F101xx Medium-density access line supports three low-power modes to achieve  
the best compromise between low power consumption, short startup time and available  
wakeup sources:  
Sleep mode  
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can  
wake up the CPU when an interrupt/event occurs.  
Stop mode  
Stop mode achieves the lowest power consumption while retaining the content of  
SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC  
and the HSE crystal oscillators are disabled. The voltage regulator can also be put  
either in normal or in low power mode.  
The device can be woken up from Stop mode by any of the EXTI line. The EXTI line  
source can be one of the 16 external lines, the PVD output or the RTC alarm.  
Standby mode  
The Standby mode is used to achieve the lowest power consumption. The internal  
voltage regulator is switched off so that the entire 1.8 V domain is powered off. The  
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering  
Standby mode, SRAM and register contents are lost except for registers in the Backup  
domain and Standby circuitry.  
The device exits Standby mode when an external reset (NRST pin), a IWDG reset, a  
rising edge on the WKUP pin, or an RTC alarm occurs.  
Note:  
The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop  
or Standby mode.  
DMA  
The flexible 7-channel general-purpose DMA is able to manage memory-to-memory,  
peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports  
circular buffer management avoiding the generation of interrupts when the controller  
reaches the end of the buffer.  
12/75  
STM32F101x6, STM32F101x8, STM32F101xB  
Description  
Each channel is connected to dedicated hardware DMA requests, with support for software  
trigger on each channel. Configuration is made by software and transfer sizes between  
source and destination are independent.  
2
The DMA can be used with the main peripherals: SPI, I C, USART, general purpose timers  
TIMx and ADC.  
RTC (real-time clock) and backup registers  
The RTC and the backup registers are supplied through a switch that takes power either on  
V
supply when present or through the VBAT pin. The backup registers (ten 16-bit registers)  
DD  
can be used to store data when V power is not present.  
DD  
The real-time clock provides a set of continuously running counters which can be used with  
suitable software to provide a clock calendar function, and provides an alarm interrupt and a  
periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the  
internal low power RC oscillator or the high-speed external clock divided by 128. The  
internal low power RC has a typical frequency of 40 kHz. The RTC can be calibrated using  
an external 512 Hz output to compensate for any natural crystal deviation. The RTC  
features a 32-bit programmable counter for long term measurement using the Compare  
register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by  
default configured to generate a time base of 1 second from a clock at 32.768 kHz.  
Independent watchdog  
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is  
clocked from an independent 40 kHz internal RC and as it operates independently from the  
main clock, it can operate in Stop and Standby modes. It can be used as a watchdog to  
reset the device when a problem occurs, or as a free running timer for application timeout  
management. It is hardware or software configurable through the option bytes. The counter  
can be frozen in debug mode.  
Window watchdog  
The window watchdog is based on a 7-bit downcounter that can be set as free running. It  
can be used as a watchdog to reset the device when a problem occurs. It is clocked from the  
main clock. It has an early warning interrupt capability and the counter can be frozen in  
debug mode.  
SysTick timer  
This timer is dedicated for OS, but could also be used as a standard down counter. It  
features:  
A 24-bit down counter  
Autoreload capability  
Maskable system interrupt generation when the counter reaches 0.  
Programmable clock source  
General-purpose timers (TIMx)  
There are up to 3 synchronizable standard timers embedded in the STM32F101xx Medium-  
density access line devices. These timers are based on a 16-bit auto-reload up/down  
counter, a 16-bit prescaler and feature 4 independent channels each for input capture,  
output compare, PWM or one pulse mode output. This gives up to 12 input captures / output  
13/75  
Description  
STM32F101x6, STM32F101x8, STM32F101xB  
compares / PWMs on the largest packages. They can work together via the Timer Link  
feature for synchronization or event chaining.  
The counter can be frozen in debug mode.  
Any of the standard timers can be used to generate PWM outputs. Each of the timers has  
independent DMA request generations.  
²
I C bus  
Up to two I²C bus interfaces can operate in multi-master and slave modes. They can support  
standard and fast modes.  
They support dual slave addressing (7-bit only) and both 7/10-bit addressing in master  
mode. A hardware CRC generation/verification is embedded.  
They can be served by DMA and they support SM Bus 2.0/PM Bus.  
Universal synchronous/asynchronous receiver transmitter (USART)  
The available USART interfaces communicate at up to 2.25 Mbit/s. They provide hardware  
management of the CTS and RTS signals, support IrDA SIR ENDEC, are ISO 7816  
compliant and have LIN Master/Slave capability.  
The USART interfaces can be served by the DMA controller.  
Serial peripheral interface (SPI)  
Up to two SPIs are able to communicate up to 18 Mbit/s in slave and master modes in full-  
duplex and simplex communication modes. The 3-bit prescaler gives 8 master mode  
frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC  
generation/verification supports basic SD Card/MMC modes.  
Both SPIs can be served by the DMA controller.  
GPIOs (general-purpose inputs/outputs)  
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as  
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the  
GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current-  
capable except for analog inputs.  
The I/Os alternate function configuration can be locked if needed following a specific  
sequence in order to avoid spurious writing to the I/Os registers.  
ADC (analog to digital converter)  
The 12-bit analog to digital converter has up to 16 external channels and performs  
conversions in single-shot or scan modes. In scan mode, automatic conversion is performed  
on a selected group of analog inputs.  
The ADC can be served by the DMA controller.  
An analog watchdog feature allows very precise monitoring of the converted voltage of one,  
some or all selected channels. An interrupt is generated when the converted voltage is  
outside the programmed thresholds.  
14/75  
STM32F101x6, STM32F101x8, STM32F101xB  
Temperature sensor  
Description  
The temperature sensor has to generate a linear voltage with any variation in temperature.  
The conversion range is between 2 V < V < 3.6 V. The temperature sensor is internally  
DDA  
connected to the ADC_IN16 input channel which is used to convert the sensor output  
voltage into a digital value.  
Serial wire JTAG debug port (SWJ-DP)  
The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug  
port that enables either a serial wire debug or a JTAG probe to be connected to the target.  
The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a  
specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.  
Figure 1.  
STM32F101xx Medium-density access line block diagram  
TRACECLK  
TRACED[0:3]  
as AS  
TPIU  
Trace  
Cont rol ler  
Trace/trig  
pbus  
POWER  
SW/JTAG  
JNTRST  
JTDI  
JTCK/SWCLK  
JTMS/SWDIO  
V
= 2 to 3.6V  
DD  
VSS  
VOLT. REG.  
3.3V TO 1.8V  
Ibus  
Cortex M3 CPU  
Fmax 36 MHz  
Flash 128 KB  
64 bit  
JTDO  
as AF  
@VDD  
:
Dbus  
NVIC  
SRAM  
16 KB  
NVIC  
System  
@VDD  
OSC_IN  
OSC_OUT  
PCLK1  
PCLK2  
HCLK  
FCLK  
PLL &  
XTAL OSC  
4-16 MHz  
GP DMA  
CLOCK  
MANAGT  
7 channels  
RC 8 MHz  
RC 42 kHz  
@VDDA  
IWDG  
@VDDA  
Stand by  
interface  
SUPPLY  
SUPERVISION  
VBAT  
NRST  
VDDA  
VSSA  
@VBAT  
Rst  
Int  
POR / PDR  
OSC32_IN  
OSC32_OUT  
XTAL 32 kHz  
Backup  
PVD  
RTC  
AWU  
AHB2  
APB2  
AHB2  
APB1  
TAMPER-RTC  
reg  
Backu p interface  
EXTI  
80AF  
WAKEUP  
4 Channels  
4 Channels  
TIM2  
PA[15:0]  
PB[15:0]  
PC[15:0]  
PD[15:0]  
PE[15:0]  
GPIOA  
GPIOB  
GPIOC  
GPIOD  
GPIOE  
TIM3  
4 Channels  
TIM4  
RX,TX, CTS, RTS,  
CK, SmartCard as AF  
USART2  
USART3  
RX,TX, CTS, RTS,  
CK, SmartCard as AF  
MOSI,MISO,SCK,NSS  
as AF  
SPI2  
I2C1  
I2C2  
SCL,SDA,SMBAL  
as AF  
MOSI,MISO,  
SCK,NSS as AF  
SPI1  
SCL,SDA  
as AF  
RX,TX, CTS, RTS,  
Smart Card as AF  
USART1  
@VDDA  
16AF  
VREF+  
12bit ADC1  
IF  
W W D G  
VREF-  
Temp sensor  
ai14385B  
1. AF = alternate function on I/O port pin.  
2. TA = –40 °C to +85 °C (junction temperature up to 125 °C).  
15/75  
Description  
STM32F101x6, STM32F101x8, STM32F101xB  
Figure 2.  
Clock tree  
8 MHz  
HSI RC  
HSI  
/2  
HCLK  
36 MHz max  
to AHB bus, core,  
memory and DMA  
Clock  
Enable (3 bits)  
to Cortex System timer  
/8  
SW  
PLLSRC  
FCLK Cortex  
free running clock  
36 MHz max  
PLLMUL  
HSI  
AHB  
Prescaler  
/1, 2..512  
APB1  
Prescaler  
/1, 2, 4, 8, 16  
SYSCLK  
..., x16  
x2, x3, x4  
PLL  
PCLK1  
PLLCLK  
HSE  
36 MHz  
max  
to APB1  
peripherals  
Peripheral Clock  
Enable (13 bits)  
to TIM2, 3  
and 4  
TIMXCLK  
TIM2,3, 4  
If (APB1 prescaler =1) x1  
else x2  
CSS  
Peripheral Clock  
Enable (3 bits)  
APB2  
Prescaler  
/1, 2, 4, 8, 16  
PLLXTPRE  
/2  
36 MHz max  
PCLK2  
to APB2  
OSC_OUT  
peripherals  
4-16 MHz  
HSE OSC  
Peripheral Clock  
Enable (11 bits)  
OSC_IN  
ADC  
to ADC  
Prescaler  
/2, 4, 6, 8  
ADCCLK  
/128  
LSE  
OSC32_IN  
to RTC  
LSE OSC  
RTCCLK  
32.768 kHz  
OSC32_OUT  
RTCSEL[1:0]  
to Independent Watchdog (IWDG)  
IWDGCLK  
LSI  
LSI RC  
40 kHz  
Legend:  
HSE = high-speed external clock signal  
HSI = high-speed internal clock signal  
LSI = low-speed internal clock signal  
LSE = low-speed external clock signal  
Main  
Clock Output  
/2  
PLLCLK  
MCO  
HSI  
HSE  
SYSCLK  
MCO  
ai15104  
1. When the HSI is used as a PLL clock input, the maximum system clock frequency that can be achieved is  
36 MHz.  
2. To have an ADC conversion time of 1 µs, APB2 must be at 14 MHz or 28 MHz.  
16/75  
STM32F101x6, STM32F101x8, STM32F101xB  
Pin descriptions  
3
Pin descriptions  
Figure 3.  
STM32F101xx Medium-density access line LQFP100 pinout  
PE2  
PE3  
PE4  
PE5  
PE6  
1
2
3
4
5
6
7
8
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
VDD_2  
VSS_2  
NC  
PA 13  
PA 12  
PA 11  
PA 10  
PA 9  
PA 8  
PC9  
PC8  
PC7  
VBAT  
PC13-TAMPER-RTC  
PC14-OSC32_IN  
PC15-OSC32_OUT  
VSS_5  
9
10  
VDD_5 11  
LQFP100  
OSC_IN  
OSC_OUT  
NRST  
PC0  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
PC6  
PD15  
PD14  
PD13  
PD12  
PD11  
PD10  
PD9  
PC1  
PC2  
PC3  
VSSA  
VREF-  
VREF+  
VDDA  
PA0-WKUP  
PA1  
PD8  
PB15  
PB14  
PB13  
PB12  
PA2  
ai14386b  
17/75  
Pin descriptions  
Figure 4.  
STM32F101x6, STM32F101x8, STM32F101xB  
STM32F101xx Medium-density access line LQFP64 pinout  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
48  
VDD_2  
VSS_2  
PA13  
PA12  
PA11  
PA10  
PA9  
PA8  
PC9  
PC8  
PC7  
VBAT  
PC13-TAMPER-RTC  
PC14-OSC32_IN  
PC15-OSC32_OUT  
PD0 OSC_IN  
PD1 OSC_OUT  
NRST  
1
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
2
3
4
5
6
7
PC0  
PC1  
PC2  
PC3  
8
LQFP64  
9
10  
11  
12  
13  
14  
15  
16  
PC6  
VSSA  
VDDA  
PA0-WKUP  
PB15  
PB14  
PB13  
PB12  
PA1  
PA2  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
ai14387b  
Figure 5.  
STM32F101xx Medium-density access line LQFP48 pinout  
48 47 46 45 44 43 42 41 40 39 38 37  
VDD_2  
VSS_2  
PA13  
PA12  
PA11  
PA10  
PA9  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
1
2
3
4
5
6
7
8
9
VBAT  
PC13-TAMPER-RTC  
PC14-OSC32_IN  
PC15-OSC32_OUT  
PD0-OSC_IN  
PD1-OSC_OUT  
NRST  
LQFP48  
PA8  
VSSA  
VDDA  
PB15  
PB14  
PB13  
PB12  
PA0-WKUP 10  
PA1 11  
12  
PA2  
24  
13 14 15 16 17 18 19 20 21 22 23  
ai14378c  
18/75  
STM32F101x6, STM32F101x8, STM32F101xB  
Figure 6. STM32F101xx access line VFQPFN36 pinout  
Pin descriptions  
36 35 34  
33 32 31 30 29 28  
27  
V
V
V
1
DD_3  
DD_2  
SS_2  
OSC_IN/PD0  
OSC_OUT/PD1  
NRST  
2
3
4
5
6
7
8
9
26  
PA13  
PA12  
PA11  
PA10  
PA9  
25  
24  
QFN36  
V
23  
22  
SSA  
V
DDA  
PA0-WKUP  
PA1  
21  
20  
PA8  
PA2  
V
19  
DD_1  
10 11 12 13  
14 15 16 17  
18  
ai14654  
19/75  
Pin descriptions  
STM32F101x6, STM32F101x8, STM32F101xB  
Alternate functions(3)  
Table 4.  
Pins  
Pin definitions  
Main  
Pin name  
function(3)  
(after reset)  
Default  
Remap  
FT  
FT  
FT  
FT  
FT  
-
-
-
-
1
-
-
-
-
-
-
PE2  
PE3  
PE4  
PE5  
PE6  
VBAT  
I/O  
I/O  
I/O  
I/O  
I/O  
S
PE2  
PE3  
PE4  
PE5  
PE6  
VBAT  
TRACECLK  
TRACED0  
TRACED1  
TRACED2  
TRACED3  
2
3
4
5
6
-
-
-
-
-
-
1
1
PC13-TAMPER-  
RTC(4)  
2
3
4
2
3
4
7
8
9
-
-
-
I/O  
PC13(5)  
PC14(5)  
PC15(5)  
TAMPER-RTC  
OSC32_IN  
PC14-OSC32_IN(4) I/O  
PC15-  
I/O  
OSC32_OUT  
OSC32_OUT(4)  
-
-
-
10  
11  
12  
13  
14  
15  
16  
-
-
VSS_5  
VDD_5  
OSC_IN  
OSC_OUT  
NRST  
PC0  
S
S
VSS_5  
VDD_5  
OSC_IN  
OSC_OUT  
NRST  
PC0  
-
5
6
7
-
5
6
7
8
9
2
3
4
-
I
O
I/O  
I/O  
I/O  
I/O  
I/O  
S
ADC_IN10  
ADC_IN11  
ADC_IN12  
ADC_IN13  
-
-
PC1  
PC1  
-
10 17  
11 18  
12 19  
-
PC2  
PC2  
-
-
PC3  
PC3  
8
-
5
-
VSSA  
VSSA  
-
-
20  
21  
VREF-  
VREF+  
VDDA  
S
VREF-  
VREF+  
VDDA  
-
-
S
9
13 22  
6
S
WKUP/USART2_CTS(8)  
ADC_IN0/  
/
10 14 23  
7
PA0-WKUP  
I/O  
PA0  
TIM2_CH1_ETR(8)  
USART2_RTS(8)  
ADC_IN1/TIM2_CH2(8)  
/
11 15 24  
12 16 25  
8
9
PA1  
PA2  
I/O  
I/O  
PA1  
PA2  
USART2_TX(8)  
ADC_IN2/TIM2_CH3(8)  
/
USART2_RX(8)  
ADC_IN3/TIM2_CH4(8)  
/
13 17 26 10  
PA3  
I/O  
S
PA3  
-
18 27  
-
VSS_4  
VSS_4  
20/75  
STM32F101x6, STM32F101x8, STM32F101xB  
Pin descriptions  
Table 4.  
Pins  
Pin definitions (continued)  
Pin name  
Alternate functions(3)  
Main  
function(3)  
(after reset)  
Default  
Remap  
-
19 28  
-
VDD_4  
PA4  
S
VDD_4  
PA4  
SPI1_NSS/ADC_IN4  
14 20 29 11  
15 21 30 12  
16 22 31 13  
I/O  
I/O  
I/O  
USART2_CK(8)  
/
PA5  
PA5  
SPI1_SCK/ADC_IN5  
SPI1_MISO/ADC_IN6/  
TIM3_CH1(8)  
PA6  
PA6  
SPI1_MOSI/ADC_IN7/  
TIM3_CH2(8)  
17 23 32 14  
PA7  
I/O  
PA7  
-
-
24 33  
25 34  
PC4  
PC5  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PC4  
PC5  
ADC_IN14  
ADC_IN15  
18 26 35 15  
19 27 36 16  
20 28 37 17  
PB0  
PB0  
ADC_IN8/TIM3_CH3(8)  
ADC_IN9/TIM3_CH4(8)  
PB1  
PB1  
PB2/BOOT1  
PE7  
FT  
FT  
FT  
FT  
FT  
FT  
FT  
FT  
FT  
FT  
PB2/BOOT1  
PE7  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
38  
39  
40  
41  
42  
43  
44  
45  
46  
-
-
-
-
-
-
-
-
-
PE8  
PE8  
PE9  
PE9  
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
I2C2_SCL(6)  
USART3_TX(6) (8)  
/
21 29 47  
22 30 48  
-
-
PB10  
PB11  
I/O  
I/O  
FT  
FT  
PB10  
PB11  
TIM2_CH3  
TIM2_CH4  
I2C2_SDA(6)  
USART3_RX(6) (8)  
/
23 31 49 18  
24 32 50 19  
VSS_1  
VDD_1  
S
S
VSS_1  
VDD_1  
SPI2_NSS(6) (8)  
I2C2_SMBAl(6)  
USART3_CK(6) (8)  
/
/
25 33 51  
-
PB12  
I/O  
FT  
PB12  
SPI2_SCK(6)(8)  
USART3_CTS(6)(8)  
/
26 34 52  
27 35 53  
-
-
PB13  
PB14  
I/O  
I/O  
FT  
FT  
PB13  
PB14  
SPI2_MISO(6)(8)  
USART3_RTS(6)(8)  
/
21/75  
Pin descriptions  
STM32F101x6, STM32F101x8, STM32F101xB  
Alternate functions(3)  
Table 4.  
Pins  
Pin definitions (continued)  
Main  
Pin name  
function(3)  
(after reset)  
Default  
Remap  
28 36 54  
-
-
-
-
-
PB15  
PD8  
I/O  
I/O  
I/O  
I/O  
I/O  
FT  
FT  
FT  
FT  
FT  
PB15  
PD8  
SPI2_MOSI(6) (8)  
-
-
-
-
-
-
-
-
55  
56  
57  
58  
USART3_TX  
USART3_RX  
USART3_CK  
USART3_CTS  
PD9  
PD9  
PD10  
PD11  
PD10  
PD11  
TIM4_CH1 /  
USART3_RTS  
-
-
59  
-
PD12  
I/O  
FT  
PD12  
-
-
-
-
-
-
-
60  
61  
62  
-
-
-
-
-
-
-
PD13  
PD14  
PD15  
PC6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
FT  
FT  
FT  
FT  
FT  
FT  
FT  
FT  
FT  
FT  
FT  
FT  
PD13  
PD14  
PD15  
PC6  
TIM4_CH2  
TIM4_CH3  
TIM4_CH4  
TIM3_CH1  
TIM3_CH2  
TIM3_CH3  
TIM3_CH4  
37 63  
38 64  
39 65  
40 66  
PC7  
PC7  
PC8  
PC8  
-
PC9  
PC9  
29 41 67 20  
30 42 68 21  
31 43 69 22  
32 44 70 23  
33 45 71 24  
PA8  
PA8  
USART1_CK/MCO  
USART1_TX(8)  
USART1_RX(8)  
USART1_CTS  
USART1_RTS  
PA13  
PA9  
PA9  
PA10  
PA11  
PA12  
PA10  
PA11  
PA12  
34 46 72 25 PA13/JTMS/SWDIO I/O  
73  
FT JTMS-SWDIO  
Not connected  
VSS_2  
-
-
-
35 47 74 26  
36 48 75 27  
VSS_2  
VDD_2  
S
S
VDD_2  
37 49 76 28 PA14/JTCK/SWCLK I/O  
FT JTCK/SWCLK  
PA14  
PA15  
TIM2_CH1_ETR/  
SPI1_NSS  
38 50 77 29  
PA15/JTDI  
I/O  
FT  
JTDI  
-
-
51 78  
52 79  
53 80  
PC10  
PC11  
PC12  
PD0  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
FT  
FT  
FT  
FT  
FT  
FT  
FT  
PC10  
PC11  
USART3_TX  
USART3_RX  
USART3_CK  
-
PC12  
5
6
5
6
81  
82  
2
3
-
OSC_IN(7)  
OSC_OUT(7)  
PD2  
PD1  
54 83  
84  
PD2  
TIM3_ETR  
-
-
-
PD3  
PD3  
USART2_CTS  
22/75  
STM32F101x6, STM32F101x8, STM32F101xB  
Pin descriptions  
Table 4.  
Pins  
Pin definitions (continued)  
Pin name  
Alternate functions(3)  
Main  
function(3)  
(after reset)  
Default  
Remap  
-
-
-
-
-
-
-
-
85  
-
-
-
-
PD4  
PD5  
PD6  
PD7  
I/O  
I/O  
I/O  
I/O  
FT  
FT  
FT  
FT  
PD4  
PD5  
PD6  
PD7  
USART2_RTS  
USART2_TX  
USART2_RX  
USART2_CK  
86  
87  
88  
TIM2_CH2 /  
SPI1_SCK  
39 55 89 30  
40 56 90 31  
41 57 91 32  
42 58 92 33  
PB3/JTDO  
PB4/JNTRST  
PB5  
I/O  
I/O  
I/O  
I/O  
I/O  
FT  
FT  
JTDO  
JNTRST  
PB5  
PB3/TRACESWO  
PB4  
TIM3_CH1 /  
SPI1_MISO  
TIM3_CH2 /  
SPI1_MOSI  
I2C1_SMBAl  
I2C1_SCL(8)  
TIM4_CH1(6) (8)  
/
PB6  
FT  
FT  
PB6  
USART1_TX  
USART1_RX  
I2C1_SDA(8)  
/
43 59 93 34  
44 60 94 35  
PB7  
PB7  
TIM4_CH2(6) (8)  
BOOT0  
PB8  
I
BOOT0  
PB8  
45 61 95  
46 62 96  
-
-
-
-
I/O  
I/O  
I/O  
I/O  
S
FT  
FT  
FT  
FT  
TIM4_CH3(6) (8)  
TIM4_CH4(6) (8)  
TIM4_ETR(6)  
I2C1_SCL  
I2C1_SDA  
PB9  
PB9  
-
-
-
-
97  
98  
PE0  
PE0  
PE1  
PE1  
47 63 99 36  
48 64 100  
VSS_3  
VDD_3  
VSS_3  
VDD_3  
1
S
1. I = input, O = output, S = supply, HiZ= high impedance.  
2. FT= 5 V tolerant.  
3. Function availability depends on the chosen device. For devices having reduced peripheral counts, it is always the lower  
number of peripherals that is included. For example, if a device has only one SPI, two USARTs and two timers, they will be  
called SPI1, USART1 & USART2 and TIM2 & TIM 3, respectively. Refer to Table 2 on page 8.  
4. PC13, PC14 and PC15 are supplied through the power switch, and so their use in output mode is limited: they can be used  
only in output 2 MHz mode with a maximum load of 30 pF and only one pin can be put in output mode at a time.  
5. Main function after the first backup domain power-up. Later on, it depends on the contents of the Backup registers even  
after reset (because these registers are not reset by the main reset). For details on how to manage these IOs, refer to the  
Battery backup domain and BKP register description sections in the STM32F10xxx reference manual, available from the  
STMicroelectronics website: www.st.com.  
6. Available only on devices with a Flash memory density equal or higher than 64 Kbytes.  
7. The pins number 2 and 3 in the VFQFPN36 package, and 5 and 6 in the LQFP48 and LQFP64 packages are configured as  
OSC_IN/OSC_OUT after reset, however the functionality of PD0 and PD1 can be remapped by software on these pins. For  
the LQFP100 package, PD0 and PD1 are available by default, so there is no need for remapping. For more details, refer to  
the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual.  
The use of PD0 and PD1 in output mode is limited as they can only be used at 50 MHz in output mode.  
8. This alternate function can be remapped by software to some other port pins (if available on the used package). For more  
details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual, available  
from the STMicroelectronics website: www.st.com.  
23/75  
Memory mapping  
STM32F101x6, STM32F101x8, STM32F101xB  
4
Memory mapping  
The memory map is shown in Figure 7.  
Figure 7. Memory map  
APB memory space  
0xFFFF FFFF  
reserved  
0xE010 0000  
reserved  
0x6000 0000  
reserved  
CRC  
4K  
1K  
3K  
0x4002 3400  
0x4002 3000  
0x4002 2400  
0x4002 2000  
0x4002 1400  
0x4002 1000  
0x4002 0400  
0x4002 0000  
0xFFFF FFFF  
reserved  
1K  
3K  
1K  
3K  
1K  
Flash interface  
reserved  
RCC  
7
0xE010 0000  
Cortex-M3 internal  
peripherals  
reserved  
DMA  
0xE000 0000  
reserved  
1K  
6
0x4001 3C00  
0x4001 3800  
0x4001 3400  
0x4001 3000  
0x4001 2C00  
0x4001 2800  
0x4001 2400  
1K  
1K  
USART1  
reserved  
SPI1  
0xC000 0000  
1K  
1K  
1K  
1K  
reserved  
reserved  
ADC1  
5
0xA000 0000  
reserved  
2K  
0x4001 1C00  
0x4001 1800  
0x4001 1400  
0x4001 1000  
0x4001 0C00  
0x4001 0800  
0x4001 0400  
0x4001 0000  
1K  
1K  
1K  
1K  
Port E  
Port D  
Port C  
Port B  
Port A  
EXTI  
4
0x1FFF FFFF  
0x1FFF F80F  
reserved  
0x8000 0000  
Option Bytes  
0x1FFF F800  
1K  
System memory  
1K  
1K  
3
AFIO  
0x1FFF F000  
0x6000 0000  
reserved  
35K  
0x4000 7400  
0x4000 7000  
0x4000 6C00  
0x4000 6800  
0x4000 6400  
0x4000 6000  
0x4000 5C00  
0x4000 5800  
0x4000 5400  
PWR  
1K  
1K  
2
BKP  
reserved  
reserved  
reserved  
reserved  
1K  
1K  
1K  
1K  
1K  
reserved  
Peripherals  
0x4000 0000  
1
I2C2  
I2C1  
1K  
2K  
SRAM  
0x2000 0000  
0x0801 FFFF  
reserved  
0x4000 4C00  
0x4000 4800  
0x4000 4400  
USART3  
USART2  
1K  
1K  
Flash memory  
0
0x0800 0000  
0x0000 0000  
reserved  
SPI2  
2K  
0x0000 0000  
Aliased to Flash,  
system memory or  
SRAM depending on  
BOOT pins  
0x4000 3C00  
0x4000 3800  
0x4000 3400  
0x4000 3000  
0x4000 2C00  
0x4000 2800  
1K  
1K  
1K  
1K  
1K  
reserved  
IWDG  
Reserved  
WWDG  
RTC  
reserved  
7K  
0x4000 0C00  
0x4000 0800  
0x4000 0400  
0x4000 0000  
TIM4  
TIM3  
TIM2  
1K  
1K  
1K  
ai14379c  
24/75  
STM32F101x6, STM32F101x8, STM32F101xB  
Electrical characteristics  
5
Electrical characteristics  
5.1  
Test conditions  
Unless otherwise specified, all voltages are referenced to V  
.
SS  
5.1.1  
Minimum and maximum values  
Unless otherwise specified the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T = 25 °C and T = T max (given by  
A
A
A
the selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean 3Σ).  
5.1.2  
5.1.3  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = 3.3 V (for the  
A
DD  
2 V V 3.6 V voltage range). They are given only as design guidelines and are not  
DD  
tested.  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range, where 95% of the devices have an  
error less than or equal to the value indicated (mean 2Σ).  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
5.1.4  
5.1.5  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 8.  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 9.  
25/75  
Electrical characteristics  
Figure 8.  
STM32F101x6, STM32F101x8, STM32F101xB  
Pin loading conditions  
Figure 9.  
Pin input voltage  
STM32F10xxx pin  
STM32F10xxx pin  
C= 50 pF  
V
IN  
ai14124b  
ai14123b  
5.1.6  
Power supply scheme  
Figure 10. Power supply scheme  
V
BAT  
Backup circuitry  
(OSC32K,RTC,  
Wake-up logic  
Power switch  
1.8-3.6V  
Backup registers)  
OUT  
IN  
IO  
Logic  
GP I/Os  
Kernel logic  
(CPU,  
Digital  
& Memories)  
V
DD  
V
DD  
1/2/3/4/5  
Regulator  
5 × 100 nF  
+ 1 × 10 µF  
V
SS  
1/2/3/4/5  
V
DD  
V
DDA  
V
REF  
V
REF+  
Analog:  
RCs, PLL,  
...  
10 nF  
+ 1 µF  
10 nF  
+ 1 µF  
V
ADC  
REF-  
V
SSA  
ai14125c  
26/75  
STM32F101x6, STM32F101x8, STM32F101xB  
Electrical characteristics  
5.1.7  
Current consumption measurement  
Figure 11. Current consumption measurement scheme  
I
_V  
DD BAT  
V
BAT  
I
DD  
V
DD  
V
DDA  
ai14126  
27/75  
Electrical characteristics  
STM32F101x6, STM32F101x8, STM32F101xB  
5.2  
Absolute maximum ratings  
Stresses above the absolute maximum ratings listed in Table 5: Voltage characteristics,  
Table 6: Current characteristics, and Table 7: Thermal characteristics may cause permanent  
damage to the device. These are stress ratings only and functional operation of the device  
at these conditions is not implied. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
Table 5.  
Symbol  
Voltage characteristics  
Ratings  
Min  
Max  
Unit  
External main supply voltage (including  
VDD VSS  
–0.3  
4.0  
(1)  
VDDA and VDD  
)
V
Input voltage on five volt tolerant pin(2)  
Input voltage on any other pin(2)  
VSS 0.3  
VSS 0.3  
50  
+5.5  
VDD+0.3  
50  
VIN  
|ΔVDDx  
|
Variations between different power pins  
mV  
Variations between all the different ground  
pins  
|VSSX VSS  
|
50  
50  
seeSection 5.3.11:Absolute  
maximum ratings (electrical  
sensitivity)  
Electrostatic discharge voltage (human  
body model)  
VESD(HBM)  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power  
supply, in the permitted range.  
2. IINJ(PIN) must never be exceeded (see Table 6: Current characteristics). This is implicitly insured if VIN  
maximum is respected. If VIN maximum cannot be respected, the injection current must be limited  
externally to the IINJ(PIN) value. A positive injection is induced by VIN>VDD while a negative injection is  
induced by VIN<VSS  
.
Table 6.  
Symbol  
IVDD  
IVSS  
Current characteristics  
Ratings  
Max.  
Unit  
Total current into VDD power lines (source)(1)  
Total current out of VSS ground lines (sink)(1)  
Output current sunk by any I/O and control pin  
Output current source by any I/Os and control pin  
Injected current on NRST pin  
150  
150  
25  
IIO  
25  
5
mA  
Injected current on High-speed external OSC_IN and Low-  
speed external OSC_IN pins  
(2)(3)  
IINJ(PIN)  
5
Injected current on any other pin(4)  
5
(2)  
ΣIINJ(PIN)  
Total injected current (sum of all I/O and control pins)(4)  
25  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power  
supply, in the permitted range.  
2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum  
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive  
injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS  
.
3. Negative injection disturbs the analog performance of the device. See note in Section 5.3.16: 12-bit ADC  
characteristics.  
4. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the  
positive and negative injected currents (instantaneous values). These results are based on  
characterization with ΣIINJ(PIN) maximum current injection on four I/O port pins of the device.  
28/75  
STM32F101x6, STM32F101x8, STM32F101xB  
Electrical characteristics  
Table 7.  
Thermal characteristics  
Ratings  
Symbol  
Value  
Unit  
TSTG  
TJ  
Storage temperature range  
–65 to +150  
150  
°C  
°C  
Maximum junction temperature  
5.3  
Operating conditions  
5.3.1  
General operating conditions  
Table 8.  
Symbol  
General operating conditions  
Parameter  
Conditions  
Min  
Max  
Unit  
fHCLK  
fPCLK1  
fPCLK2  
VDD  
Internal AHB clock frequency  
Internal APB1 clock frequency  
Internal APB2 clock frequency  
Standard operating voltage  
Backup operating voltage  
0
0
36  
36  
MHz  
0
36  
2
3.6  
V
V
VBAT  
1.8  
3.6  
LQFP100  
434  
444  
363  
1110  
85  
LQFP64  
Power dissipation at TA =  
85 °C(1)  
PD  
mW  
LQFP48  
VFQFPN36  
Maximum power dissipation –40  
°C  
°C  
°C  
TA  
TJ  
Ambient temperature  
Low power dissipation(2)  
–40  
–40  
105  
105  
Junction temperature range  
1. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Table 6.2: Thermal  
characteristics on page 68).  
2. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see  
Table 6.2: Thermal characteristics on page 68).  
5.3.2  
Operating conditions at power-up / power-down  
Subject to general operating conditions for T .  
A
Table 9.  
Symbol  
Operating conditions at power-up / power-down  
Parameter  
Conditions  
Min  
Max  
Unit  
VDD rise time rate  
VDD fall time rate  
0
tVDD  
µs/V  
20  
29/75  
Electrical characteristics  
STM32F101x6, STM32F101x8, STM32F101xB  
5.3.3  
Embedded reset and power control block characteristics  
The parameters given in Table 10 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 8.  
DD  
.
Table 10. Embedded reset and power control block characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ Max Unit  
PLS[2:0]=000 (rising edge)  
PLS[2:0]=000 (falling edge)  
PLS[2:0]=001 (rising edge)  
PLS[2:0]=001 (falling edge)  
PLS[2:0]=010 (rising edge)  
PLS[2:0]=010 (falling edge)  
PLS[2:0]=011 (rising edge)  
PLS[2:0]=011 (falling edge)  
PLS[2:0]=100 (rising edge)  
PLS[2:0]=100 (falling edge)  
PLS[2:0]=101 (rising edge)  
PLS[2:0]=101 (falling edge)  
PLS[2:0]=110 (rising edge)  
PLS[2:0]=110 (falling edge)  
PLS[2:0]=111 (rising edge)  
PLS[2:0]=111 (falling edge)  
2.1  
2
2.18 2.26  
2.08 2.16  
V
V
2.19 2.28 2.37  
2.09 2.18 2.27  
2.28 2.38 2.48  
2.18 2.28 2.38  
2.38 2.48 2.58  
2.28 2.38 2.48  
2.47 2.58 2.69  
2.37 2.48 2.59  
2.57 2.68 2.79  
2.47 2.58 2.69  
2.66 2.78 2.9  
2.56 2.68 2.8  
V
V
V
V
V
V
Programmable voltage  
detector level selection  
VPVD  
V
V
V
V
V
V
2.76 2.88  
3
V
2.66 2.78 2.9  
100  
V
(2)  
VPVDhyst  
VPOR/PDR  
VPDRhyst  
PVD hysteresis  
mV  
V
1.8(1)  
Falling edge  
Rising edge  
1.88 1.96  
Power on/power down  
reset threshold  
1.84 1.92 2.0  
40  
V
PDR hysteresis  
mV  
ms  
(2)  
tRSTTEMPO  
Reset temporization  
1.5  
2.5  
3.5  
1. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.  
2. Guaranteed by design, not tested in production.  
30/75  
STM32F101x6, STM32F101x8, STM32F101xB  
Electrical characteristics  
5.3.4  
Embedded reference voltage  
The parameters given in Table 11 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 8.  
DD  
Table 11. Embedded internal reference voltage  
Symbol  
Parameter  
Conditions  
Min  
Typ Max Unit  
VREFINT  
Internal reference voltage  
–40 °C < TA < +85 °C 1.16 1.20 1.24  
V
ADC sampling time when reading  
the internal reference voltage  
(1)  
TS_vrefint  
5.1  
17.1  
µs  
1. Shortest sampling time can be determined in the application by multiple iterations.  
5.3.5  
Supply current characteristics  
The current consumption is measured as described in Figure 11: Current consumption  
measurement scheme.  
Maximum current consumption  
The MCU is placed under the following conditions:  
All I/O pins are in input mode with a static value at V or V (no load)  
DD SS  
All peripherals are disabled except if it is explicitly mentioned  
The Flash access time is adjusted to f  
wait state from 24 to 36 MHz)  
frequency (0 wait state from 0 to 24 MHz, 1  
HCLK  
Prefetch in on (reminder: this bit must be set before clock setting and bus prescaling)  
When the peripherals are enabled f = f , f = f  
PCLK1  
HCLK/2 PCLK2  
HCLK  
The parameters given in Table 12 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 8.  
DD  
Table 12. Maximum current consumption in Run mode, code with data processing  
running from Flash  
Max(1)  
Symbol  
Parameter  
Conditions  
fHCLK  
Unit  
TA = 85 °C  
36 MHz  
28.6  
19.9  
14.7  
8.6  
External clock (2), all  
peripherals enabled  
24 MHz  
16 MHz  
8 MHz  
Supply current  
in Run mode  
IDD  
mA  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
19.8  
13.9  
10.7  
6.8  
External clock (4), all  
peripherals Disabled  
1. Data based on characterization results, not tested in production.  
2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz; external clock is 9 MHz for fHCLK = 36 MHz.  
31/75  
Electrical characteristics  
STM32F101x6, STM32F101x8, STM32F101xB  
Table 13. Maximum current consumption in Run mode, code with data processing  
running from RAM  
Max  
Symbol  
Parameter  
Conditions  
fHCLK  
Unit  
TA = 85 °C  
36 MHz(2)  
24 MHz(6)  
16 MHz(6)  
8 MHz(6)  
36 MHz  
24  
17.5  
12.5  
7.5  
mA  
External clock (1), all  
peripherals enabled  
Supply current in  
Run mode  
IDD  
16  
External clock(4) all  
24 MHz  
11.5  
8.5  
peripherals disabled(6)  
16 MHz  
8 MHz  
5.5  
1. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz; external clock is 9 MHz for fHCLK = 36 MHz.  
2. Based on characterization, not tested in production.  
Figure 12. Typical current consumption in Run mode versus frequency (at 3.6 V) -  
code with data processing running from RAM, peripherals enabled  
25  
20  
15  
36MHz  
16MHz  
8MHz  
10  
5
0
-40  
0
25  
70  
85  
Temperature (°C)  
32/75  
STM32F101x6, STM32F101x8, STM32F101xB  
Electrical characteristics  
Figure 13. Typical current consumption in Run mode versus frequency (at 3.6 V) -  
code with data processing running from RAM, peripherals disabled  
16  
14  
12  
10  
36MHz  
16MHz  
8MHz  
8
6
4
2
0
-40  
0
25  
70  
85  
Temperature (°C)  
Table 14. Maximum current consumption in Sleep mode, code running from Flash  
or RAM  
Max  
Symbol  
Parameter  
Conditions  
fHCLK  
Unit  
TA = 85 °C  
15.5  
36 MHz(2)  
24 MHz(5)  
16 MHz(5)  
8 MHz(5)  
36 MHz  
External clock(1) all  
peripherals enabled  
11.5  
8.5  
5.5  
5
Supply current in  
Sleep mode  
IDD  
mA  
External clock(4), all  
24 MHz  
4.5  
4
peripherals disabled(5)  
16 MHz  
8 MHz  
3
1. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz; external clock is 9 MHz for fHCLK = 36 MHz.  
2. Based on characterization, not tested in production.  
33/75  
Electrical characteristics  
STM32F101x6, STM32F101x8, STM32F101xB  
Table 15. Typical and maximum current consumptions in Stop and Standby modes  
Typ(1)  
Max  
Symbol  
Parameter  
Conditions  
Unit  
V
DD/ VBAT VDD/VBAT  
TA = 85 °C  
= 2.4 V  
= 3.3 V  
Regulator in Run mode,  
Low-speed and high-speed internal RC  
oscillators and high-speed oscillator  
OFF (no independent watchdog)  
23.5  
24  
200(2)  
Supply current in  
Stop mode  
Regulator in Low-Power mode,  
IDD  
Low-speed and high-speed internal RC  
oscillators and high-speed oscillator  
OFF (no independent watchdog)  
13.5  
14  
180(6)  
µA  
Low-speed internal RC oscillator and  
independent watchdog OFF, low-speed  
oscillator and RTC OFF  
Supply current in  
Standby mode(3)  
1.7  
1.1  
2
4(6)  
Backup domain  
supply current  
IDD_VBAT  
Low-speed oscillator and RTC ON  
1.4  
1.9(4)  
1. Typical values are measured at TA = 25 °C, VDD = 3.3 V, unless otherwise specified.  
2. Data based on characterization results, tested in production at VDDmax and fHCLK max.  
3. To have the Standby consumption with RTC ON, add IDD_VBAT (Low-speed oscillator and RTC ON) to IDD Standby (when  
DD is present the Backup Domain is powered by VDD supply).  
V
4. Data based on characterization results, not rested in production.  
Figure 14. Current consumption in Stop mode with regulator in Run mode versus temperature at  
V
= 3.3 V and 3.6 V  
DD  
Stop regulator ON  
140  
120  
100  
80  
3.3 V  
3.6 V  
60  
40  
20  
0
-45  
25  
70  
90  
Temperature (°C)  
34/75  
STM32F101x6, STM32F101x8, STM32F101xB  
Electrical characteristics  
Figure 15. Current consumption in Stop mode with regulator in Low-power mode versus  
temperature at V = 3.3 V and 3.6 V  
DD  
140  
120  
100  
80  
60  
40  
20  
0
3.3 V  
3.6 V  
-40  
0
25  
70  
85  
Temperature (°C)  
Figure 16. Current consumption in Standby mode versus temperature at V = 3.3 V and 3.6 V  
DD  
Standby mode  
3
2.5  
2
3.3 V  
1.5  
3.6 V  
1
0.5  
0
-45  
25  
70  
90  
Temperature (°C)  
35/75  
Electrical characteristics  
STM32F101x6, STM32F101x8, STM32F101xB  
Typical current consumption  
The MCU is placed under the following conditions:  
All I/O pins are in input mode with a static value at V or V (no load)  
DD SS  
All peripherals are disabled except if it is explicitly mentioned  
The Flash access time is adjusted to f  
wait state from 24 to 36 MHz)  
frequency (0 wait state from 0 to 24 MHz, 1  
HCLK  
Prefetch is on (reminder: this bit must be set before clock setting and bus prescaling)  
When the peripherals are enabled f = f , f = f , f  
=
HCLK/2 ADCCLK  
PCLK1  
HCLK/4 PCLK2  
f
/4  
PCLK2  
The parameters given in Table 16 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 8.  
DD  
Table 16. Typical current consumption in Run mode, code with data processing  
running from Flash  
Typ(1)  
Typ(1)  
Symbol Parameter  
Conditions  
fHCLK  
Unit  
All peripherals  
enabled(2)  
All peripherals  
disabled  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
19  
14.8  
10.1  
7.4  
12.9  
9.3  
5.5  
4.6  
External  
clock(3)  
4 MHz  
3.3  
2.8  
2 MHz  
2.2  
1.9  
1 MHz  
1.6  
1.45  
1.25  
1.06  
14.1  
9.5  
500 kHz  
125 kHz  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
1.3  
Supply  
1.08  
18.3  
12.2  
8.5  
IDD  
current in  
mA  
Run mode  
Running on  
high speed  
internal RC  
(HSI), AHB  
prescaler  
6.8  
4.9  
4
4 MHz  
2.7  
2.2  
used to  
2 MHz  
1.6  
1.4  
reduce the  
frequency  
1 MHz  
1.02  
0.73  
0.5  
0.9  
500 kHz  
125 kHz  
0.67  
0.48  
1. Typical values are measures at TA = 25 °C, VDD = 3.3 V.  
2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this  
consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).  
3. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.  
36/75  
STM32F101x6, STM32F101x8, STM32F101xB  
Electrical characteristics  
Table 17. Typical current consumption in Sleep mode, code with data processing  
code running from Flash or RAM  
Typ(1)  
Typ(1)  
Symbol Parameter  
Conditions  
fHCLK  
Unit  
All peripherals All peripherals  
enabled(2)  
disabled  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
7.6  
5.3  
3.8  
2.1  
1.6  
1.3  
3.1  
2.3  
1.8  
1.2  
1.1  
1
External clock(3)  
4 MHz  
2 MHz  
1 MHz  
1.11  
1.04  
0.98  
7
0.98  
0.96  
0.95  
2.5  
500 kHz  
125 kHz  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
Supply  
IDD  
current in  
mA  
Sleep mode  
4.8  
1.8  
3.2  
1.2  
Running on High  
Speed Internal  
RC (HSI), AHB  
prescaler used to  
reduce the  
1.6  
0.6  
4 MHz  
1
0.5  
2 MHz  
0.72  
0.56  
0.49  
0.43  
0.47  
0.44  
0.42  
0.41  
frequency  
1 MHz  
500 kHz  
125 kHz  
1. Typical values are measures at TA = 25 °C, VDD = 3.3 V.  
2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this  
consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).  
3. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.  
Table 18. Typical current consumption in Standby mode  
Typ(1)  
VDD  
Symbol  
Parameter  
Conditions  
Unit  
3.3 V  
2.4 V  
3.3 V  
2.4 V  
3.3 V  
2.4 V  
2
Low-speed internal RC oscillator and  
independent watchdog OFF  
1.5  
3.4  
2.6  
3.2  
2.4  
Supply current in Low-speed internal RC oscillator and  
Standby mode(2) independent watchdog ON  
IDD  
µA  
Low-speed internal RC oscillator ON,  
independent watchdog OFF  
1. Typical values are measures at TA = 25 °C.  
2. To obtain Standby consumption with RTC ON, add IDD_VBAT (Low-speed oscillator, RTC ON) to IDD  
Standby.  
37/75  
Electrical characteristics  
STM32F101x6, STM32F101x8, STM32F101xB  
On-chip peripheral current consumption  
The current consumption of the on-chip peripherals is given in Table 19. The MCU is placed  
under the following conditions:  
all I/O pins are in input mode with a static value at V or V (no load)  
DD SS  
all peripherals are disabled unless otherwise mentioned  
the given value is calculated by measuring the current consumption  
with all peripherals clocked off  
with only one peripheral clocked on  
ambient operating temperature and V supply voltage conditions summarized in  
DD  
Table 5.  
Table 19. Peripheral current consumption  
Peripheral  
Typical consumption at 25 °C(1)  
Unit  
TIM2  
0.6  
TIM3  
0.6  
TIM4  
0.6  
SPI2  
0.08  
0.21  
0.21  
0.18  
0.18  
0.21  
0.21  
0.21  
0.21  
0.21  
1.4  
APB1  
USART2  
USART3  
I2C1  
I2C2  
mA  
GPIO A  
GPIO B  
GPIO C  
GPIO D  
GPIO E  
ADC1(2)  
SPI1  
APB2  
0.24  
0.35  
USART1  
1. fHCLK = 36 MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK, default prescaler value for each peripheral.  
2. Specific conditions for ADC: fHCLK = 28 MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK, fADCCLK = fAPB2/2, ADON bit  
in the ADC_CR2 register is set to 1.  
38/75  
STM32F101x6, STM32F101x8, STM32F101xB  
Electrical characteristics  
5.3.6  
External clock source characteristics  
High-speed user external clock  
The characteristics given in Table 20 result from tests performed using an high-speed  
external clock source, and under ambient temperature and supply voltage conditions  
summarized in Table 8.  
Table 20. High-speed user external (HSE) clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
User external clock source  
frequency(1)  
fHSE_ext  
8
25  
MHz  
OSC_IN input pin high level  
voltage  
VHSEH  
VHSEL  
0.7VDD  
VSS  
VDD  
V
OSC_IN input pin low level  
voltage  
0.3VDD  
tw(HSE)  
tw(HSE)  
OSC_IN high or low time(1)  
OSC_IN rise or fall time(1)  
16  
ns  
tr(HSE)  
tf(HSE)  
5
1
OSC_IN Input leakage  
current  
IL  
VSS VIN VDD  
µA  
1. Value based on design simulation and/or technology characteristics. It is not tested in production.  
39/75  
Electrical characteristics  
STM32F101x6, STM32F101x8, STM32F101xB  
Low-speed user external clock  
The characteristics given in Table 21 result from tests performed using an low-speed  
external clock source, and under ambient temperature and supply voltage conditions  
summarized in Table 8.  
Table 21. Low-speed user external clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
User external clock source  
frequency(1)  
fLSE_ext  
32.768  
1000  
kHz  
OSC32_IN input pin high level  
voltage  
VLSEH  
VLSEL  
tw(LSE)  
0.7VDD  
VSS  
VDD  
V
OSC32_IN input pin low level  
voltage  
0.3VDD  
OSC32_IN high or low time(1)  
OSC32_IN rise or fall time(1)  
450  
tw(LSE)  
ns  
tr(LSE)  
tf(LSE)  
5
1
OSC32_IN Input leakage  
current  
IL  
VSS VIN VDD  
µA  
1. Value based on design simulation and/or technology characteristics. It is not tested in production.  
Figure 17. High-speed external clock source AC timing diagram  
V
HSEH  
90%  
10%  
V
HSEL  
t
t
t
W(HSE)  
t
t
W(HSE)  
r(HSE)  
f(HSE)  
T
HSE  
f
HSE_ext  
External  
clock source  
I
L
OSC _IN  
STM32F10xxx  
ai14127b  
40/75  
STM32F101x6, STM32F101x8, STM32F101xB  
Electrical characteristics  
Figure 18. Low-speed external clock source AC timing diagram  
V
LSEH  
90%  
10%  
V
LSEL  
t
t
t
W(LSE)  
t
t
W(LSE)  
r(LSE)  
f(LSE)  
T
LSE  
f
LSE_ext  
External  
clock source  
I
L
OSC32_IN  
STM32F10xxx  
ai14140c  
High-speed external clock  
The high-speed external (HSE) clock can be supplied with a 4 to 16 MHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on characterization  
results obtained with typical external components specified in Table 22. In the application,  
the resonator and the load capacitors have to be placed as close as possible to the oscillator  
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal  
resonator manufacturer for more details on the resonator characteristics (frequency,  
package, accuracy).  
(1)  
Table 22. HSE 4-16 MHz oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fOSC_IN Oscillator frequency  
4
8
16  
MHz  
RF  
Feedback resistor  
200  
kΩ  
CL1  
Recommended load capacitance versus  
RS = 30 Ω  
30  
pF  
equivalent serial resistance of the crystal (RS)(3)  
(2)  
CL2  
VDD = 3.3 V  
IN = VSS with 30 pF  
i2  
HSE driving current  
V
1
mA  
load  
(4)  
gm  
tSU(HSE)  
Oscillator transconductance  
Startup time  
Startup  
25  
mA/V  
ms  
VDD is stabilized  
2
(5)  
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.  
2. For CL1 and CL2 it is recommended to use high-quality ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for  
high-frequency applications, and selected to match the requirements of the crystal or resonator. CL1 and CL2, are usually  
the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and  
C
L2. PCB and MCU pin capacitance must be included when sizing CL1 and CL2 (10 pF can be used as a rough estimate of  
the combined pin and board capacitance).  
3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid  
environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into  
account if the MCU is used in tough humidity conditions.  
4. Based on characterization results, not tested in production.  
5. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is  
reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer  
41/75  
Electrical characteristics  
STM32F101x6, STM32F101x8, STM32F101xB  
Figure 19. Typical application with an 8 MHz crystal  
Resonator with  
integrated capacitors  
C
L1  
f
OSC_IN  
HSE  
Bias  
controlled  
gain  
8 MHz  
resonator  
R
F
STM32F10xxx  
OSC_OUT  
(1)  
R
EXT  
C
L2  
ai14128b  
1. REXT value depends on the crystal characteristics. Typical value is in the range of 5 to 6RS.  
Low-speed external clock  
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on characterization  
results obtained with typical external components specified in Table 23. In the application,  
the resonator and the load capacitors have to be placed as close as possible to the oscillator  
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal  
resonator manufacturer for more details on the resonator characteristics (frequency,  
package, accuracy).  
Table 23. LSE oscillator characteristics ( LSE = 32.768 kHz)  
f
Symbol  
Parameter  
Feedback resistor  
Conditions  
Min  
Typ  
Max  
Unit  
RF  
5
MΩ  
Recommended load capacitance  
versus equivalent serial  
CL1  
CL2  
RS = 30 KΩ  
15  
pF  
µA  
resistance of the crystal (RS)(1)  
VDD = 3.3 V  
I2  
LSE driving current  
1.4  
VIN = VSS  
gm  
Oscillator transconductance  
Startup time  
5
µA/V  
s
(2)  
tSU(LSE)  
VDD is stabilized  
3
1. The oscillator selection can be optimized in terms of supply current using an high quality resonator with  
small RS value for example MSIV-TIN32.768 kHz. Refer to crystal manufacturer for more details  
2. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized  
32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary  
significantly with the crystal manufacturer  
Figure 20. Typical application with a 32.768 kHz crystal  
Resonator with  
integrated capacitors  
C
L1  
f
OSC32_IN  
LSE  
Bias  
controlled  
gain  
32.768 KHz  
resonator  
R
F
STM32F10xxx  
OSC32_OUT  
C
L2  
ai14129b  
42/75  
STM32F101x6, STM32F101x8, STM32F101xB  
Electrical characteristics  
5.3.7  
Internal clock source characteristics  
The parameters given in Table 24 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 8.  
DD  
High-speed internal (HSI) RC oscillator  
(1)  
Table 24. HSI oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fHSI  
Frequency  
8
1
1
1
1
MHz  
%
TA = –40 to 85 °C  
TA = –10 to 85 °C  
TA = 0 to 70 °C  
at TA = 25 °C  
3
2.5  
2.2  
2
%
ACCHSI Accuracy of HSI oscillator  
%
%
tsu(HSI) HSI oscillator startup time  
1
2
µs  
µA  
IDD(HSI) HSI oscillator power consumption  
80  
100  
1.  
VDD = 3.3 V, TA = 40 to 85 °C unless otherwise specified.  
LSI low speed internal RC oscillator  
(1)  
Table 25. LSI oscillator characteristics  
Min(2)  
Symbol  
Parameter  
Frequency  
Conditions  
Typ  
Max  
Unit  
fLSI  
30  
40  
60  
85  
kHz  
µs  
tsu(LSI) LSI oscillator startup time  
LSI oscillator power  
IDD(LSI)  
0.65  
1.2  
µA  
consumption  
1.  
VDD = 3 V, TA = 40 to 85 °C unless otherwise specified.  
2. Value based on device characterization, not tested in production.  
43/75  
Electrical characteristics  
STM32F101x6, STM32F101x8, STM32F101xB  
Wakeup time from low power mode  
The wakeup times given in Table 26 is measured on a wakeup phase with a 8-MHz HSI RC  
oscillator. The clock source used to wake up the device depends from the current operating  
mode:  
Stop or Standby mode: the clock source is the RC oscillator  
Sleep mode: the clock source is the clock that was set before entering Sleep mode.  
All timings are derived from tests performed under ambient temperature and V supply  
DD  
voltage conditions summarized in Table 8.  
Table 26. Low-power mode wakeup timings  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
(1)  
Wakeup from Sleep mode  
Wakeup on HSI RC clock  
1.8  
µs  
tWUSLEEP  
Wakeup from Stop mode  
(regulator in run mode)  
HSI RC wakeup time = 2 µs  
3.6  
5.4  
(1)  
µs  
µs  
tWUSTOP  
HSI RC wakeup time = 2 µs,  
Regulator wakeup from LP mode  
time = 5 µs  
Wakeup from Stop mode  
(regulator in low-power mode)  
HSI RC wakeup time = 2 µs,  
Regulator wakeup from power down  
time = 38 µs  
(1)  
tWUSTDBY  
Wakeup from Standby mode  
50  
1. The wakeup times are measured from the wakeup event to the point at which the user application code  
reads the first instruction.  
5.3.8  
PLL characteristics  
The parameters given in Table 27 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 8.  
DD  
Table 27. PLL characteristics  
Value  
Test  
conditions  
Symbol  
Parameter  
Unit  
Min  
Typ Max(1)  
PLL input clock  
8.0  
MHz  
%
fPLL_IN  
PLL input clock duty cycle  
PLL multiplier output clock  
PLL lock time  
40  
16  
60  
fPLL_OUT  
tLOCK  
36  
MHz  
µs  
200  
1. Data based on device characterization, not tested in production.  
44/75  
STM32F101x6, STM32F101x8, STM32F101xB  
Electrical characteristics  
5.3.9  
Memory characteristics  
Flash memory  
The characteristics are given at T = 40 to 85 °C unless otherwise specified.  
A
Table 28. Flash memory characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max(1) Unit  
tprog  
tERASE  
tME  
16-bit programming time  
Page (1kB) erase time  
Mass erase time  
TA = 40 to +85 °C  
TA = 40 to +85 °C  
TA = 40 to +85 °C  
40  
20  
20  
52.5  
70  
40  
40  
µs  
ms  
ms  
Read mode  
HCLK = 36MHz with 2  
wait states, VDD = 3.3 V  
f
20  
5
mA  
mA  
Write / Erase modes  
IDD  
Supply current  
fHCLK = 36 MHz, VDD  
=
3.3 V  
Power-down mode / Halt,  
DD = 3.0 to 3.6 V  
50  
µA  
V
V
Vprog  
Programming voltage  
2
3.6  
1. Values based on characterization and not tested in production.  
Table 29. Flash memory endurance and data retention  
Value  
Typ  
Symbol  
Parameter  
Conditions  
Unit  
Min(1)  
Max  
NEND Endurance  
tRET Data retention  
TA = –40 °C to 85 °C  
TA = 85 °C, 1 kcycle(2)  
TA = 55 °C, 10 kcycle(4)  
kcycles  
Years  
10  
30  
20  
1. Values based on characterization not tested in production.  
2. Cycling performed over the whole temperature range.  
45/75  
Electrical characteristics  
STM32F101x6, STM32F101x8, STM32F101xB  
5.3.10  
EMC characteristics  
Susceptibility tests are performed on a sample basis during device characterization.  
Functional EMS (Electromagnetic susceptibility)  
While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the  
device is stressed by two electromagnetic events until a failure occurs. The failure is  
indicated by the LEDs:  
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until  
a functional disturbance occurs. This test is compliant with the IEC 1000-4-2 standard.  
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V and  
DD  
V
through a 100 pF capacitor, until a functional disturbance occurs. This test is  
SS  
compliant with the IEC 1000-4-4 standard.  
A device reset allows normal operations to be resumed.  
The test results are given in Table 30. They are based on the EMS levels and classes  
defined in application note AN1709.  
Table 30. EMS characteristics  
Symbol  
Parameter  
Conditions  
Level/Class  
VDD = 3.3 V, TA = +25 °C,  
fHCLK=48 MHz  
conforms to IEC 1000-4-2  
Voltage limits to be applied on any I/O pin to  
induce a functional disturbance  
VFESD  
2B  
Fast transient voltage burst limits to be  
VDD = 3.3 V, TA = +25 °C,  
VEFTB  
applied through 100 pF on VDD and VSS pins fHCLK = 48 MHz  
to induce a functional disturbance  
4A  
conforms to IEC 1000-4-4  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and pre  
qualification tests in relation with the EMC level requested for his application.  
Software recommendations  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical Data corruption (control registers...)  
Prequalification trials  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1  
second. To complete these trials, ESD stress can be applied directly on the device, over the  
range of specification values. When unexpected behavior is detected, the software can be  
hardened to prevent unrecoverable errors occurring (see application note AN1015).  
46/75  
STM32F101x6, STM32F101x8, STM32F101xB  
Electromagnetic Interference (EMI)  
Electrical characteristics  
The electromagnetic field emitted by the device is monitored while a simple application is  
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with SAE J  
1752/3 standard which specifies the test board and the pin loading.  
Table 31. EMI characteristics  
Max vs. [fHSE/fHCLK  
]
Monitored  
Symbol Parameter  
Conditions  
Unit  
frequency band  
8/36 MHz  
0.1 MHz to 30 MHz  
30 MHz to 130 MHz  
130 MHz to 1GHz  
SAE EMI Level  
7
8
VDD = 3.3 V, TA = 25 °C,  
LQFP100 package  
compliant with  
dBµV  
-
SEMI  
Peak level  
13  
3.5  
SAE J 1752/3  
5.3.11  
Absolute maximum ratings (electrical sensitivity)  
Based on three different tests (ESD, LU) using specific measurement methods, the device is  
stressed in order to determine its performance in terms of electrical sensitivity.  
Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test  
conforms to the JESD22-A114/C101 standard.  
Table 32. ESD absolute maximum ratings  
Symbol  
Ratings  
Conditions  
Class Maximum value(1) Unit  
TA = +25 °C  
conforming to  
JESD22-A114  
Electrostatic discharge  
voltage (human body model)  
VESD(HBM)  
2
2000  
500  
V
TA = +25 °C  
conforming to  
JESD22-C101  
Electrostatic discharge  
voltage (charge device model)  
VESD(CDM)  
II  
1. Values based on characterization results, not tested in production.  
Static latch-up  
Two complementary static tests are required on six parts to assess the latch-up  
performance:  
A supply overvoltage is applied to each power supply pin  
A current injection is applied to each input, output and configurable I/O pin  
These tests are compliant with EIA/JESD 78 IC latch-up standard.  
Table 33. Electrical sensitivities  
Symbol  
Parameter  
Conditions  
Class  
II level A  
LU  
Static latch-up class  
TA = +105 °C conforming to JESD78A  
47/75  
Electrical characteristics  
STM32F101x6, STM32F101x8, STM32F101xB  
5.3.12  
I/O port characteristics  
General input/output characteristics  
Unless otherwise specified, the parameters given in Table 34 are derived from tests  
performed under the conditions summarized in Table 8. All I/Os are CMOS and TTL  
compliant.  
Table 34. I/O static characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VIL  
Input low level voltage(1)  
–0.5  
0.8  
V
Standard IO input high level  
voltage(1)  
2
2
VDD+0.5  
5.5V  
TTL ports  
VIH  
IO FT(2) input high level  
voltage(1)  
VIL  
VIH  
Input low level voltage(1)  
Input high level voltage(1)  
–0.5  
0.35 VDD  
VDD+0.5  
CMOS ports  
V
0.65 VDD  
Standard IO Schmitt trigger  
voltage hysteresis(3)  
200  
mV  
mV  
Vhys  
IO FT Schmitt trigger voltage  
hysteresis(3)  
(4)  
5% VDD  
VSS VIN VDD  
Standard I/Os  
1
3
Ilkg  
Input leakage current (4)  
µA  
VIN = 5 V  
I/O FT  
Weak pull-up equivalent  
resistor(5)  
RPU  
VIN = VSS  
VIN = VDD  
30  
30  
40  
50  
50  
kΩ  
Weak pull-down equivalent  
resistor(6)  
RPD  
CIO  
40  
5
kΩ  
I/O pin capacitance  
pF  
1. Values based on characterization results, and not tested in production.  
2. FT = Five-volt tolerant.  
3. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested.  
4. With a minimum of 100 mV.  
5. Leakage could be higher than max. if negative current is injected on adjacent pins.  
6. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable  
PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimum (~10% order).  
48/75  
STM32F101x6, STM32F101x8, STM32F101xB  
Output driving current  
Electrical characteristics  
The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink  
+20 mA (with a relaxed V ).  
OL  
In the user application, the number of I/O pins which can drive current must be limited to  
respect the absolute maximum rating specified in Section 5.2:  
The sum of the currents sourced by all the I/Os on V  
plus the maximum Run  
DD,  
consumption of the MCU sourced on V  
cannot exceed the absolute maximum rating  
DD,  
I
(see Table 6).  
VDD  
The sum of the currents sunk by all the I/Os on V plus the maximum Run  
SS  
consumption of the MCU sunk on V cannot exceed the absolute maximum rating  
SS  
I
(see Table 6).  
VSS  
Output voltage levels  
Unless otherwise specified, the parameters given in Table 35 are derived from tests  
performed under ambient temperature and V supply voltage conditions summarized in  
DD  
Table 8. All I/Os are CMOS and TTL compliant.  
Table 35. Output voltage characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max Unit  
Output Low level voltage for an I/O pin  
when 8 pins are sunk at the same time  
(1)  
0.4  
V
VOL  
TTL port,  
IIO = +8 mA,  
2.7 V < VDD < 3.6 V  
Output High level voltage for an I/O pin  
when 8 pins are sourced at the same time  
(2)  
VDD–0.4  
VOH  
Output low level voltage for an I/O pin  
when 8 pins are sunk at the same time  
(1)  
0.4  
V
VOL  
CMOS port  
IIO = +8 mA  
Output high level voltage for an I/O pin  
when 8 pins are sourced at the same time  
(2)  
2.7 V < VDD < 3.6 V  
2.4  
VOH  
Output low level voltage for an I/O pin  
when 8 pins are sunk at the same time  
(1)  
1.3  
V
VOL  
IIO = +20 mA(3)  
2.7 V < VDD < 3.6 V  
Output high level voltage for an I/O pin  
when 8 pins are sourced at the same time  
(2)  
VDD–1.3  
VOH  
Output low level voltage for an I/O pin  
when 8 pins are sunk at the same time  
(1)  
0.4  
V
VOL  
IIO = +6 mA(3)  
2 V < VDD < 2.7 V  
Output high level voltage for an I/O pin  
when 8 pins are sourced at the same time  
(2)  
VDD–0.4  
VOH  
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 6  
and the sum of IIO (I/O ports and control pins) must not exceed IVSS  
.
2. The IIO current sourced by the device must always respect the absolute maximum rating specified in  
Table 6 and the sum of IIO (I/O ports and control pins) must not exceed IVDD  
.
3. Based on characterization data, not tested in production.  
49/75  
Electrical characteristics  
STM32F101x6, STM32F101x8, STM32F101xB  
Input/output AC characteristics  
The definition and values of input/output AC characteristics are given in Figure 21 and  
Table 36, respectively.  
Unless otherwise specified, the parameters given in Table 36 are derived from tests  
performed under ambient temperature and V supply voltage conditions summarized in  
DD  
Table 8.  
(1)  
Table 36. I/O AC characteristics  
MODEx  
[1:0] bit Symbol  
Parameter  
Conditions  
Max Unit  
value(1)  
fmax(IO)out Maximum frequency(2)  
CL = 50 pF, VDD = 2 V to 3.6 V  
2
MHz  
ns  
Output high to low level fall  
tf(IO)out  
time  
125(3)  
10  
01  
CL = 50 pF, VDD = 2 V to 3.6 V  
CL= 50 pF, VDD = 2 V to 3.6 V  
CL= 50 pF, VDD = 2 V to 3.6 V  
Output low to high level rise  
tr(IO)out  
time  
125(3)  
10  
fmax(IO)out Maximum frequency(2)  
MHz  
ns  
Output high to low level fall  
tf(IO)out  
time  
25(3)  
Output low to high level rise  
tr(IO)out  
time  
25(3)  
CL= 30 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 2 V to 2.7 V  
50  
30  
20  
MHz  
MHz  
MHz  
Fmax(IO)out Maximum Frequency(2)  
CL = 30 pF, VDD = 2.7 V to 3.6 V 5(3)  
CL = 50 pF, VDD = 2.7 V to 3.6 V 8(3)  
Output high to low level fall  
11  
tf(IO)out  
time  
CL = 50 pF, VDD = 2 V to 2.7 V  
12(3)  
ns  
CL = 30 pF, VDD = 2.7 V to 3.6 V 5(3)  
CL = 50 pF, VDD = 2.7 V to 3.6 V 8(3)  
Output low to high level rise  
tr(IO)out  
time  
CL = 50 pF, VDD = 2 V to 2.7 V  
12(3)  
Pulse width of external  
tEXTIpw signals detected by the  
EXTI controller  
-
10  
ns  
1. The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F10xxx reference manual for a  
description of GPIO Port configuration register.  
2. The maximum frequency is defined in Figure 21.  
3. Values based on design simulation and validated on silicon, not tested in production.  
50/75  
STM32F101x6, STM32F101x8, STM32F101xB  
Figure 21. I/O AC characteristics definition  
Electrical characteristics  
90%  
10 %  
50%  
50%  
90%  
10%  
t
EXTERNAL  
OUTPUT  
ON 50pF  
t
r(IO)out  
r(IO)out  
T
Maximum frequency is achieved if (t + t ) £ 2/3)T and if the duty cycle is (45-55%)  
r
f
when loaded by 50pF  
ai14131  
5.3.13  
NRST pin characteristics  
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up  
resistor, R (see Table 34).  
PU  
Unless otherwise specified, the parameters given in Table 37 are derived from tests  
performed under ambient temperature and V supply voltage conditions summarized in  
DD  
Table 8.  
Table 37. NRST pin characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VIL(NRST) NRST Input low level voltage  
VIH(NRST) NRST Input high level voltage  
–0.5  
2
0.8  
V
VDD+0.5  
NRST Schmitt trigger voltage  
Vhys(NRST)  
hysteresis  
200  
40  
RPU  
Weak pull-up equivalent resistor(1)  
VIN = VSS  
30  
50  
kΩ  
ns  
ns  
VF(NRST) NRST Input filtered pulse(2)  
100  
VNF(NRST) NRST Input not filtered pulse(2)  
300  
1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to  
the series resistance must be minimum (~10% order).  
2. Values guaranteed by design, not tested in production.  
Figure 22. Recommended NRST pin protection  
V
DD  
External  
reset circuit  
(1)  
R
PU  
(2)  
Internal Reset  
NRST  
FILTER  
0.1 µF  
STM32F10xxx  
ai14132b  
1. The reset network protects the device against parasitic resets.  
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in  
Table 37. Otherwise the reset will not be taken into account by the device.  
51/75  
Electrical characteristics  
STM32F101x6, STM32F101x8, STM32F101xB  
5.3.14  
TIM timer characteristics  
The parameters given in Table 38 are guaranteed by fabrication.  
Refer to Section 5.3.12: I/O port characteristics for details on the input/output alternate  
function characteristics (output compare, input capture, external clock, PWM output).  
(1)  
Table 38. TIMx characteristics  
Symbol  
Parameter  
Conditions  
Min  
1
Max  
Unit  
tTIMxCLK  
tres(TIM)  
Timer resolution time  
fTIMxCLK = 36 MHz  
TIMxCLK = 36 MHz  
27.8  
0
ns  
MHz  
MHz  
bit  
f
TIMxCLK/2  
18  
Timer external clock  
frequency on CH1 to CH4  
fEXT  
f
0
ResTIM  
Timer resolution  
16  
16-bit counter clock period  
when internal clock is  
selected  
tTIMxCLK  
1
65536  
1820  
tCOUNTER  
fTIMxCLK = 36 MHz  
fTIMxCLK = 36 MHz  
0.0278  
µs  
tTIMxCLK  
s
65536 × 65536  
119.2  
tMAX_COUNT  
Maximum possible count  
1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3 and TIM4 timers.  
5.3.15  
Communications interfaces  
I2C interface characteristics  
Unless otherwise specified, the parameters given in Table 39 are derived from tests  
performed under ambient temperature, f  
frequency and V supply voltage conditions  
PCLK1  
DD  
summarized in Table 8.  
2
The STM32F101xx Medium-density access line I C interface meets the requirements of the  
2
standard I C communication protocol with the following restrictions: t  
he I/O pins SDA and  
SCL are mapped to are not “true” open-drain. When configured as open-drain, the PMOS  
connected between the I/O pin and V is disabled, but is still present.  
DD  
2
The I C characteristics are described in Table 39. Refer also to  
Section 5.3.12: I/O port  
for more details on the input/output alternate function characteristics (SDA  
characteristics  
and SCL)  
.
52/75  
STM32F101x6, STM32F101x8, STM32F101xB  
Electrical characteristics  
2
Table 39. I C characteristics  
Standard mode I2C(1) Fast mode I2C(1)(2)  
Symbol  
Parameter  
Unit  
Min  
Max  
Min  
Max  
tw(SCLL) SCL clock low time  
tw(SCLH) SCL clock high time  
tsu(SDA) SDA setup time  
4.7  
4.0  
1.3  
0.6  
100  
0(4)  
µs  
250  
0(3)  
th(SDA)  
SDA data hold time  
900(3)  
300  
tr(SDA)  
tr(SCL)  
ns  
SDA and SCL rise time  
1000  
300  
20+0.1Cb  
tf(SDA)  
tf(SCL)  
SDA and SCL fall time  
Start condition hold time  
20+0.1Cb  
0.6  
300  
th(STA)  
4.0  
4.7  
4.0  
4.7  
µs  
Repeated Start condition setup  
time  
tsu(STA)  
0.6  
tsu(STO) Stop condition setup time  
0.6  
µs  
µs  
pF  
Stop to Start condition time (bus  
tw(STO:STA)  
free)  
1.3  
Cb  
Capacitive load for each bus line  
400  
400  
Values based on standard I2C protocol requirement, not tested in production.  
1.  
2. fPCLK1 must be higher than 2 MHz to achieve the maximum standard mode I2C frequency. It must be  
higher than 4 MHz to achieve the maximum fast mode I2C frequency.  
The maximum hold time of the Start condition has only to be met if the interface does not stretch the low  
period of SCL signal.  
3.  
4.  
The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the  
undefined region of the falling edge of SCL.  
53/75  
Electrical characteristics  
STM32F101x6, STM32F101x8, STM32F101xB  
2
(1)  
Figure 23. I C bus AC waveforms and measurement circuit  
V
V
DD  
DD  
STM32F10xxx  
4.7kΩ  
4.7kΩ  
100 Ω  
100 Ω  
SDA  
SCL  
I²C bus  
START REPEATED  
START  
START  
t
su(STA)  
SDA  
t
t
t
r(SDA)  
f(SDA)  
su(SDA)  
t
su(STA:STO)  
STOP  
t
t
t
w(SCKL)  
h(SDA)  
h(STA)  
SCL  
t
t
t
su(STO)  
r(SCK)  
t
f(SCK)  
w(SCKH)  
ai14127c  
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD  
.
(1)(2)  
Table 40. SCL frequency (f  
fSCL (kHz)  
= 36 MHz, VDD = 3.3 V)  
PCLK1  
I2C_CCR value  
RP = 4.7 kΩ  
400  
300  
200  
100  
50  
0x801E  
0x8028  
0x803C  
0x00B4  
0x0168  
0x0384  
20  
1. RP = External pull-up resistance, fSCL = I2C speed,  
2. For speeds around 200 kHz, the tolerance on the achieved speed is of 5%. For other speed ranges, the  
tolerance on the achieved speed 2%. These variations depend on the accuracy of the external  
components used to design the application.  
54/75  
STM32F101x6, STM32F101x8, STM32F101xB  
SPI interface characteristics  
Electrical characteristics  
Unless otherwise specified, the parameters given in Table 41 are derived from tests  
performed under ambient temperature, f  
frequency and V supply voltage conditions  
PCLKx  
DD  
summarized in Table 8.  
Refer to Section 5.3.12: I/O port characteristics for more details on the input/output alternate  
function characteristics (NSS, SCK, MOSI, MISO).  
(1)  
Table 41. SPI characteristics  
Symbol  
Parameter  
Conditions  
Master mode  
Min  
Max  
Unit  
0
0
18  
18  
fSCK  
1/tc(SCK)  
SPI clock frequency  
MHz  
Slave mode  
tr(SCK)  
tf(SCK)  
SPI clock rise and fall  
time  
Capacitive load: C = 30 pF  
8
(2)  
tsu(NSS)  
NSS setup time  
NSS hold time  
Slave mode  
Slave mode  
4 tPCLK  
18  
(2)  
th(NSS)  
(2)  
tw(SCKH)  
tw(SCKL)  
Master mode, fPCLK = 36 MHz,  
presc = 4  
SCK high and low time  
50  
60  
(2)  
SPI1  
SPI2  
1
5
Data input setup time  
Master mode  
(2)  
tsu(MI)  
tsu(SI)  
th(MI)  
Data input setup time  
Slave mode  
(2)  
1
SPI1  
SPI2  
1
5
Data input hold time  
Master mode  
(2)  
ns  
Data input hold time  
Slave mode  
(2)  
th(SI)  
3
0
Slave mode, fPCLK = 36 MHz,  
presc = 4  
55  
(2)(3)  
ta(SO)  
Data output access time  
Slave mode, fPCLK = 24 MHz  
0
4 tPCLK  
(2)(4)  
tdis(SO)  
Data output disable time Slave mode  
10  
(2)(1)  
tv(SO)  
Data output valid time  
Data output valid time  
Slave mode (after enable edge)  
25  
3
Master mode (after enable  
edge)  
(2)(1)  
(2)  
tv(MO)  
th(SO)  
Slave mode (after enable edge)  
25  
4
Data output hold time  
Master mode (after enable  
edge)  
(2)  
th(MO)  
1. Remapped SPI1 characteristics to be determined.  
2. Values based on design simulation and/or characterization results, and not tested in production.  
3. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate  
the data.  
4. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put  
the data in Hi-Z  
55/75  
Electrical characteristics  
STM32F101x6, STM32F101x8, STM32F101xB  
Figure 24. SPI timing diagram - slave mode and CPHA=0  
NSS input  
t
c(SCK)  
t
t
h(NSS)  
SU(NSS)  
CPHA=0  
CPOL=0  
t
t
w(SCKH)  
w(SCKL)  
CPHA=0  
CPOL=1  
t
t
t
t
t
dis(SO)  
v(SO)  
r(SCK)  
f(SCK)  
h(SO)  
t
a(SO)  
MISO  
OUT PUT  
MSB O UT  
BI T6 OUT  
BIT1 IN  
LSB OUT  
t
su(SI)  
MOSI  
M SB IN  
LSB IN  
INPUT  
t
h(SI)  
ai14134b  
(1)  
Figure 25. SPI timing diagram - slave mode and CPHA=1  
NSS input  
t
t
t
SU(NSS)  
t
c(SCK)  
h(NSS)  
CPHA=1  
CPOL=0  
w(SCKH)  
CPHA=1  
CPOL=1  
t
w(SCKL)  
t
t
r(SCK)  
f(SCK)  
t
t
t
v(SO)  
h(SO)  
dis(SO)  
t
a(SO)  
MISO  
OUT PUT  
MSB O UT  
BI T6 OUT  
LSB OUT  
t
t
su(SI)  
h(SI)  
MOSI  
M SB IN  
BIT1 IN  
LSB IN  
INPUT  
ai14135  
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD  
.
56/75  
STM32F101x6, STM32F101x8, STM32F101xB  
Figure 26. SPI timing diagram - master mode  
Electrical characteristics  
(1)  
High  
NSS input  
t
c(SCK)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
t
t
t
t
w(SCKH)  
w(SCKL)  
r(SCK)  
f(SCK)  
t
su(MI)  
MISO  
INPUT  
MSBIN  
BIT6 IN  
LSB IN  
t
h(MI)  
MOSI  
M SB OUT  
BIT1 OUT  
LSB OUT  
OUTUT  
t
t
v(MO)  
h(MO)  
ai14136  
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD  
.
57/75  
Electrical characteristics  
STM32F101x6, STM32F101x8, STM32F101xB  
5.3.16  
12-bit ADC characteristics  
Unless otherwise specified, the parameters given in Table 42 are derived from tests  
performed under ambient temperature, f  
frequency and V  
supply voltage  
PCLK2  
DDA  
conditions summarized in Table 8.  
Note:  
It is recommended to perform a calibration after each power-up.  
Table 42. ADC characteristics  
Symbol  
Parameter  
Conditions  
fADC = 14 MHz  
fADC = 14 MHz  
Min  
Typ  
Max  
Unit  
VDDA  
ADC power supply  
2.4  
2.4  
3.6  
V
V
VREF+ Positive reference voltage  
VDDA  
Current on the VREF input  
IVREF  
pin  
160(1) 220(1)  
µA  
fADC  
ADC clock frequency  
Sampling rate  
0.6  
14  
1
MHz  
MHz  
(2)  
0.05  
fS  
823  
17  
kHz  
(2)  
External trigger frequency  
Conversion voltage range(3)  
fTRIG  
1/fADC  
0 (VSSA or VREF-  
tied to ground)  
VAIN  
VREF+  
V
(2)  
RAIN  
External input impedance  
Sampling switch resistance  
See Equation 1 and Table 43  
kΩ  
kΩ  
(2)  
1
RADC  
Internal sample and hold  
capacitor  
(2)  
5
pF  
CADC  
5.9  
83  
µs  
1/fADC  
µs  
(2)  
Calibration time  
tCAL  
0.214  
Injection trigger conversion  
latency  
(2)  
fADC = 14 MHz  
tlat  
3(4)  
0.143  
2(4)  
1/fADC  
µs  
Regular trigger conversion  
latency  
(2)  
fADC = 14 MHz  
fADC = 14 MHz  
tlatr  
1/fADC  
µs  
0.107  
1.5  
0
17.1  
239.5  
1
(2)  
Sampling time  
Power-up time  
tS  
1/fADC  
µs  
(2)  
tSTAB  
0
1
18  
µs  
Total conversion time  
(including sampling time)  
(2)  
fADC = 14 MHz  
tCONV  
14 to 252 (tS for sampling +12.5 for  
successive approximation)  
1/fADC  
1. Data based on characterization results, not tested in production.  
2. Guaranteed by design, not tested in production.  
3. VREF+ can be internally connected to VDDA and VREF- can be internally connected to VSSA, depending on the package.  
Refer to Section 3: Pin descriptions for further details.  
4. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 42.  
58/75  
STM32F101x6, STM32F101x8, STM32F101xB  
Electrical characteristics  
Equation 1: R  
max formula:  
AIN  
TS  
RAIN < --------------------------------------------------------------- – RADC  
fADC × CADC × ln(2N + 2  
)
The formula above (Equation 1) is used to determine the maximum external impedance allowed for an  
error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).  
(1)  
Table 43.  
R
max for f  
= 10 MHz  
AIN  
ADC  
Ts (cycles)  
tS (µs)  
RAIN max (kΩ)  
1.5  
0.11  
1.2  
10  
7.5  
0.54  
0.96  
2.04  
2.96  
3.96  
5.11  
17.1  
13.5  
28.5  
41.5  
55.5  
71.5  
239.5  
19  
41  
60  
80  
104  
350  
1. Data guaranteed by design, not tested in production.  
(1)  
Table 44. ADC accuracy - limited test conditions  
Symbol  
Parameter  
Test conditions  
Typ  
Max(2)  
Unit  
ET  
EO  
EG  
ED  
Total unadjusted error(3)  
Offset error(3)  
fPCLK2 = 56 MHz,  
1.3  
1
2
1.5  
1.5  
1
fADC = 14 MHz, RAIN < 10 kΩ,  
VDDA = 3 V to 3.6 V  
TA = 25 °C  
Gain error(3)  
0.5  
0.7  
LSB  
Differential linearity error(3)  
Measurements made after  
ADC calibration  
VREF+ = VDDA  
EL  
Integral linearity error(3)  
0.8  
1.5  
1. ADC DC accuracy values are measured after internal calibration.  
2. Data based on characterization, not tested in production.  
3. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-  
robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion  
being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to  
standard analog pins which may potentially inject negative current.  
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 5.3.12 does not  
affect the ADC accuracy.  
59/75  
Electrical characteristics  
STM32F101x6, STM32F101x8, STM32F101xB  
(1) (2)  
Table 45. ADC accuracy  
Symbol  
Parameter  
Test conditions  
Typ  
Max(3)  
Unit  
ET  
EO  
EG  
ED  
EL  
Total unadjusted error(4)  
Offset error(3)  
2
5
2.5  
3
fPCLK2 = 56 MHz,  
fADC = 14 MHz, RAIN < 10 kΩ,  
VDDA = 2.4 V to 3.6 V  
1.5  
1.5  
1
Gain error(3)  
LSB  
Measurements made after  
ADC calibration  
Differential linearity error(3)  
Integral linearity error(3)  
2
1.5  
3
1. ADC DC accuracy values are measured after internal calibration.  
2. Better performance could be achieved in restricted VDD, frequency, VREF and temperature ranges.  
3. Data based on characterization, not tested in production.  
4. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-  
robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion  
being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to  
standard analog pins which may potentially inject negative current.  
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 5.3.12 does not  
affect the ADC accuracy.  
Figure 27. ADC accuracy characteristics  
V
V
DDA  
REF+  
[1LSB  
=
(or  
depending on package)]  
IDEAL  
4096  
4096  
EG  
(1) Example of an actual transfer curve  
(2) The ideal transfer curve  
4095  
4094  
4093  
(3) End point correlation line  
(2)  
ET=Total Unadjusted Error: maximum deviation  
ET  
between the actual and the ideal transfer curves.  
(3)  
7
6
5
4
3
2
1
EO=Offset Error: deviation between the first actual  
transition and the first ideal one.  
(1)  
EG=Gain Error: deviation between the last ideal  
transition and the last actual one.  
EO  
EL  
ED=Differential Linearity Error: maximum deviation  
between actual steps and the ideal one.  
EL=Integral Linearity Error: maximum deviation  
between any actual transition and the end point  
correlation line.  
ED  
1 LSBIDEAL  
0
1
2
3
4
5
6
7
4093 4094 4095 4096  
VDDA  
VSSA  
ai14395b  
60/75  
STM32F101x6, STM32F101x8, STM32F101xB  
Figure 28. Typical connection diagram using the ADC  
Electrical characteristics  
V
DD  
STM32F10xxx  
V
0.6 V  
T
(1)  
(1)  
R
R
I
AIN  
ADC  
AINx  
12-bit A/D  
conversion  
C
(1)  
V
T
ADC  
1 µA  
V
C
L
AIN  
AIN  
0.6 V  
ai14139c  
1. Refer to Table 42 for the values of RAIN, RADC and CADC  
.
2. CPARASITIC must be added to CAIN. It represents the capacitance of the PCB (dependent on soldering and  
PCB layout quality) plus the pad capacitance (3 pF). A high CPARASITIC value will downgrade conversion  
accuracy. To remedy this, fADC should be reduced.  
General PCB design guidelines  
Power supply decoupling should be performed as shown in Figure 29 or Figure 30,  
depending on whether V  
is connected to V  
or not. The 10 nF capacitors should be  
REF+  
DDA  
ceramic (good quality). They should be placed them as close as possible to the chip.  
Figure 29. Power supply and reference decoupling (V not connected to V  
)
DDA  
REF+  
STM32F10xxx  
V
REF+  
DDA  
1 µF // 10 nF  
V
V
1 µF // 10 nF  
/V  
SSA REF-  
ai14380b  
1. VREF+ and VREF- inputs are available only on 100-pin packages.  
61/75  
Electrical characteristics  
STM32F101x6, STM32F101x8, STM32F101xB  
Figure 30. Power supply and reference decoupling (V  
connected to V  
)
DDA  
REF+  
STM32F10xxx  
V
/V  
REF+ DDA  
1 µF // 10 nF  
V
/V  
REF– SSA  
ai14381b  
1. VREF+ and VREF- inputs are available only on 100-pin packages.  
Temperature sensor characteristics  
Table 46. TS characteristics  
5.3.17  
Symbol  
Parameter  
Conditions Min  
Typ  
Max  
Unit  
(1)  
VSENSE linearity with temperature  
°C  
mV/°C  
V
1
4.3  
2
4.6  
T
L
Avg_Slope(1) Average slope  
4.0  
(1)  
Voltage at 25°C  
Startup time  
1.34  
1.43  
1.52  
V25  
(2)  
4
10  
µs  
µs  
tSTART  
ADC sampling time when reading  
the temperature  
(3)(2)  
2.2  
17.1  
TS_temp  
1. Guaranteed by characterization, not tested in production.  
2. Data guaranteed by design, not tested in production.  
3. Shortest sampling time can be determined in the application by multiple iterations.  
62/75  
STM32F101x6, STM32F101x8, STM32F101xB  
Package characteristics  
6
Package characteristics  
6.1  
Package mechanical data  
®
In order to meet environmental requirements, ST offers the STM32F101xx in ECOPACK  
packages. These packages have a Lead-free second-level interconnect. The category of  
second-level interconnect is marked on the package and on the inner box label, in  
compliance with JEDEC Standard JESD97.  
The maximum ratings related to soldering conditions are also marked on the inner box label.  
ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.  
63/75  
Package characteristics  
STM32F101x6, STM32F101x8, STM32F101xB  
Figure 31. VFQFPN36 6 x 6 mm, 0.5 mm pitch, Figure 32. Recommended footprint  
(1)  
(1)(2)(3)  
package outline  
(dimensions in mm)  
Seating plane  
C
ddd  
C
4.30  
A2  
A
36  
A1  
A3  
D
1
27  
Pin # 1 ID  
R = 0.20  
e
4.80  
36  
28  
27  
1
4.80  
4.10  
6.30  
4.30  
b
4.10  
E2  
E
0.30  
9
19  
1.00  
0.75  
10  
18  
9
19  
0.50  
18  
10  
4.30  
L
ai14870  
D2  
ZR_ME  
1. Drawing is not to scale.  
2. The back-side pad is not internally connected to the VSS or VDD power pads.  
3. There is an exposed die pad on the underside of the VFQFPN package. It should be soldered to the PCB. All leads should  
also be soldered to the PCB.  
Table 47. VFQFPN36 6 x 6 mm, 0.5 mm pitch, package mechanical data  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
A
0.800  
0.900  
0.020  
0.650  
0.250  
0.230  
6.000  
3.700  
6.000  
3.700  
0.500  
0.550  
0.080  
1.000  
0.050  
1.000  
0.0315  
0.0354  
0.0008  
0.0256  
0.0098  
0.0091  
0.2362  
0.1457  
0.2362  
0.1457  
0.0197  
0.0217  
0.0031  
0.0394  
0.0020  
0.0394  
A1  
A2  
A3  
b
0.180  
5.875  
1.750  
5.875  
1.750  
0.450  
0.350  
0.300  
6.125  
4.250  
6.125  
4.250  
0.550  
0.750  
0.0071  
0.2313  
0.0689  
0.2313  
0.0689  
0.0177  
0.0138  
0.0118  
0.2411  
0.1673  
0.2411  
0.1673  
0.0217  
0.0295  
D
D2  
E
E2  
e
L
ddd  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
64/75  
STM32F101x6, STM32F101x8, STM32F101xB  
Package characteristics  
(1)(2)  
Figure 33. LQFP100, 100-pin low-profile quad flat  
Figure 34. Recommended footprint  
(1)  
package outline  
0.25 mm  
0.10 inch  
GAGE PLANE  
75  
51  
k
D
L
76  
50  
D1  
0.5  
L1  
D3  
51  
75  
C
0.3  
76  
50  
16.7 14.3  
b
E3 E1  
E
100  
26  
1.2  
1
25  
100  
26  
12.3  
16.7  
Pin 1  
1
25  
ccc  
C
identification  
e
A1  
ai14906  
A2  
A
SEATING PLANE  
C
1L_ME  
1. Drawing is not to scale.  
2. Dimensions are in millimeters.  
Table 48. LQPF100 – 100-pin low-profile quad flat package mechanical data  
millimeters  
inches(1)  
Symbol  
Typ  
Min  
Max  
Typ  
Min  
Max  
A
A1  
A2  
b
1.60  
0.15  
1.45  
0.27  
0.2  
0.063  
0.05  
1.35  
0.002  
0.0531  
0.0067  
0.0035  
0.622  
0.0059  
0.0571  
0.0106  
0.0079  
0.6378  
0.5591  
1.40  
0.22  
0.0551  
0.0087  
0.17  
c
0.09  
D
16.00  
14.00  
12.00  
16.00  
14.00  
12.00  
0.50  
15.80  
13.80  
16.2  
14.2  
0.6299  
0.5512  
0.4724  
0.6299  
0.5512  
0.4724  
0.0197  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
0.5433  
15.80  
13.80  
16.2  
14.2  
0.622  
0.6378  
0.5591  
E1  
E3  
e
0.5433  
L
0.60  
0.45  
0.75  
7°  
0.0177  
0.0295  
7.0°  
L1  
k
1.00  
3.5°  
0°  
0.0°  
ccc  
0.08  
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
65/75  
Package characteristics  
STM32F101x6, STM32F101x8, STM32F101xB  
(1)(2)  
Figure 35. LQFP64 – 64 pin low-profile quad flat  
Figure 36. Recommended footprint  
(1)  
package outline  
D
A
48  
33  
D1  
A2  
0.3  
A1  
49  
32  
0.5  
b
12.7  
10.3  
E1  
E
e
10.3  
64  
17  
1.2  
1
16  
c
7.8  
L1  
12.7  
L
ai14398  
ai14909  
1. Drawing is not to scale.  
2. Dimensions are in millimeters.  
Table 49. LQFP64 – 64-pin low-profile quad flat package mechanical data  
mm  
Typ  
inches(1)  
Dim.  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
1.60  
0.15  
1.45  
0.27  
0.20  
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.05  
1.35  
0.17  
0.09  
0.0020  
0.0531  
0.0067  
0.0035  
1.40  
0.22  
0.0551  
0.0087  
c
D
12.00  
10.00  
12.00  
10.00  
0.50  
0.4724  
0.3937  
0.4724  
0.3937  
0.0197  
3.5°  
D1  
E
E1  
e
θ
0°  
3.5°  
7°  
0°  
7°  
L
0.45  
0.60  
0.75  
0.0177  
0.0236  
0.0394  
0.0295  
L1  
1.00  
Number of pins  
N
64  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
66/75  
STM32F101x6, STM32F101x8, STM32F101xB  
Package characteristics  
Figure 37. LQFP48 – 48-pin low-profile quad flat  
Figure 38. Recommended  
(1)  
(1)(2)  
package outline  
footprint  
D
0.50  
A
1.20  
D1  
A2  
0.30  
13  
12  
24  
A1  
25  
b
e
0.20  
7.30  
9.70 5.80  
E1  
E
7.30  
1
36  
48  
37  
1.20  
c
5.80  
L1  
9.70  
L
θ
ai14911  
ai14384  
1. Drawing is not to scale.  
2. Dimensions are in millimeters.  
Table 50. LQFP48 – 48-pin low-profile quad flat package mechanical data  
mm  
Typ  
inches(1)  
Dim.  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
1.60  
0.15  
1.45  
0.27  
0.20  
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.05  
1.35  
0.17  
0.09  
0.0020  
0.0531  
0.0067  
0.0035  
1.40  
0.22  
0.0551  
0.0087  
C
D
9.00  
7.00  
9.00  
7.00  
0.50  
3.5°  
0.60  
1.00  
0.3543  
0.2756  
0.3543  
0.2756  
0.0197  
3.5°  
D1  
E
E1  
e
θ
0°  
7°  
0°  
7°  
L
0.45  
0.75  
0.0177  
0.0236  
0.0394  
0.0295  
L1  
Number of pins  
N
48  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
67/75  
Package characteristics  
STM32F101x6, STM32F101x8, STM32F101xB  
6.2  
Thermal characteristics  
The maximum chip junction temperature (T max) must never exceed the values given in  
J
Table 8: General operating conditions on page 29.  
The maximum chip-junction temperature, T max, in degrees Celsius, may be calculated  
J
using the following equation:  
T max = T max + (P max x Θ )  
J
A
D
JA  
Where:  
T max is the maximum ambient temperature in °C,  
A
Θ
is the package junction-to-ambient thermal resistance, in ° C/W,  
JA  
P max is the sum of P  
max and P max (P max = P  
max + P max),  
INT I/O  
D
INT  
I/O  
D
P
max is the product of I and V , expressed in Watts. This is the maximum chip  
DD DD  
INT  
internal power.  
P
max represents the maximum power dissipation on output pins where:  
I/O  
P
max = Σ (V × I ) + Σ((V – V ) × I ),  
OL OL DD OH OH  
I/O  
taking into account the actual V / I and V / I of the I/Os at low and high level in the  
OL OL  
OH OH  
application.  
Table 51. Thermal characteristics  
Symbol  
Parameter  
Value  
Unit  
Thermal resistance junction-ambient  
LQFP 100 - 14 x 14 mm / 0.5 mm pitch  
46  
Thermal resistance junction-ambient  
LQFP 64 - 10 x 10 mm / 0.5 mm pitch  
45  
55  
18  
Θ
°C/W  
JA  
Thermal resistance junction-ambient  
LQFP 48 - 7 x 7 mm / 0.5 mm pitch  
Thermal resistance junction-ambient  
VFQFPN 36 - 6 x 6 mm / 0.5 mm pitch  
6.2.1  
Reference document  
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural  
Convection (Still Air). Available from www.jedec.org.  
68/75  
STM32F101x6, STM32F101x8, STM32F101xB  
Package characteristics  
6.2.2  
Evaluating the maximum junction temperature for an application  
When ordering the microcontroller, the temperature range is specified in the ordering  
information scheme shown in Table 52: Ordering information scheme.  
Each temperature range suffix corresponds to a specific guaranteed ambient temperature at  
maximum dissipation and, to a specific maximum junction temperature. Here, only  
temperature range 6 is available (–40 to 85 °C).  
The following example shows how to calculate the temperature range needed for a given  
application, making it possible to check whether the required temperature range is  
compatible with the STM32F101xx junction temperature range.  
Example: High-performance application  
Assuming the following application conditions:  
Maximum ambient temperature T  
= 82 °C (measured according to JESD51-2),  
Amax  
I
= 50 mA, V = 3.5 V, maximum 20 I/Os used at the same time in output at low  
DDmax  
DD  
level with I = 8 mA, V = 0.4 V and maximum 8 I/Os used at the same time in output  
OL  
OL  
mode at low level with I = 20 mA, V = 1.3 V  
OL  
OL  
P
P
= 50 mA × 3.5 V= 175 mW  
INTmax  
= 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW  
IOmax  
This gives: P  
= 175 mW and P  
= 272 mW  
IOmax  
INTmax  
P
= 175 + 272 = 447 mW  
Dmax  
Thus: P  
= 464 mW  
Dmax  
Using the values obtained in Table 51 T  
is calculated as follows:  
Jmax  
T
For LQFP64, 45 °C/W  
= 82 °C + (45 °C/W × 447 mW) = 82 °C + 20.1 °C = 102.1 °C  
Jmax  
This is within the junction temperature range of the STM32F101xx (–40 < T < 105 °C).  
J
Figure 39. LQFP64 P max vs. T  
D
A
700  
600  
500  
400  
300  
200  
100  
0
Suffix 6  
65  
75  
85  
95  
105  
115  
TA (°C)  
69/75  
Ordering information scheme  
STM32F101x6, STM32F101x8, STM32F101xB  
7
Ordering information scheme  
Table 52. Ordering information scheme  
Example:  
STM32 F 101 C  
6
T
6
xxx  
Device family  
STM32 = ARM-based 32-bit microcontroller  
Product type  
F = general-purpose  
Device subfamily  
101 = access line  
Pin count  
T = 36 pins  
C = 48 pins  
R = 64 pins  
V = 100 pins  
Flash memory size  
6 = 32 Kbytes of Flash memory  
8 = 64 Kbytes of Flash memory  
B = 128 Kbytes of Flash memory  
Package  
H = BGA  
T = LQFP  
U = VFQFPN  
Temperature range  
6 = Industrial temperature range, –40 to 85 °C.  
Options  
xxx = programmed parts with 64 or 128 Kbytes of Flash memory  
Axx = programmable parts with 32 Kbytes of Flash memory  
TR = tape and real  
For a list of available options (speed, package, etc.) or for further information on any aspect  
of this device, please contact your nearest ST sales office.  
7.1  
Future family enhancements  
Further developments of the STM32F101xx Medium-density access line will see an  
expansion of the current options. Larger packages will soon be available with up to 512 KB  
Flash, 48 KB SRAM and with extended features such as flexible static memory controller  
(FSMC) support, DAC and additional timers and USARTS.  
70/75  
STM32F101x6, STM32F101x8, STM32F101xB  
Revision history  
8
Revision history  
Table 53. Document revision history  
Date  
Revision  
Changes  
06-Jun-2007  
1
First draft.  
IDD values modified in Table 11: Maximum current consumption in Run  
and Sleep modes (TA = 85 °C).  
VBAT range modified in Power supply schemes.  
VREF+ min value, tSTAB, tlat and fTRIG added to Table 42: ADC  
characteristics. Table 38: TIMx characteristics modified.  
Note 6 modified and Note 8, Note 4 and Note 7 added below Table 4: Pin  
definitions.  
Figure 18: Low-speed external clock source AC timing diagram,  
Figure 10: Power supply scheme, Figure 22: Recommended NRST pin  
protection and Figure 23: I2C bus AC waveforms and measurement  
circuit(1) modified.  
Sample size modified and machine model removed in Electrostatic  
discharge (ESD).  
Number of parts modified and standard reference updated in Static latch-  
up. 25 °C and 85 °C conditions removed and class name modified in  
Table 33: Electrical sensitivities.  
20-Jul-07  
2
tSU(LSE) changed to tSU(LSE) in Table 22: HSE 4-16 MHz oscillator  
characteristics.  
In Table 29: Flash memory endurance and data retention, typical  
endurance added, data retention for TA = 25 °C removed and data  
retention for TA = 85 °C added. Note removed below Table 8: General  
operating conditions.  
VBG changed to VREFINT in Table 11: Embedded internal reference  
voltage. IDD max values added to Table 11: Maximum current  
consumption in Run and Sleep modes (TA = 85 °C).  
IDD(HSI) max value added to Table 24: HSI oscillator characteristics.  
RPU and RPD min and max values added to Table 34: I/O static  
characteristics. RPU min and max values added to Table 37: NRST pin  
characteristics (two notes removed).  
Datasheet title corrected. USB characteristics section removed.  
Features on page 1 list optimized. Small text changes.  
71/75  
Revision history  
STM32F101x6, STM32F101x8, STM32F101xB  
Table 53. Document revision history (continued)  
Date  
Revision  
Changes  
VESD(CDM) value added to Table 32: ESD absolute maximum ratings.  
Note added below Table 10: Embedded reset and power control block  
characteristics. and below Table 22: HSE 4-16 MHz oscillator  
characteristics.  
Note added below Table 35: Output voltage characteristics and VOH  
parameter description modified.  
Table 42: ADC characteristics and Table 44: ADC accuracy - limited test  
conditions modified.  
Figure 27: ADC accuracy characteristics modified.  
Packages are ECOPACK® compliant.  
Tables modified in Section 5.3.5: Supply current characteristics.  
ADC and ANTI_TAMPER signal names modified (see Table 4: Pin  
definitions). Table 4: Pin definitions modified. Note 4 removed and values  
updated in Table 18: Typical current consumption in Standby mode.  
Vhys modified in Table 34: I/O static characteristics.  
Updated: Table 30: EMS characteristics and Table 31: EMI  
characteristics.  
tVDD modified in Table 9: Operating conditions at power-up / power-down.  
Typical values modified, note 2 modified and note 3 removed in Table 26:  
Low-power mode wakeup timings.  
Maximum current consumption Table 12, Table 13 and Table 14 updated.  
18-Oct-2007  
3
Values added and notes added in Table 15: Typical and maximum current  
consumptions in Stop and Standby modes.  
On-chip peripheral current consumption on page 38 added.  
Package mechanical data inch values are calculated from mm and  
rounded to 4 decimal digits (see Section 6: Package characteristics).  
Vprog added to Table 28: Flash memory characteristics.  
TS_temp added to Table 46: TS characteristics.  
TS_vrefint added to Table 11: Embedded internal reference voltage.  
Handling of unused pins specified in General input/output characteristics  
on page 48. All I/Os are CMOS and TTL compliant.  
Table 4: Pin definitions: table clarified and Note 7 modified.  
Internal LSI RC frequency changed from 32 to 40 kHz (see Table 25: LSI  
oscillator characteristics). Values added to Table 26: Low-power mode  
wakeup timings. NEND modified in Table 29: Flash memory endurance  
and data retention.  
Option byte addresses corrected in Figure 7: Memory map.  
ACCHSI modified in Table 24: HSI oscillator characteristics.  
tJITTER removed from Table 27: PLL characteristics.  
Appendix A: Important notes on page 71 added.  
Added: Figure 12, Figure 13, Figure 14 and Figure 16.  
72/75  
STM32F101x6, STM32F101x8, STM32F101xB  
Table 53. Document revision history (continued)  
Revision history  
Date  
Revision  
Changes  
Document status promoted from preliminary data to datasheet. Small text  
changes.  
STM32F101CB part number corrected in Table 1: Device summary.  
Number of communication peripherals corrected for STM32F101Tx in  
Table 2: Device features and peripheral counts (STM32F101xx High-  
density access line) and Number of GPIOs corrected for LQFP package.  
Power supply schemes on page 11 modified.  
Main function and default alternate function modified for PC14 and PC15  
in Table 4: Pin definitions, Note 5 added, Remap column added.  
Figure 10: Power supply scheme modified. VDD VSS ratings modified  
and Note 1 modified in Table 5: Voltage characteristics. Note 1 modified  
in Table 6: Current characteristics.  
Note 2 added in Table 10: Embedded reset and power control block  
characteristics.  
48 and 72 MHz frequencies removed from Table 12, Table 13 and  
Table 14. MCU ‘s operating conditions modified in Typical current  
consumption on page 36.  
IDD_VBAT typical value at 2.4 V modified and IDD_VBAT maximum value  
added in Table 15: Typical and maximum current consumptions in Stop  
and Standby modes. Note added in Table 16 on page 36 and Table 17 on  
page 37. Table 19: Peripheral current consumption modified.  
Figure 15: Current consumption in Stop mode with regulator in Low-  
power mode versus temperature at VDD = 3.3 V and 3.6 V added.  
22-Nov-2007  
4
Note removed below Figure 24: SPI timing diagram - slave mode and  
CPHA=0. Note added below Figure 25: SPI timing diagram - slave mode  
and CPHA=1(1).  
Figure 28: Typical connection diagram using the ADC modified.  
tSU(HSE) and tSU(LSE) conditions modified in Table 22 and Table 23,  
respectively. Maximum values removed from Table 26: Low-power mode  
wakeup timings. tRET conditions modified in Table 29: Flash memory  
endurance and data retention. Conditions modified in Table 30: EMS  
characteristics.  
Impedance size specified in A.4: Voltage glitch on ADC input 0 on  
page 71. Small text changes in Table 35: Output voltage characteristics.  
Section 5.3.11: Absolute maximum ratings (electrical sensitivity)  
updated.  
Details on unused pins removed from General input/output  
characteristics on page 48.  
Table 41: SPI characteristics updated. Notes added and Ilkg removed in  
Table 42: ADC characteristics. Note added in Table 43 and Table 46.  
Note 2 and Note 3 added below Table 44: ADC accuracy - limited test  
conditions. Avg_Slope and V25 modified in Table 46: TS characteristics.  
Θ value for VFQFPN36 package added in Table 51: Thermal  
JA  
characteristics. I2C interface characteristics on page 52 modified.  
Order codes replaced by Section 7: Ordering information scheme.  
73/75  
Revision history  
STM32F101x6, STM32F101x8, STM32F101xB  
Table 53. Document revision history (continued)  
Date  
Revision  
Changes  
Figure 2: Clock tree on page 16 added.  
CRC added (see CRC (cyclic redundancy check) calculation unit on  
page 9 and Figure 7: Memory map on page 24 for address).  
Maximum TJ value given in Table 7: Thermal characteristics on page 29.  
PD, TA and TJ added, tprog values modified and tprog description clarified  
in Table 28: Flash memory characteristics on page 45.  
IDD modified in Table 15: Typical and maximum current consumptions in  
Stop and Standby modes on page 34.  
ACCHSI modified in Table 24: HSI oscillator characteristics on page 43,  
note 2 removed.  
tRET modified in Table 29: Flash memory endurance and data retention.  
14-Mar-2008  
5
VNF(NRST) unit corrected in Table 37: NRST pin characteristics on  
page 51.  
Table 41: SPI characteristics on page 55 modified.  
IVREF added in Table 42: ADC characteristics on page 58.  
Table 44: ADC accuracy - limited test conditions added. Table 45: ADC  
accuracy modified.  
LQFP100 package specifications updated (see Section 6: Package  
characteristics on page 63).  
Recommended LQFP100, LQFP64, LQFP48 and VFQFPN36 footprints  
added (see Figure 34, Figure 36, Figure 38 and Figure 32).  
Section 6.2: Thermal characteristics on page 68 modified.  
Appendix A: Important notes removed.  
Small text changes.  
In Table 29: Flash memory endurance and data retention:  
– NEND tested over the whole temperature range  
– cycling conditions specified for tRET  
21-Mar-2008  
6
– tRET min modified at TA = 55 °C  
Figure 2: Clock tree corrected. Figure 7: Memory map clarified.  
V25, Avg_Slope and TL modified in Table 46: TS characteristics.  
CRC feature removed.  
Section 1: Introduction modified, Section 2.2: Full compatibility  
throughout the family added. CRC feature added.  
IDD_VBAT removed from Table 18: Typical current consumption in Standby  
mode on page 37.  
Values added to Table 40: SCL frequency (fPCLK1= 36 MHz, VDD = 3.3  
V) on page 54.  
22-May-2008  
7
Figure 24: SPI timing diagram - slave mode and CPHA=0 on page 56  
modified. Equation 1 corrected.  
Section 6.2.2: Evaluating the maximum junction temperature for an  
application on page 69 added.  
Axx option added to Table 52: Ordering information scheme on page 70.  
74/75  
STM32F101x6, STM32F101x8, STM32F101xB  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2008 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
75/75  

相关型号:

STM32F101T6U6AXXX

Low-density access line, ARM-based 32-bit MCU with 16 or 32 KB Flash, 5 timers, ADC and 4 communication interfaces
STMICROELECTR

STM32F101T6U6AXXXTR

IC,MICROCONTROLLER,32-BIT,CORTEX-M3 CPU,CMOS,LLCC,36PIN,PLASTIC
STMICROELECTR

STM32F101T6U6TR

Low-density access line, ARM-based 32-bit MCU with 16 or 32 KB Flash, 5 timers, ADC and 4 communication interfaces
STMICROELECTR

STM32F101T6U6XXX

Low-density access line, ARM-based 32-bit MCU with 16 or 32 KB Flash, 5 timers, ADC and 4 communication interfaces
STMICROELECTR

STM32F101T8

Medium-density access line, ARM-based 32-bit MCU with 64 or 128 KB Flash, 6 timers, ADC and 7 communication interfaces
STMICROELECTR

STM32F101T8H6TR

Medium-density access line, ARM-based 32-bit MCU with 64 or 128 KB Flash, 6 timers, ADC and 7 communication interfaces
STMICROELECTR

STM32F101T8H6XXX

Medium-density access line, ARM-based 32-bit MCU with 64 or 128 KB Flash, 6 timers, ADC and 7 communication interfaces
STMICROELECTR

STM32F101T8T6TR

Medium-density access line, ARM-based 32-bit MCU with 64 or 128 KB Flash, 6 timers, ADC and 7 communication interfaces
STMICROELECTR

STM32F101T8T6XXX

Medium-density access line, ARM-based 32-bit MCU with 64 or 128 KB Flash, 6 timers, ADC and 7 communication interfaces
STMICROELECTR

STM32F101T8U6TR

Medium-density access line, ARM-based 32-bit MCU with 64 or 128 KB Flash, 6 timers, ADC and 7 communication interfaces
STMICROELECTR

STM32F101T8U6XXX

Medium-density access line, ARM-based 32-bit MCU with 64 or 128 KB Flash, 6 timers, ADC and 7 communication interfaces
STMICROELECTR

STM32F101TB

Medium-density access line, ARM-based 32-bit MCU with 64 or 128 KB Flash, 6 timers, ADC and 7 communication interfaces
STMICROELECTR