STM32F413ZHJ6 [STMICROELECTRONICS]

High-performance access line, Arm Cortex-M4 core with DSP and FPU, 1,5 MByte of Flash memory, 100 MHz CPU, ART Accelerator, DFSDM;
STM32F413ZHJ6
型号: STM32F413ZHJ6
厂家: ST    ST
描述:

High-performance access line, Arm Cortex-M4 core with DSP and FPU, 1,5 MByte of Flash memory, 100 MHz CPU, ART Accelerator, DFSDM

时钟 外围集成电路
文件: 总207页 (文件大小:3248K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM32F413xG STM32F413xH  
®
®
ARM -Cortex -M4 32b MCU+FPU, 125 DMIPS, up to 1.5MB Flash,  
320KB RAM, USB OTG FS, 1 ADC, 2 DACs, 2 DFSDMs  
Datasheet - production data  
Features  
)%*$  
Dynamic Efficiency Line with eBAM (enhanced  
Batch Acquisition Mode)  
– 1.7 V to 3.6 V power supply  
UFBGA100  
LQFP64 (10x10mm)  
LQFP100 (14x14mm)  
LQFP144 (20x20mm)  
WLCSP81  
(4.039x3.951 mm)  
(7x7mm)  
UFBGA144  
(10x10mm)  
UFQFPN48  
(7x7 mm)  
– -40 °C to 85/105/125 °C temperature range  
®
®
Core: ARM 32-bit Cortex -M4 CPU with FPU,  
Adaptive real-time accelerator (ART  
Accelerator™) allowing 0-wait state execution  
from Flash memory, frequency up to 100 MHz,  
memory protection unit, 125 DMIPS/  
1.25 DMIPS/MHz (Dhrystone 2.1), and DSP  
instructions  
Up to 18 timers: up to twelve 16-bit timers, two  
32-bit timers up to 100 MHz each with up to  
four IC/OC/PWM or pulse counter and  
quadrature (incremental) encoder input, two  
watchdog timers (independent and window),  
one SysTick timer, and a low-power timer  
Debug mode  
Memories  
– Serial wire debug (SWD) & JTAG  
– Up to 1.5 Mbytes of Flash memory  
– 320 Kbytes of SRAM  
®
– Cortex -M4 Embedded Trace Macrocell™  
Up to 114 I/O ports with interrupt capability  
– Up to 109 fast I/Os up to 100 MHz  
– Up to 114 five V-tolerant I/Os  
– Flexible external static memory controller  
with up to 16-bit data bus: SRAM, PSRAM,  
NOR Flash memory  
– Dual mode Quad-SPI interface  
Up to 24 communication interfaces  
2
LCD parallel interface, 8080/6800 modes  
– Up to 4x I C interfaces (SMBus/PMBus)  
Clock, reset and supply management  
– 1.7 to 3.6 V application supply and I/Os  
– POR, PDR, PVD and BOR  
– Up to 10 UARTS: 4 USARTs / 6 UARTs  
(2 x 12.5 Mbit/s, 2 x 6.25 Mbit/s), ISO 7816  
interface, LIN, IrDA, modem control)  
– Up to 5 SPI/I2Ss (up to 50 Mbit/s, SPI or  
I2S audio protocol), out of which 2 muxed  
full-duplex I2S interfaces  
– SDIO interface (SD/MMC/eMMC)  
– Advanced connectivity: USB 2.0 full-speed  
device/host/OTG controller with PHY  
– 4-to-26 MHz crystal oscillator  
– Internal 16 MHz factory-trimmed RC  
– 32 kHz oscillator for RTC with calibration  
– Internal 32 kHz RC with calibration  
Power consumption  
– Run: 112 µA/MHz (peripheral off)  
– 3x CAN (2.0B Active)  
– 1xSAI  
– Stop (Flash in Stop mode, fast wakeup  
time): 42 µA Typ.; 80 µA max @25 °C  
– Stop (Flash in Deep power down mode,  
slow wakeup time): 15 µA Typ.;  
46 µA max @25 °C  
True random number generator  
CRC calculation unit  
96-bit unique ID  
RTC: subsecond accuracy, hardware calendar  
All packages are ECOPACK 2  
– Standby without RTC: 1.1 µA Typ.;  
14.7 µA max at @85 °C  
®
V
supply for RTC: 1 µA @25 °C  
BAT  
Table 1. Device summary  
2x12-bit D/A converters  
1×12-bit, 2.4 MSPS ADC: up to 16 channels  
Reference  
Part number  
6x digital filters for sigma delta modulator,  
12x PDM interfaces, with stereo microphone  
and sound source localization support  
STM32F413CH STM32F413MH STM32F413RH  
STM32F413VH STM32F413ZH  
STM32F413xH  
STM32F413CG STM32F413MG STM32F413RG  
STM32F413VG STM32F413ZG  
STM32F413xG  
General-purpose DMA: 16-stream DMA  
June 2017  
DocID029162 Rev 5  
1/207  
This is information on a product in full production.  
www.st.com  
 
Contents  
STM32F413xG/H  
Contents  
1
2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
2.1  
Compatibility with STM32F4 series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
ARM® Cortex®-M4 with FPU core with embedded Flash and SRAM . . . 19  
Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . . 19  
Enhanced Batch Acquisition mode (eBAM) . . . . . . . . . . . . . . . . . . . . . . . 19  
Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 20  
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
3.10 Flexible static memory controller (FSMC) . . . . . . . . . . . . . . . . . . . . . . . . 22  
3.11 Quad-SPI memory interface (QUAD-SPI) . . . . . . . . . . . . . . . . . . . . . . . . 23  
3.12 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 23  
3.13 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . . . 23  
3.14 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
3.15 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
3.16 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3.17 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
3.17.1 Internal reset ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
3.17.2 Internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
3.18 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
3.18.1 Regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3.18.2 Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3.18.3 Regulator ON/OFF and internal reset ON/OFF availability . . . . . . . . . . 31  
3.19 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 31  
3.20 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
3.21  
VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
2/207  
DocID029162 Rev 5  
STM32F413xG/H  
Contents  
3.22 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
3.22.1 Advanced-control timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . 34  
3.22.2 General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
3.22.3 Basic timer (TIM6, TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
3.22.4 Low-power timer (LPTIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
3.22.5 Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
3.22.6 Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
3.22.7 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
3.23 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
3.24 Universal synchronous/asynchronous receiver transmitters (USART) . . 36  
3.25 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
3.26 Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
3.27 Serial Audio interface (SAI1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
3.28 Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
3.29 Digital filter for sigma-delta modulators (DFSDM) . . . . . . . . . . . . . . . . . . 39  
3.30 Dynamic tuning of PDM delays for sound source localization . . . . . . . . . 39  
3.31 Secure digital input/output interface (SDIO) . . . . . . . . . . . . . . . . . . . . . . . 40  
3.32 Controller area network (bxCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
3.33 Universal serial bus on-the-go full-speed (USB_OTG_FS) . . . . . . . . . . . 40  
3.34 Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
3.35 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
3.36 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
3.37 Digital to analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
3.38 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
3.39 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
3.40 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
4
Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
WLCSP81 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
UFQFPN48 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
LQFP64 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
LQFP100 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
LQFP144 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
UFBGA100 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
DocID029162 Rev 5  
3/207  
5
Contents  
STM32F413xG/H  
4.7  
4.8  
4.9  
UFBGA144 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Pins definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
5
6
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
6.1  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
6.1.1  
6.1.2  
6.1.3  
6.1.4  
6.1.5  
6.1.6  
6.1.7  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
6.2  
6.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
6.3.5  
6.3.6  
6.3.7  
6.3.8  
6.3.9  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
VCAP_1/VCAP_2 external capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Operating conditions at power-up/power-down (regulator ON) . . . . . . . 85  
Operating conditions at power-up / power-down (regulator OFF) . . . . . 86  
Embedded reset and power control block characteristics . . . . . . . . . . . 86  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Wakeup time from low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
6.3.10 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
6.3.11 PLL spread spectrum clock generation (SSCG) characteristics . . . . . 116  
6.3.12 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
6.3.13 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
6.3.14 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 121  
6.3.15 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
6.3.16 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
6.3.17 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
6.3.18 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
6.3.19 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
6.3.20 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
4/207  
DocID029162 Rev 5  
STM32F413xG/H  
Contents  
6.3.21 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
6.3.22  
V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
BAT  
6.3.23 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
6.3.24 DAC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
6.3.25 DFSDM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
6.3.26 FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
6.3.27 SD/SDIO MMC/eMMC card host interface (SDIO) characteristics . . . 172  
6.3.28 RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
7
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
WLCSP81 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
LQFP144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
UFBGA100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
UFBGA144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
7.8.1  
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
8
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200  
Appendix A Recommendations when using the internal reset OFF . . . . . . . . 201  
Appendix B Application block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
B.1  
B.2  
B.3  
Sensor Hub application example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
Display application example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203  
USB OTG full speed (FS) interface solutions . . . . . . . . . . . . . . . . . . . . . 204  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206  
DocID029162 Rev 5  
5/207  
5
List of tables  
STM32F413xG/H  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
STM32F413xG/H features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Embedded bootloader interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Regulator ON/OFF and internal power supply supervisor availability. . . . . . . . . . . . . . . . . 31  
Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
USART feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
DFSDM feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
STM32F413xG/H pin definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
FSMC pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
STM32F413xG/H alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
STM32F413xG/H register boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Features depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . . . 84  
VCAP_1/VCAP_2 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . . 85  
Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . . 86  
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Typical and maximum current consumption, code with data processing (ART  
accelerator disabled) running from SRAM - V = 1.7 V . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
DD  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Typical and maximum current consumption, code with data processing (ART  
accelerator disabled) running from SRAM - V = 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
DD  
Typical and maximum current consumption in run mode, code with data processing  
(ART accelerator enabled except prefetch) running from Flash memory- V = 1.7 V. . . 90  
DD  
Typical and maximum current consumption in run mode, code with data processing  
(ART accelerator enabled except prefetch) running from Flash memory - V = 3.6 V . . 91  
DD  
Typical and maximum current consumption in run mode, code with data processing  
(ART accelerator disabled) running from Flash memory - V = 3.6 V. . . . . . . . . . . . . . . 92  
DD  
Typical and maximum current consumption in run mode, code with data processing  
(ART accelerator disabled) running from Flash memory - V = 1.7 V. . . . . . . . . . . . . . . 93  
DD  
Typical and maximum current consumption in run mode, code with data processing  
(ART accelerator enabled with prefetch) running from Flash memory - V = 3.6 V. . . . . 94  
DD  
Typical and maximum current consumption in run mode, code with data processing  
(ART accelerator enabled with prefetch) running from Flash memory - V = 1.7 V. . . . . 95  
DD  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Typical and maximum current consumption in Sleep mode - V = 3.6 V. . . . . . . . . . . . . 96  
DD  
Typical and maximum current consumption in Sleep mode - V = 1.7 V. . . . . . . . . . . . . 97  
DD  
Typical and maximum current consumptions in Stop mode - V = 1.7 V . . . . . . . . . . . . . 98  
DD  
Typical and maximum current consumption in Stop mode - V =3.6 V. . . . . . . . . . . . . . . 98  
DD  
Typical and maximum current consumption in Standby mode - V = 1.7 V . . . . . . . . . . . 98  
DD  
Typical and maximum current consumption in Standby mode - V = 3.6 V . . . . . . . . . . . 99  
DD  
Typical and maximum current consumptions in V  
mode. . . . . . . . . . . . . . . . . . . . . . . . 99  
BAT  
Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
6/207  
DocID029162 Rev 5  
STM32F413xG/H  
List of tables  
Table 41.  
Table 42.  
Table 43.  
Table 44.  
Table 45.  
Table 46.  
Table 47.  
Table 48.  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
Table 54.  
Table 55.  
Table 56.  
Table 57.  
Table 58.  
Table 59.  
Table 60.  
Table 61.  
Table 62.  
Table 63.  
Table 64.  
Table 65.  
Table 66.  
Table 67.  
Table 68.  
Table 69.  
Table 70.  
Table 71.  
Table 72.  
Table 73.  
Table 74.  
Table 75.  
Table 76.  
Table 77.  
Table 78.  
Table 79.  
Table 80.  
Table 81.  
Table 82.  
Table 83.  
Table 84.  
Table 85.  
Table 86.  
Table 87.  
Table 88.  
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
HSE 4-26 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
LSE oscillator characteristics (f  
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
LSE  
HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
PLLI2S (audio PLL) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
SSCG parameter constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Flash memory programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Flash memory programming with V voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
PP  
Flash memory endurance and data retention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
EMS characteristics for LQFP144 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
EMI characteristics for LQFP144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
2
I C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
SCL frequency (f  
= 50 MHz, V = V  
= 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . 131  
PCLK1  
DD  
DD_I2C  
2
FMPI C characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
SPI dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
2
I S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
QSPI dynamic characteristics in SDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
QSPI dynamic characteristics in DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
USB OTG FS startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
USB OTG FS DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
USB OTG FS electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
ADC accuracy at f  
ADC accuracy at f  
ADC accuracy at f  
= 18 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
= 30 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
= 36 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
ADC  
ADC  
ADC  
ADC dynamic accuracy at f  
ADC dynamic accuracy at f  
= 18 MHz - limited test conditions . . . . . . . . . . . . . . . . . 146  
= 36 MHz - limited test conditions . . . . . . . . . . . . . . . . . 146  
ADC  
ADC  
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
BAT  
Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
DFSDM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
Asynchronous non-multiplexed SRAM/PSRAM/NOR -  
read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
Asynchronous non-multiplexed SRAM/PSRAM/NOR read -  
NWAIT timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 161  
Table 89.  
Table 90.  
DocID029162 Rev 5  
7/207  
8
List of tables  
STM32F413xG/H  
Table 91.  
Asynchronous non-multiplexed SRAM/PSRAM/NOR write -  
NWAIT timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . 163  
Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . 165  
Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 170  
Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
Table 92.  
Table 93.  
Table 94.  
Table 95.  
Table 96.  
Table 97.  
Table 98.  
Table 99.  
Table 100. SD / MMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
Table 101. eMMC characteristics VDD = 1.7 V to 1.9 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
Table 102. RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
Table 103. WLCSP81 - 81-ball, 4.039 x 3.951 mm, 0.4 mm pitch wafer level chip scale  
package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
Table 104. WLCSP81 recommended PCB design rules (0.4 mm pitch) . . . . . . . . . . . . . . . . . . . . . . 177  
Table 105. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat  
package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
Table 106. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat  
package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
Table 107. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package  
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
Table 108. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package  
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190  
Table 109. UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball  
grid array package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
Table 110. UFBGA100 recommended PCB design rules (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . 194  
Table 111. UFBGA144 - 144-ball, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball grid  
array package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
Table 112. UFBGA144 recommended PCB design rules (0.80 mm pitch BGA) . . . . . . . . . . . . . . . . 197  
Table 113. Package thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
Table 114. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200  
Table 115. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206  
8/207  
DocID029162 Rev 5  
STM32F413xG/H  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Compatible board design for LQFP100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Compatible board design for LQFP64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Compatible board design for LQFP144 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
STM32F413xG/H block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Multi-AHB matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
VDDUSB connected to an external independent power supply . . . . . . . . . . . . . . . . . . . . . 26  
Power supply supervisor interconnection with internal reset OFF . . . . . . . . . . . . . . . . . . . 27  
Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Startup in regulator OFF: slow V slope  
DD  
power-down reset risen after V  
/V  
stabilization . . . . . . . . . . . . . . . . . . . . . . . . . 30  
CAP_1 CAP_2  
Figure 10. Startup in regulator OFF mode: fast V slope  
DD  
power-down reset risen before V  
/V  
stabilization. . . . . . . . . . . . . . . . . . . . . . . . 30  
CAP_1 CAP_2  
Figure 11. STM32F413xG/H WLCSP81 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 12. STM32F413xG/H UFQFPN48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 13. STM32F413xG/H LQFP64 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 14. STM32F413xG/H LQFP100 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 15. STM32F413xG/H LQFP144 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 16. STM32F413xG/H UFBGA100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 17. STM32F413xG/H UFBGA144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 18. Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Figure 19. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Figure 20. Input voltage measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Figure 21. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Figure 22. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Figure 23. External capacitor C  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
EXT  
Figure 24. Typical V  
current consumption (LSE and RTC ON/LSE oscillator  
BAT  
“low power” mode selection) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Figure 25. Typical V current consumption (LSE and RTC ON/LSE oscillator  
BAT  
“high drive” mode selection) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Figure 26. Low-power mode wakeup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Figure 27. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Figure 28. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Figure 29. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Figure 30. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Figure 31. ACC  
versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
HSI  
Figure 32. ACC versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
LSI  
Figure 33. PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Figure 34. PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Figure 35. FT/TC I/O input characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Figure 36. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Figure 37. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
2
Figure 38. I C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
2
Figure 39. FMPI C timing diagram and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
Figure 40. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
Figure 41. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
Figure 42. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
2
Figure 43. I S slave timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
2
Figure 44. I S master timing diagram (Philips protocol). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
DocID029162 Rev 5  
9/207  
11  
List of figures  
STM32F413xG/H  
Figure 45. SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
Figure 46. SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
Figure 47. USB OTG FS timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . 143  
Figure 48. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Figure 49. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
Figure 50. Power supply and reference decoupling (V  
Figure 51. Power supply and reference decoupling (V  
not connected to V  
). . . . . . . . . . . . . 149  
). . . . . . . . . . . . . . . . 150  
REF+  
DDA  
connected to V  
REF+  
DDA  
Figure 52. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
Figure 53. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 159  
Figure 54. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 161  
Figure 55. Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 162  
Figure 56. Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 164  
Figure 57. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
Figure 58. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
Figure 59. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 170  
Figure 60. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
Figure 61. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
Figure 62. SD default mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
Figure 63. WLCSP81 - 81-ball, 4.039 x 3.951 mm, 0.4 mm pitch wafer level chip scale  
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
Figure 64. WLCSP81- 81-ball, 4.039 x 3.951 mm, 0.4 mm pitch wafer level chip scale  
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
Figure 65. WLCSP81 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
Figure 66. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat  
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
Figure 67. UFQFPN48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
Figure 68. UFQFPN48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
Figure 69. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . 182  
Figure 70. LQFP64 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
Figure 71. LQFP64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
Figure 72. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline . . . . . . . . . . . . . . 186  
Figure 73. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat  
recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
Figure 74. LQFP100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188  
Figure 75. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline . . . . . . . . . . . . . . 189  
Figure 76. LQFP144 - 144-pin,20 x 20 mm low-profile quad flat package  
recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
Figure 77. LQFP144 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
Figure 78. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball  
grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
Figure 79. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball  
grid array package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
Figure 80. UFBGA100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
Figure 81. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball  
grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
Figure 82. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball  
grid array recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
Figure 83. UFBGA144 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198  
Figure 84. Sensor Hub application example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
Figure 85. Display application example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203  
Figure 86. USB controller configured as peripheral-only and used in Full speed mode . . . . . . . . . . 204  
Figure 87. USB peripheral-only Full speed mode with direct connection  
10/207  
DocID029162 Rev 5  
STM32F413xG/H  
List of figures  
for VBUS sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204  
Figure 88. USB peripheral-only Full speed mode, VBUS detection using GPIO . . . . . . . . . . . . . . . . 205  
Figure 89. USB controller configured as host-only and used in full speed mode. . . . . . . . . . . . . . . . 205  
DocID029162 Rev 5  
11/207  
11  
Introduction  
STM32F413xG/H  
1
Introduction  
This datasheet provides the description of the STM32F413xG/H microcontrollers.  
®
®
For information on the Cortex -M4 core, please refer to the Cortex -M4 programming  
manual (PM0214) available from www.st.com.  
12/207  
DocID029162 Rev 5  
 
STM32F413xG/H  
Description  
2
Description  
®
®
The STM32F413XG/H devices are based on the high-performance ARM Cortex -M4 32-  
®
bit RISC core operating at a frequency of up to 100 MHz. Their Cortex -M4 core features a  
Floating point unit (FPU) single precision which supports all ARM single-precision data-  
processing instructions and data types. It also implements a full set of DSP instructions and  
a memory protection unit (MPU) which enhances application security.  
The STM32F413XG/H devices belong to the STM32F4 access product lines (with products  
combining power efficiency, performance and integration) while adding a new innovative  
feature called Batch Acquisition Mode (BAM) allowing to save even more power  
consumption during data batching.  
The STM32F413XG/H devices incorporate high-speed embedded memories (up to  
1.5 Mbytes of Flash memory, 320 Kbytes of SRAM), and an extensive range of enhanced  
I/Os and peripherals connected to two APB buses, three AHB buses and a 32-bit multi-AHB  
bus matrix.  
All devices offer a 12-bit ADC, two 12-bit DACs, a low-power RTC, twelve general-purpose  
16-bit timers including two PWM timer for motor control, two general-purpose 32-bit timers  
and a low power timer.  
They also feature standard and advanced communication interfaces.  
2
2
Up to four I Cs, including one I C supporting Fast-Mode Plus  
Five SPIs  
2
2
Five I Ss out of which two are full duplex. To achieve audio class accuracy, the I S  
peripherals can be clocked via a dedicate internal audio PLL or via an external clock to  
allow synchronization.  
Four USARTs and six UARTs  
An SDIO/MMC interface  
An USB 2.0 OTG full-speed interface  
Three CANs  
An SAI.  
In addition, the STM32F413xG/H devices embed advanced peripherals:  
A flexible static memory control interface (FSMC)  
A Quad-SPI memory interface  
Two digital filter for sigma modulator (DFSDM) supporting microphone MEMs and  
sound source localization, one with two filters and up to four inputs, and the second  
one with four filters and up to eight inputs  
They are offered in 7 packages ranging from 48 to 144 pins. The set of available peripherals  
depends on the selected package. The STM32F413xG/H operate in the – 40 to + 125 °C  
temperature range from a 1.7 (PDR OFF) to 3.6 V power supply. A comprehensive set of  
power-saving mode allows the design of low-power applications.  
DocID029162 Rev 5  
13/207  
42  
 
Description  
STM32F413xG/H  
These features make the STM32F413xG/H microcontrollers suitable for a wide range of  
applications:  
Motor drive and application control  
Medical equipment  
Industrial applications: PLC, inverters, circuit breakers  
Printers, and scanners  
Alarm systems, video intercom, and HVAC  
Home audio appliances  
Mobile phone sensor hub  
Wearable devices  
Connected objects  
Wifi modules  
14/207  
DocID029162 Rev 5  
STM32F413xG/H  
Description  
Table 2. STM32F413xG/H features and peripheral counts  
Peripherals  
STM32F413xG  
STM32F413xH  
Flash memory (Kbyte)  
1024  
1536  
SRAM  
System  
(Kbyte)  
320 (256 + 64)  
1
320 (256 + 64)  
Quad-SPI memory  
interface  
-
-
-
-
-
-
1
(1)  
(1)  
1
(1)  
(1)  
(1)  
1
(1)  
FSMC memory controller  
1
1
1
1
1
1
FSMC LCD parallel  
interface Data bus size  
8
16  
8
16  
General-  
purpose  
(2)  
(3)  
(2)  
(3)  
10  
10  
10  
10  
10  
10  
10  
10  
Advanced-  
control  
(4)  
(4)  
2
2
2
2
Timers  
Basic  
2
1
2
1
1
Low-power  
timer  
Random number generator  
1
2
SPI/ I S  
5/5 (2 full duplex)  
5/5 (2 full duplex)  
2
I C  
3
1
3
1
2
I CFMP  
USART/  
UART  
3/3  
4/3  
4/6  
3/3  
4/3  
4/6  
Comm.  
interfaces  
SDIO/MMC  
1
1
USB/OTG FS  
1
1
1
1
1
1
1
1
Dual power rail  
No  
Yes  
No  
Yes  
No  
Yes  
No  
Yes  
CAN  
SAI  
3
1
6
3
1
6
Number of digital Filters for  
Sigma-delta modulator  
Number of channels  
7
11  
50  
12  
81  
7
11  
50  
12  
81  
GPIOs  
36  
60  
114  
36  
60  
114  
1
1
12-bit ADC  
Number of channels  
10  
16  
10  
16  
Yes  
Yes  
12-bit DAC  
Number of channels  
2
2
Maximum CPU frequency  
Operating voltage  
100 MHz  
1.7 to 3.6 V  
100 MHz  
1.7 to 3.6 V  
Ambient temperatures:  
Ambient temperatures:  
– 40 to +85 °C / – 40 to +105 °C / – 40 to +125 °C  
– 40 to +85 °C / – 40 to +105 °C / – 40 to +125 °C  
Operating temperatures  
Package  
Junction temperature: –40 to + 130 °C  
Junction temperature: –40 to + 130 °C  
UFQFPN  
48  
LQFP  
64  
WLCSP  
81  
UFBGA/  
LQFP100 LQFP144  
UFBGA/ UFQFPN  
WLCSP  
81  
UFBGA/  
LQFP100 LQFP144  
UFBGA/  
LQFP64  
48  
1. 64 pins package: support only 8 bits multiplexed mode interface  
81 pins package: support 1 external memory of up to 64KB in multiplexed mode  
100 pins: support 2 external memories of up to 64MB in multiplexed mode  
Refer to Table 11: FSMC pin definition for more detailed information  
2. 48 pins packages: TIM3 and TIM4: ETR pin not available.  
3. 81 pins packages: TIM4: ETR pin not available.  
4. 48 pins packages: TIM8:CH1, CH2, CH3 and CH4 pins not available.  
DocID029162 Rev 5  
15/207  
42  
 
 
 
Description  
STM32F413xG/H  
2.1  
Compatibility with STM32F4 series  
The STM32F413xG/H are fully software and feature compatible with the STM32F4 series  
(STM32F42x, STM32F401, STM32F43x, STM32F41x, STM32F405 and STM32F407)  
The STM32F413xG/H can be used as drop-in replacement of the other STM32F4 products  
but some slight changes have to be done on the PCB board.  
Figure 1. Compatible board design for LQFP100 package  
670ꢀꢄ)ꢇꢃꢈ[[  
670ꢀꢄ)ꢇꢈꢃ[[  
670ꢀꢄ)ꢇꢃꢅꢋ670ꢀꢄ)ꢇꢈꢅꢉOLQH  
670ꢀꢄ)ꢇꢈꢈ[[  
670ꢀꢄ)ꢇꢃꢁꢋ670ꢀꢄ)ꢇꢈꢁꢉOLQH  
670ꢀꢄ)ꢇꢈꢄ[[  
670ꢀꢄ)ꢇꢄꢁꢋ670ꢀꢄ)ꢇꢀꢁꢉOLQH  
670ꢀꢄ)ꢇꢈꢀ[[  
670ꢀꢄ)ꢇꢄꢊꢋ670ꢀꢄ)ꢇꢀꢊꢉOLQH  
670ꢀꢄ)ꢇꢄꢀ[[  
670ꢀꢄ)ꢇꢇꢆ[[  
ꢅꢂ  
ꢅꢁ  
ꢅꢆ  
ꢅꢅ  
ꢅꢇ  
ꢅꢀ  
ꢅꢄ  
ꢅꢈ  
3'ꢈꢈꢉꢉꢉꢉ  
3'ꢈꢃꢉꢉꢉꢉ  
3'ꢊ  
3'ꢈꢈꢉꢉꢉꢉ  
3'ꢈꢃꢉꢉꢉꢉ  
3'ꢊ  
ꢅꢂ  
ꢅꢁ  
ꢅꢆ  
ꢅꢅ  
ꢅꢇ  
ꢅꢀ  
ꢅꢄ  
ꢅꢈ  
3% QRW DYDLODEOHꢉDQ\PRUH  
3'ꢂ  
3'ꢂ  
3%ꢈꢅ  
3%ꢈꢇ  
3%ꢈꢀ  
3%ꢈꢄ  
5HSODFHG E\ 9  
3%ꢈꢅ  
3%ꢈꢇ  
3%ꢈꢀ  
3%ꢈꢄ  
&$3Bꢈ  
966 9''  
966 9''  
06Yꢀꢁꢂꢃꢄ9ꢀ  
16/207  
DocID029162 Rev 5  
 
 
STM32F413xG/H  
Description  
Figure 2. Compatible board design for LQFP64 package  
670ꢀꢄ)ꢇꢃꢈ[[  
670ꢀꢄ)ꢇꢈꢃ[[  
670ꢀꢄ)ꢇꢈꢈ[[  
670ꢀꢄ)ꢇꢈꢄ[[  
670ꢀꢄ)ꢇꢈꢀ[[  
670ꢀꢄ)ꢇꢄꢀ[[  
670ꢀꢄ)ꢇꢇꢆ[[  
670ꢀꢄ)ꢇꢃꢅꢋ670ꢀꢄ)ꢇꢈꢅꢉOLQH  
ꢅꢀ  ꢇꢊ  
ꢇꢂ 9''  
ꢅꢀ  ꢇꢊ  
ꢇꢂ  
9''  
966  
3$ꢈꢀ  
3$ꢈꢄ  
3$ꢈꢈ  
3$ꢈꢃ  
3$ꢊ  
9''  
9''  
ꢇꢁ  
9&$3Bꢄ  
ꢇꢁ  
ꢇꢆ  
ꢇꢅ  
ꢇꢇ  
ꢇꢀ  
ꢇꢄ  
ꢇꢈ  
ꢇꢃ  
ꢀꢊ  
ꢀꢂ  
ꢀꢁ  
ꢇꢆ 3$ꢈꢀ  
ꢇꢅ 3$ꢈꢄ  
ꢇꢇ 3$ꢈꢈ  
ꢇꢀ 3$ꢈꢃ  
ꢇꢄ 3$ꢊ  
ꢇꢈ 3$ꢂ  
ꢇꢃ 3&ꢊ  
ꢀꢊ 3&ꢂ  
ꢀꢂ 3&ꢁ  
ꢀꢁ 3&ꢆ  
966  
966  
3$ꢂ  
3&ꢊ  
3&ꢂ  
3&ꢁ  
3&ꢆ  
3%ꢈꢈꢉQRWꢉDYDLODEOHꢉDQ\PRUHꢉꢉ  
5HSODFHGꢉE\ꢉ9&$3Bꢈ  
ꢀꢆ  
ꢀꢅ  
ꢀꢇ  
ꢀꢀ  
3%ꢈꢅ  
3%ꢈꢇ  
3%ꢈꢀ  
3%ꢈꢄ  
ꢀꢆ 3%ꢈꢅ  
ꢀꢅ 3%ꢈꢇ  
ꢀꢇ 3%ꢈꢀ  
ꢀꢀ 3%ꢈꢄ  
ꢄꢂꢄꢊꢀꢃ ꢀꢈ  
ꢀꢄ  
ꢀꢈ  
ꢄꢂꢄꢊꢀꢃ ꢀꢄ  
9&$3BꢈꢉLQFUHDVHGꢉWRꢉꢇꢌꢁꢉ—I  
(65ꢉꢈꢉŸꢉRUꢉEHORZꢉꢈꢉꢉ  
966  
9''  
9''  
966  
06Yꢀꢁꢂꢃꢀ9ꢀ  
Figure 3. Compatible board design for LQFP144 package  
670ꢀꢄ)ꢇꢃꢅꢋ670ꢀꢄ)ꢇꢈꢅꢉOLQH  
670ꢀꢄ)ꢇꢈꢄ[  
670ꢀꢄ)ꢇꢈꢀ[  
670ꢀꢄ)ꢇꢄꢀ[  
670ꢀꢄ)ꢇꢇꢆ[[  
670ꢀꢄ)ꢇꢃꢁꢋ670ꢀꢄ)ꢇꢈꢁꢉOLQH  
670ꢀꢄ)ꢇꢄꢁꢋ670ꢀꢄ)ꢇꢀꢁꢉOLQH  
670ꢀꢄ)ꢇꢄꢊꢋ670ꢀꢄ)ꢇꢀꢊꢉOLQH  
ꢈꢃꢂ  
ꢈꢃꢁ  
ꢈꢃꢆ  
ꢈꢃꢅ  
ꢈꢃꢇ  
ꢈꢃꢀ  
ꢈꢃꢄ  
ꢈꢃꢈ  
ꢈꢃꢃ  
ꢊꢊ  
9''  
966  
9&$3Bꢄ  
3$ꢈꢀ  
3$ꢈꢄ  
3$ꢈꢈ  
3$ꢈꢃ  
3$ꢊ  
ꢈꢃꢂ  
9''  
966  
ꢈꢃꢁ  
ꢈꢃꢆ  
ꢈꢃꢅ  
ꢈꢃꢇ  
ꢈꢃꢀ  
ꢈꢃꢄ  
ꢈꢃꢈ  
ꢈꢃꢃ  
ꢊꢊ  
9&$3Bꢄ  
3$ꢈꢀ  
3$ꢈꢄ  
3$ꢈꢈ  
3$ꢈꢃ  
3$ꢊ  
3$ꢂ  
3$ꢂ  
3&ꢊ  
6HSDUDWHꢉ86%ꢉSRZHUꢉUDLOꢌ  
&RQQHFWHGꢉWRꢉ9''ꢉLIꢉDꢉGLIIHUHQWꢉ  
SRZHUꢉVXSSO\ꢉIRUꢉWKHꢉ86%ꢉLVꢉQRWꢉ  
UHTXLUHGꢌ  
3&ꢊ  
ꢊꢂ  
3&ꢂ  
ꢊꢂ  
3&ꢂ  
ꢊꢁ  
3&ꢁ  
ꢊꢁ  
3&ꢁ  
ꢊꢆ  
3&ꢆ  
ꢊꢆ  
3&ꢆ  
ꢊꢅ  
9''  
966  
3*ꢂ  
ꢊꢅ  
9''86%  
966  
ꢊꢇ  
ꢊꢇ  
ꢊꢀ  
ꢊꢀ  
3*ꢂ  
06Yꢇꢃꢂꢇꢄ9ꢈ  
DocID029162 Rev 5  
17/207  
42  
 
 
Description  
STM32F413xG/H  
Figure 4. STM32F413xG/H block diagram  
)60&  
125ꢉ)ODVKꢎꢉ  
65$0ꢎꢉ365$0  
&/.ꢎꢉ1(>ꢀꢍꢃ@ꢎꢉ$>ꢄꢅꢍꢃ@ꢎ  
'>ꢈꢆꢍꢃ@ꢎꢉ12(1ꢎꢉ1:(1ꢎ  
1%/>ꢈꢍꢃ@ꢎꢉ1:$,7  
-7567ꢉ-7',ꢎ  
-7&.ꢋ6:&/.  
-7$*ꢉꢏꢉ6:  
(70  
038ꢋ)38  
19,&  
&/.ꢎꢉ&6$ꢎꢉ&6%ꢎꢉ'>ꢁꢍꢃ@  
4XDGꢐ63,  
-7'2ꢋ6:'ꢎꢉ-7'2  
75$&(&/.  
ꢄꢅꢆꢉ.%ꢉ65$0ꢈ  
,ꢐ%86  
'ꢐ%86  
6ꢐ%86  
75$&('>ꢀꢍꢃ@  
$50ꢉ&RUWH[ꢐ0ꢇ  
&RUWH[ꢐ0ꢇ  
ꢈꢃꢃꢉ0+]  
ꢆꢇꢉ.%ꢉ65$0ꢄ  
8SꢉWRꢉꢈꢌꢅꢉ0%  
)ODVKꢉPHPRU\  
51*  
#9''86%  
$+%ꢄꢉꢈꢃꢃ0+]  
#9''  
'ꢓ  
86%  
27*ꢉ)6  
ꢂꢉ6WUHDPV  
),)2  
'ꢐ  
'0$ꢄ  
'0$ꢈ  
6&/ꢎꢉ6'$ꢎꢉ,17ꢉ,'ꢎꢉ9%86  
$+%ꢈꢉꢈꢃꢃꢉ0+]  
9''  
ꢂꢉ6WUHDPV  
),)2  
3RZHUꢉPDQDJPW  
9ROWDJHꢉ  
9'' ꢉꢈꢌꢂꢉWRꢉꢀꢌꢆꢉ9  
966  
9&$3Bꢈꢎꢉ9&$3Bꢄ  
UHJXODWRU  
ꢀꢌꢀꢉWRꢉꢈꢌꢄꢉ9  
3$>ꢈꢅꢍꢃ@  
3%>ꢈꢅꢍꢃ@  
3&>ꢈꢅꢍꢃ@  
3'>ꢈꢅꢍꢃ@  
#9''$  
5& +6  
*3,2ꢉ3257ꢉ$  
*3,2ꢉ3257ꢉ%  
*3,2ꢉ3257ꢉ&  
#9''  
6XSSO\  
325ꢉꢉ  
UHVHW  
VXSHUYLVLRQ  
5& / 6  
325ꢋ3'5  
%25  
,QW  
9''$ꢎꢉ966$  
1567  
3//ꢈꢐ3//ꢄ  
39'  
*3,2ꢉ3257ꢉ'  
*3,2ꢉ3257ꢉ(  
*3,2ꢉ3257ꢉ*  
#9''$  
#9''  
26&B,1  
26&B287  
3(>ꢈꢅꢍꢃ@  
3*>ꢈꢅꢍꢃ@  
3+>ꢈꢍꢃ@  
;7$/ꢉ26&  
ꢇꢐꢉꢈꢆ0+]  
5HVHWꢉꢏ  
:'*ꢉꢀꢄ.  
FORFN  
FRQWURO  
3:5  
LQWHUIDFH  
*3,2ꢉ3257ꢉ+  
9%$7ꢉ ꢉꢈꢌꢂꢉWRꢉꢀꢌꢆꢉ9  
#
9
%$7  
26&ꢀꢄB,1  
26&ꢀꢄB287  
;7$/ꢉꢀꢄꢉN+]  
57&  
$:8  
$/$50B287  
67$03ꢈꢉꢉ  
%DFNXSꢉUHJLVWHU  
&5&  
ꢀꢄE  
ꢇꢉFKDQQHOVꢉDVꢉ$)  
7,0ꢄ  
ꢀꢄE  
ꢀꢄE  
ꢇꢉFKDQQHOVꢉDVꢉ$)  
ꢇꢉFKDQQHOVꢉDVꢉ$)  
7,0ꢀ  
7,0ꢇ  
'0$ꢄ  
'0$ꢈ  
ꢈꢈꢄꢉ$)  
(;7ꢉ,7ꢉ:.83  
6',2ꢋ00&  
'>ꢁꢍꢃ@  
&0'ꢎ&.ꢉDVꢉ$)  
$+%ꢋꢉ  
$3%ꢄ  
$+%ꢋꢉ  
$3%ꢈ  
ꢀꢄE  
ꢈꢆE  
ꢇꢉFKDQQHOVꢉDVꢉ$)  
ꢄꢉFKDQQHOVꢉDVꢉ$)  
7,0ꢅ  
7,0ꢈꢄ  
7,0ꢈꢉꢋꢉ3:0  
ꢈꢆE  
ꢇꢉ3:0ꢎꢉꢀꢉ3:0ꢎ  
(75ꢎꢉ%.,1ꢉDVꢉ$)  
ꢈꢆE  
ꢈꢆE  
ꢈꢉFKDQQHOVꢉDVꢉ$)  
ꢈꢉFKDQQHOVꢉDVꢉ$)  
7,0ꢈꢀ  
7,0ꢈꢇ  
ꢇꢉ3:0ꢎꢉꢀꢉ3:0ꢎ  
(75ꢎꢉ%.,1ꢉDVꢉ$)  
ꢈꢆE  
7,0ꢂꢉꢋꢉ3:0  
ꢈꢆE  
ꢈꢆE  
ꢄꢉFKDQQHOVꢉDVꢉ$)  
7,0ꢊ  
5;ꢎꢉ7;ꢎꢉ6&.ꢎ  
&76ꢎꢉ576ꢉDVꢉ$)ꢉ  
VPFDUG  
LU'$  
86$57ꢄ  
7,0ꢈꢃ  
ꢈꢉFKDQQHOꢉDVꢉ$)  
ꢈꢉFKDQQHOꢉDVꢉ$)  
::'*  
5;ꢎꢉ7;ꢎꢉ6&.ꢎ  
&76ꢎꢉ576ꢉDVꢉ$)ꢉ  
VPFDUG  
LU'$  
7,0ꢈꢈ  
ꢈꢆE  
86$57ꢀ  
8$57ꢇ  
VPFDUG  
5;ꢎꢉ7;ꢎꢉ6&.ꢎ  
&76ꢎꢉ576ꢉDVꢉ$)  
86$57ꢈ  
86$57ꢆ  
5;ꢎꢉ7;ꢉDVꢉ$)ꢉ  
LU'$  
ꢈꢆE  
ꢈꢆE  
7,0(5ꢆ  
7,0(5ꢁ  
VPFDUG  
LU'$  
5;ꢎꢉ7;ꢉDVꢉ$)ꢉ  
5;ꢎꢉ7;ꢉDVꢉ$)ꢉ  
5;ꢎꢉ7;ꢎꢉ6&.ꢎ  
&76ꢎꢉ576ꢉDVꢉ$)  
8$57ꢅ  
8$57ꢁ  
5;ꢎꢉ7;ꢉDVꢉ$)ꢉ  
8$57ꢊ  
5;ꢎꢉ7;ꢉDVꢉ$)ꢉ  
8$57ꢂ  
5;ꢎꢉ7;ꢉDVꢉ$)ꢉ  
8$57ꢈꢃ  
026,ꢎꢉ0,62ꢎꢉ6&.ꢎꢉ  
166ꢋ:6ꢎꢉ0&.ꢉDVꢉ$)ꢉꢉꢉꢉ  
026,ꢎꢉ0,62ꢎꢉ6&.ꢎꢉ  
026,ꢎꢉ0,62ꢎꢉ  
63,ꢄꢋ,ꢄ6ꢄ  
63,ꢈꢋ,ꢄ6ꢈ  
63,ꢇꢋ,ꢄ6ꢇ  
63,ꢅꢋ,ꢄ6ꢅ  
6&.ꢎꢉꢉ166ꢋ:6ꢉDVꢉ$)  
026,ꢎꢉ0,62ꢎꢉ  
6&.ꢎꢉꢉ166ꢋ:6ꢉDVꢉ$)  
026,ꢎꢉ0,62ꢎꢉ  
63,ꢀꢋ,ꢄ6ꢀ  
166ꢋ:6ꢎꢉ0&.ꢉDVꢉ$)ꢉꢉꢉꢉ  
,ꢄ&ꢈꢋ60%86  
,ꢄ&ꢄꢋ60%86  
6&/ꢎꢉ6'$ꢎꢉ60%$ꢉDVꢉ$)  
6&.ꢎꢉꢉ166ꢋ:6ꢉDVꢉ$)  
6&/ꢎꢉ6'$ꢎꢉ60%$ꢉDVꢉ$)  
&.,1>ꢀꢍꢃ@ꢎꢉ'$7,1>ꢀꢍꢃ@ꢎ  
&.287  
')6'0ꢈ  
')6'0ꢄ  
6$,ꢈ  
,ꢄ&ꢀꢋ60%86  
6&/ꢎꢉ6'$ꢎꢉ60%$ꢉDVꢉ$)  
6&/ꢎꢉ6'$ꢎꢉ60%$ꢉDVꢉ$)  
&.,1>ꢁꢍꢃ@ꢎꢉ'$7,1>ꢁꢍꢃ@ꢎ  
,ꢄ&)03ꢈꢋ60%86  
&.287  
6'ꢎꢉ6&.ꢎꢉ)6ꢎ  
0&/.ꢉDVꢉ$)  
ꢈꢆE  
ꢄꢉ,1Vꢎꢉꢈꢉ287ꢉ,ꢈꢉ,75ꢉDVꢉ$)  
/37,0  
&$1ꢈ  
#9''$  
'$&ꢈ  
'$&ꢄ  
9''5()B$'&  
7HPSHUDWXUHꢉVHQVRU  
7;ꢎꢉ5;  
7;ꢎꢉ5;  
,7)  
&$1ꢄ  
&$1ꢀ  
ꢈꢆꢉDQDORJꢉLQSXWVꢉꢉ  
$'&ꢈ  
,)  
7;ꢎꢉ5;  
#9''$  
'$&ꢈꢉ  
DVꢉ$)  
'$&ꢄꢉ  
DVꢉ$)  
06Yꢇꢃꢂꢄꢆ9ꢈ  
1. The timers connected to APB2 are clocked from TIMxCLK up to 100 MHz, while the timers connected to APB1 are clocked  
from TIMxCLK up to 50 MHz.  
18/207  
DocID029162 Rev 5  
 
 
STM32F413xG/H  
Functional overview  
3
Functional overview  
3.1  
ARM® Cortex®-M4 with FPU core with embedded Flash and  
SRAM  
®
®
The ARM Cortex -M4 with FPU processor is the latest generation of ARM processors for  
embedded systems. It was developed to provide a low-cost platform that meets the needs of  
MCU implementation, with a reduced pin count and low-power consumption, while  
delivering outstanding computational performance and an advanced response to interrupts.  
®
®
The ARM Cortex -M4 with FPU 32-bit RISC processor features exceptional code-  
efficiency, delivering the high-performance expected from an ARM core in the memory size  
usually associated with 8- and 16-bit devices.  
The processor supports a set of DSP instructions which allow efficient signal processing and  
complex algorithm execution.  
Its single precision FPU (floating point unit) speeds up software development by using  
metalanguage development tools, while avoiding saturation.  
The STM32F413xG/H devices are compatible with all ARM tools and software.  
Figure 4 shows the general block diagram of the STM32F413xG/H.  
®
®
Note:  
Cortex -M4 with FPU is binary compatible with Cortex -M3.  
3.2  
Adaptive real-time memory accelerator (ART Accelerator™)  
The ART Accelerator™ is a memory accelerator which is optimized for STM32 industry-  
®
®
standard ARM Cortex -M4 with FPU processors. It balances the inherent performance  
®
®
advantage of the ARM Cortex -M4 with FPU over Flash memory technologies, which  
normally requires the processor to wait for the Flash memory at higher frequencies.  
To release the processor full 125 DMIPS performance at this frequency, the accelerator  
implements an instruction prefetch queue and branch cache, which increases program  
execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the  
performance achieved thanks to the ART Accelerator is equivalent to 0 wait state program  
execution from Flash memory at a CPU frequency up to 100 MHz.  
3.3  
Enhanced Batch Acquisition mode (eBAM)  
The Batch acquisition mode allows enhanced power efficiency during data batching. It  
enables data acquisition through any communication peripherals directly to memory using  
the DMA in reduced power consumption as well as data processing while the rest of the  
system is in low-power mode (including the Flash and ART). For example in an audio  
system, a smart combination of PDM audio sample acquisition and processing from the  
DFSDM directly to RAM (Flash and ARTstopped) with the DMA using BAM followed by  
some very short processing from Flash allows to drastically reduce the power consumption  
of the application.  
The BAM has been enhanced by adding SRAM2 that allows SRAM code to be executed  
through the Ibus and Dbus, thus improving code execution performance.  
DocID029162 Rev 5  
19/207  
42  
 
 
 
 
Functional overview  
STM32F413xG/H  
A dedicated application note (AN4515) describes how to implement the STM32F413xG/H  
BAM to allow the best power efficiency.  
3.4  
Memory protection unit  
The memory protection unit (MPU) is used to manage the CPU accesses to memory to  
prevent one task to accidentally corrupt the memory or resources used by any other active  
task. This memory area is organized into up to 8 protected areas that can in turn be divided  
up into 8 subareas. The protection area sizes are between 32 byte and the whole 4 Gbyte of  
addressable memory.  
The MPU is especially helpful for applications where some critical or certified code has to be  
protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-  
time operating system). If a program accesses a memory location that is prohibited by the  
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can  
dynamically update the MPU area setting, based on the process to be executed.  
The MPU is optional and can be bypassed for applications that do not need it.  
3.5  
Embedded Flash memory  
The devices embed up to 1.5 Mbytes of Flash memory available for storing programs and  
data, plus 512 bytes of one-time programmable (OTP) memory organized in 16 blocks of  
32 bytes, each which can be independently locked.  
The user Flash memory area can be protected against read operations by an entrusted  
code (read protection or RDP). Different protection levels are available. The user Flash  
memory is divided into sectors, which can be individually protected against write operation.  
Flash sectors can also be protected individually against D-bus read accesses by using the  
proprietary readout protection (PCROP).  
Refer to the product line reference manual for additional information on OTP area and  
protection features.  
To optimize the power consumption the Flash memory can also be switched off in Run or in  
Sleep mode (see Section 3.20: Low-power modes).  
Two modes are available: Flash in Stop mode or in DeepSleep mode (trade off between  
power saving and startup time.  
Before disabling the Flash, the code must be executed from the internal RAM.  
3.6  
CRC (cyclic redundancy check) calculation unit  
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit  
data word and a fixed generator polynomial.  
Among other applications, CRC-based techniques are used to verify data transmission or  
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of  
verifying the Flash memory integrity. The CRC calculation unit helps compute a software  
signature during runtime, to be compared with a reference signature generated at link-time  
and stored at a given memory location.  
20/207  
DocID029162 Rev 5  
 
 
 
STM32F413xG/H  
Functional overview  
3.7  
Embedded SRAM  
All devices embed 320 Kbytes of system SRAM which can be accessed (read/write) at CPU  
clock speed with 0 wait states.  
3.8  
Multi-AHB bus matrix  
The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs) and the slaves  
(Flash memory, RAM, AHB and APB peripherals) and ensures a seamless and efficient  
operation even when several high-speed peripherals work simultaneously.  
Figure 5. Multi-AHB matrix  
$50  
&RUWH[ꢐ0ꢇ  
*3  
'0$ꢄ  
*3  
$FFHVVꢉWKURXJKꢉUHPDS  
$FFHVVꢉE\ꢉDOLDVLQJ  
'0$ꢈ  
6ꢃ  
6ꢈ  
6ꢄ  
6ꢀ  
6ꢇ  
6ꢅ  
,&2'(  
0ꢃ  
0ꢈ  
0ꢄ  
)ODVK  
ꢈꢌꢅꢉ0%  
'&2'(  
65$0ꢈ  
ꢄꢅꢆꢉ.%  
$+%  
$3%ꢈ  
$3%ꢄ  
0ꢀ  
0ꢇ  
SHULSKꢌꢉꢈ  
$+%  
SHULSKꢌꢉꢄ  
)60&ꢉH[WHUQDOꢉ  
0HP&WUOꢋ  
0ꢅ  
0ꢆ  
4XDG63,  
65$0ꢄ  
ꢆꢇꢉ.%  
%XVꢉPDWUL[ꢐ6  
06Yꢇꢃꢂꢄꢈ9ꢄ  
CPU can access SRAM1 memory via S-bus, when SRAM1 is mapped at the address range:  
0x2000 0000 to 0x2003 FFFF.  
CPU can access SRAM2 memory via S-bus, when SRAM2 is mapped at the address range:  
0x2004 0000 to 0x2004 FFFF.  
CPU can access SRAM1 memory via I-bus and D-bus, when SRAM1 is remapped at  
address 0x0000 0000 either by booting from RAM memory or by the remap mode.  
CPU can access SRAM2 memory via I-bus and D-bus, when SRAM2 is mapped at the  
address range: 0x1000 0000 to 0x1000 FFFF.  
Performance boosts up, when the CPU access SRAM memory via the I-bus.  
DocID029162 Rev 5  
21/207  
42  
 
 
 
Functional overview  
STM32F413xG/H  
3.9  
DMA controller (DMA)  
The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8  
streams each. They are able to manage memory-to-memory, peripheral-to-memory and  
memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals,  
support burst transfer and are designed to provide the maximum peripheral bandwidth  
(AHB/APB).  
The two DMA controllers support circular buffer management, so that no specific code is  
needed when the controller reaches the end of the buffer. The two DMA controllers also  
have a double buffering feature, which automates the use and switching of two memory  
buffers without requiring any special code.  
Each stream is connected to dedicated hardware DMA requests, with support for software  
trigger on each stream. Configuration is made by software and transfer sizes between  
source and destination are independent.  
The DMA can be used with the main peripherals:  
2
SPI and I S  
2
2
I C and I CFMP  
USART  
General-purpose, basic and advanced-control timers TIMx  
SD/SDIO/MMC/eMMC host interface  
Quad-SPI  
ADC  
DAC  
Digital Filter for sigma-delta modulator (DFSDM) with a separate stream for each filter  
SAI.  
3.10  
Flexible static memory controller (FSMC)  
The Flexible static memory controller (FSMC) includes a NOR/PSRAM memory controller. It  
features four Chip Select outputs supporting the following modes: SRAM, PSRAM and NOR  
Flash memory.  
The main functions are:  
8-,16-bit data bus width  
Write FIFO  
Maximum FSMC_CLK frequency for synchronous accesses is 90 MHz.  
LCD parallel interface  
The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It  
supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to  
specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost-  
effective graphic applications using LCD modules with embedded controllers or high  
performance solutions using external controllers with dedicated acceleration.  
22/207  
DocID029162 Rev 5  
 
 
STM32F413xG/H  
Functional overview  
3.11  
Quad-SPI memory interface (QUAD-SPI)  
All devices embed a Quad-SPI memory interface, which is a specialized communication  
interface targeting single, dual or quad-SPI Flash memories. It can work in direct mode  
through registers, external Flash status register polling mode and memory mapped mode.  
Up to 256 Mbyte of external Flash memory are mapped. They can be accessed in 8, 16 or  
32-bit mode. Code execution is also supported. The opcode and the frame format are fully  
programmable. Communication can be performed either in single data rate or dual data  
rate.  
3.12  
Nested vectored interrupt controller (NVIC)  
The devices embed a nested vectored interrupt controller able to manage 16 priority levels,  
and handle up to 102 maskable interrupt channels plus the 16 interrupt lines of the  
®
Cortex -M4 with FPU.  
Closely coupled NVIC gives low-latency interrupt processing  
Interrupt entry vector table address passed directly to the core  
Allows early processing of interrupts  
Processing of late arriving, higher-priority interrupts  
Support tail chaining  
Processor state automatically saved  
Interrupt entry restored on interrupt exit with no instruction overhead  
This hardware block provides flexible interrupt management features with minimum interrupt  
latency.  
3.13  
3.14  
External interrupt/event controller (EXTI)  
The external interrupt/event controller consists of 24 edge-detector lines used to generate  
interrupt/event requests. Each line can be independently configured to select the trigger  
event (rising edge, falling edge, both) and can be masked independently. A pending register  
maintains the status of the interrupt requests. The EXTI can detect an external line with a  
pulse width shorter than the Internal APB2 clock period. Up to 114 GPIOs can be connected  
to the 16 external interrupt lines.  
Clocks and startup  
On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The  
16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy at 25 °C. The  
application can then select as system clock either the RC oscillator or an external 4-26 MHz  
clock source. This clock can be monitored for failure. If a failure is detected, the system  
automatically switches back to the internal RC oscillator and a software interrupt is  
generated (if enabled). This clock source is input to a PLL thus allowing to increase the  
frequency up to 100 MHz. Similarly, full interrupt management of the PLL clock entry is  
available when necessary (for example if an indirectly used external oscillator fails).  
Several prescalers allow the configuration of the three AHB buses, the high-speed APB  
(APB2) and the low-speed APB (APB1) domains. The maximum frequency of the three AHB  
DocID029162 Rev 5  
23/207  
42  
 
 
 
 
Functional overview  
STM32F413xG/H  
buses and high-speed APB domains is 100 MHz. The maximum allowed frequency of the  
low-speed APB domain is 50 MHz.  
The devices embed a dedicated PLL (PLLI2S) which allows to achieve audio class  
2
performance. In this case, the I S master clock can generate all standard sampling  
frequencies from 8 kHz to 192 kHz.  
3.15  
Boot modes  
At startup, boot pins are used to select one out of three boot options:  
Boot from user Flash memory  
Boot from system memory  
Boot from embedded SRAM  
The boot loader is located in system memory. It is used to reprogram the Flash memory by  
using one of the interface listed in the Table 3 or the USB OTG FS in device mode through  
DFU (device firmware upgrade).  
Table 3. Embedded bootloader interfaces  
SPI3  
SPI1  
PA4/  
PA5/  
PA6/  
PA7  
SPI4  
I2C  
USART1 USART2 USART3 I2C1 I2C2 I2C3  
PE11/ CAN2 USB  
PE12/ PB5/ PA11  
PE13/ PB13 /P12  
PE14  
PA15/  
PC10/  
PC11/  
PC12  
FMP1  
PB14/  
PB15  
Package  
PA9/  
PA10  
PD6/  
PD5  
PB11/  
PB10  
PB6/ PF0/ PA8/  
PB7 PF1 PB4  
UFQFPN48  
LQFP64  
Y
Y
Y
Y
Y
Y
Y
-
-
-
-
Y
Y
Y
Y
Y
Y
Y
-
-
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
-
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
WLCSP81  
LQFP100  
LQFP144  
UFBGA100  
UFBGA144  
-
-
-
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
-
Y
Y
Y
Y
-
Y
For more detailed information on the bootloader, refer to Application Note: AN2606,  
STM32™ microcontroller system memory boot mode.  
24/207  
DocID029162 Rev 5  
 
 
 
STM32F413xG/H  
Functional overview  
3.16  
Power supply schemes  
V
= 1.7 to 3.6 V: external power supply for I/Os with the internal supervisor  
DD  
(POR/PDR) disabled, provided externally through V pins. Requires the use of an  
DD  
external power supply supervisor connected to the V and NRST pins.  
DD  
V
, V  
= 1.7 to 3.6 V: external analog power supplies for ADC, Reset blocks, RCs  
SSA DDA  
and PLL. V  
and V  
must be connected to V and V , respectively, with  
SSA DD SS  
DDA  
decoupling technique.  
Note:  
The V /V minimum value of 1.7 V is obtained with the use of an external power supply  
DD DDA  
supervisor (refer to Section 3.17.2: Internal reset OFF). Refer to Table 4: Regulator ON/OFF  
and internal power supply supervisor availability to identify the packages supporting this  
option.  
V
= 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and  
BAT  
backup registers (through power switch) when V is not present.  
DD  
V
can be connected either to VDD or an external independent power supply (3.0  
DDUSB  
to 3.6 V) for USB transceivers.  
For example, when device is powered at 1.8 V, an independent power supply 3.3V can  
be connected to V  
. When the V  
is connected to a separated power supply,  
DDUSB  
DDUSB  
it is independent from V or V  
but it must be the last supply to be provided and the  
DD  
DDA  
first to disappear.  
The following conditions VDDUSB must be respected:  
During power-on phase (V < V  
), V  
should be always lower than  
DDUSB  
DD  
DD_MIN  
V
DD  
During power-down phase (V < V  
), V  
should be always lower than  
DDUSB  
DD  
DD_MIN  
V
DD  
V
rising and falling time rate specifications must be respected.  
DDUSB  
In operating mode phase, V  
could be lower or higher than VDD:  
DDUSB  
– If USB is used, the associated GPIOs powered by V  
are operating  
DDUSB  
between V  
and V  
.
DDUSB_MIN  
DDUSB_MAX  
– If USB is not used, the associated GPIOs powered by V  
are operating  
DDUSB  
between V  
and V  
.
DD_MIN  
DD_MAX  
DocID029162 Rev 5  
25/207  
42  
 
Functional overview  
STM32F413xG/H  
Figure 6. V  
connected to an external independent power supply  
DDUSB  
9''86%B0$;  
86% IXQFWLRQDOꢉDUHD  
9''86%  
9''86%B0,1  
86% QRQ  
IXQFWLRQDO  
DUHD  
86%ꢉQRQ  
IXQFWLRQDO  
DUHD  
9''   9''$  
9''B0,1  
WLPH  
3RZHUꢐGRZQ  
2SHUDWLQJꢉPRGH  
3RZHUꢐRQ  
06ꢀꢁꢅꢊꢃ9ꢈ  
3.17  
Power supply supervisor  
3.17.1  
Internal reset ON  
This feature is available for V operating voltage range 1.8 V to 3.6 V.  
DD  
On packages embedding the PDR_ON pin, the power supply supervisor is enabled by  
holding PDR_ON high. On the other package, the power supply supervisor is always  
enabled.  
The device has an integrated power-on reset (POR) / power-down reset (PDR) circuitry  
coupled with a Brownout reset (BOR) circuitry. At power-on, POR is always active, and  
ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is  
reached, the option byte loading process starts, either to confirm or modify default  
thresholds, or to disable BOR permanently. Three BOR thresholds are available through  
option bytes.  
The device remains in reset mode when V is below a specified threshold, V  
or  
POR/PDR  
DD  
V
, without the need for an external reset circuit.  
BOR  
The device also features an embedded programmable voltage detector (PVD) that monitors  
the V /V power supply and compares it to the V threshold. An interrupt can be  
DD DDA  
PVD  
generated when V /V  
drops below the V  
threshold and/or when V /V  
is  
DD DDA  
PVD  
DD DDA  
higher than the V  
threshold. The interrupt service routine can then generate a warning  
PVD  
message and/or put the MCU into a safe state. The PVD is enabled by software.  
26/207  
DocID029162 Rev 5  
 
 
 
STM32F413xG/H  
Functional overview  
3.17.2  
Internal reset OFF  
This feature is available only on packages featuring the PDR_ON pin. The internal power-on  
reset (POR) / power-down reset (PDR) circuitry is disabled by setting the PDR_ON pin to  
low.  
An external power supply supervisor should monitor V and should set the device in reset  
DD  
mode when V is below 1.7 V. NRST should be connected to this external power supply  
DD  
supervisor. Refer to Figure 7: Power supply supervisor interconnection with internal reset  
OFF.  
(1)  
Figure 7. Power supply supervisor interconnection with internal reset OFF  
9''  
([WHUQDOꢀ9''ꢀSRZHUꢀVXSSO\ꢀVXSHUYLVRU  
([WꢌꢉUHVHWꢉFRQWUROOHUꢉDFWLYHꢉZKHQ  
9
''ꢉꢔꢉꢈꢌꢁꢉ9ꢉꢉ  
1567  
3'5B21  
9''  
06Yꢀꢇꢊꢁꢅ9ꢈ  
1. The PRD_ON pin is available only on WLCSP81, UFBGA100, UFBGA144 and LQFP144 packages.  
A comprehensive set of power-saving mode allows to design low-power applications.  
When the internal reset is OFF, the following integrated features are no longer supported:  
The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled.  
The brownout reset (BOR) circuitry must be disabled.  
The embedded programmable voltage detector (PVD) is disabled.  
V
functionality is no more available and VBAT pin should be connected to V  
.
BAT  
DD  
3.18  
Voltage regulator  
The regulator has three operating modes:  
Main regulator mode (MR)  
Low power regulator (LPR)  
Power-down  
DocID029162 Rev 5  
27/207  
42  
 
 
 
 
 
Functional overview  
STM32F413xG/H  
3.18.1  
Regulator ON  
On packages embedding the BYPASS_REG pin, the regulator is enabled by holding  
BYPASS_REG low. On all other packages, the regulator is always enabled.  
There are three power modes configured by software when the regulator is ON:  
MR is used in the nominal regulation mode (With different voltage scaling in Run mode)  
In Main regulator mode (MR mode), different voltage scaling are provided to reach the  
best compromise between maximum frequency and dynamic power consumption.  
LPR is used in the Stop mode  
The LP regulator mode is configured by software when entering Stop mode.  
Power-down is used in Standby mode.  
The Power-down mode is activated only when entering in Standby mode. The regulator  
output is in high impedance and the kernel circuitry is powered down, inducing zero  
consumption. The contents of the registers and SRAM are lost.  
Depending on the package, one or two external ceramic capacitors should be connected on  
the VCAP_1 and VCAP_2 pins. The VCAP_2 pin is only available on 100- and 144-pin  
packages.  
All packages have the regulator ON feature.  
3.18.2  
Regulator OFF  
This feature is available only on UFBGA100 and UFBGA144 packages, which feature the  
BYPASS_REG pin. The regulator is disabled by holding BYPASS_REG high. The regulator  
OFF mode allows to supply externally a V voltage source through V  
and V  
12  
CAP_1  
CAP_2  
pins.  
Since the internal voltage scaling is not managed internally, the external voltage value must  
be aligned with the targeted maximum frequency.  
The two 2.2 µF ceramic capacitors should be replaced by two 100 nF decoupling  
capacitors.  
When the regulator is OFF, there is no more internal monitoring on V . An external power  
12  
supply supervisor should be used to monitor the V of the logic power domain. PA0 pin  
12  
should be used for this purpose, and act as power-on reset on V power domain.  
12  
In regulator OFF mode, the following features are no more supported:  
PA0 cannot be used as a GPIO pin since it allows to reset a part of the V logic power  
domain which is not reset by the NRST pin.  
12  
As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As  
a consequence, PA0 and NRST pins must be managed separately if the debug  
connection under reset or pre-reset is required.  
28/207  
DocID029162 Rev 5  
 
 
STM32F413xG/H  
Functional overview  
Figure 8. Regulator OFF  
9ꢈꢄ  
([WHUQDOꢉ9&$3BꢈꢋꢄꢉSRZHUꢉ  
$SSOLFDWLRQꢉUHVHWꢉ  
VLJQDOꢉꢑRSWLRQDOꢒꢉꢉ  
VXSSO\ꢉVXSHUYLVRU  
([WꢌꢉUHVHWꢉFRQWUROOHUꢉDFWLYHꢉ  
ꢉꢉ  
ZKHQꢉ9&$3Bꢈꢋꢄꢉꢉꢔꢉ0LQꢉ9ꢈꢄ  
9''  
3$ꢃ  
9''  
1567ꢉꢉ  
%<3$66B5(*  
9ꢈꢄ  
9&$3Bꢈ  
9&$3Bꢄ  
DLꢈꢂꢇꢊꢂ9ꢀ  
The following conditions must be respected:  
V
should always be higher than V  
and V  
to avoid current injection  
CAP_2  
DD  
CAP_1  
between power domains.  
If the time for V and V  
to reach V minimum value is faster than the time for  
CAP_1  
CAP_2  
12  
V
to reach 1.7 V, then PA0 should be kept low to cover both conditions: until V  
DD  
CAP_1  
and V  
reach V minimum value and until V reaches 1.7 V (see Figure 9).  
12 DD  
CAP_2  
Otherwise, if the time for V  
and V  
to reach V minimum value is slower  
CAP_2 12  
CAP_1  
than the time for V to reach 1.7 V, then PA0 could be asserted low externally (see  
DD  
Figure 10).  
If V  
and V  
go below V minimum value and V is higher than 1.7 V, then a  
CAP_2 12 DD  
CAP_1  
reset must be asserted on PA0 pin.  
Note:  
The minimum value of V depends on the maximum frequency targeted in the application.  
12  
DocID029162 Rev 5  
29/207  
42  
 
Functional overview  
STM32F413xG/H  
Figure 9. Startup in regulator OFF: slow V slope  
DD  
power-down reset risen after V  
/V  
stabilization  
CAP_1 CAP_2  
9''  
3'5ꢉ ꢉꢈꢌꢁꢉ9  
9&$3Bꢈꢋ9&$3Bꢄ  
9ꢈꢄ  
0LQꢉ9ꢈꢄ  
WLPH  
1567  
3$ꢃ  
WLPH  
06Yꢀꢈꢈꢁꢊ9ꢄ  
1. This figure is valid whatever the internal reset mode (ON or OFF).  
Figure 10. Startup in regulator OFF mode: fast V slope  
DD  
power-down reset risen before V  
/V  
stabilization  
CAP_1 CAP_2  
9''  
3'5ꢉ ꢉꢈꢌꢁꢉ9ꢉꢉ  
9&$3Bꢈꢋ9&$3Bꢄ  
9ꢈꢄ  
0LQꢉ9ꢈꢄ  
WLPH  
WLPH  
1567  
3$ꢃꢉDVVHUWHGꢉH[WHUQDOO\ꢉꢉ  
06Yꢀꢈꢈꢂꢃ9ꢈ  
1. This figure is valid whatever the internal reset mode (ON or OFF).  
30/207  
DocID029162 Rev 5  
 
 
STM32F413xG/H  
Functional overview  
3.18.3  
Regulator ON/OFF and internal reset ON/OFF availability  
Table 4. Regulator ON/OFF and internal power supply supervisor availability  
Power supply  
supervisor ON  
Power supply  
supervisor OFF  
Package  
Regulator ON  
Regulator OFF  
UFQFPN48  
LQFP64  
Yes  
Yes  
No  
No  
Yes  
Yes  
No  
No  
Yes  
Yes  
Yes  
Yes  
WLCSP81  
BYPASS_REG  
set to VSS  
BYPASS_REG  
set to VDD  
PDR_ON  
set to VDD  
PDR_ON  
set to VSS  
LQFP100  
LQFP144  
Yes  
Yes  
No  
No  
Yes  
No  
Yes  
Yes  
UFBGA100  
UFBGA144  
BYPASS_REG  
set to VSS  
BYPASS_REG  
set to VDD  
Yes  
PDR_ON  
set to VDD  
Yes  
PDR_ON  
set to VSS  
Yes  
Yes  
BYPASS_REG  
set to VSS  
BYPASS_REG  
set to VDD  
3.19  
Real-time clock (RTC) and backup registers  
The backup domain includes:  
The real-time clock (RTC)  
20 backup registers  
The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain  
the second, minute, hour (in 12/24 hour), week day, date, month, year, in BCD (binary-  
coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are  
performed automatically. The RTC features a reference clock detection, a more precise  
second source clock (50 or 60 Hz) can be used to enhance the calendar precision. The RTC  
provides a programmable alarm and programmable periodic interrupts with wakeup from  
Stop and Standby modes. The sub-seconds value is also available in binary format.  
It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power  
RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC  
has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz  
output to compensate for any natural quartz deviation.  
Two alarm registers are used to generate an alarm at a specific time and calendar fields can  
be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit  
programmable binary auto-reload downcounter with programmable resolution is available  
and allows automatic wakeup and periodic alarms from every 120 µs to every 36 hours.  
A 20-bit prescaler is used for the time base clock. It is by default configured to generate a  
time base of 1 second from a clock at 32.768 kHz.  
The backup registers are 32-bit registers used to store 80 byte of user application data  
when V power is not present. Backup registers are not reset by a system, a power reset,  
DD  
or when the device wakes up from the Standby mode (see Section 3.20: Low-power  
modes).  
DocID029162 Rev 5  
31/207  
42  
 
 
 
Functional overview  
STM32F413xG/H  
Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes,  
hours, day, and date.  
The RTC and backup registers are supplied through a switch that is powered either from the  
V
supply when present or from the VBAT pin.  
DD  
3.20  
Low-power modes  
The devices support three low-power modes to achieve the best compromise between low  
power consumption, short startup time and available wakeup sources:  
Sleep mode  
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can  
wake up the CPU when an interrupt/event occurs.  
To further reduce the power consumption, the Flash memory can be switched off  
before entering in Sleep mode. Note that this requires a code execution from the RAM.  
Stop mode  
The Stop mode achieves the lowest power consumption while retaining the contents of  
SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC  
and the HSE crystal oscillators are disabled. The voltage regulator can also be put  
either in normal or in low-power mode.  
The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line  
source can be one of the 16 external lines, the PVD output, the RTC alarm/ wakeup/  
tamper/ time stamp events).  
Standby mode  
The Standby mode is used to achieve the lowest power consumption. The internal  
voltage regulator is switched off so that the entire 1.2 V domain is powered off. The  
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering  
Standby mode, the SRAM and register contents are lost except for registers in the  
backup domain when selected.  
The device exits the Standby mode when an external reset (NRST pin), an IWDG reset,  
a rising edge on one of the WKUP pins, or an RTC alarm/ wakeup/ tamper/time stamp  
event occurs.  
Standby mode is not supported when the embedded voltage regulator is bypassed and  
the 1.2 V domain is controlled by an external power.  
3.21  
VBAT operation  
The VBAT pin allows to power the device V  
domain from an external battery, an external  
BAT  
super-capacitor, or from V when no external battery and an external super-capacitor are  
DD  
present.  
V
operation is activated when V is not present.  
DD  
BAT  
The VBAT pin supplies the RTC and the backup registers.  
When the microcontroller is supplied from V , external interrupts and RTC alarm/events  
Note:  
BAT  
do not exit it from V  
operation. When PDR_ON pin is not connected to V (internal  
BAT  
DD  
Reset OFF), the V  
functionality is no more available and VBAT pin should be connected  
BAT  
to V  
.
DD  
32/207  
DocID029162 Rev 5  
 
 
STM32F413xG/H  
Functional overview  
3.22  
Timers and watchdogs  
The devices embed two advanced-control timer, ten general-purpose timers, two basic  
timers, one low-power timer, two watchdog timers and a SysTick timer.  
All timer counters can be frozen in debug mode.  
Table 5 compares the features of the advanced-control and general-purpose timers.  
Table 5. Timer feature comparison  
Max.  
Max.  
DMA  
request  
generation channels  
Capture/  
compare  
Timer  
type  
Counter Counter Prescaler  
Complemen- interface timer  
Timer  
resolution  
type  
factor  
tary output  
clock  
(MHz) (MHz)  
clock  
Any  
Up,  
integer  
Advance TIM1,  
16-bit  
Down, between1  
Up/down  
Yes  
Yes  
Yes  
No  
4
4
4
2
1
2
1
Yes  
100  
50  
100  
100  
100  
100  
100  
100  
100  
d-control  
TIM8  
and  
65536  
Any  
integer  
Down, between1  
Up,  
TIM2,  
TIM5  
32-bit  
16-bit  
16-bit  
16-bit  
16-bit  
16-bit  
No  
No  
No  
No  
No  
No  
Up/down  
and  
65536  
Any  
integer  
Down, between1  
Up,  
TIM3,  
TIM4  
50  
Up/down  
and  
65536  
Any  
integer  
between1  
and  
TIM9  
Up  
100  
100  
50  
65536  
General  
purpose  
Any  
integer  
between1  
and  
TIM10,  
TIM11  
Up  
Up  
Up  
No  
65536  
Any  
integer  
between1  
and  
TIM12  
No  
65536  
Any  
integer  
between1  
and  
TIM13,  
TIM14  
No  
50  
65536  
DocID029162 Rev 5  
33/207  
42  
 
 
 
Functional overview  
STM32F413xG/H  
Table 5. Timer feature comparison (continued)  
Max.  
Max.  
DMA  
request  
generation channels  
Capture/  
compare  
Timer  
type  
Counter Counter Prescaler  
Complemen- interface timer  
Timer  
resolution  
type  
factor  
tary output  
clock  
(MHz) (MHz)  
clock  
Any  
integer  
between1  
and  
Basic  
timers  
TIM6,  
TIM7  
16-bit  
16-bit  
Up  
Up  
Yes  
No  
0
2
No  
No  
50  
50  
100  
100  
65536  
Low-  
power  
timer  
Between  
1 and 128  
LPTIM1  
3.22.1  
3.22.2  
34/207  
Advanced-control timers (TIM1, TIM8)  
The advanced-control timers (TIM1/8) can be seen as three-phase PWM generator  
multiplexed on 4 independent channels. They have complementary PWM outputs with  
programmable inserted dead times. They can also be considered as complete general-  
purpose timers. Their 4 independent channels can be used for:  
Input capture  
Output compare  
PWM generation (edge- or center-aligned modes)  
One-pulse mode output  
If configured as standard 16-bit timers, they have the same features as the general-purpose  
TIMx timers. If configured as a 16-bit PWM generator, they have full modulation capability  
(0-100%).  
The advanced-control timers can work together with the TIMx timers via the Timer Link  
feature for synchronization or event chaining.  
TIM1 and TIM8 support independent DMA request generation.  
General-purpose timers (TIMx)  
There are elven synchronizable general-purpose timers embedded in the STM32F413xG/H  
(see Table 5 for differences).  
TIM2, TIM3, TIM4, TIM5  
The STM32F413xG/H devices include 4 full-featured general-purpose timers: TIM2.  
TIM3, TIM4 and TIM5. TIM2 and TIM5 timers are based on a 32-bit auto-reload  
up/downcounter and a 16-bit prescaler while TIM3 and TIM4 timers are based on a 16-  
bit auto-reload up/downcounter plus a 16-bit prescaler. They all features four  
DocID029162 Rev 5  
 
 
STM32F413xG/H  
Functional overview  
independent channels for input capture/output compare, PWM or one-pulse mode  
output. This gives up to 15 input capture/output compare/PWMs  
TIM2. TIM3, TIM4 and TIM5 general-purpose timers can operate together or in  
conjunction with the other general-purpose timers and TIM1 advanced-control timer via  
the Timer Link feature for synchronization or event chaining.  
Any of these general-purpose timers can be used to generate PWM output.  
TIM2. TIM3, TIM4 and TIM5 channels have independent DMA request generation.  
They are capable of handling quadrature (incremental) encoder signals and the digital  
outputs from 1 to 4 hall-effect sensors.  
TIM9, TIM10, TIM11, TIM12, TIM13 and TIM14  
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.  
TIM10, TIM11, TIM13 and TIM14 feature one independent channel, whereas TIM9 and  
TIM12 have two independent channels for input capture/output compare, PWM or one-  
pulse mode output. They can be synchronized with TIM2. TIM3, TIM4 and TIM5 full-  
featured general-purpose timers or used as simple time bases.  
3.22.3  
3.22.4  
Basic timer (TIM6, TIM7)  
TIM6 and TIM7 timers are basic 16-bit timers. They support independent DMA request  
generation.  
Low-power timer (LPTIM1)  
The low-power timer (LPTIM1) features an independent clock and runs in Stop mode if it is  
clocked by LSE, LSI or by an external clock. LPTIM1 is able to wakeup the devices from  
Stop mode.  
The low-power timer main features are the following:  
16-bit up counter with 16-bit autoreload register  
16-bit compare register  
Configurable output: pulse, PWM  
Continuous / one shot mode  
Selectable software / hardware input trigger  
Selectable clock source  
Internal clock source: LSE, LSI, HSI or APB1 clock  
External clock source over LPTIM1 input (working even with no internal clock  
source running, used by the pulse counter application)  
Programmable digital glitch filter  
Encoder mode  
Active in Stop mode.  
3.22.5  
Independent watchdog  
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is  
clocked from an independent 32 kHz internal RC and as it operates independently from the  
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog  
to reset the device when a problem occurs, or as a free-running timer for application timeout  
management. It is hardware- or software-configurable through the option bytes.  
DocID029162 Rev 5  
35/207  
42  
 
 
 
Functional overview  
STM32F413xG/H  
3.22.6  
Window watchdog  
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It  
can be used as a watchdog to reset the device when a problem occurs. It is clocked from  
the main clock. It has an early warning interrupt capability and the counter can be frozen in  
debug mode.  
3.22.7  
SysTick timer  
This timer is dedicated to real-time operating systems, but could also be used as a standard  
downcounter. It features:  
A 24-bit downcounter  
Autoreload capability  
Maskable system interrupt generation when the counter reaches 0  
Programmable clock source.  
3.23  
Inter-integrated circuit interface (I2C)  
2
The devices feature up to four I C bus interfaces which can operate in multimaster and  
slave modes:  
2
One I C interface supports the Standard mode (up to 100 kHz), Fast-mode (up to  
400 kHz) modes and Fast-mode plus (up to 1 MHz).  
2
Three I C interfaces support the Standard mode (up to 100 KHz) and the Fast mode  
(up to 400 KHz). Their frequency can be increased up to 1 MHz. For more details on  
the complete solution, refer to the nearest STMicroelectronics sales office.  
2
All I C interfaces features 7/10-bit addressing mode and 7-bit addressing mode (as slave)  
and embed a hardware CRC generation/verification.  
They can be served by DMA and they support SMBus 2.0/PMBus.  
The devices also include programmable analog and digital noise filters (see Table 6).  
Table 6. Comparison of I2C analog and digital filters  
Analog filter  
Digital filter  
Pulse width of  
suppressed spikes  
50 ns  
Programmable length from 1 to 15 I2C peripheral clocks  
3.24  
Universal synchronous/asynchronous receiver transmitters  
(USART)  
The devices embed four universal synchronous/asynchronous receiver transmitters  
(USART1, USART2, USART3 and USART6) as well as six universal asynchronous receiver  
transmitters (UART4, UART5, UART7, UART8, UART9 and UART10).  
These ten interfaces provide asynchronous communication, IrDA SIR ENDEC support,  
multiprocessor communication mode, single-wire half-duplex communication mode and  
have LIN Master/Slave capability. USART1, USART6, UART9 and UART10 can  
communicate at speeds up to 12.5 Mbit/s. The other interfaces communicate at up to  
6.25 bit/s.  
36/207  
DocID029162 Rev 5  
 
 
 
 
 
 
STM32F413xG/H  
Functional overview  
USART1, USART2, USART3 and USART6 provide hardware management of the CTS and  
RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication  
capability. All interfaces can be served by the DMA controller.  
Table 7. USART feature comparison  
Max. baud  
Max. baud  
USART Standard Modem  
SPI  
master  
Smartcard rate in Mbit/s rate in Mbit/s APB  
(ISO 7816) (oversampling (oversampling mapping  
LIN  
irDA  
name  
features (RTS/CTS)  
by 16)  
by 8)  
APB2  
(max.  
100 MHz)  
USART1  
USART2  
USART3  
UART4  
UART5  
USART6  
UART7  
UART8  
UART9  
UART10  
X
X
X
X
X
X
X
X
X
X
X
X
X
-
X
X
X
X
X
X
X
X
X
X
X
X
X
-
X
X
X
X
X
X
X
X
X
X
X
X
X
-
6.25  
12.5  
APB1  
(max.  
50 MHz)  
3.12  
3.12  
3.12  
3.12  
6.25  
3.12  
3.12  
6.25  
6.25  
6.25  
6.25  
6.25  
6.25  
12.5  
6.25  
6.25  
12.5  
12.5  
APB1  
(max.  
50 MHz)  
APB1  
(max.  
50 MHz)  
APB1  
(max.  
50 MHz)  
-
-
-
APB2  
(max.  
100 MHz)  
X
-
X
-
X
-
APB1  
(max.  
50 MHz)  
APB1  
(max.  
50 MHz)  
-
-
-
APB2  
(max.  
100 MHz)  
-
-
-
APB2  
(max.  
-
-
-
100 MHz)  
DocID029162 Rev 5  
37/207  
42  
 
Functional overview  
STM32F413xG/H  
3.25  
3.26  
3.27  
Serial peripheral interface (SPI)  
The devices feature five SPIs in slave and master modes in full-duplex and simplex  
communication modes. SPI1, SPI4 and SPI5 can communicate at up to 50 Mbit/s, SPI2 and  
SPI3 can communicate at up to 25 Mbit/s. The 3-bit prescaler gives 8 master mode  
frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC  
generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the  
DMA controller.  
The SPI interfaces can be configured to operate in TI mode for communications in master  
mode and slave mode.  
Inter-integrated sound (I2S)  
2
Five standard I S interfaces (multiplexed with SPI1 to SPI5) are available. They can be  
operated in master or slave mode, in simplex communication mode, and full duplex mode  
2
for I2S2 and I2S3. All I S interfaces can be configured to operate with a 16-/32-bit resolution  
as an input or output channel. I2Sx audio sampling frequencies from 8 kHz up to 192 kHz  
2
are supported. When either or both of the I S interfaces is/are configured in master mode,  
the master clock can be output to the external DAC/CODEC at 256 times the sampling  
frequency.  
2
All I Sx interfaces can be served by the DMA controller.  
Serial Audio interface (SAI1)  
The serial audio interface (SAI1) is based on two independent audio sub-blocks which can  
operate as transmitter or receiver with their FIFO. Many audio protocols are supported by  
each block: I2S standards, LSB or MSB-justified, PCM/DSP, TDM, AC’97 and SPDIF  
output, supporting audio sampling frequencies from 8 kHz up to 192 kHz. Both sub-blocks  
can be configured in master or in slave mode.  
In master mode, the master clock can be output to the external DAC/CODEC at 256 times of  
the sampling frequency.  
The two sub-blocks can be configured in synchronous mode when full-duplex mode is  
required.  
SAI1 can be served by the DMA controller.  
3.28  
Audio PLL (PLLI2S)  
2
The devices feature an additional dedicated PLL for audio I S and SAI applications. It allows  
2
to achieve error-free I S sampling clock accuracy without compromising on the CPU  
performance, while using USB peripherals.  
Different sources can be selected for the I2S master clock of the APB1 and the I2S master  
clock of the APB2. This gives the flexibility to work with two different audio sampling  
frequencies. The different possible sources are the main PLL, the PLLI2S, HSE or HSI  
clocks or an external clock provided through a pin (external PLL or CODEC output)  
38/207  
DocID029162 Rev 5  
 
 
 
 
STM32F413xG/H  
Functional overview  
Different sources can also be selected for the SAI. The different possible sources are the  
main PLL, the PLLI2S, HSE or HSI clocks or an external clock provided through a pin  
(external PLL or CODEC output).  
2
The PLLI2S configuration can be modified to manage an I S/SAI sample rate change  
without disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces.  
The audio PLL can be programmed with very low error to obtain sampling rates ranging  
from 8 KHz to 192 KHz.  
3.29  
Digital filter for sigma-delta modulators (DFSDM)  
The device embeds two DFSDMs:  
DFSDM1 has 2 digital filters modules and 4 external input serial channels  
(transceivers) or alternately 2 internal parallel inputs support.  
DFSDM2 features 4 digital filters modules and 8 external input serial channels  
(transceivers) or alternately 4 internal parallel inputs support.  
The DFSDM peripheral is dedicated to interface the external Σ∆ modulators to  
microcontroller and then to perform digital filtering of the received data streams (which  
represent analog value on Σ∆ modulators inputs). DFSDM can also interface PDM (Pulse  
Density Modulation) microphones and perform PDM to PCM conversion and filtering in  
hardware. It is also possible to introduce a programmable delay between different  
microphones (beamforming feature). DFSDM features optional parallel data stream inputs  
from microcontrollers memory (through DMA/CPU transfers into DFSDM).  
DFSDM transceivers support several serial interface formats (to support various Σ∆  
modulators). DFSDM digital filter modules perform digital processing according user  
selected filter parameters with up to 24-bit final ADC resolution.  
Table 8. DFSDM feature comparison  
External input serial External input parallel  
DFSDM instance  
Digital filters  
channels  
channels  
DFSDM1  
DFSDM2  
4
8
2
4
2
4
3.30  
Dynamic tuning of PDM delays for sound source localization  
A mechanism is implemented on top of the DFSDM allowing to dynamically tune PDM  
delays of each microphone without the need to add external delay lines.  
Audio application with several microphones require strong microphones placement  
constraints, as the distance between the microphones must be a multiple of v/F where v is  
the speed of the sound and F is the PCM sampling frequency.  
The designed mechanism removes this constraint by programming delays for each digital  
microphone with the granularity of the PDM clock rate prior to the conversion into PCM rate.  
The tuning delay is performed by a clock skipping technique.  
DocID029162 Rev 5  
39/207  
42  
 
 
 
Functional overview  
STM32F413xG/H  
The strong benefits of such mechanism coupled with DFSDM are:  
Possibility to place the digital microphones close to each other  
No need for external delay lines  
The delay tuning is done in hardware, preventing the use of MIPs crunching algorithms  
Possibility to change the delay tuning on the fly  
The low power consumption and CPU time released due to the DFSDM hardware PDM  
to PCM conversion  
The impacted audio application are beam forming and sound source localization  
3.31  
Secure digital input/output interface (SDIO)  
An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System  
Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.  
The interface allows data transfer at up to 50 MHz, and is compliant with the SD Memory  
Card Specification Version 2.0.  
The SDIO Card Specification Version 2.0 is also supported with two different databus  
modes: 1-bit (default) and 4-bit.  
The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack  
of MMC4.1 or previous.  
In addition to SD/SDIO/MMC/eMMC, this interface is fully compliant with the CE-ATA digital  
protocol Rev1.1.  
3.32  
3.33  
Controller area network (bxCAN)  
The three CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to  
1 Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as  
extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive  
FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one  
CAN is used). 256 bytes of SRAM are allocated for CAN1 and CAN2, and 512 bytes for  
CAN3.  
Universal serial bus on-the-go full-speed (USB_OTG_FS)  
The devices embed a USB OTG full-speed device/host/OTG peripheral with integrated  
transceivers. The USB OTG FS peripheral is compliant with USB 2.0 and OTG 1.0  
specifications. It features software-configurable endpoint setting and supports  
suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock,  
which is generated by a PLL connected to the HSE oscillator. The Battery Charging  
Detection (BCD) can detect and identify the type of port it is connected to (standard USB or  
charger). The charging type can also be detected: Dedicated Charging Port (DCP),  
Charging Downstream Port (CDP) and Standard Downstream Port (SDP).  
Some packages provide a dedicated USB power rail allowing to supply the USB from a  
different voltage that the rest of the device. As an example, the device can be powered with  
the minimum specified supply voltage while the USB runs at the level defined by the  
standard.  
40/207  
DocID029162 Rev 5  
 
 
 
STM32F413xG/H  
Functional overview  
The main USB OTG FS features are:  
Combined Rx and Tx FIFO size of 320 × 35 bits with dynamic FIFO sizing  
Support of session request protocol (SRP) and host negotiation protocol (HNP)  
6 bidirectional endpoints  
12 host channels with periodic OUT support  
HNP/SNP/IP inside (no need for any external resistor)  
For OTG/Host modes, a power switch is needed when bus-powered devices are  
connected  
Link Power Management (LPM)  
Battery Charging Detection (BCD) supporting DCP, CDP and SDP  
3.34  
3.35  
Random number generator (RNG)  
All devices embed an RNG that delivers 32-bit random numbers generated by an integrated  
analog circuit.  
General-purpose input/outputs (GPIOs)  
Each of the GPIO pins can be configured by software as output (push-pull or open-drain,  
with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down)  
or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog  
alternate functions. All GPIOs are high-current-capable and have speed selection to better  
manage internal noise, power consumption and electromagnetic emission.  
The I/O configuration can be locked if needed by following a specific sequence in order to  
avoid spurious writing to the I/Os registers.  
Fast I/O handling allowing maximum I/O toggling up to 100 MHz.  
3.36  
Analog-to-digital converter (ADC)  
One 12-bit analog-to-digital converter is embedded and shares up to 16 external channels,  
performing conversions in the single-shot or scan mode. In scan mode, automatic  
conversion is performed on a selected group of analog inputs.  
The ADC can be served by the DMA controller. An analog watchdog feature allows very  
precise monitoring of the converted voltage of one, some or all selected channels. An  
interrupt is generated when the converted voltage is outside the programmed thresholds.  
To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1,  
TIM2, TIM3, TIM4 or TIM5 timer.  
3.37  
Digital to analog converter (DAC)  
The two 12-bit buffered DAC channels can be used to convert two digital signals into two  
analog voltage signal outputs.  
This digital interface supports the following features:  
Two DAC output channels  
DocID029162 Rev 5  
41/207  
42  
 
 
 
 
Functional overview  
STM32F413xG/H  
8-bit or 12-bit output mode  
Left or right data alignment in 12-bit mode  
Synchronized update capability  
Noise-wave generation  
Triangular-wave generation  
Dual DAC channel independent or simultaneous conversions  
DMA capability for each channel  
External triggers for conversion  
Input voltage reference (V  
)
REF+  
Eight DAC trigger inputs are used in the device. The DAC channels are triggered through  
the timer update outputs that are also connected to different DMA channels.  
3.38  
Temperature sensor  
The temperature sensor has to generate a voltage that varies linearly with temperature. The  
conversion range is between 1.7 V and 3.6 V. The temperature sensor is internally  
connected to the ADC_IN18 input channel which is used to convert the sensor output  
voltage into a digital value. Refer to the reference manual for additional information.  
As the offset of the temperature sensor varies from chip to chip due to process variation, the  
internal temperature sensor is mainly suitable for applications that detect temperature  
changes instead of absolute temperatures. If an accurate temperature reading is needed,  
then an external temperature sensor part should be used.  
3.39  
3.40  
Serial wire JTAG debug port (SWJ-DP)  
The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug  
port that enables either a serial wire debug or a JTAG probe to be connected to the target.  
Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could  
be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with  
SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to  
switch between JTAG-DP and SW-DP.  
Embedded Trace Macrocell™  
The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data  
flow inside the CPU core by streaming compressed data at a very high rate from the  
STM32F413xG/H through a small number of ETM pins to an external hardware trace port  
analyzer (TPA) device. The TPA is connected to a host computer using any high-speed  
channel available. Real-time instruction and data flow activity can be recorded and then  
formatted for display on the host computer that runs the debugger software. TPA hardware  
is commercially available from common development tool vendors.  
The Embedded Trace Macrocell operates with third party debugger software tools.  
42/207  
DocID029162 Rev 5  
 
 
 
STM32F413xG/H  
Pinouts and pin description  
4
Pinouts and pin description  
4.1  
WLCSP81 pinout description  
Figure 11. STM32F413xG/H WLCSP81 pinout  
%227ꢃ  
3%ꢁ  
$
%
&
'
(
)
9''  
3&ꢈꢃ  
3$ꢈꢇ  
3$ꢈꢀ  
3$ꢊ  
3$ꢈꢅ  
3$ꢈꢄ  
3$ꢈꢈ  
3$ꢂ  
3'ꢃ  
3%ꢀ  
3%ꢇ  
3'ꢄ  
3&ꢆ  
3$ꢇ  
3$ꢆ  
3%ꢈ  
3%ꢄ  
3(ꢊ  
3%ꢅ  
3%ꢆ  
3%ꢂ  
3%ꢊ  
3$ꢀ  
966  
9''  
966  
3&ꢈꢄ  
3&ꢈꢈ  
3&ꢁ  
3'5B21  
3&ꢈꢀꢐ  
9%$7  
3&ꢈꢇꢐ  
9&$3Bꢄ  
3$ꢈꢃ  
3&ꢂ  
3&ꢈ  
$17,B7$03 26&ꢀꢄB,1  
3&ꢈꢅꢐ  
966  
3&ꢄ  
26&ꢀꢄB287  
3+ꢃꢉꢐꢉ  
9''  
3&ꢊ  
3%ꢈꢇ  
3%ꢈꢄ  
3(ꢈꢇ  
3%ꢈꢃ  
3(ꢈꢅ  
3%ꢃ  
3&ꢀ  
26&B,1  
%<3$66Bꢉ  
5(*  
3+ꢈꢉꢐꢉ  
3&ꢃ  
9''86%  
3'ꢈꢃ  
3%ꢈꢅ  
9''  
3'ꢊ  
3(ꢈꢀ  
3(ꢈꢃ  
3(ꢈꢈ  
3(ꢈꢄ  
9''$  
3$ꢃꢐ:.83  
966  
26&B287  
*
+
-
3%ꢈꢀ  
9&$3Bꢈ  
966  
3$ꢅ  
3&ꢇ  
3&ꢅ  
95()ꢓ  
3$ꢈ  
1567  
966$ꢋ95()ꢐ  
3$ꢄ  
3$ꢁ  
9''  
06Yꢀꢊꢇꢊꢀ9ꢈ  
1. The above figure shows the package top view.  
DocID029162 Rev 5  
43/207  
73  
 
 
 
 
Pinouts and pin description  
STM32F413xG/H  
4.2  
UFQFPN48 pinout description  
Figure 12. STM32F413xG/H UFQFPN48 pinout  
ꢇꢂ ꢇꢁ ꢇꢆ ꢇꢅ ꢇꢇ ꢇꢀ ꢇꢄ ꢇꢈ ꢇꢃ ꢀꢊ ꢀꢂ ꢀꢁ  
9''  
9%$7  
ꢀꢆ  
966  
3$ꢈꢀ  
3$ꢈꢄ  
3$ꢈꢈ  
3$ꢈꢃ  
3$ꢊ  
3&ꢈꢀ  
ꢀꢅ  
3&ꢈꢇꢐ26&ꢀꢄB,1  
ꢀꢇ  
ꢀꢀ  
3&ꢈꢅꢐ26&ꢀꢄB287  
3+ꢃꢐ26&B,1  
ꢀꢄ  
ꢀꢈ  
3+ꢃꢐ26&B287  
1567  
8)4)31ꢇꢂ  
ꢀꢃ  
ꢄꢊ  
3$ꢂ  
966$ꢋ95()ꢐ  
9''$ꢋ95()ꢓ  
ꢄꢂ  
ꢄꢁ  
3%ꢈꢅ  
3%ꢈꢇ  
3$ꢃ  
3$ꢈ  
3$ꢄ  
ꢈꢃ  
ꢈꢈ  
ꢈꢄ  
ꢄꢆ  
3%ꢈꢀ  
3%ꢈꢄ  
ꢄꢅ  
ꢄꢇ  
ꢈꢀ ꢈꢇ ꢈꢅ ꢈꢆ  
ꢈꢁ ꢈꢂ ꢈꢊ ꢄꢃ  
ꢄꢈ ꢄꢄ ꢄꢀ  
06ꢀꢈꢈꢅꢃ9ꢀ  
1. The above figure shows the package top view.  
44/207  
DocID029162 Rev 5  
 
 
 
STM32F413xG/H  
Pinouts and pin description  
4.3  
LQFP64 pinout description  
Figure 13. STM32F413xG/H LQFP64 pinout  
ꢆꢇ ꢆꢀ ꢆꢄ ꢆꢈ ꢆꢃ ꢅꢊ ꢅꢂ ꢅꢁ ꢅꢆ ꢅꢅ ꢅꢇ ꢅꢀ ꢅꢄ ꢅꢈ ꢅꢃ ꢇꢊ  
ꢇꢂ  
9''  
966  
3$ꢈꢀ  
3$ꢈꢄ  
3$ꢈꢈ  
3$ꢈꢃ  
3$ꢊ  
3$ꢂ  
3&ꢊ  
3&ꢂ  
3&ꢁ  
9%$7  
3&ꢈꢀ  
3&ꢈꢇꢐ26&ꢀꢄB,1  
3&ꢈꢅꢐ26&ꢀꢄB287  
3+ꢃꢐ26&B,1  
ꢇꢁ  
ꢇꢆ  
ꢇꢅ  
ꢇꢇ  
ꢇꢀ  
ꢇꢄ  
ꢇꢈ  
ꢇꢃ  
ꢀꢊ  
ꢀꢂ  
ꢀꢁ  
ꢀꢆ  
ꢀꢅ  
ꢀꢇ  
ꢀꢀ  
3+ꢈꢐ26&B287  
1567  
ꢆꢉꢉ  
ꢁꢉꢉ  
ꢂꢉꢉ  
ꢊꢉꢉ  
ꢈꢃ  
ꢈꢈ  
ꢈꢄ  
ꢈꢀ  
ꢈꢇ  
ꢈꢅ  
ꢈꢆ  
3&ꢃ  
3&ꢈ  
3&ꢄ  
3&ꢀ  
/4)3ꢆꢇ  
3&ꢆ  
966$ꢋ95()ꢐ  
9''$ꢋ95()ꢓ  
3$ꢃ  
3%ꢈꢅ  
3%ꢈꢇ  
3%ꢈꢀ  
3%ꢈꢄ  
3$ꢈ  
3$ꢄ  
ꢈꢁ ꢈꢂ ꢈꢊ ꢄꢃ ꢄꢈ ꢄꢄ ꢄꢀ ꢄꢇ ꢄꢅ ꢄꢆ ꢄꢁ ꢄꢂ ꢄꢊ ꢀꢃ ꢀꢈ ꢀꢄ  
06ꢀꢈꢈꢇꢊ9ꢀ  
1. The above figure shows the package top view.  
DocID029162 Rev 5  
45/207  
73  
 
 
 
Pinouts and pin description  
STM32F413xG/H  
4.4  
LQFP100 pinout description  
Figure 14. STM32F413xG/H LQFP100 pinout  
0%ꢉ  
0%ꢈ  
0%ꢇ  
0%ꢆ  
0%ꢅ  
6"!4  
0#ꢀꢈ  
ꢄꢆ  
ꢄꢇ  
ꢄꢈ  
ꢄꢉ  
ꢄꢀ  
ꢄꢁ  
ꢅꢂ  
ꢅꢃ  
ꢅꢄ  
ꢅꢅ  
ꢅꢆ  
ꢅꢇ  
ꢅꢈ  
ꢅꢉ  
ꢅꢀ  
ꢅꢁ  
ꢆꢂ  
ꢆꢃ  
ꢆꢄ  
ꢆꢅ  
ꢆꢆ  
ꢆꢇ  
ꢆꢈ  
ꢆꢉ  
ꢆꢀ  
6$$  
633  
6#!0?ꢉ  
0!ꢀꢈ  
0!ꢀꢉ  
0!ꢀꢀ  
0!ꢀꢁ  
0!ꢂ  
0!ꢃ  
0#ꢂ  
0#ꢃ  
0#ꢄ  
0#ꢀꢇꢊ/3#ꢈꢉ?).  
0#ꢀꢆꢊ/3#ꢈꢉ?/54  
633  
6$$  
0(ꢁꢊ/3#?).  
0(ꢀꢊ/3#?/54  
.234  
ꢀꢁ  
ꢀꢀ  
ꢀꢉ  
ꢀꢈ  
0#ꢅ  
,1&0ꢀꢁꢁ  
ꢀꢇ  
ꢀꢆ  
ꢀꢅ  
ꢀꢄ  
ꢀꢃ  
ꢀꢂ  
0$ꢀꢆ  
0$ꢀꢇ  
0$ꢀꢈ  
0$ꢀꢉ  
0$ꢀꢀ  
0$ꢀꢁ  
0$ꢂ  
0#ꢁ  
0#ꢀ  
0#ꢉ  
0#ꢈ  
6$$  
633!ꢋ62%&ꢊ ꢉꢁ  
62%&ꢌ  
6$$!  
0!ꢁ  
ꢉꢀ  
ꢉꢉ  
ꢉꢈ  
ꢉꢇ  
ꢉꢆ  
0$ꢃ  
0"ꢀꢆ  
0"ꢀꢇ  
0"ꢀꢈ  
0"ꢀꢉ  
0!ꢀ  
0!ꢉ  
-3ꢈꢀꢀꢆꢀ6ꢇ  
1. The above figure shows the package top view.  
46/207  
DocID029162 Rev 5  
 
 
 
STM32F413xG/H  
Pinouts and pin description  
4.5  
LQFP144 pinout description  
Figure 15. STM32F413xG/H LQFP144 pinout  
3(ꢄ  
3(ꢀ  
3(ꢇ  
3(ꢅ  
3(ꢆ  
9%$7  
3&ꢈꢀ  
ꢈꢃꢂ  
ꢈꢃꢁ  
ꢈꢃꢆ  
ꢈꢃꢅ  
ꢈꢃꢇ  
ꢈꢃꢀ  
ꢈꢃꢄ  
ꢈꢃꢈ  
ꢈꢃꢃ  
ꢊꢊ  
9''  
966  
9&$3Bꢄ  
3$ꢈꢀ  
3$ꢈꢄ  
3$ꢈꢈ  
3$ꢈꢃ  
3$ꢊ  
3$ꢂ  
3&ꢊ  
3&ꢂ  
3&ꢁ  
3&ꢈꢇꢐ26&ꢀꢄB,1  
3&ꢈꢅꢐ26&ꢀꢄB287  
3)ꢃ  
3)ꢈ  
3)ꢄ  
ꢈꢃ  
ꢈꢈ  
ꢈꢄ  
ꢊꢂ  
ꢊꢁ  
3)ꢀ  
3)ꢇ  
3)ꢅ  
966  
9''  
3)ꢆ  
3)ꢁ  
3)ꢂ  
3)ꢊ  
ꢈꢀ  
ꢈꢇ  
ꢈꢅ  
ꢈꢆ  
ꢈꢁ  
ꢈꢂ  
ꢈꢊ  
ꢄꢃ  
ꢄꢈ  
ꢄꢄ  
ꢄꢀ  
ꢄꢇ  
ꢄꢅ  
ꢄꢆ  
ꢄꢁ  
ꢄꢂ  
ꢄꢊ  
ꢀꢃ  
ꢀꢈ  
ꢀꢄ  
ꢀꢀ  
ꢀꢇ  
ꢀꢅ  
ꢀꢆ  
ꢊꢆ  
ꢊꢅ  
ꢊꢇ  
ꢊꢀ  
ꢊꢄ  
ꢊꢈ  
ꢊꢃ  
ꢂꢊ  
ꢂꢂ  
ꢂꢁ  
ꢂꢆ  
ꢂꢅ  
ꢂꢇ  
ꢂꢀ  
ꢂꢄ  
ꢂꢈ  
ꢂꢃ  
ꢁꢊ  
ꢁꢂ  
ꢁꢁ  
ꢁꢆ  
ꢁꢅ  
ꢁꢇ  
ꢁꢀ  
3&ꢆ  
9''86%  
966  
3*ꢂ  
3*ꢁ  
3*ꢆ  
3*ꢅ  
3*ꢇ  
3*ꢀ  
/4)3ꢈꢇꢇ  
3)ꢈꢃ  
3*ꢄ  
3+ꢃꢉꢐꢉ26&B,1  
3+ꢈꢉꢐꢉ26&B287  
1567  
3&ꢃ  
3'ꢈꢅ  
3'ꢈꢇ  
9''  
966  
3'ꢈꢀ  
3'ꢈꢄ  
3'ꢈꢈ  
3'ꢈꢃ  
3'ꢊ  
3&ꢈ  
3&ꢄ  
3&ꢀ  
9''  
966$ꢋ95()ꢐ  
95()ꢓ  
9''$  
3$ꢃ  
3'ꢂ  
3%ꢈꢅ  
3%ꢈꢇ  
3%ꢈꢀ  
3%ꢈꢄ  
3$ꢈ  
3$ꢄ  
06Yꢀꢁꢄꢂꢈ9ꢀ  
1. The above figure shows the package top view.  
DocID029162 Rev 5  
47/207  
73  
 
 
 
Pinouts and pin description  
STM32F413xG/H  
4.6  
UFBGA100 pinout description  
Figure 16. STM32F413xG/H UFBGA100 pinout  
ꢈꢃ  
ꢈꢈ  
ꢈꢄ  
3(ꢀ  
3(ꢈ  
3%ꢂ %227ꢃ  
3'ꢁ  
3%ꢆ  
3%ꢅ  
3'ꢅ  
3'ꢆ  
3%ꢇ  
3'ꢇ  
3%ꢀ  
3'ꢀ  
3'ꢄ  
3$ꢈꢅ  
3'ꢈ  
3'ꢃ  
3$ꢈꢇ  
3&ꢈꢄ  
3&ꢈꢈ  
3$ꢈꢀ  
3&ꢈꢃ  
3$ꢈꢄ  
3$ꢈꢈ  
3$ꢈꢃ  
$
%
&
3(ꢇ  
3(ꢄ  
3(ꢅ  
3%ꢊ  
3(ꢃ  
3%ꢁ  
9&$3  
Bꢄ  
3&ꢈꢀ  
9''  
3&ꢈꢇꢐ  
26&ꢀꢄ  
B,1  
'
(
3(ꢆ  
966  
3$ꢊ  
3&ꢂ  
3$ꢂ  
3&ꢁ  
3&ꢊ  
3&ꢆ  
3&ꢈꢅꢐ  
26&ꢀꢄ  
B287  
%<3$66  
B5(*  
9%$7  
966  
3+ꢃꢐ  
26&B  
,1  
966  
9''  
966  
9''  
)
3+ꢈꢐ  
26&B  
287  
*
9''  
3'5  
B21  
3'ꢈꢇ  
3'ꢈꢈ  
3'ꢈꢀ  
3'ꢈꢃ  
+
-
3'ꢈꢅ  
3'ꢈꢄ  
3&ꢃ  
966$  
95()ꢐ  
95()ꢓ  
9''$  
1567  
3&ꢈ  
3&ꢀ  
3$ꢃ  
3&ꢄ  
3$ꢄ  
3$ꢀ  
3$ꢇ  
.
/
3$ꢅ  
3$ꢆ  
3$ꢁ  
3&ꢇ  
3&ꢅ  
3%ꢃ  
3'ꢊ  
3(ꢈꢃ  
3(ꢊ  
3%ꢈꢈ  
3(ꢈꢄ  
3(ꢈꢈ  
3%ꢈꢅ  
3%ꢈꢃ  
3(ꢈꢀ  
3%ꢈꢇ  
3%ꢈꢀ  
3%ꢈꢄ  
3(ꢈꢅ  
9&$3  
Bꢈ  
3%ꢄ  
3%ꢈ  
3(ꢂ  
3(ꢁ  
3$ꢈ  
3(ꢈꢇ  
0
06Yꢀꢁꢄꢂꢄ9ꢈ  
1. The above figure shows the package top view.  
48/207  
DocID029162 Rev 5  
 
 
 
STM32F413xG/H  
Pinouts and pin description  
4.7  
UFBGA144 pinout description  
Figure 17. STM32F413xG/H UFBGA144 pinout  
3(ꢊ  
3%ꢃ  
3'ꢇ  
ꢁꢊ  
ꢁꢁ  
3$ꢁꢄ  
3&ꢁꢊ  
9''86%  
3$ꢁꢊ  
3&ꢉ  
ꢁꢂ  
3&ꢁꢃ  
3(ꢃ  
3(ꢄ  
9%$7  
966  
3)ꢃ  
3)ꢇ  
3)ꢉ  
3&ꢁ  
3$ꢊ  
3$ꢁ  
3$ꢂ  
3$ꢃ  
3(ꢂ  
3(ꢅ  
3)ꢊ  
9''  
3)ꢄ  
3)ꢆ  
3)ꢈ  
3&ꢂ  
3$ꢄ  
3$ꢅ  
3$ꢆ  
3$ꢇ  
3(ꢁ  
3(ꢆ  
3)ꢁ  
3)ꢂ  
3)ꢅ  
9''  
966  
3&ꢃ  
3&ꢄ  
3&ꢅ  
3%ꢊ  
3%ꢁ  
3%ꢄ  
3%ꢅ  
3%ꢆ  
3%ꢇ  
966  
9''  
9''  
966  
3*ꢁ  
3*ꢊ  
3)ꢁꢅ  
3)ꢁꢄ  
3'ꢆ  
3$ꢁꢅ  
3&ꢁꢁ  
3&ꢁꢂ  
3'ꢁ  
3$ꢁꢃ  
3$ꢁꢂ  
3$ꢁꢁ  
3$ꢉ  
$
%
&
'
(
)
3&ꢁꢄꢋ  
26&ꢃꢂB,1  
3%ꢉ  
3*ꢁꢅ  
3*ꢁꢄ  
3*ꢁꢃ  
966  
3*ꢁꢂ  
3*ꢁꢁ  
3*ꢁꢊ  
3*ꢉ  
3'ꢅ  
3&ꢁꢅꢋ  
26&ꢃꢂB287  
3%ꢈ  
3'ꢄ  
3+ꢊꢀꢋꢀ  
26&B,1  
%227ꢊ  
3'5B21  
9''  
3'ꢃ  
3+ꢁꢀꢋꢀ  
26&B287  
3'ꢂ  
3'ꢊ  
3$ꢈ  
1567  
3)ꢁꢊ  
9''  
9''  
9&$3Bꢁ  
3(ꢁꢊ  
3(ꢉ  
9''  
966  
9''  
9&$3Bꢂ  
3'ꢁꢁ  
3'ꢁꢊ  
3'ꢉ  
9''  
966  
3&ꢈ  
3&ꢇ  
9''  
3*ꢈ  
3&ꢆ  
*
+
-
%<3$66B  
5(*  
3&ꢊ  
3(ꢁꢁ  
3(ꢁꢂ  
3(ꢁꢃ  
3(ꢁꢄ  
3(ꢁꢅ  
3*ꢇ  
3*ꢆ  
3*ꢅ  
966$  
95()ꢋ  
95()ꢌ  
9''$  
3%ꢂ  
3)ꢁꢃ  
3)ꢁꢂ  
3)ꢁꢁ  
3*ꢄ  
3*ꢃ  
3*ꢂ  
3'ꢁꢃ  
3'ꢁꢂ  
3%ꢁꢁ  
3'ꢁꢄ  
3%ꢁꢄ  
3%ꢁꢂ  
3'ꢁꢅ  
3%ꢁꢅ  
3%ꢁꢃ  
06Yꢀꢁꢄꢂꢀ9ꢄ  
.
/
3(ꢈ  
3'ꢈ  
3(ꢇ  
3%ꢁꢊ  
0
1. The above figure shows the package top view.  
4.8  
Pins definition  
Table 9. Legend/abbreviations used in the pinout table  
Abbreviation Definition  
Name  
Unless otherwise specified in brackets below the pin name, the pin function during and after  
reset is the same as the actual pin name  
Pin name  
S
I
Supply pin  
Input only pin  
Pin type  
I/O  
FT  
Input/ output pin  
5 V tolerant I/O  
FTf  
TC  
TTa  
B
5 V tolerant I/O, I2C FM+ option  
Standard 3.3 V I/O  
I/O structure  
3.3 V tolerant I/O directly connected to DAC  
Dedicated BOOT0 pin  
NRST  
Bidirectional reset pin with embedded weak pull-up resistor  
Notes  
Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset  
DocID029162 Rev 5  
49/207  
73  
 
 
 
 
 
 
Pinouts and pin description  
STM32F413xG/H  
Table 9. Legend/abbreviations used in the pinout table (continued)  
Name  
Abbreviation  
Definition  
Alternate  
functions  
Functions selected through GPIOx_AFR registers  
Additional  
functions  
Functions directly selected/enabled through peripheral registers  
Table 10. STM32F413xG/H pin definition  
Pin Number  
Pin name  
(function  
after  
Pin  
I/O  
Additional  
functions  
Notes Alternate functions  
type structure  
reset)(1)  
TRACECLK,  
SPI4_SCK/I2S4_CK,  
SPI5_SCK/I2S5_CK,  
SAI1_MCLK_A,  
QUADSPI_BK1_IO2,  
UART10_RX,  
(2)  
-
-
NC  
1
B2  
A3  
1
PE2  
I/O  
FT  
-
FSMC_A23,  
EVENTOUT  
TRACED0, SAI1_SD_B,  
UART10_TX,  
(2)  
-
-
-
-
NC  
NC  
2
3
A1  
B1  
A2  
B2  
2
3
PE3  
PE4  
I/O  
I/O  
FT  
FT  
-
-
FSMC_A19,  
EVENTOUT  
TRACED1,  
SPI4_NSS/I2S4_WS,  
SPI5_NSS/I2S5_WS,  
SAI1_SD_A,  
(2)(3)  
DFSDM1_DATIN3,  
FSMC_A20,  
EVENTOUT  
TRACED2, TIM9_CH1,  
SPI4_MISO,  
SPI5_MISO,  
(2)  
-
-
-
-
NC  
NC  
4
5
C2  
D2  
B3  
B4  
4
5
PE5  
I/O  
I/O  
FT  
FT  
SAI1_SCK_A,  
DFSDM1_CKIN3,  
FSMC_A21,  
-
-
EVENTOUT  
TRACED3, TIM9_CH2,  
SPI4_MOSI/I2S4_SD,  
SPI5_MOSI/I2S5_SD,  
SAI1_FS_A,  
(2)(3)  
PE6  
FSMC_A22,  
EVENTOUT  
1
2
1
2
B9  
C8  
6
7
E2  
C1  
C2  
A1  
6
7
VBAT  
S
-
-
-
VBAT  
PC13-  
ANTI_TAMP  
(4)(5)  
I/O  
FT  
EVENTOUT  
TAMP_1  
50/207  
DocID029162 Rev 5  
 
 
STM32F413xG/H  
Pinouts and pin description  
Table 10. STM32F413xG/H pin definition (continued)  
Pin Number  
Pin name  
(function  
after  
Pin  
I/O  
Additional  
functions  
Notes Alternate functions  
type structure  
reset)(1)  
PC14-  
OSC32_IN  
(4)(5)(6)  
3
4
-
3
4
-
C9  
8
9
-
D1  
B1  
C1  
C3  
C4  
D4  
E2  
E3  
E4  
8
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
FT  
FT  
FT  
FT  
FT  
FT  
FT  
FT  
EVENTOUT  
OSC32_IN  
PC15-  
OSC32_OUT  
(4)(6)  
D9  
E1  
9
EVENTOUT  
OSC32_OUT  
I2C2_SDA, FSMC_A0,  
-
-
-
-
-
-
-
-
-
-
-
-
10  
11  
12  
13  
14  
15  
PF0  
PF1  
PF2  
PF3  
PF4  
PF5  
-
-
-
-
-
-
-
EVENTOUT  
I2C2_SCL, FSMC_A1,  
-
-
-
-
EVENTOUT  
I2C2_SMBA, FSMC_A2,  
-
-
-
-
EVENTOUT  
TIM5_CH1, FSMC_A3,  
-
-
-
-
EVENTOUT  
TIM5_CH2, FSMC_A4,  
-
-
-
-
EVENTOUT  
TIM5_CH3, FSMC_A5,  
-
-
-
-
EVENTOUT  
-
-
-
-
D8 10  
F2  
D2  
D3  
16  
17  
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
E8  
11  
G2  
TRACED0, TIM10_CH1,  
SAI1_SD_B,  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
F3  
F2  
G3  
G2  
18  
19  
20  
PF6  
PF7  
PF8  
I/O  
I/O  
I/O  
FT  
FT  
FT  
FT  
-
-
-
-
UART7_Rx,  
QUADSPI_BK1_IO3,  
EVENTOUT  
-
-
-
-
TRACED1, TIM11_CH1,  
SAI1_MCLK_B,  
UART7_Tx,  
QUADSPI_BK1_IO2,  
EVENTOUT  
-
-
-
-
SAI1_SCK_B,  
UART8_RX,  
TIM13_CH1,  
QUADSPI_BK1_IO0,  
EVENTOUT  
SAI1_FS_B,  
UART8_TX,  
TIM14_CH1,  
-
-
-
-
21  
22  
PF9  
I/O  
I/O  
QUADSPI_BK1_IO1,  
EVENTOUT  
TIM1_ETR, TIM5_CH4,  
EVENTOUT  
-
-
-
G1  
D1  
PF10  
FT  
FT  
-
-
(6)  
5
5
E9 12  
F1  
23 PH0 - OSC_IN I/O  
EVENTOUT  
OSC_IN  
DocID029162 Rev 5  
51/207  
73  
Pinouts and pin description  
STM32F413xG/H  
Table 10. STM32F413xG/H pin definition (continued)  
Pin Number  
Pin name  
(function  
after  
Pin  
I/O  
Additional  
functions  
Notes Alternate functions  
type structure  
reset)(1)  
PH1 -  
OSC_OUT  
(6)  
6
7
6
7
F9  
13  
G1  
H2  
E1  
F1  
24  
25  
I/O  
I/O  
FT  
EVENTOUT  
-
OSC_OUT  
NRST  
G9 14  
NRST  
PC0  
RST  
-
LPTIM1_IN1,  
DFSDM2_CKIN4,  
SAI1_MCLK_B,  
EVENTOUT  
ADC1_IN10,  
WKUP2  
-
-
8
9
F8  
15  
H1  
J2  
H1  
H2  
26  
27  
I/O  
I/O  
FT  
FT  
-
-
LPTIM1_OUT,  
DFSDM2_DATIN4,  
SAI1_SD_B,  
ADC1_IN11,  
WKUP3  
C7 16  
PC1  
PC2  
EVENTOUT  
LPTIM1_IN2,  
DFSDM2_DATIN7,  
SPI2_MISO,  
I2S2ext_SD,  
-
10 D7 17  
J3  
H3  
H4  
28  
I/O  
FT  
-
ADC1_IN12  
SAI1_SCK_B,  
DFSDM1_CKOUT,  
FSMC_NWE,  
EVENTOUT  
LPTIM1_ETR,  
DFSDM2_CKIN7,  
SPI2_MOSI/I2S2_SD,  
SAI1_FS_B, FSMC_A0,  
EVENTOUT  
-
11 E7 18  
K2  
29  
PC3  
I/O  
FT  
-
ADC1_IN13  
-
8
-
-
-
19  
-
-
30  
31  
-
VDD  
VSSA  
VREF-  
VREF+  
VDDA  
S
S
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
12 H9 20  
J1  
K1  
L1  
M1  
J1  
K1  
L1  
M1  
-
-
-
-
-
G8 21  
22  
32  
33  
9
13 F7  
TIM2_CH1/TIM2_ETR,  
TIM5_CH1, TIM8_ETR,  
USART2_CTS,  
ADC1_IN0,  
WKUP1  
10 14 G7 23  
L2  
J2  
34  
35  
PA0  
PA1  
I/O  
I/O  
FT  
FT  
-
-
UART4_TX, EVENTOUT  
TIM2_CH2, TIM5_CH2,  
SPI4_MOSI/I2S4_SD,  
USART2_RTS,  
11 15 H8 24  
M2  
K2  
ADC1_IN1  
UART4_RX,  
QUADSPI_BK1_IO3,  
EVENTOUT  
52/207  
DocID029162 Rev 5  
STM32F413xG/H  
Pinouts and pin description  
Table 10. STM32F413xG/H pin definition (continued)  
Pin Number  
Pin name  
(function  
after  
Pin  
I/O  
Additional  
functions  
Notes Alternate functions  
type structure  
reset)(1)  
TIM2_CH3, TIM5_CH3,  
TIM9_CH1, I2S2_CKIN,  
12 16 J9  
25  
K3  
L3  
L2  
36  
37  
PA2  
I/O  
I/O  
FT  
FT  
-
-
USART2_TX,  
FSMC_D4/FSMC_DA4,  
EVENTOUT  
ADC1_IN2  
ADC1_IN3  
TIM2_CH4, TIM5_CH4,  
TIM9_CH2, I2S2_MCK,  
USART2_RX,  
13 17 E6 26  
M2  
PA3  
SAI1_SD_B,  
FSMC_D5/FSMC_DA5,  
EVENTOUT  
-
-
-
18 H7 27  
-
E3  
-
-
38  
-
VSS  
S
I
-
FT  
-
-
-
-
-
-
-
-
-
-
BYPASS_  
REG  
-
F6  
-
H5  
F4  
19 J8  
28  
39  
VDD  
S
SPI1_NSS/I2S1_WS,  
SPI3_NSS/I2S3_WS,  
USART2_CK,  
DFSDM1_DATIN1,  
FSMC_D6/FSMC_DA6,  
EVENTOUT  
ADC1_IN4,  
DAC_OUT1  
14 20 E5 29  
M3  
K4  
J3  
40  
41  
PA4  
I/O  
I/O  
TTa  
TTa  
-
-
TIM2_CH1/TIM2_ETR,  
TIM8_CH1N,  
SPI1_SCK/I2S1_CK,  
DFSDM1_CKIN1,  
FSMC_D7/FSMC_DA7,  
EVENTOUT  
ADC1_IN5,  
DAC_OUT2  
15 21 G6 30  
K3  
PA5  
PA6  
TIM1_BKIN, TIM3_CH1,  
TIM8_BKIN,  
SPI1_MISO, I2S2_MCK,  
DFSDM2_CKIN1,  
TIM13_CH1,  
16 22 F5  
31  
L4  
L3  
42  
I/O  
FT  
-
ADC1_IN6  
QUADSPI_BK2_IO0,  
SDIO_CMD,  
EVENTOUT  
TIM1_CH1N,  
TIM3_CH2,  
TIM8_CH1N,  
SPI1_MOSI/I2S1_SD,  
DFSDM2_DATIN1,  
TIM14_CH1,  
17 23 J7  
32  
M4  
M3  
43  
PA7  
I/O  
FT  
-
ADC1_IN7  
QUADSPI_BK2_IO1,  
EVENTOUT  
DocID029162 Rev 5  
53/207  
73  
Pinouts and pin description  
STM32F413xG/H  
Table 10. STM32F413xG/H pin definition (continued)  
Pin Number  
Pin name  
(function  
after  
Pin  
I/O  
Additional  
functions  
Notes Alternate functions  
type structure  
reset)(1)  
DFSDM2_CKIN2,  
I2S1_MCK,  
-
-
24 H6 33  
K5  
L5  
J4  
K4  
L4  
44  
45  
46  
PC4  
PC5  
PB0  
I/O  
I/O  
I/O  
FT  
FT  
FT  
-
-
-
QUADSPI_BK2_IO2,  
FSMC_NE4,  
ADC1_IN14  
ADC1_IN15  
ADC1_IN8  
EVENTOUT  
DFSDM2_DATIN2,  
I2CFMP1_SMBA,  
USART3_RX,  
QUADSPI_BK2_IO3,  
FSMC_NOE,  
25 J6  
34  
EVENTOUT  
TIM1_CH2N,  
TIM3_CH3,  
TIM8_CH2N,  
18 26 E4 35  
M5  
SPI5_SCK/I2S5_CK,  
EVENTOUT  
TIM1_CH3N,  
TIM3_CH4,  
TIM8_CH3N,  
19 27 G5 36  
M6  
L6  
M4  
J5  
47  
48  
PB1  
PB2  
I/O  
I/O  
FT  
FT  
-
-
SPI5_NSS/I2S5_WS,  
DFSDM1_DATIN0,  
QUADSPI_CLK,  
EVENTOUT  
ADC1_IN9  
BOOT1  
LPTIM1_OUT,  
DFSDM1_CKIN0,  
QUADSPI_CLK,  
EVENTOUT  
20 28 H5 37  
-
-
-
-
-
-
-
-
-
-
M5  
L5  
49  
50  
PF11  
PF12  
I/O  
I/O  
FT  
FT  
-
-
TIM8_ETR, EVENTOUT  
-
-
TIM8_BKIN, FSMC_A6,  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
G4  
G5  
51  
52  
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
I2CFMP1_SMBA,  
FSMC_A7, EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
K5  
M6  
L6  
53  
54  
55  
PF13  
PF14  
PF15  
I/O  
I/O  
I/O  
FT  
FTf  
FTf  
-
-
-
-
-
-
I2CFMP1_SCL,  
FSMC_A8, EVENTOUT  
I2CFMP1_SDA,  
FSMC_A9, EVENTOUT  
CAN1_RX, UART9_RX,  
FSMC_A10,  
-
-
-
-
-
-
-
-
-
-
K6  
J6  
56  
57  
PG0  
PG1  
I/O  
I/O  
FT  
FT  
-
-
-
-
EVENTOUT  
CAN1_TX, UART9_TX,  
FSMC_A11, EVENTOUT  
54/207  
DocID029162 Rev 5  
STM32F413xG/H  
Pinouts and pin description  
Table 10. STM32F413xG/H pin definition (continued)  
Pin Number  
Pin name  
(function  
after  
Pin  
I/O  
Additional  
functions  
Notes Alternate functions  
type structure  
reset)(1)  
TIM1_ETR,  
DFSDM1_DATIN2,  
UART7_Rx,  
QUADSPI_BK2_IO0,  
FSMC_D4/FSMC_DA4,  
EVENTOUT  
(2)  
-
-
NC 38  
M7  
M7  
58  
PE7  
I/O  
FT  
-
TIM1_CH1N,  
DFSDM1_CKIN2,  
UART7_Tx,  
(2)  
-
-
-
-
NC 39  
L7  
L7  
K7  
59  
60  
PE8  
PE9  
I/O  
I/O  
FT  
FT  
-
-
QUADSPI_BK2_IO1,  
FSMC_D5/FSMC_DA5,  
EVENTOUT  
TIM1_CH1,  
DFSDM1_CKOUT,  
QUADSPI_BK2_IO2,  
FSMC_D6/FSMC_DA6,  
EVENTOUT  
J5  
40  
M8  
-
-
-
-
-
-
-
-
-
-
-
H6  
G6  
61  
62  
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
TIM1_CH2N,  
DFSDM2_DATIN0,  
QUADSPI_BK2_IO3,  
FSMC_D7/FSMC_DA7,  
EVENTOUT  
-
-
-
-
G4 41  
L8  
J7  
63  
64  
PE10  
PE11  
I/O  
I/O  
FT  
FT  
-
-
-
-
TIM1_CH2,  
DFSDM2_CKIN0,  
SPI4_NSS/I2S4_WS,  
SPI5_NSS/I2S5_WS,  
FSMC_D8/FSMC_DA8,  
EVENTOUT  
H4 42  
M9  
H8  
TIM1_CH3N,  
DFSDM2_DATIN7,  
SPI4_SCK/I2S4_CK,  
SPI5_SCK/I2S5_CK,  
FSMC_D9/FSMC_DA9,  
EVENTOUT  
-
-
-
-
J4  
43  
L9  
J8  
65  
66  
PE12  
PE13  
I/O  
I/O  
FT  
FT  
-
-
-
-
TIM1_CH3,  
DFSDM2_CKIN7,  
SPI4_MISO,  
F4  
44 M10 K8  
SPI5_MISO,  
FSMC_D10/FSMC_DA1  
0, EVENTOUT  
DocID029162 Rev 5  
55/207  
73  
Pinouts and pin description  
STM32F413xG/H  
Table 10. STM32F413xG/H pin definition (continued)  
Pin Number  
Pin name  
(function  
after  
Pin  
I/O  
Additional  
functions  
Notes Alternate functions  
type structure  
reset)(1)  
TIM1_CH4,  
SPI4_MOSI/I2S4_SD,  
SPI5_MOSI/I2S5_SD,  
DFSDM2_DATIN1,  
FSMC_D11/FSMC_DA1  
1, EVENTOUT  
-
-
-
-
G3 45 M11  
L8  
67  
68  
PE14  
PE15  
I/O  
I/O  
FT  
FT  
-
-
-
-
TIM1_BKIN,  
DFSDM2_CKIN1,  
FSMC_D12/FSMC_DA1  
2, EVENTOUT  
J3  
46 M12 M8  
TIM2_CH3, I2C2_SCL,  
SPI2_SCK/I2S2_CK,  
I2S3_MCK,  
21 29 H3 47  
L10 M9  
69  
PB10  
PB11  
I/O  
I/O  
FTf  
FT  
-
-
USART3_TX,  
I2CFMP1_SCL,  
DFSDM2_CKOUT,  
SDIO_D7, EVENTOUT  
-
TIM2_CH4, I2C2_SDA,  
I2S2_CKIN,  
-
-
NC  
-
K9 M10 70  
-
USART3_RX,  
EVENTOUT  
22 30 H2 48  
L11  
F12  
H7  
-
71  
-
VCAP_1  
VSS  
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
23 31 J2  
24 32 J1  
49  
50 G12 G7  
72  
VDD  
TIM1_BKIN,  
I2C2_SMBA,  
SPI2_NSS/I2S2_WS,  
SPI4_NSS/I2S4_WS,  
SPI3_SCK/I2S3_CK,  
USART3_CK,  
25 33 F3  
51  
L12 M11 73  
PB12  
I/O  
FT  
-
-
CAN2_RX,  
DFSDM1_DATIN1,  
UART5_RX,  
FSMC_D13/FSMC_DA1  
3, EVENTOUT  
TIM1_CH1N,  
I2CFMP1_SMBA,  
SPI2_SCK/I2S2_CK,  
SPI4_SCK/I2S4_CK,  
USART3_CTS,  
26 34 G2 52 K12 M12 74  
PB13  
I/O  
FT  
-
-
CAN2_TX,  
DFSDM1_CKIN1,  
UART5_TX, EVENTOUT  
56/207  
DocID029162 Rev 5  
STM32F413xG/H  
Pinouts and pin description  
Table 10. STM32F413xG/H pin definition (continued)  
Pin Number  
Pin name  
(function  
after  
Pin  
I/O  
Additional  
functions  
Notes Alternate functions  
type structure  
reset)(1)  
TIM1_CH2N,  
TIM8_CH2N,  
I2CFMP1_SDA,  
SPI2_MISO,  
I2S2ext_SD,  
USART3_RTS,  
27 35 E3 53  
K11 L11 75  
PB14  
I/O  
FTf  
-
-
DFSDM1_DATIN2,  
TIM12_CH1,  
FSMC_D0/FSMC_DA0,  
SDIO_D6, EVENTOUT  
RTC_REFIN,  
TIM1_CH3N,  
TIM8_CH3N,  
I2CFMP1_SCL,  
SPI2_MOSI/I2S2_SD,  
28 36 H1 54 K10 L12 76  
PB15  
I/O  
FTf  
-
-
DFSDM1_CKIN2,  
TIM12_CH2, SDIO_CK,  
EVENTOUT  
USART3_TX,  
FSMC_D13/FSMC_DA1  
(2)  
-
-
-
-
NC 55  
-
L9  
K9  
77  
78  
PD8  
PD9  
I/O  
I/O  
FT  
FT  
-
-
3, EVENTOUT  
USART3_RX,  
FSMC_D14/FSMC_DA1  
4, EVENTOUT  
F2  
56  
K8  
-
USART3_CK,  
UART4_TX,  
FSMC_D15/FSMC_DA1  
5, EVENTOUT  
(7)  
-
-
-
-
G1 57  
J12  
J11  
J9  
79  
80  
PD10  
PD11  
I/O  
I/O  
FT  
FT  
-
-
DFSDM2_DATIN2,  
I2CFMP1_SMBA,  
USART3_CTS,  
QUADSPI_BK1_IO0,  
FSMC_A16,  
(2)  
NC 58  
H9  
EVENTOUT  
TIM4_CH1,  
DFSDM2_CKIN2,  
I2CFMP1_SCL,  
USART3_RTS,  
QUADSPI_BK1_IO1,  
FSMC_A17,  
(2)  
-
-
NC 59  
J10 L10 81  
PD12  
I/O  
FTf  
-
-
EVENTOUT  
TIM4_CH2,  
I2CFMP1_SDA,  
QUADSPI_BK1_IO3,  
FSMC_A18,  
(2)  
-
-
-
-
NC 60 H12 K10 82  
PD13  
VSS  
I/O  
S
FTf  
-
EVENTOUT  
-
-
-
G8  
83  
-
-
-
DocID029162 Rev 5  
57/207  
73  
Pinouts and pin description  
STM32F413xG/H  
Table 10. STM32F413xG/H pin definition (continued)  
Pin Number  
Pin name  
(function  
after  
Pin  
I/O  
Additional  
functions  
Notes Alternate functions  
type structure  
reset)(1)  
-
-
-
-
-
-
-
F8  
84  
VDD  
S
-
-
-
-
-
TIM4_CH3,  
I2CFMP1_SCL,  
DFSDM2_CKIN0,  
UART9_RX,  
(2)  
NC 61 H11 K11 85  
PD14  
I/O  
FTf  
FSMC_D0/FSMC_DA0,  
EVENTOUT  
TIM4_CH4,  
I2CFMP1_SDA,  
DFSDM2_DATIN0,  
UART9_TX,  
(2)  
-
-
NC 62 H10 K12 86  
PD15  
I/O  
FTf  
-
FSMC_D1/FSMC_DA1,  
EVENTOUT  
FSMC_A12,  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
J12 87  
PG2  
PG3  
PG4  
PG5  
PG6  
PG7  
PG8  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
FT  
FT  
FT  
FT  
FT  
FT  
FT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FSMC_A13,  
EVENTOUT  
J11  
88  
FSMC_A14,  
EVENTOUT  
J10 89  
H12 90  
H11 91  
H10 92  
G11 93  
FSMC_A15,  
EVENTOUT  
QUADSPI_BK1_NCS,  
EVENTOUT  
USART6_CK,  
EVENTOUT  
USART6_RTS,  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
94  
-
VSS  
VDD  
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
F10  
F1  
C11 95  
VDDUSB  
TIM3_CH1, TIM8_CH1,  
I2CFMP1_SCL,  
I2S2_MCK,  
DFSDM1_CKIN3,  
DFSDM2_DATIN6,  
USART6_TX,  
-
37 D5 63 E12 G12 96  
PC6  
I/O  
FTf  
-
-
FSMC_D1/FSMC_DA1,  
SDIO_D6, EVENTOUT  
58/207  
DocID029162 Rev 5  
STM32F413xG/H  
Pinouts and pin description  
Table 10. STM32F413xG/H pin definition (continued)  
Pin Number  
Pin name  
(function  
after  
Pin  
I/O  
Additional  
functions  
Notes Alternate functions  
type structure  
reset)(1)  
TIM3_CH2, TIM8_CH2,  
I2CFMP1_SDA,  
SPI2_SCK/I2S2_CK,  
I2S3_MCK,  
DFSDM2_CKIN6,  
-
38 D4 64  
E11 F12 97  
PC7  
I/O  
FTf  
-
-
USART6_RX,  
DFSDM1_DATIN3,  
SDIO_D7, EVENTOUT  
TIM3_CH3, TIM8_CH3,  
DFSDM2_CKIN3,  
-
-
39 E1 65 E10 F11 98  
PC8  
PC9  
I/O  
I/O  
FT  
FT  
-
-
USART6_CK,  
QUADSPI_BK1_IO2,  
SDIO_D0, EVENTOUT  
-
-
MCO_2, TIM3_CH4,  
TIM8_CH4, I2C3_SDA,  
I2S2_CKIN,  
DFSDM2_DATIN3,  
QUADSPI_BK1_IO0,  
SDIO_D1, EVENTOUT  
40 E2 66 D12 E11 99  
MCO_1, TIM1_CH1,  
I2C3_SCL,  
DFSDM1_CKOUT,  
USART1_CK,  
29 41 D3 67 D11 E12 100  
PA8  
I/O  
FT  
-
-
UART7_RX,  
USB_FS_SOF,  
CAN3_RX, SDIO_D1,  
EVENTOUT  
TIM1_CH2,  
DFSDM2_CKIN3,  
I2C3_SMBA,  
30 42 D2 68 D10 D12 101  
PA9  
I/O  
I/O  
FT  
FT  
-
-
SPI2_SCK/I2S2_CK,  
USART1_TX,  
USB_FS_VBUS,  
SDIO_D2, EVENTOUT  
-
-
TIM1_CH3,  
DFSDM2_DATIN3,  
SPI2_MOSI/I2S2_SD,  
SPI5_MOSI/I2S5_SD,  
USART1_RX,  
31 43 D1 69 C12 D11 102  
PA10  
USB_FS_ID,  
EVENTOUT  
DocID029162 Rev 5  
59/207  
73  
Pinouts and pin description  
STM32F413xG/H  
Table 10. STM32F413xG/H pin definition (continued)  
Pin Number  
Pin name  
(function  
after  
Pin  
I/O  
Additional  
functions  
Notes Alternate functions  
type structure  
reset)(1)  
TIM1_CH4,  
DFSDM2_CKIN5,  
SPI2_NSS/I2S2_WS,  
SPI4_MISO,  
USART1_CTS,  
USART6_TX,  
CAN1_RX,  
32 44 C3 70 B12 C12 103  
PA11  
I/O  
FT  
-
-
USB_FS_DM,  
UART4_RX,  
EVENTOUT  
TIM1_ETR,  
DFSDM2_DATIN5,  
SPI2_MISO,  
SPI5_MISO,  
USART1_RTS,  
USART6_RX,  
CAN1_TX, USB_FS_DP,  
UART4_TX, EVENTOUT  
33 45 B3 71 A12 B12 104  
PA12  
PA13  
I/O  
I/O  
FT  
FT  
-
-
-
-
JTMS-SWDIO,  
EVENTOUT  
34 46 C2 72  
C1 73 C11 G9 106  
35 47 B1 74 F11 G10 107  
75 G11  
A11 A12 105  
-
-
VCAP_2  
VSS  
S
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
48  
-
-
-
-
VDD  
36  
A1  
-
-
F9 108  
VDD  
JTCK-SWCLK,  
EVENTOUT  
37 49 B2 76 A10 A11 109  
PA14  
PA15  
I/O  
FT  
-
-
JTDI,  
TIM2_CH1/TIM2_ETR,  
SPI1_NSS/I2S1_WS,  
SPI3_NSS/I2S3_WS,  
USART1_TX,  
38 50 A3 77  
A9  
A10 110  
I/O  
FT  
-
-
UART7_TX,  
SAI1_MCLK_A,  
CAN3_TX, EVENTOUT  
DFSDM2_CKIN5,  
SPI3_SCK/I2S3_CK,  
USART3_TX,  
-
51 A2 78  
B11 B11 111  
PC10  
I/O  
FT  
-
-
QUADSPI_BK1_IO1,  
SDIO_D2, EVENTOUT  
60/207  
DocID029162 Rev 5  
STM32F413xG/H  
Pinouts and pin description  
Table 10. STM32F413xG/H pin definition (continued)  
Pin Number  
Pin name  
(function  
after  
Pin  
I/O  
Additional  
functions  
Notes Alternate functions  
type structure  
reset)(1)  
DFSDM2_DATIN5,  
I2S3ext_SD,  
SPI3_MISO,  
USART3_RX,  
UART4_RX,  
QUADSPI_BK2_NCS,  
FSMC_D2/FSMC_DA2,  
SDIO_D3, EVENTOUT  
-
-
52 C4 79 C10 B10 112  
PC11  
PC12  
I/O  
I/O  
FT  
FT  
-
-
-
SPI3_MOSI/I2S3_SD,  
USART3_CK,  
53 B4 80 B10 C10 113  
-
UART5_TX,  
FSMC_D3/FSMC_DA3,  
SDIO_CK, EVENTOUT  
DFSDM2_CKIN6,  
CAN1_RX, UART4_RX,  
FSMC_D2/FSMC_DA2,  
EVENTOUT  
-
-
-
-
A4 81  
NC 82  
C9 E10 114  
B9 D10 115  
PD0  
PD1  
I/O  
I/O  
FT  
FT  
-
-
-
DFSDM2_DATIN6,  
CAN1_TX, UART4_TX,  
FSMC_D3/FSMC_DA3,  
EVENTOUT  
(2)  
TIM3_ETR,  
DFSDM2_CKOUT,  
UART5_RX,  
FSMC_NWE,  
SDIO_CMD,  
-
-
54 C5 83  
C8  
B8  
E9 116  
PD2  
PD3  
I/O  
I/O  
FT  
FT  
-
-
-
EVENTOUT  
TRACED1,  
SPI2_SCK/I2S2_CK,  
DFSDM1_DATIN0,  
USART2_CTS,  
QUADSPI_CLK,  
FSMC_CLK,  
(2)  
-
NC 84  
D9 117  
EVENTOUT  
DFSDM1_CKIN0,  
USART2_RTS,  
FSMC_NOE,  
(2)  
(2)  
-
-
-
-
NC 85  
NC 86  
B7  
A6  
C9 118  
B9 119  
PD4  
PD5  
I/O  
I/O  
FT  
FT  
-
-
EVENTOUT  
DFSDM2_CKOUT,  
USART2_TX,  
FSMC_NWE,  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
E7 120  
F7 121  
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
DocID029162 Rev 5  
61/207  
73  
Pinouts and pin description  
STM32F413xG/H  
Table 10. STM32F413xG/H pin definition (continued)  
Pin Number  
Pin name  
(function  
after  
Pin  
I/O  
Additional  
functions  
Notes Alternate functions  
type structure  
reset)(1)  
SPI3_MOSI/I2S3_SD,  
DFSDM1_DATIN1,  
USART2_RX,  
(2)  
-
-
NC 87  
B6  
A8 122  
PD6  
I/O  
FT  
-
FSMC_NWAIT,  
EVENTOUT  
DFSDM1_CKIN1,  
USART2_CK,  
FSMC_NE1,  
(2)  
-
-
-
-
NC 88  
A5  
-
A9 123  
E8 124  
PD7  
PG9  
I/O  
I/O  
FT  
FT  
-
-
EVENTOUT  
USART6_RX,  
QUADSPI_BK2_IO2,  
FSMC_NE2,  
-
-
-
EVENTOUT  
FSMC_NE3,  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
D8 125  
C8 126  
PG10  
PG11  
I/O  
I/O  
FT  
FT  
-
-
-
-
CAN2_RX,  
UART10_RX,  
EVENTOUT  
USART6_RTS,  
CAN2_TX, UART10_TX,  
FSMC_NE4,  
-
-
-
-
-
-
-
-
-
-
B8 127  
D7 128  
PG12  
PG13  
I/O  
I/O  
FT  
FT  
-
-
-
-
EVENTOUT  
TRACED2,  
USART6_CTS,  
FSMC_A24,  
EVENTOUT  
TRACED3,  
USART6_TX,  
-
-
-
-
-
C7 129  
PG14  
I/O  
FT  
-
QUADSPI_BK2_IO3,  
FSMC_A25,  
-
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
130  
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
F6 131  
B7 132  
USART6_CTS,  
EVENTOUT  
-
-
-
-
-
PG15  
I/O  
FT  
-
-
JTDO-SWO, TIM2_CH2,  
I2CFMP1_SDA,  
SPI1_SCK/I2S1_CK,  
SPI3_SCK/I2S3_CK,  
USART1_RX,  
39 55 A5 89  
A8  
A7 133  
PB3  
I/O  
FTf  
-
-
UART7_RX, I2C2_SDA,  
SAI1_SD_A, CAN3_RX,  
EVENTOUT  
62/207  
DocID029162 Rev 5  
STM32F413xG/H  
Pinouts and pin description  
Table 10. STM32F413xG/H pin definition (continued)  
Pin Number  
Pin name  
(function  
after  
Pin  
I/O  
Additional  
functions  
Notes Alternate functions  
type structure  
reset)(1)  
JTRST, TIM3_CH1,  
SPI1_MISO,  
SPI3_MISO,  
I2S3ext_SD,  
UART7_TX, I2C3_SDA,  
40 56 B5 90  
A7  
A6 134  
PB4  
I/O  
FT  
-
-
SAI1_SCK_A,  
CAN3_TX, SDIO_D0,  
EVENTOUT  
LPTIM1_IN1,  
TIM3_CH2,  
I2C1_SMBA,  
SPI1_MOSI/I2S1_SD,  
SPI3_MOSI/I2S3_SD,  
41 57 A6 91  
C5  
B6 135  
PB5  
I/O  
FT  
-
-
CAN2_RX, SAI1_FS_A,  
UART5_RX, SDIO_D3,  
EVENTOUT  
LPTIM1_ETR,  
TIM4_CH1, I2C1_SCL,  
DFSDM2_CKIN7,  
42 58 B6 92  
B5  
C6 136  
PB6  
I/O  
FT  
-
USART1_TX,CAN2_TX,  
QUADSPI_BK1_NCS,  
UART5_TX, SDIO_D0,  
EVENTOUT  
-
LPTIM1_IN2,  
TIM4_CH2, I2C1_SDA,  
DFSDM2_DATIN7,  
USART1_RX,  
43 59 B7 93  
44 60 A7 94  
B4  
A4  
D6 137  
D5 138  
PB7  
I/O  
I
FT  
B
-
-
-
FSMC_NL, EVENTOUT  
BOOT0  
-
VPP  
LPTIM1_OUT,  
TIM4_CH3, TIM10_CH1,  
I2C1_SCL,  
SPI5_MOSI/I2S5_SD,  
DFSDM2_CKIN1,  
CAN1_RX, I2C3_SDA,  
UART5_RX, SDIO_D4,  
EVENTOUT  
45 61 C6 95  
A3  
C5 139  
PB8  
I/O  
FT  
-
-
TIM4_CH4, TIM11_CH1,  
I2C1_SDA,  
SPI2_NSS/I2S2_WS,  
DFSDM2_DATIN1,  
CAN1_TX, I2C2_SDA,  
UART5_TX, SDIO_D5,  
EVENTOUT  
46 62 D6 96  
B3  
B5 140  
PB9  
I/O  
FT  
-
-
DocID029162 Rev 5  
63/207  
73  
Pinouts and pin description  
STM32F413xG/H  
Table 10. STM32F413xG/H pin definition (continued)  
Pin Number  
Pin name  
(function  
after  
Pin  
I/O  
Additional  
functions  
Notes Alternate functions  
type structure  
reset)(1)  
TIM4_ETR,  
DFSDM2_CKIN4,  
UART8_Rx,  
FSMC_NBL0,  
EVENTOUT  
(2)  
(2)  
-
-
-
-
NC 97  
C3  
A2  
A5 141  
A4 142  
PE0  
PE1  
I/O  
I/O  
FT  
FT  
-
-
DFSDM2_DATIN4,  
UART8_Tx,  
FSMC_NBL1,  
EVENTOUT  
NC 98  
47 63 A8 99  
B8  
D3  
H3  
E6  
-
VSS  
PDR_ON  
VDD  
S
I
-
FT  
-
-
-
-
-
-
-
-
-
-
-
-
-
E5 143  
F5 144  
48 64 A9 100 C4  
S
1. Function availability depends on the chosen device.  
2. NC (Not Connected) pins are not bonded. They must be configured by software to output push-pull and forced to 0 in the  
output data register to avoid extra power consumption in low power mode.  
3. Compatibility issue on alternate function pin PE4 SAI1_SD_A and PE6 SAI1_FS_A: Pins have been swapped versus other  
MCUs supporting those alternate SAI functions on those pins  
4. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current  
(3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:  
- The speed should not exceed 2 MHz with a maximum load of 30 pF.  
- These I/Os must not be used as a current source (e.g. to drive an LED).  
5. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after  
reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC  
register description sections in the STM32F413/423 reference manual.  
6. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).  
7. Incompatibility issue on alternate function with other MCUs supporting UART4: UART4_TX wrongly mapped to PD10  
instead of PC10  
Table 11. FSMC pin definition  
FSMC  
Pins  
64 pins  
81 pins 100 pins 144 pins  
NOR/PSRAM  
Mux  
LCD/NOR/  
PSRAM/SRAM  
PE2  
A23  
A19  
A20  
A21  
A22  
A0  
A23  
A19  
A20  
A21  
A22  
-
-
-
-
-
-
-
-
-
-
-
-
-
Yes  
Yes  
Yes  
Yes  
Yes  
-
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
PE3  
PE4  
PE5  
PE6  
PF0  
64/207  
DocID029162 Rev 5  
 
 
 
STM32F413xG/H  
Pinouts and pin description  
Table 11. FSMC pin definition (continued)  
FSMC  
Pins  
64 pins  
81 pins 100 pins 144 pins  
NOR/PSRAM  
Mux  
LCD/NOR/  
PSRAM/SRAM  
PF1  
A1  
A2  
-
-
-
-
-
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
PF2  
-
-
-
PF3  
A3  
-
-
-
-
PF4  
A4  
-
-
-
-
PF5  
A5  
-
-
-
-
PC2  
PC3  
PA2  
NWE  
A0  
NWE  
-
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
-
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
-
Yes  
D4  
DA4  
DA5  
DA6  
DA7  
NE4  
NOE  
-
Yes  
PA3  
D5  
Yes  
PA4  
D6  
Yes  
PA5  
D7  
Yes  
PC4  
PC5  
PF12  
PF13  
PF14  
PF15  
PG0  
PG1  
PE7  
NE4  
NOE  
A6  
Yes  
Yes  
-
A7  
-
-
-
-
A8  
-
-
-
-
A9  
-
-
-
-
A10  
A11  
D4  
-
-
-
-
-
-
-
-
DA4  
DA5  
DA6  
DA7  
DA8  
DA9  
DA10  
DA11  
DA12  
DA13  
DA0  
DA13  
DA14  
DA15  
-
-
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
-
PE8  
D5  
-
-
PE9  
D6  
-
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
-
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
PB12  
PB14  
PD8  
PD9  
PD10  
D7  
-
D8  
-
D9  
-
D10  
D11  
D12  
D13  
D0  
-
-
-
Yes  
Yes  
D13  
D14  
D15  
-
-
-
Yes  
Yes  
Yes  
Yes  
DocID029162 Rev 5  
65/207  
73  
Pinouts and pin description  
STM32F413xG/H  
Table 11. FSMC pin definition (continued)  
FSMC  
Pins  
64 pins  
81 pins 100 pins 144 pins  
NOR/PSRAM  
Mux  
LCD/NOR/  
PSRAM/SRAM  
PD11  
PD12  
PD13  
PD14  
PD15  
PG2  
PG3  
PG4  
PG5  
PC6  
A16  
A17  
A18  
D0  
A16  
A17  
A18  
DA0  
DA1  
-
-
-
Yes  
Yes  
Yes  
Yes  
Yes  
-
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
-
-
-
-
-
-
D1  
-
-
A12  
A13  
A14  
A15  
D1  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
DA1  
DA2  
DA3  
DA2  
DA3  
NWE  
CLK  
NOE  
NWE  
NWAIT  
NE1  
NE2  
NE3  
NE4  
A24  
A25  
NL  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
-
PC11  
PC12  
PD0  
D2  
Yes  
Yes  
D3  
Yes  
Yes  
D2  
-
Yes  
PD1  
D3  
-
-
PD2  
NWE  
CLK  
NOE  
NWE  
NWAIT  
NE1  
NE2  
NE3  
NE4  
A24  
A25  
NL  
Yes  
Yes  
PD3  
-
-
PD4  
-
-
PD5  
-
-
PD6  
-
-
PD7  
-
-
PG9  
PG10  
PG12  
PG13  
PG14  
PB7  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Yes  
Yes  
Yes  
Yes  
Yes  
PE0  
NBL0  
NBL1  
NBL0  
NBL1  
-
-
-
-
PE1  
66/207  
DocID029162 Rev 5  
4.9  
Alternate functions  
Table 12. STM32F413xG/H alternate functions  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13 AF14 AF15  
SPI3/I2S3/  
SAI1/  
DFSDM2/ USART3/4/  
USART1/  
USART2/  
USART3  
SAI1/  
SPI2/I2S2/  
SPI3/I2S3/  
SPI4/I2S4/  
SPI5/I2S5/  
DFSDM1/2  
I2C2/I2C3/  
I2CFMP1/  
CAN1/2/  
TIM12/13/14/  
QUADSPI  
UART4/  
UART5/  
UART9/ FSMC /SDIO  
UART10  
SPI1/I2S1/  
I2C1/2/3/ SPI2/I2S2/  
TIM8/9/10/11 I2CFMP1 SPI3/I2S3/  
SPI4/I2S4  
DFSDM1/  
DFSDM1/  
DFSDM2/  
QUADSPI/  
FSMC  
Port  
SYS_  
AF  
TIM1/2/  
LPTIM1  
DFSDM2/  
SYS_  
AF  
TIM3/4/5  
-
RNG  
5/6/7/8/  
CAN1  
/CAN3  
/OTG1_FS  
TIM2_CH1/  
TIM2_  
TIM5_  
CH1  
USART2_  
CTS  
UART4_  
TX  
EVENT  
OUT  
PA0  
-
TIM8_ETR  
-
-
-
-
-
-
-
-
-
-
ETR  
TIM5_  
CH2  
SPI4_MOSI/I  
2S4_SD  
USART2_  
RTS  
UART4_  
RX  
QUADSPI_  
BK1_IO3  
EVENT  
OUT  
PA1  
PA2  
PA3  
PA4  
-
-
-
-
TIM2_CH2  
TIM2_CH3  
TIM2_CH4  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TIM5_  
CH3  
USART2_  
TX  
FSMC_D4/  
FSMC_DA4  
EVENT  
OUT  
TIM9_CH1  
TIM9_CH2  
-
I2S2_CKIN  
I2S2_MCK  
-
-
-
-
-
-
TIM5_  
CH4  
USART2_  
RX  
FSMC_D5/  
FSMC_DA5  
EVENT  
OUT  
SAI1_SD_B  
-
SPI1_NSS/I2 SPI3_NSS/I USART2_  
DFSDM1_  
DATIN1  
FSMC_D6/  
FSMC_DA6  
EVENT  
OUT  
-
-
S1_WS  
2S3_WS  
CK  
-
TIM2_CH1/  
TIM2_  
SPI1_SCK/I2  
S1_CK  
DFSDM1_  
CKIN1  
FSMC_D7/  
FSMC_DA7  
EVENT  
OUT  
PA5  
-
TIM8_CH1N  
TIM8_BKIN  
-
-
-
-
-
-
-
ETR  
TIM1_  
BKIN  
TIM3_  
CH1  
DFSDM2_  
CKIN1  
TIM13_  
CH1  
QUADSPI_B  
K2_IO0  
SDIO_  
CMD  
EVENT  
OUT  
PA6  
PA7  
-
-
-
-
SPI1_MISO I2S2_MCK  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TIM1_  
CH1N  
TIM3_  
CH2  
TIM8_  
CH1N  
SPI1_MOSI/I  
2S1_SD  
DFSDM2_  
DATIN1  
TIM14_  
CH1  
QUADSPI_B  
K2_IO1  
EVENT  
OUT  
-
-
I2C3_  
SCL  
DFSDM1_  
CKOUT  
USART1_  
CK  
UART7_  
RX  
USB_FS_  
SOF  
CAN3_  
RX  
SDIO_  
D1  
EVENT  
OUT  
PA8 MCO_1 TIM1_CH1  
-
-
-
-
-
-
-
-
-
-
DFSDM2_  
CKIN3  
I2C3_  
SMBA  
SPI2_SCK/I2  
S2_CK  
USART1_  
TX  
USB_FS_  
VBUS  
SDIO_  
D2  
EVENT  
OUT  
PA9  
-
-
-
-
TIM1_CH2  
TIM1_CH3  
TIM1_CH4  
TIM1_ETR  
-
-
-
-
-
-
-
DFSDM2_  
DATIN3  
SPI2_MOSI/I SPI5_MOSI/ USART1_  
USB_FS_  
ID  
EVENT  
OUT  
PA10  
PA11  
PA12  
PA13  
PA14  
-
-
-
-
-
-
-
-
-
-
-
2S2_SD  
I2S5_SD  
RX  
DFSDM2_  
CKIN5  
SPI2_NSS/I2  
S2_WS  
USART1_  
CTS  
USART6_  
TX  
USB_FS_  
DM  
UART4_  
RX  
EVENT  
OUT  
SPI4_MISO  
CAN1_RX  
DFSDM2_  
DATIN5  
USART1_  
RTS  
USART6_  
RX  
USB_FS_  
DP  
UART4_  
TX  
EVENT  
OUT  
SPI2_MISO SPI5_MISO  
CAN1_TX  
JTMS-  
SWDIO  
EVENT  
OUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
JTCK-  
SWCLK  
EVENT  
OUT  
-
TIM2_CH1/  
TIM2_  
SPI1_NSS/ SPI3_NSS/  
I2S1_WS I2S3_WS  
USART1_  
TX  
UART7_  
TX  
SAI1_  
MCLK_A  
CAN3_  
TX  
EVENT  
OUT  
PA15  
JTDI  
-
-
-
-
-
-
-
ETR  
 
 
 
 
Table 12. STM32F413xG/H alternate functions (continued)  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13 AF14 AF15  
SPI3/I2S3/  
SAI1/  
DFSDM2/ USART3/4/  
USART1/  
USART2/  
USART3  
SAI1/  
SPI2/I2S2/  
SPI3/I2S3/  
SPI4/I2S4/  
SPI5/I2S5/  
DFSDM1/2  
I2C2/I2C3/  
I2CFMP1/  
CAN1/2/  
TIM12/13/14/  
QUADSPI  
UART4/  
UART5/  
UART9/ FSMC /SDIO  
UART10  
SPI1/I2S1/  
I2C1/2/3/ SPI2/I2S2/  
TIM8/9/10/11 I2CFMP1 SPI3/I2S3/  
SPI4/I2S4  
DFSDM1/  
DFSDM1/  
DFSDM2/  
QUADSPI/  
FSMC  
Port  
SYS_  
AF  
TIM1/2/  
LPTIM1  
DFSDM2/  
SYS_  
AF  
TIM3/4/5  
-
RNG  
5/6/7/8/  
CAN1  
/CAN3  
/OTG1_FS  
TIM1_  
CH2N  
TIM3_  
CH3  
TIM8_  
CH2N  
SPI5_SCK/I  
2S5_CK  
EVENT  
OUT  
PB0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TIM1_  
CH3N  
TIM3_  
CH4  
TIM8_  
CH3N  
SPI5_NSS/  
I2S5_WS  
DFSDM1_ QUADSPI_C  
DATIN0  
EVENT  
OUT  
PB1  
PB2  
PB3  
-
-
LK  
LPTIM1_  
OUT  
DFSDM1_  
CKIN0  
QUADSPI_C  
LK  
EVENT  
OUT  
-
-
-
-
-
-
-
-
-
-
-
JTDO-  
SWO  
I2CFMP1 SPI1_SCK/I2 SPI3_SCK/I USART1_  
UART7_  
RX  
CAN3_  
RX  
EVENT  
OUT  
TIM2_CH2  
-
I2C2_SDA  
I2C3_SDA  
CAN2_RX  
CAN2_TX  
-
SAI1_SD_A  
-
_SDA  
S1_CK  
2S3_CK  
RX  
TIM3_  
CH1  
I2S3ext_  
SD  
UART7_  
TX  
SAI1_SCK_ CAN3_  
EVENT  
OUT  
PB4 JTRST  
-
SPI1_MISO SPI3_MISO  
SPI1_MOSI/I SPI3_MOSI/  
SDIO_D0  
SDIO_D3  
SDIO_D0  
FSMC_NL  
SDIO_D4  
SDIO_D5  
SDIO_D7  
-
A
TX  
LPTIM1_  
IN1  
TIM3_  
CH2  
I2C1_  
SMBA  
UART5_  
RX  
EVENT  
OUT  
PB5  
PB6  
-
-
-
-
-
-
-
-
-
-
-
-
SAI1_FS_A  
2S1_SD  
I2S3_SD  
LPTIM1_  
ETR  
TIM4_  
CH1  
DFSDM2_  
CKIN7  
USART1_  
TX  
QUADSPI_ UART5_  
BK1_NCS  
EVENT  
OUT  
I2C1_SCL  
-
-
TX  
LPTIM1_  
IN2  
TIM4_  
CH2  
I2C1_  
SDA  
DFSDM2_  
DATIN7  
USART1_  
RX  
EVENT  
OUT  
PB7  
-
-
-
-
-
LPTIM1_  
OUT  
TIM4_  
CH3  
TIM10_  
CH1  
I2C1_  
SCL  
SPI5_MOSI/ DFSDM2_  
I2S5_SD  
UART5_  
RX  
EVENT  
OUT  
PB8  
CAN1_RX  
I2C3_SDA  
I2C2_SDA  
-
-
CKIN1  
TIM4_  
CH4  
TIM11_  
CH1  
I2C1_  
SDA  
SPI2_NSS/I2 DFSDM2_  
UART5_  
TX  
EVENT  
OUT  
PB9  
-
-
CAN1_TX  
S2_WS  
DATIN1  
I2C2_  
SCL  
SPI2_SCK/I2  
S2_CK  
USART3_  
TX  
I2CFMP1_  
SCL  
DFSDM2_  
CKOUT  
EVENT  
OUT  
PB10  
PB11  
PB12  
PB13  
PB14  
PB15  
TIM2_CH3  
TIM2_CH4  
-
-
-
-
-
-
-
-
-
-
I2S3_MCK  
-
-
-
-
I2C2_  
SDA  
USART3_  
RX  
EVENT  
OUT  
I2S2_CKIN  
-
-
-
TIM1_  
BKIN  
I2C2_  
SMBA  
SPI2_NSS/I2 SPI4_NSS/ SPI3_SCK/ USART3_  
DFSDM1_ UART5_ FSMC_D13/F  
DATIN1  
EVENT  
OUT  
CAN2_RX  
CAN2_TX  
TIM12_CH1  
TIM12_CH2  
S2_WS  
I2S4_WS  
I2S3_CK  
CK  
RX  
SMC_DA13  
TIM1_  
CH1N  
I2CFMP1 SPI2_SCK/I2 SPI4_SCK/  
USART3_  
CTS  
DFSDM1_ UART5_  
CKIN1  
EVENT  
OUT  
-
-
_SMBA  
S2_CK  
I2S4_CK  
TX  
-
TIM1_  
CH2N  
TIM8_  
CH2N  
I2CFMP1  
_SDA  
USART3_  
RTS  
DFSDM1_  
DATIN2  
FSMC_D0/  
FSMC_DA0  
EVENT  
OUT  
SPI2_MISO I2S2ext_SD  
SDIO_D6  
SDIO_CK  
RTC_  
REFIN  
TIM1_  
CH3N  
TIM8_  
CH3N  
I2CFMP1 SPI2_MOSI/I  
_SCL 2S2_SD  
DFSDM1_  
CKIN2  
EVENT  
OUT  
-
-
-
-
Table 12. STM32F413xG/H alternate functions (continued)  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13 AF14 AF15  
SPI3/I2S3/  
SAI1/  
DFSDM2/ USART3/4/  
USART1/  
USART2/  
USART3  
SAI1/  
SPI2/I2S2/  
SPI3/I2S3/  
SPI4/I2S4/  
SPI5/I2S5/  
DFSDM1/2  
I2C2/I2C3/  
I2CFMP1/  
CAN1/2/  
TIM12/13/14/  
QUADSPI  
UART4/  
UART5/  
UART9/ FSMC /SDIO  
UART10  
SPI1/I2S1/  
I2C1/2/3/ SPI2/I2S2/  
TIM8/9/10/11 I2CFMP1 SPI3/I2S3/  
SPI4/I2S4  
DFSDM1/  
DFSDM1/  
DFSDM2/  
QUADSPI/  
FSMC  
Port  
SYS_  
AF  
TIM1/2/  
LPTIM1  
DFSDM2/  
SYS_  
AF  
TIM3/4/5  
-
RNG  
5/6/7/8/  
CAN1  
/CAN3  
/OTG1_FS  
LPTIM1_  
IN1  
DFSDM2_CK  
SAI1_  
MCLK_B  
EVENT  
OUT  
PC0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
IN4  
LPTIM1_  
OUT  
DFSDM2_DA  
TIN4  
EVENT  
OUT  
PC1  
PC2  
PC3  
PC4  
PC5  
PC6  
PC7  
PC8  
SAI1_SD_B  
-
LPTIM1_IN  
2
DFSDM2_DA  
TIN7  
SAI1_SCK_ DFSDM1_  
EVENT  
OUT  
SPI2_MISO I2S2ext_SD  
FSMC_NWE  
FSMC_A0  
FSMC_NE4  
FSMC_NOE  
SDIO_D6  
SDIO_D7  
SDIO_D0  
SDIO_D1  
SDIO_D2  
SDIO_D3  
SDIO_CK  
-
B
CKOUT  
LPTIM1_  
ETR  
DFSDM2_CK  
IN7  
SPI2_MOSI/I  
2S2_SD  
EVENT  
OUT  
-
SAI1_FS_B  
-
DFSDM2_CK  
IN2  
QUADSPI_  
BK2_IO2  
EVENT  
OUT  
-
-
-
-
-
-
-
-
-
-
-
-
I2S1_MCK  
-
-
-
-
-
-
DFSDM2_DA I2CFMP1  
USART3_  
RX  
QUADSPI_  
BK2_IO3  
EVENT  
OUT  
TIN2  
_SMBA  
TIM3_  
CH1  
I2CFMP1  
_SCL  
DFSDM1_  
CKIN3  
DFSDM2_  
DATIN6  
USART6_  
TX  
FSMC_D1/  
FSMC_DA1  
EVENT  
OUT  
TIM8_CH1  
I2S2_MCK  
TIM3_  
CH2  
I2CFMP1 SPI2_SCK/  
_SDA  
DFSDM2_  
CKIN6  
USART6_  
RX  
DFSDM1_  
DATIN3  
EVENT  
OUT  
TIM8_CH2  
TIM8_CH3  
TIM8_CH4  
I2S3_MCK  
I2S2_CK  
TIM3_  
CH3  
DFSDM2_  
CKIN3  
USART6_  
CK  
QUADSPI_  
BK1_IO2  
EVENT  
OUT  
-
-
-
-
-
-
-
TIM3_  
CH4  
I2C3_  
SDA  
DFSDM2_  
DATIN3  
QUADSPI_  
BK1_IO0  
EVENT  
OUT  
PC9 MCO_2  
I2S2_CKIN  
-
-
-
DFSDM2_  
CKIN5  
SPI3_SCK/  
I2S3_CK  
USART3_  
TX  
QUADSPI_  
BK1_IO1  
EVENT  
OUT  
PC10  
PC11  
PC12  
PC13  
PC14  
PC15  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
DFSDM2_  
DATIN5  
USART3_  
RX  
UART4_  
RX  
QUADSPI_  
BK2_NCS  
FSMC_D2/  
FSMC_DA2  
EVENT  
OUT  
I2S3ext_SD SPI3_MISO  
SPI3_MOSI/ USART3_  
UART5_  
TX  
FSMC_D3/F  
SMC_DA3  
EVENT  
OUT  
-
-
-
-
-
-
-
-
-
-
-
-
I2S3_SD  
CK  
EVENT  
OUT  
-
-
-
-
-
-
-
-
EVENT  
OUT  
-
-
-
-
-
EVENT  
OUT  
-
Table 12. STM32F413xG/H alternate functions (continued)  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13 AF14 AF15  
SPI3/I2S3/  
SAI1/  
DFSDM2/ USART3/4/  
USART1/  
USART2/  
USART3  
SAI1/  
SPI2/I2S2/  
SPI3/I2S3/  
SPI4/I2S4/  
SPI5/I2S5/  
DFSDM1/2  
I2C2/I2C3/  
I2CFMP1/  
CAN1/2/  
TIM12/13/14/  
QUADSPI  
UART4/  
UART5/  
UART9/ FSMC /SDIO  
UART10  
SPI1/I2S1/  
I2C1/2/3/ SPI2/I2S2/  
TIM8/9/10/11 I2CFMP1 SPI3/I2S3/  
SPI4/I2S4  
DFSDM1/  
DFSDM1/  
DFSDM2/  
QUADSPI/  
FSMC  
Port  
SYS_  
AF  
TIM1/2/  
LPTIM1  
DFSDM2/  
SYS_  
AF  
TIM3/4/5  
-
RNG  
5/6/7/8/  
CAN1  
/CAN3  
/OTG1_FS  
DFSDM2_  
CKIN6  
UART4_  
RX  
FSMC_D2/  
FSMC_DA2  
EVENT  
OUT  
PD0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
CAN1_RX  
CAN1_TX  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
DFSDM2_  
DATIN6  
UART4_  
TX  
FSMC_D3/  
FSMC_DA3  
EVENT  
OUT  
PD1  
PD2  
TIM3_  
ETR  
DFSDM2_  
CKOUT  
UART5_  
RX  
FSMC_  
NWE  
EVENT  
OUT  
-
-
-
-
-
-
-
-
-
-
-
-
SDIO_CMD  
FSMC_CLK  
TRACE  
D1  
SPI2_SCK/  
I2S2_CK  
DFSDM1_  
DATIN0  
USART2_  
CTS  
QUADSPI_  
CLK  
EVENT  
OUT  
PD3  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
DFSDM1_  
CKIN0  
USART2_  
RTS  
FSMC_  
NOE  
EVENT  
OUT  
PD4  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
DFSDM2_  
CKOUT  
USART2_  
TX  
FSMC_  
NWE  
EVENT  
OUT  
PD5  
-
SPI3_MOSI/ DFSDM1_  
I2S3_SD  
USART2_  
RX  
FSMC_  
NWAIT  
EVENT  
OUT  
PD6  
-
-
-
-
-
DATIN1  
DFSDM1_  
CKIN1  
USART2_  
CK  
EVENT  
OUT  
PD7  
-
FSMC_NE1  
USART3_  
TX  
FSMC_D13/F  
SMC_DA13  
EVENT  
OUT  
PD8  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
USART3_  
RX  
FSMC_D14/F  
SMC_DA14  
EVENT  
OUT  
PD9  
USART3_  
CK  
UART4_  
TX  
FSMC_D15/F  
SMC_DA15  
EVENT  
OUT  
PD10  
PD11  
PD12  
PD13  
PD14  
PD15  
DFSDM2_  
DATIN2  
I2CFMP1  
_SMBA  
USART3_  
CTS  
QUADSPI_  
BK1_IO0  
EVENT  
OUT  
-
-
-
-
-
FSMC_A16  
FSMC_A17  
FSMC_A18  
TIM4_  
CH1  
DFSDM2_  
CKIN2  
I2CFMP1  
_SCL  
USART3_  
RTS  
QUADSPI_  
BK1_IO1  
EVENT  
OUT  
TIM4_  
CH2  
I2CFMP1  
_SDA  
QUADSPI_  
BK1_IO3  
EVENT  
OUT  
-
-
-
-
-
-
TIM4_  
CH3  
I2CFMP1  
_SCL  
DFSDM2_ UART9_  
CKIN0 RX  
FSMC_D0/  
FSMC_DA0  
EVENT  
OUT  
-
-
TIM4_  
CH4  
I2CFMP1  
_SDA  
DFSDM2_ UART9_  
DATIN0 TX  
FSMC_D1/  
FSMC_DA1  
EVENT  
OUT  
Table 12. STM32F413xG/H alternate functions (continued)  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13 AF14 AF15  
SPI3/I2S3/  
SAI1/  
DFSDM2/ USART3/4/  
USART1/  
USART2/  
USART3  
SAI1/  
SPI2/I2S2/  
SPI3/I2S3/  
SPI4/I2S4/  
SPI5/I2S5/  
DFSDM1/2  
I2C2/I2C3/  
I2CFMP1/  
CAN1/2/  
TIM12/13/14/  
QUADSPI  
UART4/  
UART5/  
UART9/ FSMC /SDIO  
UART10  
SPI1/I2S1/  
I2C1/2/3/ SPI2/I2S2/  
TIM8/9/10/11 I2CFMP1 SPI3/I2S3/  
SPI4/I2S4  
DFSDM1/  
DFSDM1/  
DFSDM2/  
QUADSPI/  
FSMC  
Port  
SYS_  
AF  
TIM1/2/  
LPTIM1  
DFSDM2/  
SYS_  
AF  
TIM3/4/5  
-
RNG  
5/6/7/8/  
CAN1  
/CAN3  
/OTG1_FS  
TIM4_  
ETR  
DFSDM2_  
CKIN4  
UART8_  
Rx  
FSMC_  
NBL0  
EVENT  
OUT  
PE0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
DFSDM2_  
DATIN4  
UART8_  
Tx  
FSMC_  
NBL1  
EVENT  
OUT  
PE1  
PE2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TRACE  
CLK  
SPI4_SCK  
/I2S4_CK  
SPI5_SCK/  
I2S5_CK  
SAI1_  
MCLK_A  
QUADSPI_  
BK1_IO2  
UART10  
FSMC_A23  
_RX  
EVENT  
OUT  
-
-
-
-
TRACE  
D0  
UART10  
FSMC_A19  
_TX  
EVENT  
OUT  
PE3  
-
-
-
-
SAI1_SD_B  
SAI1_SD_A  
-
-
-
-
-
-
-
-
-
-
-
-
-
TRACE  
D1  
SPI4_NSS/ SPI5_NSS/  
I2S4_WS I2S5_WS  
DFSDM1_  
DATIN3  
EVENT  
OUT  
PE4  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FSMC_A20  
FSMC_A21  
FSMC_A22  
TRACE  
D2  
SAI1_SCK_ DFSDM1_  
EVENT  
OUT  
PE5  
-
TIM9_CH1  
SPI4_MISO SPI5_MISO  
A
CKIN3  
TRACE  
D3  
SPI4_MOSI/I SPI5_MOSI/  
EVENT  
OUT  
PE6  
-
TIM9_CH2  
SAI1_FS_A  
-
2S4_SD  
-
I2S5_SD  
DFSDM1_  
DATIN2  
UART7_  
Rx  
QUADSPI_  
BK2_IO0  
FSMC_D4/  
FSMC_DA4  
EVENT  
OUT  
PE7  
-
-
-
-
-
-
-
-
-
TIM1_ETR  
-
-
-
-
-
-
-
-
-
-
-
-
TIM1_  
CH1N  
DFSDM1_  
CKIN2  
UART7_  
Tx  
QUADSPI_  
BK2_IO1  
FSMC_D5/  
FSMC_DA5  
EVENT  
OUT  
PE8  
-
-
-
DFSDM1_  
CKOUT  
QUADSPI_  
BK2_IO2  
FSMC_D6/  
FSMC_DA6  
EVENT  
OUT  
PE9  
TIM1_CH1  
-
-
-
-
-
-
-
TIM1_  
CH2N  
DFSDM2_  
DATIN0  
QUADSPI_  
BK2_IO3  
FSMC_D7/  
FSMC_DA7  
EVENT  
OUT  
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
-
TIM1_  
CH2  
DFSDM2_  
CKIN0  
SPI4_NSS/ SPI5_NSS/  
I2S4_WS I2S5_WS  
FSMC_D8/  
FSMC_DA8  
EVENT  
OUT  
-
-
-
TIM1_  
CH3N  
DFSDM2_  
DATIN7  
SPI4_SCK/ SPI5_SCK/  
I2S4_CK I2S5_CK  
FSMC_D9/  
FSMC_DA9  
EVENT  
OUT  
TIM1_  
CH3  
DFSDM2_  
CKIN7  
FSMC_D10/  
FSMC_DA10  
EVENT  
OUT  
SPI4_MISO SPI5_MISO  
SPI4_MOSI/I SPI5_MOSI/  
TIM1_  
CH4  
DFSDM2_  
DATIN1  
FSMC_D11/  
FSMC_DA11  
EVENT  
OUT  
-
-
2S4_SD  
I2S5_SD  
TIM1_  
BKIN  
DFSDM2_  
CKIN1  
FSMC_D12/F  
SMC_DA12  
EVENT  
OUT  
-
-
Table 12. STM32F413xG/H alternate functions (continued)  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13 AF14 AF15  
SPI3/I2S3/  
SAI1/  
DFSDM2/ USART3/4/  
USART1/  
USART2/  
USART3  
SAI1/  
SPI2/I2S2/  
SPI3/I2S3/  
SPI4/I2S4/  
SPI5/I2S5/  
DFSDM1/2  
I2C2/I2C3/  
I2CFMP1/  
CAN1/2/  
TIM12/13/14/  
QUADSPI  
UART4/  
UART5/  
UART9/ FSMC /SDIO  
UART10  
SPI1/I2S1/  
I2C1/2/3/ SPI2/I2S2/  
TIM8/9/10/11 I2CFMP1 SPI3/I2S3/  
SPI4/I2S4  
DFSDM1/  
DFSDM1/  
DFSDM2/  
QUADSPI/  
FSMC  
Port  
SYS_  
AF  
TIM1/2/  
LPTIM1  
DFSDM2/  
SYS_  
AF  
TIM3/4/5  
-
RNG  
5/6/7/8/  
CAN1  
/CAN3  
/OTG1_FS  
I2C2_  
SDA  
EVENT  
OUT  
PF0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FSMC_A0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
I2C2_  
SCL  
EVENT  
OUT  
PF1  
PF2  
-
-
-
FSMC_A1  
I2C2_  
SMBA  
EVENT  
OUT  
-
-
-
FSMC_A2  
TIM5_  
CH1  
EVENT  
OUT  
PF3  
-
-
-
-
-
-
-
-
-
-
-
-
-
FSMC_A3  
TIM5_  
CH2  
EVENT  
OUT  
PF4  
-
-
-
FSMC_A4  
TIM5_  
CH3  
EVENT  
OUT  
PF5  
-
-
-
FSMC_A5  
TRACE  
D0  
UART7_  
Rx  
QUADSPI_  
BK1_IO3  
EVENT  
OUT  
PF6  
-
-
-
-
-
TIM10_CH1  
SAI1_SD_B  
-
TRACE  
D1  
SAI1_  
MCLK_B  
UART7_  
Tx  
QUADSPI_  
BK1_IO2  
EVENT  
OUT  
PF7  
-
TIM11_CH1  
-
SAI1_SCK_  
B
QUADSPI_B  
K1_IO0  
EVENT  
OUT  
PF8  
-
-
-
-
-
-
-
-
-
-
UART8_RX TIM13_CH1  
-
UART8_  
TIM14_CH1  
TX  
QUADSPI_B  
K1_IO1  
EVENT  
OUT  
PF9  
-
-
SAI1_FS_B  
-
TIM5_  
CH4  
EVENT  
OUT  
PF10  
PF11  
PF12  
PF13  
PF14  
PF15  
TIM1_ETR  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT  
OUT  
-
-
-
-
-
-
-
-
-
-
TIM8_ETR  
-
EVENT  
OUT  
TIM8_BKIN  
FSMC_A6  
FSMC_A7  
FSMC_A8  
FSMC_A9  
I2CFMP1  
_SMBA  
EVENT  
OUT  
-
-
-
I2CFMP1  
_SCL  
EVENT  
OUT  
I2CFMP1  
_SDA  
EVENT  
OUT  
Table 12. STM32F413xG/H alternate functions (continued)  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13 AF14 AF15  
SPI3/I2S3/  
SAI1/  
DFSDM2/ USART3/4/  
USART1/  
USART2/  
USART3  
SAI1/  
SPI2/I2S2/  
SPI3/I2S3/  
SPI4/I2S4/  
SPI5/I2S5/  
DFSDM1/2  
I2C2/I2C3/  
I2CFMP1/  
CAN1/2/  
TIM12/13/14/  
QUADSPI  
UART4/  
UART5/  
UART9/ FSMC /SDIO  
UART10  
SPI1/I2S1/  
I2C1/2/3/ SPI2/I2S2/  
TIM8/9/10/11 I2CFMP1 SPI3/I2S3/  
SPI4/I2S4  
DFSDM1/  
DFSDM1/  
DFSDM2/  
QUADSPI/  
FSMC  
Port  
SYS_  
AF  
TIM1/2/  
LPTIM1  
DFSDM2/  
SYS_  
AF  
TIM3/4/5  
-
RNG  
5/6/7/8/  
CAN1  
/CAN3  
/OTG1_FS  
UART9_  
FSMC_A10  
RX  
EVENT  
OUT  
PG0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
CAN1_RX  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
UART9_  
FSMC_A11  
TX  
EVENT  
OUT  
PG1  
PG2  
CAN1_TX  
EVENT  
OUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FSMC_A12  
EVENT  
OUT  
PG3  
FSMC_A13  
EVENT  
OUT  
PG4  
FSMC_A14  
EVENT  
OUT  
PG5  
FSMC_A15  
QUADSPI_B  
K1_NCS  
EVENT  
OUT  
PG6  
-
USART6_  
CK  
EVENT  
OUT  
PG7  
-
-
-
-
-
-
-
-
-
-
-
-
USART6_  
RTS  
EVENT  
OUT  
PG8  
-
USART6_  
RX  
QUADSPI_  
BK2_IO2  
EVENT  
OUT  
PG9  
FSMC_NE2  
EVENT  
OUT  
PG10  
PG11  
PG12  
PG13  
PG14  
PG15  
PH0  
-
-
-
FSMC_NE3  
UART10  
_RX  
EVENT  
OUT  
CAN2_RX  
CAN2_TX  
-
-
USART6_  
RTS  
UART10  
_TX  
EVENT  
OUT  
FSMC_NE4  
TRACE  
D2  
USART6_  
CTS  
EVENT  
OUT  
-
-
-
-
-
FSMC_A24  
TRACE  
D3  
USART6_  
TX  
QUADSPI_  
BK2_IO3  
EVENT  
OUT  
FSMC_A25  
USART6_  
CTS  
EVENT  
OUT  
-
-
-
-
-
-
-
-
-
EVENT  
OUT  
-
-
EVENT  
OUT  
PH1  
Memory mapping  
STM32F413xG/H  
5
Memory mapping  
The memory map is shown in Figure 18.  
Figure 18. Memory map  
5HVHUYHG  
ꢃ[(ꢃꢈꢃꢉꢃꢃꢃꢃꢉꢐꢉꢃ[))))ꢉ))))  
ꢃ[(ꢃꢃꢃꢉꢃꢃꢃꢃꢉꢐꢉꢃ[(ꢃꢃ)ꢉ))))  
&RUWH[ąꢐ0ꢇꢉLQWHUQDOꢉ  
SHULSKHUDOV  
5HVHUYHG  
ꢃ[$ꢃꢃꢃꢉꢄꢃꢃꢃꢉ±ꢉꢃ')))ꢉ)))  
ꢃ$ꢃꢃꢃꢉꢈ)))  
$+%ꢀ  
ꢃ[ꢆꢃꢃꢃꢉꢃꢃꢃꢃ  
ꢃ[ꢅ)))ꢉ))))  
$+%ꢄ  
ꢃ[))))ꢉ))))  
ꢃ[ꢅꢃꢃꢃꢉꢃꢃꢃꢃ  
ꢃ[ꢇꢃꢃꢄꢉꢆꢂꢃꢃꢉꢐꢉꢃ[ꢇ)))ꢉ))))  
ꢃ[ꢇꢃꢃꢄꢉꢆꢁ))  
ꢅꢈꢄꢐ0E\WH  
EORFNꢉꢁ  
5HVHUYHG  
LQWHUQDO  
SHULSKHUDOV  
ꢃ[(ꢃꢃꢃꢉꢃꢃꢃꢃ  
ꢃ[')))ꢉ))))  
ꢅꢈꢄꢐ0E\WH  
EORFNꢉꢆ  
1RWꢉXVHG  
$+%ꢈ  
ꢃ[&ꢃꢃꢃꢉꢃꢃꢃꢃ  
ꢃ[%)))ꢉ))))  
5HVHUYHG  
ꢃ[$ꢃꢃꢃꢉꢄꢃꢃꢃ  
ꢃ[$ꢃꢃꢃꢉꢈ)))  
ꢃ[ꢇꢃꢃꢄꢉꢃꢃꢃꢃ  
ꢃ[ꢇꢃꢃꢈꢉꢆꢂꢃꢃꢉꢐꢉꢃ[ꢇꢃꢃꢈꢉ))))  
5HVHUYHG  
ꢃ[ꢇꢃꢃꢈꢉꢆꢁ))  
)0&  
$QG  
4XDG63,  
$3%ꢄ  
ꢃ[ꢆꢃꢃꢃꢉꢃꢃꢃꢃꢉꢉ  
ꢃ[ꢅ)))ꢉ))))  
ꢅꢈꢄꢐ0E\WH  
EORFNꢉꢄ  
SHULSKHUDOV  
ꢃ[ꢇꢃꢃꢃꢉꢉꢃꢃꢃꢃ  
ꢃ[ꢀ)))ꢉꢉ))))  
ꢅꢈꢄꢐ0E\WH  
EORFNꢉꢈꢉLQFꢌ  
5HVHUYHG  
ꢃ[ꢄꢃꢃꢅꢉꢃꢃꢃꢃꢉꢐꢉꢃ[ꢀ)))ꢉ))))  
ꢃ[ꢄꢃꢃꢇꢉꢃꢃꢃꢃꢉꢐꢉꢃ[ꢄꢃꢃꢇꢉ))))  
ꢃ[ꢄꢃꢃꢃꢉꢃꢃꢃꢃꢉꢐꢉꢃ[ꢄꢃꢃꢀꢉ))))  
ꢃ[ꢇꢃꢃꢈꢉꢃꢃꢃꢃ  
ꢃ[ꢇꢃꢃꢃꢉꢂꢃꢃꢃꢉꢐꢉꢃ[ꢇꢃꢃꢃꢉ))))  
ꢃ[ꢇꢃꢃꢃꢉꢁ)))  
65$0ꢄꢉꢑꢆꢇꢉ.%ꢉDOLDVHGꢉ  
E\ꢉELWꢐEDQGLQJꢒ  
65$0ꢈꢉꢑꢄꢅꢆꢉ.%ꢉDOLDVHGꢉ  
E\ꢉELWꢐEDQGLQJꢒ  
65$0ꢈꢋ65$0ꢄ  
5HVHUYHG  
ꢃ[ꢄꢃꢃꢃꢉꢃꢃꢃꢃ  
ꢃ[ꢈ)))ꢉ))))  
5HVHUYHG  
ꢃ[ꢈ)))ꢉ&ꢃꢈꢃꢉꢐꢉꢃ[ꢈ)))ꢉ))))  
ꢃ[ꢈ)))ꢉ&ꢃꢃꢃꢉꢐꢉꢃ[ꢈ)))ꢉ&ꢃꢃ)  
ꢃ[ꢈ)))ꢉꢁ$ꢈꢃꢉꢐꢉꢃ[ꢈ)))ꢉ%)))  
ꢃ[ꢈ)))ꢉꢁꢂꢃꢃꢉꢐꢉꢉꢃ[ꢈ)))ꢉꢁ$ꢃ)  
ꢃ[ꢈ)))ꢉꢃꢃꢃꢃꢐꢉꢃ[ꢈ)))ꢉꢁꢁ))ꢉꢉ  
ꢅꢈꢄꢐ0E\WH  
EORFNꢉꢃ  
&RGH  
8VHUꢉRSWLRQꢉE\WHV  
5HVHUYHG  
273ꢉDUHDꢉꢓꢉORFN  
6\VWHPꢉPHPRU\  
5HVHUYHG  
ꢃ[ꢃꢃꢃꢃꢉꢃꢃꢃꢃ  
$3%ꢈ  
ꢃ[ꢈꢃꢃꢈꢉꢃꢃꢃꢃꢉꢐꢉꢃ[ꢈ))(ꢉ))))  
ꢃ[ꢈꢃꢃꢃꢉꢃꢃꢃꢃꢉꢐꢉꢃ[ꢈꢃꢃꢃꢉ))))  
65$0ꢄꢉꢑꢆꢇ.%ꢉDFFHVVHGꢉE\ꢉ  
&38ꢉYLDꢉ,EXVꢉDQGꢉ'EXVꢒ  
5HVHUYHG  
ꢃ[ꢃꢂꢈꢂꢉꢃꢃꢃꢃꢉꢐꢉꢃ[ꢃ)))ꢉ))))  
ꢃ[ꢃꢂꢃꢃꢉꢃꢃꢃꢃꢉꢐꢉꢃ[ꢃꢂꢈꢁꢉ))))ꢉꢉ  
)ODVKꢉPHPRU\  
$OLDVHGꢉWRꢉ)ODVKꢎꢉV\VWHPꢎꢉ  
PHPRU\ꢉRUꢉ65$0ꢈꢉ  
GHSHQGLQJꢎꢉRQꢉWKHꢉ%227ꢉSLQV  
ꢃ[ꢇꢃꢃꢃꢉꢃꢃꢃꢃ  
ꢃ[ꢃꢃꢃꢃꢉꢃꢃꢃꢃꢉꢐꢉꢃ[ꢃꢁ))ꢉ))))  
06Yꢇꢃꢂꢄꢄ9ꢄ  
74/207  
DocID029162 Rev 5  
 
 
 
STM32F413xG/H  
Memory mapping  
Table 13. STM32F413xG/H register boundary addresses  
Bus  
Boundary address  
Peripheral  
0xE010 0000 - 0xFFFF FFFF  
0xE000 0000 - 0xE00F FFFF  
0xA000 2000 - 0xDFFF FFFF  
0xA000 1000 - 0xA000 1FFF  
0xA000 0000 - 0xA000 0FFF  
0x9000 0000 - 0x9FFF FFFF  
0x7000 0000 - 0x08FFF FFFF  
0x6000 0000 - 0x6FFF FFFF  
0x5006 0C00 - 0x5FFF FFFF  
0x5006 0800 0x5006 0BFF  
0x5004 0000 - 0x5006 07FF  
0x5000 0000 - 0x5003 FFFF  
0x4002 6800 - 0x4FFF FFFF  
0x4002 6400 - 0x4002 67FF  
0x4002 6000 - 0x4002 63FF  
0x4002 4000 - 0X4002 5FFF  
0x4002 3C00 - 0x4002 3FFF  
0x4002 3800 - 0x4002 3BFF  
0x4002 3400 - 0x4002 37FF  
0x4002 3000 - 0x4002 33FF  
0x4002 2000 - 0x4002 2FFF  
0x4002 1C00 - 0x4002 1FFF  
0x4002 1800 - 0x4002 1BFF  
0x4002 1400 - 0x4002 17FF  
0x4002 1000 - 0x4002 13FF  
0x4002 0C00 - 0x4002 0FFF  
0x4002 0800 - 0x4002 0BFF  
0x4002 0400 - 0x4002 07FF  
0x4002 0000 - 0x4002 03FF  
Reserved  
®
Cortex -M4  
Cortex-M4 internal peripherals  
Reserved  
QuadSPI control register  
FSMC control register  
QUADSPI  
Reserved  
FSMC  
AHB3  
Reserved  
RNG  
AHB2  
Reserved  
USB OTG FS  
Reserved  
DMA2  
DMA1  
Reserved  
Flash interface register  
RCC  
Reserved  
CRC  
AHB1  
Reserved  
GPIOH  
GPIOG  
GPIOF  
GPIOE  
GPIOD  
GPIOC  
GPIOB  
GPIOA  
DocID029162 Rev 5  
75/207  
77  
 
Memory mapping  
STM32F413xG/H  
Table 13. STM32F413xG/H register boundary addresses (continued)  
Bus  
Boundary address  
Peripheral  
0x4001 6800- 0x4001 FFFF  
0x4001 6400 - 0x4001 67FF  
0x4001 6000 - 0x4001 63FF  
0x4001 5C00 - 0x4001 5FFF  
0x4001 5800 - 0x4001 5BFF  
0x4001 5400 - 0x4001 57FF  
0x4001 5000 - 0x4001 53FF  
0x4001 4C00 - 0x4001 4FFF  
0x4001 4800 - 0x4001 4BFF  
0x4001 4400 - 0x4001 47FF  
0x4001 4000 - 0x4001 43FF  
0x4001 3C00 - 0x4001 3FFF  
0x4001 3800 - 0x4001 3BFF  
0x4001 3400 - 0x4001 37FF  
0x4001 3000 - 0x4001 33FF  
0x4001 2C00 - 0x4001 2FFF  
0x4001 2400 - 0x4001 2BFF  
0x4001 2000 - 0x4001 23FF  
0x4001 1C00 - 0x4001 1FFF  
0x4001 1800 - 0x4001 1BFF  
0x4001 1400 - 0x4001 17FF  
0x4001 1000 - 0x4001 13FF  
0x4001 0800 - 0x4001 0FFF  
0x4001 0400 - 0x4001 07FF  
0x4001 0000 - 0x4001 03FF  
Reserved  
DFSDM2  
DFSDM1  
Reserved  
SAI1  
Reserved  
SPI5/I2S5  
Reserved  
TIM11  
TIM10  
TIM9  
EXTI  
APB2  
SYSCFG  
SPI4/I2S4  
SPI1/I2S1  
SDIO  
Reserved  
ADC1/2/3  
UART10  
UART9  
USART6  
USART1  
Reserved  
TIM8  
TIM1  
76/207  
DocID029162 Rev 5  
STM32F413xG/H  
Memory mapping  
Table 13. STM32F413xG/H register boundary addresses (continued)  
Bus  
Boundary address  
Peripheral  
0x4000 8000 - 0x4000 FFFF  
0x4000 7C00 - 0x4000 7FFF  
0x4000 7800 - 0x4000 7BFF  
0x4000 7400 - 0x4000 77FF  
0x4000 7000 - 0x4000 73FF  
0x4000 6C00- 0x4000 6FFF  
0x4000 6800- 0x4000 6BFF  
0x4000 6400- 0x4000 67FF  
0x4000 6000- 0x4000 63FF  
0x4000 5C00 - 0x4000 5FFF  
0x4000 5800 - 0x4000 5BFF  
0x4000 5400 - 0x4000 57FF  
0x4000 5000 - 0x4000 53FF  
0x4000 4C00 - 0x4000 4FFF  
0x4000 4800 - 0x4000 4BFF  
0x4000 4400 - 0x4000 47FF  
0x4000 4000 - 0x4000 43FF  
0x4000 3C00 - 0x4000 3FFF  
0x4000 3800 - 0x4000 3BFF  
0x4000 3400 - 0x4000 37FF  
0x4000 3000 - 0x4000 33FF  
0x4000 2C00 - 0x4000 2FFF  
0x4000 2800 - 0x4000 2BFF  
0x4000 2400 - 0x4000 27FF  
0x4000 2000 - 0x4000 23FF  
0x4000 1C00 - 0x4000 1FFF  
0x4000 1800 - 0x4000 1BFF  
0x4000 1400 - 0x4000 17FF  
0x4000 1000 - 0x4000 13FF  
0x4000 0C00 - 0x4000 0FFF  
0x4000 0800 - 0x4000 0BFF  
0x4000 0400 - 0x4000 07FF  
0x4000 0000 - 0x4000 03FF  
Reserved  
UART8  
UART7  
DAC1  
PWR  
CAN3  
CAN2  
CAN1  
I2CFMP1  
I2C3  
I2C2  
I2C1  
UART5  
UART4  
USART3  
USART2  
I2S3ext  
SPI3 / I2S3  
SPI2 / I2S2  
I2S2ext  
IWDG  
APB1  
WWDG  
RTC & BKP Registers  
LPTIM1  
TIM14  
TIM13  
TIM12  
TIM7  
TIM6  
TIM5  
TIM4  
TIM3  
TIM2  
DocID029162 Rev 5  
77/207  
77  
Electrical characteristics  
STM32F413xG/H  
6
Electrical characteristics  
6.1  
Parameter conditions  
Unless otherwise specified, all voltages are referenced to V  
.
SS  
6.1.1  
Minimum and maximum values  
Unless otherwise specified the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T = 25 °C and T = T max (given by  
A
A
A
the selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean ±3 σ).  
6.1.2  
6.1.3  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = 3.3 V (for the  
A
DD  
1.7 V V 3.6 V voltage range). They are given only as design guidelines and are not  
DD  
tested.  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range, where 95% of the devices have an  
error less than or equal to the value indicated (mean ±2 σ).  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
6.1.4  
6.1.5  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 19.  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 20.  
Figure 19. Pin loading conditions  
Figure 20. Input voltage measurement  
-#5 PIN  
-#5 PIN  
6
# ꢍ ꢆꢁ P&  
).  
-3ꢀꢂꢁꢀꢀ6ꢉ  
-3ꢀꢂꢁꢀꢁ6ꢉ  
78/207  
DocID029162 Rev 5  
 
 
 
 
 
 
 
 
 
 
 
STM32F413xG/H  
Electrical characteristics  
6.1.6  
Power supply scheme  
Figure 21. Power supply scheme  
9%$7  
%DFNXSꢉFLUFXLWU\  
ꢑ26&ꢀꢄ.ꢎ57&ꢎ  
:DNHXSꢉORJLF  
9%$7  
ꢈꢌꢆꢅꢉWRꢉꢀꢌꢆ9  
3RZHUꢉ  
VZLWFK  
%DFNXSꢉUHJLVWHUVꢒ  
287  
,1  
,2  
/RJLF  
*3,2V  
9&$3Bꢈ  
9&$3Bꢄ  
.HUQHOꢉORJLFꢉ  
ꢑ&38ꢎꢉGLJLWDOꢉ  
ꢏꢉ5$0ꢒꢉꢉ  
ꢄꢉîꢉꢄꢌꢄꢉ—)  
9''  
9''  
ꢈꢋꢄꢋꢌꢌꢌꢈꢈꢋꢈꢄ  
9ROWDJHꢉ  
UHJXODWRU  
ꢈꢈꢉîꢉꢈꢃꢃꢉQ)  
ꢓꢉꢈꢉîꢉꢇꢌꢁꢉ—)  
966  
ꢈꢋꢄꢋꢌꢌꢌꢈꢈꢋꢈꢄ  
%<3$66B5(*  
9''86%  
)ODVKꢉPHPRU\  
9''B86%  
27*  
)6  
3+<  
ꢈꢃꢃꢉQ)  
ꢓꢉꢈꢉ—)  
5HVHWꢉ  
FRQWUROOHU  
3'5B21  
9''$  
9''  
95()  
95()ꢓ  
$QDORJꢍ  
5&Vꢎꢉ  
3//ꢎꢌꢌ  
ꢈꢃꢃꢉQ)  
ꢓꢉꢈꢉ—)  
ꢈꢃꢃꢉQ)  
ꢓꢉꢈꢉ—)  
$'&  
95()ꢐ  
966$  
06Yꢀꢊꢃꢄꢄ9ꢄ  
1. To connect PDR_ON pin, refer to Section: Power supply supervisor.  
2. The 4.7 µF ceramic capacitor must be connected to one of the VDD pin.  
3. VCAP_2 pad is only available on 100-pin and 144-pin packages.  
4. VDDA=VDD and VSSA=VSS  
.
5. VDDUSB is a dedicated independent USB power supply for the on-chip full-speed OTG PHY module and  
associated DP/DM GPIOs. VDDUSB value does not depend on the VDD and VDDA values, but it must be the  
last supply to be provided and the first to disappear.  
Caution:  
Each power supply pair (for example V /V , V  
/V  
) must be decoupled with filtering  
DD SS  
DDA SSA  
ceramic capacitors as shown above. These capacitors must be placed as close as possible  
to, or below, the appropriate pins on the underside of the PCB to ensure good operation of  
the device. It is not recommended to remove filtering capacitors to reduce PCB size or cost.  
This might cause incorrect operation of the device.  
DocID029162 Rev 5  
79/207  
174  
 
 
Electrical characteristics  
STM32F413xG/H  
6.1.7  
Current consumption measurement  
Figure 22. Current consumption measurement scheme  
,
B9  
'' %$7  
9
%$7  
,
''  
9
''  
9
''$  
DLꢈꢇꢈꢄꢆ  
6.2  
Absolute maximum ratings  
Stresses above the absolute maximum ratings listed in Table 14: Voltage characteristics,  
Table 15: Current characteristics, and Table 16: Thermal characteristics may cause  
permanent damage to the device. These are stress ratings only and functional operation of  
the device at these conditions is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
Table 14. Voltage characteristics  
Symbol  
Ratings  
Min  
Max  
Unit  
External main supply voltage (including VDDA, VDD  
,
VDD–VSS  
–0.3  
4.0  
(1)  
VDDUSB and VBAT  
)
Input voltage on FT and TC pins(2)  
VSS–0.3 VDD+4.0  
V
Input voltage on TTa pins  
V
SS–0.3  
4.0  
4.0  
9.0  
50  
VIN  
Input voltage on any other pin  
Input voltage for BOOT0  
VSS–0.3  
VSS  
-
|ΔVDDx  
|
Variations between different VDD power pins  
mV  
Variations between all the different ground pins  
including VREF-  
|VSSX VSS  
|
-
50  
see Section 6.3.14:  
Absolute maximum  
ratings (electrical  
sensitivity)  
VESD(HBM)  
Electrostatic discharge voltage (human body model)  
1. All main power (VDD, VDDA, VDDUSB) and ground (VSS, VSSA) pins must always be connected to the  
external power supply, in the permitted range.  
2. VIN maximum value must always be respected. Refer to Table 15 for the values of the maximum allowed  
injected current.  
80/207  
DocID029162 Rev 5  
 
 
 
 
 
 
 
STM32F413xG/H  
Symbol  
Electrical characteristics  
Table 15. Current characteristics  
Ratings  
Max.  
Unit  
ΣIVDD  
Σ IVSS  
Σ IVDDUSB  
IVDD  
Total current into sum of all VDD_x power lines (source)(1)  
Total current out of sum of all VSS_x ground lines (sink)(1)  
Total current into VDDUSB power lines (source)  
180  
-180  
25  
Maximum current into each VDD_x power line (source)(1)  
Maximum current out of each VSS_x ground line (sink)(1)  
Output current sunk by any I/O and control pin  
100  
-100  
25  
IVSS  
IIO  
Output current sourced by any I/O and control pin  
Total output current sunk by sum of all I/O and control pins (2)  
Total output current sunk by sum of all USB I/Os  
Total output current sourced by sum of all I/Os and control pins(2)  
Injected current on FT and TC pins (4)  
-25  
mA  
120  
25  
ΣIIO  
-120  
– 5/ + 0  
Injected current on NRST and B pins (4)  
(3)  
IINJ(PIN)  
Injected current on TTa pins(5)  
± 5  
ΣIINJ(PIN)  
Total injected current (sum of all I/O and control pins)(6)  
± 25  
1. All main power (VDD, VDDA, VDDUSB) and ground (VSS, VSSA) pins must always be connected to the external power supply,  
in the permitted range.  
2. This current consumption must be correctly distributed over all I/Os and control pins.  
3. Negative injection disturbs the analog performance of the device. See note in Section 6.3.20: 12-bit ADC characteristics.  
4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum  
value.  
5. A positive injection is induced by VIN>VDDA in the same time a negative injection is induced by VIN<VSS. IINJ(PIN) must  
never be exceeded. Refer to Table 14 for the values of the maximum allowed input voltage.  
6. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and  
negative injected currents (instantaneous values).  
Table 16. Thermal characteristics  
Symbol  
Ratings  
Value  
Unit  
TSTG  
TJ  
Storage temperature range  
–65 to +150  
125  
Maximum junction temperature  
°C  
Maximum lead temperature during soldering  
(WLCSP81, LQFP64/100/144, UFQFPN48,  
UFBGA100/144)  
TLEAD  
see note (1)  
1. Compliant with JEDEC Std J-STD-020D (for small body, Sn-Pb or Pb assembly), the ST ECOPACK®  
7191395 specification, and the European directive on Restrictions on Hazardous Substances (ROHS  
directive 2011/65/EU, July 2011).  
DocID029162 Rev 5  
81/207  
174  
 
 
 
 
 
 
Electrical characteristics  
STM32F413xG/H  
6.3  
Operating conditions  
6.3.1  
General operating conditions  
Table 17. General operating conditions  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Power Scale3: Regulator ON,  
VOS[1:0] bits in PWR_CR  
register = 0x01  
0
-
64  
Power Scale2: Regulator ON,  
VOS[1:0] bits in PWR_CR  
register = 0x10  
Internal AHB clock  
frequency  
fHCLK  
0
-
84  
MHz  
Power Scale1: Regulator ON,  
VOS[1:0] bits in PWR_CR  
register = 0x11  
0
0
-
-
100  
50  
Internal APB1 clock  
frequency  
fPCLK1  
-
MHz  
Internal APB2 clock  
frequency  
fPCLK2  
VDD  
-
-
0
-
-
100  
3.6  
MHz  
V
Standard operating voltage  
1.7(1)  
Analog operating voltage  
1.7(1)  
-
-
2.4  
3.6  
(ADC limited to 1.2 M  
samples)  
(2)(3)  
(4)  
VDDA  
Must be the same potential as VDD  
V
Analog operating voltage  
2.4  
(ADC limited to 2.4 M  
samples)  
USB supply voltage  
VDDUSB (supply voltage for PA11 and  
PA12 pins)  
USB not used  
1.7  
3.0  
3.3  
3.6  
3.6  
3.6  
V
V
USB used(5)  
-
-
VBAT  
Backup operating voltage  
-
1.65  
VOS[1:0] bits in PWR_CR  
register = 0x01  
1.08(6) 1.14  
1.20(6) 1.26  
1.26 1.32  
1.20(6)  
1.32(6)  
1.38  
Max frequency 64 MHz  
Regulator ON: 1.2 V  
VOS[1:0] bits in PWR_CR  
register = 0x10  
V12  
V
V
internal voltage on  
VCAP_1/VCAP_2 pins  
Max frequency 84 MHz  
VOS[1:0] bits in PWR_CR  
register = 0x11  
Max frequency 100 MHz  
Max frequency 64 MHz  
Max frequency 84 MHz  
Max frequency 100 MHz  
1.10 1.14  
1.20 1.26  
1.26 1.32  
1.20  
1.32  
1.38  
Regulator OFF: 1.2 V  
external voltage must be  
supplied on  
V12  
VCAP_1/VCAP_2 pins  
82/207  
DocID029162 Rev 5  
 
 
 
 
 
STM32F413xG/H  
Symbol  
Electrical characteristics  
Table 17. General operating conditions (continued)  
Parameter  
Conditions  
2 V VDD 3.6 V  
Min  
Typ  
Max  
Unit  
–0.3  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
5.5  
5.2  
Input voltage on  
RST, FT and TC pins(7)  
VDD 2 V  
–0.3  
VIN  
V
Input voltage on TTa pins  
-
-
- 0.3  
VDDA + 0.3  
9
Input voltage on BOOT0 pin  
0
-
UFQFPN48  
WLCSP81  
LQFP64  
625  
504  
426  
465  
571  
351  
417  
156  
126  
106  
116  
-
-
Power dissipation at  
TA = 85°C for range 6 or  
LQFP100  
LQFP144  
UFBGA100  
UFBGA144  
UFQFPN48  
WLCSP81  
LQFP64  
-
TA = 105°C for range 7(8)  
-
-
PD  
mW  
-
-
-
Power dissipation at  
LQFP100  
LQFP144  
UFBGA100  
UFBGA144  
-
TA = 125°C for range 3(8)  
-
143  
088  
104  
85  
-
-
Maximum power dissipation  
Low power dissipation(9)  
Maximum power dissipation  
Low power dissipation(9)  
Maximum power dissipation  
Low power dissipation(9)  
Range 6  
–40  
–40  
–40  
–40  
–40  
–40  
–40  
–40  
–40  
Ambient temperature for  
range 6  
105  
105  
125  
125  
130  
105  
125  
130  
Ambient temperature for  
range 7  
TA  
TJ  
°C  
Ambient temperature for  
range 3  
Junction temperature range Range 7  
Range 3  
1. VDD/VDDA minimum value of 1.7 V with the use of an external power supply supervisor (refer to Section 3.17.2: Internal  
reset OFF).  
2. When the ADC is used, refer to Table 75: ADC characteristics.  
3. If VREF+ pin is present, it must respect the following condition: VDDA-VREF+ < 1.2 V.  
4. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and  
V
DDA can be tolerated during power-up and power-down operation.  
5. Only the DM (PA11) and DP (PA12) pads are supplied through VDDUSB. For application where the VBUS (PA9) is directly  
connected to the chip, a minimum VDD supply of 2.7V is required.  
(some application examples are shown in appendix B)  
6. Guaranteed by test in production  
7. To sustain a voltage higher than VDD+0.3, the internal Pull-up and Pull-Down resistors must be disabled  
DocID029162 Rev 5  
83/207  
174  
Electrical characteristics  
STM32F413xG/H  
8. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax  
.
9. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax  
.
Table 18. Features depending on the operating power supply range  
Maximum  
Flash  
Operating  
power  
supply  
range  
memory  
access  
frequency  
Maximum Flash  
memory access  
frequency with  
Possible  
Flash  
memory  
operations  
Clock output  
frequency on  
I/O pins(3)  
ADC  
operation  
I/O operation  
with no wait wait states (1)(2)  
states  
(fFlashmax  
)
8-bit erase  
and program  
operations  
only  
Conversion  
time up to  
1.2 Msps  
VDD =1.7 to  
2.1 V(4)  
100 MHz with 6 – No I/O  
wait states compensation  
16 MHz(5)  
up to 30 MHz  
up to 30 MHz  
Conversion  
time up to  
1.2 Msps  
16-bit erase  
and program  
operations  
VDD = 2.1 to  
2.4 V  
100 MHz with 5 – No I/O  
18 MHz  
20 MHz  
wait states  
compensation  
Conversion  
time up to  
2.4 Msps  
– I/O  
16-bit erase  
and program  
operations  
VDD = 2.4 to  
2.7 V  
100 MHz with 4  
wait states  
compensation up to 50 MHz  
works  
– up to  
100 MHz  
when VDD  
3.0 to 3.6 V  
=
Conversion  
time up to  
2.4 Msps  
– I/O  
compensation  
works  
32-bit erase  
and program  
operations  
VDD = 2.7 to  
3.6 V(6)  
100 MHz with 3  
wait states  
25 MHz  
– up to  
50 MHz  
when VDD  
=
2.7 to 3.0 V  
1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no wait state is  
required.  
2. Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the  
execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state  
program execution.  
3. Refer to Table 61: I/O AC characteristics for frequencies vs. external load.  
4. VDD/VDDA minimum value of 1.7 V, with the use of an external power supply supervisor (refer to Section 3.17.2: Internal  
reset OFF).  
5. Prefetch available over the complete VDD supply range.  
6. The voltage range for the USB full speed embedded PHY can drop down to 2.7 V. However the electrical characteristics of  
D- and D+ pins will be degraded between 2.7 and 3 V.  
84/207  
DocID029162 Rev 5  
 
 
STM32F413xG/H  
Electrical characteristics  
6.3.2  
VCAP_1/VCAP_2 external capacitors  
Stabilization for the main regulator is achieved by connecting the external capacitor C  
to  
EXT  
the VCAP_1 and VCAP_2 pins. For packages supporting only 1 VCAP pin, the 2 CEXT  
capacitors are replaced by a single capacitor.  
C
is specified in Table 19.  
EXT  
Figure 23. External capacitor C  
EXT  
&
(65  
5ꢉ/HDN  
06ꢈꢊꢃꢇꢇ9ꢄ  
1. Legend: ESR is the equivalent series resistance.  
(1)  
Table 19. VCAP_1/VCAP_2 operating conditions  
Parameter  
Symbol  
Conditions  
Capacitance of external capacitor with the pins  
VCAP_1 and VCAP_2 available  
CEXT  
2.2 µF  
< 2 Ω  
4.7 µF  
< 1 Ω  
ESR of external capacitor with the pins VCAP_1 and  
VCAP_2 available  
ESR  
CEXT  
ESR  
Capacitance of external capacitor with a single VCAP  
pin available  
ESR of external capacitor with a single VCAP pin  
available  
1. When bypassing the voltage regulator, the two 2.2 µF VCAP capacitors are not required and should be  
replaced by two 100 nF decoupling capacitors.  
6.3.3  
Operating conditions at power-up/power-down (regulator ON)  
Subject to general operating conditions for T .  
A
Table 20. Operating conditions at power-up / power-down (regulator ON)  
Symbol  
Parameter  
VDD rise time rate  
VDD fall time rate  
Min  
Max  
Unit  
20  
20  
tVDD  
µs/V  
DocID029162 Rev 5  
85/207  
174  
 
 
 
 
 
 
Electrical characteristics  
STM32F413xG/H  
6.3.4  
Operating conditions at power-up / power-down (regulator OFF)  
Subject to general operating conditions for T .  
A
(1)  
Table 21. Operating conditions at power-up / power-down (regulator OFF)  
Symbol  
Parameter  
VDD rise time rate  
DD fall time rate  
Conditions  
Power-up  
Power-down  
Min  
Max  
Unit  
20  
20  
20  
20  
tVDD  
V
µs/V  
VCAP_1 and VCAP_2 rise time rate Power-up  
VCAP_1 and VCAP_2 fall time rate Power-down  
tVCAP  
1. To reset the internal logic at power-down, a reset must be applied on pin PA0 when VDD reach below  
1.08 V.  
Note:  
This feature is only available for UFBGA100 and UFBGA144 packages.  
6.3.5  
Embedded reset and power control block characteristics  
The parameters given in Table 22 are derived from tests performed under ambient  
temperature and V supply voltage @ 3.3V.  
DD  
Table 22. Embedded reset and power control block characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ Max Unit  
PLS[2:0]=000 (rising edge)  
PLS[2:0]=000 (falling edge)  
PLS[2:0]=001 (rising edge)  
PLS[2:0]=001 (falling edge)  
PLS[2:0]=010 (rising edge)  
PLS[2:0]=010 (falling edge)  
PLS[2:0]=011 (rising edge)  
PLS[2:0]=011 (falling edge)  
PLS[2:0]=100 (rising edge)  
PLS[2:0]=100 (falling edge)  
PLS[2:0]=101 (rising edge)  
PLS[2:0]=101 (falling edge)  
PLS[2:0]=110 (rising edge)  
PLS[2:0]=110 (falling edge)  
PLS[2:0]=111 (rising edge)  
PLS[2:0]=111 (falling edge)  
-
2.09  
1.98  
2.23  
2.13  
2.39  
2.29  
2.54  
2.44  
2.70  
2.59  
2.86  
2.65  
2.96  
2.85  
3.07  
2.95  
-
2.14 2.19  
2.04 2.08  
2.30 2.37  
2.19 2.25  
2.45 2.51  
2.35 2.39  
2.60 2.65  
2.51 2.56  
V
2.76 2.82  
Programmable voltage  
detector level selection  
VPVD  
2.66 2.71  
2.93 2.99  
2.84 3.02  
3.03 3.10  
2.93 2.99  
3.14 3.21  
3.03 3.09  
(2)  
VPVDhyst  
PVD hysteresis  
100  
-
mV  
V
1.60(1)  
1.64  
Falling edge  
1.68 1.76  
1.72 1.80  
Power-on/power-down  
reset threshold  
VPOR/PDR  
Rising edge  
86/207  
DocID029162 Rev 5  
 
 
 
 
 
STM32F413xG/H  
Electrical characteristics  
Table 22. Embedded reset and power control block characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ Max Unit  
(2)  
VPDRhyst  
PDR hysteresis  
-
-
40  
-
mV  
Falling edge  
2.13  
2.23  
2.44  
2.53  
2.75  
2.85  
-
2.19 2.24  
2.29 2.33  
2.50 2.56  
2.59 2.63  
2.83 2.88  
2.92 2.97  
Brownout level 1  
threshold  
VBOR1  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Brownout level 2  
threshold  
VBOR2  
V
Brownout level 3  
threshold  
VBOR3  
(2)  
VBORhyst  
BOR hysteresis  
POR reset timing  
-
-
100  
1.5  
-
mV  
ms  
TRSTTEMPO  
0.5  
3.0  
(2)(3)  
In-Rush current on  
voltage regulator power-  
on (POR or wakeup from  
Standby)  
(2)  
IRUSH  
-
-
160  
-
200  
5.4  
mA  
µC  
In-Rush energy on  
voltage regulator power-  
on (POR or wakeup from IRUSH = 171 mA for 31 µs  
Standby)  
VDD = 1.7 V, TA = 125 °C,  
(2)  
ERUSH  
-
1. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.  
2. Guaranteed by design.  
3. The reset timing is measured from the power-on (POR reset or wakeup from VBAT) to the instant when first  
instruction is fetched by the user application code.  
6.3.6  
Supply current characteristics  
The current consumption is a function of several parameters and factors such as the  
operating voltage, ambient temperature, I/O pin loading, device software configuration,  
operating frequencies, I/O pin switching rate, program location in memory and executed  
binary code.  
The current consumption is measured as described in Figure 22: Current consumption  
measurement scheme.  
All the run-mode current consumption measurements given in this section are performed  
with a reduced code that gives a consumption equivalent to CoreMark code.  
DocID029162 Rev 5  
87/207  
174  
 
Electrical characteristics  
STM32F413xG/H  
Typical and maximum current consumption  
The MCU is placed under the following conditions:  
All I/O pins are in input mode with a static value at VDD or VSS (no load).  
All peripherals are disabled except if it is explicitly mentioned.  
The Flash memory access time is adjusted to both f frequency and VDD ranges  
HCLK  
(refer to Table 18: Features depending on the operating power supply range).  
The voltage scaling is adjusted to f frequency as follows:  
HCLK  
Scale 3 for f  
64 MHz  
HCLK  
Scale 2 for 64 MHz < f  
Scale 1 for 84 MHz < f  
84 MHz  
100 MHz  
HCLK  
HCLK  
The system clock is HCLK, f  
= f  
/2, and f  
= f  
.
PCLK1  
HCLK  
PCLK2  
HCLK  
External clock is 4 MHz and PLL is ON except if it is explicitly mentioned.  
The maximum values are obtained for V = 3.6 V and a maximum ambient  
DD  
temperature (T ), and the typical values for T = 25 °C and V = 3.3 V unless  
A
A
DD  
otherwise specified.  
Table 23. Typical and maximum current consumption, code with data processing (ART  
accelerator disabled) running from SRAM - V = 1.7 V  
DD  
Typ  
TA= 25 °C TA= 25 °C TA=85 °C TA=105 °C TA=125 °C  
Max(1)  
fHCLK  
(MHz)  
Symbol Parameter  
Conditions  
Unit  
100  
84  
64  
50  
25  
20  
16  
32.9  
26.5  
18.3  
14.4  
7.5  
34.96  
28.13  
19.44  
15.28  
8.10  
35.30  
28.58  
20.11  
16.12  
9.35  
37.21  
30.50  
21.76  
17.95  
11.09  
9.96  
40.79  
33.96  
25.03  
21.11  
14.38  
13.17  
11.46  
External clock,  
PLL ON,  
all peripherals  
enabled(2)(3)  
6.4  
6.99  
8.17  
HSI, PLL off, all  
peripherals  
4.6  
5.17  
6.42  
8.28  
enabled(2)(3)  
Supply  
1
0.7  
1.28  
2.64  
4.30  
7.66  
IDD  
current in  
Run mode  
mA  
100  
84  
64  
50  
25  
20  
16  
15.4  
12.4  
8.7  
16.43  
13.28  
9.36  
7.47  
4.27  
3.72  
2.80  
17.35  
14.32  
10.38  
8.54  
19.17  
16.12  
12.06  
10.36  
7.17  
22.85  
19.67  
15.31  
13.49  
10.45  
10.02  
9.07  
External clock,  
PLL ON, all  
peripherals  
disabled(3)  
6.9  
3.7  
5.47  
3.2  
5.01  
6.67  
HSI, PLL off, all  
peripherals  
2.3  
4.05  
5.90  
disabled(3)  
1
0.6  
1.14  
2.51  
4.16  
7.51  
1. Guaranteed by characterization results.  
2. When analog peripheral blocks such as ADC, HSE, LSE, HSI, or LSI are ON, an additional power consumption has to be  
considered.  
88/207  
DocID029162 Rev 5  
 
 
STM32F413xG/H  
Electrical characteristics  
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA for the  
analog part.  
Table 24. Typical and maximum current consumption, code with data processing (ART  
accelerator disabled) running from SRAM - V = 3.6 V  
DD  
Typ  
Max(1)  
fHCLK  
(MHz)  
Symbol Parameter  
Conditions  
Unit  
TA=  
TA=  
TA=  
TA=  
TA=  
25 °C  
25 °C  
85 °C  
105 °C  
125 °C  
100  
84  
64  
50  
25  
20  
16  
1
33.3  
26.8  
18.6  
14.6  
7.8  
35.32(3) 35.65  
28.45(3) 28.97  
19.74(3) 20.35  
37.65  
30.82  
22.11  
18.21  
11.32  
10.25  
8.20  
41.26(3)  
34.39(3)  
25.35(3)  
21.46  
External clock,  
PLL ON,  
all peripherals enabled(2)  
15.57  
8.37  
7.25  
4.96  
0.86  
16.41  
9.64  
8.40  
6.39  
2.51  
14.68  
6.7  
13.45  
HSI, PLL OFF(4)  
,
4.6  
11.54  
all peripherals enabled(2)  
Supply  
0.8  
4.34  
7.65  
IDD  
current in  
Run mode  
mA  
100  
84  
64  
50  
25  
20  
16  
15.7  
12.7  
9.0  
16.74(3) 17.62  
13.57(3) 14.60  
19.50  
16.38  
12.37  
10.63  
7.44  
23.16(3)  
19.98(3)  
15.58(3)  
13.79  
External clock,  
PLL ON,  
9.62(3)  
10.60  
8.79  
5.68  
5.23  
4.00  
all peripherals  
7.1  
7.69  
disabled(2)  
4.0  
4.52  
10.68  
3.4  
4.03  
6.90  
10.27  
HSI, PLL OFF,  
all peripherals  
disabled(2)  
2.3  
2.44  
5.81  
9.13  
1
0.6  
0.70  
2.35  
4.18  
7.49  
1. Guaranteed by characterization results.  
2. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA for the  
analog part.  
3. Tested in production  
4. When analog peripheral blocks such as ADC, HSE, LSE, HSI, or LSI are ON, an additional power consumption has to be  
considered  
DocID029162 Rev 5  
89/207  
174  
 
 
Electrical characteristics  
STM32F413xG/H  
Table 25. Typical and maximum current consumption in run mode, code with data processing  
(ART accelerator enabled except prefetch) running from Flash memory- V = 1.7 V  
DD  
Typ  
Max(1)  
fHCLK  
(MHz)  
Symbol Parameter  
Conditions  
Unit  
TA =  
TA =  
TA =  
TA =  
TA =  
25 °C  
25 °C 85 °C 105 °C 125 °C  
100  
84  
64  
50  
25  
20  
16  
1
30.2  
24.3  
16.8  
13.2  
7.1  
32.03  
25.77  
17.80  
14.05  
7.62  
32.71 34.69 38.46  
26.58 28.47 32.16  
18.66 20.53 23.85  
15.12 16.85 20.27  
External clock,  
PLL ON,  
all peripherals enabled(2)(3)  
8.92  
7.95  
6.28  
2.88  
10.81 14.11  
6.1  
6.69  
9.72  
8.18  
4.58  
13.09  
11.45  
8.00  
4.4  
4.99  
HSI, PLL OFF,  
all peripherals enabled(2)  
Supply  
current in  
Run mode  
0.9  
1.50  
IDD  
mA  
100  
84  
64  
50  
25  
20  
16  
1
12.6  
10.2  
7.2  
13.46  
10.90  
7.70  
14.75 16.68 20.54  
12.25 14.10 17.84  
External clock,  
8.95  
7.56  
5.11  
4.79  
3.91  
2.72  
10.81 14.14  
PLL ON(4)  
all peripherals disabled(2)  
5.7  
6.26  
9.26  
6.82  
6.49  
5.80  
4.42  
12.72  
10.26  
9.92  
3.2  
3.77  
2.9  
3.41  
2.1  
2.63  
9.06  
HSI, PLL OFF, all  
peripherals disabled(2)  
0.8  
1.34  
7.86  
1. Guaranteed by characterization results..  
2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only  
while the ADC is ON (ADON bit is set in the ADC_CR2 register).  
3. When the ADC is ON (ADON bit set in the ADC_CR2), add an additional power consumption of 1.6mA per ADC for the  
analog part.  
4. Refer to Table 47 and RM0383 for the possible PLL VCO setting  
90/207  
DocID029162 Rev 5  
 
 
STM32F413xG/H  
Electrical characteristics  
Table 26. Typical and maximum current consumption in run mode, code with data processing  
(ART accelerator enabled except prefetch) running from Flash memory - V = 3.6 V  
DD  
Typ  
Max(1)  
fHCLK  
(MHz)  
Symbol  
Parameter  
Conditions  
Unit  
TA =  
TA =  
TA = TA =  
TA =  
25 °C  
25 °C 85 °C 105 °C 125 °C  
100  
84  
64  
50  
25  
20  
16  
1
30.7  
24.7  
17.2  
13.6  
7.4  
32.85(4) 33.30 35.37 39.08  
26.48 27.15 28.94 32.65  
18.36 19.14 20.88 24.29  
14.54 15.45 17.27 20.58  
External clock,  
PLL ON(2)  
,
all peripherals enabled(3)  
7.97  
6.99  
5.04  
1.50  
9.23 11.05 14.42  
8.18 10.03 13.32  
6.4  
4.5  
6.32  
2.89  
8.23  
4.59  
11.50  
8.01  
HSI, PLL OFF, all  
peripherals enabled(3)  
1.0  
Supply current  
in Run mode  
IDD  
mA  
100  
84  
64  
50  
25  
20  
16  
1
13.1  
10.7  
7.5  
14.36 15.33 17.25 20.98  
11.67 12.73 14.56 18.21  
External clock, PLL ON(2)  
all peripherals disabled(3)  
8.23  
6.74  
4.19  
3.71  
2.67  
1.35  
9.40 11.13 14.52  
6.1  
7.89  
5.37  
5.02  
3.95  
2.72  
9.61  
7.08  
6.72  
5.84  
4.43  
12.98  
10.48  
10.15  
9.10  
3.5  
3.2  
2.1  
HSI, PLL OFF, all  
peripherals disabled(3)  
0.8  
7.87  
1. Guaranteed by characterization results.  
2. Refer to Table 47 and RM0383 for the possible PLL VCO setting  
3. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only  
while the ADC is ON (ADON bit is set in the ADC_CR2 register).  
4. Tested in production.  
DocID029162 Rev 5  
91/207  
174  
 
 
 
Electrical characteristics  
STM32F413xG/H  
Table 27. Typical and maximum current consumption in run mode, code with data processing  
(ART accelerator disabled) running from Flash memory - V = 3.6 V  
DD  
Typ  
Max(1)  
fHCLK  
(MHz)  
Symbol  
Parameter  
Conditions  
Unit  
TA =  
TA =  
TA = TA =  
TA =  
25 °C  
25 °C  
85 °C 105 °C 125 °C  
100  
84  
64  
50  
25  
20  
16  
1
39.9  
32.6  
24.2  
19.7  
10.8  
9.2  
42.46  
34.71  
25.86  
21.01  
11.55  
9.82  
43.17 45.32 49.19  
35.45 37.58 41.24  
26.73 28.47 31.96  
22.00 23.74 27.26  
12.83 14.66 18.03  
11.16 13.09 16.36  
External clock,  
PLL ON(2)  
,
all peripherals enabled(3)  
6.8  
7.33  
8.77  
3.08  
10.69 14.00  
4.83 8.19  
HSI, PLL OFF, all  
peripherals enabled(3)  
1.2  
1.83  
Supply current  
in Run mode  
IDD  
mA  
100  
84  
64  
50  
25  
20  
16  
1
22.3  
18.5  
14.6  
12.2  
7.0  
24.11  
20.00  
15.81  
13.14  
7.52  
25.26 27.35 31.11  
21.15 23.20 26.87  
17.02 18.74 22.20  
14.45 16.18 19.66  
External clock, PLL ON(2)  
all peripherals disabled(3)  
8.95  
7.95  
6.40  
2.94  
10.84 14.19  
6.0  
6.58  
9.74  
8.30  
4.65  
13.07  
11.59  
8.05  
4.5  
4.97  
HSI, PLL OFF, all  
peripherals disabled(3)  
1.0  
1.61  
1. Guaranteed by characterization results.  
2. Refer to Table 47 and RM0383 for the possible PLL VCO setting  
3. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only  
while the ADC is ON (ADON bit is set in the ADC_CR2 register).  
92/207  
DocID029162 Rev 5  
 
 
 
STM32F413xG/H  
Electrical characteristics  
Table 28. Typical and maximum current consumption in run mode, code with data processing  
(ART accelerator disabled) running from Flash memory - V = 1.7 V  
DD  
Typ  
Max(1)  
fHCLK  
(MHz)  
Symbol  
Parameter  
Conditions  
Unit  
TA =  
TA =  
TA = TA =  
TA =  
25 °C  
25 °C 85 °C 105 °C 125 °C  
100  
84  
64  
50  
25  
20  
16  
36.1  
30.6  
23.9  
18.9  
10.8  
9.2  
38.48 39.08 40.91 44.59  
32.60 33.14 35.10 38.56  
25.67 26.27 27.94 31.19  
20.32 21.04 22.85 26.10  
External clock,  
PLL ON,  
all peripherals  
enabled(2)(3)  
11.63  
9.84  
7.69  
12.75 14.56 17.87  
11.06 12.98 16.23  
HSI, PLL OFF,  
all peripherals  
enabled(2)(3)  
7.1  
9.02  
3.10  
10.87 14.25  
4.84 8.20  
1
1.2  
1.84  
Supply current  
in Run mode  
IDD  
mA  
100  
84  
64  
50  
25  
20  
16  
1
18.6  
16.5  
14.3  
11.5  
7.0  
20.33 21.23 23.15 26.71  
18.09 19.01 20.81 24.29  
15.76 16.67 18.28 21.50  
12.57 13.53 15.33 18.49  
External clock, PLL ON(3)  
all peripherals disabled  
7.67  
6.68  
5.33  
1.62  
8.90  
7.87  
6.66  
2.95  
10.76 14.05  
6.0  
9.65  
8.49  
4.66  
12.96  
11.86  
8.06  
4.8  
HSI, PLL OFF,  
all peripherals disabled(3)  
1.0  
1. Guaranteed by characterization results.  
2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only  
while the ADC is ON (ADON bit is set in the ADC_CR2 register).  
3. When the ADC is ON (ADON bit set in the ADC_CR2), add an additional power consumption of 1.6mA per ADC for the  
analog part.  
DocID029162 Rev 5  
93/207  
174  
 
Electrical characteristics  
STM32F413xG/H  
Table 29. Typical and maximum current consumption in run mode, code with data processing  
(ART accelerator enabled with prefetch) running from Flash memory - V = 3.6 V  
DD  
Typ  
Max(1)  
fHCLK  
(MHz)  
Symbol  
Parameter  
Conditions  
Unit  
TA =  
TA =  
TA = TA =  
TA =  
25 °C  
25 °C 85 °C 105 °C 125 °C  
100  
84  
64  
50  
25  
20  
16  
1
42.3  
34.6  
25.5  
20.2  
10.9  
9.3  
45.08 45.76 47.88 51.71  
36.87 37.58 39.64 43.32  
27.18 27.93 29.90 33.23  
21.55 22.50 24.34 27.73  
External clock,  
PLL ON,  
all peripherals enabled(2)  
11.61  
9.86  
7.37  
1.83  
12.87 14.72 18.08  
11.20 13.13 16.41  
6.9  
8.81  
3.09  
10.72 14.04  
4.83 8.19  
HSI, PLL OFF,  
all peripherals enabled  
1.2  
Supply current  
in Run mode  
IDD  
mA  
100  
84  
64  
50  
25  
20  
16  
1
24.7  
20.5  
15.9  
12.7  
7.1  
26.76 27.84 29.93 33.66  
22.18 23.25 25.33 28.98  
17.13 18.23 20.18 23.46  
13.68 14.95 16.71 20.13  
External clock,  
PLL ON(2)  
all peripherals disabled  
7.57  
6.61  
5.00  
1.61  
9.01  
7.98  
6.44  
2.94  
10.88 14.25  
6.1  
9.80  
8.33  
4.65  
13.11  
11.63  
8.06  
4.5  
HSI, PLL OFF,  
all peripherals disabled  
1.0  
1. Guaranteed by characterization results.  
2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only  
while the ADC is ON (ADON bit is set in the ADC_CR2 register).  
94/207  
DocID029162 Rev 5  
 
 
STM32F413xG/H  
Electrical characteristics  
Table 30. Typical and maximum current consumption in run mode, code with data processing  
(ART accelerator enabled with prefetch) running from Flash memory - V = 1.7 V  
DD  
Typ  
Max(1)  
fHCLK  
(MHz)  
Symbol  
Parameter  
Conditions  
Unit  
TA =  
TA =  
TA = TA =  
TA =  
25 °C  
25 °C 85 °C 105 °C 125 °C  
100  
84  
64  
50  
25  
20  
16  
1
42.9  
35.4  
26.2  
20.7  
11.1  
9.4  
45.86 45.76 47.88 51.71  
37.90 38.16 40.01 43.26  
28.19 28.74 30.37 33.54  
22.32 22.50 24.34 27.73  
External clock,  
PLL ON,  
all peripherals enabled(2)  
11.87  
10.05  
7.72  
12.87 14.72 18.08  
11.26 13.16 16.46  
7.1  
9.06  
3.10  
10.90 14.29  
4.84 8.20  
HSI, PLL OFF,  
all peripherals enabled  
1.2  
1.84  
Supply current  
in Run mode  
IDD  
mA  
100  
84  
64  
50  
25  
20  
16  
1
25.4  
21.4  
16.6  
13.2  
7.2  
27.83 27.84 29.93 33.66  
23.44 24.10 25.77 29.04  
18.31 19.17 20.72 23.86  
15.10 14.95 16.71 20.13  
External clock,  
PLL ON(2)  
all peripherals disabled  
7.90  
6.83  
5.37  
1.62  
9.01  
8.05  
6.70  
2.96  
10.88 14.25  
6.2  
9.88  
8.52  
4.67  
13.15  
11.89  
8.07  
4.8  
HSI, PLL OFF,  
all peripherals disabled  
1.0  
1. Guaranteed by characterization results.  
2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only  
while the ADC is ON (ADON bit is set in the ADC_CR2 register).  
DocID029162 Rev 5  
95/207  
174  
 
Electrical characteristics  
STM32F413xG/H  
Table 31. Typical and maximum current consumption in Sleep mode - V = 3.6 V  
DD  
Typ  
Max(1)  
fHCLK  
(MHz)  
Symbol Parameter  
Conditions  
Unit  
TA =  
25 °C  
TA =  
25 °C  
TA = TA = TA =  
85 °C 105 °C 125 °C  
100  
84  
64  
50  
25  
20  
16  
1
21.6  
17.4  
12.0  
9.5  
5.2  
4.6  
3.0  
0.7  
22.0  
17.7  
12.4  
9.8  
5.5  
4.9  
3.3  
0.9  
3.5  
2.9  
2.2  
1.8  
1.3  
1.3  
0.6  
0.5  
4.0  
3.3  
2.5  
2.2  
1.6  
1.6  
0.9  
0.7  
22.97(4) 23.91 25.99 29.72  
18.50  
12.81  
10.15  
5.79  
5.17  
3.24  
0.76  
23.42  
18.91  
13.17  
10.48  
6.05  
5.42  
3.51  
1.01  
4.17  
3.48  
2.73  
2.38  
1.86  
1.90  
0.68  
0.59  
4.54  
3.87  
3.04  
2.69  
2.13  
2.16  
0.96  
0.85  
19.59 21.42 25.09  
13.87 15.73 19.00  
11.33 13.22 16.44  
All peripherals enabled(2)(3)  
External clock,  
PLL ON,  
,
Flash deep power down  
7.11  
6.41  
4.78  
2.41  
8.82  
8.28  
6.60  
4.23  
12.18  
11.48  
9.94  
All peripherals enabled(2)(3)  
HSI, PLL OFF,  
Flash deep power down  
,
,
7.55  
100  
84  
64  
50  
25  
20  
16  
1
24.45 26.41 30.24  
19.98 21.85 25.56  
14.30 16.07 19.48  
11.72 13.53 16.90  
All peripherals enabled(2)(3)  
External clock,  
PLL ON Flash ON  
7.41  
6.72  
5.06  
2.67  
5.56  
4.94  
3.94  
3.57  
3.11  
3.13  
2.33  
2.24  
5.97  
5.32  
4.33  
3.93  
3.37  
3.39  
2.62  
2.50  
9.11  
8.57  
6.91  
4.52  
7.54  
6.76  
5.80  
5.42  
4.82  
4.85  
4.16  
4.07  
8.09  
7.19  
6.15  
5.82  
5.20  
5.22  
4.47  
4.36  
12.55  
11.89  
10.30  
7.88  
11.23  
10.40  
8.98  
8.60  
8.12  
8.15  
7.47  
7.38  
11.74  
10.84  
9.47  
9.04  
8.46  
8.48  
7.82  
7.71  
All peripherals enabled(2)(3)  
HSI, PLL ON, Flash ON  
,
Supply  
IDD  
current in  
mA  
100  
84  
64  
50  
25  
20  
16  
1
Sleep mode  
All peripherals disabled,  
External clock,  
PLL ON(2)  
,
Flash deep power down  
All peripherals disabled,  
HSI, PLL OFF(2)  
,
Flash deep power down  
100  
84  
64  
50  
25  
20  
16  
1
All peripherals disabled,  
External clock,  
PLL ON(2), Flash ON  
All peripherals disabled,  
HSI, PLL OFF(2), Flash ON  
1. Guaranteed by characterization results.  
2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only  
while the ADC is ON (ADON bit is set in the ADC_CR2 register).  
3. When the ADC is ON (ADON bit set in the ADC_CR2), add an additional power consumption of 1.6mA per ADC for the  
analog part.  
4. Tested in production.  
96/207  
DocID029162 Rev 5  
 
 
STM32F413xG/H  
Electrical characteristics  
Table 32. Typical and maximum current consumption in Sleep mode - V = 1.7 V  
DD  
Typ  
Max(1)  
fHCLK  
(MHz)  
Symbol  
Parameter  
Conditions  
Unit  
TA =  
TA =  
TA = TA =  
TA =  
25 °C  
25 °C 85 °C 105 °C 125 °C  
100  
84  
64  
50  
25  
20  
16  
21.2  
17.1  
11.8  
9.3  
22.64 23.56 25.66 29.30  
18.20 19.27 21.14 24.75  
12.53 13.59 15.47 18.66  
External clock,  
PLL ON,  
Flash deep power down,  
9.88  
5.52  
4.93  
3.53  
11.06 12.94 16.11  
all peripherals enabled(2)  
5.0  
6.83  
6.16  
4.91  
8.61  
8.03  
6.57  
11.88  
11.19  
9.94  
4.4  
HSI, PLL OFF(2)  
,
3.0  
Flash deep power down,  
all peripherals enabled  
1
0.6  
1.19  
2.55  
4.21  
7.57  
100  
84  
64  
50  
25  
20  
16  
21.7  
17.4  
12.1  
9.6  
23.10 24.09 26.12 29.90  
18.61 19.72 21.55 25.27  
12.89 13.98 15.84 19.18  
External clock, PLL ON(2)  
all peripherals enabled,  
Flash ON  
10.20  
5.80  
5.18  
3.79  
11.43 13.32 16.62  
5.2  
7.19  
6.47  
5.17  
8.91  
8.37  
6.88  
12.33  
11.63  
10.32  
4.6  
HSI, PLL OFF(2), all  
peripherals enabled,  
Flash ON  
3.2  
1
0.9  
1.43  
2.80  
4.50  
7.92  
Supply current  
in Sleep mode  
IDD  
mA  
100  
84  
64  
50  
25  
20  
16  
3.3  
2.7  
1.9  
1.6  
1.0  
1.1  
0.6  
3.82  
3.22  
2.48  
2.13  
1.61  
1.66  
1.12  
5.34  
4.70  
3.70  
3.35  
2.90  
2.93  
2.49  
7.25  
6.54  
5.55  
5.15  
4.57  
4.59  
4.14  
10.97  
10.13  
8.71  
8.35  
7.91  
7.93  
7.49  
All peripherals disabled,  
External clock,  
PLL ON(2)  
,
Flash deep power down  
All peripherals disabled,  
HSI, PLL OFF(2)  
,
1
0.5  
1.04  
2.40  
4.06  
7.40  
Flash deep power down  
100  
84  
64  
50  
25  
20  
16  
3.7  
3.1  
2.3  
1.9  
1.3  
1.4  
0.8  
4.28  
3.60  
2.80  
2.44  
1.89  
1.92  
1.38  
5.76  
5.11  
4.09  
3.70  
3.18  
3.20  
2.75  
7.83  
6.96  
5.96  
5.59  
4.94  
4.97  
4.44  
11.49  
10.64  
9.23  
8.82  
8.27  
8.29  
7.87  
All peripherals disabled,  
External clock, PLL  
ON(2), Flash ON  
All peripherals disabled,  
HSI, PLL OFF(2), Flash  
ON  
1
0.7  
1.25  
2.65  
4.34  
7.77  
1. Guaranteed by characterization results.  
DocID029162 Rev 5  
97/207  
174  
 
Electrical characteristics  
STM32F413xG/H  
2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only  
while the ADC is ON (ADON bit is set in the ADC_CR2 register).  
Table 33. Typical and maximum current consumptions in Stop mode - V = 1.7 V  
DD  
Typ(1)  
Max(1)  
Symbol  
Conditions  
Parameter  
Unit  
TA = TA = TA =  
TA =  
TA =  
25 °C 25 °C 85 °C 105 °C 125 °C  
111.7 157.9 713.7 1323.5 2315.1  
42.3 80.1 594.1 1167.6 2097.6  
Flash in Stop mode,  
all oscillators OFF, no  
independent watchdog  
Main regulator usage  
Low power regulator usage  
Main regulator usage  
77.9 113.1 568.3 1073.6 1883.7  
19.7 55.8 561.3 1123.2 2026.0  
IDD_STOP  
µA  
Flash in Deep power  
down mode, all  
Low power regulator usage  
oscillators OFF, no  
independent watchdog  
Low power low voltage regulator  
usage  
15.3 46.3 490.8 991.3 1793.9  
1. Guaranteed by characterization results.  
Table 34. Typical and maximum current consumption in Stop mode - V =3.6 V  
DD  
Max(1)  
Typ  
Symbol  
Conditions  
Parameter  
Unit  
TA =  
TA =  
TA =  
TA =  
TA =  
25 °C 25 °C 85 °C 105 °C 125 °C  
114.4 161.6(2) 723.0 1339.0 2342.7(2)  
44.1 82.5(2) 600.6 1179.3 2119.1  
80.6 116.7 572.3 1079.2 1896.3  
Flash in Stop mode, all Main regulator usage  
oscillators OFF, no  
Low power regulator usage  
independent watchdog  
Main regulator usage  
Flash in Deep power  
IDD_STOP  
µA  
down mode, all  
Low power regulator usage  
21.4  
58.9 567.9 1134.5 2049.6  
oscillators OFF, no  
independent watchdog  
Low power low voltage  
regulator usage  
17.0 49.0(2) 497.4 1003.6 1817.0(2)  
1. Guaranteed by characterization results.  
2. Tested in production.  
Table 35. Typical and maximum current consumption in Standby mode - V = 1.7 V  
DD  
Typ(1)  
Max(2)  
Symbol  
Parameter  
Conditions  
Unit  
TA = TA = TA =  
TA =  
TA =  
25 °C 25 °C 85 °C 105 °C 125 °C  
Low-speed oscillator (LSE in low drive  
mode) and RTC ON  
2.3  
3.7  
15.9  
32.5  
76.8  
Supply current in  
Standby mode  
IDD_STBY  
Low-speed oscillator (LSE in high drive  
mode) and RTC ON  
µA  
2.9  
1.1  
4.3  
2.5  
16.5  
14.7  
33.1  
31.3  
77.4  
75.6  
RTC and LSE OFF  
1. When the PDR is OFF (internal reset is OFF), the typical current consumption is reduced by 1.2 µA.  
2. Guaranteed by characterization results.  
98/207  
DocID029162 Rev 5  
 
 
 
 
STM32F413xG/H  
Electrical characteristics  
Table 36. Typical and maximum current consumption in Standby mode - V = 3.6 V  
DD  
Typ(1)  
Max(2)  
Symbol  
Parameter  
Conditions  
Unit  
TA = TA = TA =  
TA =  
TA =  
25 °C 25 °C 85 °C 105 °C 125 °C  
Low-speed oscillator (LSE in low drive  
mode) and RTC ON  
3.7  
5.2  
20.6  
40.5  
82.7  
Supply current in  
Standby mode  
IDD_STBY  
Low-speed oscillator (LSE in high drive  
mode) and RTC ON  
µA  
4.5  
2.5  
6.0  
4.0  
21.4  
19.4  
41.3  
83.5  
RTC and LSE OFF  
39.3 81.5(3)  
1. When the PDR is OFF (internal reset is OFF), the typical current consumption is reduced by 1.2 µA.  
2. Guaranteed by characterization, not tested in production unless otherwise specified.  
3. Tested in production.  
Table 37. Typical and maximum current consumptions in V  
Typ  
mode  
BAT  
Max(2)  
TA = TA = TA =  
TA = 25 °C  
Symbol Parameter  
Conditions(1)  
85 °C 105 °C 125 °C Unit  
VBAT = 3.6 V  
VBAT = VBAT= VBAT = VBAT  
1.7 V 2.4 V 3.3 V 3.6 V  
=
Low-speed oscillator (LSE in  
low-drive mode) and RTC ON  
0.74  
0.84 1.04  
1.24 3.00 5.00 10.00  
Backup  
domain  
I
Low-speed oscillator (LSE in  
high-drive mode) and RTC ON  
µA  
DD_VBAT supply  
current  
1.51  
0.03  
1.64 1.89  
0.03 0.04  
2.00 3.80 5.80 11.60  
0.04 2.00 4.00 8.00  
RTC and LSE OFF  
1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values.  
2. Guaranteed by characterization results.  
DocID029162 Rev 5  
99/207  
174  
 
 
Electrical characteristics  
Figure 24. Typical V  
STM32F413xG/H  
current consumption (LSE and RTC ON/LSE oscillator  
BAT  
“low power” mode selection)  
06Yꢇꢀꢃꢂꢀ9ꢈ  
Figure 25. Typical V  
current consumption (LSE and RTC ON/LSE oscillator  
“high drive” mode selection)  
BAT  
06Yꢇꢀꢃꢊꢀ9ꢈ  
100/207  
DocID029162 Rev 5  
 
 
STM32F413xG/H  
Electrical characteristics  
I/O system current consumption  
The current consumption of the I/O system has two components: static and dynamic.  
I/O static current consumption  
All the I/Os used as inputs with pull-up generate current consumption when the pin is  
externally held low. The value of this current consumption can be simply computed by using  
the pull-up/pull-down resistors values given in Table 59: I/O static characteristics.  
For the output pins, any external pull-down or external load must also be considered to  
estimate the current consumption.  
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate  
voltage level is externally applied. This current consumption is caused by the input Schmitt  
trigger circuits used to discriminate the input value. Unless this specific configuration is  
required by the application, this supply current consumption can be avoided by configuring  
these I/Os in analog mode. This is notably the case of ADC input pins which should be  
configured as analog inputs.  
Caution:  
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,  
as a result of external electromagnetic noise. To avoid current consumption related to  
floating pins, they must either be configured in analog mode, or forced internally to a definite  
digital value. This can be done either by using pull-up/down resistors or by configuring the  
pins in output mode.  
I/O dynamic current consumption  
In addition to the internal peripheral current consumption (see Table 39: Peripheral current  
consumption), the I/Os used by an application also contribute to the current consumption.  
When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O  
pin circuitry and to charge/discharge the capacitive load (internal or external) connected to  
the pin:  
ISW = VDD × fSW × C  
where  
I
is the current sunk by a switching I/O to charge/discharge the capacitive load  
is the MCU supply voltage  
SW  
V
DD  
f
is the I/O switching frequency  
SW  
C is the total capacitance seen by the I/O pin: C = C + C  
INT  
EXT  
The test pin is configured in push-pull output mode and is toggled by software at a fixed  
frequency.  
DocID029162 Rev 5  
101/207  
174  
Electrical characteristics  
STM32F413xG/H  
Table 38. Switching output I/O current consumption  
I/O toggling  
Symbol  
Parameter  
Conditions(1)  
Typ  
Unit  
frequency (fSW  
)
2 MHz  
8 MHz  
0.05  
0.15  
0.45  
0.85  
1.00  
1.40  
1.67  
0.10  
0.35  
1.05  
2.20  
2.40  
3.55  
4.23  
0.20  
0.65  
1.85  
2.45  
4.70  
8.80  
10.47  
0.25  
1.00  
3.45  
7.15  
11.55  
0.32  
1.27  
3.88  
12.34  
25 MHz  
50 MHz  
60 MHz  
84 MHz  
90 MHz  
2 MHz  
VDD = 3.3 V  
C = CINT  
8 MHz  
25 MHz  
50 MHz  
60 MHz  
84 MHz  
90 MHz  
2 MHz  
VDD = 3.3 V  
CEXT = 0 pF  
C = CINT + CEXT + CS  
I/O switching  
current  
IDDIO  
mA  
8 MHz  
25 MHz  
50 MHz  
60 MHz  
84 MHz  
90 MHz  
2 MHz  
VDD = 3.3 V  
CEXT =10 pF  
C = CINT + CEXT + CS  
8 MHz  
VDD = 3.3 V  
CEXT = 22 pF  
25 MHz  
50 MHz  
60 MHz  
2 MHz  
C = CINT + CEXT + CS  
VDD = 3.3 V  
8 MHz  
CEXT = 33 pF  
25 MHz  
50 MHz  
C = CINT + CEXT + CS  
1. CS is the PCB board capacitance including the pad pin. CS = 7 pF (estimated value).  
102/207  
DocID029162 Rev 5  
 
 
STM32F413xG/H  
Electrical characteristics  
On-chip peripheral current consumption  
The MCU is placed under the following conditions:  
At startup, all I/O pins are in analog input configuration.  
All peripherals are disabled unless otherwise mentioned.  
The ART accelerator is ON.  
Voltage Scale 2 mode selected, internal digital voltage V12 = 1.26 V.  
HCLK is the system clock at 100 MHz. f = f /2, and f = f .  
HCLK  
PCLK1  
HCLK  
PCLK2  
The given value is calculated by measuring the difference of current consumption  
with all peripherals clocked off,  
with only one peripheral clocked on,  
scale 1 with f  
scale 2 with f  
scale 3 with f  
= 100 MHz,  
= 84 MHz,  
= 64 MHz.  
HCLK  
HCLK  
HCLK  
Ambient operating temperature is 25 °C and V =3.3 V.  
DD  
Table 39. Peripheral current consumption  
IDD (Typ)  
Peripheral  
Unit  
Scale 1  
Scale 2  
Scale 3  
GPIOA  
GPIOB  
GPIOC  
GPIOD  
GPIOE  
GPIOF  
GPIOG  
GPIOH  
CRC  
1.89  
1.75  
1.70  
1.72  
1.78  
1.68  
1.66  
0.72  
0.30  
1.82  
1.68  
1.64  
1.65  
1.71  
1.62  
1.61  
0.69  
0.30  
1.64  
1.52  
1.48  
1.48  
1.55  
1.45  
1.44  
0.63  
0.28  
AHB1  
µA/MHz  
DMA1(1)  
DMA2(1)  
RNG  
1.75N + 3.14 1.66N + 3.00 1.49N + 2.70  
1.79N + 3.29 1.71N + 3.14 1.53N + 2.82  
0.72  
19.26  
5.42  
0.70  
18.37  
5.18  
0.63  
16.47  
4.64  
AHB2  
AHB3  
µA/MHz  
µA/MHz  
USB_OTG_FS  
FSMC  
QSPI  
10.33  
9.86  
8.84  
DocID029162 Rev 5  
103/207  
174  
 
 
Electrical characteristics  
STM32F413xG/H  
Table 39. Peripheral current consumption (continued)  
DD (Typ)  
I
Peripheral  
Unit  
Scale 1  
Scale 2  
Scale 3  
AHB-APB1 bridge  
0.90  
13.08  
9.98  
9.88  
13.14  
1.94  
1.86  
5.56  
3.44  
3.66  
7.34  
0.64  
3.02  
3.06  
3.30  
3.32  
3.18  
3.26  
3.20  
3.30  
3.26  
5.22  
5.58  
5.14  
5.70  
0.90  
2.14  
3.08  
3.10  
0.88  
12.48  
9.50  
9.43  
12.52  
1.86  
1.79  
5.29  
3.29  
3.48  
7.00  
0.62  
2.88  
2.90  
3.14  
3.14  
3.02  
3.10  
3.05  
3.14  
3.10  
4.98  
5.31  
4.88  
5.43  
0.86  
2.05  
2.93  
2.95  
0.81  
11.16  
8.50  
8.44  
11.19  
1.66  
1.56  
4.72  
2.94  
3.09  
6.25  
0.53  
2.56  
2.59  
2.81  
2.81  
2.69  
2.75  
2.72  
2.81  
2.78  
4.44  
4.75  
4.38  
4.84  
0.75  
1.81  
2.59  
2.63  
TIM2  
TIM3  
TIM4  
TIM5  
TIM6  
TIM7  
TIM12  
TIM13  
TIM14  
LPTIM1  
WWDG  
SPI2/I2S2  
SPI3/I2S3  
USART2  
USART3  
UART4  
UART5  
I2C1  
APB1  
µA/MHz  
I2C2  
I2C3  
I2CFMP1  
CAN1  
CAN2  
CAN3  
PWR  
DAC1  
UART7  
UART8  
104/207  
DocID029162 Rev 5  
STM32F413xG/H  
Electrical characteristics  
Table 39. Peripheral current consumption (continued)  
DD (Typ)  
I
Peripheral  
Unit  
Scale 1  
Scale 2  
Scale 3  
AHB-APB2 bridge  
0.10  
6.78  
6.94  
3.14  
3.12  
2.89  
2.91  
3.45  
3.54  
1.52  
1.50  
0.58  
0.91  
2.95  
1.88  
1.86  
1.50  
2.89  
4.43  
7.08  
4.06  
0.11  
6.46  
6.62  
3.00  
2.98  
1.98  
2.00  
3.29  
3.37  
1.46  
1.43  
0.55  
0.86  
2.81  
1.79  
1.77  
1.43  
2.75  
4.21  
6.76  
3.87  
0.09  
5.80  
5.94  
2.69  
2.67  
1.75  
1.77  
2.95  
3.03  
1.31  
1.28  
0.50  
0.78  
2.53  
1.61  
1.59  
1.30  
2.47  
3.80  
6.05  
3.45  
TIM1  
TIM8  
USART1  
USART6  
UART9  
UART10  
ADC1  
SDIO  
SPI1  
APB2  
SPI4  
µA/MHz  
SYSCFG  
EXT1  
TIM9  
TIM10  
TIM11  
SPI5  
SAI  
DFSDM1  
DFSDM2  
Bus Matrix  
1. N is the number of stream enable (1...8).  
6.3.7  
Wakeup time from low-power modes  
The wakeup times given in Table 40 are measured starting from the wakeup event trigger up  
to the first instruction executed by the CPU:  
For Stop or Sleep modes: the wakeup event is WFE.  
WKUP (PA0/PC0/PC1) pins are used to wakeup from Standby, Stop and Sleep modes.  
DocID029162 Rev 5  
105/207  
174  
 
Electrical characteristics  
STM32F413xG/H  
Figure 26. Low-power mode wakeup  
:DNHXSꢀIURPꢀ6WRSꢀPRGHꢍꢀ  
PDLQꢀUHJXODWRU  
2SWLRQꢉE\WHVꢉDUHꢉQRWꢉUHORDGHG  
&38ꢉUHVWDUW  
5HJXODWRUꢉ  
UDPSꢐXS  
)ODVKꢉVWRSꢉH[LW  
+6,ꢉUHVWDUW  
+6,ꢉUHVWDUW  
:DNHXSꢀIURPꢀ6WRSꢀPRGHꢍꢀ  
PDLQꢀUHJXODWRUꢍꢀ  
IODVKꢀLQꢀ'HHSꢀSRZHUꢀGRZQꢀPRGH  
2SWLRQꢉE\WHVꢉDUHꢉQRWꢉUHORDGHG  
&38ꢉUHVWDUW  
)ODVKꢉ'HHSꢉ3GꢉUHFRYHU\  
5HJXODWRUꢉ  
UDPSꢐXS  
:DNHXSꢀIURPꢀ6WRSꢍꢀ  
UHJXODWRUꢀLQꢀORZꢀSRZHUꢀPRGH  
2SWLRQꢉE\WHVꢉDUHꢉQRWꢉUHORDGHG  
&38ꢉUHVWDUW  
5HJXODWRUꢉ  
UDPSꢐXS  
)ODVKꢉVWRSꢉH[LW  
+6,ꢉUHVWDUW  
:DNHXSꢀIURPꢀ6WRSꢍꢀ  
UHJXODWRUꢀLQꢀORZꢀSRZHUꢀPRGHꢍꢀ  
IODVKꢀLQꢀ'HHSꢀSRZHUꢀGRZQꢀPRGH  
2SWLRQꢉE\WHVꢉDUHꢉQRWꢉUHORDGHG  
&38ꢉUHVWDUW  
)ODVKꢉ'HHSꢉ3GꢉUHFRYHU\  
5HJXODWRUꢉ  
UDPSꢐXS  
+6,ꢉUHVWDUW  
:DNHXSꢀIURPꢀ6WDQGE\ꢀPRGH  
5HJXODWRU  
2))  
&38ꢉUHVWDUW  
)ODVKꢉ'HHSꢉ3GꢉUHFRYHU\  
5HJXODWRUꢉ  
UHVWDUW  
+6,ꢉUHVWDUW  
2SWLRQꢉE\WHVꢉORDGLQJ  
:DNHXSꢀIURPꢀ6OHHSꢀDQGꢀ  
)ODVKꢀLQꢀ'HHSꢀSRZHUꢀGRZQ  
5HJXODWRU  
21  
2SWLRQꢉE\WHVꢉDUHꢉQRWꢉUHORDGHG  
)ODVKꢉ'HHSꢉ3GꢉUHFRYHU\  
&38ꢉUHVWDUW  
06ꢀꢅꢅꢇꢄ9ꢈ  
All timings are derived from tests performed under ambient temperature and V =3.3 V.  
DD  
106/207  
DocID029162 Rev 5  
 
STM32F413xG/H  
Electrical characteristics  
(1)  
Table 40. Low-power mode wakeup timings  
Min(1)  
Typ(1) Max(1)  
Symbol  
Parameter  
Conditions  
Unit  
clk  
cycles  
tWUSLEEP  
-
-
4
6
Wakeup from Sleep mode  
Flash memory in Deep  
power down mode  
tWUSLEEPFDSM  
-
-
-
50.0  
15.0  
Main regulator  
12.7  
Main regulator, Flash  
memory in Deep power  
down mode  
-
-
-
104.1 120.0  
Wakeup from Stop mode,  
regulator in low power  
mode(2)  
20.9  
28.0  
Wakeup from STOP mode  
Code execution on Flash  
tWUSTOP  
Regulator in low power  
mode, Flash memory in  
Deep power down mode(2)  
112.5  
130.0  
Regulator in low power  
mode low voltage, Flash  
memory in Deep power  
down mode  
-
-
-
112.5  
4.2  
130.0  
7.0  
µs  
Main regulator with Flash in  
Stop mode or Deep power  
down(2)  
Wakeup from STOP mode  
code execution on RAM(3)  
tWUSTOP  
Wakeup from Stop mode,  
regulator in low power  
mode and Flash in Stop  
mode or Deep power down  
12.6  
20.0  
Wakeup from Standby  
mode  
tWUSTDBY  
-
-
-
-
328.2 400.0  
From Flash_Stop mode  
-
-
11.0  
40.0  
tWUFLASH  
Wakeup of Flash  
From Flash Deep power  
down mode  
1. Guaranteed by characterization results.  
2. The specification is valid for wakeup from regulator in low power mode or low power low voltage mode, since the timing  
difference is negligible.  
3. For the faster wakeup time for code execution on RAM, the Flash must be in STOP or DeepPower Down mode (see  
reference manual RM0430).  
6.3.8  
External clock source characteristics  
High-speed external user clock generated from an external source  
In bypass mode the HSE oscillator is switched off and the input pin is a standard I/O. The  
external clock signal has to respect the Table 59. However, the recommended clock input  
waveform is shown in Figure 27.  
The characteristics given in Table 41 result from tests performed using an high-speed  
external clock source, and under ambient temperature and supply voltage conditions  
DocID029162 Rev 5  
107/207  
174  
 
 
 
 
Electrical characteristics  
STM32F413xG/H  
summarized in Table 17.  
Table 41. High-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
External user clock source  
frequency(1)  
fHSE_ext  
1
-
50  
MHz  
VHSEH  
VHSEL  
tw(HSE)  
OSC_IN input pin high level voltage  
OSC_IN input pin low level voltage  
0.7VDD  
VSS  
-
-
VDD  
V
0.3VDD  
OSC_IN high or low time(1)  
OSC_IN rise or fall time(1)  
5
-
-
-
-
tw(HSE)  
ns  
tr(HSE)  
tf(HSE)  
10  
Cin(HSE) OSC_IN input capacitance(1)  
-
45  
-
5
-
-
pF  
%
DuCy(HSE) Duty cycle  
55  
±1  
IL  
OSC_IN Input leakage current  
VSS VIN VDD  
-
µA  
1. Guaranteed by design.  
Low-speed external user clock generated from an external source  
In bypass mode the LSE oscillator is switched off and the input pin is a standard I/O. The  
external clock signal has to respect the Table 59. However, the recommended clock input  
waveform is shown in Figure 28.  
The characteristics given in Table 42 result from tests performed using an low-speed  
external clock source, and under ambient temperature and supply voltage conditions  
summarized in Table 17.  
Table 42. Low-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
User External clock source  
frequency(1)  
fLSE_ext  
-
32.768  
1000  
kHz  
OSC32_IN input pin high level  
voltage  
VLSEH  
VLSEL  
tw(LSE)  
0.7VDD  
VSS  
-
-
-
VDD  
0.3VDD  
-
V
OSC32_IN input pin low level voltage  
OSC32_IN high or low time(1)  
450  
tf(LSE)  
ns  
tr(LSE)  
tf(LSE)  
OSC32_IN rise or fall time(1)  
-
-
50  
Cin(LSE)  
OSC32_IN input capacitance(1)  
-
30  
-
5
-
-
pF  
%
DuCy(LSE) Duty cycle  
70  
±1  
IL  
OSC32_IN Input leakage current  
VSS VIN VDD  
-
µA  
1. Guaranteed by design.  
108/207  
DocID029162 Rev 5  
 
 
 
 
 
STM32F413xG/H  
Electrical characteristics  
Figure 27. High-speed external clock source AC timing diagram  
6
(3%(  
ꢐ  
ꢀꢁ ꢐ  
(3%,  
6
T
T
T
7ꢎ(3%ꢏ  
T
T
7ꢎ(3%ꢏ  
Rꢎ(3%ꢏ  
Fꢎ(3%ꢏ  
4
(3%  
F
(3%?EXT  
%XTERNAL  
CLOCK SOURCE  
)
,
/3# ?) .  
34-ꢈꢉ&  
AIꢀꢄꢆꢉꢃ  
Figure 28. Low-speed external clock source AC timing diagram  
9
/6(+  
ꢊꢃꢕ  
 
9
/6(/  
W
W
W
:ꢑ/6(ꢒ  
W
W
:ꢑ/6(ꢒ  
Uꢑ/6(ꢒ  
Iꢑ/6(ꢒ  
7
/6(  
I
/6(BH[W  
([WHUQDO  
,
/
26&ꢀꢄB,1  
FORFNꢉVRXUFH  
670ꢀꢄ)  
DLꢈꢁꢅꢄꢊ  
High-speed external clock generated from a crystal/ceramic resonator  
The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on  
characterization results obtained with typical external components specified in Table 43. In  
the application, the resonator and the load capacitors have to be placed as close as  
possible to the oscillator pins in order to minimize output distortion and startup stabilization  
time. Refer to the crystal resonator manufacturer for more details on the resonator  
characteristics (frequency, package, accuracy).  
DocID029162 Rev 5  
109/207  
174  
 
 
Electrical characteristics  
Symbol  
STM32F413xG/H  
(1)  
Table 43. HSE 4-26 MHz oscillator characteristics  
Parameter  
Conditions  
Min  
Typ Max Unit  
fOSC_IN  
RF  
Oscillator frequency  
Feedback resistor  
4
-
-
26  
-
MHz  
200  
kΩ  
VDD=3.3 V,  
ESR= 30 Ω,  
-
-
450  
530  
-
-
CL=5 pF @25 MHz  
IDD  
HSE current consumption  
HSE accuracy  
µA  
VDD=3.3 V,  
ESR= 30 Ω,  
CL=10 pF @25 MHz  
(2)  
ACCHSE  
-
-500  
-
-
500  
ppm  
mA/V  
ms  
Gm_crit_max Maximum critical crystal gm  
Startup  
-
-
1
-
(3)  
tSU(HSE)  
Startup time  
VDD is stabilized  
2
1. Guaranteed by design.  
2. This parameter depends on the crystal used in the application. The minimum and maximum values must  
be respected to comply with USB standard specifications.  
3. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz  
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly  
with the crystal manufacturer  
For C and C , it is recommended to use high-quality external ceramic capacitors in the  
L1  
L2  
5 pF to 25 pF range (Typ.), designed for high-frequency applications, and selected to match  
the requirements of the crystal or resonator (see Figure 29). C and C are usually the  
L1  
L2  
same size. The crystal manufacturer typically specifies a load capacitance which is the  
series combination of C and C . PCB and MCU pin capacitance must be included (10 pF  
L1  
L2  
can be used as a rough estimate of the combined pin and board capacitance) when sizing  
and C .  
C
L1  
L2  
Note:  
For information on selecting the crystal, refer to the application note AN2867 “Oscillator  
design guide for ST microcontrollers” available from the ST website www.st.com.  
Figure 29. Typical application with an 8 MHz crystal  
5HVRQDWRUꢉZLWK  
LQWHJUDWHGꢉFDSDFLWRUV  
&
/ꢈ  
I
26&B,1  
+6(  
%LDVꢉ  
FRQWUROOHG  
JDLQ  
ꢂꢉ0+]  
UHVRQDWRU  
5
)
26&B287  
ꢑꢈꢒ  
670ꢀꢄ)  
5
(;7  
&
/ꢄ  
DLꢈꢁꢅꢀꢃ  
1. REXT value depends on the crystal characteristics.  
Low-speed external clock generated from a crystal/ceramic resonator  
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on  
characterization results obtained with typical external components specified in Table 44. In  
the application, the resonator and the load capacitors have to be placed as close as  
110/207  
DocID029162 Rev 5  
 
 
 
STM32F413xG/H  
Electrical characteristics  
possible to the oscillator pins in order to minimize output distortion and startup stabilization  
time. Refer to the crystal resonator manufacturer for more details on the resonator  
characteristics (frequency, package, accuracy).  
The LSE high-power mode allows to cover a wider range of possible crystals but with a cost  
of higher power consumption.  
(1)  
Table 44. LSE oscillator characteristics (fLSE = 32.768 kHz)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
RF  
Feedback resistor  
-
-
18.4  
-
MΩ  
Low-power mode  
(default)  
-
-
1
IDD  
LSE current consumption  
LSE accuracy  
µA  
High-drive mode  
-
-
-
-
3
(2)  
ACCLSE  
-500  
500  
ppm  
Startup, low-power  
mode  
-
-
0.56  
Gm_crit_max Maximum critical crystal gm  
µA/V  
s
Startup, high-drive  
mode  
-
-
-
1.50  
-
(3)  
tSU(LSE)  
startup time  
VDD is stabilized  
2
1. Guaranteed by design.  
2. This parameter depends on the crystal used in the application. Refer to the application note AN2867.  
3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized  
32.768 kHz oscillation is reached. This value is guaranteed by characterization and not tested in  
production. It is measured for a standard crystal resonator and it can vary significantly with the crystal  
manufacturer.  
Note:  
For information on selecting the crystal, refer to the application note AN2867 “Oscillator  
design guide for ST microcontrollers” available from the ST website www.st.com.  
For information about the LSE high-power mode, refer to the reference manual RM0383.  
Figure 30. Typical application with a 32.768 kHz crystal  
5HVRQDWRUꢉZLWK  
LQWHJUDWHGꢉFDSDFLWRUV  
&
/ꢈ  
I
26&ꢀꢄB ,1  
/6(  
%LDVꢉꢉ  
FRQWUROOHG  
JDLQ  
ꢀꢄꢌꢁꢆꢂꢉN+]  
UHVRQDWRU  
5
)
26&ꢀꢄB 28 7  
670ꢀꢄ)  
&
/ꢄ  
DLꢈꢁꢅꢀꢈD  
DocID029162 Rev 5  
111/207  
174  
 
 
Electrical characteristics  
STM32F413xG/H  
6.3.9  
Internal clock source characteristics  
The parameters given in Table 45 and Table 46 are derived from tests performed under  
ambient temperature and V supply voltage conditions summarized in Table 17.  
DD  
High-speed internal (HSI) RC oscillator  
L
(1)  
Table 45. HSI oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
fHSI  
Frequency  
-
-
16  
-
1
MHz  
%
HSI user trimming step(2)  
Accuracy of the HSI oscillator  
HSI oscillator startup time  
-
-
-
TA = – 40 to 125 °C(3)  
TA = – 40 to 105 °C(3)  
TA = –10 to 85 °C(3)  
TA = 25 °C(4)  
–8  
–8  
–4  
–1  
-
-
6.75  
4.5  
4
%
ACCHSI  
-
-
%
%
-
1
%
(2)  
tsu(HSI)  
-
2.2  
4
µs  
HSI oscillator power  
consumption  
(2)  
IDD(HSI)  
-
-
60  
80  
µA  
1. VDD = 3.3 V, TA = –40 to 125 °C unless otherwise specified.  
2. Guaranteed by design  
3. Based on characterization  
4. Factory calibrated, parts not soldered.  
Figure 31. ACC  
versus temperature  
HSI  
ꢁꢑꢁꢅ  
ꢁꢑꢁꢇ  
ꢁꢑꢁꢉ  
ꢊꢇꢁ  
ꢉꢆ  
ꢀꢁꢆ  
ꢀꢉꢆ  
4! ꢎ #ꢏ  
ꢊꢁꢑꢁꢉ  
ꢊꢁꢑꢁꢇ  
ꢊꢁꢑꢁꢅ  
ꢊꢁꢑꢁꢃ  
-IN  
-AX  
4YPICAL  
-3ꢈꢁꢇꢂꢉ6ꢀ  
1. Guaranteed by characterization results.  
112/207  
DocID029162 Rev 5  
 
 
 
 
STM32F413xG/H  
Electrical characteristics  
Low-speed internal (LSI) RC oscillator  
(1)  
Table 46. LSI oscillator characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
(2)  
fLSI  
Frequency  
16.1  
32.0  
15.0  
0.4  
47.0  
40.0  
0.6  
kHz  
µs  
(3)  
tsu(LSI)  
LSI oscillator startup time  
-
-
(3)  
IDD(LSI)  
LSI oscillator power consumption  
µA  
1.  
VDD = 3 V, TA = –40 to 125 °C unless otherwise specified.  
2. Guaranteed by characterization results.  
3. Guaranteed by design.  
Figure 32. ACC versus temperature  
LSI  
ꢅꢃꢌꢃꢕ  
ꢇꢃꢌꢃꢕ  
ꢀꢃꢌꢃꢕ  
ꢄꢃꢌꢃꢕ  
ꢈꢃꢌꢃꢕ  
ꢃꢌꢃꢕ  
PD[  
DYJ  
PLQ  
ꢐꢈꢃꢌꢃꢕ  
ꢐꢄꢃꢌꢃꢕ  
ꢐꢀꢃꢌꢃꢕ  
ꢐꢇꢃꢌꢃꢕ  
ꢐꢇꢅ  
ꢐꢀꢅ  
ꢐꢄꢅ  
ꢐꢈꢅ  
ꢐꢅ  
ꢈꢅ  
ꢄꢅ  
ꢀꢅ  
ꢇꢅ  
ꢅꢅ  
ꢆꢅ  
ꢁꢅ  
ꢂꢅ  
ꢊꢅ  
ꢈꢃꢅ  
ꢈꢈꢅ  
ꢈꢄꢅ  
7HPSHUDWXUHꢉꢑƒ&ꢒ  
06Yꢇꢀꢃꢊꢆ9ꢈ  
DocID029162 Rev 5  
113/207  
174  
 
 
Electrical characteristics  
STM32F413xG/H  
6.3.10  
PLL characteristics  
The parameters given in Table 47 and Table 48 are derived from tests performed under  
temperature and V supply voltage conditions summarized in Table 17.  
DD  
Table 47. Main PLL characteristics  
Symbol  
Parameter  
PLL input clock(1)  
Conditions  
Min  
Typ  
Max  
Unit  
fPLL_IN  
-
-
0.95(2)  
24  
1
-
2.10  
100  
fPLLP_OUT  
PLLP multiplier output clock  
48 MHz PLLQ multiplier  
output clock  
fPLLQ_OUT  
-
-
-
-
48  
-
75  
MHz  
PLLR multiplier output clock  
for I2S and SAI  
fPLLR_OUT  
fVCO_OUT  
216  
PLL VCO output  
PLL lock time  
-
100  
75  
100  
-
-
-
432  
200  
300  
-
VCO freq = 100 MHz  
VCO freq = 432 MHz  
tLOCK  
µs  
ps  
-
Cycle-to-cycle jitter  
Period Jitter  
RMS  
25  
peak  
to  
peak  
-
-
-
150  
15  
-
-
-
System clock  
100 MHz  
RMS  
Jitter(3)  
peak  
to  
200  
peak  
Cycle to cycle at 1 MHz  
on 1000 samples.  
Bit Time CAN jitter  
-
330  
-
VCO freq = 100 MHz  
VCO freq = 432 MHz  
0.15  
0.45  
0.40  
0.75  
(4)  
IDD(PLL)  
PLL power consumption on VDD  
-
-
mA  
VCO freq = 100 MHz  
VCO freq = 432 MHz  
0.30  
0.55  
0.40  
0.85  
PLL power consumption on  
VDDA  
(4)  
IDDA(PLL)  
1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared  
between PLL and PLLI2S.  
2. Guaranteed by design.  
3. The use of two PLLs in parallel could degraded the Jitter up to +30%.  
4. Guaranteed by characterization results.  
114/207  
DocID029162 Rev 5  
 
 
 
STM32F413xG/H  
Symbol  
Electrical characteristics  
Table 48. PLLI2S (audio PLL) characteristics  
Parameter  
PLL input clock(1)  
Conditions  
Min  
Typ  
Max  
Unit  
fPLL_IN  
-
0.95(2)  
1
2.10  
48 MHz PLLI2SQ  
multiplier output clock  
fPLLI2SQ_OUT  
-
-
-
48  
-
75  
MHz  
PLLI2SR multiplier output clock  
for I2S and SAI  
fPLLI2SR_OUT  
fVCO_OUT  
-
216  
PLLI2S VCO output  
-
100  
75  
100  
-
-
-
432  
200  
300  
-
VCO freq = 100 MHz  
VCO freq = 432 MHz  
tLOCK  
PLLI2S lock time  
µs  
-
RMS  
90  
Cycle to cycle at  
12.288 MHz on  
48 kHz period,  
N=432, R=5  
peak  
to  
peak  
-
280  
90  
-
Master I2S clock jitter  
WS I2S clock jitter  
Average frequency of  
12.288 MHz  
Jitter(3)  
ps  
-
-
-
-
N = 432, R = 5  
on 1000 samples  
Cycle to cycle at 48 KHz  
on 1000 samples  
400  
VCO freq = 100 MHz  
VCO freq = 432 MHz  
0.15  
0.45  
0.40  
0.75  
PLLI2S power consumption on  
VDD  
(4)  
IDD(PLLI2S)  
-
-
mA  
VCO freq = 100 MHz  
VCO freq = 432 MHz  
0.30  
0.55  
0.40  
0.85  
PLLI2S power consumption on  
VDDA  
(4)  
IDDA(PLLI2S)  
1. Take care of using the appropriate division factor M to have the specified PLL input clock values.  
2. Guaranteed by design.  
3. Value given with main PLL running.  
4. Guaranteed by characterization results.  
DocID029162 Rev 5  
115/207  
174  
 
 
Electrical characteristics  
STM32F413xG/H  
6.3.11  
PLL spread spectrum clock generation (SSCG) characteristics  
The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic  
interferences (see Table 55: EMI characteristics for LQFP144). It is available only on the  
main PLL.  
Table 49. SSCG parameter constraints  
Symbol  
Parameter  
Min  
Typ  
Max(1)  
Unit  
fMod  
md  
Modulation frequency  
Peak modulation depth  
-
0.25  
-
-
-
-
10  
2
kHz  
%
MODEPER * INCSTEP  
1. Guaranteed by design.  
(Modulation period) * (Increment Step)  
215-1  
-
Equation 1  
The frequency modulation period (MODEPER) is given by the equation below:  
MODEPER = round[fPLL_IN ⁄ (4 × fMod)]  
f
and f  
must be expressed in Hz.  
PLL_IN  
Mod  
As an example:  
If f = 1 MHz, and f  
= 1 kHz, the modulation depth (MODEPER) is given by  
PLL_IN  
MOD  
equation 1:  
MODEPER = round[106 ⁄ (4 × 103)] = 250  
Equation 2  
Equation 2 allows to calculate the increment step (INCSTEP):  
INCSTEP = round[((215 1) × md × PLLN) ⁄ (100 × 5 × MODEPER)]  
f
must be expressed in MHz.  
VCO_OUT  
With a modulation depth (md) = ±2 % (4 % peak to peak), and PLLN = 240 (in MHz):  
INCSTEP = round[((215 1) × 2 × 240) ⁄ (100 × 5 × 250)] = 126md(quantitazed)%  
An amplitude quantization error may be generated because the linear modulation profile is  
obtained by taking the quantized values (rounded to the nearest integer) of MODPER and  
INCSTEP. As a result, the achieved modulation depth is quantized. The percentage  
quantized modulation depth is given by the following formula:  
mdquantized% = (MODEPER × INCSTEP × 100 × 5) ⁄ ((215 1) × PLLN)  
As a result:  
mdquantized% = (250 × 126 × 100 × 5) ⁄ ((215 1) × 240) = 2.002%(peak)  
116/207  
DocID029162 Rev 5  
 
 
STM32F413xG/H  
Electrical characteristics  
Figure 33 and Figure 34 show the main PLL output clock waveforms in center spread and  
down spread modes, where:  
F0 is f  
nominal.  
PLL_OUT  
T
is the modulation period.  
mode  
md is the modulation depth.  
Figure 33. PLL output clock waveforms in center spread mode  
&REQUENCY ꢎ0,,?/54ꢏ  
MD  
&ꢁ  
MD  
4IME  
TMODE  
ꢉXTMODE  
AIꢀꢄꢉꢂꢀ  
Figure 34. PLL output clock waveforms in down spread mode  
)UHTXHQF\ꢉꢑ3//B287ꢒ  
)ꢃ  
ꢄ[PG  
7LPH  
WPRGH  
ꢄ[WPRGH  
DLꢈꢁꢄꢊꢄE  
6.3.12  
Memory characteristics  
Flash memory  
The characteristics are given at T = 40 to 125 °C unless otherwise specified.  
A
The devices are shipped to customers with the Flash memory erased.  
Table 50. Flash memory characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Write / Erase 8-bit mode, VDD = 1.7 V  
Write / Erase 16-bit mode, VDD = 2.1 V  
Write / Erase 32-bit mode, VDD = 3.3 V  
-
-
-
5
8
-
-
-
IDD  
Supply current  
mA  
12  
DocID029162 Rev 5  
117/207  
174  
 
 
 
 
 
 
Electrical characteristics  
STM32F413xG/H  
Table 51. Flash memory programming  
Symbol  
Parameter  
Conditions  
Min(1) Typ Max(1) Unit  
Program/eraseparallelism  
(PSIZE) = x 8/16/32  
tprog  
Word programming time  
-
-
-
-
-
-
-
-
-
-
-
-
-
16  
100(2) µs  
800  
Program/eraseparallelism  
(PSIZE) = x 8  
400  
300  
250  
Program/eraseparallelism  
(PSIZE) = x 16  
tERASE16KB Sector (16 KB) erase time  
tERASE64KB Sector (64 KB) erase time  
tERASE128KB Sector (128 KB) erase time  
600  
500  
ms  
ms  
s
Program/eraseparallelism  
(PSIZE) = x 32  
Program/eraseparallelism  
(PSIZE) = x 8  
1200 2400  
Program/eraseparallelism  
(PSIZE) = x 16  
700  
550  
2
1400  
1100  
4
Program/eraseparallelism  
(PSIZE) = x 32  
Program/eraseparallelism  
(PSIZE) = x 8  
Program/eraseparallelism  
(PSIZE) = x 16  
1.3  
1
2.6  
2
Program/eraseparallelism  
(PSIZE) = x 32  
Program/eraseparallelism  
(PSIZE) = x 8  
24  
15  
11  
48  
Program/eraseparallelism  
(PSIZE) = x 16  
tME  
Mass erase time  
30  
s
Program/eraseparallelism  
(PSIZE) = x 32  
22  
32-bit program operation  
16-bit program operation  
8-bit program operation  
2.7  
2.1  
1.7  
-
-
-
3.6  
3.6  
3.6  
V
V
V
Vprog  
Programming voltage  
1. Guaranteed by characterization results.  
2. The maximum programming time is measured after 100K erase operations.  
118/207  
DocID029162 Rev 5  
 
 
STM32F413xG/H  
Electrical characteristics  
Table 52. Flash memory programming with V voltage  
PP  
Symbol  
tprog  
Parameter  
Conditions  
Min(1)  
Typ  
Max(1) Unit  
Double word programming  
-
-
16  
230  
490  
875  
9.8  
-
100(2)  
µs  
tERASE16KB Sector (16 KB) erase time  
tERASE64KB Sector (64 KB) erase time  
tERASE128KB Sector (128 KB) erase time  
-
-
TA = 0 to +40 °C  
VDD = 3.3 V  
-
ms  
VPP = 8.5 V  
-
-
tME  
Vprog  
VPP  
Mass erase time  
-
-
s
V
V
Programming voltage  
VPP voltage range  
-
-
2.7  
7
3.6  
9
-
Minimum current sunk on  
the VPP pin  
IPP  
-
-
10  
-
-
-
-
mA  
Cumulative time during  
which VPP is applied  
(3)  
tVPP  
1
hour  
1. Guaranteed by design.  
2. The maximum programming time is measured after 100K erase operations.  
3. VPP should only be connected during programming/erasing.  
Table 53. Flash memory endurance and data retention  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min(1)  
TA = –40 to +85 °C (6 suffix versions)  
TA = –40 to +105 °C (7 suffix versions)  
TA = –40 to +125 °C (3 suffix versions)  
NEND Endurance  
kcycles  
Years  
10  
1 kcycle(2) at TA = 85 °C  
1 kcycle(2) at TA = 105 °C  
1 kcycle(2) at TA = 125 °C  
10 kcycle(2) at TA = 55 °C  
30  
10  
3
tRET  
Data retention  
20  
1. Guaranteed by characterization results.  
2. Cycling performed over the whole temperature range.  
DocID029162 Rev 5  
119/207  
174  
 
 
Electrical characteristics  
STM32F413xG/H  
6.3.13  
EMC characteristics  
Susceptibility tests are performed on a sample basis during device characterization.  
Functional EMS (electromagnetic susceptibility)  
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).  
the device is stressed by two electromagnetic events until a failure occurs. The failure is  
indicated by the LEDs:  
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until  
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.  
FTB: A burst of fast transient voltage (positive and negative) is applied to V and V  
through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant  
with the IEC 61000-4-4 standard.  
DD  
SS  
A device reset allows normal operations to be resumed.  
The test results are given in Table 55. They are based on the EMS levels and classes  
defined in application note AN1709.  
Table 54. EMS characteristics for LQFP144 package  
Level/  
Class  
Symbol  
Parameter  
Conditions  
VDD = 3.3 V, LQFP144  
Voltage limits to be applied on any I/O pin  
to induce a functional disturbance  
VFESD  
TA = +25 °C, fHCLK = 100 MHz,  
conforms to IEC 61000-4-2  
1B  
3B  
V
DD = 3.3 V, LQFP144  
Fast transient voltage burst limits to be  
applied through 100 pF on VDD and VSS  
pins to induce a functional disturbance  
VEFTB  
TA = +25 °C, fHCLK = 100 MHz,  
conforms to IEC 61000-4-4  
When the application is exposed to a noisy environment, it is recommended to avoid pin  
exposition to disturbances. The pins showing a middle range robustness are: PA0, PA1,  
PA2, on LQFP144 packages and PDR_ON on WLCSP81.  
As a consequence, it is recommended to add a serial resistor (1 kΩ maximum) located as  
close as possible to the MCU to the pins exposed to noise (connected to tracks longer than  
50 mm on PCB).  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
Software recommendations  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical Data corruption (control registers...)  
120/207  
DocID029162 Rev 5  
 
 
STM32F413xG/H  
Electrical characteristics  
Prequalification trials  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1  
second.  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring (see application note AN1015).  
Electromagnetic Interference (EMI)  
The electromagnetic field emitted by the device are monitored while a simple application,  
executing EEMBC code, is running. This emission test is compliant with IEC61967-2  
standard which specifies the test board and the pin loading.  
Table 55. EMI characteristics for LQFP144  
Max vs.  
[fHSE/fCPU  
Monitored  
frequency band  
]
Symbol  
Parameter  
Conditions  
Unit  
8/100 MHz  
0.1 to 30 MHz  
30 to 130 MHz  
130 MHz to 1 GHz  
1 GHz to 2 GHz  
EMI Level  
13  
21  
25  
19  
4
VDD = 3.6 V, TA = 25 °C, LQFP144  
package, conforming to IEC 61967-2,  
EEMBC, ART ON, all peripheral clocks  
enabled, clock dithering disabled.  
dBµV  
-
SEMI  
Peak level  
6.3.14  
Absolute maximum ratings (electrical sensitivity)  
Based on three different tests (ESD, LU) using specific measurement methods, the device is  
stressed in order to determine its performance in terms of electrical sensitivity.  
Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test  
conforms to the JESD22-A114/C101 standard.  
DocID029162 Rev 5  
121/207  
174  
 
 
 
Electrical characteristics  
STM32F413xG/H  
Table 56. ESD absolute maximum ratings  
Conditions  
Maximum  
Unit  
Symbol  
Ratings  
Class  
value(1)  
Electrostatic  
VESD(HBM) discharge voltage  
TA = +25 °C conforming to JESD22-A114  
2
2000  
(human body model)  
TA = +25 °C conforming to ANSI/ESD STM5.3.1,  
UFBGA144, UFBGA100, LQFP144, LQFP100,  
WLCSP81, LQFP64  
V
3
4
250  
Electrostatic  
VESD(CDM) discharge voltage  
(charge device model)  
TA = +25 °C conforming to ANSI/ESD STM5.3.1,  
UFQFPN48  
500  
1. Guaranteed by characterization results.  
Static latchup  
Two complementary static tests are required on six parts to assess the latchup  
performance:  
A supply overvoltage is applied to each power supply pin  
A current injection is applied to each input, output and configurable I/O pin  
These tests are compliant with EIA/JESD 78A IC latchup standard.  
Table 57. Electrical sensitivities  
Symbol  
Parameter  
Conditions  
Class  
LU  
Static latch-up class  
TA = +125 °C conforming to JESD78A  
II level A  
6.3.15  
I/O current injection characteristics  
As a general rule, current injection to the I/O pins, due to external voltage below V or  
SS  
above V (for standard, 3 V-capable I/O pins) should be avoided during normal product  
DD  
operation. However, in order to give an indication of the robustness of the microcontroller in  
cases when abnormal injection accidentally happens, susceptibility tests are performed on a  
sample basis during device characterization.  
Functional susceptibility to I/O current injection  
While a simple application is executed on the device, the device is stressed by injecting  
current into the I/O pins programmed in floating input mode. While current is injected into  
the I/O pin, one at a time, the device is checked for functional failures.  
The failure is indicated by an out of range parameter: ADC error above a certain limit (>5  
LSB TUE), out of conventional limits of induced leakage current on adjacent pins  
(out of –5 µA/+0 µA range), or other functional failure (for example reset, oscillator  
frequency deviation).  
Negative induced leakage current is caused by negative injection and positive induced  
leakage current by positive injection.  
The test results are given in Table 58.  
122/207  
DocID029162 Rev 5  
 
 
 
 
STM32F413xG/H  
Electrical characteristics  
Table 58. I/O current injection susceptibility(1)  
Functional susceptibility  
Symbol  
Description  
Unit  
Negative  
injection  
Positive  
injection  
Injected current on BOOT0, PDR_ON, BYPASS_REG  
Injected current on NRST  
- 0  
- 0  
0
NA  
Injected current on PE6, PC13, PC14, PC15, PF0, PF1,  
PF2, PC0, PC1, PC2, PC3  
IINJ  
- 0  
NA  
mA  
Injected current on any other FT and FTf pins  
Injected current on any other pins  
- 5  
- 5  
NA  
+ 5  
1. NA = not applicable.  
Note:  
It is recommended to add a Schottky diode (pin to ground) to analog pins which may  
potentially inject negative currents.  
6.3.16  
I/O port characteristics  
General input/output characteristics  
Unless otherwise specified, the parameters given in Table 59 are derived from tests  
performed under the conditions summarized in Table 17. All I/Os are CMOS and TTL  
compliant.  
Table 59. I/O static characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
FT, TTa, TC and NRST I/O input  
low level voltage  
(1)  
1.7 VVDD3.6 V  
-
-
0.3VDD  
1.75 VVDD 3.6 V,  
-40 °CTA 125 °C  
VIL  
-
-
-
-
-
V
V
BOOT0 I/O input low level  
voltage  
0.1VDD+0.1(2)  
1.7 VVDD 3.6 V,  
0 °CTA 125 °C  
FT, TTa, TC and NRST I/O input  
high level voltage(5)  
(1)  
1.7 VVDD3.6 V  
0.7VDD  
-
-
-
-
1.75 VVDD 3.6 V,  
-40 °CTA 125 °C  
VIH  
BOOT0 I/O input high level  
voltage  
0.17VDD+0.7(2)  
-
-
-
1.7 VVDD 3.6 V,  
0 °CTA 125 °C  
FT, TTa, TC and NRST I/O input  
hysteresis  
(2)(3)  
1.7 VVDD3.6 V  
10% VDD  
1.75 VVDD 3.6 V,  
-40 °CTA 125 °C  
VHYS  
V
BOOT0 I/O input hysteresis  
0.1  
1.7 VVDD 3.6 V,  
0 °CTA 125 °C  
DocID029162 Rev 5  
123/207  
174  
 
 
 
 
 
 
Electrical characteristics  
STM32F413xG/H  
Table 59. I/O static characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
I/O input leakage current (4)  
VSS VIN VDD  
-
-
1
Ilkg  
µA  
I/O FT/TC input leakage current  
VIN = 5 V  
VIN = VSS  
-
-
-
3
(5)  
All pins  
except for  
PA10  
(OTG_FS_ID)  
30  
7
40  
10  
40  
50  
14  
50  
Weak pull-up  
equivalent  
resistor(6)  
RPU  
PA10  
(OTG_FS_ID)  
kΩ  
All pins  
except for  
PA10  
(OTG_FS_ID)  
VIN = VDD  
30  
Weak pull-down  
equivalent  
RPD  
resistor(7)  
PA10  
-
-
7
-
10  
5
14  
-
(OTG_FS_ID)  
(8)  
CIO  
I/O pin capacitance  
pF  
1. Guaranteed by test in production.  
2. Guaranteed by design.  
3. With a minimum of 200 mV.  
4. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins, Refer to Table 58: I/O  
current injection susceptibility  
5. To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled. Leakage could be  
higher than the maximum value, if negative current is injected on adjacent pins.Refer to Table 58: I/O current injection  
susceptibility  
6. Pull-up resistors are designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series  
resistance is minimum (~10% order).  
7. Pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS contribution to the  
series resistance is minimum (~10% order).  
8. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization results.  
All I/Os are CMOS and TTL compliant (no software configuration required). Their  
characteristics cover more than the strict CMOS-technology or TTL parameters. The  
coverage of these requirements for FT and TC I/Os is shown in Figure 35.  
124/207  
DocID029162 Rev 5  
STM32F413xG/H  
Electrical characteristics  
Figure 35. FT/TC I/O input characteristics  
9,/ꢋ9,+ꢉꢑ9ꢒ  
ꢄꢌꢅꢄ  
77/ꢉUHTXLUHPHQWꢉ  
9,+PLQꢉ ꢉꢄ9  
ꢄꢌꢃ  
ꢈꢌꢊꢄ  
ꢈꢌꢁ  
ꢈꢌꢄꢄ  
ꢈꢌꢈꢊ  
$UHDꢉQRWꢉ  
GHWHUPLQHG  
ꢈꢌꢃꢆꢅ  
ꢃꢌꢂ  
77/ꢉUHTXLUHPHQWꢉ9,/PD[ꢉ  
 ꢉꢃꢌꢂ9  
7HVWHGꢀLQꢀSURGXFWLRQꢀꢀꢋꢀ&026ꢀUHTXLUHPHQWꢀ9,/PD[ꢀ ꢀꢊꢎꢃ9''  
ꢃꢌꢅꢅ  
ꢃꢌꢅꢈ  
9''ꢉꢑ9ꢒ  
ꢈꢌꢁ  
ꢄꢌꢃ  
ꢄꢌꢇ  
ꢄꢌꢁ  
ꢀꢌꢀ  
ꢀꢌꢆ  
06ꢀꢀꢁꢇꢆ9ꢈ  
Output driving current  
The GPIOs (general purpose input/outputs) can sink or source up to 8 mA, and sink or  
source up to 20 mA (with a relaxed V /V ) except PC13, PC14 and PC15 which can  
OL OH  
sink or source up to 3mA. When using the PC13 to PC15 GPIOs in output mode, the speed  
should not exceed 2 MHz with a maximum load of 30 pF.  
In the user application, the number of I/O pins which can drive current must be limited to  
respect the absolute maximum rating specified in Section 6.2. In particular:  
The sum of the currents sourced by all the I/Os on V  
plus the maximum Run  
DD,  
consumption of the MCU sourced on V  
cannot exceed the absolute maximum rating  
DD,  
ΣI  
(see Table 15).  
VDD  
The sum of the currents sunk by all the I/Os on V plus the maximum Run  
SS  
consumption of the MCU sunk on V cannot exceed the absolute maximum rating  
SS  
ΣI  
(see Table 15).  
VSS  
Output voltage levels  
Unless otherwise specified, the parameters given in Table 60 are derived from tests  
performed under ambient temperature and V supply voltage conditions summarized in  
DD  
Table 17. All I/Os are CMOS and TTL compliant.  
DocID029162 Rev 5  
125/207  
174  
 
Electrical characteristics  
STM32F413xG/H  
Table 60. Output voltage characteristics  
Symbol  
Parameter  
Output low level voltage for an I/O pin  
Conditions  
Min  
Max  
Unit  
VOL  
VOH  
VOL  
VOH  
CMOS port(2)  
IIO = +8 mA  
-
0.4  
(1)  
V
(3)  
(1)  
(3)  
Output high level voltage for an I/O pin  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
VDD–0.4  
-
0.4  
-
2.7 V VDD 3.6 V  
TTL port(2)  
IIO =+8 mA  
-
V
2.4  
2.7 V VDD 3.6 V  
(1)  
VOL  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
-
1.3(4)  
IIO = + 20 mA  
V
V
V
(3)  
VDD–1.3(4)  
-
2.7 V VDD 3.6 V  
VOH  
VOL  
VOH  
-
0.4(4)  
(1)  
IIO = + 6 mA  
(3)  
VDD–0.4(4)  
-
0.4(5)  
-
1.8 V VDD 3.6 V  
(1)  
VOL  
-
IIO = +4 mA  
VOH  
VDD–0.4(5)  
(3)  
1.7 V VDD 3.6 V  
IIO = + 20 mA  
Output low level voltage for an FTf I/O pin in  
FM+ mode  
(1)  
(1)  
VOLFM  
-
-
0.4  
0.4  
V
V
2.7 V VDD 3.6 V  
Output low level voltage for an FTf I/O pin in  
FM+ mode  
IIO = + 10 mA  
1.8 V VDD 3.6 V  
VOLFM  
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 15. and the sum of  
IIO (I/O ports and control pins) must not exceed IVSS  
.
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.  
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 15 and the sum  
of IIO (I/O ports and control pins) must not exceed IVDD  
4. Guaranteed by characterization results.  
5. Guaranteed by design.  
.
Input/output AC characteristics  
The definition and values of input/output AC characteristics are given in Figure 36 and  
Table 61, respectively.  
Unless otherwise specified, the parameters given in Table 61 are derived from tests  
performed under the ambient temperature and V supply voltage conditions summarized  
DD  
in Table 17.  
126/207  
DocID029162 Rev 5  
 
 
 
STM32F413xG/H  
OSPEEDRy  
Electrical characteristics  
(1)(2)  
Table 61. I/O AC characteristics  
[1:0] bit  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
value(1)  
CL = 50 pF, VDD 2.70 V  
CL = 50 pF, VDD1.7 V  
CL = 10 pF, VDD 2.70 V  
CL = 10 pF, VDD 1.7 V  
-
-
-
-
-
-
-
-
4
2
fmax(IO)out Maximum frequency(3)  
Output high to low level  
MHz  
8
00  
4
tf(IO)out  
/
fall time and output low to CL = 50 pF, VDD = 1.7 V to 3.6 V  
high level rise time  
-
-
100  
ns  
tr(IO)out  
CL = 50 pF, VDD 2.70 V  
CL = 50 pF, VDD 1.7 V  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
25  
12.5  
50  
fmax(IO)out Maximum frequency(3)  
MHz  
CL = 10 pF, VDD 2.70 V  
CL = 10 pF, VDD 1.7 V  
CL = 50 pF, VDD 2.7 V  
CL = 50 pF, VDD 1.7 V  
CL = 10 pF, VDD 2.70 V  
CL = 10 pF, VDD 1.7 V  
CL = 40 pF, VDD 2.70 V  
CL = 40 pF, VDD 1.7 V  
CL = 10 pF, VDD 2.70 V  
CL = 10 pF, VDD 1.7 V  
CL = 40 pF, VDD2.70 V  
CL = 40 pF, VDD1.7 V  
CL = 10 pF, VDD2.70 V  
CL = 10 pF, VDD1.7 V  
CL = 30 pF, VDD 2.70 V  
CL = 30 pF, VDD 1.7 V  
CL = 30 pF, VDD 2.70 V  
CL = 30 pF, VDD 1.7 V  
CL = 10 pF, VDD2.70 V  
CL = 10 pF, VDD1.7 V  
20  
01  
10  
Output high to low level  
fall time and output low to  
high level rise time  
20  
tf(IO)out  
tr(IO)out  
/
ns  
6
10  
50(4)  
25  
fmax(IO)out Maximum frequency(3)  
MHz  
100(4)  
50(4)  
6
10  
Output high to low level  
fall time and output low to  
high level rise time  
10  
tf(IO)out  
tr(IO)out  
/
ns  
MHz  
ns  
4
6
100(4)  
50(4)  
4
Fmax(IO)ou  
Maximum frequency(3)  
t
11  
Output high to low level  
fall time and output low to  
high level rise time  
6
tf(IO)out  
tr(IO)out  
/
2.5  
4
Fmax Maximum frequency  
1
MHz  
ns  
FM+  
-
CL = 50 pF, 1.6 VDD 3.6 V  
Output high to low level  
fall time  
Tf  
-
-
-
5
-
Pulse width of external  
tEXTIpw signals detected by the  
EXTI controller  
-
10  
ns  
DocID029162 Rev 5  
127/207  
174  
 
Electrical characteristics  
STM32F413xG/H  
1. Guaranteed by characterization results.  
2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F4xx reference manual for a description of  
the GPIOx_SPEEDR GPIO port output speed register.  
3. The maximum frequency is defined in Figure 36.  
4. For maximum frequencies above 50 MHz and VDD > 2.4 V, the compensation cell should be used.  
Figure 36. I/O AC characteristics definition  
ꢊꢃꢕ  
ꢈꢃꢕ  
ꢅꢃꢕ  
ꢅꢃꢕ  
ꢊꢃꢕ  
W
ꢈꢃꢕ  
W
(;7(51$/  
287387  
21ꢉ&/  
Uꢑ,2ꢒRXW  
Iꢑ,2ꢒRXW  
7
0D[LPXPꢉIUHTXHQF\ꢉLVꢉDFKLHYHGꢉLIꢉꢑW ꢓꢉW ꢒꢉ”ꢉꢑꢄꢋꢀꢒ7ꢉDQGꢉLIꢉWKHꢉGXW\ꢉF\FOHꢉLVꢉꢑꢇꢅꢐꢅꢅꢕꢒꢉ  
Uꢉ  
I
ZKHQꢉORDGHGꢉE\ꢉ&  
/
ꢉVSHFLILHGꢉLQꢉWKHꢉWDEOHꢉ³ꢉ,ꢀ2ꢁ$&ꢁFKDUDFWHULVWLFV´ꢌꢉ  
DLꢈꢇꢈꢀꢈG  
6.3.17  
NRST pin characteristics  
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up  
resistor, R (see Table 59).  
PU  
Unless otherwise specified, the parameters given in Table 62 are derived from tests  
performed under the ambient temperature and V supply voltage conditions summarized  
DD  
in Table 17. Refer to Table 59: I/O static characteristics for the values of VIH and VIL for  
NRST pin.  
Table 62. NRST pin characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Weak pull-up equivalent  
resistor(1)  
RPU  
VIN = VSS  
30  
40  
50  
kΩ  
(2)  
VF(NRST)  
NRST Input filtered pulse  
-
-
-
-
100  
-
ns  
ns  
(2)  
VNF(NRST)  
NRST Input not filtered pulse  
VDD > 2.7 V  
300  
Internal Reset  
source  
TNRST_OUT Generated reset pulse duration  
20  
-
-
µs  
1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series  
resistance must be minimum (~10% order).  
2. Guaranteed by design.  
128/207  
DocID029162 Rev 5  
 
 
 
 
 
 
STM32F413xG/H  
Electrical characteristics  
Figure 37. Recommended NRST pin protection  
9
''  
([WHUQDO  
UHVHWꢉFLUFXLW  
ꢑꢈꢒ  
5
38  
ꢑꢄꢒ  
,QWHUQDOꢉ5HVHW  
1567  
)LOWHU  
ꢃꢌꢈꢉ—)  
670ꢀꢄ)  
DLꢈꢇꢈꢀꢄF  
1. The reset network protects the device against parasitic resets.  
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in  
Table 62. Otherwise the reset is not taken into account by the device.  
6.3.18  
TIM timer characteristics  
The parameters given in Table 63 are guaranteed by design.  
Refer to Section 6.3.16: I/O port characteristics for details on the input/output alternate  
function characteristics (output compare, input capture, external clock, PWM output).  
(1)(2)  
Table 63. TIMx characteristics  
Conditions(3)  
Symbol  
Parameter  
Min  
Max  
Unit  
AHB/APBx prescaler=1  
tTIMxCLK  
1
-
-
or 2 or 4, fTIMxCLK  
100 MHz  
=
11.9  
ns  
tTIMxCLK  
ns  
tres(TIM)  
Timer resolution time  
1
11.9  
0
-
AHB/APBx prescaler>4,  
fTIMxCLK = 100 MHz  
-
fTIMxCLK/2  
MHz  
MHz  
bit  
Timer external clock  
frequency on CH1 to CH4  
fEXT  
fTIMxCLK = 100 MHz  
0
50  
ResTIM  
Timer resolution  
-
16/32  
16-bit counter clock  
period when internal clock  
is selected  
tCOUNTER  
fTIMxCLK = 100 MHz  
0.0119  
780  
µs  
65536 ×  
65536  
tTIMxCLK  
S
-
-
-
Maximum possible count  
with 32-bit counter  
tMAX_COUNT  
fTIMxCLK = 100 MHz  
51.1  
1. TIMx is used as a general term to refer to the TIM1 to TIM11 timers.  
2. Guaranteed by design.  
3. The maximum timer frequency on APB1 is 50 MHz and on APB2 is up to 100 MHz, by setting the TIMPRE  
bit in the RCC_DCKCFGR register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = HCKL, otherwise  
TIMxCLK >= 4x PCLKx.  
DocID029162 Rev 5  
129/207  
174  
 
 
 
 
Electrical characteristics  
STM32F413xG/H  
6.3.19  
Communications interfaces  
I2C interface characteristics  
2
2
The I C interface meets the requirements of the standard I C communication protocol with  
the following restrictions: the I/O pins SDA and SCL are mapped to are not “true” open-  
drain. When configured as open-drain, the PMOS connected between the I/O pin and V is  
DD  
disabled, but is still present.  
2
The I C characteristics are described in Table 64. Refer also to Section 6.3.16: I/O port  
for more details on the input/output alternate function characteristics (SDA  
characteristics  
and SCL)  
.
2
The I C bus interface supports standard mode (up to 100 kHz) and fast mode (up to 400  
2
kHz). The I C bus frequency can be increased up to 1 MHz. For more details about the  
complete solution, contact your local ST sales representative.  
2
Table 64. I C characteristics  
Standard mode I2C(1)(2)  
Fast mode I2C(1)(2)  
Symbol  
Parameter  
Unit  
Min  
Max  
Min  
Max  
tw(SCLL)  
tw(SCLH)  
tsu(SDA)  
th(SDA)  
SCL clock low time  
4.70  
4.0  
0.25  
0
-
1.30  
0.60  
0.10  
0
-
SCL clock high time  
SDA setup time  
-
-
-
-
-
-
SDA data hold time  
tv(SDA,ACK) SDA data hold time  
-
3.45(3)  
-
0.90(4)  
tr(SDA)  
SDA and SCL rise time  
tr(SCL)  
-
0.100  
-
0.30  
tf(SDA)  
SDA and SCL fall time  
tf(SCL)  
-
4
0.30  
-
0.30  
µs  
th(STA)  
tsu(STA)  
Start condition hold time  
-
-
-
-
0.6  
0.6  
0.60  
1.3  
-
-
-
-
Repeated Start condition setup  
time  
4.7  
4
tsu(STO)  
Stop condition setup time  
Stop to Start condition time (bus  
free)  
tw(STO:STA)  
4.70  
Pulse width of the spikes that are  
suppressed by the analog filter  
for standard fast mode  
tSP  
Cb  
-
-
-
0.05  
-
0.10(5)  
400  
Capacitive load for each bus line  
400  
pF  
Guaranteed by design.  
1.  
2. fPCLK1 must be at least 2 MHz to achieve standard mode I2C frequencies. It must be at least 4 MHz to achieve fast mode  
I2C frequencies, and a multiple of 10 MHz to reach the 400 kHz maximum I2C fast mode clock.  
3. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region  
of the falling edge of SCL.  
4. The maximum data hold time has only to be met if the interface does not stretch the low period of SCL signal.  
5. The minimum width of the spikes filtered by the analog filter is above tSP (max)  
130/207  
DocID029162 Rev 5  
 
 
 
STM32F413xG/H  
Electrical characteristics  
2
Figure 38. I C bus AC waveforms and measurement circuit  
9''B,ꢄ&  
9''B,ꢄ&  
670ꢀꢄ)[[  
6'$  
6&/  
53  
53  
56  
56  
,&ꢉEXV  
67$57ꢉ5(3($7('  
67$57  
67$57  
W
VXꢑ67$ꢒ  
6'$  
W
W
W
Uꢑ6'$ꢒ  
Iꢑ6'$ꢒ  
VXꢑ6'$ꢒ  
W
6723  
Zꢑ672ꢍ67$ꢒ  
W
W
W
Zꢑ6&/+ꢒ  
Kꢑ6'$ꢒ  
Kꢑ67$ꢒ  
6&/  
W
W
W
Uꢑ6&/ꢒ  
VXꢑ672ꢒ  
W
Zꢑ6&//ꢒ  
Iꢑ6&/ꢒ  
06Yꢇꢅꢂꢅꢅ9ꢈ  
1. RS = series protection resistor.  
2. RP = external pull-up resistor.  
3. VDD_I2C is the I2C bus power supply.  
(1)(2)  
Table 65. SCL frequency (f  
= 50 MHz, VDD = VDD_I2C = 3.3 V)  
I2C_CCR value  
PCLK1  
fSCL (kHz)  
RP = 4.7 kΩ  
400  
300  
200  
100  
50  
0x8019  
0x8021  
0x8032  
0x0096  
0x012C  
0x02EE  
20  
1. RP = External pull-up resistance, fSCL = I2C speed  
2. For speeds around 200 kHz, the tolerance on the achieved speed is of 5%. For other speed ranges, the  
tolerance on the achieved speed is 2%. These variations depend on the accuracy of the external  
components used to design the application.  
DocID029162 Rev 5  
131/207  
174  
 
 
Electrical characteristics  
STM32F413xG/H  
FMPI2C characteristics  
2
The following table presents FMPI C characteristics.  
Refer also to Section 6.3.16: I/O port characteristics for more details on the input/output  
function characteristics (SDA and SCL).  
2
(1)  
Table 66. FMPI C characteristics  
Standard mode Fast mode  
Fast+ mode  
Min Max  
18  
Parameter  
Unit  
Min  
Max  
Min  
Max  
fFMPI2CC  
FMPI2CCLK frequency  
2
-
8
-
-
tw(SCLL)  
tw(SCLH)  
tsu(SDA)  
SCL clock low time  
SCL clock high time  
SDA setup time  
4.7  
4.0  
0.25  
0
-
1.3  
0.6  
0.10  
0
-
-
0.5  
0.26  
0.05  
0
-
-
-
-
-
-
-
-
tH(SDA)  
SDA data hold time  
Data, ACK valid time  
-
tv(SDA,ACK)  
-
3.45  
-
0.9  
-
0.45  
tr(SDA)  
tr(SCL)  
SDA and SCL rise time  
-
1.0  
-
0.30  
-
0.12  
tf(SDA)  
tf(SCL)  
µs  
SDA and SCL fall time  
Start condition hold time  
-
4
0.30  
-
0.30  
-0  
0.12  
th(STA)  
tsu(STA)  
-
-
-
-
0.6  
0.6  
0.6  
1.3  
-
-
-
-
0.26  
0.26  
0.26  
0.5  
-
-
-
-
Repeated Start condition  
setup time  
4.7  
4
tsu(STO)  
Stop condition setup time  
Stop to Start condition time  
(bus free)  
tw(STO:STA)  
4.7  
Pulse width of the spikes that  
are suppressed by the  
analog filter for standard and  
fast mode  
tSP  
Cb  
-
-
-
0.05  
-
0.1  
0.05  
-
0.1  
Capacitive load for each bus  
Line  
550(2)  
400  
400  
pF  
1. Based on characterization results.  
2. Can be limited. Maximum supported value can be retrieved by referring to the following formulas:  
tr(SDA/SCL) = 0.8473 x Rp x Cload  
Rp(min) = (VDD -VOL(max)) / IOL(max)  
132/207  
DocID029162 Rev 5  
STM32F413xG/H  
Electrical characteristics  
2
Figure 39. FMPI C timing diagram and measurement circuit  
9''B,ꢄ&  
9''B,ꢄ&  
670ꢀꢄ)[[  
6'$  
6&/  
53  
53  
56  
56  
,&ꢉEXV  
67$57ꢉ5(3($7('  
67$57  
67$57  
W
VXꢑ67$ꢒ  
6'$  
W
W
W
Uꢑ6'$ꢒ  
Iꢑ6'$ꢒ  
VXꢑ6'$ꢒ  
W
6723  
Zꢑ672ꢍ67$ꢒ  
W
W
W
Zꢑ6&/+ꢒ  
Kꢑ6'$ꢒ  
Kꢑ67$ꢒ  
6&/  
W
W
W
Uꢑ6&/ꢒ  
VXꢑ672ꢒ  
W
Zꢑ6&//ꢒ  
Iꢑ6&/ꢒ  
06Yꢇꢅꢂꢅꢆ9ꢈ  
DocID029162 Rev 5  
133/207  
174  
 
Electrical characteristics  
STM32F413xG/H  
SPI interface characteristics  
Unless otherwise specified, the parameters given in Table 67 for the SPI interface are  
derived from tests performed under the ambient temperature, f frequency and V  
PCLKx  
DD  
supply voltage conditions summarized in Table 17, with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C = 30 pF  
Measurement points are done at CMOS levels: 0.5V  
DD  
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate  
function characteristics (NSS, SCK, MOSI, MISO for SPI).  
(1)  
Table 67. SPI dynamic characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Master mode,  
SPI1,4,5  
-
-
50  
3.0 V < VDD < 3.6 V  
Master mode,  
SPI1,4,5  
-
-
-
-
42  
25  
2.7 V < VDD < 3.6 V  
Master mode  
SPI1,4,5  
1.7 V < VDD < 3.6 V  
Master transmitter mode  
-
-
-
-
-
-
-
-
-
-
50  
50  
SPI1,4,5  
1.71 V < VDD < 3.6 V  
fSCK  
SPI clock frequency  
MHz  
1/tc(SCK)  
Slave receiver mode  
SPI1,4,5  
1.71 V < VDD < 3.6 V  
Slave mode transmitter/full duplex  
SPI1,4,5  
2.7 V < VDD < 3.6 V  
40(2)  
26  
Slave mode transmitter/full duplex  
SPI1,4,5  
1.71 V < VDD < 3.6 V  
Master & Slave mode,  
SPI2/3  
25  
1.71 V < VDD < 3.6 V  
tsu(NSS)  
th(NSS)  
tw(SCKH)  
tw(SCKL)  
NSS setup time  
NSS hold time  
Slave mode, SPI presc = 2  
Slave mode, SPI presc = 2  
4*TPCLK  
2*TPCLK  
-
-
-
-
ns  
ns  
SCK high and low time Master mode  
TPCLK - 2 TPCLK TPCLK +2 ns  
tsu(MI)  
tsu(SI)  
th(MI)  
th(SI)  
Master mode  
Data input setup time  
2.5  
4.5  
5
-
-
-
-
-
-
-
-
ns  
ns  
Slave mode  
Master mode  
Data input hold time  
Slave mode  
2
134/207  
DocID029162 Rev 5  
 
 
STM32F413xG/H  
Symbol  
Electrical characteristics  
(1)  
Table 67. SPI dynamic characteristics (continued)  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
ta(SO)  
Data output access time Slave mode  
Data output disable time Slave mode  
7
5
-
-
21  
12  
ns  
ns  
tdis(SO)  
Slave mode (after enable edge),  
2.7 V < VDD < 3.6 V  
-
7
12.5  
tv(SO)  
Data output valid time Slave mode (after enable edge),  
1.71 V < VDD < 3.6 V  
ns  
ns  
-
-
7
2
-
19  
3
-
tv(MO)  
th(SO)  
th(MO)  
Master mode  
Slave mode  
1.71 V < VDD < 3.6 V  
Data output hold time  
6
Master mode  
1.5  
-
-
1. Guaranteed by characterization results.  
2. Maximum frequency in Slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit into SCK low or  
high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master  
having tsu(MI) = 0 while Duty(SCK) = 50%  
Figure 40. SPI timing diagram - slave mode and CPHA = 0  
DocID029162 Rev 5  
135/207  
174  
 
Electrical characteristics  
STM32F413xG/H  
Figure 41. SPI timing diagram - slave mode and CPHA = 1  
166ꢉLQSXW  
W68ꢑ166ꢒ  
WKꢑ166ꢒ  
WFꢑ6&.ꢒ  
&3+$ ꢈ  
&32/ ꢃ  
&3+$ ꢈ  
&32/ ꢈ  
WZꢑ6&.+ꢒ  
WZꢑ6&./ꢒ  
WUꢑ6&.ꢒ  
WIꢑ6&.ꢒ  
WKꢑ62ꢒ  
WGLVꢑ62ꢒ  
WYꢑ62ꢒ  
WDꢑ62ꢒ  
0,62  
06%ꢉ287  
06%ꢉ,1  
%,7ꢆꢉ287  
/6%ꢉ287  
287387  
WKꢑ6,ꢒ  
WVXꢑ6,ꢒ  
026,  
,1387  
/6%ꢉ,1  
%,7ꢉꢈꢉ,1  
DLꢈꢇꢈꢀꢅE  
Figure 42. SPI timing diagram - master mode  
+LJK  
166ꢉLQSXW  
W
Fꢑ6&.ꢒ  
&3+$   
&32/ ꢃ  
&3+$   
&32/ ꢈ  
&3+$   
&32/ ꢃ  
&3+$   
&32/ ꢈ  
W
W
W
W
Zꢑ6&.+ꢒ  
Zꢑ6&./ꢒ  
Uꢑ6&.ꢒ  
Iꢑ6&.ꢒ  
W
VXꢑ0,ꢒ  
0,62  
,1387  
%,7ꢆꢉ,1  
/6%ꢉ,1  
06%ꢉ,1  
W
Kꢑ0,ꢒ  
026,  
287387  
%,7ꢈꢉ287  
/6%ꢉ287  
06%ꢉ287  
W
W
Kꢑ02ꢒ  
Yꢑ02ꢒ  
DLꢈꢇꢈꢀꢆF  
136/207  
DocID029162 Rev 5  
 
 
STM32F413xG/H  
Electrical characteristics  
I2S interface characteristics  
2
Unless otherwise specified, the parameters given in Table 68 for the I S interface are  
derived from tests performed under the ambient temperature, f  
frequency and V  
PCLKx  
DD  
supply voltage conditions summarized in Table 17, with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C = 30 pF  
Measurement points are done at CMOS levels: 0.5V  
DD  
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate  
function characteristics (CK, SD, WS).  
2
(1)  
Table 68. I S dynamic characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
fMCK  
I2S Main clock output  
I2S clock frequency  
-
256 * 8K 256 * Fs(2) MHz  
Master data: 32 bits  
Slave data: 32 bits  
-
-
64 * Fs  
fCK  
MHz  
%
64 * Fs  
DCK  
I2S clock frequency duty cycle Slave receiver  
30  
-
70  
tv(WS)  
WS valid time  
WS hold time  
WS setup time  
WS hold time  
Master mode  
Master mode  
Slave mode  
3.5  
th(WS)  
1.5  
2.5  
0.5  
3
-
-
tsu(WS)  
th(WS)  
Slave mode  
-
tsu(SD_MR)  
tsu(SD_SR)  
th(SD_MR)  
th(SD_SR)  
tv(SD_ST)  
tv(SD_MT)  
th(SD_ST)  
th(SD_MT)  
Master receiver  
Slave receiver  
Master receiver  
Slave receiver  
-
Data input setup time  
Data input hold time  
Data output valid time  
Data output hold time  
2.5  
5
-
ns  
-
1.5  
-
-
Slave transmitter (after enable edge)  
Master transmitter (after enable edge)  
Slave transmitter (after enable edge)  
Master transmitter (after enable edge)  
15  
6
-
-
3.5  
1.5  
-
1. Guaranteed by characterization results.  
2. The maximum value of 256xFs is 50 MHz (APB1 maximum frequency).  
Note:  
Refer to the I2S section of RM0430 reference manual for more details on the sampling  
frequency (F ).  
S
f
, f , and D values reflect only the digital peripheral behavior. The values of these  
CK  
MCK CK  
parameters might be slightly impacted by the source clock precision. D depends mainly  
CK  
on the value of ODD bit. The digital contribution leads to a minimum value of  
(I2SDIV/(2*I2SDIV+ODD) and a maximum value of (I2SDIV+ODD)/(2*I2SDIV+ODD). F  
maximum value is supported for each mode/condition.  
S
DocID029162 Rev 5  
137/207  
174  
 
 
Electrical characteristics  
STM32F413xG/H  
2
Figure 43. I S slave timing diagram (Philips protocol)  
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first  
byte.  
2
Figure 44. I S master timing diagram (Philips protocol)  
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first  
byte.  
138/207  
DocID029162 Rev 5  
 
 
STM32F413xG/H  
Electrical characteristics  
SAI characteristics  
Unless otherwise specified, the parameters given in Table 69 for SAI are derived from tests  
performed under the ambient temperature, f frequency and VDD supply voltage  
PCLKx  
conditions summarized in Table 17, with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C=30 pF  
Measurement points are performed at CMOS levels: 0.5V  
DD  
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate  
function characteristics (SCK,SD,WS).  
(1)  
Table 69. SAI characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
fMCKL  
SAI Main clock output  
-
256 * 8K 256 * Fs(2)  
MHz  
Master data: 32 bits  
Slave data: 32 bits  
-
-
128 * Fs  
128 * Fs  
FSCK  
tv(FS)  
th(FS)  
SAI clock frequency  
FS valid time  
MHz  
Master mode  
-
-
19  
28  
2.7 V <= VDD <= 3.6 V  
Master mode  
1.71 V <= VDD <= 3.6 V  
Master mode  
Slave mode  
13  
0
-
-
-
-
-
-
-
FS hold time  
FS setup time  
tsu(FS)  
Slave mode  
3
tsu(SD_ A_MR)  
tsu(SD_B_SR)  
th(SD_ A_MR)  
th(SD_B_SR)  
Master receiver  
Slave receiver  
Master receiver  
Slave receiver  
0.5  
1.5  
5
Data input setup time  
Data input hold time  
ns  
2.5  
Slave transmitter (after enable edge)  
2.7 V <= VDD <= 3.6 V  
-
15  
tv(SD_B_ST) Data output valid time  
th(SD_B_ST) Data output hold time  
tv(SD_A_MT) Data output valid time  
Slave transmitter (after enable edge)  
1.71 V <= VDD <= 3.6 V  
-
10  
-
28  
-
Slave transmitter (after enable edge)  
Master transmitter (after enable edge)  
2.7 V <= VDD <= 3.6 V  
15  
Master transmitter (after enable edge)  
1.71 V <= VDD <= 3.6 V  
-
29  
-
th(SD_A_MT) Data output hold time Master transmitter (after enable edge)  
13  
1. Guaranteed by characterization results.  
2. 256 * Fs maximum corresponds to 45 MHz (APB2 maximum frequency)  
DocID029162 Rev 5  
139/207  
174  
 
 
Electrical characteristics  
STM32F413xG/H  
Figure 45. SAI master timing waveforms  
ꢀꢋF  
3#+  
3!)?3#+?8  
T
Hꢎ&3ꢏ  
3!)?&3?8  
ꢎOUTPUTꢏ  
T
T
T
Hꢎ3$?-4ꢏ  
Vꢎ&3ꢏ  
Vꢎ3$?-4ꢏ  
3!)?3$?8  
ꢎTRANSMITꢏ  
3LOT N  
3LOT Nꢌꢉ  
T
T
Hꢎ3$?-2ꢏ  
SUꢎ3$?-2ꢏ  
3!)?3$?8  
ꢎRECEIVEꢏ  
3LOT N  
-3ꢈꢉꢄꢄꢀ6ꢀ  
Figure 46. SAI slave timing waveforms  
ꢀꢋF  
3#+  
3!)?3#+?8  
T
T
T
Hꢎ&3ꢏ  
Wꢎ#+(?8ꢏ  
Wꢎ#+,?8ꢏ  
3!)?&3?8  
ꢎINPUTꢏ  
T
T
T
Hꢎ3$?34ꢏ  
SUꢎ&3ꢏ  
Vꢎ3$?34ꢏ  
3!)?3$?8  
ꢎTRANSMITꢏ  
3LOT N  
3LOT Nꢌꢉ  
T
T
Hꢎ3$?32ꢏ  
SUꢎ3$?32ꢏ  
3!)?3$?8  
ꢎRECEIVEꢏ  
3LOT N  
-3ꢈꢉꢄꢄꢉ6ꢀ  
140/207  
DocID029162 Rev 5  
 
 
STM32F413xG/H  
Electrical characteristics  
QSPI interface characteristics  
Unless otherwise specified, the parameters given in the following tables for QSPI are  
derived from tests performed under the ambient temperature, f frequency and V  
AHB  
DD  
supply voltage conditions summarized in Table 17, with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 11  
Capacitive load C=20pF  
Measurement points are done at CMOS levels: 0.5VDD  
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate  
function characteristics.  
(1)  
Table 70. QSPI dynamic characteristics in SDR mode  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
2.7 V < VDD < 3.6 V  
Cload = 20 pF  
-
-
100  
fSCK  
QSPI clock frequency  
MHz  
1/tc(SCK)  
1.71 V < VDD < 3.6 V  
Cload = 15 pF  
-
-
80  
tw(CKH)  
tw(CKL)  
ts(IN)  
t
(CK) / 2 - 1  
-
t(CK) / 2  
QSPI clock high and low  
-
t(CK) / 2  
-
-
t(CK) / 2 + 1  
Data input setup time  
Data input hold time  
-
1.5  
3
-
-
th(IN)  
-
-
ns  
2.7 V < VDD < 3.6 V  
1.71 V < VDD < 3.6 V  
-
-
0.5  
0.5  
-
1
3
0
tv(OUT)  
Data output valid time  
-
th(OUT)  
Data output hold time  
0
1. Guaranteed by characterization results.  
(1)  
Table 71. QSPI dynamic characteristics in DDR mode  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
2.7 V < VDD < 3.6 V  
Cload = 20 pF  
-
-
80  
fSCK  
1/tc(SCK)  
QSPI clock frequency  
MHz  
1.71 V< VDD < 3.6 V  
Cload = 15 pF  
-
-
70  
DocID029162 Rev 5  
141/207  
174  
 
 
 
Electrical characteristics  
STM32F413xG/H  
(1)  
Table 71. QSPI dynamic characteristics in DDR mode (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tw(CKH)  
tw(CKL)  
t
(CK) / 2 - 1  
-
t(CK) / 2  
QSPI clock high and low time  
-
t(CK) / 2  
-
t(CK) / 2 + 1  
2.7 V < VDD < 3.6 V  
1.71 V < VDD < 3.6 V  
2.7 V<VDD<3.6 V  
1.71 V<VDD<3.6 V  
2.7 V<VDD<3.6 V  
1.71 V<VDD<3.6 V  
0.5  
0.5  
2
-
-
-
tsr(IN),  
tsf(IN)  
Data input setup time  
Data input hold time  
-
-
-
-
thr(IN),  
thf(IN)  
ns  
2
-
-
8.5  
8.5  
9
tvr(OUT),  
tvf(OUT)  
Data output valid time  
Data output hold time  
-
11.5  
thr(OUT),  
thf(OUT)  
-
7.5  
-
-
1. Guaranteed by characterization results.  
USB OTG full speed (FS) characteristics  
This interface is present in USB OTG FS controller.  
Table 72. USB OTG FS startup time  
Parameter  
USB OTG FS transceiver startup time  
Symbol  
Max  
Unit  
µs  
(1)  
tSTARTUP  
1
1. Guaranteed by design.  
Table 73. USB OTG FS DC electrical characteristics  
Symbol  
VDD  
Parameter  
Conditions  
Min.(1) Typ. Max.(1) Unit  
USB OTG FS operating  
voltage  
3.0(2)  
0.2  
-
-
-
3.6  
-
V
(3)  
VDI  
Differential input sensitivity  
I(USB_FS_DP/DM)  
Includes VDI range  
Input  
Differential common mode  
range  
(3)  
levels  
VCM  
0.8  
2.5  
V
Single ended receiver  
threshold  
(3)  
VSE  
1.3  
-
2.0  
VOL Static output level low  
VOH Static output level high  
RL of 1.5 kΩto 3.6 V(4)  
-
-
-
0.3  
3.6  
Output  
levels  
V
(4)  
RL of 15 kΩto VSS  
2.8  
PA11, PA12  
(USB_FS_DM/DP)  
17  
0.65  
1.5  
21  
1.1  
1.8  
24  
2.0  
2.1  
RPD  
VIN = VDD  
PA9 (OTG_FS_VBUS)  
kΩ  
PA11, PA12  
(USB_FS_DM/DP)  
VIN = VSS  
VIN = VSS  
RPU  
PA9 (OTG_FS_VBUS)  
0.25 0.37 0.55  
1. All the voltages are measured from the local ground potential.  
DocID029162 Rev 5  
142/207  
 
 
STM32F413xG/H  
Electrical characteristics  
2. The USB OTG FS functionality is ensured down to 2.7 V but not the full USB full speed electrical  
characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range.  
3. Guaranteed by design.  
RL is the load connected on the USB OTG FS drivers.  
4.  
When VBUS sensing feature is enabled, PA9 should be left at their default state (floating  
input), not as alternate function. A typical 200 µA current consumption of the embedded  
sensing block (current to voltage conversion to determine the different sessions) can be  
observed on PA9 when the feature is enabled.  
Note:  
Figure 47. USB OTG FS timings: definition of data signal rise and fall time  
&URVVꢉRYHU  
SRLQWV  
'LIIHUHQWLDO  
GDWDꢉOLQHV  
9
&56  
9
66  
WI  
WU  
DLꢈꢇꢈꢀꢁE  
Table 74. USB OTG FS electrical characteristics(1)  
Driver characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
tr  
tf  
Rise time(2)  
Fall time(2)  
CL = 50 pF  
CL = 50 pF  
tr/tf  
4
4
20  
20  
ns  
ns  
%
V
trfm  
VCRS  
Rise/ fall time matching  
90  
1.3  
110  
2.0  
Output signal crossover voltage  
1. Guaranteed by design.  
Measured from 10% to 90% of the data signal. For more detailed informations, refer to USB Specification -  
Chapter 7 (version 2.0).  
2.  
CAN (controller area network) interface  
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate  
function characteristics (CANx_TX and CANx_RX).  
DocID029162 Rev 5  
143/207  
174  
 
 
Electrical characteristics  
STM32F413xG/H  
6.3.20  
12-bit ADC characteristics  
Unless otherwise specified, the parameters given in Table 75 are derived from tests  
performed under the ambient temperature, f  
frequency and V  
supply voltage  
PCLK2  
DDA  
conditions summarized in Table 17.  
Table 75. ADC characteristics  
Conditions  
Symbol  
Parameter  
Power supply  
Min  
Typ  
Max  
Unit  
VDDA  
1.7(1)  
1.7(1)  
-
-
-
3.6  
VDDA  
-
VDDA VREF+ < 1.2 V  
VREF+ Positive reference voltage  
V
VREF-  
Negative reference voltage  
-
0
VDDA = 1.7(1) to 2.4 V  
0.6  
15  
18  
MHz  
MHz  
fADC  
ADC clock frequency  
VDDA = 2.4 to 3.6 V  
0.6  
30  
-
36  
fADC = 30 MHz,  
-
-
1764  
17  
kHz  
1/fADC  
V
(2)  
12-bit resolution  
fTRIG  
External trigger frequency  
Conversion voltage range(3)  
-
-
0 (VSSA or VREF-  
tied to ground)  
VAIN  
-
-
VREF+  
See Equation 1 for  
(2)  
RAIN  
External input impedance  
Sampling switch resistance  
-
-
-
-
-
50  
6
kΩ  
kΩ  
pF  
details  
(2)(4)  
RADC  
-
-
Internal sample and hold  
capacitor  
(2)  
CADC  
4
7
f
f
ADC = 30 MHz  
-
-
-
0.100  
3(5)  
0.067  
2(5)  
16  
µs  
1/fADC  
µs  
Injection trigger conversion  
latency  
(2)  
tlat  
-
-
ADC = 30 MHz  
-
-
-
Regular trigger conversion  
latency  
(2)  
tlatr  
-
-
1/fADC  
µs  
fADC = 30 MHz  
0.100  
-
(2)  
tS  
Sampling time  
Power-up time  
-
-
3
-
-
480  
3
1/fADC  
µs  
(2)  
tSTAB  
2
fADC = 30 MHz  
12-bit resolution  
0.50  
0.43  
0.37  
0.30  
-
-
-
-
16.40  
16.34  
16.27  
16.20  
µs  
µs  
f
ADC = 30 MHz  
10-bit resolution  
ADC = 30 MHz  
8-bit resolution  
ADC = 30 MHz  
6-bit resolution  
Total conversion time (including  
sampling time)  
f
(2)  
tCONV  
µs  
f
µs  
9 to 492 (tS for sampling +n-bit resolution for successive  
approximation)  
1/fADC  
144/207  
DocID029162 Rev 5  
 
 
 
STM32F413xG/H  
Symbol  
Electrical characteristics  
Table 75. ADC characteristics (continued)  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
12-bit resolution  
Single ADC  
-
-
2
Msps  
12-bit resolution  
Sampling rate  
-
-
3.75  
Msps  
Interleave Dual ADC  
mode  
(2)  
fS  
(fADC = 30 MHz, and  
tS = 3 ADC cycles)  
12-bit resolution  
-
-
-
-
6
Msps  
µA  
Interleave Triple ADC  
mode  
ADC VREF DC current  
consumption in conversion  
mode  
(2)  
IVREF+  
-
-
300  
1.6  
500  
1.8  
ADC VDDA DC current  
consumption in conversion  
mode  
(2)  
IVDDA  
mA  
1. VDDA minimum value of 1.7 V is possible with the use of an external power supply supervisor (refer to Section 3.17.2:  
Internal reset OFF).  
2. Guaranteed by characterization results.  
3. VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA  
.
4. RADC maximum value is given for VDD=1.7 V, and minimum value for VDD=3.3 V.  
5. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 75.  
Equation 1: R  
max formula  
AIN  
(k 0.5)  
RAIN = ---------------------------------------------------------------- – RADC  
fADC × CADC × ln(2N + 2  
)
The formula above (Equation 1) is used to determine the maximum external impedance  
allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of  
sampling periods defined in the ADC_SMPR1 register.  
(1)  
Table 76. ADC accuracy at f  
= 18 MHz  
Typ  
ADC  
Symbol  
Parameter  
Test conditions  
Max(2)  
Unit  
ET  
Total unadjusted error  
±3  
±4  
f
ADC =18 MHz  
EO  
EG  
ED  
EL  
Offset error  
±2  
±1  
±1  
±2  
±3  
±3  
±2  
±3  
VDDA = 1.7 to 3.6 V  
VREF = 1.7 to 3.6 V  
VDDA VREF < 1.2 V  
LSB  
Gain error  
Differential linearity error  
Integral linearity error  
1. Better performance could be achieved in restricted VDD, frequency and temperature ranges.  
2. Guaranteed by characterization results.  
DocID029162 Rev 5  
145/207  
174  
 
 
Electrical characteristics  
Symbol  
STM32F413xG/H  
(1)  
Table 77. ADC accuracy at f  
= 30 MHz  
ADC  
Parameter  
Test conditions  
Typ  
Max(2)  
Unit  
ET  
EO  
EG  
ED  
EL  
Total unadjusted error  
Offset error  
±2  
±5  
±2.5  
±4  
f
ADC = 30 MHz,  
±1.5  
±1.5  
±1  
RAIN < 10 kΩ,  
Gain error  
VDDA = 2.4 to 3.6 V,  
VREF = 1.7 to 3.6 V,  
VDDA VREF < 1.2 V  
LSB  
Differential linearity error  
Integral linearity error  
±2  
±1.5  
±3  
1. Better performance could be achieved in restricted VDD, frequency and temperature ranges.  
2. Guaranteed by characterization results.  
(1)  
Table 78. ADC accuracy at f  
= 36 MHz  
ADC  
Symbol  
Parameter  
Test conditions  
Typ  
Max(2)  
Unit  
ET  
Total unadjusted error  
±4  
±7  
f
ADC =36 MHz,  
EO  
EG  
ED  
EL  
Offset error  
±2  
±3  
±2  
±3  
±3  
±6  
±3  
±6  
V
DDA = 2.4 to 3.6 V,  
LSB  
Gain error  
VREF = 1.7 to 3.6 V  
Differential linearity error  
Integral linearity error  
VDDA VREF < 1.2 V  
1. Better performance could be achieved in restricted VDD, frequency and temperature ranges.  
2. Guaranteed by characterization results.  
(1)  
Table 79. ADC dynamic accuracy at f  
Parameter  
= 18 MHz - limited test conditions  
ADC  
Symbol  
Test conditions  
Min  
Typ  
Max Unit  
ENOB  
SINAD  
SNR  
Effective number of bits  
Signal-to-noise and distortion ratio  
Signal-to-noise ratio  
10.3  
64  
64  
-
10.4  
64.2  
65  
-
-
bits  
fADC =18 MHz  
VDDA = VREF+= 1.7 V  
Input Frequency = 20 kHz  
Temperature = 25 °C  
-
dB  
THD  
Total harmonic distortion  
-72  
-67  
1. Guaranteed by characterization results.  
(1)  
Table 80. ADC dynamic accuracy at f  
= 36 MHz - limited test conditions  
ADC  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max Unit  
ENOB  
SINAD  
SNR  
Effective number of bits  
Signal-to noise and distortion ratio  
Signal-to noise ratio  
10.6  
66  
64  
-
10.8  
67  
-
-
bits  
fADC = 36 MHz  
VDDA = VREF+ = 3.3 V  
Input Frequency = 20 kHz  
Temperature = 25 °C  
68  
-
dB  
THD  
Total harmonic distortion  
-72  
-70  
1. Guaranteed by characterization results.  
146/207  
DocID029162 Rev 5  
 
 
 
 
 
STM32F413xG/H  
Electrical characteristics  
Note:  
ADC accuracy vs. negative injection current: injecting a negative current on any analog  
input pins should be avoided as this significantly reduces the accuracy of the conversion  
being performed on another analog input. It is recommended to add a Schottky diode (pin to  
ground) to analog pins which may potentially inject negative currents.  
Any positive injection current within the limits specified for I  
Section 6.3.16 does not affect the ADC accuracy.  
and ΣI  
in  
INJ(PIN)  
INJ(PIN)  
Figure 48. ADC accuracy characteristics  
6
6
$$!  
2%&ꢌ  
;ꢀ,3"  
ꢎOR  
DEPENDING ON PACKAGEꢏ=  
)$%!,  
ꢇꢁꢂꢅ  
ꢇꢁꢂꢅ  
%
'
ꢇꢁꢂꢆ  
ꢇꢁꢂꢇ  
ꢇꢁꢂꢈ  
ꢎꢉꢏ  
%
4
ꢎꢈꢏ  
ꢎꢀꢏ  
%
%
/
,
%
$
ꢀ, 3"  
)$%!,  
ꢇꢆꢅ  
ꢇꢁꢂꢈ ꢇꢁꢂꢇ ꢇꢁꢂꢆ ꢇꢁꢂꢅ  
6
6
$$!  
33!  
AIꢀꢁꢂꢃꢄC  
1. See also Table 77.  
2. Example of an actual transfer curve.  
3. Ideal transfer curve.  
4. End point correlation line.  
5. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves.  
EO = Offset Error: deviation between the first actual transition and the first ideal one.  
EG = Gain Error: deviation between the last ideal transition and the last actual one.  
ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.  
EL = Integral Linearity Error: maximum deviation between any actual transition and the end point  
correlation line.  
DocID029162 Rev 5  
147/207  
174  
 
Electrical characteristics  
STM32F413xG/H  
Figure 49. Typical connection diagram using the ADC  
9''  
6DPSOHꢉDQGꢉKROGꢉ$'&  
FRQYHUWHU  
97  
ꢃꢌꢆꢉ9  
ꢑꢈꢒ  
5$'&  
5$,1  
$,1[  
ꢈꢄꢐELW  
FRQYHUWHU  
,/ꢉ“ꢉꢈꢉ—$  
97  
9$,1  
ꢃꢌꢆꢉ9  
&SDUDVLWLF  
&$'&  
06ꢈꢊꢂꢂꢈ9ꢀ  
1. Refer to Table 75 for the values of RAIN, RADC and CADC  
.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the  
pad capacitance (roughly 5 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this,  
f
ADC should be reduced.  
148/207  
DocID029162 Rev 5  
 
STM32F413xG/H  
Electrical characteristics  
General PCB design guidelines  
Power supply decoupling should be performed as shown in Figure 50 or Figure 51,  
depending on whether V is connected to V or not. The 10 nF capacitors should be  
REF+  
DDA  
ceramic (good quality). They should be placed them as close as possible to the chip.  
Figure 50. Power supply and reference decoupling (V not connected to V  
)
DDA  
REF+  
670ꢀꢄ)  
95()ꢑꢈꢒ  
ꢈꢉ—)ꢉꢋꢋꢉꢈꢃꢉQ)  
9''$  
ꢈꢉ—)ꢉꢋꢋꢉꢈꢃꢉQ)  
ꢑꢈꢒ  
966$ꢋ95()ꢓ  
DLꢈꢁꢅꢀꢅE  
1. VREF+ and VREF- inputs are both available on UFBGA100. VREF+ is also available on LQFP100. When  
VREF+ and VREF- are not available, they are internally connected to VDDA and VSSA  
.
DocID029162 Rev 5  
149/207  
174  
 
 
Electrical characteristics  
STM32F413xG/H  
Figure 51. Power supply and reference decoupling (V  
connected to V  
)
DDA  
REF+  
670ꢀꢄ)  
ꢑꢈꢒ  
95()ꢓꢋ9''$  
ꢈꢉ—)ꢉꢋꢋꢉꢈꢃꢉQ)  
ꢑꢈꢒ  
95()ꢐꢋ966$  
DLꢈꢁꢅꢀꢆF  
1. VREF+ and VREF- inputs are both available on UFBGA100. VREF+ is also available on LQFP100. When  
VREF+ and VREF- are not available, they are internally connected to VDDA and VSSA  
.
6.3.21  
Temperature sensor characteristics  
Table 81. Temperature sensor characteristics  
Symbol  
Parameter  
Min  
Typ Max  
Unit  
(1)  
TL  
VSENSE linearity with temperature  
-
-
1
2.5  
0.76  
6
2
°C  
mV/°C  
V
Avg_Slope(1) Average slope  
-
(1)  
V25  
Voltage at 25 °C  
Startup time  
-
-
10  
-
(2)  
tSTART  
-
µs  
(2)  
TS_temp  
ADC sampling time when reading the temperature (1 °C accuracy)  
10  
-
µs  
1. Guaranteed by characterization results.  
2. Guaranteed by design.  
Table 82. Temperature sensor calibration values  
Symbol  
Parameter  
Memory address  
0x1FFF 7A2C - 0x1FFF 7A2D  
TS_CAL1  
TS_CAL2  
TS ADC raw data acquired at temperature of 30 °C, VDDA= 3.3 V  
TS ADC raw data acquired at temperature of 110 °C, VDDA= 3.3 V 0x1FFF 7A2E - 0x1FFF 7A2F  
150/207  
DocID029162 Rev 5  
 
 
 
 
 
STM32F413xG/H  
Electrical characteristics  
6.3.22  
V
monitoring characteristics  
BAT  
Table 83. V  
monitoring characteristics  
BAT  
Symbol  
Parameter  
Resistor bridge for VBAT  
Min  
Typ  
Max  
Unit  
R
Q
-
-
50  
4
-
-
KΩ  
Ratio on VBAT measurement  
Error on Q  
Er(1)  
–1  
-
+1  
%
ADC sampling time when reading the VBAT  
1 mV accuracy  
(2)(2)  
TS_vbat  
5
-
-
µs  
1. Guaranteed by design.  
2. Shortest sampling time can be determined in the application by multiple iterations.  
6.3.23  
Embedded reference voltage  
The parameters given in Table 84 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 17.  
DD  
Table 84. Embedded internal reference voltage  
Symbol  
VREFINT  
Parameter  
Conditions  
Min  
Max  
Unit  
Typ  
Internal reference voltage  
–40 °C < TA < +125 °C 1.18 1.21  
1.24  
V
ADC sampling time when reading the  
internal reference voltage  
(1)  
TS_vrefint  
-
10  
-
-
-
µs  
Internal reference voltage spread over the  
temperature range  
(2)  
VRERINT_s  
VDD = 3V 10mV  
3
5
mV  
(2)  
TCoeff  
Temperature coefficient  
Startup time  
-
-
-
-
30  
6
50  
10  
ppm/°C  
µs  
(2)  
tSTART  
1. Shortest sampling time can be determined in the application by multiple iterations.  
2. Guaranteed by design  
Table 85. Internal reference voltage calibration values  
Symbol  
Parameter  
Memory address  
Raw data acquired at temperature of  
30 °C VDDA = 3.3 V  
VREFIN_CAL  
0x1FFF 7A2A - 0x1FFF 7A2B  
DocID029162 Rev 5  
151/207  
174  
 
 
 
 
 
 
Electrical characteristics  
STM32F413xG/H  
6.3.24  
DAC electrical characteristics  
Table 86. DAC characteristics  
Symbol  
Parameter  
Conditions  
Min Typ Max Unit  
Comments  
Analog supply  
voltage  
VDDA  
-
1.7(1)  
-
3.6  
V
Reference supply  
voltage  
VREF+  
VSSA  
-
-
1.7(1)  
0
-
-
3.6  
0
V
V
VREF+ VDDA  
Ground  
-
RLOAD  
connected  
to VSSA  
5
-
-
-
-
kΩ -  
kΩ -  
DAC  
output  
buffer ON  
(2)  
RLOAD  
Resistive load  
RLOAD  
connected 25  
to VDDA  
When the buffer is OFF, the  
Impedance output  
with buffer OFF  
Minimum resistive load between  
DAC_OUT and VSS to have a 1%  
accuracy is 1.5 MΩ  
(2)  
RO  
-
-
-
15  
kΩ  
Maximum capacitive load at  
pF DAC_OUT pin (when the buffer is  
ON).  
(2)  
CLOAD  
Capacitive load  
-
-
-
-
-
50  
-
Lower DAC_OUT  
voltage with buffer  
ON  
It gives the maximum output  
excursion of the DAC.  
DAC_OUT  
min(2)  
0.2  
V
It corresponds to 12-bit input  
code (0x0E0) to (0xF1C) at  
VREF+ = 3.6 V and (0x1C7) to  
(0xE38) at VREF+ = 1.7 V  
Higher DAC_OUT  
voltage with buffer  
ON  
DAC_OUT  
max(2)  
VDDA  
0.2  
-
-
-
-
-
-
-
-
-
0.5  
-
V
mV  
V
Lower DAC_OUT  
voltage with buffer  
OFF  
DAC_OUT  
min(2)  
-
It gives the maximum output  
excursion of the DAC.  
Higher DAC_OUT  
voltage with buffer  
OFF  
VREF+  
1LSB  
DAC_OUT  
max(2)  
With no load, worst code (0x800)  
at VREF+ = 3.6 V in terms of DC  
consumption on the inputs  
DAC DC VREF  
current  
consumption in  
quiescent mode  
(Standby mode)  
170  
240  
(4)  
IVREF+  
µA  
µA  
With no load, worst code (0xF1C)  
at VREF+ = 3.6 V in terms of DC  
consumption on the inputs  
-
-
-
-
-
-
50  
75  
With no load, middle code  
(0x800) on the inputs  
280  
475  
380  
625  
DAC DC VDDA  
current  
(4)  
IDDA  
With no load, worst code (0xF1C)  
µA at VREF+ = 3.6 V in terms of DC  
consumption on the inputs  
consumption in  
quiescent mode(3)  
152/207  
DocID029162 Rev 5  
 
 
STM32F413xG/H  
Electrical characteristics  
Comments  
Table 86. DAC characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min Typ Max Unit  
Differential non  
Given for the DAC in 10-bit  
configuration.  
-
-
-
±0.5 LSB  
linearity Difference  
DNL(4) between two  
consecutive code-  
1LSB)  
Given for the DAC in 12-bit  
configuration.  
-
-
-
-
-
-
±2  
±1  
LSB  
LSB  
Integral non  
linearity (difference  
between measured  
value at Code i and  
INL(4) the value at Code i  
on a line drawn  
Given for the DAC in 10-bit  
configuration.  
Given for the DAC in 12-bit  
configuration.  
-
-
-
±4  
LSB  
between Code 0  
and last Code  
1023)  
Given for the DAC in 12-bit  
configuration  
Offset error  
-
-
-
-
-
-
-
-
-
-
-
-
±10 mV  
(difference between  
Given for the DAC in 10-bit at  
VREF+ = 3.6 V  
measured value at  
Offset(4)  
±3  
LSB  
Code (0x800) and  
the ideal value =  
VREF+/2)  
Given for the DAC in 12-bit at  
±12 LSB  
VREF+ = 3.6 V  
Gain  
Given for the DAC in 12-bit  
configuration  
Gain error  
error(4)  
±0.5  
%
Settling time (full  
scale: for a 10-bit  
input code transition  
(
tSETTLING between the lowest  
CLOAD 50 pF,  
RLOAD 5 kΩ  
-
-
3
6
µs  
4)  
and the highest  
input codes when  
DAC_OUT reaches  
final value ±4LSB  
Total Harmonic  
Distortion  
CLOAD 50 pF,  
RLOAD 5 kΩ  
THD(4)  
-
-
-
-
-
-
-
dB  
Buffer ON  
Max frequency for a  
correct DAC_OUT  
Update change when small  
rate(2) variation in the input  
code (from code i to  
CLOAD 50 pF,  
RLOAD 5 kΩ  
1
MS/s  
i+1LSB)  
Wakeup time from  
CLOAD 50 pF, RLOAD 5 kΩ  
input code between lowest and  
highest possible ones.  
off state (Setting the  
ENx bit in the DAC  
Control register)  
(4)  
tWAKEUP  
-
-
-
-
6.5  
10  
µs  
Power supply  
rejection ratio (to  
VDDA) (static DC  
measurement)  
PSRR+ (2)  
–67  
–40  
dB No RLOAD, CLOAD = 50 pF  
DocID029162 Rev 5  
153/207  
174  
Electrical characteristics  
STM32F413xG/H  
1. VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.17.2:  
Internal reset OFF).  
2. Guaranteed by design.  
3. The quiescent mode corresponds to a state where the DAC maintains a stable output level to ensure that no dynamic  
consumption occurs.  
4. Guaranteed by characterization results.  
Figure 52. 12-bit buffered /non-buffered DAC  
%XIIHUHGꢋQRQꢐEXIIHUHGꢉ'$&  
%XIIHUꢑꢈꢒ  
5/2$'  
ꢈꢄꢐELW  
'$&[B287  
GLJLWDOꢉWRꢉ  
DQDORJ  
FRQYHUWHU  
&/2$'  
DLꢈꢁꢈꢅꢁD  
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly  
without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the  
DAC_CR register.  
154/207  
DocID029162 Rev 5  
 
STM32F413xG/H  
Electrical characteristics  
6.3.25  
DFSDM characteristics  
Unless otherwise specified, the parameters given in Table 87 for DFSDM are derived from  
tests performed under the ambient temperature, f  
frequency and V supply voltage  
APB2  
DD  
conditions summarized in Table 17: General operating conditions.  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C = 30 pF  
Measurement points are done at CMOS levels: 0.5 * V  
DD  
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate  
function characteristics (DFSDM_CKINy, DFSDM_DATINy, DFSDM_CKOUT for DFSDM).  
(1)  
Table 87. DFSDM characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fDFSDMCLK DFSDM clock  
1.71 < VDD < 3.6 V  
-
-
fSYSCLK  
SPI mode  
(SITP[1:0] = 0,1),  
External clock mode  
(SPICKSEL[1:0] = 0,  
1.71 < VDD < 3.6 V  
20  
-
-
-
-
(fDFBDMCLK / 4  
SPI mode  
(SITP[1:0] = 0,1),  
External clock mode  
(SPICKSEL[1:0] = 0,  
2.7 < VDD < 3.6 V  
20  
(fDFBDMCLK / 4  
fCKIN  
(1/TCKIN  
Input clock  
frequency  
)
MHz  
SPI mode  
(SITP[1:0] = 0,1),  
Internal clock mode  
(SPICKSEL[1:0] 0,  
1.71 < VDD < 3.6 V  
20  
-
-
-
-
(fDFBDMCLK / 4  
SPI mode (SITP[1:0] = 0,1),  
Internal clock mode  
(SPICKSEL[1:0] 0,  
2.7 < VDD < 3.6 V  
20  
(fDFBDMCLK / 4  
Output clock  
frequency  
fCKOUT  
1.71 < VDD < 3.6 V  
1.71 < VDD < 3.6 V  
-
-
20  
55  
Output clock  
DuCyCKOUT frequency duty  
cycle  
45  
50  
%
DocID029162 Rev 5  
155/207  
174  
 
 
 
Electrical characteristics  
STM32F413xG/H  
(1)  
Table 87. DFSDM characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
SPI mode  
(SITP[1:0] = 01),  
twh(CKIN) Input clock high  
External clock mode  
(SPICKSEL[1:0] = 0)  
1.71 < VDD < 3.6 V  
t
CKIN / 2 - 0.5  
tCKIN / 2  
-
twl(CKIN)  
and low time  
SPI mode  
(SITP[1:0]=01),  
Data input  
setup time  
tsu  
External clock mode  
(SPICKSEL[1:0] = 0)  
1.71 < VDD < 3.6 V  
3.5  
2.5  
-
-
-
-
-
ns  
SPI mode  
(SITP[1:0]=01),  
External clock mode  
(SPICKSEL[1:0] = 0)  
1.71 < VDD < 3.6 V  
Data input hold  
time  
th  
Manchester mode  
(SITP[1:0] = 10 or 11),  
Internal clock mode  
(SPICKSEL[1:0] 0)  
1.71 < VDD < 3.6 V  
Manchester  
data period  
(recovered  
clock period)  
(CKOUTDIV + 1)  
* tDFBDMCLK  
(2 * CKOUTDIV  
) * tDFBDMCLK  
TManchester  
1. Data based on characterization results.  
156/207  
DocID029162 Rev 5  
STM32F413xG/H  
Electrical characteristics  
Figure 16: DFSDM timing diagram  
WZO  
WZK  
WU  
WI  
63,&.6(/ꢉ ꢉꢃ  
6,73ꢉ ꢉꢃꢃ  
WVX WK  
WVX WK  
6,73ꢉ ꢉꢃꢈ  
63,&.6(/ꢉ ꢉꢀ  
63,&.6(/ꢉ ꢉꢄ  
63,&.6(/ꢉ ꢉꢈ  
6,73ꢉ ꢉꢃꢃ  
WU  
WI  
WZO  
WZK  
WVX WK  
WVX WK  
6,73ꢉ ꢉꢃꢈ  
6,73ꢉ ꢉꢄ  
6,73ꢉ ꢉꢀ  
5HFRYHUHGꢉFORFN  
5HFRYHUHGꢉGDWD  
06Yꢀꢊꢄꢊꢁ9ꢈ  
DocID029162 Rev 5  
157/207  
174  
Electrical characteristics  
STM32F413xG/H  
6.3.26  
FSMC characteristics  
Unless otherwise specified, the parameters given in Table 88 to Table 95 for the FSMC  
interface are derived from tests performed under the ambient temperature, f frequency  
HCLK  
and V supply voltage conditions summarized in Table 16, with the following configuration:  
DD  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitance load C = 30 pF  
Measurement points are done at CMOS levels: 0.5.V  
DD  
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output  
characteristics.  
Asynchronous waveforms and timings  
Figure 53 through Figure 56 represent asynchronous waveforms and Table 88 through  
Table 95 provide the corresponding timings. The results shown in these tables are obtained  
with the following FSMC configuration:  
AddressSetupTime = 0x1  
AddressHoldTime = 0x1  
DataSetupTime = 0x1 (except for asynchronous NWAIT mode, DataSetupTime = 0x5)  
BusTurnAroundDuration = 0x0  
In all timing tables, the T  
is the HCLK clock period.  
HCLK  
158/207  
DocID029162 Rev 5  
 
STM32F413xG/H  
Electrical characteristics  
Figure 53. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms  
WZꢑ1(ꢒ  
)60&B1(  
WYꢑ12(B1(ꢒ  
WZꢑ12(ꢒ  
WKꢑ1(B12(ꢒ  
)60&B12(  
)60&B1:(  
TVꢀ!?.%ꢁ  
WKꢑ$B12(ꢒ  
)60&B$>ꢄꢅꢍꢃ@  
$GGUHVV  
TVꢀ",?.%ꢁ  
WKꢑ%/B12(ꢒ  
)60&B1%/>ꢈꢍꢃ@  
WKꢑ'DWDB1(ꢒ  
WKꢑ'DWDB12(ꢒ  
WVXꢑ'DWDB12(ꢒ  
WVXꢑ'DWDB1(ꢒ  
'DWD  
)60&B'>ꢈꢅꢍꢃ@  
WYꢑ1$'9B1(ꢒ  
WZꢑ1$'9ꢒ  
)60&B1$'9ꢉꢑꢈꢒ  
)60&B1:$,7  
WKꢑ1(B1:$,7ꢒ  
WVXꢑ1:$,7B1(ꢒ  
06Yꢀꢊꢃꢀꢀ9ꢈ  
1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.  
DocID029162 Rev 5  
159/207  
174  
 
Electrical characteristics  
STM32F413xG/H  
Table 88. Asynchronous non-multiplexed SRAM/PSRAM/NOR -  
(1)(2)  
read timings  
Parameter  
FSMC_NE low time  
Symbol  
Min  
2 * tHCLK - 1 2 * tHCLK + 1  
0.5  
2 * tHCLK - 1 2 * tHCLK + 1  
Max  
Unit  
tw(NE)  
tv(NOE_NE)  
tw(NOE)  
FSMC_NEx low to FSMC_NOE low  
FSMC_NOE low time  
0
FSMC_NOE high to FSMC_NE high hold  
time  
th(NE_NOE)  
0
-
tv(A_NE)  
th(A_NOE)  
FSMC_NEx low to FSMC_A valid  
Address hold time after FSMC_NOE high  
FSMC_NEx low to FSMC_BL valid  
FSMC_BL hold time after FSMC_NOE high  
Data to FSMC_NEx high setup time  
Data to FSMC_NOEx high setup time  
Data hold time after FSMC_NOE high  
Data hold time after FSMC_NEx high  
FSMC_NEx low to FSMC_NADV low  
FSMC_NADV low time  
-
0.5  
0
-
tv(BL_NE)  
-
0.5  
ns  
th(BL_NOE)  
tsu(Data_NE)  
tsu(Data_NOE)  
th(Data_NOE)  
th(Data_NE)  
tv(NADV_NE)  
tw(NADV)  
0
-
tHCLK - 2  
-
tHCLK - 2  
-
0
0
-
-
-
0
-
tHCLK + 1  
1. CL = 30 pF.  
2. Based on characterization.  
Table 89. Asynchronous non-multiplexed SRAM/PSRAM/NOR read -  
(1)(2)  
NWAIT timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
FSMC_NE low time  
7 * tHCLK + 1 7 * tHCLK + 1  
tw(NOE)  
FSMC_NWE low time  
FSMC_NWAIT low time  
5 * tHCLK - 1  
tHCLK - 0.5  
5 * tHCLK + 1  
-
tw(NWAIT)  
ns  
FSMC_NWAIT valid before FSMC_NEx  
high  
tsu(NWAIT_NE)  
5 * tHCLK + 1.5  
4 * tHCLK + 1  
-
-
FSMC_NEx hold time after  
FSMC_NWAIT invalid  
th(NE_NWAIT)  
1. CL = 30 pF.  
2. Based on characterization.  
160/207  
DocID029162 Rev 5  
 
 
STM32F413xG/H  
Electrical characteristics  
Figure 54. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms  
WZꢑ1(ꢒ  
)60&B1([  
)60&B12(  
WKꢑ1(B1:(ꢒ  
WYꢑ1:(B1(ꢒ  
WZꢑ1:(ꢒ  
)60&B1:(  
WKꢑ$B1:(ꢒ  
TVꢀ!?.%ꢁ  
)60&B$>ꢄꢅꢍꢃ@  
$GGUHVV  
TVꢀ",?.%ꢁ  
WKꢑ%/B1:(ꢒ  
)60&B1%/>ꢈꢍꢃ@  
1%/  
WKꢑ'DWDB1:(ꢒ  
'DWD  
WYꢑ'DWDB1(ꢒ  
)60&B'>ꢈꢅꢍꢃ@  
)60&B1$'9ꢉꢑꢈꢒ  
WYꢑ1$'9B1(ꢒ  
WZꢑ1$'9ꢒ  
)60&B1:$,7  
WKꢑ1(B1:$,7ꢒ  
WVXꢑ1:$,7B1(ꢒ  
06Yꢀꢊꢃꢀꢇ9ꢈ  
1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.  
(1)(2)  
Table 90. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings  
Symbol  
tw(NE)  
Parameter  
Min  
Max  
Unit  
FSMC_NE low time  
3 * tHclk - 1  
3 * tHclk - 1  
tv(NWE_NE)  
tw(NWE)  
th(NE_NWE)  
tv(A_NE)  
FSMC_NEx low to FSMC_NWE low  
FSMC_NWE low time  
tHCLK - 1  
tHCLK + 0.5  
tHCLK - 1.5  
tHCLK + 0.5  
FSMC_NWE high to FSMC_NE high hold time  
FSMC_NEx low to FSMC_A valid  
Address hold time after FSMC_NWE high  
FSMC_NEx low to FSMC_BL valid  
FSMC_BL hold time after FSMC_NWE high  
Data to FSMC_NEx low to Data valid  
tHCLK  
-
-
0
th(A_NWE)  
tv(BL_NE)  
th(BL_NWE)  
tv(Data_NE)  
tHCLK - 0.5  
-
ns  
-
0.5  
tHCLK - 0.5  
-
-
tHCLK + 2.5  
th(Data_NWE) Data hold time after FSMC_NWE high  
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low  
tHCLK  
-
0
-
-
tw(NADV)  
FSMC_NADV low time  
tHCLK + 1  
DocID029162 Rev 5  
161/207  
174  
 
 
Electrical characteristics  
STM32F413xG/H  
1. CL = 30 pF.  
2. Based on characterization.  
Table 91. Asynchronous non-multiplexed SRAM/PSRAM/NOR write -  
(1)(2)  
NWAIT timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
FSMC_NE low time  
FSMC_NWE low time  
8 * tHCLK - 1  
8 * tHCLK + 1  
tw(NWE)  
6 * tHCLK - 1.5 6 * tHCLK + 0.5  
ns  
tsu(NWAIT_NE) FSMC_NWAIT valid before FSMC_NEx high 6 * tHCLK - 1  
-
-
FSMC_NEx hold time after FSMC_NWAIT  
th(NE_NWAIT)  
4 * tHCLK + 2  
invalid  
1. CL = 30 pF.  
2. Based on characterization.  
Figure 55. Asynchronous multiplexed PSRAM/NOR read waveforms  
WZꢑ1(ꢒ  
)60&B1(  
WKꢑ1(B12(ꢒ  
WYꢑ12(B1(ꢒ  
)60&B12(  
WZꢑ12(ꢒ  
)60&B1:(  
WKꢑ$B12(ꢒ  
TVꢀ!?.%ꢁ  
)60&B$>ꢄꢅꢍꢈꢆ@  
$GGUHVV  
1%/  
WKꢑ%/B12(ꢒ  
TVꢀ",?.%ꢁ  
)60&B1%/>ꢈꢍꢃ@  
WKꢑ'DWDB1(ꢒ  
WVXꢑ'DWDB1(ꢒ  
WVXꢑ'DWDB12(ꢒ  
'DWD  
WKꢑ'DWDB12(ꢒ  
WYꢑ$B1(ꢒ  
$GGUHVV  
)60&B$'>ꢈꢅꢍꢃ@  
WYꢑ1$'9B1(ꢒ  
THꢀ!$?.!$6ꢁ  
WZꢑ1$'9ꢒ  
)60&B1$'9  
)60&B1:$,7  
WKꢑ1(B1:$,7ꢒ  
WVXꢑ1:$,7B1(ꢒ  
06Yꢀꢊꢃꢀꢅ9ꢈ  
162/207  
DocID029162 Rev 5  
 
 
STM32F413xG/H  
Electrical characteristics  
(1)(2)  
Table 92. Asynchronous multiplexed PSRAM/NOR read timings  
Symbol  
Parameter  
FSMC_NE low time  
Min  
Max  
Unit  
tw(NE)  
tv(NOE_NE)  
tw(NOE)  
3 * tHCLK - 1  
2 * tHCLK  
3 * tHCLK + 1  
2 * tHCLK + 0.5  
tHCLK + 1  
FSMC_NEx low to FSMC_NOE low  
FSMC_NOE low time  
tHCLK - 1  
FSMC_NOE high to FSMC_NE high hold  
time  
th(NE_NOE)  
tv(A_NE)  
0
-
FSMC_NEx low to FSMC_A valid  
-
0.5  
0.5  
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low  
0
tw(NADV)  
FSMC_NADV low time  
tHCLK - 0.5  
tHCLK + 1  
FSMC_AD(address) valid hold time after  
FSMC_NADV high)  
ns  
th(AD_NADV)  
tHCLK + 0.5  
-
th(A_NOE)  
th(BL_NOE)  
tv(BL_NE)  
Address hold time after FSMC_NOE high  
FSMC_BL time after FSMC_NOE high  
FSMC_NEx low to FSMC_BL valid  
tHCLK - 0.5  
-
0
-
-
0.5  
tsu(Data_NE) Data to FSMC_NEx high setup time  
tsu(Data_NOE) Data to FSMC_NOE high setup time  
tHCLK - 2  
-
-
-
-
tHCLK - 2  
th(Data_NE)  
Data hold time after FSMC_NEx high  
0
0
th(Data_NOE) Data hold time after FSMC_NOE high  
1. CL = 30 pF.  
2. Based on characterization.  
(1)(2)  
Table 93. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings  
Symbol  
Parameter  
Min  
Max  
Unit  
8 * tHCLK + 1  
tw(NE)  
FSMC_NE low time  
8 * tHCLK - 1  
tw(NOE)  
FSMC_NWE low time  
5 * tHCLK - 1.5 5 * tHCLK + 0.5  
ns  
FSMC_NWAIT valid before FSMC_NEx  
high  
tsu(NWAIT_NE)  
5 * tHCLK + 1.5  
4 * tHCLK + 1  
-
-
FSMC_NEx hold time after  
FSMC_NWAIT invalid  
th(NE_NWAIT)  
1. CL = 30 pF.  
2. Based on characterization.  
DocID029162 Rev 5  
163/207  
174  
 
 
Electrical characteristics  
STM32F413xG/H  
Figure 56. Asynchronous multiplexed PSRAM/NOR write waveforms  
WZꢑ1(ꢒ  
)60&B1([  
)60&B12(  
WKꢑ1(B1:(ꢒ  
WYꢑ1:(B1(ꢒ  
WZꢑ1:(ꢒ  
)60&B1:(  
WKꢑ$B1:(ꢒ  
TVꢀ!?.%ꢁ  
)60&B$>ꢄꢅꢍꢈꢆ@  
$GGUHVV  
TVꢀ",?.%ꢁ  
WKꢑ%/B1:(ꢒ  
)60&B1%/>ꢈꢍꢃ@  
1%/  
WYꢑ$B1(ꢒ  
WYꢑ'DWDB1$'9ꢒ  
WKꢑ'DWDB1:(ꢒ  
$GGUHVV  
'DWD  
)60&B$'>ꢈꢅꢍꢃ@  
W
THꢀ!$?.!$6ꢁ  
Yꢑ1$'9B1(ꢒ  
WZꢑ1$'9ꢒ  
)60&B1$'9  
)60&B1:$,7  
WKꢑ1(B1:$,7ꢒ  
WVXꢑ1:$,7B1(ꢒ  
06Yꢀꢊꢃꢀꢆ9ꢈ  
164/207  
DocID029162 Rev 5  
 
STM32F413xG/H  
Electrical characteristics  
(1)(2)  
Table 94. Asynchronous multiplexed PSRAM/NOR write timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
FSMC_NE low time  
4 * THCLK - 1  
THCLK - 1  
4 * THCLK + 1  
THCLK + 0.5  
tv(NWE_NE) FSMC_NEx low to FSMC_NWE low  
tw(NWE) FSMC_NWE low time  
th(NE_NWE) FSMC_NWE high to FSMC_NE high hold time  
tv(A_NE) FSMC_NEx low to FSMC_A valid  
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low  
2 * THCLK - 0.5 2 * THCLK - 0.5  
THCLK - 0.5  
-
-
0
0
0.5  
tw(NADV)  
th(AD_NADV)  
th(A_NWE)  
FSMC_NADV low time  
THCLK  
THCLK + 1  
ns  
FSMC_AD (address) valid hold time after FSMC_NADV  
high)  
T
HCLK + 0.5  
-
Address hold time after FSMC_NWE high  
THCLK + 0.5  
-
th(BL_NWE) FSMC_BL hold time after FSMC_NWE high  
tv(BL_NE) FSMC_NEx low to FSMC_BL valid  
THCLK - 0.5  
-
-
-
0.5  
tv(Data_NADV) FSMC_NADV high to Data valid  
THCLK + 2.5  
-
th(Data_NWE) Data hold time after FSMC_NWE high  
THCLK  
1. CL = 30 pF.  
2. Guaranteed by characterization results.  
(1)(2)  
Table 95. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
FSMC_NE low time  
9 * THCLK - 1  
9 * THCLK + 1  
ns  
tw(NWE)  
tsu(NWAIT_NE)  
th(NE_NWAIT)  
1. CL = 30 pF.  
FSMC_NWE low time  
7 * THCLK - 0.5 7 * THCLK + 0.5  
FSMC_NWAIT valid before FSMC_NEx high  
FSMC_NEx hold time after FSMC_NWAIT invalid  
6 * THCLK + 2  
4 * THCLK - 1  
-
-
2. Guaranteed by characterization results.  
Synchronous waveforms and timings  
Figure 57 through Figure 60 represent synchronous waveforms and Table 96 through  
Table 99 provide the corresponding timings. The results shown in these tables are obtained  
with the following FSMC configuration:  
BurstAccessMode = FSMC_BurstAccessMode_Enable;  
MemoryType = FSMC_MemoryType_CRAM;  
WriteBurst = FSMC_WriteBurst_Enable;  
CLKDivision = 1; (0 is not supported, see the STM32F446 reference manual: RM0390)  
DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM  
DocID029162 Rev 5  
165/207  
174  
 
 
Electrical characteristics  
STM32F413xG/H  
In all timing tables, the T  
is the HCLK clock period (with maximum  
HCLK  
FSMC_CLK = 90 MHz).  
Figure 57. Synchronous multiplexed NOR/PSRAM read timings  
%867851ꢉ ꢉꢃ  
WZꢑ&/.ꢒ  
WZꢑ&/.ꢒ  
)60&B&/.  
)60&B1([  
'DWDꢉODWHQF\ꢉ ꢉꢃ  
WGꢑ&/./ꢐ1([/ꢒ  
WGꢑ&/.+ꢐ1([+ꢒ  
WGꢑ&/./ꢐ1$'9/ꢒ  
WGꢑ&/./ꢐ1$'9+ꢒ  
)60&B1$'9  
WGꢑ&/.+ꢐ$,9ꢒ  
WGꢑ&/./ꢐ$9ꢒ  
)60&B$>ꢄꢅꢍꢈꢆ@  
WGꢑ&/./ꢐ12(/ꢒ  
WGꢑ&/.+ꢐ12(+ꢒ  
)60&B12(  
WGꢑ&/./ꢐ$',9ꢒ  
WKꢑ&/.+ꢐ$'9ꢒ  
WVXꢑ$'9ꢐ&/.+ꢒ  
WGꢑ&/./ꢐ$'9ꢒ  
WKꢑ&/.+ꢐ$'9ꢒ  
WVXꢑ$'9ꢐ&/.+ꢒ  
)60&B$'>ꢈꢅꢍꢃ@  
$'>ꢈꢅꢍꢃ@  
'ꢈ  
'ꢄ  
WKꢑ&/.+ꢐ1:$,79ꢒ  
WVXꢑ1:$,79ꢐ&/.+ꢒ  
)60&B1:$,7  
ꢑ:$,7&)*ꢉ ꢉꢈEꢎꢉ:$,732/ꢉꢓꢉꢃEꢒ  
WVXꢑ1:$,79ꢐ&/.+ꢒ  
WKꢑ&/.+ꢐ1:$,79ꢒ  
)60&B1:$,7  
ꢑ:$,7&)*ꢉ ꢉꢃEꢎꢉ:$,732/ꢉꢓꢉꢃEꢒ  
WVXꢑ1:$,79ꢐ&/.+ꢒ  
WKꢑ&/.+ꢐ1:$,79ꢒ  
06Yꢀꢊꢃꢀꢁ9ꢈ  
166/207  
DocID029162 Rev 5  
 
STM32F413xG/H  
Electrical characteristics  
(1)(2)  
Table 96. Synchronous multiplexed NOR/PSRAM read timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(CLK)  
FSMC_CLK period  
2 * THCLK - 0.5  
-
2
-
td(CLKL-NExL)  
td(CLKH_NExH)  
td(CLKL-NADVL)  
td(CLKL-NADVH)  
td(CLKL-AV)  
FSMC_CLK low to FSMC_NEx low (x=0..2)  
FSMC_CLK high to FSMC_NEx high (x= 0…2)  
FSMC_CLK low to FSMC_NADV low  
-
THCLK + 0.5  
-
1
-
FSMC_CLK low to FSMC_NADV high  
0
FSMC_CLK low to FSMC_Ax valid (x=16…25)  
FSMC_CLK high to FSMC_Ax invalid (x=16…25)  
FSMC_CLK low to FSMC_NOE low  
-
2.5  
-
td(CLKH-AIV)  
THCLK  
td(CLKL-NOEL)  
td(CLKH-NOEH)  
td(CLKL-ADV)  
td(CLKL-ADIV)  
tsu(ADV-CLKH)  
th(CLKH-ADV)  
tsu(NWAIT-CLKH)  
th(CLKH-NWAIT)  
-
1.5  
-
ns  
FSMC_CLK high to FSMC_NOE high  
THCLK - 0.5  
FSMC_CLK low to FSMC_AD[15:0] valid  
FSMC_CLK low to FSMC_AD[15:0] invalid  
FSMC_A/D[15:0] valid data before FSMC_CLK high  
FSMC_A/D[15:0] valid data after FSMC_CLK high  
FSMC_NWAIT valid before FSMC_CLK high  
FSMC_NWAIT valid after FSMC_CLK high  
-
3
-
0
1.5  
3.5  
2.5  
3.5  
-
-
-
-
1. CL = 30 pF.  
2. Guaranteed by characterization results.  
DocID029162 Rev 5  
167/207  
174  
 
Electrical characteristics  
STM32F413xG/H  
Figure 58. Synchronous multiplexed PSRAM write timings  
%867851ꢉ ꢉꢃ  
WZꢑ&/.ꢒ  
WZꢑ&/.ꢒ  
)60&B&/.  
)60&B1([  
'DWDꢉODWHQF\ꢉ ꢉꢃ  
WGꢑ&/./ꢐ1([/ꢒ  
WGꢑ&/.+ꢐ1([+ꢒ  
WGꢑ&/./ꢐ1$'9/ꢒ  
WGꢑ&/./ꢐ1$'9+ꢒ  
)60&B1$'9  
WGꢑ&/.+ꢐ$,9ꢒ  
WGꢑ&/./ꢐ$9ꢒ  
)60&B$>ꢄꢅꢍꢈꢆ@  
WGꢑ&/.+ꢐ1:(+ꢒ  
WGꢑ&/./ꢐ1:(/ꢒ  
)60&B1:(  
WGꢑ&/./ꢐ$',9ꢒ  
$'>ꢈꢅꢍꢃ@  
WGꢑ&/./ꢐ'DWDꢒ  
WGꢑ&/./ꢐ$'9ꢒ  
)60&B$'>ꢈꢅꢍꢃ@  
WGꢑ&/./ꢐ'DWDꢒ  
'ꢈ  
'ꢄ  
)60&B1:$,7  
ꢑ:$,7&)*ꢉ ꢉꢃEꢎꢉ:$,732/ꢉꢓꢉꢃEꢒ  
WVXꢑ1:$,79ꢐ&/.+ꢒ  
WKꢑ&/.+ꢐ1:$,79ꢒ  
WGꢑ&/.+ꢐ1%/+ꢒ  
)60&B1%/  
06Yꢀꢊꢃꢀꢂ9ꢈ  
168/207  
DocID029162 Rev 5  
 
STM32F413xG/H  
Symbol  
Electrical characteristics  
(1)(2)  
Table 97. Synchronous multiplexed PSRAM write timings  
Parameter  
Min  
Max  
Unit  
tw(CLK)  
FSMC_CLK period, VDD range= 2.7 to 3.6 V  
FSMC_CLK low to FSMC_NEx low (x= 0...2)  
FSMC_CLK high to FSMC_NEx high (x= 0…2)  
2 * THCLK - 0.5  
-
2
-
td(CLKL-NExL)  
td(CLKH-NExH)  
-
THCLK + 0.5  
td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low  
td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high  
-
1
-
0
td(CLKL-AV)  
td(CLKH-AIV)  
FSMC_CLK low to FSMC_Ax valid (x=16…25)  
FSMC_CLK high to FSMC_Ax invalid (x=16…25)  
FSMC_CLK low to FSMC_NWE low  
-
2.5  
-
THCLK  
td(CLKL-NWEL)  
t(CLKH-NWEH)  
td(CLKL-ADV)  
td(CLKL-ADIV)  
td(CLKL-DATA)  
td(CLKL-NBLL)  
td(CLKH-NBLH)  
-
1.5  
-
ns  
FSMC_CLK high to FSMC_NWE high  
FSMC_CLK low to FSMC_AD[15:0] valid  
FSMC_CLK low to FSMC_AD[15:0] invalid  
FSMC_A/D[15:0] valid data after FSMC_CLK low  
FSMC_CLK low to FSMC_NBL low  
THCLK + 0.5  
-
3
-
0
-
4
2
-
0
FSMC_CLK high to FSMC_NBL high  
THCLK + 0.5  
tsu(NWAIT-CLKH) FSMC_NWAIT valid before FSMC_CLK high  
th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high  
2
-
3.5  
-
1. CL = 30 pF.  
2. Guaranteed by characterization results.  
DocID029162 Rev 5  
169/207  
174  
 
Electrical characteristics  
STM32F413xG/H  
Figure 59. Synchronous non-multiplexed NOR/PSRAM read timings  
W
W
Zꢑ&/.ꢒ  
Zꢑ&/.ꢒ  
)60&B&/.  
WGꢑ&/./ꢐ1([/ꢒ  
WGꢑ&/.+ꢐ1([+ꢒ  
'DWDꢉODWHQF\ꢉ ꢉꢃ  
)60&B1([  
WGꢑ&/./ꢐ1$'9/ꢒ  
WGꢑ&/./ꢐ1$'9+ꢒ  
)60&B1$'9  
WGꢑ&/./ꢐ$9ꢒ  
WGꢑ&/.+ꢐ$,9ꢒ  
)60&B$>ꢄꢅꢍꢃ@  
WGꢑ&/.+ꢐ12(+ꢒ  
WGꢑ&/./ꢐ12(/ꢒ  
)60&B12(  
WVXꢑ'9ꢐ&/.+ꢒ  
WKꢑ&/.+ꢐ'9ꢒ  
WVXꢑ'9ꢐ&/.+ꢒ  
WKꢑ&/.+ꢐ'9ꢒ  
)60&B'>ꢈꢅꢍꢃ@  
)60&B1:$,7  
'ꢈ  
'ꢄ  
WKꢑ&/.+ꢐ1:$,79ꢒ  
WVXꢑ1:$,79ꢐ&/.+ꢒ  
ꢑ:$,7&)*ꢉ ꢉꢈEꢎꢉꢉ  
:$,732/ꢉꢓꢉꢃEꢒ  
WVXꢑ1:$,79ꢐ&/.+ꢒ  
WKꢑ&/.+ꢐ1:$,79ꢒ  
)60&B1:$,7  
ꢑ:$,7&)*ꢉ ꢉꢃEꢎꢉꢉ  
:$,732/ꢉꢓꢉꢃEꢒ  
WVXꢑ1:$,79ꢐ&/.+ꢒ  
WKꢑ&/.+ꢐ1:$,79ꢒ  
06Yꢀꢊꢃꢀꢊ9ꢈ  
(1)(2)  
Table 98. Synchronous non-multiplexed NOR/PSRAM read timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(CLK)  
FSMC_CLK period  
2THCLK – 0.5  
-
t(CLKL-NExL)  
td(CLKH-NExH)  
FSMC_CLK low to FSMC_NEx low (x=0..2)  
FSMC_CLK high to FSMC_NEx high (x= 0…2)  
-
2
THCLK +0.5  
-
td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low  
td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high  
-
0.5  
0
-
td(CLKL-AV)  
td(CLKH-AIV)  
td(CLKL-NOEL)  
td(CLKH-NOEH)  
tsu(DV-CLKH)  
th(CLKH-DV)  
FSMC_CLK low to FSMC_Ax valid (x=16…25)  
FSMC_CLK high to FSMC_Ax invalid (x=16…25)  
FSMC_CLK low to FSMC_NOE low  
-
2.5  
THCLK  
-
ns  
-
THCLK - 0.5  
1.5  
1.5  
FSMC_CLK high to FSMC_NOE high  
-
-
-
-
-
FSMC_D[15:0] valid data before FSMC_CLK high  
FSMC_D[15:0] valid data after FSMC_CLK high  
3.5  
tsu(NWAIT-CLKH) FSMC_NWAIT valid before FSMC_CLK high  
th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high  
2.5  
3.5  
1. CL = 30 pF.  
2. Guaranteed by characterization results.  
170/207  
DocID029162 Rev 5  
 
 
STM32F413xG/H  
Electrical characteristics  
Figure 60. Synchronous non-multiplexed PSRAM write timings  
WZꢑ&/.ꢒ  
WZꢑ&/.ꢒ  
)60&B&/.  
WGꢑ&/./ꢐ1([/ꢒ  
)60&B1([  
WGꢑ&/./ꢐ1$'9/ꢒ  
WGꢑ&/.+ꢐ1([+ꢒ  
'DWDꢉODWHQF\ꢉ ꢉꢃ  
WGꢑ&/./ꢐ1$'9+ꢒ  
)60&B1$'9  
)60&B$>ꢄꢅꢍꢃ@  
)60&B1:(  
WGꢑ&/./ꢐ$9ꢒ  
WGꢑ&/.+ꢐ$,9ꢒ  
WGꢑ&/./ꢐ1:(/ꢒ  
WGꢑ&/.+ꢐ1:(+ꢒ  
WGꢑ&/./ꢐ'DWDꢒ  
WGꢑ&/./ꢐ'DWDꢒ  
'ꢄ  
)60&B'>ꢈꢅꢍꢃ@  
'ꢈ  
)60&B1:$,7  
ꢑ:$,7&)*ꢉ ꢉꢃEꢎ  
ꢉ:$,732/ꢉꢓꢉꢃEꢒ  
WVXꢑ1:$,79ꢐ&/.+ꢒ  
WGꢑ&/.+ꢐ1%/+ꢒ  
WKꢑ&/.+ꢐ1:$,79ꢒ  
)60&B1%/  
06Yꢀꢊꢃꢇꢃ9ꢈ  
(1)(2)  
Table 99. Synchronous non-multiplexed PSRAM write timings  
Parameter Min  
Symbol  
Max  
Unit  
tw(CLK)  
FSMC_CLK period  
FSMC_CLK low to FSMC_NEx low (x=0..2)  
2 * THCLK - 0.5  
-
2
td(CLKL-NExL)  
-
td(CLKH-NExH) FSMC_CLK high to FSMC_NEx high (x= 0…2)  
td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low  
td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high  
THCLK + 0.5  
-
-
0.5  
-
0
td(CLKL-AV)  
td(CLKH-AIV)  
FSMC_CLK low to FSMC_Ax valid (x=16…25)  
FSMC_CLK high to FSMC_Ax invalid (x=16…25)  
-
2.5  
-
THCLK  
ns  
td(CLKL-NWEL) FSMC_CLK low to FSMC_NWE low  
td(CLKH-NWEH) FSMC_CLK high to FSMC_NWE high  
-
1.5  
-
THCLK + 1  
td(CLKL-Data)  
td(CLKL-NBLL)  
FSMC_D[15:0] valid data after FSMC_CLK low  
FSMC_CLK low to FSMC_NBL low  
-
4
-
2
td(CLKH-NBLH) FSMC_CLK high to FSMC_NBL high  
tsu(NWAIT-CLKH) FSMC_NWAIT valid before FSMC_CLK high  
th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high  
THCLK + 1  
-
2
-
3.5  
-
1. CL = 30 pF.  
2. Guaranteed by characterization results.  
DocID029162 Rev 5  
171/207  
174  
 
 
Electrical characteristics  
STM32F413xG/H  
6.3.27  
SD/SDIO MMC/eMMC card host interface (SDIO) characteristics  
Unless otherwise specified, the parameters given in Table 100 for the SDIO are derived  
from tests performed under the ambient temperature, f  
frequency and V supply  
PCLK2  
DD  
voltage conditions summarized in Table 17, with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C = 30 pF  
Measurement points are done at CMOS levels: 0.5V  
DD  
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output  
characteristics.  
Figure 61. SDIO high-speed mode  
T
T
R
F
T
#
T
T
7ꢎ#+(ꢏ  
7ꢎ#+,ꢏ  
#+  
T
T
/6  
/(  
$ꢒ #-$  
ꢎOUTPUTꢏ  
T
T
)(  
)35  
$ꢒ #-$  
ꢎINPUTꢏ  
AIꢀꢇꢃꢃꢄ  
Figure 62. SD default mode  
#+  
T
T
/6$  
/($  
$ꢒ #-$  
ꢎOUTPUTꢏ  
AIꢀꢇꢃꢃꢃ  
172/207  
DocID029162 Rev 5  
 
 
 
STM32F413xG/H  
Symbol  
Electrical characteristics  
(1)(2)  
Table 100. SD / MMC characteristics  
Parameter  
Clock frequency in data transfer mode  
Conditions  
Min  
Typ  
Max  
Unit  
fPP  
-
tW(CKL)  
tW(CKH)  
-
0
-
-
50  
MHz  
-
SDIO_CK/fPCLK2 frequency ratio  
Clock low time  
-
-
8 / 3  
fpp =50MHz  
fpp =50MHz  
9.5  
8.5  
10.5  
9.5  
-
-
ns  
ns  
ns  
Clock high time  
CMD, D inputs (referenced to CK) in MMC and SD HS mode  
tISU  
tIH  
Input setup time HS  
Input hold time HS  
fpp =50MHz  
fpp =50MHz  
5
1
-
-
-
-
CMD, D outputs (referenced to CK) in MMC and SD HS mode  
tOV  
tOH  
Output valid time HS  
Output hold time HS  
fpp =50MHz  
fpp =50MHz  
-
12  
-
13.5  
-
10.5  
CMD, D inputs (referenced to CK) in SD default mode  
5
1
-
-
-
-
tISUD  
tIHD  
Input setup time SD  
Input hold time SD  
fpp =25MHz  
fpp =25MHz  
ns  
ns  
CMD, D outputs (referenced to CK) in SD default mode  
-
2
-
3
-
tOVD  
tOHD  
Output valid default time SD  
Output hold default time SD  
fpp =25 MHz  
fpp =25 MHz  
1
1. Guaranteed by characterization results.  
2. VDD = 2.7 to 3.6 V.  
(1)(2)  
Typ  
Table 101. eMMC characteristics V = 1.7 V to 1.9 V  
DD  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
fPP  
-
tW(CKL)  
tW(CKH)  
Clock frequency in data transfer mode  
SDIO_CK/fPCLK2 frequency ratio  
Clock low time  
-
-
0
-
-
-
50  
MHz  
-
8 / 3  
fpp =50MHz  
fpp =50MHz  
9.5  
8.5  
10.5  
9.5  
-
-
ns  
ns  
ns  
Clock high time  
CMD, D inputs (referenced to CK) in eMMC mode  
tISU  
tIH  
Input setup time HS  
Input hold time HS  
fpp =50MHz  
fpp =50MHz  
3
-
-
-
-
2.5  
CMD, D outputs (referenced to CK) in eMMC mode  
tOV  
tOH  
Output valid time HS  
Output hold time HS  
fpp =50MHz  
fpp =50MHz  
-
15  
-
15.5  
-
13  
1. Guaranteed by characterization results.  
2. CLOAD = 20 pF.  
DocID029162 Rev 5  
173/207  
174  
 
 
Electrical characteristics  
STM32F413xG/H  
6.3.28  
RTC characteristics  
Table 102. RTC characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Any read/write operation  
from/to an RTC register  
-
fPCLK1/RTCCLK frequency ratio  
4
-
174/207  
DocID029162 Rev 5  
 
 
STM32F413xG/H  
Package information  
7
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
7.1  
WLCSP81 package information  
Figure 63. WLCSP81 - 81-ball, 4.039 x 3.951 mm, 0.4 mm pitch wafer level chip scale  
package outline  
$ꢈꢉEDOO  
ORFDWLRQꢉꢉꢉꢉ  
$ꢈꢉ2ULHQWDWLRQꢉ  
UHIHUHQFH  
Hꢈ  
'
H
$
H
(
Hꢄ  
-
*
DDD  
)
7RSꢉYLHZꢉ  
:DIHUꢉEDFNꢉVLGH  
%RWWRPꢉYLHZ  
%XPSꢉVLGH  
%803  
ꢋꢋ EEE =  
HHH  
=
$ꢀ  
$ꢄ  
=
‘Eꢑꢂꢈ[ꢒ  
$
$ꢈ  
=
=
‘ꢉFFFꢉ0  
‘ꢉGGG0  
; <  
'(7$,/ꢉ$  
6HDWLQJꢉSODQH  
6,'(ꢉ9,(:  
'(7$,/ꢉ$  
:/&63ꢂꢈB$ꢃꢂ%B0(B9ꢈ  
1. Drawing is not to scale.  
DocID029162 Rev 5  
175/207  
205  
 
 
 
 
Package information  
STM32F413xG/H  
Table 103. WLCSP81 - 81-ball, 4.039 x 3.951 mm, 0.4 mm pitch wafer level chip scale  
package mechanical data  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
0.555  
0.175  
0.380  
0.025  
0.250  
4.039  
3.951  
0.400  
3.200  
3.200  
0.4195  
0.3755  
-
Max  
Min  
Typ  
0.0219  
0.0069  
0.0150  
0.0010  
0.0098  
0.1590  
0.1556  
0.0157  
0.1260  
0.1260  
0.0165  
0.0148  
-
Max  
A
A1  
A2  
A3(2)  
Ø b(3)  
D
0.525  
0.585  
0.0207  
0.0230  
-
-
-
-
-
-
-
-
-
-
-
-
0.220  
0.280  
4.074  
3.986  
-
0.0087  
0.0110  
0.1604  
0.1569  
-
4.004  
0.1576  
E
3.916  
0.1542  
e
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
e1  
-
-
e2  
-
-
F
-
-
G
-
-
aaa  
bbb  
ccc  
ddd  
eee  
0.100  
0.100  
0.100  
0.050  
0.050  
0.0039  
0.0039  
0.0039  
0.0020  
0.0020  
-
-
-
-
-
-
-
-
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
2. Back side coating  
3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.  
176/207  
DocID029162 Rev 5  
 
STM32F413xG/H  
Package information  
Figure 64. WLCSP81- 81-ball, 4.039 x 3.951 mm, 0.4 mm pitch wafer level chip scale  
package recommended footprint  
'SDG  
'VP  
:/&63ꢂꢈB$ꢃꢂ%B)3B9ꢈ  
Table 104. WLCSP81 recommended PCB design rules (0.4 mm pitch)  
Dimension  
Recommended values  
Pitch  
Dpad  
0.4 mm  
0.225 mm  
0.290 mm typ. (depends on the soldermask  
registration tolerance)  
Dsm  
Stencil opening  
Stencil thickness  
0.250 mm  
0.100 mm  
DocID029162 Rev 5  
177/207  
205  
 
 
Package information  
STM32F413xG/H  
Device marking for WLCSP81  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 65. WLCSP81 marking example (package top view)  
3LQꢉꢈꢉLGHQWLILHU  
ꢀꢁ)ꢂꢃꢀ*ꢄ  
3URGXFWꢉ  
LGHQWLILFDWLRQꢑꢈꢒ  
'DWHꢉFRGH  
$GGLWLRQDOꢉ  
LQIRUPDWLRQ  
$
::  
<
06Yꢇꢄꢆꢃꢀ9ꢈ  
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST’s Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
178/207  
DocID029162 Rev 5  
 
 
STM32F413xG/H  
Package information  
7.2  
UFQFPN48 package information  
Figure 66. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat  
package outline  
3LQꢉꢈꢉLGHQWLILHU  
ODVHUꢉPDUNLQJꢉDUHD  
'
$
(
<
(
6HDWLQJꢉ  
SODQH  
7
GGG  
$ꢈ  
E
H
'HWDLOꢉ<  
'
([SRVHGꢉSDGꢉ  
DUHD  
'ꢄ  
/
ꢇꢂ  
&ꢉꢃꢌꢅꢃꢃ[ꢇꢅƒ  
SLQꢈꢉFRUQHU  
5ꢉꢃꢌꢈꢄꢅꢉW\Sꢌ  
'HWDLOꢉ=  
(ꢄ  
ꢇꢂ  
=
$ꢃ%ꢊB0(B9ꢀ  
1. Drawing is not to scale.  
2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.  
3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and  
solder this back-side pad to PCB ground.  
DocID029162 Rev 5  
179/207  
205  
 
 
Package information  
STM32F413xG/H  
Table 105. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat  
package mechanical data  
millimeters  
inches(1)  
Symbol  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
D
0.500  
0.000  
6.900  
6.900  
5.500  
5.500  
0.300  
-
0.550  
0.020  
7.000  
7.000  
5.600  
5.600  
0.400  
0.152  
0.250  
0.500  
-
0.600  
0.050  
7.100  
7.100  
5.700  
5.700  
0.500  
-
0.0197  
0.0000  
0.2717  
0.2717  
0.2165  
0.2165  
0.0118  
-
0.0217  
0.0008  
0.2756  
0.2756  
0.2205  
0.2205  
0.0157  
0.0060  
0.0098  
0.0197  
-
0.0236  
0.0020  
0.2795  
0.2795  
0.2244  
0.2244  
0.0197  
-
E
D2  
E2  
L
T
b
0.200  
-
0.300  
-
0.0079  
-
0.0118  
-
e
ddd  
-
0.080  
-
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 67. UFQFPN48 recommended footprint  
ꢄꢑꢈꢁ  
ꢅꢑꢉꢁ  
ꢇꢃ  
ꢈꢄ  
ꢈꢅ  
ꢆꢑꢅꢁ  
ꢁꢑꢉꢁ  
ꢄꢑꢈꢁ  
ꢆꢑꢃꢁ  
ꢅꢑꢉꢁ  
ꢆꢑꢅꢁ  
ꢁꢑꢈꢁ  
ꢀꢉ  
ꢉꢆ  
ꢀꢈ  
ꢉꢇ  
ꢁꢑꢄꢆ  
ꢁꢑꢆꢁ  
ꢁꢑꢆꢆ  
ꢆꢑꢃꢁ  
!ꢁ"ꢂ?&0?6ꢉ  
1. Dimensions are in millimeters.  
180/207  
DocID029162 Rev 5  
 
 
STM32F413xG/H  
Package information  
Device marking for UFQFPN48  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 68. UFQFPN48 marking example (package top view)  
3URGXFWꢉLGHQWLILFDWLRQꢑꢈꢒ  
670ꢀꢁ)  
ꢂꢃꢀ&+8ꢄ  
'DWHꢉFRGH  
< ::  
3LQꢉꢈꢉ  
LQGHQWLILHU  
5HYLVLRQꢉFRGH  
$
06Yꢀꢊꢇꢁꢆ9ꢈ  
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST’s Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
DocID029162 Rev 5  
181/207  
205  
 
Package information  
STM32F413xG/H  
7.3  
LQFP64 package information  
Figure 69. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline  
6($7,1*ꢉ3/$1(  
&
ꢃꢌꢄꢅꢉPP  
*$8*(ꢉ3/$1(  
FFF  
&
'
'ꢈ  
'ꢀ  
/
/ꢈ  
ꢀꢀ  
ꢇꢂ  
ꢀꢄ  
ꢇꢊ  
ꢆꢇ  
E
ꢈꢁ  
ꢈꢆ  
3,1ꢉꢈ  
H
,'(17,),&$7,21  
ꢅ:B0(B9ꢀ  
1. Drawing is not to scale.  
182/207  
DocID029162 Rev 5  
 
 
STM32F413xG/H  
Package information  
Table 106. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat  
package mechanical data  
millimeters  
inches(1)  
Symbol  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
A2  
b
-
-
1.600  
-
-
0.0630  
0.050  
-
0.150  
0.0020  
-
0.0059  
1.350  
1.400  
0.220  
-
1.450  
0.0531  
0.0551  
0.0087  
-
0.0571  
0.170  
0.270  
0.0067  
0.0106  
c
0.090  
0.200  
0.0035  
0.0079  
D
-
12.000  
10.000  
7.500  
12.000  
10.000  
7.500  
0.500  
3.5°  
-
-
0.4724  
0.3937  
0.2953  
0.4724  
0.3937  
0.2953  
0.0197  
3.5°  
-
D1  
D3  
E
-
-
-
-
-
-
-
-
-
-
-
-
E1  
E3  
e
-
-
-
-
-
-
-
-
-
-
7°  
-
-
7°  
Κ
0°  
0°  
L
0.450  
0.600  
1.000  
-
0.750  
-
0.0177  
0.0236  
0.0394  
-
0.0295  
-
L1  
ccc  
-
-
-
-
0.080  
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
DocID029162 Rev 5  
183/207  
205  
 
Package information  
STM32F413xG/H  
Figure 70. LQFP64 recommended footprint  
ꢇꢃ  
ꢈꢈ  
ꢁꢑꢈ  
ꢁꢑꢆ  
ꢇꢂ  
ꢈꢉ  
ꢀꢉꢑꢄ  
ꢀꢁꢑꢈ  
ꢀꢁꢑꢈ  
ꢄꢑꢃ  
ꢀꢄ  
ꢅꢇ  
ꢀꢑꢉ  
ꢀꢅ  
ꢀꢉꢑꢄ  
AIꢀꢇꢂꢁꢂC  
1. Dimensions are in millimeters.  
184/207  
DocID029162 Rev 5  
 
STM32F413xG/H  
Package information  
Device marking for LQFP64  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 71. LQFP64 marking example (package top view)  
3URGXFWꢉLGHQWLILFDWLRQꢑꢈꢒ  
5HYLVLRQꢉFRGH  
$
670ꢀꢁ)ꢂꢃꢀ  
5+7ꢄ  
'DWHꢉFRGH  
< ::  
3LQꢉꢈꢉ  
LQGHQWLILHU  
06Yꢀꢊꢇꢁꢁ9ꢈ  
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST’s Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
DocID029162 Rev 5  
185/207  
205  
 
Package information  
STM32F413xG/H  
7.4  
LQFP100 package information  
Figure 72. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline  
3%!4).' 0,!.%  
#
ꢁꢑꢉꢆ MM  
'!5'% 0,!.%  
CCC  
ꢄꢆ  
#
$
,
$ꢀ  
$ꢈ  
,ꢀ  
ꢆꢀ  
ꢆꢁ  
ꢄꢅ  
ꢀꢁꢁ  
ꢉꢅ  
0). ꢀ  
)$%.4)&)#!4)/.  
ꢉꢆ  
E
ꢀ,?-%?6ꢆ  
1. Drawing is not to scale. Dimensions are in millimeters.  
Table 107. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package  
mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
-
-
1.600  
0.150  
1.450  
0.270  
0.200  
16.200  
14.200  
-
-
-
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.6378  
0.5591  
-
0.050  
1.350  
0.170  
0.090  
15.800  
13.800  
-
-
0.0020  
0.0531  
0.0067  
0.0035  
0.6220  
0.5433  
-
-
1.400  
0.220  
-
0.0551  
0.0087  
-
c
D
16.000  
14.000  
12.000  
16.000  
0.6299  
0.5512  
0.4724  
0.6299  
D1  
D3  
E
15.800  
16.200  
0.6220  
0.6378  
186/207  
DocID029162 Rev 5  
 
 
 
STM32F413xG/H  
Package information  
Table 107. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package  
mechanical data (continued)  
millimeters  
inches(1)  
Typ  
Symbol  
Min  
Typ  
Max  
Min  
Max  
E1  
E3  
e
13.800  
14.000  
12.000  
0.500  
0.600  
1.000  
3.5°  
14.200  
0.5433  
0.5512  
0.4724  
0.0197  
0.0236  
0.0394  
3.5°  
0.5591  
-
-
-
-
-
-
-
-
L
0.450  
0.750  
-
0.0177  
0.0295  
-
L1  
k
-
0.0°  
-
-
0.0°  
-
7.0°  
0.080  
7.0°  
0.0031  
ccc  
-
-
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 73. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat  
recommended footprint  
ꢄꢆ  
ꢆꢀ  
ꢄꢅ  
ꢆꢁ  
ꢁꢑꢆ  
ꢁꢑꢈ  
ꢀꢅꢑꢄ ꢀꢇꢑꢈ  
ꢀꢁꢁ  
ꢉꢅ  
ꢀꢑꢉ  
ꢉꢆ  
ꢀꢉꢑꢈ  
ꢀꢅꢑꢄ  
AIꢀꢇꢂꢁꢅC  
1. Dimensions are in millimeters.  
DocID029162 Rev 5  
187/207  
205  
 
Package information  
STM32F413xG/H  
Device marking for LQFP100  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 74. LQFP100 marking example (package top view)  
3URGXFWꢉLGHQWLILFDWLRQꢑꢈꢒ  
670ꢀꢁ)ꢂꢃꢀ  
9+7ꢄꢅꢅ$  
5HYLVLRQꢉFRGH  
'DWHꢉFRGH  
<
::  
3LQꢉꢈꢉ  
LQGHQWLILHU  
06Yꢀꢊꢇꢁꢂ9ꢈ  
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST’s Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
188/207  
DocID029162 Rev 5  
 
STM32F413xG/H  
Package information  
7.5  
LQFP144 package information  
Figure 75. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline  
3%!4).'  
0,!.%  
#
C
ꢁꢑꢉꢆ MM  
'!5'% 0,!.%  
CCC  
#
$
,
+
$ꢀ  
$ꢈ  
,ꢀ  
ꢀꢁꢃ  
ꢄꢈ  
ꢀꢁꢂ  
ꢄꢉ  
ꢈꢄ  
ꢀꢇꢇ  
ꢈꢅ  
0). ꢀ  
)$%.4)&)#!4)/.  
E
ꢀ!?-%?6ꢈ  
1. Drawing is not to scale.  
DocID029162 Rev 5  
189/207  
205  
 
 
Package information  
STM32F413xG/H  
Table 108. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package  
mechanical data  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
-
0.050  
1.350  
0.170  
0.090  
21.800  
19.800  
-
-
1.600  
0.150  
1.450  
0.270  
0.200  
22.200  
20.200  
-
-
-
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.8740  
0.7953  
-
-
0.0020  
0.0531  
0.0067  
0.0035  
0.8583  
0.7795  
-
-
1.400  
0.220  
-
0.0551  
0.0087  
-
c
D
22.000  
20.000  
17.500  
22.000  
20.000  
17.500  
0.500  
0.600  
1.000  
3.5°  
0.8661  
0.7874  
0.6890  
0.8661  
0.7874  
0.6890  
0.0197  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
21.800  
19.800  
-
22.200  
20.200  
-
0.8583  
0.7795  
-
0.8740  
0.7953  
-
E1  
E3  
e
-
-
-
-
L
0.450  
-
0.750  
-
0.0177  
-
0.0295  
-
L1  
k
0°  
7°  
0°  
7°  
ccc  
-
-
0.080  
-
-
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
190/207  
DocID029162 Rev 5  
 
STM32F413xG/H  
Package information  
Figure 76. LQFP144 - 144-pin,20 x 20 mm low-profile quad flat package  
recommended footprint  
ꢈꢌꢀꢅ  
ꢈꢃꢂ  
ꢁꢀ  
ꢈꢃꢊ  
ꢁꢄ  
ꢃꢌꢀꢅ  
ꢃꢌꢅ  
ꢈꢊꢌꢊ  
ꢈꢁꢌꢂꢅ  
ꢄꢄꢌꢆ  
ꢈꢇꢇ  
ꢀꢁ  
ꢀꢆ  
ꢈꢊꢌꢊ  
ꢄꢄꢌꢆ  
DLꢈꢇꢊꢃꢅH  
1. Dimensions are expressed in millimeters.  
DocID029162 Rev 5  
191/207  
205  
 
Package information  
STM32F413xG/H  
Device marking for LQFP144  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 77. LQFP144 marking example (package top view)  
5HYLVLRQꢉFRGH  
3URGXFWꢉLGHQWLILFDWLRQꢑꢈꢒ  
$
670ꢀꢁ)ꢂꢃꢀ=+7ꢄ  
'DWHꢉFRGH  
< ::  
3LQꢉꢈꢉ  
LGHQWLILHU  
06Yꢀꢊꢇꢁꢊ9ꢈ  
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST’s Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
192/207  
DocID029162 Rev 5  
 
STM32F413xG/H  
Package information  
7.6  
UFBGA100 package information  
Figure 78. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball  
grid array package outline  
6HDWLQJꢉSODQH  
=
GGG =  
$ꢇ  
$ꢄ  
$
$ꢀ  
$ꢈ  
$
(ꢈ  
;
$ꢈꢉEDOOꢉꢉꢉꢉ $ꢈꢉEDOOꢉꢉꢉꢉ  
LGHQWLILHU LQGH[ꢉDUHD  
(
=
H
=
'ꢈ  
'
H
<
0
ꢈꢄ  
‘EꢉꢑꢈꢃꢃꢉEDOOVꢒ  
%27720ꢉ9,(:  
723ꢉ9,(:  
HHH 0  
‘
= < ;  
0
‘III  
=
$ꢃ&ꢄB0(B9ꢅ  
1. Drawing is not to scale.  
Table 109. UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball  
grid array package mechanical data  
millimeters  
Typ.  
inches(1)  
Symbol  
Min.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
A2  
A3  
A4  
b
-
-
0.600  
-
-
0.0236  
-
-
0.110  
-
-
0.0043  
-
0.450  
0.130  
0.320  
0.290  
7.000  
5.500  
7.000  
5.500  
0.500  
0.750  
-
-
0.0177  
0.0051  
0.0126  
0.0114  
0.2756  
0.2165  
0.2756  
0.2165  
0.0197  
0.0295  
-
-
-
-
0.0094  
-
-
-
-
0.240  
0.340  
0.0094  
0.0134  
D
6.850  
7.150  
0.2697  
0.2815  
D1  
E
-
-
-
-
6.850  
7.150  
0.2697  
0.2815  
E1  
e
-
-
-
-
-
-
-
-
-
-
-
Z
-
DocID029162 Rev 5  
193/207  
205  
 
 
 
Package information  
STM32F413xG/H  
Table 109. UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball  
grid array package mechanical data (continued)  
millimeters  
Typ.  
inches(1)  
Symbol  
Min.  
Max.  
Min.  
Typ.  
Max.  
ddd  
eee  
fff  
-
-
-
-
-
-
0.080  
0.150  
0.050  
-
-
-
-
-
-
0.0031  
0.0059  
0.0020  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 79. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball  
grid array package recommended footprint  
'SDG  
'VP  
$ꢃ&ꢄB)3B9ꢈ  
Table 110. UFBGA100 recommended PCB design rules (0.5 mm pitch BGA)  
Dimension Recommended values  
Pitch  
Dpad  
0.5  
0.280 mm  
0.370 mm typ. (depends on the soldermask  
registration tolerance)  
Dsm  
Stencil opening  
Stencil thickness  
0.280 mm  
Between 0.100 mm and 0.125 mm  
194/207  
DocID029162 Rev 5  
 
 
STM32F413xG/H  
Package information  
Device marking for UFBGA100  
The following figure gives an example of topside marking orientation versus ball A1 identifier  
location.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 80. UFBGA100 marking example (package top view)  
WƌŽĚƵĐƚꢁŝĚĞŶƚŝĨŝĐĂƚŝŽŶ;ϭͿ  
670ꢀꢁ)  
ꢂꢃꢀ9++ꢄ  
ꢃĂƚĞꢁĐŽĚĞꢁсꢁLJĞĂƌꢁнꢁǁĞĞŬ  
< ::  
ꢀĂůůꢁϭꢁŝĚĞŶƚŝĨŝĐĂƚŝŽŶ  
ꢂĚĚŝƚŝŽŶĂůꢁŝŶĨŽƌŵĂƚŝŽŶ  
$
06Yꢀꢊꢇꢂꢈ9ꢈ  
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST’s Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
DocID029162 Rev 5  
195/207  
205  
 
Package information  
STM32F413xG/H  
7.7  
UFBGA144 package information  
Figure 81. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball  
grid array package outline  
& 6HDWLQJꢉSODQH  
GGG =  
$ꢇ  
$ꢄ  
$
$ꢀ  
$ꢈ  
$
(ꢈ  
$
$ꢈꢉEDOOꢉ  
$ꢈꢉEDOOꢉ  
(
LGHQWLILHU LQGH[ꢉDUHD  
H
)
)
'ꢈ  
'
H
%
0
ꢈꢄ  
‘EꢉꢑꢈꢇꢇꢉEDOOVꢒ  
‘ HHH 0 & $ %  
‘ III 0 &  
%27720ꢉ9,(:  
723ꢉ9,(:  
$ꢃꢄ<B0(B9ꢄ  
1. Drawing is not to scale.  
Table 111. UFBGA144 - 144-ball, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball grid  
array package mechanical data  
millimeters  
Typ.  
inches(1)  
Symbol  
Min.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
A2  
A3  
A4  
b
0.460  
0.050  
0.400  
-
0.530  
0.080  
0.450  
0.130  
0.320  
0.400  
10.000  
8.800  
10.000  
8.800  
0.800  
0.600  
0.110  
0.500  
-
0.0181  
0.0020  
0.0157  
-
0.0209  
0.0031  
0.0177  
0.0051  
0.0126  
0.0110  
0.2756  
0.2362  
0.2756  
0.2362  
0.0197  
0.0236  
0.0043  
0.0197  
-
-
-
-
-
0.360  
9.950  
8.750  
9.950  
8.750  
0.750  
0.440  
10.050  
8.850  
10.050  
8.850  
0.850  
0.0091  
0.2736  
0.2343  
0.2736  
0.2343  
-
0.0130  
0.2776  
0.2382  
0.2776  
0.2382  
-
D
D1  
E
E1  
e
196/207  
DocID029162 Rev 5  
 
 
 
 
 
STM32F413xG/H  
Package information  
Table 111. UFBGA144 - 144-ball, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball grid  
array package mechanical data (continued)  
millimeters  
Typ.  
inches(1)  
Symbol  
Min.  
Max.  
Min.  
Typ.  
Max.  
F
0.550  
0.600  
0.650  
0.080  
0.150  
0.080  
0.0177  
0.0197  
0.0217  
0.0039  
0.0059  
0.0020  
ddd  
eee  
fff  
-
-
-
-
-
-
-
-
-
-
-
-
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 82. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball  
grid array recommended footprint  
'SDG  
'VP  
ꢂϬϮzͺ&Wͺsϭ  
Table 112. UFBGA144 recommended PCB design rules (0.80 mm pitch BGA)  
Dimension Recommended values  
Pitch  
Dpad  
0.80 mm  
0.400 mm  
0.550 mm typ. (depends on the soldermask  
registration tolerance)  
Dsm  
Note:  
Non solder mask defined (NSMD) pads are recommended.  
4 to 6 mils solder paste screen printing process.  
Stencil opening is 0.400 mm.  
Stencil thickness is between 0.100 mm and 0.125 mm.  
Pad trace width is 0.120 mm.  
DocID029162 Rev 5  
197/207  
205  
 
 
Package information  
STM32F413xG/H  
Device marking for UFBGA144  
The following figure gives an example of topside marking orientation versus ball A1 identifier  
location.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 83. UFBGA144 marking example (package top view)  
3URGXFWꢉ  
LGHQWLILFDWLRQꢑꢈꢒ  
670ꢀꢁ)ꢂꢃꢀ  
=+-ꢄ  
$GGLWLRQDOꢉ  
LQIRUPDWLRQ  
$
'DWHꢉFRGH  
< ::  
%DOOꢉꢉ$ꢈꢉ  
LQGHQWLILHU  
06Yꢀꢊꢇꢂꢃ9ꢈ  
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST’s Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
198/207  
DocID029162 Rev 5  
 
STM32F413xG/H  
Package information  
7.8  
Thermal characteristics  
The maximum chip junction temperature (T max) must never exceed the values given in  
J
Table 17: General operating conditions.  
The maximum chip-junction temperature, T max., in degrees Celsius, may be calculated  
J
using the following equation:  
T max = T max + (PD max x Θ )  
J
A
JA  
Where:  
T max is the maximum ambient temperature in °C,  
A
Θ
is the package junction-to-ambient thermal resistance, in °C/W,  
JA  
PD max is the sum of P  
max and P max (PD max = P  
max + P max),  
INT I/O  
INT  
I/O  
P
max is the product of I and V , expressed in Watts. This is the maximum chip  
DD DD  
INT  
internal power.  
P
max represents the maximum power dissipation on output pins where:  
I/O  
P
max = Σ (V × I ) + Σ((V – V ) × I ),  
OL OL DD OH OH  
I/O  
taking into account the actual V / I and V / I of the I/Os at low and high level in the  
OL OL  
OH OH  
application.  
Table 113. Package thermal characteristics  
Symbol  
Parameter  
Value  
Unit  
Thermal resistance junction-ambient  
LQFP144 - 20 x 20 mm  
35  
43  
Thermal resistance junction-ambient  
LQFP100 - 14 x 14 mm  
Thermal resistance junction-ambient  
LQFP64 - 10 x 10 mm  
47  
Thermal resistance junction-ambient  
UFBGA144 - 10 x 10 mm / 0.8 mm pitch  
Θ
48  
°C/W  
JA  
Thermal resistance junction-ambient  
UFBGA100 - 7 x 7 mm  
57  
Thermal resistance junction-ambient  
WLCSP81 - 4.039 x 3.951 mm  
39.7  
32  
Thermal resistance junction-ambient  
UFQFPN48 - 7 x 7 mm  
7.8.1  
Reference document  
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural  
Convection (Still Air). Available from www.jedec.org.  
DocID029162 Rev 5  
199/207  
205  
 
 
 
Ordering information  
STM32F413xG/H  
8
Ordering information  
Table 114. Ordering information scheme  
STM32 F 413 C H T  
Example:  
6
TR  
Device family  
®
STM32 = ARM -based 32-bit microcontroller  
Product type  
F = General-purpose  
Device subfamily  
413 = 413 line  
Pin count  
C = 48 pins  
R = 64 pins  
M = 81 pins  
V = 100 pins  
Z = 144 pins  
Flash memory size  
G = 1024 Kbytes of Flash memory  
H = 1536 Kbytes of Flash memory  
Package  
H = UFBGA 7 x 7 mm  
J = UFBGA 10 x 10 mm  
T = LQFP  
U = UFQFPN  
Y = WLCSP  
Temperature range  
6 = Industrial temperature range, – 40 to 85 °C  
3 = Industrial temperature range, – 40 to 125 °C  
Packing  
TR = tape and reel  
No character = tray or tube  
200/207  
DocID029162 Rev 5  
 
 
STM32F413xG/H  
Recommendations when using the internal reset OFF  
Appendix A  
Recommendations when using the internal  
reset OFF  
When the internal reset is OFF, the following integrated features are no longer supported:  
The integrated power-on-reset (POR)/power-down reset (PDR) circuitry is disabled.  
The brownout reset (BOR) circuitry must be disabled. By default BOR is OFF.  
The embedded programmable voltage detector (PVD) is disabled.  
V
functionality is no more available and VBAT pin should be connected to V  
.
BAT  
DD  
DocID029162 Rev 5  
201/207  
205  
 
Application block diagrams  
STM32F413xG/H  
Appendix B  
Application block diagrams  
B.1  
Sensor Hub application example  
Figure 84. Sensor Hub application example  
$FFHOHURPHWHU  
*\URVFRSH  
3UHVVXUH  
3UR[LPLW\  
0DJQHWRPHWHU  
$PELHQWꢉOLJKW  
6&/  
6'$  
670ꢃꢂ)ꢄꢁꢃꢏꢄꢂꢃ[[  
ꢄꢈꢋSLQꢀSDFNDJH  
3%ꢆꢋ3%ꢈꢃꢋ3$ꢂ  
3%ꢁꢋ3%ꢊꢋ3%ꢇ  
,ꢄ&  
,ꢄ6  
6/.  
3%ꢈꢀ  
3%ꢈꢅ  
[ *3,2  
ꢈꢃ.  
*3,2  
'$7$  
%227ꢃ  
7;  
5;  
3$ꢊ  
8$57  
0LFUR  
3$ꢈꢃ  
6:',2  
6:&/.  
6:2  
166  
6&.  
3&ꢈꢀ  
3$ꢈꢇ  
3%ꢀ  
3$ꢇ  
3$ꢅ  
3$ꢆ  
3$ꢁ  
-7$*  
63,  
+267  
0,62  
026,  
1567  
26& ꢀꢄN  
3&ꢈꢇ  
3&ꢈꢅ  
'$&  
7HPSHUDWXUHꢋ+XPLGLW\  
3$ꢈꢋ3$ꢀ  
8SꢉWRꢉꢈꢃꢉ$'&ꢉLQSXWV  
06Yꢇꢃꢂꢇꢀ9ꢈ  
202/207  
DocID029162 Rev 5  
 
 
 
STM32F413xG/H  
Application block diagrams  
B.2  
Display application example  
Figure 85. Display application example  
%DFNOLJKWꢉ  
FRQWURO  
3&ꢂ  
7,0ꢃBFKꢃ  
*3,2  
7(ꢉꢑ7HDULQJꢒ  
1:(  
$ꢃ  
1(ꢇ  
12(  
3&ꢄ  
3&ꢀ  
3&ꢇ  
3&ꢅ  
:5  
'&  
&6  
ꢈꢃN  
'LVSOD\ꢀ0RGXOH  
5'  
%227ꢃ  
'ꢃ  
'ꢈ  
3%ꢈꢇ  
3&ꢆ  
3&ꢈꢈ  
3&ꢈꢄ  
3$ꢄ  
3$ꢀ  
3$ꢇ  
3$ꢅ  
)60&  
'ꢄ  
'ꢀ  
'ꢇ  
'ꢅ  
'ꢆ  
'ꢁ  
6:',2 3$ꢈꢀ  
-7$* 6:&/. 3$ꢈꢇ  
6:2 3%ꢀ  
>'ꢃꢍ'ꢁ@  
,QWHUUXSW  
*3,2  
7RXFKꢀ6FUHHQꢀ  
&RQWUROOHU  
6&/  
6'$  
3%ꢆ  
3%ꢊ  
,ꢄ&  
06Yꢇꢃꢂꢇꢇ9ꢈ  
Note:  
16 bit displays interfaces can be addressed with 100 and 144 pins packages.  
MSv40843  
DocID029162 Rev 5  
203/207  
205  
 
 
Application block diagrams  
STM32F413xG/H  
B.3  
USB OTG full speed (FS) interface solutions  
Figure 86. USB controller configured as peripheral-only and used in Full speed mode  
9''  
9''86%  
ꢅꢉ9ꢉWRꢉ9''86%  
9ROWDJHꢉUHJXODWRUꢑꢈꢒ  
670)[[  
SLQVSDFNDJHV
9%86  
'0  
3$ꢈꢈ  
26&B,1  
'3  
3$ꢈꢄ  
26&B287  
966  
06Yꢀꢊꢇꢄ9ꢈ  
1. External voltage regulator only needed when building a VBUS powered device.  
Figure 87. USB peripheral-only Full speed mode with direct connection  
for VBUS sense  
9''86%  
9''ꢉ!ꢉꢄꢌꢁꢉ9  
670)[[  
SLQVSDFNDJHV
9%86  
'0  
3$ꢊ  
3$ꢈꢈ  
26&B,1  
3$ꢈꢄ  
'3  
26&B287  
966  
06Yꢀꢊꢇꢀ9ꢈ  
1. External voltage regulator only needed when building a VBUS powered device.  
204/207  
DocID029162 Rev 5  
 
 
 
STM32F413xG/H  
Application block diagrams  
Figure 88. USB peripheral-only Full speed mode, VBUS detection using GPIO  
9''86%  
ꢈꢌꢁꢉ9ꢉꢔꢉ9''ꢉꢔꢉꢉꢄꢌꢁꢉ9  
670ꢃꢂ)ꢄꢁꢃꢏꢄꢂꢃ[[  
ꢈꢇꢇꢉSLQVꢉSDFNDJHV  
*3,2  
9%86  
'0  
'3  
3$ꢈꢈ  
26&B,1  
3$ꢈꢄ  
26&B287  
966  
06Yꢀꢊꢇꢁꢇ9ꢈ  
1. External voltage regulator only needed when building a VBUS powered device.  
Figure 89. USB controller configured as host-only and used in full speed mode  
9''  
670ꢃꢂ)ꢄꢁꢃꢏꢄꢂꢃ[[  
(1  
*3,2  
&XUUHQWꢉOLPLWHUꢉꢉ  
ꢅꢉ9  
ꢑꢈꢒ  
SRZHUꢉVZLWFK  
2YHUFXUUHQW  
*3,2ꢓ,54  
9%86  
'0  
3$ꢈꢈ  
26&B,1  
'3  
3$ꢈꢄ  
26&B287  
966  
06Yꢀꢊꢇꢁꢅ9ꢈ  
2. The current limiter is required only if the application has to support a VBUS powered device. A basic power  
switch can be used if 5 V are available on the application board.  
DocID029162 Rev 5  
205/207  
205  
 
 
Revision history  
STM32F413xG/H  
Revision history  
Table 115. Document revision history  
Date  
Revision  
Changes  
29-Aug-2016  
1
Initial release.  
Updated:  
Table 10: STM32F413xG/H pin definition  
Section 7: Package information  
21-Oct-2016  
2
Figure 65: WLCSP81 marking example (package top  
view)  
Updated:  
Table 39: Peripheral current consumption  
Table 55: EMI characteristics for LQFP144  
Table 56: ESD absolute maximum ratings  
Table 70: QSPI dynamic characteristics in SDR mode  
13-Dec-2016  
3
Table 111: UFBGA144 - 144-ball, 10 x 10 mm,  
0.80 mm pitch, ultra fine pitch ball grid array package  
mechanical data  
Figure 81: UFBGA144 - 144-pin, 10 x 10 mm,  
0.80 mm pitch, ultra fine pitch ball grid array package  
outline  
Updated:  
Table 2: STM32F413xG/H features and peripheral  
counts  
09-Mar-2017  
4
Table 12: STM32F413xG/H alternate functions  
Added:  
Table 11: FSMC pin definition  
Added:  
Section 4.1: WLCSP81 pinout description  
Section 4.2: UFQFPN48 pinout description  
Section 4.3: LQFP64 pinout description  
Section 4.4: LQFP100 pinout description  
Section 4.5: LQFP144 pinout description  
Section 4.6: UFBGA100 pinout description  
Section 4.7: UFBGA144 pinout description  
Section 4.8: Pins definition  
14-Jun-2017  
5
Section 4.9: Alternate functions  
Updated:  
Table 10: STM32F413xG/H pin definition  
Table 11: FSMC pin definition  
Table 38: Switching output I/O current consumption  
Table 39: Peripheral current consumption  
206/207  
DocID029162 Rev 5  
 
 
STM32F413xG/H  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and  
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on  
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order  
acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or  
the design of Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2017 STMicroelectronics – All rights reserved  
DocID029162 Rev 5  
207/207  
207  
 
 

相关型号:

STM32F415OG

ARM Cortex-M4 32b MCUFPU, 210DMIPS, up to 1MB Flash/1924KB RAM
STMICROELECTR

STM32F415RG

ARM Cortex-M4 32b MCUFPU, 210DMIPS, up to 1MB Flash/1924KB RAM
STMICROELECTR

STM32F415VG

ARM Cortex-M4 32b MCUFPU, 210DMIPS, up to 1MB Flash/1924KB RAM
STMICROELECTR

STM32F415XX

ARM Cortex-M4 32b MCUFPU, 210DMIPS, up to 1MB Flash/1924KB RAM
STMICROELECTR

STM32F415ZG

ARM Cortex-M4 32b MCUFPU, 210DMIPS, up to 1MB Flash/1924KB RAM
STMICROELECTR

STM32F417IE

ARM Cortex-M4 32b MCUFPU, 210DMIPS, up to 1MB Flash/1924KB RAM
STMICROELECTR

STM32F417IG

ARM Cortex-M4 32b MCUFPU, 210DMIPS, up to 1MB Flash/1924KB RAM
STMICROELECTR

STM32F417VE

ARM Cortex-M4 32b MCUFPU, 210DMIPS, up to 1MB Flash/1924KB RAM
STMICROELECTR

STM32F417VG

ARM Cortex-M4 32b MCUFPU, 210DMIPS, up to 1MB Flash/1924KB RAM
STMICROELECTR

STM32F417xx

ARM Cortex-M4 32b MCUFPU, 210DMIPS, up to 1MB Flash/1924KB RAM
STMICROELECTR

STM32F417ZE

ARM Cortex-M4 32b MCUFPU, 210DMIPS, up to 1MB Flash/1924KB RAM
STMICROELECTR

STM32F417ZG

ARM Cortex-M4 32b MCUFPU, 210DMIPS, up to 1MB Flash/1924KB RAM
STMICROELECTR