STM32H747BG [STMICROELECTRONICS]

带DSP和DP-FPU的高性能ARM Cortex-M7 + Cortex-M4 MCU,具有2 MB Flash、1 MB RAM、480 MHz CPU、ART加速器、一级缓存、外部存储器接口、大量外设、SMPS和MIPI-DSI;
STM32H747BG
型号: STM32H747BG
厂家: ST    ST
描述:

带DSP和DP-FPU的高性能ARM Cortex-M7 + Cortex-M4 MCU,具有2 MB Flash、1 MB RAM、480 MHz CPU、ART加速器、一级缓存、外部存储器接口、大量外设、SMPS和MIPI-DSI

存储
文件: 总252页 (文件大小:3452K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM32H747xI/G  
Dual 32-bit Arm® Cortex®-M7 up to 480MHz and -M4 MCUs, up to  
2MB Flash, 1MB RAM, 46 com. and analog interfaces, SMPS, DSI  
Datasheet - production data  
Features  
FBGA  
Dual core  
®
®
32-bit Arm Cortex -M7 core with double-  
precision FPU and L1 cache: 16 Kbytes of data  
and 16 Kbytes of instruction cache; frequency  
up to 480 MHz, MPU, 1027 DMIPS/  
2.14 DMIPS/MHz (Dhrystone 2.1), and DSP  
instructions  
LQFP176  
(24x24 mm)  
LQFP208  
UFBGA169  
(7 × 7 mm)  
TFBGA240+25  
(14x14 mm)  
WLCSP156  
(4.96x4.64 mm)  
(28x28 mm)  
Reset and power management  
®
®
3 separate power domains which can be  
32-bit Arm 32-bit Cortex -M4 core with FPU,  
Adaptive real-time accelerator (ART  
independently clock-gated or switched off:  
Accelerator™) for internal Flash memory and  
external memories, frequency up to 240 MHz,  
MPU, 300 DMIPS/1.25 DMIPS /MHz  
– D1: high-performance capabilities  
– D2: communication peripherals and timers  
– D3: reset/clock control/power management  
(Dhrystone 2.1), and DSP instructions  
1.62 to 3.6 V application supply and I/Os  
POR, PDR, PVD and BOR  
Memories  
Up to 2 Mbytes of Flash memory with read-  
Dedicated USB power embedding a 3.3 V  
while-write support  
internal regulator to supply the internal PHYs  
1 Mbyte of RAM: 192 Kbytes of TCM RAM (inc.  
64 Kbytes of ITCM RAM + 128 Kbytes of  
DTCM RAM for time critical routines),  
864 Kbytes of user SRAM, and 4 Kbytes of  
SRAM in Backup domain  
Embedded regulator (LDO) to supply the digital  
circuitry  
High power-efficiency SMPS step-down  
converter regulator to directly supply V  
and/or external circuitry  
CORE  
Dual mode Quad-SPI memory interface  
Voltage scaling in Run and Stop mode (6  
running up to 133 MHz  
configurable ranges)  
Flexible external memory controller with up to  
32-bit data bus: SRAM, PSRAM,  
Backup regulator (~0.9 V)  
Voltage reference for analog peripheral/V  
REF+  
SDRAM/LPSDR SDRAM, NOR/NAND Flash  
memory clocked up to 125 MHz in  
Synchronous mode  
1.2 to 3.6 V V  
supply  
BAT  
Low-power modes: Sleep, Stop, Standby and  
supporting battery charging  
CRC calculation unit  
V
BAT  
Security  
Low-power consumption  
ROP, PC-ROP, active tamper  
V  
battery operating mode with charging  
capability  
BAT  
General-purpose input/outputs  
CPU and domain power state monitoring pins  
Up to 168 I/O ports with interrupt capability  
2.95 µAin Standby mode (Backup SRAM OFF,  
RTC/LSE ON)  
May 2019  
DS12930 Rev 1  
1/242  
This is information on a product in full production.  
www.st.com  
STM32H747xI/G  
2× operational amplifiers (7.3 MHz bandwidth)  
Clock management  
1× digital filters for sigma delta modulator  
Internal oscillators: 64 MHz HSI, 48 MHz  
(DFSDM) with 8 channels/4 filters  
HSI48, 4 MHz CSI, 32 kHz LSI  
External oscillators: 4-48 MHz HSE,  
Graphics  
32.768 kHz LSE  
LCD-TFT controller up to XGA resolution  
3× PLLs (1 for the system clock, 2 for kernel  
MIPI DSI host including an MIPI D-PHY to  
clocks) with Fractional mode  
interface with low-pin count large displays  
Interconnect matrix  
Chrom-ART graphical hardware Accelerator™  
(DMA2D) to reduce CPU load  
3 bus matrices (1 AXI and 2 AHB)  
Bridges (5× AHB2-APB, 2× AXI2-AHB)  
Hardware JPEG Codec  
4 DMA controllers to unload the CPU  
Up to 22 timers and watchdogs  
1× high-speed master direct memory access  
1× high-resolution timer (2.1 ns max  
controller (MDMA) with linked list support  
resolution)  
2× dual-port DMAs with FIFO  
2× 32-bit timers with up to 4 IC/OC/PWM or  
pulse counter and quadrature (incremental)  
encoder input (up to 240 MHz)  
1× basic DMA with request router capabilities  
Up to 35 communication peripherals  
2× 16-bit advanced motor control timers (up to  
240 MHz)  
4× I2Cs FM+ interfaces (SMBus/PMBus)  
10× 16-bit general-purpose timers (up to  
4× USARTs/4x UARTs (ISO7816 interface,  
240 MHz)  
LIN, IrDA, up to 12.5 Mbit/s) and 1x LPUART  
5× 16-bit low-power timers (up to 240 MHz)  
4× watchdogs (independent and window)  
2× SysTick timers  
6× SPIs, 3 with muxed duplex I2S audio class  
accuracy via internal audio PLL or external  
clock, 1x I2S in LP domain (up to 150 MHz)  
4x SAIs (serial audio interface)  
SPDIFRX interface  
RTC with sub-second accuracy and hardware  
calendar  
SWPMI single-wire protocol master I/F  
MDIO Slave interface  
Debug mode  
SWD & JTAG interfaces  
4-Kbyte Embedded Trace Buffer  
2× SD/SDIO/MMC interfaces (up to 125 MHz)  
2× CAN controllers: 2 with CAN FD, 1 with  
time-triggered CAN (TT-CAN)  
True random number generators (3  
oscillators each)  
2× USB OTG interfaces (1FS, 1HS/FS) crystal-  
less solution with LPM and BCD  
96-bit unique ID  
Ethernet MAC interface with DMA controller  
HDMI-CEC  
All packages are ECOPACK®2 compliant  
Table 1. Device summary  
8- to 14-bit camera interface (up to 80 MHz)  
11 analog peripherals  
Reference  
Part number  
3× ADCs with 16-bit max. resolution (up to 36  
STM32H747 STM32H747AI, STM32H747BI,  
xI  
STM32H747II, STM32H747XI, STM32H747ZI  
channels, up to 3.6 MSPS)  
STM32H747 STM32H747AG, STM32H747BG,  
1× temperature sensor  
xG  
STM32H747IG, STM32H747XG  
2× 12-bit D/A converters (1 MHz)  
2× ultra-low-power comparators  
2/242  
DS12930 Rev 1  
 
STM32H747xI/G  
Contents  
Contents  
1
2
3
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
3.1  
Dual Arm® Cortex® cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
®
®
3.1.1  
3.1.2  
Arm Cortex -M7 with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
®
®
Arm Cortex -M4 with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
3.2  
3.3  
Memory protection unit (MPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3.3.1  
3.3.2  
3.3.3  
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
ART™ accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.4  
3.5  
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3.5.1  
3.5.2  
3.5.3  
3.5.4  
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Voltage regulator (SMPS step-down converter and LDO) . . . . . . . . . . . 18  
SMPS step-down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
3.6  
3.7  
Low-power strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Reset and clock controller (RCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.7.1  
3.7.2  
Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
System reset sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.8  
3.9  
General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Bus-interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.10 DMA controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
3.11 Chrom-ART Accelerator™ (DMA2D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
3.12 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 24  
3.13 Extended interrupt and event controller (EXTI) . . . . . . . . . . . . . . . . . . . . 24  
3.14 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 24  
3.15 Flexible memory controller (FMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3.16 Quad-SPI memory interface (QUADSPI) . . . . . . . . . . . . . . . . . . . . . . . . . 25  
DS12930 Rev 1  
1/242  
4
Contents  
STM32H747xI/G  
3.17 Analog-to-digital converters (ADCs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3.18 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
3.19  
VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
3.20 Digital-to-analog converters (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
3.21 Ultra-low-power comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
3.22 Operational amplifiers (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
3.23 Digital filter for sigma-delta modulators (DFSDM) . . . . . . . . . . . . . . . . . . 28  
3.24 Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
3.25 LCD-TFT controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
3.26 DSI Host (DSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
3.27 JPEG Codec (JPEG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
3.28 Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
3.29 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
3.29.1 High-resolution timer (HRTIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
3.29.2 Advanced-control timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . 35  
3.29.3 General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
3.29.4 Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
3.29.5 Low-power timers (LPTIM1, LPTIM2, LPTIM3, LPTIM4, LPTIM5) . . . . 36  
3.29.6 Independent watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
3.29.7 Window watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
3.29.8 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
3.30 Real-time clock (RTC), backup SRAM and backup registers . . . . . . . . . . 37  
3.31 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
3.32 Universal synchronous/asynchronous receiver transmitter (USART) . . . 38  
3.33 Low-power universal asynchronous receiver transmitter (LPUART) . . . . 39  
3.34 Serial peripheral interface (SPI)/inter- integrated sound interfaces (I2S) . 40  
3.35 Serial audio interfaces (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
3.36 SPDIFRX Receiver Interface (SPDIFRX) . . . . . . . . . . . . . . . . . . . . . . . . . 41  
3.37 Single wire protocol master interface (SWPMI) . . . . . . . . . . . . . . . . . . . . 41  
3.38 Management Data Input/Output (MDIO) slaves . . . . . . . . . . . . . . . . . . . . 42  
3.39 SD/SDIO/MMC card host interfaces (SDMMC) . . . . . . . . . . . . . . . . . . . . 42  
3.40 Controller area network (FDCAN1, FDCAN2) . . . . . . . . . . . . . . . . . . . . . 42  
3.41 Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . . . 43  
3.42 Ethernet MAC interface with dedicated DMA controller (ETH) . . . . . . . . . 43  
2/242  
DS12930 Rev 1  
STM32H747xI/G  
Contents  
3.43 High-definition multimedia interface (HDMI)  
- consumer electronics control (CEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
3.44 Debug infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
4
5
6
6.1  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
6.1.1  
6.1.2  
6.1.3  
6.1.4  
6.1.5  
6.1.6  
6.1.7  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
6.2  
6.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
6.3.5  
6.3.6  
6.3.7  
6.3.8  
6.3.9  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
VCAP external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
SMPS step-down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . 105  
Embedded reset and power control block characteristics . . . . . . . . . . 106  
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Wakeup time from low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
6.3.10 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
6.3.11 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
6.3.12 MIPI D-PHY characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
6.3.13 MIPI D-PHY regulator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 140  
6.3.14 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
6.3.15 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
6.3.16 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 144  
6.3.17 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
6.3.18 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
DS12930 Rev 1  
3/242  
4
Contents  
STM32H747xI/G  
6.3.19 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
6.3.20 FMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
6.3.21 Quad-SPI interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
6.3.22 Delay block (DLYB) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
6.3.23 16-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
6.3.24 DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
6.3.25 Voltage reference buffer characteristics . . . . . . . . . . . . . . . . . . . . . . . 190  
6.3.26 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
6.3.27 Temperature and V  
monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
BAT  
6.3.28 Voltage booster for analog switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
6.3.29 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
6.3.30 Operational amplifier characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
6.3.31 Digital filter for Sigma-Delta Modulators (DFSDM) characteristics . . . 196  
6.3.32 Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 199  
6.3.33 LCD-TFT controller (LTDC) characteristics . . . . . . . . . . . . . . . . . . . . . 200  
6.3.34 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
6.3.35 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
7
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
WLCSP156 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222  
UFBGA169 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225  
LQFP176 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
LQFP208 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231  
TFBGA240+25 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . 235  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238  
7.6.1  
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239  
8
9
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241  
4/242  
DS12930 Rev 1  
STM32H747xI/G  
List of tables  
List of tables  
Table 1.  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
STM32H747xI/G features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
System vs domain low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
DFSDM implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
USART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
STM32H747xI/G pin/ball definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Port A alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Port B alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Port C alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Port D alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Port E alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Port F alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Port G alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Port H alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Port I alternate functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Port J alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Port K alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Supply voltage and maximum frequency configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
VCAP operating conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Characteristics of SMPS step-down converter external components. . . . . . . . . . . . . . . . 104  
SMPS step-down converter characteristics for external usage . . . . . . . . . . . . . . . . . . . . 105  
Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . 105  
Reset and power control block characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Typical and maximum current consumption in Run mode, code with data processing  
running from ITCM for Cortex-M7 core, and Flash memory for Cortex-M4  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
(ART accelerator ON), LDO regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Typical and maximum current consumption in Run mode, code with data processing  
running from ITCM for Arm Cortex-M7 and Flash memory for Arm Cortex-M4,  
ART accelerator ON, SMPS regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Typical and maximum current consumption in Run mode, code with data processing  
running from Flash memory, both cores running, cache ON,  
ART accelerator ON, LDO regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Typical and maximum current consumption in Run mode, code with data processing  
running from Flash memory, both cores running, cache OFF,  
Table 32.  
Table 33.  
Table 34.  
ART accelerator OFF, LDO regulator ON. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Typical and maximum current consumption in Run mode, code with data processing  
running from ITCM, only Arm Cortex-M7 running, LDO regulator ON . . . . . . . . . . . . . . . 111  
Typical and maximum current consumption in Run mode, code with data processing  
running from ITCM, only Arm Cortex-M7 running, SMPS regulator. . . . . . . . . . . . . . . . . 112  
Typical and maximum current consumption in Run mode, code with data processing  
Table 35.  
Table 36.  
Table 37.  
DS12930 Rev 1  
1/242  
4
List of tables  
STM32H747xI/G  
running from Flash memory, only Arm Cortex-M7 running, cache ON,  
LDO regulator ON. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Typical and maximum current consumption in Run mode, code with data processing  
running from Flash memory, only Arm Cortex-M7 running, cache OFF,  
Table 38.  
LDO regulator ON. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Typical and maximum current consumption batch acquisition mode,  
LDO regulator ON. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Typical and maximum current consumption in Run mode, code with data processing  
running from Flash memory, only Arm Cortex-M4 running, ART accelerator ON,  
Table 39.  
Table 40.  
LDO regulator ON. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Typical and maximum current consumption in Run mode, code with data processing  
running from Flash bank 2, only Arm Cortex-M4 running, ART accelerator ON,  
Table 41.  
SMPS regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Typical and maximum current consumption in Stop, LDO regulator ON . . . . . . . . . . . . . 115  
Typical and maximum current consumption in Stop, SMPS regulator . . . . . . . . . . . . . . . 116  
Typical and maximum current consumption in Sleep mode, LDO regulator . . . . . . . . . . 117  
Typical and maximum current consumption in Sleep mode, SMPS regulator . . . . . . . . . 117  
Typical and maximum current consumption in Standby . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Typical and maximum current consumption in VBAT mode. . . . . . . . . . . . . . . . . . . . . . . 118  
Peripheral current consumption in Run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
4-48 MHz HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
CSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
PLL characteristics (wide VCO frequency range). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
PLL characteristics (medium VCO frequency range) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
MIPI D-PHY characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
MIPI D-PHY AC characteristics LP mode and HS/LP  
Table 42.  
Table 43.  
Table 44.  
Table 45.  
Table 46.  
Table 47.  
Table 48.  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
Table 54.  
Table 55.  
Table 56.  
Table 57.  
Table 58.  
Table 59.  
Table 60.  
Table 61.  
transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
DSI regulator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
Flash memory programming (single bank configuration nDBANK=1) . . . . . . . . . . . . . . . 141  
Flash memory endurance and data retention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
Output voltage characteristics for all I/Os except PC13, PC14, PC15 and PI8 . . . . . . . . 148  
Output voltage characteristics for PC13, PC14, PC15 and PI8 . . . . . . . . . . . . . . . . . . . . 149  
Output timing characteristics (HSLV OFF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
Output timing characteristics (HSLV ON) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 155  
Asynchronous non-multiplexed SRAM/PSRAM/NOR read-NWAIT timings . . . . . . . . . . . 155  
Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 157  
Table 62.  
Table 63.  
Table 64.  
Table 65.  
Table 66.  
Table 67.  
Table 68.  
Table 69.  
Table 70.  
Table 71.  
Table 72.  
Table 73.  
Table 74.  
Table 75.  
Table 76.  
Table 77.  
Table 78.  
Table 79.  
2/242  
DS12930 Rev 1  
STM32H747xI/G  
List of tables  
Table 80.  
Table 81.  
Table 82.  
Table 83.  
Table 84.  
Table 85.  
Table 86.  
Table 87.  
Table 88.  
Table 89.  
Table 90.  
Table 91.  
Table 92.  
Table 93.  
Table 94.  
Table 95.  
Table 96.  
Table 97.  
Table 98.  
Table 99.  
Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT timings. . . . . . . . . . . 157  
Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . 159  
Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . 160  
Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 166  
Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
LPSDR SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
SDRAM Write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
LPSDR SDRAM Write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
QUADSPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
QUADSPI characteristics in DDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
Delay Block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
Minimum sampling time vs RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
Table 100. ADC accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
Table 101. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
Table 102. DAC accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188  
Table 103. VREFBUF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190  
Table 104. Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
Table 105. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
Table 106. V  
Table 107. V  
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
BAT  
BAT  
Table 108. Temperature monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
Table 109. Voltage booster for analog switch characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
Table 110. COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
Table 111. Operational amplifier characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
Table 112. DFSDM measured timing 1.62-3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
Table 113. DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
Table 114. LTDC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200  
Table 115. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
Table 116. Minimum i2c_ker_ck frequency in all I2C modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203  
Table 117. I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203  
Table 118. USART characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204  
Table 119. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206  
2
Table 120. I S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209  
Table 121. SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
Table 122. MDIO Slave timing parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213  
Table 123. Dynamics characteristics: SD / MMC characteristics, VDD=2.7 to 3.6 V . . . . . . . . . . . . . 214  
Table 124. Dynamics characteristics: eMMC characteristics VDD=1.71V to 1.9V. . . . . . . . . . . . . . . 215  
Table 125. Dynamics characteristics: USB ULPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
Table 126. Dynamics characteristics: Ethernet MAC signals for SMI . . . . . . . . . . . . . . . . . . . . . . . . 218  
Table 127. Dynamics characteristics: Ethernet MAC signals for RMII . . . . . . . . . . . . . . . . . . . . . . . . 219  
Table 128. Dynamics characteristics: Ethernet MAC signals for MII . . . . . . . . . . . . . . . . . . . . . . . . . 219  
Table 129. Dynamics JTAG characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220  
Table 130. Dynamics SWD characteristics: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221  
Table 131. WLCSP156 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223  
DS12930 Rev 1  
3/242  
4
List of tables  
STM32H747xI/G  
Table 132. WLCSP156 bump recommended PCB design rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224  
Table 133. UFBGA169 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225  
Table 134. LQFP176 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
Table 135. LQFP208 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232  
Table 136. TFBG240+25 ball package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236  
Table 137. TFBGA240+25 recommended PCB design rules (0.8 mm pitch). . . . . . . . . . . . . . . . . . . 237  
Table 138. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238  
Table 139. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241  
4/242  
DS12930 Rev 1  
STM32H747xI/G  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
STM32H747xI/G block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
TFBGA240+25 ball assignment differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
ART™ accelerator schematic and environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Power-up/power-down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
STM32H747xI/G bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
WLCSP156 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
UFBGA169 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
LQFP176 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
LQFP208 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 10. TFBGA240+25 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 11. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Figure 12. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Figure 13. Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Figure 14. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Figure 15. External capacitor C  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
EXT  
Figure 16. External components for SMPS step-down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Figure 17. Typical SMPS efficiency (%) vs load current (A) in Run mode at TJ = 30 °C. . . . . . . . . . 119  
Figure 18. Typical SMPS efficiency (%) vs load current (A) in Run mode at TJ = TJmax . . . . . . . . 119  
Figure 19. Typical SMPS efficiency (%) vs load current (A) in low-power mode at TJ = 30 °C. . . . . 120  
Figure 20. Typical SMPS efficiency (%) vs load current (A) in low-power mode at TJ = TJmax . . . 121  
Figure 21. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
Figure 22. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
Figure 23. Typical application with an 8 MHz crystal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
Figure 24. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
Figure 25. MIPI D-PHY HS/LP clock lane transition timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . 140  
Figure 26. MIPI D-PHY HS/LP data lane transition timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . 140  
Figure 27. VIL/VIH for all I/Os except BOOT0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Figure 28. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
Figure 29. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 154  
Figure 30. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 156  
Figure 31. Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 158  
Figure 32. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Figure 33. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
Figure 34. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 165  
Figure 35. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
Figure 36. NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
Figure 37. NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
Figure 38. NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 170  
Figure 39. NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 171  
Figure 40. SDRAM read access waveforms (CL = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
Figure 41. SDRAM write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
Figure 42. Quad-SPI timing diagram - SDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
Figure 43. Quad-SPI timing diagram - DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
Figure 44. ADC accuracy characteristics (12-bit resolution) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
Figure 45. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
Figure 46. Power supply and reference decoupling (V  
Figure 47. Power supply and reference decoupling (V  
not connected to V  
). . . . . . . . . . . . . 185  
). . . . . . . . . . . . . . . . 185  
REF+  
DDA  
connected to V  
REF+  
DDA  
Figure 48. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
DS12930 Rev 1  
1/242  
2
List of figures  
STM32H747xI/G  
Figure 49. Channel transceiver timing diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198  
Figure 50. DCMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
Figure 51. LCD-TFT horizontal timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201  
Figure 52. LCD-TFT vertical timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201  
Figure 53. USART timing diagram in Master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
Figure 54. USART timing diagram in Slave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
Figure 55. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
(1)  
Figure 56. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208  
(1)  
Figure 57. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208  
2
(1)  
Figure 58. I S slave timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
2
(1)  
Figure 59. I S master timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
Figure 60. SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213  
Figure 61. SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213  
Figure 62. MDIO Slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214  
Figure 63. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216  
Figure 64. SD default mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216  
Figure 65. DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216  
Figure 66. ULPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
Figure 67. Ethernet SMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218  
Figure 68. Ethernet RMII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
Figure 69. Ethernet MII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220  
Figure 70. JTAG timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221  
Figure 71. SWD timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221  
Figure 72. WLCSP156 package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222  
Figure 73. WLCSP156 bump recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223  
Figure 74. WLCSP156 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224  
Figure 75. UFBGA169 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225  
Figure 76. UFBGA169 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
Figure 77. LQFP176 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
Figure 78. LQFP176 package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229  
Figure 79. LQFP176 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230  
Figure 80. LQFP208 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231  
Figure 81. LQFP208 package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233  
Figure 82. LQFP208 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234  
Figure 83. TFBGA240+25 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235  
Figure 84. TFBGA240+25 package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236  
Figure 85. TFBGA240+25 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . 237  
2/242  
DS12930 Rev 1  
STM32H747xI/G  
Introduction  
1
Introduction  
This document provides information on STM32H747xI/G microcontrollers, such as  
description, functional overview, pin assignment and definition, electrical characteristics,  
packaging, and ordering information.  
This document should be read in conjunction with the STM32H747xI/G reference manual  
(RM0399), available from the STMicroelectronics website www.st.com.  
®(a)  
®
®
®
For information on the Arm  
Cortex -M7 core and Arm Cortex -M4 core, please refer to  
®
the Cortex -M7 Technical Reference Manual, available from the http://www.arm.com  
website.  
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.  
DS12930 Rev 1  
3/242  
46  
 
Description  
STM32H747xI/G  
2
Description  
®
®
STM32H747xI/G devices are based on the high-performance Arm Cortex -M7 and  
®
®
Cortex -M4 32-bit RISC cores. The Cortex -M7 core operates at up to 480 MHz and the  
Cortex -M4 core at up to 240 MHz. Both cores feature a floating point unit (FPU) which  
supports Arm single- and double-precision (Cortex -M7 core) operations and conversions  
(IEEE 754 compliant), including a full set of DSP instructions and a memory protection unit  
(MPU) to enhance application security.  
®
®
®
STM32H747xI/G devices incorporate high-speed embedded memories with a dual-bank  
Flash memory of up to 2 Mbytes, up to 1 Mbyte of RAM (including 192 Kbytes of TCM RAM,  
up to 864 Kbytes of user SRAM and 4 Kbytes of backup SRAM), as well as an extensive  
range of enhanced I/Os and peripherals connected to APB buses, AHB buses, 2x32-bit  
multi-AHB bus matrix and a multi layer AXI interconnect supporting internal and external  
memory access.  
All the devices offer three ADCs, two DACs, two ultra-low power comparators, a low-power  
RTC, a high-resolution timer, 12 general-purpose 16-bit timers, two PWM timers for motor  
control, five low-power timers, a true random number generator (RNG). The devices support  
four digital filters for external sigma-delta modulators (DFSDM). They also feature standard  
and advanced communication interfaces.  
Standard peripherals  
2
Four I Cs  
Four USARTs, four UARTs and one LPUART  
2
2
Six SPIs, three I Ss in Half-duplex mode. To achieve audio class accuracy, the I S  
peripherals can be clocked by a dedicated internal audio PLL or by an external  
clock to allow synchronization.  
Four SAI serial audio interfaces  
One SPDIFRX interface  
One SWPMI (Single Wire Protocol Master Interface)  
Management Data Input/Output (MDIO) slaves  
Two SDMMC interfaces  
A USB OTG full-speed and a USB OTG high-speed interface with full-speed  
capability (with the ULPI)  
One FDCAN plus one TT-FDCAN interface  
An Ethernet interface  
Chrom-ART Accelerator  
HDMI-CEC  
Advanced peripherals including  
A flexible memory control (FMC) interface  
A Quad-SPI Flash memory interface  
A camera interface for CMOS sensors  
An LCD-TFT display controller  
A JPEG hardware compressor/decompressor  
A DSI Host interface.  
4/242  
DS12930 Rev 1  
 
STM32H747xI/G  
Description  
Refer to Table 1: STM32H747xI/G features and peripheral counts for the list of peripherals  
available on each part number.  
STM32H747xI/G devices operate in the –40 to +85 °C temperature range from a 1.62 to  
3.6 V power supply. The supply voltage can drop down to 1.62 V by using an external power  
supervisor (see Section 3.5.2: Power supply supervisor) and connecting the PDR_ON pin to  
V
. Otherwise the supply voltage must stay above 1.71 V with the embedded power  
SS  
voltage detector enabled.  
Dedicated supply inputs for USB (OTG_FS and OTG_HS) are available on all packages to  
allow a greater power supply choice.  
A comprehensive set of power-saving modes allows the design of low-power applications.  
STM32H747xI/G devices are offered in 5 packages ranging from 156 pins to 240 pins/balls.  
The set of included peripherals changes with the device chosen.  
These features make STM32H747xI/G microcontrollers suitable for a wide range of  
applications:  
Motor drive and application control  
Medical equipment  
Industrial applications: PLC, inverters, circuit breakers  
Printers, and scanners  
Alarm systems, video intercom, and HVAC  
Home audio appliances  
Mobile applications, Internet of Things  
Wearable devices: smart watches.  
Figure 1 shows the device block diagram.  
DS12930 Rev 1  
5/242  
46  
Description  
STM32H747xI/G  
Table 1. STM32H747xI/G features and peripheral counts  
Peripherals  
Flash memory in Kbytes  
SRAM  
2 x 512 Kbytes  
2 x 1 Mbyte  
mapped onto  
512  
AXI bus  
SRAM1  
(D2 domain)  
128  
128  
32  
SRAM in Kbytes  
SRAM2  
(D2 domain)  
SRAM3  
(D2 domain)  
SRAM4  
(D3 domain)  
64  
ITCM RAM  
(instruction)  
64  
TCM RAM in  
Kbytes  
DTCM RAM  
(data)  
128  
Backup SRAM (Kbytes)  
4
FMC  
General-purpose input/outputs  
Quad-SPI  
Yes  
99  
112  
119  
148  
168  
112  
119  
148  
168  
Yes  
Yes  
Ethernet  
High-  
resolution  
1
10  
2
General-  
purpose  
Timers  
Advanced-  
control (PWM)  
Basic  
2
5
Low-power  
Wakeup pins  
Tamper pins  
4
2
4
2
6
3
6
3
Random number generator  
Yes  
6/242  
DS12930 Rev 1  
 
STM32H747xI/G  
Description  
Table 1. STM32H747xI/G features and peripheral counts (continued)  
Peripherals  
SPI / I2S  
6/3(1)  
4
I2C  
USART/UART  
/LPUART  
4/4  
/1  
SAI  
4
4 inputs  
Yes  
SPDIFRX  
SWPMI  
MDIO  
Communication  
interfaces  
Yes  
SDMMC  
2
FDCAN/TT-  
FDCAN  
1/1  
USB OTG_FS  
USB OTG_HS  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Ethernet and camera interface  
LCD-TFT  
MIPI-DSI Host  
JPEG Codec  
Chrom-ART Accelerator™  
(DMA2D)  
Yes  
GPIOs  
Up to 168  
3
16-bit ADCs  
Number of Direct channels  
Number of Fast channels  
Number of Slow channels  
2
9
4
9
2
7
2
9
4
9
2
9
21  
2
9
21  
17  
23  
14  
17  
23  
12-bit DAC  
Yes  
2
Number of channels  
Comparators  
Operational amplifiers  
DFSDM  
2
2
Yes  
Maximum CPU frequency  
480 MHz  
DS12930 Rev 1  
7/242  
46  
Description  
STM32H747xI/G  
Table 1. STM32H747xI/G features and peripheral counts (continued)  
Peripherals  
Operating voltage  
1.62 to 3.6 V(2)  
Ambient temperatures: –40 up to +85 °C(3)  
Operating temperatures  
Package  
Junction temperature: –40 to + 125 °C  
UFBGA LQFP LQFP TFBGA WLCSP UFBG LQFP LQFP TFBGA  
169  
176  
208  
240+25  
156  
A169 176  
208  
240+25  
1. The SPI1, SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio  
mode.  
2. VDD/VDDA can drop down to 1.62 V by using an external power supervisor (see Section 3.5.2: Power supply supervisor) and  
connecting PDR_ON pin to VSS. Otherwise the supply voltage must stay above 1.71 V with the embedded power voltage  
detector enabled.  
3. The product junction temperature must be kept within the –40 to +125 °C range.  
8/242  
DS12930 Rev 1  
STM32H747xI/G  
Description  
Figure 1. STM32H747xI/G block diagram  
DP, DM, STP,  
SDMMC_  
MII / RMII  
MDIO  
as AF  
NXT,ULPI:CK DP, DM, ID,  
To APB1-2  
peripherals  
D[7:0],  
, D[7:0], DIR,  
ID, VBUS  
VBUS  
CMD, CK as AF  
AHB1  
(200MHz)  
PHY  
PHY  
ETHER  
I-  
TCM  
4KB  
D-  
TCM  
64KB  
D-  
OTG_HS OTG_FS  
DMA1 DMA2  
8 Stream 8 Stream  
SDMMC2  
FIFO  
ARM  
Cortex  
M4  
D- S-  
Bus Bus Bus  
MAC  
DMA  
TCM  
64KB  
DMA/  
FIFO  
DMA/  
FIFO  
I-  
FIFOs  
FIFOs  
AXI/AHB12 (200MHz)  
AHBP  
JTDO/SWD, JTDO  
JTRST, JTDI,  
JTCK/SWCLK  
Up to 1 MB  
FLASH  
Up to 1 MB  
FLASH  
Arm  
Cortex  
M7  
JTAG/SW  
ETM  
32-bit AHB BUS-MATRIX  
AXIM  
TRACECK  
TRACED[3:0]  
DMA  
Mux1  
I-Cache  
16KB  
D-Cache  
16KB  
SRAM1 SRAM2 SRAM3  
128 KB 128 KB 32 KB  
512 KB AXI  
SRAM  
AHBS  
RNG  
ADC1  
FMC  
16 Streams  
FIFO  
Up to 20 analog inputs  
common to ADC1 & 2  
MDMA  
ADC2  
FMC_signals  
Quad-SPI  
CLK, CS,D[7:0]  
CHROM-ART  
(DMA2D)  
AHB/APB  
LCD_R[7:0], LCD_G[7:0],  
LCD_B[7:0], LCD_HSYNC,  
LCD_VSYNC, LCD_DE,  
LCD_CLK  
FIFO  
TIM2  
TIM3  
TIM4  
4 channels, ETR as AF  
4 channels, ETR as AF  
4 channels, ETR as AF  
4 channels  
32b  
16b  
16b  
LCD-TFT FIFO  
WWDG1 JPEG  
TIM6  
D
S
I
DSI_D0_P, DSI_D0_N  
DSI_D1_P, DSI_D1_N  
DSI_CK_P, DSI_CK_N  
16b  
16b  
AXI/AHB34 (200MHz)  
TIM7  
AHB/APB  
SDMMC_D[7:0],SDMMC_D[7:3,1]Dir  
SDMMC_D0dir, SDMMC_D2dir  
CMD, CMDdir, CK, Ckin,  
CKio as AF  
SWPMI  
TIM5  
TIM12  
TIM13  
TIM14  
32b  
16b  
16b  
16b  
FIFO  
SDMMC1  
2 channels as AF  
1 channel as AF  
ART  
(instruction cache)  
1 channel as AF  
AHB ART (200MHz)  
smcard  
RX, TX, SCK, CTS,  
RTS as AF  
AHB2 (200MHz)  
USART2  
Delay block  
DCMI  
irDA  
smcard  
RX, TX, SCK  
CTS, RTS as AF  
USART3  
HSYNC, VSYNC, PUIXCLK, D[13:0]  
irDA  
AHB/APB  
HRTIM1_CH[A..E]x  
HRTIM1_FLT[5:1],  
HRTIM1_FLT[5:1]_in, SYSFLT  
UART4  
UART5  
RX, TX as AF  
RX, TX as AF  
HRTIM1  
DFSDM1_CKOUT,  
DFSDM1_DATAIN[0:7],  
DFSDM1_CKIN[0:7]  
DFSDM1  
UART7  
RX, TX as AF  
RX, TX as AF  
SAI3  
SAI2  
SAI1  
SD, SCK, FS, MCLK as AF  
UART8  
MOSI, MISO, SCK, NSS/SDO,  
SDI, CK, WS, MCK, as AF  
SPI2/I2S2  
SPI3/I2S3  
SD, SCK, FS, MCLK as AF  
MOSI, MISO, SCK, NSS/SDO,  
SDI, CK, WS, MCK, as AF  
SD, SCK, FS, MCLK, D[3:1],  
CK[2:1] as AF  
SCL, SDA, SMBAL as AF  
I2C1/SMBUS  
I2C2/SMBUS  
SPI5  
TIM17  
TIM16  
TIM15  
SPI4  
MOSI, MISO, SCK, NSS as AF  
DMA  
1 compl. chan.(TIM17_CH1N),  
1 chan. (TIM17_CH1, BKIN as AF  
1 compl. chan.(TIM16_CH1N),  
1 chan. (TIM16_CH1, BKIN as AF  
SCL, SDA, SMBAL as AF  
Mux2  
AHB4  
BDMA  
DAP  
I2C3/SMBUS  
MDIOS  
SCL, SDA, SMBAL as AF  
MDC, MDIO  
TX, RX  
2 compl. chan.(TIM15_CH1[1:2]N),  
2 chan. (TIM_CH15[1:2], BKIN as AF  
IWDG1  
IWDG2  
RAM  
I/F  
MOSI, MISO, SCK, NSS as AF  
32-bit AHB BUS-MATRIX  
64 KB SRAM  
FDCAN1  
FDCAN2  
MOSI, MISO, SCK, NSS/  
SDO, SDI, CK, WS, MCK, as AF  
TX, RX  
SPI/I2S1  
smcard  
CRS  
RX, TX, SCK, CTS, RTS as AF  
USART6  
irDA  
smcard  
4 KB BKP  
SPDIFRX1  
HDMI-CEC  
DAC1&2  
IN[1:4] as AF  
RX, TX, SCK, CTS, RTS as AF  
USART1  
irDA  
RAM  
CEC as AF  
4 compl. chan. (TIM1_CH1[1:4]N),  
4 chan. (TIM1_CH1[1:4]ETR, BKIN as AF  
4 compl. chan.(TIM8_CH1[1:4]N),  
4 chan. (TIM8_CH1[1:4], ETR, BKIN as  
AF  
TIM1/PWM  
TIM8/PWM  
16b  
16b  
DAC1_OUT, DAC2_OUT as AF  
HSEM  
CRC  
LPTIM1_IN1, LPTIM1_IN2,  
LPTIM1_OUT as AF  
LPTIM1  
WWDG2  
16b  
OPAMPx_VINM  
Up to 17 analog inputs  
common to ADC1 and 2  
OPAMP1&2  
@VDD33  
OPAMPx_VINP  
ADC3  
OPAMPx_VOUT as AF  
VDD = 1.62 to 3.6V  
VDDUSB33 = 3.0 to 3.6V  
VDDDSI = 1.8 to 3.6V  
VSS  
Tem. sensor  
VDDREF_ADC  
PA..J[15:0]  
VDD12  
@VSW  
RCC  
Reset &  
control  
Voltage regulator  
3.3 to 1.2V  
GPIO PORTA.. J  
GPIO PORTK  
VCAP  
SMPS step-down  
converter  
PK[7:0]  
VDDMMC33 = 1.8 to 3.6 V  
VDDSMPS, VSSSMPS  
VLXSMPS, VFBSMPS  
AHB/APB  
SD, SCK, FS, MCLK,  
PDM_DI/CK[4:1] as AF  
SAI4  
OSC32_IN  
OSC32_OUT  
XTAL 32 kHz  
COMPx_INP, COMPx_INM,  
COMP1&2  
LPTIM5  
COMPx_OUT as AF  
RTC  
RTC_TS  
@VDD  
Backup registers  
RTC_TAMP[1:3]  
RTC_OUT  
LPTIM5_OUT as AF  
LPTIM4_OUT as AF  
VREF  
AWU  
CSI  
4 MHz CSI  
RTC_REFIN  
LPTIM4  
LPTIM3  
SYSCFG  
48 MHz HSI48 RC  
RC48  
LPTIM3_OUT as AF  
SCL, SDA, SMBAL as AF  
VBAT = 1.2 to 3.6 V  
64 MHz HSI RC  
32 KHz LSI RC  
HSI  
LSI  
EXTI WKUP  
@VDD  
I2C4  
SPI6  
OSC_IN  
OSC_OUT  
XTAL OSC  
4- 48 MHz  
MISO, MOSI, SCK, NSS as AF  
PLL1+PLL2+PLL3  
IWDG1  
IWDG2  
RX, TX, CK, CTS, RTS as AF  
LPTIM2_OUT as AF  
LPUART1  
LPTIM2  
@VDD  
SUPPLY SUPERVISION  
POR/PDR/BOR  
POR  
reset  
Int  
VDDA, VSSA  
NRESET  
WKUP[5:0]  
PVD  
MSv43739V12  
DS12930 Rev 1  
9/242  
46  
 
 
Description  
STM32H747xI/G  
Compatibility throughout the family  
STM32H747xI/G devices are not pin-to-pin compatible with STM32H7x3 devices (single  
core line):  
The TFBGA240+25 ballout is compatible with STM32H7x3 devices, except for a few  
I/O balls as shown in Figure 2.  
LQFP208 and LQFP176 pinouts, as well as UFBGA176+25 ballout are not compatible  
with STM32H7x3 devices.  
Figure 2. TFBGA240+25 ball assignment differences  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
PA15  
15  
16  
17  
VCAP  
A
B
C
D
E
F
VSS  
PI6  
PI5  
PI4  
PB5  
VDDLDO  
PK5  
PG10  
PG9  
PD5  
PD4  
PC10  
PI1  
PI0  
VSS  
VBAT  
VSS  
PI7  
PE2  
PE3  
PC13  
PI10  
PF1  
PI14  
VSS  
PF7  
PF10  
PC2  
PA2  
PH4  
PA6  
PA5  
PA4  
PE1  
PE0  
PB9  
PI8  
PB6  
PB7  
PB8  
PE6  
VDD  
VDD  
VDD  
PF4  
VDD  
VDD  
VDD  
PA0  
PI15  
PA7  
PB1  
PB0  
VSS  
PB3  
PB4  
PK6  
PK7  
PK4  
PK3  
PG11  
PG12  
PG13  
VDD  
PJ15  
VSS  
PD6  
PD7  
PJ12  
VDD  
PD3  
PC12  
PD2  
PC11  
VSS  
PD0  
PC8  
PC7  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
PJ8  
PA14  
PI3  
PI2  
PA13  
PA9  
PA8  
PG8  
PG6  
PG3  
PK1  
PH15  
VSS  
PH13  
PA12  
PG7  
VSS  
PG2  
PH14  
VDDLDO  
VCAP  
PC14-  
OSC32_  
IN  
PC15-  
OSC32_  
OUT  
PE5  
PE4  
PG15  
VDD  
PG14  
BOOT0  
PJ14  
PJ13  
PA10  
PC9  
PC6  
PG5  
PG4  
PK0  
PDR  
_ON  
PI9  
PD1  
PA11  
VDD33  
USB  
PI11  
PF0  
PF3  
PF5  
PF8  
PF9  
PC3  
PA1  
PH5  
VSS  
PC4  
PC5  
VDD5  
USB  
G
H
J
PF2  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
PI12  
PI13  
PK2  
PH1-  
OSC_  
OUT  
PH0-  
OSC_  
IN  
VSS  
DSI  
VSSDSI  
K
L
NRST  
VDDA  
VREF+  
VREF-  
VSSA  
PF6  
PC0  
PC1  
PH2  
PH3  
PJ11  
PJ10  
PJ9  
M
N
P
R
T
PJ0  
PJ1  
PB2  
PJ2  
PJ3  
VDD  
PF13  
PF12  
PF11  
PJ4  
VDD  
PF14  
VSS  
PG0  
PG1  
PE10  
PE9  
VDD  
PE11  
PE12  
PE13  
PE14  
VDD  
PB10  
PE15  
PH6  
VDD  
PB11  
PJ7  
PJ6  
VSS  
PD14  
PD12  
PD10  
PD8  
PH10  
PH9  
PH8  
PH7  
PH11  
PH12  
PB12  
PB13  
PD15  
PD11  
PB15  
PB14  
PC2_C PC3_C  
PF15  
PE8  
PJ5  
PD13  
PD9  
PA0_C  
VSS  
PA1_C  
PA3  
VSS  
VDDLDO  
U
PE7  
VCAP  
VSS  
STM32H7x7  
STM32H7x3  
VLX  
SMPS  
VDD  
PI9  
PI9  
VSSDSI DSI_D1P DSI_D1N  
NC  
NC  
VSS  
NC  
NC  
VSS  
SMPS  
VFB  
VSSDSI DSI_CKP DSI_CKN  
NC  
NC  
VSS  
VSS  
NC  
NC  
NC  
NC  
SMPS  
PF2  
VSSDSI DSI_D0P DSI_D0N  
PF2  
SMPS  
VDDCAP  
PJ6  
VSS  
PJ6  
VSS  
PD14  
NC  
DSI  
PD15  
PD14  
PD15  
VDDDSI  
VDD  
MSv48802V2  
1. The balls highlighted in gray correspond to different signals on STM32H747xI/G and STM32H7x3 devices.  
10/242  
DS12930 Rev 1  
 
 
STM32H747xI/G  
Functional overview  
3
Functional overview  
®
®
3.1  
Dual Arm Cortex cores  
®
®
The dual-core MIPI-DSI STM32H747xI/G devices embed two Arm cores, a Cortex -M7  
®
®
and a Cortex -M4. The Cortex -M4 offers optimal performance for real-time applications  
while the Cortex -M7 core can execute high-performance tasks in parallel.  
®
The two cores belong to separate power domains. This allows designing gradual high-  
power efficiency solutions in combination with the low-power modes already available on all  
STM32 microcontrollers.  
®
®
3.1.1  
Arm Cortex -M7 with FPU  
®
®
The Arm Cortex -M7 with double-precision FPU processor is the latest generation of Arm  
processors for embedded systems. It was developed to provide a low-cost platform that  
meets the needs of MCU implementation, with a reduced pin count and optimized power  
consumption, while delivering outstanding computational performance and low interrupt  
latency.  
®
The Cortex -M7 processor is a highly efficient high-performance featuring:  
Six-stage dual-issue pipeline  
Dynamic branch prediction  
Harvard architecture with L1 caches (16 Kbytes of I-cache and 16 Kbytes of D-cache)  
64-bit AXI interface  
64-bit ITCM interface  
2x32-bit DTCM interfaces  
The following memory interfaces are supported:  
Separate Instruction and Data buses (Harvard Architecture) to optimize CPU latency  
Tightly Coupled Memory (TCM) interface designed for fast and deterministic SRAM  
accesses  
AXI Bus interface to optimize Burst transfers  
Dedicated low-latency AHB-Lite peripheral bus (AHBP) to connect to peripherals.  
The processor supports a set of DSP instructions which allow efficient signal processing and  
complex algorithm execution.  
It also supports single and double precision FPU (floating point unit) speeds up software  
development by using metalanguage development tools, while avoiding saturation.  
Figure 1 shows the general block diagram of the STM32H747xI/G family.  
®
®
Note:  
Cortex -M7 with FPU core is binary compatible with the Cortex -M4 core.  
DS12930 Rev 1  
11/242  
46  
 
 
 
Functional overview  
®
STM32H747xI/G  
®
3.1.2  
Arm Cortex -M4 with FPU  
®
®
The Arm Cortex -M4 processor is a high-performance embedded processor which  
supports DSP instructions. It was developed to provide an optimized power consumption  
MCU, while delivering outstanding computational performance and low interrupt latency.  
®
®
The Arm Cortex -M4 processor is a highly efficient MCU featuring:  
3-stage pipeline with branch prediction  
Harvard architecture  
32-bit System (S-BUS) interface  
32-bit I-BUS interface  
32-bit D-BUS interface  
®
®
The Arm Cortex -M4 processor also features a dedicated hardware adaptive real-time  
accelerator (ART Accelerator ). This is an instruction cache memory composed of sixty-  
four 256-bit lines, a 256-bit cache buffer connected to the 64-bit AXI interface and a 32-bit  
interface for non-cacheable accesses.  
3.2  
Memory protection unit (MPU)  
The devices feature two memory protection units. Each MPU manages the CPU access  
rights and the attributes of the system resources. It has to be programmed and enabled  
before use. Its main purposes are to prevent an untrusted user program to accidentally  
corrupt data used by the OS and/or by a privileged task, but also to protect data processes  
or read-protect memory regions.  
The MPU defines access rules for privileged accesses and user program accesses. It  
allows defining up to 16 protected regions that can in turn be divided into up to 8  
independent subregions, where region address, size, and attributes can be configured. The  
protection area ranges from 32 bytes to 4 Gbytes of addressable memory.  
When an unauthorized access is performed, a memory management exception is  
generated.  
12/242  
DS12930 Rev 1  
 
 
STM32H747xI/G  
Functional overview  
3.3  
Memories  
3.3.1  
Embedded Flash memory  
The STM32H747xI/G devices embed up to 2 Mbytes of Flash memory that can be used for  
storing programs and data.  
The Flash memory is organized as 266-bit Flash words memory that can be used for storing  
both code and data constants. Each word consists of:  
One Flash word (8 words, 32 bytes or 256 bits)  
10 ECC bits.  
The Flash memory is divided into two independent banks. Each bank is organized as  
follows:  
A user Flash memory block of 512 Kbytes (STM32H7xxxG) or 1-Mbyte (STM32H7xxxI)  
containing eight user sectors of 128 Kbytes (4 K Flash memory words)  
128 Kbytes of System Flash memory from which the device can boot  
2 Kbytes (64 Flash words) of user option bytes for user configuration  
3.3.2  
Embedded SRAM  
All devices feature around 1 Mbyte of RAM with hardware ECC. The RAM is divided as  
follows:  
512 Kbytes of AXI-SRAM mapped onto AXI bus on D1 domain.  
SRAM1 mapped on D2 domain: 128 Kbytes  
SRAM2 mapped on D2 domain: 128 Kbytes  
SRAM3 mapped on D2 domain: 32 Kbytes  
SRAM4 mapped on D3 domain: 64 Kbytes  
4 Kbytes of backup SRAM  
The content of this area is protected against possible unwanted write accesses,  
and is retained in Standby or V  
mode.  
BAT  
RAM mapped to TCM interface (ITCM and DTCM):  
Both ITCM and DTCM RAMs are 0 wait state memories. They can be accessed either  
®
®
from the Arm Cortex -M7 CPU or the MDMA (even in Sleep mode) through a specific  
®
AHB slave of the Cortex -M7(AHBS):  
64 Kbytes of ITCM-RAM (instruction RAM)  
This RAM is connected to ITCM 64-bit interface designed for execution of critical  
®
real-times routines by the Cortex -M7.  
128 Kbytes of DTCM-RAM (2x 64-Kbyte DTCM-RAMs on 2x32-bit DTCM ports)  
The DTCM-RAM could be used for critical real-time data, such as interrupt service  
routines or stack/heap memory. Both DTCM-RAMs can be used in parallel (for  
®
load/store operations) thanks to the Cortex -M7 dual issue capability.  
The MDMA can be used to load code or data in ITCM or DTCM RAMs.  
DS12930 Rev 1  
13/242  
46  
 
 
 
Functional overview  
STM32H747xI/G  
Error code correction (ECC)  
Over the product lifetime, and/or due to external events such as radiations, invalid bits in  
memories may occur. They can be detected and corrected by ECC. This is an expected  
behavior that has to be managed at final-application software level in order to ensure data  
integrity through ECC algorithms implementation.  
SRAM data are protected by ECC:  
7 ECC bits are added per 32-bit word.  
8 ECC bits are added per 64-bit word for AXI-SRAM and ITCM-RAM.  
The ECC mechanism is based on the SECDED algorithm. It supports single-error correction  
and double-error detection.  
3.3.3  
ART accelerator  
The ART (adaptive real-time) accelerator block speeds up instruction fetch accesses of  
®
the Cortex -M4 core from D1-domain internal memories (Flash memory bank 1, Flash  
memory bank 2, AXI SRAM) and from D1-domain external memories attached via Quad-  
SPI controller and Flexible memory controller (FMC).  
The ART accelerator is a 256-bit cache line using 64-bit WRAP4 accesses from the 64-bit  
AXI D1 domain. The acceleration is achieved by loading selected code into an embedded  
®
cache and making it instantly available to Cortex -M4 core, thus avoiding latency due to  
memory wait states.  
Figure 3. shows the block schematic and the environment of the ART accelerator.  
14/242  
DS12930 Rev 1  
 
STM32H747xI/G  
Functional overview  
Figure 3. ART accelerator schematic and environment  
AHB from D2 domain  
D1 domain  
ART accelerator  
Non-cacheable  
access path  
Cacheable  
access path  
AHB switch  
control  
Detect of  
instruction  
fetch  
write to cacheable page  
Cache  
Cache buffer  
1 x 256-bit  
cache cache  
hit miss  
non-  
Cache  
cacheable  
access  
manager  
Cache memory  
64 x 256-bit  
cache  
refill  
AHB access  
AXI access  
Flash bank 1  
Flash bank 2  
AXI SRAM  
QSPI  
Legend  
Control  
32-bit bus  
64-bit bus  
Bus multiplexer  
Master interface  
Slave interface  
FMC  
AXI AHB  
64-bit AXI bus matrix  
MSv39757V2  
3.4  
Boot modes  
By default, the boot codes are executed simultaneously by both cores. However, by  
programming the appropriate Flash user option byte, it is possible to boot from one core  
while clock-gating the other core.  
At startup, the boot memory space is selected by the BOOT pin and BOOT_ADDx option  
bytes, allowing to program any boot memory address from 0x0000 0000 to 0x3FFF FFFF  
which includes:  
All Flash address space  
Flash memory and SRAMs (except for ITCM /DTCM RAMs which cannot be accessed  
®
by the Cortex -M4 core)  
DS12930 Rev 1  
15/242  
46  
 
 
Functional overview  
STM32H747xI/G  
The bootloader is located in non-user System memory. It is used to reprogram the Flash  
memory through a serial interface (USART, I2C, SPI, USB-DFU). Refer to STM32  
microcontroller System memory Boot mode application note (AN2606) for details.  
3.5  
Power supply management  
3.5.1  
Power supply scheme  
STM32H747xI/G power supply voltages are the following:  
V
pins.  
= 1.62 to 3.6 V: external power supply for I/Os, provided externally through V  
DD  
DD  
V
= 1.62 to 3.6 V: supply voltage for the internal regulator supplying V  
DDLDO  
CORE  
V
= 1.62 to 3.6 V: external analog power supplies for ADC, DAC, COMP and  
DDA  
OPAMP.  
V
V
:
DD33USB and DD50USB  
V
can be supplied through the USB cable to generate the V  
via the  
DD33USB  
DD50USB  
USB internal regulator. This allows supporting a V supply different from 3.3 V.  
DD  
The USB regulator can be bypassed to supply directly V  
if V = 3.3 V.  
DD  
DD33USB  
V
= 1.2 to 3.6 V: power supply for the V  
domain when V is not present.  
BAT  
SW DD  
V
: V  
supply voltage, which values depend on voltage scaling (1.0 V, 1.1 V,  
CAP  
CORE  
1.2 V or 1.35 V). They are configured through VOS bits in PWR_D3CR register and  
ODEN bit in the SYSCFG_PWRCR register. The V domain is split into the  
CORE  
following power domains that can be independently switch off.  
®
D1 domain containing some peripherals and the Cortex -M7 core.  
®
D2 domain containing a large part of the peripherals and the Cortex -M4 core.  
D3 domain containing some peripherals and the system control.  
= 1.62 V to 3.6 V: SMPS step-down converter power supply  
V
V
V
V
DDSMPS  
DDSMPS  
LXSMPS  
FBSMPS  
must be kept at the same voltage level as V  
.
DD  
= SMPS step-down converter output coupled to an inductor.  
= V , 1.8 V or 2.5 V external SMPS step-down converter feedback  
CORE  
voltage sense input.  
V
V
V
= 1.62 to 3.6 V: supply voltage for the DSI internal regulator  
DDDSI  
= 1.15 to 1.3 V: optional supply voltage for the DSI PHY (DSI regulator off)  
DD12DSI  
: DSI regulator supply output  
CAPDSI  
During power-up and power-down phases, the following power sequence requirements  
must be respected (see Figure 4):  
When V is below 1 V, other power supplies (V  
, V  
, V  
, V  
)
DDDSI  
DD  
DDA  
DD33USB  
DD50USB  
must remain below V + 300 mV.  
DD  
When V is above 1 V, all power supplies are independent (except for V  
,
DD  
DDSMPS  
which must remain at the same level as V ).  
DD  
During the power-down phase, V can temporarily become lower than other supplies only  
DD  
if the energy provided to the microcontroller remains below 1 mJ. This allows external  
decoupling capacitors to be discharged with different time constants during the power-down  
transient phase.  
16/242  
DS12930 Rev 1  
 
 
STM32H747xI/G  
Functional overview  
Figure 4. Power-up/power-down sequence  
V
3.6  
(1)  
VDDX  
VDD  
VBOR0  
1
0.3  
Power-on  
Invalid supply area  
1. VDDx refers to any power supply among VDDA, VDD33USB, VDD50USB and VDDDSI  
Operating mode  
Power-down  
time  
VDDX < VDD + 300 mV  
VDDX independent from VDD  
MSv47490V1  
.
2. VDD and VDDSMPS must be wired together into order to follow the same voltage sequence.  
3.5.2  
Power supply supervisor  
The devices have an integrated power-on reset (POR)/ power-down reset (PDR) circuitry  
coupled with a Brownout reset (BOR) circuitry:  
Power-on reset (POR)  
The POR supervisor monitors V power supply and compares it to a fixed threshold.  
DD  
The devices remain in Reset mode when V is below this threshold,  
DD  
Power-down reset (PDR)  
The PDR supervisor monitors V power supply. A reset is generated when V drops  
DD  
DD  
below a fixed threshold.  
The PDR supervisor can be enabled/disabled through PDR_ON pin.  
Brownout reset (BOR)  
The BOR supervisor monitors V power supply. Three BOR thresholds (from 2.1 to  
DD  
2.7 V) can be configured through option bytes. A reset is generated when V drops  
DD  
below this threshold.  
DS12930 Rev 1  
17/242  
46  
 
 
Functional overview  
STM32H747xI/G  
3.5.3  
Voltage regulator (SMPS step-down converter and LDO)  
The same voltage regulator supplies the 3 power domains (D1, D2 and D3). D1 and D2 can  
be independently switched off.  
Voltage regulator output can be adjusted according to application needs through 6 power  
supply levels:  
Run mode (VOS0 to VOS3)  
Scale 0: boosted performance (available only with LDO regulator)  
Scale 1: high performance  
Scale 2: medium performance and consumption  
Scale 3: optimized performance and low-power consumption  
Note:  
For STM32H7x7xIT3 sales types (industrial temperature range) the voltage regulator output  
can be set only to VOS2 or VOS3 in Run mode (VOS1 is not available for industrial  
temperature range).  
Stop mode (SVOS3 to SVOS5)  
Scale 3: peripheral with wakeup from Stop mode capabilities (UART, SPI, I2C,  
LPTIM) are operational  
Scale 4 and 5 where the peripheral with wakeup from Stop mode is disabled  
The peripheral functionality is disabled but wakeup from Stop mode is possible  
through GPIO or asynchronous interrupt.  
3.5.4  
SMPS step-down converter  
The built-in SMPS step-down converter is a highly power-efficient DC/DC non-linear  
switching regulator that provides lower power consumption than a conventional voltage  
regulator (LDO).  
18/242  
DS12930 Rev 1  
 
 
STM32H747xI/G  
Functional overview  
The SMPS step-down converter can be used for the following purposes:  
Direct supply of the V  
domain  
CORE  
the SMPS step-down converter operating modes follow the device system  
operating modes (Run, Stop, Standby).  
the SMPS step-down converter output voltage are set according to the selected  
VOS and SVOS bits (voltage scaling)  
Delivery of an intermediate voltage level to supply the internal voltage regulator (LDO)  
SMPS step-down converter operating modes  
When the SDEXTHP bit is equal to 0 in the PWR_CR3 register, the SMPS step-  
down converter follows the device system operating modes (Run, Stop and  
Standby).  
When the SDEXTHP bit is equal to 1 in PWR_CR3, the SMPS step-down  
converter is forced to High-performance mode and does not follow the device  
system operating modes (Run, Stop and Standby).  
The SMPS step-down converter output equals 1.8 V or 2.5 V according to the  
selected SD level  
Delivery of an external supply  
The SMPS step-down converter is forced to High-performance mode (provided  
SDEXTHP bit is equal to 1 in PWR_CR3)  
The SMPS step-down converter output equals 1.8 V or 2.5 V according to the  
selected SD level  
3.6  
Low-power strategy  
There are several ways to reduce power consumption on STM32H747xI/G:  
Select the SMPS step-down converter as V  
enhance power efficiency.  
supply voltage source, as it allows to  
CORE  
Select the adequate voltage scaling  
Decrease the dynamic power consumption by slowing down the system clocks even in  
Run mode, and by individually clock gating the peripherals that are not used.  
Save power consumption when one or both CPUs are idle, by selecting among the  
available low-power mode according to the user application needs. This allows  
achieving the best compromise between short startup time, low-power consumption, as  
well as available wakeup sources.  
The devices feature several low-power modes:  
CSleep (CPU clock stopped)  
CStop (CPU sub-system clock stopped)  
DStop (Domain bus matrix clock stopped)  
Stop (System clock stopped)  
DStandby (Domain powered down)  
Standby (System powered down)  
CSleep and CStop low-power modes are entered by the MCU when executing the WFI  
(Wait for Interrupt) or WFE (Wait for Event) instructions, or when the SLEEPONEXIT bit of  
®
the Cortex -Mx core is set after returning from an interrupt service routine.  
DS12930 Rev 1  
19/242  
46  
 
Functional overview  
STM32H747xI/G  
A domain can enter low-power mode (DStop or DStandby) when the processor, its  
subsystem and the peripherals allocated in the domain enter low-power mode. For instance  
D1 or D2 domain enters DStop/DStandby mode when the CPU of the domain is in CStop  
mode AND the other CPU has no peripheral allocated in that domain, or if it is in CStop  
mode too. D3 domain can enter DStop/DStandby mode if both core subsystems do not have  
active peripherals in D3 domain, and D3 is not forced in Run mode.  
If part of the domain is not in low-power mode, the domain remains in the current mode.  
Finally the system can enter Stop or Standby when all EXTI wakeup sources are cleared  
and the power domains are in DStop or DStandby mode.  
®
The clock system can be re-initialize by a master CPU (either the Cortex -M4 or -M7) after  
exiting Stop mode while the slave CPU is held in low-power mode. Once the master CPU  
has re-initialized the system, the slave CPU can receive a wakeup interrupt and proceed  
with the interrupt service routine.  
Table 2. System vs domain low-power mode  
D1 domain power  
mode  
D2 domain power  
mode  
D3 domain power  
mode  
System power mode  
Run  
Stop  
DRun/DStop/DStandby DRun/DStop/DStandby  
DRun  
DStop  
DStop/DStandby  
DStandby  
DStop/DStandby  
DStandby  
Standby  
DStandby  
3.7  
Reset and clock controller (RCC)  
The clock and reset controller is located in D3 domain. The RCC manages the generation of  
all the clocks, as well as the clock gating and the control of the system and peripheral  
resets. It provides a high flexibility in the choice of clock sources and allows to apply clock  
ratios to improve the power consumption. In addition, on some communication peripherals  
that are capable to work with two different clock domains (either a bus interface clock or a  
kernel peripheral clock), the system frequency can be changed without modifying the  
baudrate.  
3.7.1  
Clock management  
The devices embed four internal oscillators, two oscillators with external crystal or  
resonator, two internal oscillators with fast startup time and three PLLs.  
The RCC receives the following clock source inputs:  
Internal oscillators:  
64 MHz HSI clock  
48 MHz RC oscillator  
4 MHz CSI clock  
32 kHz LSI clock  
External oscillators:  
HSE clock: 4-50 MHz (generated from an external source) or 4-48 MHz(generated  
from a crystal/ceramic resonator)  
LSE clock: 32.768 kHz  
20/242  
DS12930 Rev 1  
 
 
 
STM32H747xI/G  
Functional overview  
The RCC provides three PLLs: one for system clock, two for kernel clocks.  
The system starts on the HSI clock. The user application can then select the clock  
configuration.  
3.7.2  
System reset sources  
Power-on reset initializes all registers while system reset reinitializes the system except for  
the debug, part of the RCC and power controller status registers, as well as the backup  
power domain.  
A system reset is generated in the following cases:  
Power-on reset (pwr_por_rst)  
Brownout reset  
Low level on NRST pin (external reset)  
Independent watchdog 1 (from D1 domain)  
Independent watchdog 2 (from D2 domain)  
Window watchdog 1 (from D1 domain)  
Window watchdog 2 (from D2 domain)  
Software reset  
Low-power mode security reset  
Exit from Standby  
3.8  
General-purpose input/outputs (GPIOs)  
Each of the GPIO pins can be configured by software as output (push-pull or open-drain,  
with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down)  
or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog  
alternate functions. All GPIOs are high-current-capable and have speed selection to better  
manage internal noise, power consumption and electromagnetic emission.  
After reset, all GPIOs (except debug pins) are in Analog mode to reduce power  
consumption (refer to GPIOs register reset values in the device reference manual).  
The I/O configuration can be locked if needed by following a specific sequence in order to  
avoid spurious writing to the I/Os registers.  
3.9  
Bus-interconnect matrix  
The devices feature an AXI bus matrix, two AHB bus matrices and bus bridges that allow  
interconnecting bus masters with bus slaves (see Figure 5).  
DS12930 Rev 1  
21/242  
46  
 
 
 
Figure 5. STM32H747xI/G bus matrix  
AHBS  
7
CPU  
ITCM  
CPU  
Cortex-M7  
D$  
64 Kbyte  
Cortex-M4  
I$  
DTCM  
Ethernet  
SDMMC2 USBHS1 USBHS2  
DMA1  
DMA2  
16KB 16KB  
128 Kbyte  
MAC  
ART  
SDMMC1 MDMA  
DMA2D  
LTDC  
D1-to-D2 AHB  
APB3  
SRAM1 128  
Kbyte  
4
SRAM2 128  
Kbyte  
AHB3  
SRAM3  
32 Kbyte  
Flash A  
5
Up to 1 Mbyte  
AHB1  
AHB2  
APB1  
APB2  
Flash B  
Up to 1 Mbyte  
AXI SRAM  
512 Kbyte  
QSPI  
FMC  
1
64-bit AXI bus matrix  
D1 domain  
2
32-bit AHB bus matrix  
D2 domain  
D2-to-D1 AHB  
D2-to-D3 AHB  
BDMA  
D1-to-D3 AHB  
Legend  
6
3
AHB4  
APB4  
TCM AHB  
32-bit bus  
AXI  
APB  
SRAM4  
64 Kbyte  
Master interface  
Slave interface  
64-bit bus  
Backup  
SRAM  
Bus multiplexer  
32-bit AHB bus matrix  
4 Kbyte  
D3 domain  
MSv39740V3  
 
STM32H747xI/G  
Functional overview  
3.10  
DMA controllers  
The devices feature four DMA instances to unload CPU activity:  
A master direct memory access (MDMA)  
The MDMA is a high-speed DMA controller, which is in charge of all types of memory  
transfers (peripheral to memory, memory to memory, memory to peripheral), without  
any CPU action. It features a master AXI interface and a dedicated AHB interface to  
®
access Cortex -M7 TCM memories.  
The MDMA is located in D1 domain. It is able to interface with the other DMA  
controllers located in D2 domain to extend the standard DMA capabilities, or can  
manage peripheral DMA requests directly.  
Each of the 16 channels can perform single block transfers, repeated block transfers  
and linked list transfers.  
Two dual-port DMAs (DMA1, DMA2) located in D2 domain, with FIFO and request  
router capabilities.  
One basic DMA (BDMA) located in D3 domain, with request router capabilities.  
The DMA request router could be considered as an extension of the DMA controller. It  
routes the DMA peripheral requests to the DMA controller itself. This allowing managing the  
DMA requests with a high flexibility, maximizing the number of DMA requests that run  
concurrently, as well as generating DMA requests from peripheral output trigger or DMA  
event.  
3.11  
Chrom-ART Accelerator™ (DMA2D)  
The Chrom-Art Accelerator™ (DMA2D) is a graphical accelerator which offers advanced bit  
blitting, row data copy and pixel format conversion. It supports the following functions:  
Rectangle filling with a fixed color  
Rectangle copy  
Rectangle copy with pixel format conversion  
Rectangle composition with blending and pixel format conversion  
Various image format coding are supported, from indirect 4bpp color mode up to 32bpp  
direct color. It embeds dedicated memory to store color lookup tables. The DMA2D also  
supports block based YCbCr to handle JPEG decoder output.  
An interrupt can be generated when an operation is complete or at a programmed  
watermark.  
All the operations are fully automatized and are running independently from the CPU or the  
DMAs.  
DS12930 Rev 1  
23/242  
46  
 
 
Functional overview  
STM32H747xI/G  
3.12  
Nested vectored interrupt controller (NVIC)  
®
®
Both Cortex -M7 (CPU1) and Cortex -M4 (CPU2) cores have their own nested vector  
interrupt controller (respectively NVIC1 and NVIC2). Each NVIC instance is able to manage  
16 priority levels, and handle up to 150 maskable interrupt channels plus the 16 interrupt  
®
lines of the Cortex -M7 with FPU core.  
Closely coupled NVIC gives low-latency interrupt processing  
Interrupt entry vector table address passed directly to the core  
Allows early processing of interrupts  
Processing of late arriving, higher-priority interrupts  
Support tail chaining  
Processor context automatically saved on interrupt entry, and restored on interrupt exit  
with no instruction overhead  
This hardware block provides flexible interrupt management features with minimum interrupt  
latency.  
3.13  
Extended interrupt and event controller (EXTI)  
The EXTI controller performs interrupt and event management. In addition, it can wake up  
the processors, power domains and/or D3 domain from Stop mode.  
The EXTI handles up to 89 independent event/interrupt lines split as 28 configurable events  
and 61 direct events (including two interrupt lines for inter-core management).  
Configurable events have dedicated pending flags, active edge selection, and software  
trigger capable.  
Direct events provide interrupts or events from peripherals having a status flag.  
3.14  
Cyclic redundancy check calculation unit (CRC)  
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a  
programmable polynomial.  
Among other applications, CRC-based techniques are used to verify data transmission or  
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of  
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of  
the software during runtime, to be compared with a reference signature generated at link-  
time and stored at a given memory location.  
24/242  
DS12930 Rev 1  
 
 
 
STM32H747xI/G  
Functional overview  
3.15  
Flexible memory controller (FMC)  
The FMC controller main features are the following:  
Interface with static-memory mapped devices including:  
Static random access memory (SRAM)  
NOR Flash memory/OneNAND Flash memory  
PSRAM (4 memory banks)  
NAND Flash memory with ECC hardware to check up to 8 Kbytes of data  
Interface with synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) memories  
8-,16-,32-bit data bus width  
Independent Chip Select control for each memory bank  
Independent configuration for each memory bank  
Write FIFO  
Read FIFO for SDRAM controller  
The maximum FMC_CLK/FMC_SDCLK frequency for synchronous accesses is the  
FMC kernel clock divided by 2.  
3.16  
Quad-SPI memory interface (QUADSPI)  
All devices embed a Quad-SPI memory interface, which is a specialized communication  
interface targeting Single, Dual or Quad-SPI Flash memories. It supports both single and  
double datarate operations.  
It can operate in any of the following modes:  
Direct mode through registers  
External Flash status register polling mode  
Memory mapped mode.  
Up to 256 Mbytes of external Flash memory can be mapped, and 8-, 16- and 32-bit data  
accesses are supported as well as code execution.  
The opcode and the frame format are fully programmable.  
3.17  
Analog-to-digital converters (ADCs)  
The STM32H747xI/G devices embed three analog-to-digital converters, which resolution  
can be configured to 16, 14, 12, 10 or 8 bits.  
Each ADC shares up to 20 external channels, performing conversions in the Single-shot or  
Scan mode. In Scan mode, automatic conversion is performed on a selected group of  
analog inputs.  
Additional logic functions embedded in the ADC interface allow:  
Simultaneous sample and hold  
Interleaved sample and hold  
The ADC can be served by the DMA controller, thus allowing to automatically transfer ADC  
converted values to a destination location without any software action.  
DS12930 Rev 1  
25/242  
46  
 
 
 
Functional overview  
STM32H747xI/G  
In addition, an analog watchdog feature can accurately monitor the converted voltage of  
one, some or all selected channels. An interrupt is generated when the converted voltage is  
outside the programmed thresholds.  
To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1,  
TIM2, TIM3, TIM4, TIM6, TIM8, TIM15, HRTIM1 and LPTIM1 timer.  
3.18  
Temperature sensor  
STM32H747xI/G devices embed a temperature sensor that generates a voltage (V ) that  
TS  
varies linearly with the temperature. This temperature sensor is internally connected to  
ADC3_IN18. The conversion range is between 1.7 V and 3.6 V. It can measure the device  
junction temperature ranging from 40 up to +125 °C.  
The temperature sensor have a good linearity, but it has to be calibrated to obtain a good  
overall accuracy of the temperature measurement. As the temperature sensor offset varies  
from chip to chip due to process variation, the uncalibrated internal temperature sensor is  
suitable for applications that detect temperature changes only. To improve the accuracy of  
the temperature sensor measurement, each device is individually factory-calibrated by ST.  
The temperature sensor factory calibration data are stored by ST in the System memory  
area, which is accessible in Read-only mode.  
3.19  
VBAT operation  
The V  
power domain contains the RTC, the backup registers and the backup SRAM.  
BAT  
To optimize battery duration, this power domain is supplied by V when available or by the  
DD  
voltage applied on VBAT pin (when V supply is not present). V  
power is switched  
DD  
BAT  
when the PDR detects that V dropped below the PDR level.  
DD  
The voltage on the VBAT pin could be provided by an external battery, a supercapacitor or  
directly by V , in which case, the V mode is not functional.  
DD  
BAT  
V
operation is activated when V is not present.  
DD  
BAT  
The V  
pin supplies the RTC, the backup registers and the backup SRAM.  
BAT  
Note:  
When the microcontroller is supplied from V  
, external interrupts and RTC alarm/events  
BAT  
do not exit it from V  
operation.  
BAT  
When PDR_ON pin is connected to V (Internal Reset OFF), the V  
functionality is no  
BAT  
SS  
more available and V  
pin should be connected to VDD.  
BAT  
26/242  
DS12930 Rev 1  
 
 
STM32H747xI/G  
Functional overview  
3.20  
Digital-to-analog converters (DAC)  
The two 12-bit buffered DAC channels can be used to convert two digital signals into two  
analog voltage signal outputs.  
This dual digital Interface supports the following features:  
two DAC converters: one for each output channel  
8-bit or 12-bit monotonic output  
left or right data alignment in 12-bit mode  
synchronized update capability  
noise-wave generation  
triangular-wave generation  
dual DAC channel independent or simultaneous conversions  
DMA capability for each channel including DMA underrun error detection  
external triggers for conversion  
input voltage reference V  
or internal VREFBUF reference.  
REF+  
The DAC channels are triggered through the timer update outputs that are also connected  
to different DMA streams.  
3.21  
Ultra-low-power comparators (COMP)  
STM32H747xI/G devices embed two rail-to-rail comparators (COMP1 and COMP2). They  
feature programmable reference voltage (internal or external), hysteresis and speed (low  
speed for low-power) as well as selectable output polarity.  
The reference voltage can be one of the following:  
An external I/O  
A DAC output channel  
An internal reference voltage or submultiple (1/4, 1/2, 3/4).  
All comparators can wake up from Stop mode, generate interrupts and breaks for the timers,  
and be combined into a window comparator.  
3.22  
Operational amplifiers (OPAMP)  
STM32H747xI/G devices embed two rail-to-rail operational amplifiers (OPAMP1 and  
OPAMP2) with external or internal follower routing and PGA capability.  
The operational amplifier main features are:  
PGA with a non-inverting gain ranging of 2, 4, 8 or 16 or inverting gain ranging of -1, -3,  
-7 or -15  
One positive input connected to DAC  
Output connected to internal ADC  
Low input bias current down to 1 nA  
Low input offset voltage down to 1.5 mV  
Gain bandwidth up to 7.3 MHz  
DS12930 Rev 1  
27/242  
46  
 
 
 
Functional overview  
STM32H747xI/G  
The devices embeds two operational amplifiers (OPAMP1 and OPAMP2) with two inputs  
and one output each. These three I/Os can be connected to the external pins, thus enabling  
any type of external interconnections. The operational amplifiers can be configured  
internally as a follower, as an amplifier with a non-inverting gain ranging from 2 to 16 or with  
inverting gain ranging from -1 to -15.  
3.23  
Digital filter for sigma-delta modulators (DFSDM)  
The devices embed one DFSDM with 4 digital filters modules and 8 external input serial  
channels (transceivers) or alternately 8 internal parallel inputs support.  
The DFSDM peripheral is dedicated to interface the external Σ∆ modulators to  
microcontroller and then to perform digital filtering of the received data streams (which  
represent analog value on Σ∆ modulators inputs). DFSDM can also interface PDM (Pulse  
Density Modulation) microphones and perform PDM to PCM conversion and filtering in  
hardware. DFSDM features optional parallel data stream inputs from internal ADC  
peripherals or microcontroller memory (through DMA/CPU transfers into DFSDM).  
DFSDM transceivers support several serial interface formats (to support various Σ∆  
modulators). DFSDM digital filter modules perform digital processing according user  
selected filter parameters with up to 24-bit final ADC resolution.  
The DFSDM peripheral supports:  
8 multiplexed input digital serial channels:  
configurable SPI interface to connect various SD modulator(s)  
configurable Manchester coded 1 wire interface support  
PDM (Pulse Density Modulation) microphone input support  
maximum input clock frequency up to 20 MHz (10 MHz for Manchester coding)  
clock output for SD modulator(s): 0..20 MHz  
alternative inputs from 8 internal digital parallel channels (up to 16 bit input resolution):  
internal sources: ADC data or memory data streams (DMA)  
4 digital filter modules with adjustable digital signal processing:  
x
Sinc filter: filter order/type (1..5), oversampling ratio (up to 1..1024)  
integrator: oversampling ratio (1..256)  
up to 24-bit output data resolution, signed output data format  
automatic data offset correction (offset stored in register by user)  
continuous or single conversion  
start-of-conversion triggered by:  
software trigger  
internal timers  
external events  
start-of-conversion synchronously with first digital filter module (DFSDM0)  
analog watchdog feature:  
low value and high value data threshold registers  
dedicated configurable Sincx digital filter (order = 1..3, oversampling ratio = 1..32)  
input from final output data or from selected input digital serial channels  
continuous monitoring independently from standard conversion  
28/242  
DS12930 Rev 1  
 
STM32H747xI/G  
Functional overview  
short circuit detector to detect saturated analog input values (bottom and top range):  
up to 8-bit counter to detect 1..256 consecutive 0’s or 1’s on serial data stream  
monitoring continuously each input serial channel  
break signal generation on analog watchdog event or on short circuit detector event  
extremes detector:  
storage of minimum and maximum values of final conversion data  
refreshed by software  
DMA capability to read the final conversion data  
interrupts: end of conversion, overrun, analog watchdog, short circuit, input serial  
channel clock absence  
“regular” or “injected” conversions:  
“regular” conversions can be requested at any time or even in Continuous mode  
without having any impact on the timing of “injected” conversions  
“injected” conversions for precise timing and with high conversion priority  
Table 3. DFSDM implementation  
DFSDM features  
DFSDM1  
Number of filters  
4
Number of input  
transceivers/channels  
8
Internal ADC parallel input  
Number of external triggers  
X
16  
Regular channel information in  
identification register  
X
3.24  
Digital camera interface (DCMI)  
The devices embed a camera interface that can connect with camera modules and CMOS  
sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera  
interface can achieve a data transfer rate up to 140 Mbyte/s using a 80 MHz pixel clock. It  
features:  
Programmable polarity for the input pixel clock and synchronization signals  
Parallel data communication can be 8-, 10-, 12- or 14-bit  
Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2  
progressive video, RGB 565 progressive video or compressed data (like JPEG)  
Supports Continuous mode or Snapshot (a single frame) mode  
Capability to automatically crop the image  
DS12930 Rev 1  
29/242  
46  
 
 
Functional overview  
STM32H747xI/G  
3.25  
LCD-TFT controller  
The LCD-TFT display controller provides a 24-bit parallel digital RGB (Red, Green, Blue)  
and delivers all signals to interface directly to a broad range of LCD and TFT panels up to  
XGA (1024x768) resolution with the following features:  
2 display layers with dedicated FIFO (64x64-bit)  
Color Look-Up table (CLUT) up to 256 colors (256x24-bit) per layer  
Up to 8 input color formats selectable per layer  
Flexible blending between two layers using alpha value (per pixel or constant)  
Flexible programmable parameters for each layer  
Color keying (transparency color)  
Up to 4 programmable interrupt events  
AXI master interface with burst of 16 words  
3.26  
DSI Host (DSI)  
®
The DSI Host is a dedicated peripheral for interfacing with MIPI DSI compliant displays. It  
includes a dedicated video interface internally connected to the LTDC, a generic APB  
interface that can be used to transmit information to the display, and Video mode pattern  
generator:  
LTDC interface  
It is used to transmit information in Video mode, in which the transfers from the host  
processor to the peripheral take the form of a real-time pixel stream (DPI).  
This interface can also be used to transmit information in full bandwidth in the Adapted  
Command mode (DBI).  
APB slave interface  
The APB slave interface allows transmitting generic information in Command mode  
though a proprietary register interface. It can operate concurrently with the LTDC  
interface either in Video or Adapted Command mode.  
The Video mode pattern generator allows transmitting horizontal/vertical color bar and  
D-PHY BER testing pattern without any kind of stimuli.  
The DSI Host main features are the following:  
®
Compliance with MIPI Alliance standards  
®
Interface with MIPI D-PHY  
®
Support for all commands defined in the MIPI Alliance specification for DCS:  
Transmission of all Command mode packets through the APB interface  
Transmission of commands in low-power and high-speed during Video mode  
Support for up to two D-PHY data lanes  
Bidirectional communication and Escape mode support through data lane 0  
Support for non-continuous clock in D-PHY clock lane for additional power saving  
Support for Ultra Low-Power mode with PLL disabled  
ECC and Checksum capabilities  
Support for End of Transmission Packet (EoTp)  
Fault recovery schemes  
30/242  
DS12930 Rev 1  
 
 
STM32H747xI/G  
Functional overview  
3D transmission support  
Configurable selection of system interfaces  
AMBA APB for control and optional support for Generic and DCS commands  
Video mode interface through LTDC  
Adapted Command mode interface through LTDC  
Independently programmable Virtual Channel ID in Video, Adapted Command or  
APB Slave mode  
Video mode interfaces features  
LTDC interface color coding mappings into 24-bit interface:  
16-bit RGB, configurations 1, 2, and 3  
18-bit RGB, configurations 1 and 2  
24-bit RGB  
Programmable polarity of all LTDC interface signals  
Extended resolutions beyond the DPI standard maximum resolution of 800x480  
pixels; the maximum resolution is limited by the available DSI physical link  
bandwidth:  
Number of lanes: 2  
Maximum speed per lane: 1 Gbps  
Adapted interface features  
Support for sending large amounts of data through the memory_write_start (WMS)  
and memory_write_continue (WMC) DCS commands  
LTDC interface color coding mappings into 24-bit interface:  
16-bit RGB, configurations 1, 2, and 3  
18-bit RGB, configurations 1 and 2  
24-bit RGB  
Video mode pattern generator  
Vertical and horizontal color bar generation without LTDC stimuli  
BER pattern without LTDC stimuli  
3.27  
JPEG Codec (JPEG)  
The JPEG Codec can encode and decode a JPEG stream as defined in the ISO/IEC 10918-  
1 specification. It provides an fast and simple hardware compressor and decompressor of  
JPEG images with full management of JPEG headers.  
DS12930 Rev 1  
31/242  
46  
 
Functional overview  
STM32H747xI/G  
The JPEG codec main features are as follows:  
8-bit/channel pixel depths  
Single clock per pixel encoding and decoding  
Support for JPEG header generation and parsing  
Up to four programmable quantization tables  
Fully programmable Huffman tables (two AC and two DC)  
Fully programmable minimum coded unit (MCU)  
Encode/decode support (non simultaneous)  
Single clock Huffman coding and decoding  
Two-channel interface: Pixel/Compress In, Pixel/Compressed Out  
Support for single greyscale component  
Ability to enable/disable header processing  
Fully synchronous design  
Configuration for High-speed decode mode  
3.28  
3.29  
Random number generator (RNG)  
All devices embed an RNG that delivers 32-bit random numbers generated by an integrated  
analog circuit.  
Timers and watchdogs  
The devices include one high-resolution timer, two advanced-control timers, ten general-  
purpose timers, two basic timers, five low-power timers, two watchdogs and a SysTick timer.  
All timer counters can be frozen in Debug mode.  
Table 4 compares the features of the advanced-control, general-purpose and basic timers.  
Table 4. Timer feature comparison  
Max  
Max  
DMA  
request  
generation channels  
Capture/ Comple-  
compare mentary  
timer  
clock  
Timer  
type  
Counter Counter Prescaler  
interface  
clock  
Timer  
resolution  
type  
factor  
output  
(MHz)  
(MHz)  
(1)  
/1 /2 /4  
(x2 x4 x8  
x16 x32,  
with DLL)  
High-  
resolution HRTIM1  
timer  
16-bit  
Up  
Yes  
Yes  
10  
4
Yes  
480  
120  
480  
240  
Any  
integer  
Down, between1  
Up,  
Advanced TIM1,  
-control  
16-bit  
Yes  
TIM8  
Up/down  
and  
65536  
32/242  
DS12930 Rev 1  
 
 
 
 
STM32H747xI/G  
Functional overview  
Table 4. Timer feature comparison (continued)  
Max  
Max  
DMA  
request  
generation channels  
Capture/ Comple-  
compare mentary  
timer  
clock  
Timer  
Timer  
type  
Counter Counter Prescaler  
interface  
clock  
resolution  
type  
factor  
output  
(MHz)  
(MHz)  
(1)  
Any  
Up,  
integer  
TIM2,  
TIM5  
32-bit  
Down, between1  
Up/down  
Yes  
Yes  
No  
4
4
2
1
2
1
0
0
No  
120  
120  
120  
120  
120  
120  
120  
120  
240  
240  
240  
240  
240  
240  
240  
240  
and  
65536  
Any  
integer  
Down, between1  
Up,  
TIM3,  
TIM4  
16-bit  
16-bit  
16-bit  
16-bit  
16-bit  
16-bit  
16-bit  
No  
No  
No  
1
Up/down  
and  
65536  
Any  
integer  
between1  
and  
TIM12  
Up  
65536  
General  
purpose  
Any  
integer  
between1  
and  
TIM13,  
TIM14  
Up  
Up  
Up  
Up  
Up  
No  
65536  
Any  
integer  
between1  
and  
TIM15  
Yes  
Yes  
Yes  
No  
65536  
Any  
integer  
between1  
and  
TIM16,  
TIM17  
1
65536  
Any  
integer  
between1  
and  
TIM6,  
Basic  
No  
No  
TIM7  
65536  
LPTIM1,  
Low-  
power  
timer  
LPTIM2,  
LPTIM3,  
LPTIM4,  
LPTIM5  
1, 2, 4, 8,  
16, 32, 64,  
128  
1. The maximum timer clock is up to 480 MHz depending on TIMPRE bit in the RCC_CFGR register and D2PRE1/2 bits in  
RCC_D2CFGR register.  
DS12930 Rev 1  
33/242  
46  
Functional overview  
STM32H747xI/G  
3.29.1  
High-resolution timer (HRTIM1)  
The high-resolution timer (HRTIM1) allows generating digital signals with high-accuracy  
timings, such as PWM or phase-shifted pulses.  
It consists of 6 timers, 1 master and 5 slaves, totaling 10 high-resolution outputs, which can  
be coupled by pairs for deadtime insertion. It also features 5 fault inputs for protection  
purposes and 10 inputs to handle external events such as current limitation, zero voltage or  
zero current switching.  
The HRTIM1 timer is made of a digital kernel clocked at 480 MHz The high-resolution is  
available on the 10 outputs in all operating modes: variable duty cycle, variable frequency,  
and constant ON time.  
The slave timers can be combined to control multiswitch complex converters or operate  
independently to manage multiple independent converters.  
The waveforms are defined by a combination of user-defined timings and external events  
such as analog or digital feedbacks signals.  
HRTIM1 timer includes options for blanking and filtering out spurious events or faults. It also  
offers specific modes and features to offload the CPU: DMA requests, Burst mode  
controller, Push-pull and Resonant mode.  
It supports many topologies including LLC, Full bridge phase shifted, buck or boost  
converters, either in voltage or current mode, as well as lighting application (fluorescent or  
LED). It can also be used as a general purpose timer, for instance to achieve high-resolution  
PWM-emulated DAC.  
34/242  
DS12930 Rev 1  
 
STM32H747xI/G  
Functional overview  
3.29.2  
Advanced-control timers (TIM1, TIM8)  
The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators  
multiplexed on 6 channels. They have complementary PWM outputs with programmable  
inserted dead times. They can also be considered as complete general-purpose timers.  
Their 4 independent channels can be used for:  
Input capture  
Output compare  
PWM generation (Edge- or Center-aligned modes)  
One-pulse mode output  
If configured as standard 16-bit timers, they have the same features as the general-purpose  
TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0-  
100%).  
The advanced-control timer can work together with the TIMx timers via the Timer Link  
feature for synchronization or event chaining.  
TIM1 and TIM8 support independent DMA request generation.  
3.29.3  
General-purpose timers (TIMx)  
There are ten synchronizable general-purpose timers embedded in the STM32H747xI/G  
devices (see Table 4 for differences).  
TIM2, TIM3, TIM4, TIM5  
The devices include 4 full-featured general-purpose timers: TIM2, TIM3, TIM4 and  
TIM5. TIM2 and TIM5 are based on a 32-bit auto-reload up/downcounter and a 16-bit  
prescaler while TIM3 and TIM4 are based on a 16-bit auto-reload up/downcounter and  
a 16-bit prescaler. All timers feature 4 independent channels for input capture/output  
compare, PWM or One-pulse mode output. This gives up to 16 input capture/output  
compare/PWMs on the largest packages.  
TIM2, TIM3, TIM4 and TIM5 general-purpose timers can work together, or with the  
other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the  
Timer Link feature for synchronization or event chaining.  
Any of these general-purpose timers can be used to generate PWM outputs.  
TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are  
capable of handling quadrature (incremental) encoder signals and the digital outputs  
from 1 to 4 hall-effect sensors.  
TIM12, TIM13, TIM14, TIM15, TIM16, TIM17  
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.  
TIM13, TIM14, TIM16 and TIM17 feature one independent channel, whereas TIM12  
and TIM15 have two independent channels for input capture/output compare, PWM or  
One-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5  
full-featured general-purpose timers or used as simple timebases.  
DS12930 Rev 1  
35/242  
46  
 
 
Functional overview  
STM32H747xI/G  
3.29.4  
Basic timers TIM6 and TIM7  
These timers are mainly used for DAC trigger and waveform generation. They can also be  
used as a generic 16-bit time base.  
TIM6 and TIM7 support independent DMA request generation.  
3.29.5  
Low-power timers (LPTIM1, LPTIM2, LPTIM3, LPTIM4, LPTIM5)  
The low-power timers have an independent clock and is running also in Stop mode if it is  
clocked by LSE, LSI or an external clock. It is able to wakeup the devices from Stop mode.  
This low-power timer supports the following features:  
16-bit up counter with 16-bit autoreload register  
16-bit compare register  
Configurable output: pulse, PWM  
Continuous / One-shot mode  
Selectable software / hardware input trigger  
Selectable clock source:  
Internal clock source: LSE, LSI, HSI or APB clock  
External clock source over LPTIM input (working even with no internal clock source  
running, used by the Pulse Counter Application)  
Programmable digital glitch filter  
Encoder mode  
3.29.6  
Independent watchdogs  
There are two independent watchdogs, one per domain. Each independent watchdog is  
based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 32  
kHz internal RC and as it operates independently from the main clock, it can operate in Stop  
and Standby modes. It can be used either as a watchdog to reset the device when a  
problem occurs, or as a free-running timer for application timeout management. It is  
hardware- or software-configurable through the option bytes.  
3.29.7  
3.29.8  
Window watchdogs  
There are two window watchdogs, one per domain. Each window watchdog is based on a 7-  
bit downcounter that can be set as free-running. It can be used as a watchdog to reset the  
device or each respective domain (configurable in the RCC register), when a problem  
occurs. It is clocked from the main clock. It has an early warning interrupt capability and the  
counter can be frozen in Debug mode.  
SysTick timer  
The devices feature two SysTick timers, one per CPU. These timers are dedicated to real-  
time operating systems, but could also be used as a standard downcounter. It features:  
A 24-bit downcounter  
Autoreload capability  
Maskable system interrupt generation when the counter reaches 0  
Programmable clock source.  
36/242  
DS12930 Rev 1  
 
 
 
 
 
STM32H747xI/G  
Functional overview  
3.30  
Real-time clock (RTC), backup SRAM and backup registers  
The RTC is an independent BCD timer/counter. It supports the following features:  
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,  
month, year, in BCD (binary-coded decimal) format.  
Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.  
Two programmable alarms.  
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to  
synchronize it with a master clock.  
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be  
used to enhance the calendar precision.  
Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal  
inaccuracy.  
Three anti-tamper detection pins with programmable filter.  
Timestamp feature which can be used to save the calendar content. This function can  
be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to  
V
mode.  
BAT  
17-bit auto-reload wakeup timer (WUT) for periodic events with programmable  
resolution and period.  
The RTC and the 32 backup registers are supplied through a switch that takes power either  
from the VDD supply when present or from the VBAT pin.  
The backup registers are 32-bit registers used to store 128 bytes of user application data  
when VDD power is not present. They are not reset by a system or power reset, or when the  
device wakes up from Standby mode.  
The RTC clock sources can be:  
A 32.768 kHz external crystal (LSE)  
An external resonator or oscillator (LSE)  
The internal low-power RC oscillator (LSI, with typical frequency of 32 kHz)  
The high-speed external clock (HSE) divided by 32.  
The RTC is functional in V  
mode and in all low-power modes when it is clocked by the  
BAT  
LSE. When clocked by the LSI, the RTC is not functional in V  
all low-power modes.  
mode, but is functional in  
BAT  
All RTC events (Alarm, Wakeup Timer, Timestamp or Tamper) can generate an interrupt and  
wakeup the device from the low-power modes.  
DS12930 Rev 1  
37/242  
46  
 
Functional overview  
STM32H747xI/G  
3.31  
Inter-integrated circuit interface (I2C)  
2
STM32H747xI/G devices embed four I C interfaces.  
2
The I C bus interface handles communications between the microcontroller and the serial  
2
2
I C bus. It controls all I C bus-specific sequencing, protocol, arbitration and timing.  
The I2C peripheral supports:  
I2C-bus specification and user manual rev. 5 compatibility:  
Slave and Master modes, multimaster capability  
Standard-mode (Sm), with a bitrate up to 100 kbit/s  
Fast-mode (Fm), with a bitrate up to 400 kbit/s  
Fast-mode Plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os  
7-bit and 10-bit addressing mode, multiple 7-bit slave addresses  
Programmable setup and hold times  
Optional clock stretching  
System Management Bus (SMBus) specification rev 2.0 compatibility:  
Hardware PEC (Packet Error Checking) generation and verification with ACK  
control  
Address resolution protocol (ARP) support  
SMBus alert  
TM  
Power System Management Protocol (PMBus ) specification rev 1.1 compatibility  
Independent clock: a choice of independent clock sources allowing the I2C  
communication speed to be independent from the PCLK reprogramming.  
Wakeup from Stop mode on address match  
Programmable analog and digital noise filters  
1-byte buffer with DMA capability  
3.32  
Universal synchronous/asynchronous receiver transmitter  
(USART)  
STM32H747xI/G devices have four embedded universal synchronous receiver transmitters  
(USART1, USART2, USART3 and USART6) and four universal asynchronous receiver  
transmitters (UART4, UART5, UART7 and UART8). Refer to Table 5 for a summary of  
USARTx and UARTx features.  
These interfaces provide asynchronous communication, IrDA SIR ENDEC support,  
multiprocessor communication mode, single-wire Half-duplex communication mode and  
have LIN Master/Slave capability. They provide hardware management of the CTS and RTS  
signals, and RS485 Driver Enable. They are able to communicate at speeds of up to  
12.5 Mbit/s.  
USART1, USART2, USART3 and USART6 also provide Smartcard mode (ISO 7816  
compliant) and SPI-like communication capability.  
The USARTs embed a Transmit FIFO (TXFIFO) and a Receive FIFO (RXFIFO). FIFO mode  
is enabled by software and is disabled by default.  
38/242  
DS12930 Rev 1  
 
 
STM32H747xI/G  
Functional overview  
All USART have a clock domain independent from the CPU clock, allowing the USARTx to  
wake up the MCU from Stop mode.The wakeup from Stop mode is programmable and can  
be done on:  
Start bit detection  
Any received data frame  
A specific programmed data frame  
Specific TXFIFO/RXFIFO status when FIFO mode is enabled.  
All USART interfaces can be served by the DMA controller.  
Table 5. USART features  
USART modes/features(1)  
USART1/2/3/6  
UART4/5/7/8  
Hardware flow control for modem  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
-
Continuous communication using DMA  
Multiprocessor communication  
Synchronous mode (Master/Slave)  
Smartcard mode  
-
Single-wire Half-duplex communication  
IrDA SIR ENDEC block  
LIN mode  
X
X
X
X
X
X
X
X
Dual clock domain and wakeup from low power mode  
Receiver timeout interrupt  
Modbus communication  
Auto baud rate detection  
Driver Enable  
USART data length  
7, 8 and 9 bits  
Tx/Rx FIFO  
X
X
Tx/Rx FIFO size  
16  
1. X = supported.  
3.33  
Low-power universal asynchronous receiver transmitter  
(LPUART)  
The device embeds one Low-Power UART (LPUART1). The LPUART supports  
asynchronous serial communication with minimum power consumption. It supports half  
duplex single wire communication and modem operations (CTS/RTS). It allows  
multiprocessor communication.  
The LPUARTs embed a Transmit FIFO (TXFIFO) and a Receive FIFO (RXFIFO). FIFO  
mode is enabled by software and is disabled by default.  
DS12930 Rev 1  
39/242  
46  
 
 
Functional overview  
STM32H747xI/G  
The LPUART has a clock domain independent from the CPU clock, and can wakeup the  
system from Stop mode. The wakeup from Stop mode are programmable and can be done  
on:  
Start bit detection  
Any received data frame  
A specific programmed data frame  
Specific TXFIFO/RXFIFO status when FIFO mode is enabled.  
Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to  
9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame  
while having an extremely low energy consumption. Higher speed clock can be used to  
reach higher baudrates.  
LPUART interface can be served by the DMA controller.  
3.34  
Serial peripheral interface (SPI)/inter- integrated sound  
interfaces (I2S)  
The devices feature up to six SPIs (SPI2S1, SPI2S2, SPI2S3, SPI4, SPI5 and SPI6) that  
allow communicating up to 150 Mbits/s in Master and Slave modes, in Half-duplex, Full-  
duplex and Simplex modes. The 3-bit prescaler gives 8 master mode frequencies and the  
frame is configurable from 4 to 16 bits. All SPI interfaces support NSS pulse mode, TI mode,  
Hardware CRC calculation and 8x 8-bit embedded Rx and Tx FIFOs with DMA capability.  
2
Three standard I S interfaces (multiplexed with SPI1, SPI2 and SPI3) are available. They  
can be operated in Master or Slave mode, in Simplex communication modes, and can be  
configured to operate with a 16-/32-bit resolution as an input or output channel. Audio  
sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the  
2
I S interfaces is/are configured in Master mode, the master clock can be output to the  
2
external DAC/CODEC at 256 times the sampling frequency. All I S interfaces support 16x 8-  
bit embedded Rx and Tx FIFOs with DMA capability.  
3.35  
Serial audio interfaces (SAI)  
The devices embed 4 SAIs (SAI1, SAI2, SAI3 and SAI4) that allow designing many stereo  
or mono audio protocols such as I2S, LSB or MSB-justified, PCM/DSP, TDM or AC’97. An  
SPDIF output is available when the audio block is configured as a transmitter. To bring this  
level of flexibility and reconfigurability, the SAI contains two independent audio sub-blocks.  
Each block has it own clock generator and I/O line controller.  
Audio sampling frequencies up to 192 kHz are supported.  
In addition, up to 8 microphones can be supported thanks to an embedded PDM interface.  
The SAI can work in master or slave configuration. The audio sub-blocks can be either  
receiver or transmitter and can work synchronously or asynchronously (with respect to the  
other one). The SAI can be connected with other SAIs to work synchronously.  
40/242  
DS12930 Rev 1  
 
 
STM32H747xI/G  
Functional overview  
3.36  
SPDIFRX Receiver Interface (SPDIFRX)  
The SPDIFRX peripheral is designed to receive an S/PDIF flow compliant with IEC-60958  
and IEC-61937. These standards support simple stereo streams up to high sample rate,  
and compressed multi-channel surround sound, such as those defined by Dolby or DTS (up  
to 5.1).  
The main SPDIFRX features are the following:  
Up to 4 inputs available  
Automatic symbol rate detection  
Maximum symbol rate: 12.288 MHz  
Stereo stream from 32 to 192 kHz supported  
Supports Audio IEC-60958 and IEC-61937, consumer applications  
Parity bit management  
Communication using DMA for audio samples  
Communication using DMA for control and user channel information  
Interrupt capabilities  
The SPDIFRX receiver provides all the necessary features to detect the symbol rate, and  
decode the incoming data stream. The user can select the wanted SPDIF input, and when a  
valid signal will be available, the SPDIFRX will re-sample the incoming signal, decode the  
Manchester stream, recognize frames, sub-frames and blocks elements. It delivers to the  
CPU decoded data, and associated status flags.  
The SPDIFRX also offers a signal named spdif_frame_sync, which toggles at the S/PDIF  
sub-frame rate that will be used to compute the exact sample rate for clock drift algorithms.  
3.37  
Single wire protocol master interface (SWPMI)  
The Single wire protocol master interface (SWPMI) is the master interface corresponding to  
the Contactless Frontend (CLF) defined in the ETSI TS 102 613 technical specification. The  
main features are:  
Full-duplex communication mode  
automatic SWP bus state management (active, suspend, resume)  
configurable bitrate up to 2 Mbit/s  
automatic SOF, EOF and CRC handling  
SWPMI can be served by the DMA controller.  
DS12930 Rev 1  
41/242  
46  
 
 
Functional overview  
STM32H747xI/G  
3.38  
Management Data Input/Output (MDIO) slaves  
The devices embed an MDIO slave interface it includes the following features:  
32 MDIO Registers addresses, each of which is managed using separate input and  
output data registers:  
32 x 16-bit firmware read/write, MDIO read-only output data registers  
32 x 16-bit firmware read-only, MDIO write-only input data registers  
Configurable slave (port) address  
Independently maskable interrupts/events:  
MDIO Register write  
MDIO Register read  
MDIO protocol error  
Able to operate in and wake up from Stop mode  
3.39  
SD/SDIO/MMC card host interfaces (SDMMC)  
Two SDMMC host interfaces are available. They support MultiMediaCard System  
Specification Version 4.51 in three different databus modes: 1 bit (default), 4 bits and 8 bits.  
Both interfaces support the SD memory card specifications version 4.1. and the SDIO card  
specification version 4.0. in two different databus modes: 1 bit (default) and 4 bits.  
Each SDMMC host interface supports only one SD/SDIO/MMC card at any one time and a  
stack of MMC Version 4.51 or previous.  
The SDMMC host interface embeds a dedicated DMA controller allowing high-speed  
transfers between the interface and the SRAM.  
3.40  
Controller area network (FDCAN1, FDCAN2)  
The controller area network (CAN) subsystem consists of two CAN modules, a shared  
message RAM memory and a clock calibration unit.  
Both CAN modules (FDCAN1 and FDCAN2) are compliant with ISO 11898-1 (CAN protocol  
specification version 2.0 part A, B) and CAN FD protocol specification version 1.0.  
FDCAN1 supports time triggered CAN (TT-FDCAN) specified in ISO 11898-4, including  
event synchronized time-triggered communication, global system time, and clock drift  
compensation. The FDCAN1 contains additional registers, specific to the time triggered  
feature. The CAN FD option can be used together with event-triggered and time-triggered  
CAN communication.  
A 10-Kbyte message RAM memory implements filters, receive FIFOs, receive buffers,  
transmit event FIFOs, transmit buffers (and triggers for TT-FDCAN). This message RAM is  
shared between the two FDCAN1 and FDCAN2 modules.  
The common clock calibration unit is optional. It can be used to generate a calibrated clock  
for both FDCAN1 and FDCAN2 from the HSI internal RC oscillator and the PLL, by  
evaluating CAN messages received by the FDCAN1.  
42/242  
DS12930 Rev 1  
 
 
 
STM32H747xI/G  
Functional overview  
3.41  
Universal serial bus on-the-go high-speed (OTG_HS)  
The devices embed two USB OTG high-speed (up to 480 Mbit/s) device/host/OTG  
peripheral. OTG-HS1 supports both full-speed and high-speed operations, while OTG-HS2  
supports only full-speed operations. They both integrate the transceivers for full-speed  
operation (12 Mbit/s) and are able to operate from the internal HSI48 oscillator. OTG-HS1  
features a UTMI low-pin interface (ULPI) for high-speed operation (480 Mbit/s). When using  
the USB OTG-HS1 in HS mode, an external PHY device connected to the ULPI is required.  
The USB OTG HS peripherals are compliant with the USB 2.0 specification and with the  
OTG 2.0 specification. They have software-configurable endpoint setting and supports  
suspend/resume. The USB OTG controllers require a dedicated 48 MHz clock that is  
generated by a PLL connected to the HSE oscillator.  
The main features are:  
Combined Rx and Tx FIFO size of 4 Kbytes with dynamic FIFO sizing  
Supports the session request protocol (SRP) and host negotiation protocol (HNP)  
9 bidirectional endpoints (including EP0)  
16 host channels with periodic OUT support  
Software configurable to OTG1.3 and OTG2.0 modes of operation  
USB 2.0 LPM (Link Power Management) support  
Battery Charging Specification Revision 1.2 support  
Internal FS OTG PHY support  
External HS or HS OTG operation supporting ULPI in SDR mode (OTG_HS1 only)  
The OTG PHY is connected to the microcontroller ULPI port through 12 signals. It can  
be clocked using the 60 MHz output.  
Internal USB DMA  
HNP/SNP/IP inside (no need for any external resistor)  
For OTG/Host modes, a power switch is needed in case bus-powered devices are  
connected  
3.42  
Ethernet MAC interface with dedicated DMA controller (ETH)  
The devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for  
ethernet LAN communications through an industry-standard medium-independent interface  
(MII) or a reduced medium-independent interface (RMII). The microcontroller requires an  
external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair,  
fiber, etc.). The PHY is connected to the device MII port using 17 signals for MII or 9 signals  
for RMII, and can be clocked using the 25 MHz (MII) from the microcontroller.  
DS12930 Rev 1  
43/242  
46  
 
 
Functional overview  
STM32H747xI/G  
The devices include the following features:  
Supports 10 and 100 Mbit/s rates  
Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM  
and the descriptors  
Tagged MAC frame support (VLAN support)  
Half-duplex (CSMA/CD) and full-duplex operation  
MAC control sublayer (control frames) support  
32-bit CRC generation and removal  
Several address filtering modes for physical and multicast address (multicast and  
group addresses)  
32-bit status code for each transmitted or received frame  
Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the  
receive FIFO are both 2 Kbytes.  
Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008  
(PTP V2) with the time stamp comparator connected to the TIM2 input  
Triggers interrupt when system time becomes greater than target time  
3.43  
High-definition multimedia interface (HDMI)  
- consumer electronics control (CEC)  
The devices embed a HDMI-CEC controller that provides hardware support for the  
Consumer Electronics Control (CEC) protocol (Supplement 1 to the HDMI standard).  
This protocol provides high-level control functions between all audiovisual products in an  
environment. It is specified to operate at low speeds with minimum processing and memory  
overhead. It has a clock domain independent from the CPU clock, allowing the HDMI-CEC  
controller to wakeup the MCU from Stop mode on data reception.  
3.44  
Debug infrastructure  
The devices offer a comprehensive set of debug and trace features on both cores to support  
software development and system integration.  
Breakpoint debugging  
Code execution tracing  
Software instrumentation  
JTAG debug port  
Serial-wire debug port  
Trigger input and output  
Serial-wire trace port  
Trace port  
®
Arm CoreSight™ debug and trace components  
The debug can be controlled via a JTAG/Serial-wire debug access port, using industry  
standard debugging tools. The debug infrastructure allows debugging one core at a time, or  
both cores in parallel.  
The trace port performs data capture for logging and analysis.  
44/242  
DS12930 Rev 1  
 
 
STM32H747xI/G  
Functional overview  
A 4-Kbyte embedded trace FIFO (ETF) allows recording data and sending them to any com  
port. In Trace mode, the trace is transferred by DMA to system RAM or to a high-speed  
interface (such as SPI or USB). It can even be monitored by a software running on one of  
the cores. Unlike hardware FIFO mode, this mode is invasive since it uses system  
resources which are shared by the processors.  
DS12930 Rev 1  
45/242  
46  
Memory mapping  
STM32H747xI/G  
4
Memory mapping  
Refer to the product line reference manual for details on the memory mapping as well as the  
boundary addresses for all peripherals.  
46/242  
DS12930 Rev 1  
 
STM32H747xI/G  
Pin descriptions  
5
Pin descriptions  
Figure 6. WLCSP156 ballout  
13  
12  
11  
10  
9
8
7
6
5
4
PD0  
3
2
VDDLDO  
VCAP  
PA10  
PC9  
1
DNC(1)  
VDDLDO  
PE4  
VCAP  
VDD  
PE5  
VSS  
PB8  
PE0  
VSS  
PE3  
PF0  
PF5  
PC1  
PA5  
PA3  
PA4  
PC5  
PB2  
VDD  
VSS  
PB9  
PE2  
PC13  
PF1  
PA6  
PB1  
PA7  
PB0  
VSS  
VDD  
PB4  
PB5  
PB7  
PE1  
PE6  
PF11  
PF12  
PF13  
PF15  
PF14  
PG0  
PG1  
PG15  
PB3  
VDD  
VSS  
PD6  
PD7  
PD2  
PD1  
PE11  
PB10  
PE12  
PE13  
PE15  
PE14  
PD4  
PA15  
VDD  
PA13  
PA8  
VSS  
PA12  
PA11  
PC8  
A
B
C
D
E
F
VBAT  
PD3  
PC12  
VSS  
PC14-  
OSC32_IN  
PC15-  
OSC32_OUT  
PB6  
BOOT0  
PDR_ON  
PD5  
PC11  
PC10  
PA14  
PC6  
VSS  
SMPS  
VLX  
VDD  
PA9  
VDD  
SMPS  
VFB  
SMPS  
VDD50  
USB  
VDD33  
USB  
PC7  
VDD  
SMPS  
PF3  
PF2  
PF4  
PG4  
VSS  
PG8  
PG5  
DSI_  
D1P  
DSI_  
CKP  
DSI_  
D0P  
DSI_  
D1N  
DSI_  
CKN  
DSI_  
D0N  
VCAP  
DSI  
G
H
J
VDD  
VSS  
PC0  
PE10  
PE7  
PD8  
PG3  
PG2  
PH1-  
OSC_OUT  
PH0-  
OSC_IN  
NRST  
VDDA  
PA2  
PB13  
PB12  
PB11  
VSS  
PD14  
PD11  
PD9  
VSSDSI  
PD15  
PD13  
PD10  
PB14  
VSSA  
PC2_C  
PA0  
VREF+  
PC3_C  
PA1  
PE8  
K
L
PE9  
VDD  
PD12  
PB15  
VSS  
VSS  
VDDLDO  
VDD  
VSS  
M
VSS  
VDD  
PC4  
VDD  
VCAP  
VSS  
MSv43741V5  
1. The DNC ball must neither be connected to GND nor to VDD  
2. The above figure shows the package top view.  
.
DS12930 Rev 1  
47/242  
95  
 
 
Pin descriptions  
STM32H747xI/G  
Figure 7. UFBGA169 ballout  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
A
B
C
D
E
F
VSS  
PE2  
VDD  
PE6  
VCAP  
PB5  
PB3  
VSS  
PD7  
VDD  
PD3  
PA14  
VSS  
PA10  
VDDLDO  
PDR_  
ON  
VBAT  
VSS  
PE1  
PE0  
PE5  
BOOT0  
PB7  
PB4  
PG15  
PB9  
VDD  
PG9  
PD6  
PD5  
VSS  
PD1  
PA15  
PD0  
PA13  
PC10  
PA9  
VDD  
VSS  
PA11  
VDD  
VDDLDO  
VCAP  
PA12  
PC14_  
OSC32_  
IN  
PE3  
PE4  
PC15_  
OSC32_  
OUT  
VSS  
PB8  
PG10  
PG11  
PG13  
PG12  
PG2  
PD4  
PC12  
PC11  
PG8  
PA8  
VLX  
SMPS  
VDD  
PC13  
PB6  
PG14  
PF2  
PD2  
PC7  
PC9  
PC6  
PG6  
VSS  
VDD  
SMPS  
VSS  
SMPS  
VFB  
SMPS  
VDD50_ VDD33_  
USB USB  
PF1  
PG7  
PG3  
PE13  
PE12  
PE15  
PE8  
PC8  
PF0  
PF6  
G
H
J
PF4  
PF3  
PF5  
PF9  
PC1  
PF7  
PF8  
PG5  
PG4  
VSSDSI VSSDSI  
VSS  
DSI  
DSI_  
D1P  
DSI_  
D1N  
VDD  
VSS  
PF10  
PC0  
PA7  
PC4  
PA6  
PB0  
NRST  
PA5  
PB1  
PD14  
PD13  
PB10  
VDD  
VSS  
PD15  
PD12  
PD11  
PB12  
PB13  
PH1_  
OSCOUT OSCIN  
PH0_  
VSS  
DSI  
DSI_  
CKP  
DSI_  
CKN  
PF12  
PF11  
PG0  
VSS  
PE9  
PG1  
VSS  
DSI  
DSI_  
D0P  
DSI_  
D0N  
K
L
PC2_C  
PC3_C  
VDDA  
VDD  
PC5  
PE7  
PA0  
VSSA_  
VREF-  
VCAP  
DSI  
PB2  
PE10  
PF15  
PE11  
VDD  
PB15  
PB14  
VSS  
PA1  
PA2  
PA4  
VDD  
DSI  
M
N
VREF+  
VSS  
PF13  
PF14  
PE14  
PB11  
PD9  
PD8  
PA3  
VCAP VDDLDO  
PD10  
MSv43740V4  
1. The above figure shows the package top view.  
48/242  
DS12930 Rev 1  
 
STM32H747xI/G  
Pin descriptions  
Figure 8. LQFP176 pinout  
1
2
3
4
5
6
7
8
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
PE2  
PE3  
PA13  
PA12  
PE4  
PA11  
PE5  
PA10  
PE6  
PA9  
VSS  
PA8  
VDD  
VDD  
VBAT  
PC9  
9
PC13  
PC8  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
PC14-OSC32_IN  
PC15-OSC32_OUT  
VSS  
PC7  
PC6  
VDD33USB  
VDD50USB  
VSS  
VDD  
VSSSMPS  
VLXSMPS  
VDDSMPS  
VFBSMPs  
PF0  
PG8  
PG7  
PG6  
PG5  
PF1  
PG4  
PF2  
VDD  
PF3  
VSS  
176-pins  
PF4  
PG3  
PF5  
PG2  
VSS  
VSSDSI  
VDD12DSI  
DSI_CKN  
DSI_CKP  
VSSDSI  
DSI_D0N  
DSI_D0P  
VDD12DSI  
VCAPDSI  
VSS  
VDD  
PF6  
PF7  
PF8  
PF9  
PF10  
PH0-OSC_IN  
PH1-OSC_OUT  
NRST  
PC0  
PC1  
VDD  
98  
97  
96  
95  
94  
93  
92  
91  
PD15  
PD14  
PD13  
PD12  
PD11  
PC2_C  
PC3_C  
VSSA  
VREF+  
VDDA  
PA0  
VSS  
VDD  
PA1  
PD10  
PD9  
90  
PA2  
89  
VDD  
PD8  
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88  
MSv43745V4  
1. The above figure shows the package top view.  
DS12930 Rev 1  
49/242  
95  
 
Pin descriptions  
STM32H747xI/G  
Figure 9. LQFP208 pinout  
1
156  
155  
154  
153  
152  
151  
150  
149  
148  
147  
146  
145  
144  
143  
142  
141  
140  
139  
138  
137  
136  
135  
134  
133  
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
PE2  
PH13  
2
PE3  
PE4  
VDD  
3
VDDLDO  
VSS  
4
PE5  
5
PE6  
VCAP  
PA13  
6
VSS  
7
VDD  
PA12  
8
VBAT  
PA11  
9
PI8  
PA10  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
PC13  
PA9  
PC14-OSC32_IN  
PC15-OSC32_OUT  
PI9  
PA8  
PC9  
PC8  
PI10  
PC7  
PI11  
PC6  
VSS  
VDD33USB  
VDD50USB  
VSS  
VDD  
VSSSMPS  
VLXSMPS  
VDDSMPS  
VFBSMPS  
PF0  
PG8  
PG7  
PG6  
PG5  
PF1  
PG4  
PF2  
VDD  
208-pins  
PF3  
VSS  
PF4  
PG3  
PF5  
PG2  
VSS  
VSSDSI  
DSI_D1N  
DSI_D1P  
VDD12DSI  
DSI_CKN  
DSI_CKP  
VSSDSI  
DSI_D0N  
DSI_D0P  
VDD12DSI  
VCAPDSI  
VSS  
VDD  
PF6  
PF7  
PF8  
PF9  
PF10  
PH0-OSC_IN  
PH1-OSC_OUT  
NRST  
PC0  
PC1  
PC2_C  
PC3_C  
VSSA  
VREF+  
VDDA  
PA0  
VDD  
PD15  
PD14  
VDD  
VSS  
PD13  
PA1  
PD12  
PA2  
PD11  
PH2  
VSS  
VDD  
VDD  
VSS  
PD10  
PH3  
PD9  
PH4  
PD8  
MSv43749V4  
1. The above figure shows the package top view.  
50/242  
DS12930 Rev 1  
 
STM32H747xI/G  
Pin descriptions  
Figure 10. TFBGA240+25 ballout  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
PA15  
15  
16  
17  
VDD  
LDO  
VCAP  
A
B
C
D
E
F
VSS  
PI6  
PI5  
PI4  
PB5  
PK5  
PG10  
PG9  
PD5  
PD4  
PC10  
PI1  
PI0  
VSS  
VBAT  
VSS  
PI7  
PE2  
PE3  
PC13  
PI10  
PF1  
PI14  
VSS  
PF7  
PF10  
PC2  
PA2  
PE1  
PE0  
PB9  
PI8  
PB6  
PB7  
PB8  
PE6  
VDD  
VDD  
VDD  
PF4  
VDD  
VDD  
VDD  
PA0  
PI15  
PA7  
PB1  
PB0  
VSS  
PB3  
PB4  
PK6  
PK7  
PK4  
PK3  
PG11  
PG12  
PG13  
PJ15  
VSS  
PD6  
PD7  
PJ12  
VDD  
PD3  
PC12  
PD2  
PC11  
VSS  
PD0  
PC8  
PC7  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
PJ8  
PA14  
PI3  
PI2  
PA13  
PA9  
PA8  
PG8  
PG6  
PG3  
PK1  
PH15  
VSS  
PH13  
PA12  
PG7  
VSS  
PG2  
PH14  
PC15-  
OSC32_  
OUT  
PC14-  
OSC32  
_IN  
VDD  
LDO  
VCAP  
PA11  
PE5  
PE4  
PG15  
VDD  
PG14  
PJ14  
PJ13  
PA10  
PC9  
PC6  
PG5  
PG4  
PK0  
VLX  
SMPS  
PDR  
_ON  
PI9  
BOOT0 VDD  
PD1  
VDD  
SMPS SMPS  
VSS  
VDD  
33USB  
PI11  
PF0  
PF3  
PF5  
PF8  
PF9  
PC3  
PA1  
PH5  
VSS  
PC4  
PC5  
VFB  
PF2  
VDD50  
USB  
G
H
J
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SMPS  
PI12  
PI13  
PK2  
PH1-  
OSC_  
OUT  
PH0-  
OSC  
_IN  
VSS  
DSI  
VSSDSI  
DSI_  
D1P  
DSI_  
D1N  
K
L
NRST  
PF6  
PJ11 VSSDSI  
PJ10 VSSDSI  
DSI_  
CKP  
DSI_  
CKN  
VDDA  
PC0  
DSI_  
D0N  
DSI_  
D0P  
M
N
P
R
T
VREF+ PC1  
PJ9  
VSSDSI  
PJ6  
VCAP  
DSI  
VREF-  
VSSA  
PH2  
PH3  
PJ0  
PJ1  
PB2  
PJ2  
PJ3  
VDD  
PF13  
PF12  
PF11  
PJ4  
VDD  
PF14  
VSS  
PG0  
PG1  
PE10  
PE9  
VDD  
PE11  
PE12  
PE13  
PE14  
VDD  
PB10  
PE15  
PH6  
VDD  
PB11  
PJ5  
PJ7  
VSS  
PD14  
PD12  
PD10  
PD8  
VDD  
DSI  
PH4  
PH10  
PH9  
PH8  
PH7  
PH11  
PH12  
PB12  
PB13  
PD15  
PD11  
PB15  
PB14  
PC2_C PC3_C PA6  
PF15  
PE8  
PD13  
PD9  
PA0_C PA1_C  
VSS PA3  
PA5  
PA4  
VSS  
VDD  
LDO  
VCAP  
U
PE7  
VSS  
MSv43743V4  
1. The above figure shows the package top view.  
DS12930 Rev 1  
51/242  
95  
 
Pin descriptions  
STM32H747xI/G  
Table 6. Legend/abbreviations used in the pinout table  
Abbreviation Definition  
Name  
Unless otherwise specified in brackets below the pin name, the pin function during  
and after reset is the same as the actual pin name  
Pin name  
S
I
Supply pin  
Input only pin  
Pin type  
I/O  
ANA  
FT  
TT  
B
Input / output pin  
Analog-only Input  
5 V tolerant I/O  
3.3 V tolerant I/O  
Dedicated BOOT0 pin  
Bidirectional reset pin with embedded weak pull-up resistor  
RST  
I/O structure  
Option for TT and FT I/Os  
_f  
I2C FM+ option  
_a  
_u  
_h  
analog option (supplied by VDDA)  
USB option (supplied by VDD33USB  
)
High-speed low-voltage I/O  
Unless otherwise specified by a note, all I/Os are set as floating inputs during and  
after reset.  
Notes  
Alternate  
Functions selected through GPIOx_AFR registers  
functions  
Pin functions  
Additional  
functions  
Functions directly selected/enabled through peripheral registers  
52/242  
DS12930 Rev 1  
 
STM32H747xI/G  
Pin descriptions  
Table 7. STM32H747xI/G pin/ball definition  
Pin name  
Pin/ball name  
Additional  
functions  
(function  
Alternate functions  
after reset)  
TRACECLK, SAI1_CK1,  
SPI4_SCK,  
SAI1_MCLK_A,  
FT_  
h
SAI4_MCLK_A,  
QUADSPI_BK1_IO2,  
SAI4_CK1,  
D9  
A2  
1
1
C3  
PE2  
I/O  
-
-
ETH_MII_TXD3,  
FMC_A23, EVENTOUT  
TRACED0,  
TIM15_BKIN,  
SAI1_SD_B,  
FT_  
h
D10  
B12  
C3  
D3  
2
3
2
3
D3  
D2  
PE3  
PE4  
I/O  
I/O  
-
-
-
-
SAI4_SD_B, FMC_A19,  
EVENTOUT  
TRACED1, SAI1_D2,  
DFSDM1_DATIN3,  
TIM15_CH1N,  
FT_  
h
SPI4_NSS, SAI1_FS_A,  
SAI4_FS_A, SAI4_D2,  
FMC_A20, DCMI_D4,  
LCD_B0, EVENTOUT  
TRACED2, SAI1_CK2,  
DFSDM1_CKIN3,  
TIM15_CH1,  
SPI4_MISO,  
SAI1_SCK_A,  
SAI4_SCK_A,  
FT_  
h
C11  
E4  
4
4
D1  
PE5  
I/O  
-
-
SAI4_CK2, FMC_A21,  
DCMI_D6, LCD_G0,  
EVENTOUT  
TRACED3,  
TIM1_BKIN2, SAI1_D1,  
TIM15_CH2,  
SPI4_MOSI,  
FT_  
h
SAI1_SD_A,  
SAI4_SD_A, SAI4_D1,  
SAI2_MCLK_B,  
E8  
C2  
5
5
E5  
PE6  
I/O  
-
-
TIM1_BKIN2_COMP12,  
FMC_A22, DCMI_D7,  
LCD_G1, EVENTOUT  
-
-
A1  
A9  
B1  
6
7
8
6
7
8
A1  
-
VSS  
VDD  
VBAT  
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
B13  
B1  
DS12930 Rev 1  
53/242  
95  
 
Pin descriptions  
STM32H747xI/G  
Table 7. STM32H747xI/G pin/ball definition (continued)  
Pin name  
Pin/ball name  
Additional  
functions  
(function  
Alternate functions  
after reset)  
D11  
-
-
-
-
B2  
E4  
VSS  
PI8  
S
-
-
-
-
-
RTC_TAMP2/  
WKUP3  
-
-
9
I/O FT  
I/O FT  
EVENTOUT  
RTC_TAMP1/  
RTC_TS/WKUP2  
E9  
E3  
C1  
9
10  
E3  
C2  
PC13  
-
-
EVENTOUT  
EVENTOUT  
PC14-  
C13  
10  
11  
12  
OSC32_IN  
I/O FT  
I/O FT  
OSC32_IN  
(OSC32_IN)(1)  
PC15-  
OSC32_OUT(  
C12  
D2  
11  
-
C1  
E2  
-
-
EVENTOUT  
OSC32_OUT  
OSC32_OUT)  
(1)  
UART4_RX,  
FDCAN1_RX,  
FMC_D30,  
LCD_VSYNC,  
EVENTOUT  
FT_  
-
-
13  
PI9  
I/O  
h
-
FDCAN1_RXFD_MODE,  
ETH_MII_RX_ER,  
FMC_D31,  
FT_  
-
-
-
-
-
-
14  
15  
F3  
F4  
PI10  
PI11  
I/O  
h
-
-
-
LCD_HSYNC,  
EVENTOUT  
LCD_G6,  
OTG_HS_ULPI_DIR,  
EVENTOUT  
I/O FT  
WKUP4  
-
B4  
E2  
F2  
E1  
F1  
F3  
12  
13  
14  
15  
16  
17  
16  
17  
18  
19  
20  
21  
A17  
E6  
F2  
VSS  
S
S
S
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
D13  
D12  
E12  
E13  
E11  
VDD  
VSSSMPS  
VLXSMPS  
VDDSMPS  
VFBSMPS  
E1  
F1  
G2  
I2C2_SDA, FMC_A0,  
EVENTOUT  
E10  
F9  
F4  
F5  
F6  
18  
19  
20  
22  
23  
24  
G4  
G3  
G1  
PF0  
PF1  
PF2  
I/O FT_f  
I/O FT_f  
I/O FT  
-
-
-
-
-
-
I2C2_SCL, FMC_A1,  
EVENTOUT  
I2C2_SMBA, FMC_A2,  
EVENTOUT  
F12  
54/242  
DS12930 Rev 1  
STM32H747xI/G  
Pin descriptions  
Table 7. STM32H747xI/G pin/ball definition (continued)  
Pin name  
Pin/ball name  
Additional  
functions  
(function  
Alternate functions  
after reset)  
LCD_HSYNC,  
EVENTOUT  
-
-
-
-
H1  
H2  
H3  
H4  
J5  
PI12  
PI13  
PI14  
PF3  
PF4  
PF5  
I/O FT  
I/O FT  
-
-
-
-
-
-
-
LCD_VSYNC,  
EVENTOUT  
-
-
-
-
-
FT_  
-
-
-
-
I/O  
h
LCD_CLK, EVENTOUT  
FMC_A3, EVENTOUT  
FMC_A4, EVENTOUT  
FMC_A5, EVENTOUT  
-
FT_  
I/O  
F13  
F11  
F10  
G2  
G1  
G3  
21  
22  
23  
25  
26  
27  
ADC3_INP5  
ha  
FT_  
I/O  
ADC3_INN5,  
ADC3_INP9  
ha  
FT_  
I/O  
J4  
ADC3_INP4  
ha  
G12  
G13  
-
24  
25  
28  
29  
C10  
E9  
VSS  
VDD  
S
S
-
-
-
-
-
-
H1  
TIM16_CH1, SPI5_NSS,  
SAI1_SD_B,  
FT_  
I/O  
UART7_RX,  
SAI4_SD_B,  
QUADSPI_BK1_IO3,  
EVENTOUT  
ADC3_INN4,  
ADC3_INP8  
-
-
G4  
G5  
26  
27  
30  
31  
K2  
K3  
PF6  
PF7  
-
-
ha  
TIM17_CH1, SPI5_SCK,  
SAI1_MCLK_B,  
UART7_TX,  
SAI4_MCLK_B,  
QUADSPI_BK1_IO2,  
EVENTOUT  
FT_  
I/O  
ADC3_INP3  
ha  
TIM16_CH1N,  
SPI5_MISO,  
SAI1_SCK_B,  
FT_  
I/O  
UART7_RTS/UART7_  
DE, SAI4_SCK_B,  
TIM13_CH1,  
ADC3_INN3,  
ADC3_INP7  
-
G6  
28  
32  
K4  
PF8  
-
ha  
QUADSPI_BK1_IO0,  
EVENTOUT  
DS12930 Rev 1  
55/242  
95  
Pin descriptions  
STM32H747xI/G  
Table 7. STM32H747xI/G pin/ball definition (continued)  
Pin name  
Pin/ball name  
Additional  
functions  
(function  
Alternate functions  
after reset)  
TIM17_CH1N,  
SPI5_MOSI,  
SAI1_FS_B,  
FT_  
ha  
UART7_CTS,  
SAI4_FS_B,  
TIM14_CH1,  
-
H3  
29  
33  
L4  
PF9  
I/O  
I/O  
-
ADC3_INP2  
QUADSPI_BK1_IO1,  
EVENTOUT  
TIM16_BKIN, SAI1_D3,  
QUADSPI_CLK,  
SAI4_D3, DCMI_D11,  
LCD_DE, EVENTOUT  
FT_  
ha  
ADC3_INN2,  
ADC3_INP6  
-
H4  
J2  
30  
31  
34  
35  
L3  
J2  
PF10  
-
-
PH0-  
OSC_IN(PH0)  
H12  
I/O FT  
EVENTOUT  
OSC_IN  
PH1-  
H13  
H11  
J1  
32  
33  
36  
37  
J1  
OSC_OUT(P I/O FT  
H1)  
-
-
EVENTOUT  
-
OSC_OUT  
-
H5  
K1  
NRST  
PC0  
I/O RST  
DFSDM1_CKIN0,  
DFSDM1_DATIN4,  
SAI2_FS_B,  
FT_  
G11  
J4  
34  
38  
L2  
I/O  
a
-
ADC123_INP10  
OTG_HS_ULPI_STP,  
FMC_SDNWE,LCD_R5,  
EVENTOUT  
TRACED0, SAI1_D1,  
DFSDM1_DATIN0,  
DFSDM1_CKIN4,  
SPI2_MOSI/I2S2_SDO, ADC123_INN10,  
FT_  
I/O  
SAI1_SD_A,  
SAI4_SD_A,  
SDMMC2_CK,SAI4_D1,  
ETH_MDC,  
ADC123_INP11,  
RTC_TAMP3/  
WKUP5  
G10  
J3  
35  
39  
M2  
PC1  
-
ha  
MDIOS_MDC,  
EVENTOUT  
FT_  
C1DSLEEP,  
DFSDM1_CKIN1,  
SPI2_MISO/I2S2_SDI,  
DFSDM1_CKOUT,  
OTG_HS_ULPI_DIR,  
ETH_MII_TXD2,  
FMC_SDNE0,  
ADC123_INN11,  
ADC123_INP12  
-
-
-
-
M3(2)  
PC2  
I/O  
a
-
-
AN TT_  
ADC3_INN1,  
ADC3_INP0  
K13(3) K1(3) 36(3) 40(3) R1(1)  
PC2_C  
A
a
EVENTOUT  
56/242  
DS12930 Rev 1  
STM32H747xI/G  
Pin descriptions  
Table 7. STM32H747xI/G pin/ball definition (continued)  
Pin name  
Pin/ball name  
Additional  
functions  
(function  
Alternate functions  
after reset)  
FT_  
a
C1SLEEP,  
DFSDM1_DATIN1,  
SPI2_MOSI/I2S2_SDO,  
OTG_HS_ULPI_NXT,  
ETH_MII_TX_CLK,  
FMC_SDCKE0,  
ADC12_INN12,  
ADC12_INP13  
-
-
-
-
M4(1)  
PC3  
I/O  
-
-
AN TT_  
K12(3) K2(3) 37(3) 41(3) R2(1)  
PC3_C  
ADC3_INP1  
A
a
EVENTOUT  
-
-
M2  
C12  
-
-
-
-
-
E11  
C13  
P1  
VDD  
VSS  
S
S
S
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
J13  
-
38  
-
42  
-
VSSA  
VREF-  
VREF+  
VDDA  
L1  
N1  
J12  
J11  
M1  
L2  
39  
40  
43  
44  
M1  
L1  
FT_  
a
TIM2_CH1/TIM2_ETR,  
TIM5_CH1, TIM8_ETR,  
TIM15_BKIN,  
USART2_CTS/USART2  
_NSS, UART4_TX,  
SDMMC2_CMD,  
SAI2_SD_B,  
ADC1_INP16,  
WKUP0  
L13  
K3  
41  
45  
N5(1)  
T1(1)  
N4(1)  
PA0  
PA0_C  
PA1  
I/O  
-
-
-
AN TT_  
ADC12_INN1,  
ADC12_INP0  
-
-
-
-
A
a
ETH_MII_CRS,  
EVENTOUT  
FT_  
ha  
TIM2_CH2, TIM5_CH2,  
LPTIM3_OUT,  
ADC1_INN16,  
ADC1_INP17  
L12  
L3  
42  
46  
I/O  
TIM15_CH1N,  
USART2_RTS/USART2  
_DE, UART4_RX,  
QUADSPI_BK1_IO3,  
SAI2_MCLK_B,  
ETH_MII_RX_CLK/ETH  
_RMII_REF_CLK,  
LCD_R2, EVENTOUT  
AN TT_  
-
-
-
-
T2(1)  
PA1_C  
-
ADC12_INP1  
A
a
TIM2_CH3, TIM5_CH3,  
LPTIM4_OUT,  
TIM15_CH1,  
FT_  
a
USART2_TX,  
SAI2_SCK_B,  
ADC12_INP14,  
WKUP1  
K11  
M3  
43  
47  
N3  
PA2  
I/O  
-
ETH_MDIO,  
MDIOS_MDIO,LCD_R1,  
EVENTOUT  
DS12930 Rev 1  
57/242  
95  
Pin descriptions  
STM32H747xI/G  
Table 7. STM32H747xI/G pin/ball definition (continued)  
Pin name  
Pin/ball name  
Additional  
functions  
(function  
Alternate functions  
after reset)  
LPTIM1_IN2,  
QUADSPI_BK2_IO0,  
SAI2_SCK_B,  
FT_  
ha  
-
-
-
48  
N2  
PH2  
I/O  
-
ADC3_INP13  
ETH_MII_CRS,  
FMC_SDCKE0,  
LCD_R0, EVENTOUT  
-
-
-
44  
49  
50  
F5  
VDD  
VSS  
S
S
-
-
-
-
-
-
-
-
N1  
45  
C16  
QUADSPI_BK2_IO1,  
SAI2_MCLK_B,  
ETH_MII_COL,  
FMC_SDNE0, LCD_R1,  
EVENTOUT  
FT_  
ha  
ADC3_INN13,  
ADC3_INP14  
-
-
-
51  
P2  
PH3  
I/O  
-
I2C2_SCL, LCD_G5,  
OTG_HS_ULPI_NXT,  
LCD_G4, EVENTOUT  
FT_f  
a
ADC3_INN14,  
ADC3_INP15  
-
-
-
-
-
-
52  
53  
P3  
P4  
PH4  
PH5  
I/O  
I/O  
-
-
I2C2_SDA, SPI5_NSS,  
FMC_SDNWE,  
FT_f  
a
ADC3_INN15,  
ADC3_INP16  
EVENTOUT  
TIM2_CH4, TIM5_CH4,  
LPTIM5_OUT,  
TIM15_CH2,  
FT_  
ha  
J10  
N2  
46  
54  
U2  
PA3  
I/O  
-
USART2_RX, LCD_B2,  
OTG_HS_ULPI_D0,  
ETH_MII_COL,  
ADC12_INP15  
LCD_B5, EVENTOUT  
L11  
-
-
47  
48  
55  
56  
-
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
M12  
G5  
D1PWREN, TIM5_ETR,  
SPI1_NSS/I2S1_WS,  
SPI3_NSS/I2S3_WS,  
USART2_CK,  
TT_  
a
ADC12_INP18,  
DAC1_OUT1  
K10  
N3  
49  
57  
U3  
PA4  
I/O  
-
SPI6_NSS,  
OTG_HS_SOF,  
DCMI_HSYNC,  
LCD_VSYNC,  
EVENTOUT  
58/242  
DS12930 Rev 1  
STM32H747xI/G  
Pin descriptions  
Table 7. STM32H747xI/G pin/ball definition (continued)  
Pin name  
Pin/ball name  
Additional  
functions  
(function  
Alternate functions  
after reset)  
D2PWREN,  
TIM2_CH1/TIM2_ETR,  
TIM8_CH1N,  
SPI1_SCK/I2S1_CK,  
SPI6_SCK,  
ADC12_INN18,  
ADC12_INP19,  
DAC1_OUT2  
TT_  
ha  
H10  
J5  
50  
58  
T3  
PA5  
I/O  
-
OTG_HS_ULPI_CK,  
LCD_R4, EVENTOUT  
TIM1_BKIN, TIM3_CH1,  
TIM8_BKIN,  
SPI1_MISO/I2S1_SDI,  
SPI6_MISO,  
FT_  
a
TIM13_CH1,  
TIM8_BKIN_COMP12,  
MDIOS_MDC,  
G9  
M4  
51  
59  
R3  
PA6  
I/O  
-
ADC12_INP3  
TIM1_BKIN_COMP12,  
DCMI_PIXCLK,  
LCD_G2, EVENTOUT  
TIM1_CH1N,  
TIM3_CH2,  
TIM8_CH1N,  
SPI1_MOSI/I2S1_SDO,  
SPI6_MOSI,  
ADC12_INN3,  
ADC12_INP7,  
OPAMP1_VINM  
TT_  
a
J9  
K4  
52  
60  
R5  
PA7  
I/O  
-
TIM14_CH1,  
ETH_MII_RX_DV/ETH_  
RMII_CRS_DV,  
FMC_SDNWE,  
EVENTOUT  
C2DSLEEP,  
DFSDM1_CKIN2,  
I2S1_MCK,  
ADC12_INP4,  
OPAMP1_VOUT,  
COMP1_INM  
TT_  
a
SPDIFRX1_IN3,  
ETH_MII_RXD0/ETH_R  
MII_RXD0,  
M11  
L4  
53  
61  
T4  
PC4  
I/O  
-
FMC_SDNE0,  
EVENTOUT  
DS12930 Rev 1  
59/242  
95  
Pin descriptions  
STM32H747xI/G  
Table 7. STM32H747xI/G pin/ball definition (continued)  
Pin name  
Pin/ball name  
Additional  
functions  
(function  
Alternate functions  
after reset)  
C2SLEEP, SAI1_D3,  
DFSDM1_DATIN2,  
SPDIFRX1_IN4,  
SAI4_D3,  
ETH_MII_RXD1/ETH_R  
MII_RXD1,  
ADC12_INN4,  
ADC12_INP8,  
OPAMP1_VINM  
TT_  
a
L10  
K5  
54  
62  
U4  
PC5  
I/O  
-
FMC_SDCKE0,  
COMP1_OUT,  
EVENTOUT  
-
-
-
-
-
-
G13  
R4  
VDD  
VSS  
S
S
-
-
-
-
-
-
-
-
H2  
-
TIM1_CH2N,  
TIM3_CH3,  
TIM8_CH2N,  
DFSDM1_CKOUT,  
ADC12_INN5,  
ADC12_INP9,  
FT_  
a
K9  
N4  
55  
63  
U5  
PB0  
I/O  
-
UART4_CTS, LCD_R3, OPAMP1_VINP,  
OTG_HS_ULPI_D1,  
ETH_MII_RXD2,  
COMP1_INP  
LCD_G1, EVENTOUT  
TIM1_CH3N,  
TIM3_CH4,  
TIM8_CH3N,  
TT_  
u
DFSDM1_DATIN1,  
LCD_R6,  
OTG_HS_ULPI_D2,  
ETH_MII_RXD3,  
LCD_G0, EVENTOUT  
ADC12_INP5,  
COMP1_INM  
H9  
H6  
56  
64  
T5  
PB1  
I/O  
I/O  
-
RTC_OUT, SAI1_D1,  
DFSDM1_CKIN1,  
SAI1_SD_A,  
SPI3_MOSI/I2S3_SDO,  
SAI4_SD_A,  
FT_  
ha  
M10  
L5  
57  
65  
66  
R6  
P5  
PB2  
PI15  
-
-
COMP1_INP  
QUADSPI_CLK,  
SAI4_D1, EVENTOUT  
LCD_G2, LCD_R0,  
EVENTOUT  
-
-
-
I/O FT  
-
LCD_R7, LCD_R1,  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
N6  
P6  
T6  
PJ0  
PJ1  
PJ2  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
-
-
LCD_R2, EVENTOUT  
DSI_TE, LCD_R3,  
EVENTOUT  
60/242  
DS12930 Rev 1  
STM32H747xI/G  
Pin descriptions  
Table 7. STM32H747xI/G pin/ball definition (continued)  
Pin name  
Pin/ball name  
Additional  
functions  
(function  
Alternate functions  
after reset)  
-
-
-
-
-
U6  
U7  
PJ3  
PJ4  
I/O FT  
I/O FT  
-
-
LCD_R4, EVENTOUT  
LCD_R5, EVENTOUT  
-
-
-
-
-
SPI5_MOSI,  
SAI2_SD_B,  
FMC_SDNRAS,  
FT_  
F8  
K6  
58  
67  
T7  
PF11  
I/O  
a
-
ADC1_INP2  
DCMI_D12, EVENTOUT  
FT_  
I/O  
ADC1_INN2,  
ADC1_INP6  
G8  
J6  
59  
68  
R7  
PF12  
-
FMC_A6, EVENTOUT  
ha  
L9  
-
-
-
-
-
-
J3  
VSS  
VDD  
S
S
-
-
-
-
-
-
M9  
H5  
DFSDM1_DATIN6,  
I2C4_SMBA, FMC_A7,  
EVENTOUT  
FT_  
I/O  
H8  
K8  
M5  
N5  
60  
61  
69  
70  
P7  
P8  
PF13  
PF14  
-
-
ADC2_INP2  
ha  
DFSDM1_CKIN6,  
I2C4_SCL, FMC_A8,  
EVENTOUT  
FT_f  
ADC2_INN2,  
ADC2_INP6  
I/O  
ha  
FT_f  
I2C4_SDA, FMC_A9,  
EVENTOUT  
J8  
L8  
M7  
L6  
62  
63  
71  
72  
R9  
T8  
PF15  
PG0  
I/O  
h
-
-
-
-
FT_  
I/O  
h
FMC_A10, EVENTOUT  
-
-
M9  
-
64  
65  
73  
74  
J16  
VSS  
VDD  
S
S
-
-
-
-
-
-
H13  
TT_  
M8  
J7  
66  
75  
U8  
U9  
PG1  
I/O  
h
-
FMC_A11, EVENTOUT OPAMP2_VINM  
TIM1_ETR,  
DFSDM1_DATIN2,  
TT_  
I/O  
UART7_RX,  
QUADSPI_BK2_IO0,  
FMC_D4/FMC_DA4,  
EVENTOUT  
OPAMP2_VOUT,  
COMP2_INM  
H7  
K7  
67  
76  
PE7  
-
ha  
TIM1_CH1N,  
DFSDM1_CKIN2,  
UART7_TX,  
QUADSPI_BK2_IO1,  
FMC_D5/FMC_DA5,  
COMP2_OUT,  
TT_  
I/O  
J7  
L8  
68  
77  
T9  
PE8  
-
OPAMP2_VINM  
ha  
EVENTOUT  
DS12930 Rev 1  
61/242  
95  
Pin descriptions  
STM32H747xI/G  
Table 7. STM32H747xI/G pin/ball definition (continued)  
Pin name  
Pin/ball name  
Additional  
functions  
(function  
Alternate functions  
after reset)  
TIM1_CH1,  
DFSDM1_CKOUT,  
UART7_RTS/UART7_  
DE,  
QUADSPI_BK2_IO2,  
FMC_D6/FMC_DA6,  
EVENTOUT  
TT_  
ha  
OPAMP2_VINP,  
COMP2_INP  
K7  
N6  
69  
78  
P9  
PE9  
I/O  
-
L7  
M6  
-
70  
71  
79  
80  
J17  
J13  
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
M7  
TIM1_CH2N,  
DFSDM1_DATIN4,  
UART7_CTS,  
QUADSPI_BK2_IO3,  
FMC_D7/FMC_DA7,  
EVENTOUT  
FT_  
ha  
G7  
G6  
L7  
72  
73  
81  
82  
N9  
PE10  
PE11  
I/O  
I/O  
-
-
COMP2_INM  
COMP2_INP  
TIM1_CH2,  
DFSDM1_CKIN4,  
SPI4_NSS, SAI2_SD_B,  
FMC_D8/FMC_DA8,  
LCD_G3, EVENTOUT  
FT_  
ha  
N7  
P10  
TIM1_CH3N,  
DFSDM1_DATIN5,  
SPI4_SCK,  
FT_  
h
J6  
J8  
74  
75  
83  
84  
R10  
T10  
PE12  
PE13  
I/O  
I/O  
-
-
SAI2_SCK_B,  
-
-
FMC_D9/FMC_DA9,  
COMP1_OUT, LCD_B4,  
EVENTOUT  
TIM1_CH3,  
DFSDM1_CKIN5,  
SPI4_MISO,  
FT_  
h
K6  
H8  
SAI2_FS_B,  
FMC_D10/FMC_DA10,  
COMP2_OUT, LCD_DE,  
EVENTOUT  
-
-
H2  
-
-
-
-
-
T12  
K13  
VSS  
VDD  
S
S
-
-
-
-
-
-
-
TIM1_CH4, SPI4_MOSI,  
SAI2_MCLK_B,  
FMC_D11/FMC_DA11,  
LCD_CLK, EVENTOUT  
FT_  
h
M6  
M8  
76  
85  
U10  
PE14  
I/O  
-
-
62/242  
DS12930 Rev 1  
STM32H747xI/G  
Pin descriptions  
Table 7. STM32H747xI/G pin/ball definition (continued)  
Pin name  
Pin/ball name  
Additional  
functions  
(function  
Alternate functions  
after reset)  
TIM1_BKIN,  
COMP_TIM1_BKIN,  
FMC_D12/FMC_DA12,  
TIM1_BKIN_COMP12,  
LCD_R7, EVENTOUT  
FT_  
h
L6  
K8  
K9  
77  
78  
86  
87  
R11  
P11  
PE15  
PB10  
I/O  
-
-
-
-
TIM2_CH3,  
HRTIM_SCOUT,  
LPTIM2_IN1, I2C2_SCL,  
SPI2_SCK/I2S2_CK,  
DFSDM1_DATIN7,  
USART3_TX,  
H6  
I/O FT_f  
QUADSPI_BK1_NCS,  
OTG_HS_ULPI_D3,  
ETH_MII_RX_ER,  
LCD_G4, EVENTOUT  
TIM2_CH4,  
HRTIM_SCIN,  
LPTIM2_ETR,  
I2C2_SDA,  
DFSDM1_CKIN7,  
USART3_RX,  
K5  
N8  
79  
88  
P12  
PB11  
I/O FT_f  
-
-
OTG_HS_ULPI_D4,  
ETH_MII_TX_EN/ETH_  
RMII_TX_EN, DSI_TE,  
LCD_G5, EVENTOUT  
M5  
L5  
L4  
M4  
-
N9  
80  
81  
82  
-
89  
90  
91  
-
U11  
-
VCAP  
VSS  
S
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
N10  
U12  
L13  
R12  
VDDLDO  
VDD  
-
-
-
-
-
-
PJ5  
I/O FT  
LCD_R6, EVENTOUT  
TIM12_CH1,  
I2C2_SMBA,SPI5_SCK,  
ETH_MII_RXD2,  
FMC_SDNE1,  
DCMI_D8, EVENTOUT  
-
-
-
-
-
-
92  
93  
T11  
PH6  
PH7  
I/O FT  
-
-
-
-
I2C3_SCL, SPI5_MISO,  
ETH_MII_RXD3,  
FT_f  
U13  
I/O  
a
FMC_SDCKE1,  
DCMI_D9, EVENTOUT  
DS12930 Rev 1  
63/242  
95  
Pin descriptions  
STM32H747xI/G  
Table 7. STM32H747xI/G pin/ball definition (continued)  
Pin name  
Pin/ball name  
Additional  
functions  
(function  
Alternate functions  
after reset)  
TIM5_ETR, I2C3_SDA,  
FMC_D16,  
FT_f  
ha  
-
-
-
94  
T13  
PH8  
I/O  
-
-
DCMI_HSYNC,  
LCD_R2, EVENTOUT  
-
E13  
L9  
-
-
-
-
-
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
M4  
M13  
TIM12_CH2,  
I2C3_SMBA, FMC_D17,  
DCMI_D0, LCD_R3,  
EVENTOUT  
FT_  
h
-
-
-
-
-
-
95  
96  
R13  
P13  
PH9  
I/O  
I/O  
-
-
-
-
TIM5_CH1,  
I2C4_SMBA, FMC_D18,  
DCMI_D1, LCD_R4,  
EVENTOUT  
FT_  
h
PH10  
TIM5_CH2, I2C4_SCL,  
FMC_D19, DCMI_D2,  
LCD_R5, EVENTOUT  
FT_f  
h
-
-
-
-
-
-
97  
98  
P14  
R14  
PH11  
PH12  
I/O  
I/O  
-
-
-
-
TIM5_CH3, I2C4_SDA,  
FMC_D20, DCMI_D3,  
LCD_R6, EVENTOUT  
FT_f  
h
-
D1  
-
83  
84  
99  
N16  
-
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
M4  
100  
TIM1_BKIN,  
I2C2_SMBA,  
SPI2_NSS/I2S2_WS,  
DFSDM1_DATIN1,  
USART3_CK,  
FT_  
u
FDCAN2_RX,  
J5  
L10  
85  
101 T14  
PB12  
I/O  
-
-
OTG_HS_ULPI_D5,  
ETH_MII_TXD0/ETH_R  
MII_TXD0, OTG_HS_ID,  
TIM1_BKIN_COMP12,  
UART5_RX,  
EVENTOUT  
64/242  
DS12930 Rev 1  
STM32H747xI/G  
Pin descriptions  
Table 7. STM32H747xI/G pin/ball definition (continued)  
Pin name  
Pin/ball name  
Additional  
functions  
(function  
Alternate functions  
after reset)  
TIM1_CH1N,  
LPTIM2_OUT,  
SPI2_SCK/I2S2_CK,  
DFSDM1_CKIN1,  
FT_  
u
USART3_CTS/USART3  
_NSS, FDCAN2_TX,  
OTG_HS_ULPI_D6,  
ETH_MII_TXD1/ETH_R  
MII_TXD1, UART5_TX,  
EVENTOUT  
H5  
M10  
86  
102 U14  
PB13  
I/O  
-
OTG_HS_VBUS  
TIM1_CH2N,  
TIM12_CH1,  
TIM8_CH2N,  
USART1_TX,  
SPI2_MISO/I2S2_SDI,  
DFSDM1_DATIN2,  
USART3_RTS/USART3  
_DE, UART4_RTS/  
UART4_DE,  
FT_  
u
M3  
N11  
87  
103 U15  
PB14  
I/O  
-
-
SDMMC2_D0,  
OTG_HS_DM,  
EVENTOUT  
RTC_REFIN,  
TIM1_CH3N,  
TIM12_CH2,  
TIM8_CH3N,  
USART1_RX,  
FT_  
u
M2  
M11  
88  
104 T15  
PB15  
I/O  
-
SPI2_MOSI/I2S2_SDO,  
DFSDM1_CKIN2,  
UART4_CTS,  
-
SDMMC2_D1,  
OTG_HS_DP,  
EVENTOUT  
DFSDM1_CKIN3,  
SAI3_SCK_B,  
FT_  
h
USART3_TX,  
G5  
N12  
89  
105 U16  
PD8  
I/O  
-
-
SPDIFRX1_IN2,  
FMC_D13/FMC_DA13,  
EVENTOUT  
DS12930 Rev 1  
65/242  
95  
Pin descriptions  
STM32H747xI/G  
Table 7. STM32H747xI/G pin/ball definition (continued)  
Pin name  
Pin/ball name  
Additional  
functions  
(function  
Alternate functions  
after reset)  
DFSDM1_DATIN3,  
SAI3_SD_B,  
FT_  
h
USART3_RX,  
K4  
L3  
M12  
90  
106 T17  
PD9  
I/O  
I/O  
-
-
-
FDCAN2_RXFD_MODE,  
FMC_D14/FMC_DA14,  
EVENTOUT  
DFSDM1_CKOUT,  
SAI3_FS_B,  
USART3_CK,  
FT_  
h
N13  
91  
107 T16  
PD10  
FDCAN2_TXFD_MODE,  
FMC_D15/FMC_DA15,  
LCD_B3, EVENTOUT  
-
L11  
L13  
92  
93  
108 N12  
109 U17  
VDD  
VSS  
S
S
-
-
-
-
-
-
-
-
M1  
LPTIM2_IN2,  
I2C4_SMBA,  
USART3_CTS/USART3  
_NSS,  
QUADSPI_BK1_IO0,  
SAI2_SD_A, FMC_A16,  
EVENTOUT  
FT_  
h
J4  
K10  
94  
110 R15  
PD11  
I/O  
-
-
LPTIM1_IN1,  
TIM4_CH1,  
LPTIM2_IN1, I2C4_SCL,  
USART3_RTS/  
FT_f  
h
L2  
J10  
95  
96  
111  
R16  
PD12  
PD13  
I/O  
I/O  
-
-
-
-
USART3_DE,  
QUADSPI_BK1_IO1,  
SAI2_FS_A, FMC_A17,  
EVENTOUT  
LPTIM1_OUT,  
TIM4_CH2, I2C4_SDA,  
QUADSPI_BK1_IO3,  
SAI2_SCK_A,  
FT_f  
h
K3  
J9  
112 R17  
FMC_A18, EVENTOUT  
L1  
-
-
-
-
-
113  
114  
-
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
N11  
TIM4_CH3,  
SAI3_MCLK_B,  
UART8_CTS,  
FMC_D0/FMC_DA0,  
EVENTOUT  
FT_  
h
H4  
H9  
97  
115  
P16  
PD14  
I/O  
-
-
66/242  
DS12930 Rev 1  
STM32H747xI/G  
Pin descriptions  
Table 7. STM32H747xI/G pin/ball definition (continued)  
Pin name  
Pin/ball name  
Additional  
functions  
(function  
Alternate functions  
after reset)  
TIM4_CH4,  
SAI3_MCLK_A,  
UART8_RTS/  
FT_  
h
J3  
H10  
98  
116  
P15  
PD15  
I/O  
-
-
UART8_DE,  
FMC_D1/FMC_DA1,  
EVENTOUT  
TIM8_CH2, LCD_R7,  
EVENTOUT  
-
-
-
-
-
-
-
-
N15  
N14  
PJ6  
PJ7  
I/O FT  
I/O FT  
-
-
-
-
TRGIN, TIM8_CH2N,  
LCD_G0, EVENTOUT  
K2  
-
-
-
-
-
-
N10  
R8  
VDD  
VSS  
S
S
-
-
-
-
-
-
-
-
C12  
TIM1_CH3N,  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
N13  
M14  
L14  
K14  
PJ8  
PJ9  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
TIM8_CH1, UART8_TX,  
LCD_G1, EVENTOUT  
-
-
-
-
TIM1_CH3,  
TIM8_CH1N,  
UART8_RX, LCD_G2,  
EVENTOUT  
TIM1_CH2N,  
TIM8_CH2, SPI5_MOSI,  
LCD_G3, EVENTOUT  
PJ10  
PJ11  
TIM1_CH2,  
TIM8_CH2N,  
SPI5_MISO, LCD_G4,  
EVENTOUT  
-
-
M13  
-
99  
-
117  
-
N8  
P17  
U1  
VDD  
S
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
VDDDSI  
VSS  
S
-
100  
101  
102  
118  
S
K1  
-
L12  
-
119 N17  
120  
VCAPDSI  
VDD12DSI  
DSI_D0P  
DSI_D0N  
VSSDSI  
DSI_CKP  
DSI_CKN  
S
-
S
J2  
J1  
H3  
H2  
H1  
K12 103  
K13 104  
G12 105  
121 M16  
122 M17  
123 K15  
I/O TT  
I/O TT  
S
J12  
J13  
106  
107  
124  
125  
L16  
L17  
I/O TT  
I/O TT  
DS12930 Rev 1  
67/242  
95  
Pin descriptions  
STM32H747xI/G  
Table 7. STM32H747xI/G pin/ball definition (continued)  
Pin name  
Pin/ball name  
Additional  
functions  
(function  
Alternate functions  
after reset)  
-
-
108  
126  
127 K16  
128 K17  
-
VDD12DSI  
DSI_D1P  
DSI_D1N  
VSSDSI  
S
-
-
-
-
-
-
-
-
-
-
-
-
-
G2  
G1  
-
H12  
H13  
-
-
I/O TT  
I/O TT  
G13 109  
129  
L15  
S
-
TIM1_CH1N,  
-
-
-
-
-
-
-
J14  
PK0  
PK1  
I/O FT  
I/O FT  
-
-
TIM8_CH3, SPI5_SCK,  
LCD_G5, EVENTOUT  
-
-
TIM1_CH1,  
TIM8_CH3N,  
SPI5_NSS, LCD_G6,  
EVENTOUT  
-
-
J15  
TIM1_BKIN,  
TIM8_BKIN,  
TIM8_BKIN_COMP12,  
TIM1_BKIN_COMP12,  
LCD_G7, EVENTOUT  
-
-
-
H17  
PK2  
I/O FT  
-
-
TIM8_BKIN,  
TIM8_BKIN_COMP12,  
FMC_A12, EVENTOUT  
FT_  
G3  
G4  
H7  
G8  
110  
111  
130 H16  
131 H15  
PG2  
PG3  
I/O  
h
-
-
-
-
TIM8_BKIN2,  
TIM8_BKIN2_COMP12,  
FMC_A13, EVENTOUT  
FT_  
I/O  
h
-
-
-
112  
113  
132  
133  
-
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
E12  
N7  
TIM1_BKIN2,  
TIM1_BKIN2_COMP12,  
FMC_A14/FMC_BA0,  
EVENTOUT  
FT_  
h
F4  
F1  
G10 114  
134 H14  
135 G14  
PG4  
PG5  
I/O  
I/O  
-
-
-
-
TIM1_ETR,  
FMC_A15/FMC_BA1,  
EVENTOUT  
FT_  
h
G9  
115  
TIM17_BKIN,  
HRTIM_CHE1,  
QUADSPI_BK1_NCS,  
FMC_NE3, DCMI_D12,  
LCD_R7, EVENTOUT  
FT_  
h
-
G11 116  
136 G15  
PG6  
I/O  
-
-
68/242  
DS12930 Rev 1  
STM32H747xI/G  
Pin descriptions  
Table 7. STM32H747xI/G pin/ball definition (continued)  
Pin name  
Pin/ball name  
Additional  
functions  
(function  
Alternate functions  
after reset)  
HRTIM_CHE2,  
SAI1_MCLK_A,  
USART6_CK, FMC_INT,  
DCMI_D13, LCD_CLK,  
EVENTOUT  
FT_  
h
-
F8  
117  
137 F16  
PG7  
PG8  
I/O  
I/O  
-
-
-
-
TIM8_ETR, SPI6_NSS,  
USART6_RTS/USART6  
_DE, SPDIFRX1_IN3,  
ETH_PPS_OUT,  
FT_  
h
F2  
F9  
-
118  
119  
138 F15  
FMC_SDCLK, LCD_G7,  
EVENTOUT  
F3  
E3  
E1  
E2  
139 G16  
140 G17  
141 F17  
VSS  
S
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
F12 120  
F13 121  
VDD50USB  
VDD33USB  
VDD  
-
-
-
M5  
HRTIM_CHA1,  
TIM3_CH1, TIM8_CH1,  
DFSDM1_CKIN3,  
I2S2_MCK,  
USART6_TX,  
FT_  
h
SDMMC1_D0DIR,  
FMC_NWAIT,  
F5  
F11  
122  
142 F14  
PC6  
I/O  
-
SWPMI_IO  
SDMMC2_D6,  
SDMMC1_D6,  
DCMI_D0,  
LCD_HSYNC,  
EVENTOUT  
TRGIO, HRTIM_CHA2,  
TIM3_CH2, TIM8_CH2,  
DFSDM1_DATIN3,  
I2S3_MCK,  
USART6_RX,  
FT_  
h
SDMMC1_D123DIR,  
FMC_NE1,  
E4  
E10 123  
143 F13  
PC7  
I/O  
-
-
SDMMC2_D7,  
SWPMI_TX,  
SDMMC1_D7,  
DCMI_D1, LCD_G6,  
EVENTOUT  
DS12930 Rev 1  
69/242  
95  
Pin descriptions  
STM32H747xI/G  
Table 7. STM32H747xI/G pin/ball definition (continued)  
Pin name  
Pin/ball name  
Additional  
functions  
(function  
Alternate functions  
after reset)  
TRACED1,  
HRTIM_CHB1,  
TIM3_CH3, TIM8_CH3,  
USART6_CK,  
FT_  
h
UART5_RTS/  
UART5_DE,  
D1  
F10 124  
144 E13  
PC8  
I/O  
-
-
FMC_NE2/FMC_NCE,  
SWPMI_RX,  
SDMMC1_D0,  
DCMI_D2, EVENTOUT  
MCO2, TIM3_CH4,  
TIM8_CH4, I2C3_SDA,  
I2S_CKIN,UART5_CTS,  
QUADSPI_BK1_IO0,  
LCD_G3,  
SWPMI_SUSPEND,  
SDMMC1_D1,  
DCMI_D3, LCD_B2,  
EVENTOUT  
FT_f  
h
D2  
E11  
125  
126  
145 E14  
PC9  
VDD  
I/O  
S
-
-
-
-
-
-
-
L5  
-
-
MCO1, TIM1_CH1,  
HRTIM_CHB2,  
TIM8_BKIN2,  
I2C3_SCL,  
FT_f  
ha  
USART1_CK,  
OTG_FS_SOF,  
UART7_RX,  
D3  
D10 127  
146 E15  
PA8  
I/O  
-
-
TIM8_BKIN2_COMP12,  
LCD_B3, LCD_R6,  
EVENTOUT  
TIM1_CH2,  
HRTIM_CHC1,  
LPUART1_TX,  
I2C3_SMBA,  
SPI2_SCK/I2S2_CK,  
USART1_TX,  
FT_  
u
D4  
D11 128  
147 D15  
PA9  
I/O  
-
OTG_FS_VBUS  
FDCAN1_RXFD_MODE,  
DCMI_D0, LCD_R5,  
EVENTOUT  
70/242  
DS12930 Rev 1  
STM32H747xI/G  
Pin descriptions  
Table 7. STM32H747xI/G pin/ball definition (continued)  
Pin name  
Pin/ball name  
Additional  
functions  
(function  
Alternate functions  
after reset)  
TIM1_CH3,  
HRTIM_CHC2,  
LPUART1_RX,  
USART1_RX,  
FDCAN1_TXFD_MODE,  
OTG_FS_ID,  
FT_  
u
C2  
A13 129  
148 D14  
PA10  
I/O  
-
-
MDIOS_MDIO, LCD_B4,  
DCMI_D1, LCD_B1,  
EVENTOUT  
TIM1_CH4,  
HRTIM_CHD1,  
LPUART1_CTS,  
SPI2_NSS/I2S2_WS,  
UART4_RX,  
USART1_CTS/USART1  
_NSS, FDCAN1_RX,  
OTG_FS_DM, LCD_R4,  
EVENTOUT  
FT_  
u
C1  
D12 130  
149 E17  
PA11  
I/O  
-
-
TIM1_ETR,  
HRTIM_CHD2,  
LPUART1_RTS/  
LPUART1_DE,  
SPI2_SCK/I2S2_CK,  
UART4_TX,  
FT_  
u
B1  
C3  
D13 131  
150 E16  
PA12  
I/O  
-
-
-
-
USART1_RTS/  
USART1_DE,  
SAI2_FS_B,  
FDCAN1_TX,  
OTG_FS_DP, LCD_R5,  
EVENTOUT  
PA13(JTMS/  
SWDIO)  
JTMS-SWDIO,  
EVENTOUT  
B11  
132  
151 C15  
152 D17  
I/O FT  
B2  
A1  
A2  
B3  
C13 133  
134  
B13 135  
VCAP  
VSS  
S
S
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
153  
154 C17  
155 K5  
-
VDDLDO  
VDD  
-
-
136  
S
TIM8_CH1N,  
UART4_TX,  
FDCAN1_TX,  
FT_  
h
-
-
156 D16  
PH13  
I/O  
-
-
FMC_D21, LCD_G2,  
EVENTOUT  
DS12930 Rev 1  
71/242  
95  
Pin descriptions  
STM32H747xI/G  
Table 7. STM32H747xI/G pin/ball definition (continued)  
Pin name  
Pin/ball name  
Additional  
functions  
(function  
Alternate functions  
after reset)  
TIM8_CH2N,  
UART4_RX,  
FDCAN1_RX,  
FT_  
h
-
-
-
-
-
157 B17  
PH14  
PH15  
PI0  
I/O  
I/O  
I/O  
-
-
-
-
-
-
FMC_D22, DCMI_D4,  
LCD_G3, EVENTOUT  
TIM8_CH3N,  
FT_  
h
FDCAN1_TXFD_MODE,  
FMC_D23, DCMI_D11,  
LCD_G4, EVENTOUT  
-
-
158 B16  
159 A16  
TIM5_CH4,  
SPI2_NSS/I2S2_WS,  
FDCAN1_RXFD_MODE,  
FMC_D24, DCMI_D13,  
LCD_G5, EVENTOUT  
FT_  
h
-
-
-
-
-
-
-
160  
-
VSS  
VDD  
S
S
-
-
-
-
-
-
B12  
161 VDD  
TIM8_BKIN2,  
SPI2_SCK/I2S2_CK,  
TIM8_BKIN2_COMP12,  
FMC_D25, DCMI_D8,  
LCD_G6, EVENTOUT  
FT_  
h
-
-
-
162 A15  
PI1  
I/O  
-
-
TIM8_CH4,  
FT_  
h
SPI2_MISO/I2S2_SDI,  
FMC_D26, DCMI_D9,  
LCD_G7, EVENTOUT  
-
-
-
-
-
-
163 B15  
164 C14  
PI2  
PI3  
I/O  
I/O  
-
-
-
-
TIM8_ETR,  
SPI2_MOSI/I2S2_SDO,  
FMC_D27, DCMI_D10,  
EVENTOUT  
FT_  
h
C4  
B3  
-
-
137  
-
-
-
-
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
VDD  
PA14(JTCK/  
SWCLK)  
JTCK-SWCLK,  
EVENTOUT  
E5  
A11  
138  
165 B14  
I/O FT  
-
-
72/242  
DS12930 Rev 1  
STM32H747xI/G  
Pin descriptions  
Table 7. STM32H747xI/G pin/ball definition (continued)  
Pin name  
Pin/ball name  
Additional  
functions  
(function  
Alternate functions  
after reset)  
JTDI,  
TIM2_CH1/TIM2_ETR,  
HRTIM_FLT1, CEC,  
SPI1_NSS/I2S1_WS,  
SPI3_NSS/I2S3_WS,  
SPI6_NSS,  
A3  
B10 139  
166 A14  
PA15(JTDI)  
I/O FT  
-
-
UART4_RTS/UART4_D  
E, UART7_TX, DSI_TE,  
EVENTOUT  
HRTIM_EEV1,  
DFSDM1_CKIN5,  
SPI3_SCK/I2S3_CK,  
USART3_TX,  
UART4_TX,  
QUADSPI_BK1_IO1,  
SDMMC1_D2,  
FT_  
I/O  
D5  
C11 140  
167 A13  
PC10  
-
-
ha  
DCMI_D8, LCD_R2,  
EVENTOUT  
HRTIM_FLT2,  
DFSDM1_DATIN5,  
SPI3_MISO/I2S3_SDI,  
USART3_RX,  
UART4_RX,  
QUADSPI_BK2_NCS,  
SDMMC1_D3,  
FT_  
C5  
E9  
141  
142  
168 B13  
PC11  
PC12  
I/O  
h
-
-
-
-
DCMI_D4, EVENTOUT  
TRACED3,  
HRTIM_EEV2,  
SPI3_MOSI/I2S3_SDO,  
USART3_CK,  
FT_  
B4  
D9  
169 C12  
I/O  
h
UART5_TX,  
SDMMC1_CK,  
DCMI_D9, EVENTOUT  
-
-
A7  
-
-
-
-
-
-
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
VDD  
DFSDM1_CKIN6,  
SAI3_SCK_A,  
UART4_RX,  
FT_  
h
A4  
C10 143  
170 D13  
PD0  
I/O  
-
-
FDCAN1_RX,  
FMC_D2/FMC_DA2,  
EVENTOUT  
DS12930 Rev 1  
73/242  
95  
Pin descriptions  
STM32H747xI/G  
Table 7. STM32H747xI/G pin/ball definition (continued)  
Pin name  
Pin/ball name  
Additional  
functions  
(function  
Alternate functions  
after reset)  
DFSDM1_DATIN6,  
SAI3_SD_A,  
FT_  
h
UART4_TX,  
FDCAN1_TX,  
FMC_D3/FMC_DA3,  
EVENTOUT  
F6  
E6  
B5  
C9  
144  
171 E12  
PD1  
PD2  
PD3  
I/O  
I/O  
I/O  
-
-
-
-
-
-
TRACED2, TIM3_ETR,  
UART5_RX,  
SDMMC1_CMD,  
DCMI_D11, EVENTOUT  
FT_  
h
E8  
145  
172 D12  
DFSDM1_CKOUT,  
SPI2_SCK/I2S2_CK,  
USART2_CTS/USART2  
_NSS, FMC_CLK,  
DCMI_D5, LCD_G7,  
EVENTOUT  
FT_  
h
A10 146  
173 B12  
HRTIM_FLT3,  
SAI3_FS_A,  
FT_  
h
USART2_RTS/USART2  
_DE,  
FDCAN1_RXFD_MODE,  
FMC_NOE, EVENTOUT  
A5  
F7  
D8  
C8  
147  
148  
174 A12  
PD4  
PD5  
I/O  
I/O  
-
-
-
-
HRTIM_EEV3,  
USART2_TX,  
FDCAN1_TXFD_MODE,  
FMC_NWE, EVENTOUT  
FT_  
h
175  
A11  
B6  
A6  
-
-
-
-
-
-
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
B2  
VDD  
SAI1_D1,  
DFSDM1_CKIN4,  
DFSDM1_DATIN1,  
SPI3_MOSI/I2S3_SDO,  
SAI1_SD_A,  
FT_  
h
USART2_RX,  
SAI4_SD_A,  
C6  
B8  
149  
176  
B11  
PD6  
I/O  
-
-
FDCAN2_RXFD_MODE,  
SAI4_D1,SDMMC2_CK,  
FMC_NWAIT,  
DCMI_D10, LCD_B2,  
EVENTOUT  
74/242  
DS12930 Rev 1  
STM32H747xI/G  
Pin descriptions  
Table 7. STM32H747xI/G pin/ball definition (continued)  
Pin name  
Pin/ball name  
Additional  
functions  
(function  
Alternate functions  
after reset)  
DFSDM1_DATIN4,  
SPI1_MOSI/I2S1_SDO,  
DFSDM1_CKIN1,  
USART2_CK,  
FT_  
h
D6  
A8  
150  
177 C11  
PD7  
I/O  
-
-
SPDIFRX1_IN0,  
SDMMC2_CMD,  
FMC_NE1, EVENTOUT  
TRGOUT, LCD_G3,  
LCD_B0, EVENTOUT  
-
-
-
-
-
-
-
-
D11  
E10  
PJ12  
PJ13  
I/O FT  
I/O FT  
-
-
-
-
LCD_B4, LCD_B1,  
EVENTOUT  
-
-
-
-
-
-
-
D10  
B10  
-
PJ14  
PJ15  
VSS  
VDD  
I/O FT  
I/O FT  
-
-
-
-
LCD_B2, EVENTOUT  
-
-
-
-
-
LCD_B3, EVENTOUT  
B9  
-
B9  
-
151  
152  
178  
S
S
-
-
-
-
179 VDD  
SPI1_MISO/I2S1_SDI,  
USART6_RX,  
SPDIFRX1_IN4,  
QUADSPI_BK2_IO2,  
SAI2_FS_B,  
FMC_NE2/FMC_NCE,  
DCMI_VSYNC,  
FT_  
h
-
-
-
C7  
D7  
E7  
153  
154  
155  
180 A10  
PG9  
PG10  
PG11  
I/O  
I/O  
I/O  
-
-
-
-
-
-
EVENTOUT  
HRTIM_FLT5,  
SPI1_NSS/I2S1_WS,  
LCD_G3, SAI2_SD_B,  
FMC_NE3, DCMI_D2,  
LCD_B2, EVENTOUT  
FT_  
h
181  
182  
A9  
B9  
LPTIM1_IN2,  
HRTIM_EEV4,  
SPI1_SCK/I2S1_CK,  
SPDIFRX1_IN1,  
FT_  
h
SDMMC2_D2,  
ETH_MII_TX_EN/ETH_  
RMII_TX_EN,DCMI_D3,  
LCD_B3, EVENTOUT  
DS12930 Rev 1  
75/242  
95  
Pin descriptions  
STM32H747xI/G  
Table 7. STM32H747xI/G pin/ball definition (continued)  
Pin name  
Pin/ball name  
Additional  
functions  
(function  
Alternate functions  
after reset)  
LPTIM1_IN1,  
HRTIM_EEV5,  
SPI6_MISO,  
USART6_RTS/USART6  
_DE, SPDIFRX1_IN2,  
LCD_B4,  
FT_  
h
-
G7  
156  
183  
C9  
PG12  
I/O  
-
-
ETH_MII_TXD1/ETH_R  
MII_TXD1, FMC_NE4,  
LCD_B1, EVENTOUT  
TRACED0,  
LPTIM1_OUT,  
HRTIM_EEV10,  
SPI6_SCK,  
USART6_CTS/USART6  
_NSS,  
FT_  
h
-
F7  
157  
184  
D9  
PG13  
I/O  
-
-
ETH_MII_TXD0/ETH_R  
MII_TXD0, FMC_A24,  
LCD_R0, EVENTOUT  
TRACED1,  
LPTIM1_ETR,  
SPI6_MOSI,  
FT_  
h
USART6_TX,  
-
E6  
158  
185  
186  
D8  
PG14  
I/O  
-
-
QUADSPI_BK2_IO3,  
ETH_MII_TXD1/ETH_R  
MII_TXD1, FMC_A25,  
LCD_B0, EVENTOUT  
-
-
-
-
-
-
-
-
-
-
159  
-
VSS  
VDD  
PK3  
PK4  
PK5  
PK6  
PK7  
VDD  
S
S
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
160  
187 VDD  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
C8  
B8  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
S
LCD_B4, EVENTOUT  
LCD_B5, EVENTOUT  
LCD_B6, EVENTOUT  
LCD_B7, EVENTOUT  
LCD_DE, EVENTOUT  
-
-
-
A8  
-
C7  
-
D7  
B7  
VDD  
USART6_CTS/USART6  
_NSS, FMC_SDNCAS,  
DCMI_D13, EVENTOUT  
FT_  
A7  
C6  
161  
188  
D6  
PG15  
I/O  
h
-
-
76/242  
DS12930 Rev 1  
STM32H747xI/G  
Pin descriptions  
Table 7. STM32H747xI/G pin/ball definition (continued)  
Pin name  
Pin/ball name  
Additional  
functions  
(function  
Alternate functions  
after reset)  
JTDO/TRACESWO,  
TIM2_CH2,  
HRTIM_FLT4,  
SPI1_SCK/I2S1_CK,  
SPI3_SCK/I2S3_CK,  
SPI6_SCK,  
PB3(JTDO/TR  
ACESWO)  
B7  
A6  
162  
189  
C6  
I/O FT  
-
-
SDMMC2_D2,  
CRS_SYNC,  
UART7_RX,  
EVENTOUT  
NJTRST, TIM16_BKIN,  
TIM3_CH1,  
HRTIM_EEV6,  
SPI1_MISO/I2S1_SDI,  
SPI3_MISO/I2S3_SDI,  
SPI2_NSS/I2S2_WS,  
SPI6_MISO,  
A8  
B6  
163  
190  
B7 PB4(NJTRST) I/O FT  
-
-
SDMMC2_D3,  
UART7_TX, EVENTOUT  
TIM17_BKIN,  
TIM3_CH2,  
HRTIM_EEV7,  
I2C1_SMBA,  
SPI1_MOSI/I2S1_SDO,  
I2C4_SMBA,  
SPI3_MOSI/I2S3_SDO,  
SPI6_MOSI,  
B8  
A5  
164  
191  
A5  
PB5  
I/O FT  
-
-
FDCAN2_RX,  
OTG_HS_ULPI_D7,  
ETH_PPS_OUT,  
FMC_SDCKE1,  
DCMI_D10, UART5_RX,  
EVENTOUT  
A9  
-
-
-
VDD  
VDD  
S
-
-
-
-
DS12930 Rev 1  
77/242  
95  
Pin descriptions  
STM32H747xI/G  
Table 7. STM32H747xI/G pin/ball definition (continued)  
Pin name  
Pin/ball name  
Additional  
functions  
(function  
Alternate functions  
after reset)  
TIM16_CH1N,  
TIM4_CH1,  
HRTIM_EEV8,  
I2C1_SCL, CEC,  
I2C4_SCL,  
USART1_TX,  
C7  
E5  
165  
192  
B5  
PB6  
I/O FT_f  
-
LPUART1_TX,  
FDCAN2_TX,  
-
QUADSPI_BK1_NCS,  
DFSDM1_DATIN5,  
FMC_SDNE1,  
DCMI_D5, UART5_TX,  
EVENTOUT  
TIM17_CH1N,  
TIM4_CH2,  
HRTIM_EEV9,  
I2C1_SDA, I2C4_SDA,  
USART1_RX,  
LPUART1_RX,  
FDCAN2_TXFD_MODE,  
DFSDM1_CKIN5,  
FMC_NL,  
FT_f  
C8  
D7  
C5  
B5  
D5  
166  
167  
168  
193  
194  
195  
C5  
E8  
D5  
PB7  
BOOT0  
PB8  
I/O  
a
-
-
-
PVD_IN  
DCMI_VSYNC,  
EVENTOUT  
I
B
-
VPP  
TIM16_CH1,TIM4_CH3,  
DFSDM1_CKIN7,  
I2C1_SCL, I2C4_SCL,  
SDMMC1_CKIN,  
UART4_RX,  
FT_f  
h
A10  
I/O  
FDCAN1_RX,  
SDMMC2_D4,  
-
ETH_MII_TXD3,  
SDMMC1_D4,  
DCMI_D6, LCD_B6,  
EVENTOUT  
78/242  
DS12930 Rev 1  
STM32H747xI/G  
Pin descriptions  
Table 7. STM32H747xI/G pin/ball definition (continued)  
Pin name  
Pin/ball name  
Additional  
functions  
(function  
Alternate functions  
after reset)  
TIM17_CH1,TIM4_CH4,  
DFSDM1_DATIN7,  
I2C1_SDA,  
SPI2_NSS/I2S2_WS,  
I2C4_SDA,  
SDMMC1_CDIR,  
UART4_TX,  
FDCAN1_TX,  
FT_f  
h
C9  
D6  
169  
196  
D4  
PB9  
I/O  
-
-
SDMMC2_D5,  
I2C4_SMBA,  
SDMMC1_D5,  
DCMI_D7, LCD_B7,  
EVENTOUT  
LPTIM1_ETR,  
TIM4_ETR,  
HRTIM_SCIN,  
LPTIM2_ETR,  
UART8_RX,  
FDCAN1_RXFD_MODE,  
SAI2_MCLK_A,  
FMC_NBL0, DCMI_D2,  
EVENTOUT  
FT_  
h
B10  
D4  
C4  
170  
171  
197  
198  
C4  
PE0  
PE1  
I/O  
I/O  
-
-
-
-
LPTIM1_IN2,  
HRTIM_SCOUT,  
UART8_TX,  
FT_  
h
D8  
B4  
FDCAN1_TXFD_MODE,  
FMC_NBL1, DCMI_D3,  
EVENTOUT  
A11  
C10  
E7  
A4  
-
172  
173  
174  
175  
-
199  
200  
201  
202  
-
A7  
B6  
VCAP  
VSS  
S
S
I
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
B3  
A3  
-
E7  
PDR_ON  
VDDLDO  
VDD  
FT  
-
A12  
B11  
A6  
S
S
VDD  
-
TIM8_BKIN,  
SAI2_MCLK_A,  
FT_  
h
-
-
-
203  
A4  
PI4  
I/O  
-
TIM8_BKIN_COMP12,  
FMC_NBL2, DCMI_D5,  
LCD_B4, EVENTOUT  
-
DS12930 Rev 1  
79/242  
95  
Pin descriptions  
STM32H747xI/G  
Table 7. STM32H747xI/G pin/ball definition (continued)  
Pin name  
Pin/ball name  
Additional  
functions  
(function  
Alternate functions  
after reset)  
TIM8_CH1,  
SAI2_SCK_A,  
FMC_NBL3,  
FT_  
h
-
-
-
204  
A3  
A2  
PI5  
I/O  
-
-
DCMI_VSYNC,  
LCD_B5, EVENTOUT  
TIM8_CH2, SAI2_SD_A,  
FMC_D28, DCMI_D6,  
LCD_B6, EVENTOUT  
FT_  
h
-
-
-
-
205  
PI6  
PI7  
I/O  
I/O  
-
-
-
-
TIM8_CH3, SAI2_FS_A,  
FMC_D29, DCMI_D7,  
LCD_B7, EVENTOUT  
FT_  
h
-
-
206  
207  
B3  
-
-
-
-
-
-
-
-
VSS  
VDD  
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
B11  
M13  
A13  
-
176  
208 VDD  
-
-
-
-
-
-
-
-
VSS  
DNC  
M15  
VSSDSI  
S
1. When this pin/ball was previously configured as an oscillator, the oscillator function is kept during and after a reset. This is  
valid for all resets except for power-on reset.  
2. Pxy_C and Pxy pins/balls are two separate pads (analog switch open). The analog switch is configured through a SYSCFG  
register. Refer to the product reference manual for a detailed description of the switch configuration bits.  
3. There is a direct path between Pxy_C and Pxy pins/balls, through an analog switch. Pxy alternate functions are available on  
Pxy_C when the analog switch is closed. The analog switch is configured through a SYSCFG register. Refer to the product  
reference manual for a detailed description of the switch configuration bits.  
80/242  
DS12930 Rev 1  
Table 8. Port A alternate functions  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
SAI4/FDCA  
I2C4/UART  
7/SWPMI1/ TIM1/8/FMC  
I2C1/2/3/4/U  
SART1/  
TIM15/  
LPTIM2/  
DFSDM1/CE  
C
SAI2/4/TIM  
8/QUADSPI  
/SDMMC2/  
OTG1_HS/  
OTG2_FS/  
LCD  
LPUART/  
SPI6/SAI2/ N1/FDACN  
4/UART4/5/ 2/TIM13/14  
8/LPUART/ /QUADSPI/  
SPI2/3/SAI1  
/3/I2C4/  
UART4/  
SPI2/3/6/  
USART1/2/  
3/6/UART7/  
SDMMC1  
Port  
TIM1/2/16/1 SAI1/TIM3/ TIM8/LPTIM  
TIM1/8/  
DFSDM1/  
SDMMC2/  
MDIOS/  
ETH  
/SDMMC1/ TIM1/DCMI/  
SPI1/2/3/4/  
5/6/CEC  
UART5/  
LCD  
SYS  
7/LPTIM1/  
HRTIM1  
4/5/HRTIM  
1
2/3/4/5/  
HRTIM1/  
DFSDM1  
MDIOS/  
OTG1_FS/  
LCD  
LCD/DSI/  
COMP  
SYS  
SDMMC1/  
SPDIFRX1  
FMC/SDM  
MC2/LCD/  
SPDIFRX1  
DFSDM1  
USART2_  
CTS/USAR UART4_TX  
T2_NSS  
TIM2_CH1/  
TIM2_ETR  
SDMMC2_  
CMD  
ETH_MII_  
CRS  
EVENT  
OUT  
PA0  
-
-
TIM5_CH1  
TIM5_CH2  
TIM8_ETR  
TIM15_BKIN  
-
-
-
-
SAI2_SD_B  
-
-
-
-
-
USART2_  
ETH_MII_  
RX_CLK/  
ETH_RMII_  
REF_CLK  
LPTIM3_  
OUT  
TIM15_  
CH1N  
RTS/  
QUADSPI_ SAI2_MCLK  
BK1_IO3  
EVENT  
OUT  
PA1  
TIM2_CH2  
UART4_RX  
USART2_  
LCD_R2  
_B  
DE  
LPTIM4_  
OUT  
USART2_  
TX  
SAI2_SCK  
_B  
MDIOS_  
MDIO  
EVENT  
OUT  
PA2  
PA3  
PA4  
PA5  
PA6  
TIM2_CH3  
TIM2_CH4  
-
TIM5_CH3  
TIM5_CH4  
TIM5_ETR  
-
TIM15_CH1  
-
-
-
-
-
-
ETH_MDIO  
-
-
LCD_R1  
LCD_B5  
LPTIM5_  
OUT  
USART2_  
RX  
OTG_HS_  
ULPI_D0  
ETH_MII_  
COL  
EVENT  
OUT  
TIM15_CH2  
-
LCD_B2  
-
D1PWR  
E
SPI1_NSS/ SPI3_NSS/ USART2_C  
OTG_HS_  
SOF  
DCMI_HSY LCD_VSY EVENT  
-
-
-
-
SPI6_NSS  
SPI6_SCK  
SPI6_MISO  
-
-
-
-
-
I2S1_WS  
I2S3_WS  
K
NC  
NC  
OUT  
D2PWR  
E
TIM2_CH1/  
TIM2_ETR  
SPI1_SCK/  
I2S1_CK  
OTG_HS_  
ULPI_CK  
EVENT  
OUT  
TIM8_CH1N  
TIM8_BKIN  
-
-
-
-
LCD_R4  
SPI1_MISO  
/I2S1_SDI  
TIM13_CH TIM8_BKIN  
MDIOS_  
MDC  
TIM1_BKIN DCMI_PIXC  
_COMP12  
EVENT  
OUT  
-
-
TIM1_BKIN  
TIM3_CH1  
-
-
-
-
LCD_G2  
-
1
_COMP12  
LK  
ETH_MII_R  
X_DV/ETH_  
RMII_CRS_  
DV  
SPI1_MOSI  
/I2S1_SDO  
TIM14_  
CH1  
FMC_  
SDNWE  
EVENT  
OUT  
PA7  
TIM1_CH1N TIM3_CH2 TIM8_CH1N  
HRTIM_  
-
SPI6_MOSI  
-
USART1_  
CK  
OTG_FS_  
SOF  
TIM8_BKIN  
2_COMP12  
EVENT  
OUT  
PA8  
PA9  
MCO1  
-
TIM1_CH1  
TIM8_BKIN2  
I2C3_SCL  
-
-
-
-
-
-
UART7_RX  
LCD_B3  
LCD_R6  
LCD_R5  
CHB2  
FDCAN1_  
RXFD_  
MODE  
HRTIM_  
CHC1  
LPUART1_  
TX  
SPI2_SCK/  
I2S2_CK  
USART1_  
TX  
ETH_TX_  
ER  
EVENT  
OUT  
TIM1_CH2  
I2C3_SMBA  
-
-
DCMI_D0  
FDCAN1_  
TXFD_  
MODE  
HRTIM_  
CHC2  
LPUART1_  
RX  
USART1_  
RX  
OTG_FS_  
ID  
MDIOS_  
MDIO  
EVENT  
OUT  
PA10  
PA11  
-
-
TIM1_CH3  
TIM1_CH4  
-
-
-
-
-
-
LCD_B4  
DCMI_D1  
LCD_B1  
LCD_R4  
USART1_  
CTS/  
USART1_  
NSS  
HRTIM_  
CHD1  
LPUART1_  
CTS  
SPI2_NSS/  
I2S2_WS  
FDCAN1_  
RX  
OTG_FS_  
DM  
EVENT  
OUT  
UART4_RX  
-
-
-
-
-
LPUART1_  
RTS/  
LPUART1_  
DE  
USART1_  
RTS/  
USART1_  
DE  
HRTIM_  
CHD2  
SPI2_SCK/  
I2S2_CK  
FDCAN1_  
TX  
OTG_FS_  
DP  
EVENT  
OUT  
PA12  
-
TIM1_ETR  
-
UART4_TX  
SAI2_FS_B  
-
LCD_R5  
 
Table 8. Port A alternate functions (continued)  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
SAI4/FDCA  
I2C4/UART  
7/SWPMI1/ TIM1/8/FMC  
I2C1/2/3/4/U  
SART1/  
TIM15/  
LPTIM2/  
DFSDM1/CE  
C
SAI2/4/TIM  
8/QUADSPI  
/SDMMC2/  
OTG1_HS/  
OTG2_FS/  
LCD  
LPUART/  
SPI6/SAI2/ N1/FDACN  
4/UART4/5/ 2/TIM13/14  
8/LPUART/ /QUADSPI/  
SPI2/3/SAI1  
/3/I2C4/  
UART4/  
SPI2/3/6/  
USART1/2/  
3/6/UART7/  
SDMMC1  
Port  
TIM1/2/16/1 SAI1/TIM3/ TIM8/LPTIM  
TIM1/8/  
DFSDM1/  
SDMMC2/  
MDIOS/  
ETH  
/SDMMC1/ TIM1/DCMI/  
SPI1/2/3/4/  
5/6/CEC  
UART5/  
LCD  
SYS  
7/LPTIM1/  
HRTIM1  
4/5/HRTIM  
1
2/3/4/5/  
HRTIM1/  
DFSDM1  
MDIOS/  
OTG1_FS/  
LCD  
LCD/DSI/  
COMP  
SYS  
SDMMC1/  
SPDIFRX1  
FMC/SDM  
MC2/LCD/  
SPDIFRX1  
DFSDM1  
JTMS/  
SWDIO  
EVENT  
OUT  
PA13  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
JTCK/  
SWCLK  
EVENT  
OUT  
PA14  
PA15  
-
UART4_  
TIM2_CH1/  
TIM2_ETR  
HRTIM_FL  
T1  
SPI1_NSS/ SPI3_NSS/  
I2S1_WS I2S3_WS  
EVENT  
OUT  
JTDI  
-
CEC  
SPI6_NSS RTS/UART  
4_DE  
-
-
UART7_TX  
-
DSI_TE  
-
Table 9. Port B alternate functions  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
SAI4/FDCA  
I2C4/UART  
7/SWPMI1/ TIM1/8/FMC  
I2C1/2/3/4/U  
SART1/  
TIM15/  
LPTIM2/  
DFSDM1/  
CEC  
SAI2/4/TIM  
8/QUADSPI  
/SDMMC2/  
OTG1_HS/  
OTG2_FS/  
LCD/CRS  
LPUART/  
SPI6/SAI2/ N1/FDACN  
4/UART4/5/ 2/TIM13/14  
8/LPUART/ /QUADSPI/  
SPI2/3/SAI1  
/3/I2C4/  
UART4/  
SPI2/3/6/  
USART1/2/  
3/6/UART7/  
SDMMC1  
Port  
TIM1/2/16/1 SAI1/TIM3/ TIM8/LPTIM  
TIM1/8/  
DFSDM1/  
SDMMC2/  
MDIOS/  
ETH  
/SDMMC1/ TIM1/DCMI/  
SPI1/2/3/4/  
5/6/CEC  
UART5/  
LCD  
SYS  
7/LPTIM1/  
HRTIM1  
4/5/HRTIM  
1
2/3/4/5/  
HRTIM1/  
DFSDM1  
MDIOS/  
OTG1_FS/  
LCD  
LCD/DSI/  
COMP  
SYS  
SDMMC1/  
SPDIFRX1  
FMC/SDM  
MC2/LCD/  
SPDIFRX1  
DFSDM1  
DFSDM1_C  
KOUT  
UART4_  
CTS  
OTG_HS_  
ULPI_D1  
ETH_MII_  
RXD2  
EVENT  
OUT  
PB0  
-
-
TIM1_CH2N TIM3_CH3 TIM8_CH2N  
TIM1_CH3N TIM3_CH4 TIM8_CH3N  
-
-
-
-
-
-
-
LCD_R3  
LCD_R6  
-
-
-
-
-
-
LCD_G1  
LCD_G0  
-
DFSDM1_  
DATIN1  
OTG_HS_  
ULPI_D2  
ETH_MII_  
RXD3  
EVENT  
OUT  
PB1  
PB2  
-
RTC_  
OUT  
DFSDM1_  
CKIN1  
SPI3_MOSI SAI4_SD_ QUADSPI_  
EVENT  
OUT  
-
SAI1_D1  
-
-
SAI1_SD_A  
SAI4_D1  
-
/I2S3_SDO  
A
CLK  
JTDO/  
HRTIM_  
FLT4  
SPI1_SCK/ SPI3_SCK/I  
I2S1_CK 2S3_CK  
SDMMC2_  
D2  
EVENT  
OUT  
PB3 TRACES  
WO  
TIM2_CH2  
-
-
SPI6_SCK  
CRS_SYNC UART7_RX  
-
-
-
-
-
HRTIM_EEV  
6
SPI1_MISO SPI3_MISO/ SPI2_NSS/  
SDMMC2_  
D3  
EVENT  
OUT  
PB4  
PB5  
PB6  
NJTRST TIM16_BKIN TIM3_CH1  
-
SPI6_MISO  
SPI6_MOSI  
-
UART7_TX  
-
/I2S1_SDI  
I2S3_SDI  
I2S2_WS  
HRTIM_EEV  
7
SPI1_MOSI  
/I2S1_SDO  
SPI3_MOSI  
/I2S3_SDO  
FDCAN2_ OTG_HS_U ETH_PPS_ FMC_SDCK  
UART5_R EVENT  
OUT  
-
-
TIM17_BKIN TIM3_CH2  
I2C1_SMBA  
I2C1_SCL  
I2C4_SMBA  
DCMI_D10  
DCMI_D5  
RX  
LPI_D7  
OUT  
E1  
X
TIM16_CH1  
TIM4_CH1  
N
HRTIM_EEV  
8
USART1_  
TX  
LPUART1_  
TX  
FDCAN2_  
TX  
QUADSPI_ DFSDM1_D FMC_SDNE  
UART5_T EVENT  
CEC  
I2C4_SCL  
I2C4_SDA  
I2C4_SCL  
BK1_NCS  
-
ATIN5  
1
X
OUT  
FDCAN2_  
TXFD_  
MODE  
TIM17_CH1  
TIM4_CH2  
N
HRTIM_EEV  
9
USART1_  
RX  
LPUART1_  
RX  
DFSDM1_C  
KIN5  
DCMI_VSY  
NC  
EVENT  
OUT  
PB7  
PB8  
-
-
I2C1_SDA  
I2C1_SCL  
-
-
FMC_NL  
-
DFSDM1_C  
KIN7  
SDMMC1_  
CKIN  
FDCAN1_  
RX  
SDMMC2_  
D4  
ETH_MII_  
TXD3  
SDMMC1_  
D4  
EVENT  
OUT  
TIM16_CH1 TIM4_CH3  
UART4_RX  
DCMI_D6  
LCD_B6  
 
Table 9. Port B alternate functions (continued)  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
SAI4/FDCA  
I2C4/UART  
7/SWPMI1/ TIM1/8/FMC  
I2C1/2/3/4/U  
SART1/  
TIM15/  
LPTIM2/  
DFSDM1/  
CEC  
SAI2/4/TIM  
8/QUADSPI  
/SDMMC2/  
OTG1_HS/  
OTG2_FS/  
LCD/CRS  
LPUART/  
SPI6/SAI2/ N1/FDACN  
4/UART4/5/ 2/TIM13/14  
8/LPUART/ /QUADSPI/  
SPI2/3/SAI1  
/3/I2C4/  
UART4/  
SPI2/3/6/  
USART1/2/  
3/6/UART7/  
SDMMC1  
Port  
TIM1/2/16/1 SAI1/TIM3/ TIM8/LPTIM  
TIM1/8/  
DFSDM1/  
SDMMC2/  
MDIOS/  
ETH  
/SDMMC1/ TIM1/DCMI/  
SPI1/2/3/4/  
5/6/CEC  
UART5/  
LCD  
SYS  
7/LPTIM1/  
HRTIM1  
4/5/HRTIM  
1
2/3/4/5/  
HRTIM1/  
DFSDM1  
MDIOS/  
OTG1_FS/  
LCD  
LCD/DSI/  
COMP  
SYS  
SDMMC1/  
SPDIFRX1  
FMC/SDM  
MC2/LCD/  
SPDIFRX1  
DFSDM1  
DFSDM1_  
DATIN7  
SPI2_NSS/  
I2S2_WS  
SDMMC1_  
CDIR  
FDCAN1_  
TX  
SDMMC2_  
D5  
SDMMC1_  
D5  
EVENT  
OUT  
PB9  
-
-
TIM17_CH1 TIM4_CH4  
I2C1_SDA  
I2C2_SCL  
I2C4_SDA  
UART4_TX  
-
I2C4_SMBA  
DCMI_D7  
-
LCD_B7  
LCD_G4  
HRTIM_SC  
TIM2_CH3  
SPI2_SCK/  
I2S2_CK  
DFSDM1_  
DATIN7  
USART3_  
TX  
QUADSPI_  
BK1_NCS  
OTG_HS_  
ULPI_D3  
ETH_MII_  
RX_ER  
EVENT  
OUT  
PB10  
PB11  
LPTIM2_IN1  
-
-
OUT  
ETH_MII_  
HRTIM_  
TIM2_CH4  
LPTIM2_  
ETR  
DFSDM1_  
CKIN7  
USART3_  
RX  
OTG_HS_ TX_EN/ETH  
ULPI_D4  
EVENT  
OUT  
-
-
-
I2C2_SDA  
I2C2_SMBA  
-
-
-
-
-
-
DSI_TE  
LCD_G5  
SCIN  
_RMII_TX_  
EN  
ETH_MII_  
TXD0/ETH_  
RMII_TXD0  
SPI2_NSS/  
I2S2_WS  
DFSDM1_  
DATIN1  
USART3_  
CK  
FDCAN2_ OTG_HS_U  
RX  
OTG_HS_  
ID  
TIM1_BKIN  
_COMP12  
UART5_  
RX  
EVENT  
OUT  
PB12  
PB13  
TIM1_BKIN  
TIM1_CH1N  
-
-
-
LPI_D5  
USART3_  
CTS/  
USART3_N  
SS  
ETH_MII_  
TXD1/ETH_  
RMII_TXD1  
LPTIM2_  
OUT  
SPI2_SCK/  
I2S2_CK  
DFSDM1_  
CKIN1  
FDCAN2_  
TX  
OTG_HS_  
ULPI_D6  
UART5_T EVENT  
-
-
X
OUT  
USART3_  
RTS/  
USART3_  
DE  
UART4_  
RTS/  
UART4_DE  
SPI2_MISO DFSDM1_  
/I2S2_SDI DATIN2  
SDMMC2_  
D0  
OTG_HS_  
DM  
EVENT  
OUT  
PB14  
PB15  
-
TIM1_CH2N  
TIM1_CH3N  
-
-
TIM8_CH2N USART1_TX  
TIM8_CH3N USART1_RX  
-
-
-
-
-
-
RTC_RE  
FIN  
SPI2_MOSI DFSDM1_  
/I2S2_SDO CKIN2  
UART4_  
CTS  
SDMMC2_  
D1  
OTG_HS_  
DP  
EVENT  
OUT  
-
Table 10. Port C alternate functions  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
SAI4/FDCA  
I2C4/UART  
7/SWPMI1/ TIM1/8/FMC  
I2C1/2/3/4/U  
SART1/  
TIM15/  
LPTIM2/  
DFSDM1/  
CEC  
SAI2/4/TIM  
8/QUADSPI  
/SDMMC2/  
OTG1_HS/  
OTG2_FS/  
LCD  
LPUART/  
SPI6/SAI2/ N1/FDACN  
4/UART4/5/ 2/TIM13/14  
8/LPUART/ /QUADSPI/  
SPI2/3/SAI1  
/3/I2C4/  
UART4/  
SPI2/3/6/  
USART1/2/  
3/6/UART7/  
SDMMC1  
Port  
TIM1/2/16/1 SAI1/TIM3/ TIM8/LPTIM  
TIM1/8/  
DFSDM1/  
SDMMC2/  
MDIOS/  
ETH  
/SDMMC1/ TIM1/DCMI/  
SPI1/2/3/4/  
5/6/CEC  
UART5/  
LCD  
SYS  
7/LPTIM1/  
HRTIM1  
4/5/HRTIM  
1
2/3/4/5/  
HRTIM1/  
DFSDM1  
MDIOS/  
OTG1_FS/  
LCD  
LCD/DSI/  
COMP  
SYS  
SDMMC1/  
SPDIFRX1  
FMC/SDM  
MC2/LCD/  
SPDIFRX1  
DFSDM1  
DFSDM1_C  
KIN0  
DFSDM1_  
DATIN4  
OTG_HS_  
ULPI_STP  
FMC_SDN  
WE  
EVENT  
OUT  
PC0  
-
-
-
-
-
-
-
-
-
-
-
-
SAI2_FS_B  
-
-
-
-
-
-
LCD_R5  
TRACED  
0
DFSDM1_  
DATIN0  
DFSDM1_  
CKIN4  
SPI2_MOSI  
/I2S2_SDO  
SAI4_SD_  
A
SDMMC2_  
CK  
MDIOS_  
MDC  
EVENT  
OUT  
PC1  
PC2  
PC3  
SAI1_D1  
SAI1_SD_A  
SAI4_D1  
ETH_MDC  
-
-
-
C1  
DSLEEP  
DFSDM1_  
CKIN1  
SPI2_MISO DFSDM1_  
OTG_HS_  
ULPI_DIR  
ETH_MII_  
TXD2  
FMC_SDNE  
0
EVENT  
OUT  
-
-
-
-
-
-
-
-
/I2S2_SDI  
CKOUT  
C1  
SLEEP  
DFSDM1_  
DATIN1  
SPI2_MOSI  
/I2S2_SDO  
OTG_HS_U  
LPI_NXT  
ETH_MII_  
TX_CLK  
FMC_SDCK  
E0  
EVENT  
OUT  
-
ETH_MII_  
RXD0/ETH_  
RMII_RXD0  
C2  
DSLEEP  
DFSDM1_  
CKIN2  
SPDIFRX1  
_IN3  
FMC_SDNE  
0
EVENT  
OUT  
PC4  
PC5  
-
-
-
-
-
I2S1_MCK  
-
-
-
-
-
-
-
-
-
ETH_MII_  
RXD1/ETH_  
RMII_RXD1  
COMP1_  
OUT  
C2  
SLEEP  
DFSDM1_  
DATIN2  
SPDIFRX1  
_IN4  
FMC_  
SDCKE0  
EVENT  
OUT  
SAI1_D3  
-
SAI4_D3  
HRTIM_CH  
A1  
DFSDM1_  
CKIN3  
USART6_  
TX  
SDMMC1_  
D0DIR  
FMC_  
NWAIT  
SDMMC2_  
D6  
SDMMC1_  
D6  
LCD_  
HSYNC  
EVENT  
OUT  
PC6  
PC7  
-
TIM3_CH1  
TIM3_CH2  
TIM8_CH1  
TIM8_CH2  
I2S2_MCK  
-
-
-
DCMI_D0  
DCMI_D1  
HRTIM_CH  
A2  
DFSDM1_  
DATIN3  
USART6_  
RX  
SDMMC1_  
D123DIR  
SDMMC2_  
D7  
SDMMC1_  
D7  
EVENT  
OUT  
TRGIO  
I2S3_MCK  
FMC_NE1  
SWPMI_TX  
LCD_G6  
-
UART5_  
RTS/  
UART5_DE  
TRACED HRTIM_CH  
USART6_  
CK  
FMC_NE2/  
FMC_NCE  
SDMMC1_  
D0  
EVENT  
OUT  
PC8  
TIM3_CH3  
TIM3_CH4  
TIM8_CH3  
TIM8_CH4  
-
-
-
-
-
SWPMI_RX  
DCMI_D2  
1
B1  
UART5_  
CTS  
QUADSPI_  
BK1_IO0  
SWPMI_  
SUSPEND  
SDMMC1_  
D1  
EVENT  
OUT  
PC9  
MCO2  
-
-
-
-
-
-
-
I2C3_SDA  
I2S_CKIN  
-
LCD_G3  
DCMI_D3  
LCD_B2  
HRTIM_EE  
V1  
DFSDM1_  
CKIN5  
SPI3_SCK/  
I2S3_CK  
USART3_  
TX  
QUADSPI_  
BK1_IO1  
SDMMC1_  
D2  
EVENT  
OUT  
PC10  
PC11  
PC12  
PC13  
PC14  
PC15  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
UART4_TX  
-
-
-
-
-
-
-
-
-
-
-
-
DCMI_D8  
LCD_R2  
HRTIM_FL  
T2  
DFSDM1_  
DATIN5  
SPI3_MISO/ USART3_  
I2S3_SDI RX  
QUADSPI_  
BK2_NCS  
SDMMC1_  
D3  
EVENT  
OUT  
UART4_RX  
DCMI_D4  
-
-
-
-
-
TRACED  
3
HRTIM_EE  
V2  
SPI3_MOSI/ USART3_  
SDMMC1_  
CK  
EVENT  
OUT  
-
-
-
-
UART5_TX  
-
-
-
-
DCMI_D9  
I2S3_SDO  
CK  
EVENT  
OUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT  
OUT  
-
-
-
-
EVENT  
OUT  
 
Table 11. Port D alternate functions  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
SAI4/FDCA  
I2C4/UART  
7/SWPMI1/ TIM1/8/FMC  
I2C1/2/3/4/  
USART1/  
TIM15/  
LPTIM2/  
DFSDM1/  
CEC  
SAI2/4/TIM  
8/QUADSPI  
/SDMMC2/  
OTG1_HS/  
OTG2_FS/  
LCD  
LPUART/  
SAI1/TIM3/ TIM8/LPTI  
SPI6/SAI2/ N1/FDACN  
4/UART4/5/ 2/TIM13/14  
8/LPUART/ /QUADSPI/  
TIM1/2/16/  
17/LPTIM1  
/
SPI2/3/SAI1  
/3/I2C4/  
UART4/  
SPI2/3/6/  
USART1/2/3/6/  
UART7/  
Port  
TIM1/8/  
DFSDM1/  
SDMMC2/  
MDIOS/  
ETH  
/SDMMC1/ TIM1/DCMI/  
SPI1/2/3/4/  
5/6/CEC  
UART5/  
LCD  
SYS  
4/5/HRTIM  
1
M2/3/4/5/  
HRTIM1/  
DFSDM1  
MDIOS/  
OTG1_FS/  
LCD  
LCD/DSI/  
COMP  
SYS  
SDMMC1/  
SPDIFRX1  
FMC/SDM  
MC2/LCD/  
SPDIFRX1  
HRTIM1  
DFSDM1  
SDMMC1  
DFSDM1_  
CKIN6  
SAI3_SCK_  
A
FDCAN1_  
RX  
FMC_D2/  
FMC_DA2  
EVENT  
OUT  
PD0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
UART4_RX  
UART4_TX  
UART5_RX  
-
-
-
-
-
-
-
-
-
-
-
DFSDM1_  
DATIN6  
FDCAN1_  
TX  
FMC_D3/  
FMC_DA3  
EVENT  
OUT  
PD1  
PD2  
PD3  
-
SAI3_SD_A  
-
-
TRACE  
D2  
SDMMC1_  
CMD  
EVENT  
OUT  
TIM3_ETR  
-
-
-
-
-
-
DCMI_D11  
DCMI_D5  
-
DFSDM1_  
CKOUT  
SPI2_SCK/  
I2S2_CK  
USART2_CTS/  
USART2_NSS  
EVENT  
OUT  
-
-
FMC_CLK  
FMC_NOE  
LCD_G7  
FDCAN1_  
RXFD_  
MODE  
HRTIM_  
FLT3  
USART2_RTS/  
USART2_DE  
EVENT  
OUT  
PD4  
PD5  
PD6  
-
-
-
-
-
-
-
-
-
SAI3_FS_A  
-
-
-
-
-
-
-
FDCAN1_  
TXFD_  
MODE  
HRTIM_EE  
V3  
USART2_  
TX  
EVENT  
OUT  
-
-
-
FMC_NWE  
-
-
FDCAN2_  
RXFD_  
MODE  
DFSDM1_  
CKIN4  
DFSDM1_ SPI3_MOSI  
DATIN1  
USART2_  
RX  
SAI4_SD_  
A
SDMMC2_  
CK  
FMC_  
NWAIT  
EVENT  
OUT  
SAI1_D1  
SAI1_SD_A  
SAI4_D1  
DCMI_D10  
LCD_B2  
/I2S3_SDO  
DFSDM1_  
DATIN4  
SPI1_MOSI DFSDM1_  
USART2_  
CK  
SPDIFRX1  
_IN1  
SDMMC2_  
CMD  
EVENT  
OUT  
PD7  
PD8  
-
-
-
-
-
-
-
-
-
-
-
-
FMC_NE1  
-
-
-
-
/I2S1_SDO  
-
CKIN1  
DFSDM1_  
CKIN3  
SAI3_SCK_  
B
USART3_  
TX  
SPDIFRX1  
_IN2  
FMC_D13/  
FMC_DA13  
EVENT  
OUT  
-
-
FDCAN2_  
RXFD_  
MODE  
DFSDM1_  
DATIN3  
USART3_  
RX  
FMC_D14/F  
MC_DA14  
EVENT  
OUT  
PD9  
-
-
-
-
-
-
-
-
-
SAI3_SD_B  
SAI3_FS_B  
-
-
-
-
-
-
-
FDCAN2_  
TXFD_  
MODE  
DFSDM1_  
CKOUT  
USART3_  
CK  
FMC_D15/  
FMC_DA15  
EVENT  
OUT  
PD10  
-
-
-
LCD_B3  
LPTIM2_IN I2C4_SMB  
USART3_CTS/  
USART3_NSS  
QUADSPI_  
BK1_IO0  
EVENT  
OUT  
PD11  
PD12  
PD13  
-
-
-
-
-
-
-
-
-
-
-
-
SAI2_SD_A  
SAI2_FS_A  
-
-
-
FMC_A16  
FMC_A17  
FMC_A18  
-
-
-
-
-
-
2
A
LPTIM1_IN  
1
LPTIM2_IN  
1
USART3_RTS/  
USART3_DE  
QUADSPI_  
BK1_IO1  
EVENT  
OUT  
TIM4_CH1  
TIM4_CH2  
I2C4_SCL  
LPTIM1_  
OUT  
QUADSPI_ SAI2_SCK_  
BK1_IO3  
EVENT  
OUT  
I2C4_SDA  
A
 
Table 11. Port D alternate functions (continued)  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
SAI4/FDCA  
I2C4/UART  
7/SWPMI1/ TIM1/8/FMC  
I2C1/2/3/4/  
USART1/  
TIM15/  
LPTIM2/  
DFSDM1/  
CEC  
SAI2/4/TIM  
8/QUADSPI  
/SDMMC2/  
OTG1_HS/  
OTG2_FS/  
LCD  
LPUART/  
SAI1/TIM3/ TIM8/LPTI  
SPI6/SAI2/ N1/FDACN  
4/UART4/5/ 2/TIM13/14  
8/LPUART/ /QUADSPI/  
TIM1/2/16/  
17/LPTIM1  
/
SPI2/3/SAI1  
/3/I2C4/  
UART4/  
SPI2/3/6/  
USART1/2/3/6/  
UART7/  
Port  
TIM1/8/  
DFSDM1/  
SDMMC2/  
MDIOS/  
ETH  
/SDMMC1/ TIM1/DCMI/  
SPI1/2/3/4/  
5/6/CEC  
UART5/  
LCD  
SYS  
4/5/HRTIM  
1
M2/3/4/5/  
HRTIM1/  
DFSDM1  
MDIOS/  
OTG1_FS/  
LCD  
LCD/DSI/  
COMP  
SYS  
SDMMC1/  
SPDIFRX1  
FMC/SDM  
MC2/LCD/  
SPDIFRX1  
HRTIM1  
DFSDM1  
SDMMC1  
SAI3_MCLK  
_B  
UART8_  
CTS  
FMC_D0/  
FMC_DA0  
EVENT  
OUT  
PD14  
-
-
TIM4_CH3  
TIM4_CH4  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
UART8_  
RTS/UART  
8_DE  
SAI3_MCLK  
_A  
FMC_D1/  
FMC_DA1  
EVENT  
OUT  
PD15  
Table 12. Port E alternate functions  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
SAI4/FDCA  
I2C4/UART  
7/SWPMI1/ TIM1/8/FMC  
I2C1/2/3/4/U  
SART1/  
TIM15/  
LPTIM2/  
DFSDM1/  
CEC  
SAI2/4/TIM  
8/QUADSPI  
/SDMMC2/  
OTG1_HS/  
OTG2_FS/  
LCD  
LPUART/  
SPI6/SAI2/ N1/FDACN  
4/UART4/5/ 2/TIM13/14  
8/LPUART/ /QUADSPI/  
SPI2/3/SAI1  
/3/I2C4/  
UART4/  
SPI2/3/6/  
USART1/2/  
3/6/UART7/  
SDMMC1  
Port  
TIM1/2/16/ SAI1/TIM3/ TIM8/LPTIM  
TIM1/8/  
DFSDM1/  
SDMMC2/  
MDIOS/  
ETH  
/SDMMC1/ TIM1/DCMI/  
SPI1/2/3/4/  
5/6/CEC  
UART5/  
LCD  
SYS  
17/LPTIM1 4/5/HRTIM  
2/3/4/5/  
HRTIM1/  
DFSDM1  
MDIOS/  
OTG1_FS/  
LCD  
LCD/DSI/  
COMP  
SYS  
/HRTIM1  
1
SDMMC1/  
SPDIFRX1  
FMC/SDM  
MC2/LCD/  
SPDIFRX1  
DFSDM1  
FDCAN1_  
RXFD_  
MODE  
LPTIM1_  
ETR  
HRTIM_  
SCIN  
LPTIM2_  
ETR  
SAI2_MCLK  
_A  
EVENT  
OUT  
PE0  
-
-
TIM4_ETR  
-
-
-
-
-
-
-
UART8_RX  
UART8_TX  
-
-
FMC_NBL0  
FMC_NBL1  
DCMI_D2  
DCMI_D3  
-
-
FDCAN1_  
TXFD_  
MODE  
LPTIM1_  
IN2  
HRTIM_SC  
OUT  
EVENT  
OUT  
PE1  
-
-
TRACE  
CLK  
SAI1_MCLK  
_A  
SAI4_MCL QUADSPI_  
ETH_MII_  
TXD3  
EVENT  
OUT  
PE2  
PE3  
PE4  
PE5  
PE6  
PE7  
PE8  
-
-
-
-
SAI1_CK1  
-
-
-
SPI4_SCK  
-
-
SAI4_CK1  
-
FMC_A23  
FMC_A19  
FMC_A20  
FMC_A21  
FMC_A22  
-
-
K_A  
BK1_IO2  
TRACE  
D0  
SAI4_SD_  
B
EVENT  
OUT  
-
TIM15_BKIN  
SAI1_SD_B  
-
-
-
-
-
-
-
TRACE  
D1  
DFSDM1_  
DATIN3  
TIM15_CH1  
N
EVENT  
OUT  
SAI1_D2  
SPI4_NSS SAI1_FS_A  
SAI1_SCK_  
-
SAI4_FS_A  
-
SAI4_D2  
SAI4_CK2  
DCMI_D4  
DCMI_D6  
DCMI_D7  
-
LCD_B0  
TRACE  
D2  
DFSDM1_C  
KIN3  
SAI4_SCK  
_A  
EVENT  
OUT  
SAI1_CK2  
TIM15_CH1 SPI4_MISO  
-
-
LCD_G0  
A
TRACE  
D3  
TIM1_  
BKIN2  
SAI4_SD_  
A
SAI2_MCLK TIM1_BKIN  
EVENT  
OUT  
SAI1_D1  
-
TIM15_CH2 SPI4_MOSI SAI1_SD_A  
-
SAI4_D1  
LCD_G1  
_B  
2_COMP12  
DFSDM1_D  
ATIN2  
QUADSPI_  
BK2_IO0  
FMC_D4/  
FMC_DA4  
EVENT  
OUT  
-
-
TIM1_ETR  
-
-
-
-
-
-
-
-
UART7_RX  
UART7_TX  
-
-
-
-
-
-
-
TIM1_CH1  
N
DFSDM1_C  
KIN2  
QUADSPI_  
BK2_IO1  
FMC_D5/  
FMC_DA5  
COMP2_  
OUT  
EVENT  
OUT  
-
-
UART7_  
RTS/UART  
7_DE  
DFSDM1_C  
KOUT  
QUADSPI_  
BK2_IO2  
FMC_D6/  
FMC_DA6  
EVENT  
OUT  
PE9  
-
TIM1_CH1  
-
-
-
-
-
-
-
-
TIM1_CH2  
N
DFSDM1_  
DATIN4  
UART7_  
CTS  
QUADSPI_  
BK2_IO3  
FMC_D7/  
FMC_DA7  
EVENT  
OUT  
PE10  
PE11  
PE12  
PE13  
PE14  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
DFSDM1_C  
KIN4  
FMC_D8/  
FMC_DA8  
EVENT  
OUT  
TIM1_CH2  
SPI4_NSS  
SPI4_SCK  
SPI4_MISO  
SPI4_MOSI  
-
-
-
-
SAI2_SD_B  
LCD_G3  
LCD_B4  
LCD_DE  
LCD_CLK  
TIM1_CH3  
N
DFSDM1_  
DATIN5  
SAI2_SCK_  
B
FMC_D9/F  
MC_DA9  
COMP1_  
OUT  
EVENT  
OUT  
DFSDM1_C  
KIN5  
FMC_D10/  
FMC_DA10  
COMP2_  
OUT  
EVENT  
OUT  
TIM1_CH3  
TIM1_CH4  
SAI2_FS_B  
SAI2_MCLK  
_B  
FMC_D11/  
FMC_DA11  
EVENT  
OUT  
-
-
-
TIM1_BKIN  
_COMP12/  
TIM1_  
BKIN  
FMC_D12/  
FMC_DA12 COMP_TIM  
1_BKIN  
EVENT  
OUT  
PE15  
-
-
-
TIM1_BKIN  
-
-
-
-
-
-
LCD_R7  
 
Table 13. Port F alternate functions  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
SAI4/FDCA  
I2C4/UART  
7/SWPMI1/ TIM1/8/FMC  
I2C1/2/3/4/U  
SART1/  
TIM15/  
LPTIM2/  
DFSDM1/  
CEC  
SAI2/4/TIM  
8/QUADSPI  
/SDMMC2/  
OTG1_HS/  
OTG2_FS/  
LCD  
LPUART/  
SPI6/SAI2/ N1/FDACN  
4/UART4/5/ 2/TIM13/14  
8/LPUART/ /QUADSPI/  
SPI2/3/SAI1  
/3/I2C4/  
UART4/  
SPI2/3/6/  
USART1/2/  
3/6/UART7/  
SDMMC1  
Port  
TIM1/2/16/ SAI1/TIM3/ TIM8/LPTIM  
TIM1/8/  
DFSDM1/  
SDMMC2/  
MDIOS/  
ETH  
/SDMMC1/ TIM1/DCMI/  
SPI1/2/3/4/  
5/6/CEC  
UART5/  
LCD  
SYS  
17/LPTIM1/ 4/5/HRTIM  
2/3/4/5/  
HRTIM1/  
DFSDM1  
MDIOS/  
OTG1_FS/  
LCD  
LCD/DSI/  
COMP  
SYS  
HRTIM1  
1
SDMMC1/  
SPDIFRX1  
FMC/SDM  
MC2/LCD/  
SPDIFRX1  
DFSDM1  
EVENT  
OUT  
PF0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
I2C2_SDA  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A0  
FMC_A1  
FMC_A2  
FMC_A3  
FMC_A4  
FMC_A5  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT  
OUT  
PF1  
PF2  
PF3  
PF4  
PF5  
PF6  
PF7  
I2C2_SCL  
EVENT  
OUT  
I2C2_SMBA  
EVENT  
OUT  
-
-
-
-
-
EVENT  
OUT  
EVENT  
OUT  
TIM16_CH  
1
SAI4_SD_ QUADSPI_  
BK1_IO3  
EVENT  
OUT  
SPI5_NSS SAI1_SD_B UART7_RX  
SAI1_MCLK  
B
TIM17_CH  
1
SAI4_MCL QUADSPI_  
K_B  
EVENT  
OUT  
SPI5_SCK  
UART7_TX  
-
_B  
BK1_IO2  
UART7_  
RTS/UART  
7_DE  
TIM16_  
CH1N  
SAI1_SCK_  
B
SAI4_SCK  
_B  
TIM13_CH QUADSPI_  
BK1_IO0  
EVENT  
OUT  
PF8  
-
-
-
-
SPI5_MISO  
-
-
-
-
1
TIM17_  
CH1N  
UART7_  
CTS  
TIM14_CH QUADSPI_  
EVENT  
OUT  
PF9  
-
-
-
-
-
-
-
-
-
-
-
-
-
SPI5_MOSI SAI1_FS_B  
SAI4_FS_B  
-
-
-
-
-
-
1
BK1_IO1  
TIM16_  
BKIN  
QUADSPI_  
CLK  
EVENT  
OUT  
DCMI_D11  
LCD_DE  
PF10  
PF11  
PF12  
PF13  
PF14  
PF15  
SAI1_D3  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SAI4_D3  
FMC_SDNR  
AS  
EVENT  
OUT  
DCMI_D12  
-
-
-
-
-
-
-
-
-
-
-
SPI5_MOSI  
-
-
-
-
-
SAI2_SD_B  
-
-
-
-
-
EVENT  
OUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A6  
FMC_A7  
FMC_A8  
FMC_A9  
-
-
-
-
DFSDM1_D  
ATIN6  
EVENT  
OUT  
I2C4_SMBA  
I2C4_SCL  
I2C4_SDA  
DFSDM1_C  
KIN6  
EVENT  
OUT  
EVENT  
OUT  
-
 
Table 14. Port G alternate functions  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
SAI4/FDCA  
I2C4/UART  
7/SWPMI1/ TIM1/8/FMC  
I2C1/2/3/4/U  
SART1/  
TIM15/  
LPTIM2/  
DFSDM1/  
CEC  
SAI2/4/TIM  
8/QUADSPI  
/SDMMC2/  
OTG1_HS/  
OTG2_FS/  
LCD  
LPUART/  
SPI6/SAI2/ N1/FDACN  
4/UART4/5/ 2/TIM13/14  
8/LPUART/ /QUADSPI/  
SPI2/3/SAI1  
/3/I2C4/  
UART4/  
SPI2/3/6/  
USART1/2/  
3/6/UART7/  
SDMMC1  
Port  
TIM1/2/16/1 SAI1/TIM3/ TIM8/LPTIM  
TIM1/8/  
DFSDM1/  
SDMMC2/  
MDIOS/  
ETH  
/SDMMC1/ TIM1/DCMI/  
SPI1/2/3/4/  
5/6/CEC  
UART5/  
LCD  
SYS  
7/LPTIM1/  
HRTIM1  
4/5/HRTIM  
1
2/3/4/5/  
HRTIM1/  
DFSDM1  
MDIOS/  
OTG1_FS/  
LCD  
LCD/DSI/  
COMP  
SYS  
SDMMC1/  
SPDIFRX1  
FMC/SDM  
MC2/LCD/  
SPDIFRX1  
DFSDM1  
EVENT  
OUT  
PG0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A10  
FMC_A11  
FMC_A12  
FMC_A13  
-
-
-
-
-
-
EVENT  
OUT  
PG1  
PG2  
PG3  
PG4  
PG5  
PG6  
PG7  
-
-
TIM8_BKIN  
_COMP12  
EVENT  
OUT  
TIM8_BKIN  
-
TIM8_BKIN  
2_COMP12  
EVENT  
OUT  
TIM8_BKIN2  
-
TIM1_BKIN  
2
TIM1_BKIN  
2_COMP12  
FMC_A14/  
FMC_BA0  
EVENT  
OUT  
-
-
-
-
FMC_A15/  
FMC_BA1  
EVENT  
OUT  
TIM1_ETR  
-
-
-
-
-
TIM17_  
BKIN  
HRTIM_CH  
E1  
QUADSPI_  
BK1_NCS  
EVENT  
OUT  
DCMI_D12  
FMC_NE3  
FMC_INT  
LCD_R7  
LCD_CLK  
HRTIM_CH  
E2  
SAI1_MCLK USART6_  
EVENT  
OUT  
DCMI_D13  
-
-
-
_A  
CK  
USART6_  
RTS/USAR  
T6_DE  
SPDIFRX1  
_IN3  
ETH_PPS_ FMC_SDCL  
OUT  
EVENT  
OUT  
PG8  
-
-
-
-
-
TIM8_ETR  
-
SPI6_NSS  
-
-
LCD_G7  
K
SPI1_MISO  
/I2S1_SDI  
USART6_  
RX  
SPDIFRX1 QUADSPI_  
_IN4  
FMC_NE2/F  
MC_NCE  
EVENT  
OUT  
DCMI_  
PG9  
-
-
-
-
-
-
-
-
SAI2_FS_B  
SAI2_SD_B  
-
-
-
BK2_IO2  
VSYNC  
HRTIM_  
FLT5  
SPI1_NSS/  
I2S1_WS  
EVENT  
OUT  
DCMI_D2  
DCMI_D3  
LCD_B2  
PG10  
-
-
-
LCD_G3  
FMC_NE3  
-
ETH_MII_  
TX_EN/  
ETH_RMII_  
TX_EN  
LPTIM1_IN  
2
HRTIM_  
EEV4  
SPI1_SCK/  
I2S1_CK  
SPDIFRX1  
_IN1  
SDMMC2_  
D2  
EVENT  
OUT  
PG11  
PG12  
PG13  
-
-
-
-
-
-
-
-
-
-
-
LCD_B3  
LCD_B1  
LCD_R0  
USART6_  
RTS/  
USART6_  
DE  
ETH_MII_T  
XD1/ETH_R FMC_NE4  
MII_TXD1  
LPTIM1_IN  
1
HRTIM_  
EEV5  
SPDIFRX1  
_IN2  
EVENT  
OUT  
SPI6_MISO  
SPI6_SCK  
LCD_B4  
-
-
-
-
USART6_  
CTS/  
USART6_  
NSS  
ETH_MII_T  
XD0/ETH_R  
MII_TXD0  
TRACE  
D0  
LPTIM1_  
OUT  
HRTIM_  
EEV10  
EVENT  
OUT  
-
-
FMC_A24  
 
Table 14. Port G alternate functions (continued)  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
SAI4/FDCA  
I2C4/UART  
7/SWPMI1/ TIM1/8/FMC  
I2C1/2/3/4/U  
SART1/  
TIM15/  
LPTIM2/  
DFSDM1/  
CEC  
SAI2/4/TIM  
8/QUADSPI  
/SDMMC2/  
OTG1_HS/  
OTG2_FS/  
LCD  
LPUART/  
SPI6/SAI2/ N1/FDACN  
4/UART4/5/ 2/TIM13/14  
8/LPUART/ /QUADSPI/  
SPI2/3/SAI1  
/3/I2C4/  
UART4/  
SPI2/3/6/  
USART1/2/  
3/6/UART7/  
SDMMC1  
Port  
TIM1/2/16/1 SAI1/TIM3/ TIM8/LPTIM  
TIM1/8/  
DFSDM1/  
SDMMC2/  
MDIOS/  
ETH  
/SDMMC1/ TIM1/DCMI/  
SPI1/2/3/4/  
5/6/CEC  
UART5/  
LCD  
SYS  
7/LPTIM1/  
HRTIM1  
4/5/HRTIM  
1
2/3/4/5/  
HRTIM1/  
DFSDM1  
MDIOS/  
OTG1_FS/  
LCD  
LCD/DSI/  
COMP  
SYS  
SDMMC1/  
SPDIFRX1  
FMC/SDM  
MC2/LCD/  
SPDIFRX1  
DFSDM1  
ETH_MII_  
TXD1/ETH_  
RMII_TXD1  
TRACE  
D1  
LPTIM1_  
ETR  
USART6_  
TX  
QUADSPI_  
BK2_IO3  
EVENT  
OUT  
PG14  
-
-
-
-
-
-
SPI6_MOSI  
-
-
-
-
-
-
FMC_A25  
-
LCD_B0  
USART6_  
CTS/  
USART6_  
NSS  
DCMI_D13  
FMC_SDNC  
AS  
EVENT  
OUT  
PG15  
-
-
-
-
-
-
Table 15. Port H alternate functions  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
SAI4/FDCA  
I2C4/UART  
7/SWPMI1/ TIM1/8/FMC  
I2C1/2/3/4/U  
SART1/  
TIM15/  
LPTIM2/  
DFSDM1/  
CEC  
SAI2/4/TIM  
8/QUADSPI  
/SDMMC2/  
OTG1_HS/  
OTG2_FS/  
LCD  
LPUART/  
SPI6/SAI2/ N1/FDACN  
4/UART4/5/ 2/TIM13/14  
8/LPUART/ /QUADSPI/  
SPI2/3/SAI1  
/3/I2C4/  
UART4/  
SPI2/3/6/  
USART1/2/  
3/6/UART7/  
SDMMC1  
Port  
TIM1/2/16/1 SAI1/TIM3/ TIM8/LPTIM  
TIM1/8/  
DFSDM1/  
SDMMC2/  
MDIOS/  
ETH  
/SDMMC1/ TIM1/DCMI/  
SPI1/2/3/4/  
5/6/CEC  
UART5/  
LCD  
SYS  
7/LPTIM1/  
HRTIM1  
4/5/HRTIM  
1
2/3/4/5/  
HRTIM1/  
DFSDM1  
MDIOS/  
OTG1_FS/  
LCD  
LCD/DSI/  
COMP  
SYS  
SDMMC1/  
SPDIFRX1  
FMC/SDM  
MC2/LCD/  
SPDIFRX1  
DFSDM1  
EVENT  
OUT  
PH0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT  
OUT  
PH1  
PH2  
PH3  
PH4  
PH5  
PH6  
PH7  
-
-
-
-
-
QUADSPI_ SAI2_SCK_  
BK2_IO0  
ETH_MII_  
CRS  
FMC_SDCK  
E0  
EVENT  
OUT  
LPTIM1_IN2  
-
-
-
LCD_R0  
B
QUADSPI_ SAI2_MCLK  
BK2_IO1  
ETH_MII_  
COL  
FMC_SDNE  
0
EVENT  
OUT  
-
-
-
-
-
-
-
-
LCD_R1  
_B  
OTG_HS_  
ULPI_NXT  
EVENT  
OUT  
I2C2_SCL  
I2C2_SDA  
I2C2_SMBA  
I2C3_SCL  
-
LCD_G5  
-
-
-
LCD_G4  
FMC_  
SDNWE  
EVENT  
OUT  
SPI5_NSS  
SPI5_SCK  
SPI5_MISO  
-
-
-
-
-
-
-
-
-
-
ETH_MII_R FMC_SDNE  
XD2  
EVENT  
OUT  
DCMI_D8  
DCMI_D9  
1
ETH_MII_R FMC_SDCK  
XD3  
EVENT  
OUT  
E1  
EVENT  
OUT  
DCMI_  
PH8  
-
-
TIM5_ETR  
-
I2C3_SDA  
-
-
-
-
-
-
-
FMC_D16  
LCD_R2  
HSYNC  
EVENT  
OUT  
DCMI_D0  
DCMI_D1  
DCMI_D2  
DCMI_D3  
PH9  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
I2C3_SMBA  
I2C4_SMBA  
I2C4_SCL  
I2C4_SDA  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FMC_D17  
FMC_D18  
FMC_D19  
FMC_D20  
FMC_D21  
FMC_D22  
LCD_R3  
LCD_R4  
LCD_R5  
LCD_R6  
LCD_G2  
LCD_G3  
EVENT  
OUT  
PH10  
PH11  
PH12  
PH13  
PH14  
TIM5_CH1  
-
-
EVENT  
OUT  
TIM5_CH2  
-
-
EVENT  
OUT  
TIM5_CH3  
-
-
FDCAN1_  
TX  
EVENT  
OUT  
-
-
TIM8_CH1N  
TIM8_CH2N  
UART4_TX  
UART4_RX  
-
FDCAN1_  
RX  
EVENT  
OUT  
DCMI_D4  
-
FDCAN1_  
TXFD_  
MODE  
DCMI_D11  
EVENT  
OUT  
PH15  
-
-
-
TIM8_CH3N  
-
-
-
-
-
-
-
FMC_D23  
LCD_G4  
 
Table 16. Port I alternate functions  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
SAI4/FDCA  
I2C4/UART  
7/SWPMI1/ TIM1/8/FMC  
I2C1/2/3/4/U  
SART1/  
TIM15/  
LPTIM2/  
DFSDM1/  
CEC  
SAI2/4/TIM  
8/QUADSPI  
/SDMMC2/  
OTG1_HS/  
OTG2_FS/  
LCD  
LPUART/  
SPI6/SAI2/ N1/FDACN  
4/UART4/5/ 2/TIM13/14  
8/LPUART/ /QUADSPI/  
SPI2/3/SAI1  
/3/I2C4/  
UART4/  
SPI2/3/6/  
USART1/2/  
3/6/UART7/  
SDMMC1  
Port  
TIM1/2/16/1 SAI1/TIM3/ TIM8/LPTIM  
TIM1/8/  
DFSDM1/  
SDMMC2/  
MDIOS/  
ETH  
/SDMMC1/ TIM1/DCMI/  
SPI1/2/3/4/  
5/6/CEC  
UART5/  
LCD  
SYS  
7/LPTIM1/  
HRTIM1  
4/5/HRTIM  
1
2/3/4/5/  
HRTIM1/  
DFSDM1  
MDIOS/  
OTG1_FS/  
LCD  
LCD/DSI/  
COMP  
SYS  
SDMMC1/  
SPDIFRX1  
FMC/SDM  
MC2/LCD/  
SPDIFRX1  
DFSDM1  
FDCAN1_  
RXFD_  
MODE  
DCMI_D13  
SPI2_NSS/  
I2S2_WS  
EVENT  
OUT  
PI0  
-
-
TIM5_CH4  
-
-
-
-
-
-
-
FMC_D24  
LCD_G5  
SPI2_SCK/  
I2S2_CK  
TIM8_BKIN  
2_COMP12  
EVENT  
OUT  
DCMI_D8  
DCMI_D9  
DCMI_D10  
DCMI_D5  
PI1  
PI2  
PI3  
PI4  
-
-
-
-
-
-
-
-
-
-
-
-
TIM8_BKIN2  
TIM8_CH4  
TIM8_ETR  
TIM8_BKIN  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FMC_D25  
FMC_D26  
FMC_D27  
FMC_NBL2  
LCD_G6  
LCD_G7  
-
SPI2_MISO  
/I2S2_SDI  
EVENT  
OUT  
-
-
SPI2_MOSI  
/I2S2_SDO  
EVENT  
OUT  
SAI2_MCLK TIM8_BKIN  
EVENT  
OUT  
-
-
LCD_B4  
_A  
_COMP12  
SAI2_SCK_  
A
EVENT  
OUT  
DCMI_VSY  
NC  
PI5  
-
-
-
TIM8_CH1  
-
-
-
-
-
-
FMC_NBL3  
LCD_B5  
EVENT  
OUT  
DCMI_D6  
DCMI_D7  
PI6  
PI7  
PI8  
PI9  
-
-
-
-
-
-
-
-
-
-
-
-
TIM8_CH2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SAI2_SD_A  
-
-
-
-
FMC_D28  
FMC_D29  
-
LCD_B6  
LCD_B7  
-
EVENT  
OUT  
TIM8_CH3  
-
SAI2_FS_A  
EVENT  
OUT  
-
-
-
-
-
-
-
FDCAN1_  
RX  
LCD_  
VSYNC  
EVENT  
OUT  
UART4_RX  
FMC_D30  
FDCAN1_  
RXFD_  
MODE  
ETH_MII_  
RX_ER  
LCD_  
HSYNC  
EVENT  
OUT  
PI10  
PI11  
PI12  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FMC_D31  
-
-
-
OTG_HS_U  
LPI_DIR  
EVENT  
OUT  
LCD_G6  
-
-
-
-
-
EVENT  
OUT  
-
-
LCD_HSY  
NC  
EVENT  
OUT  
PI13  
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_VSY  
NC  
EVENT  
OUT  
PI14  
PI15  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_CLK  
LCD_R0  
EVENT  
OUT  
LCD_G2  
 
Table 17. Port J alternate functions  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
SAI4/FDCA  
I2C4/UART  
7/SWPMI1/ TIM1/8/FMC  
I2C1/2/3/4/U  
SART1/  
TIM15/  
LPTIM2/  
DFSDM1/  
CEC  
SAI2/4/TIM  
8/QUADSPI  
/SDMMC2/  
OTG1_HS/  
OTG2_FS/  
LCD  
LPUART/  
SPI6/SAI2/ N1/FDACN  
4/UART4/5/ 2/TIM13/14  
8/LPUART/ /QUADSPI/  
SPI2/3/SAI1  
/3/I2C4/  
UART4/  
SPI2/3/6/  
USART1/2/  
3/6/UART7/  
SDMMC1  
Port  
TIM1/2/16/1 SAI1/TIM3/ TIM8/LPTIM  
TIM1/8/  
DFSDM1/  
SDMMC2/  
MDIOS/  
ETH  
/SDMMC1/ TIM1/DCMI/  
SPI1/2/3/4/  
5/6/CEC  
UART5/  
LCD  
SYS  
7/LPTIM1/  
HRTIM1  
4/5/HRTIM  
1
2/3/4/5/  
HRTIM1/  
DFSDM1  
MDIOS/  
OTG1_FS/  
LCD  
LCD/DSI/  
COMP  
SYS  
SDMMC1/  
SPDIFRX1  
FMC/SDM  
MC2/LCD/  
SPDIFRX1  
DFSDM1  
EVENT  
OUT  
PJ0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_R7  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_R1  
LCD_R2  
LCD_R3  
LCD_R4  
LCD_R5  
LCD_R6  
LCD_R7  
LCD_G0  
LCD_G1  
LCD_G2  
LCD_G3  
LCD_G4  
LCD_B0  
LCD_B1  
LCD_B2  
LCD_B3  
EVENT  
OUT  
PJ1  
PJ2  
-
-
-
-
-
-
-
EVENT  
OUT  
DSI_TE  
-
-
-
-
-
-
EVENT  
OUT  
PJ3  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT  
OUT  
PJ4  
-
-
-
-
-
-
EVENT  
OUT  
PJ5  
-
-
-
-
-
-
EVENT  
OUT  
PJ6  
-
-
TIM8_CH2  
-
-
-
EVENT  
OUT  
PJ7  
TRGIN  
-
TIM8_CH2N  
-
-
-
EVENT  
OUT  
PJ8  
-
-
-
-
TIM1_CH3N  
TIM8_CH1  
-
UART8_TX  
-
EVENT  
OUT  
PJ9  
TIM1_CH3  
TIM8_CH1N  
-
UART8_RX  
-
EVENT  
OUT  
PJ10  
PJ11  
PJ12  
PJ13  
PJ14  
PJ15  
TIM1_CH2N  
TIM8_CH2  
SPI5_MOSI  
-
-
-
-
-
-
-
EVENT  
OUT  
TIM1_CH2  
TIM8_CH2N  
SPI5_MISO  
-
TRGOU  
T
EVENT  
OUT  
-
-
-
-
-
-
-
-
-
-
-
-
LCD_G3  
EVENT  
OUT  
-
-
-
LCD_B4  
EVENT  
OUT  
-
-
EVENT  
OUT  
 
Table 18. Port K alternate functions  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
SAI4/FDCA  
I2C4/UART  
7/SWPMI1/ TIM1/8/FMC  
I2C1/2/3/4/U  
SART1/  
TIM15/  
LPTIM2/  
DFSDM1/  
CEC  
SAI2/4/TIM  
8/QUADSPI  
/SDMMC2/  
OTG1_HS/  
OTG2_FS/  
LCD  
LPUART/  
SPI6/SAI2/ N1/FDACN  
4/UART4/5/ 2/TIM13/14  
8/LPUART/ /QUADSPI/  
SPI2/3/SAI1  
/3/I2C4/  
UART4/  
SPI2/3/6/  
USART1/2/  
3/6/UART7/  
SDMMC1  
Port  
TIM1/2/16/1 SAI1/TIM3/ TIM8/LPTIM  
TIM1/8/  
DFSDM1/  
SDMMC2/  
MDIOS/  
ETH  
/SDMMC1/ TIM1/DCMI/  
SPI1/2/3/4/  
5/6/CEC  
UART5/  
LCD  
SYS  
7/LPTIM1/  
HRTIM1  
4/5/HRTIM  
1
2/3/4/5/  
HRTIM1/  
DFSDM1  
MDIOS/  
OTG1_FS/  
LCD  
LCD/DSI/  
COMP  
SYS  
SDMMC1/  
SPDIFRX1  
FMC/SDM  
MC2/LCD/  
SPDIFRX1  
DFSDM1  
EVENT  
OUT  
PK0  
-
-
-
-
-
-
-
-
TIM1_CH1N  
-
-
-
-
-
-
-
-
TIM8_CH3  
-
-
-
-
-
-
-
-
SPI5_SCK  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_G5  
LCD_G6  
LCD_G7  
LCD_B4  
LCD_B5  
LCD_B6  
LCD_B7  
LCD_DE  
EVENT  
OUT  
PK1  
PK2  
PK3  
PK4  
PK5  
PK6  
PK7  
TIM1_CH1  
TIM8_CH3N  
SPI5_NSS  
TIM8_BKIN TIM1_BKIN  
_COMP12  
EVENT  
OUT  
TIM1_BKIN  
TIM8_BKIN  
-
-
-
-
-
-
_COMP12  
EVENT  
OUT  
-
-
-
-
-
-
-
-
-
-
-
-
EVENT  
OUT  
-
-
-
-
-
-
-
-
EVENT  
OUT  
EVENT  
OUT  
EVENT  
OUT  
 
Electrical characteristics  
STM32H747xI/G  
6
Electrical characteristics  
6.1  
Parameter conditions  
Unless otherwise specified, all voltages are referenced to V  
.
SS  
6.1.1  
Minimum and maximum values  
Unless otherwise specified the minimum and maximum values are guaranteed in the worst  
conditions of junction temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an junction temperature at T = 25 °C and T = T (given by the  
J
J
Jmax  
selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes. Based on characterization, the minimum and maximum  
values refer to sample tests and represent the mean value plus or minus three times the  
standard deviation (mean±3σ).  
6.1.2  
6.1.3  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = 3.3 V (for the  
J
DD  
1.7 V V  
tested.  
3.6 V voltage range). They are given only as design guidelines and are not  
DD  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range, where 95% of the devices have an  
error less than or equal to the value indicated (mean±2σ).  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
6.1.4  
6.1.5  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 11.  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 12.  
Figure 11. Pin loading conditions  
Figure 12. Pin input voltage  
MCU pin  
MCU pin  
V
C =50 pF  
IN  
MS19011V2  
MS19010V2  
96/242  
DS12930 Rev 1  
 
 
 
 
 
 
 
 
 
 
 
STM32H747xI/G  
Electrical characteristics  
6.1.6  
Power supply scheme  
Figure 13. Power supply scheme  
VDD50USB  
VDD50USB  
VDD33USB  
VDD33USB  
USB  
VSS  
IOs  
VDDSMPS  
VLXSMPS  
VFBSMPS  
VSSSMPS  
Step  
DSI  
PHY  
USB  
regulator  
DSI  
regulator  
Down  
Coverter  
(SMPS)  
VSS  
VDDLDO  
VCAP  
Core domain (VCORE  
)
Voltage  
regulator  
VDDLDO  
VSS  
D3 domain  
(System  
logic,  
D1 domain  
(CPU, peripherals,  
RAM)  
D2 domain  
(peripherals,  
RAM)  
EXTI,  
IO  
logic  
IOs  
Peripherals,  
RAM)  
Flash  
VDD  
VSS  
VDD domain  
HSI, CSI,  
VDD  
HSI48,  
HSE, PLLs  
VBAT  
charging  
Backup domain  
Backup  
regulator  
VBAT  
1.2 to 3.6V  
VSW  
VBKP  
VBAT  
Power switch  
Power switch  
LSI, LSE,  
RTC, Wakeup  
logic, backup  
registers,  
Backup  
RAM  
BKUP  
IOs  
IO  
logic  
Reset  
VREF  
VDDA  
VSS  
VDDA  
VSS  
Analog domain  
REF_BUF  
ADC, DAC  
VREF+  
VREF-  
OPAMP,  
Comparator  
VREF+  
VREF-  
VSSA  
MSv62410V2  
1. N corresponds to the number of VDD pins available on the package.  
2. A tolerance of +/- 20% is acceptable on decoupling capacitors.  
3. VCAPDSI pin must be externally connected to VDD12DSI pin.  
Caution:  
Each power supply pair (V /V , V  
/V  
...) must be decoupled with filtering ceramic  
DD SS  
DDA SSA  
capacitors as shown above. These capacitors must be placed as close as possible to, or  
DS12930 Rev 1  
97/242  
221  
 
 
Electrical characteristics  
STM32H747xI/G  
below, the appropriate pins on the underside of the PCB to ensure good operation of the  
device. It is not recommended to remove filtering capacitors to reduce PCB size or cost.  
This might cause incorrect operation of the device.  
6.1.7  
Current consumption measurement  
Figure 14. Current consumption measurement scheme  
I
_V  
DD BAT  
V
BAT  
I
DD  
V
DD  
V
DDA  
ai14126  
6.2  
Absolute maximum ratings  
Stresses above the absolute maximum ratings listed in Table 19: Voltage characteristics,  
Table 20: Current characteristics, and Table 21: Thermal characteristics may cause  
permanent damage to the device. These are stress ratings only and the functional operation  
of the device at these conditions is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
(1)  
Table 19. Voltage characteristics  
Symbols  
Ratings  
Min  
Max  
Unit  
External main supply voltage (including VDD  
,
VDDX - VSS  
0.3  
4.0  
V
VDDLDO, VDDSMPS, VDDA, VDD33USB, VBAT  
)
Min(VDD, VDDA  
,
Input voltage on FT_xxx pins  
VSS0.3  
VDD33USB, VBAT  
)
V
+4.0(3)(4)  
(2)  
VIN  
Input voltage on TT_xx pins  
Input voltage on BOOT0 pin  
Input voltage on any other pins  
V
V
SS-0.3  
VSS  
4.0  
9.0  
4.0  
V
V
V
SS-0.3  
Variations between different VDDX power pins  
of the same domain  
|VDDX  
|
-
-
50  
50  
mV  
mV  
|VSSx-VSS  
|
Variations between all the different ground pins  
1. All main power (VDD, VDDA, VDD33USB, VDDSMPS, VBAT) and ground (VSS, VSSA) pins must always be  
connected to the external power supply, in the permitted range.  
2. VIN maximum must always be respected. Refer to Table 70: I/O current injection susceptibility for the  
maximum allowed injected current values.  
3. This formula has to be applied on power supplies related to the IO structure described by the pin definition  
table.  
98/242  
DS12930 Rev 1  
 
 
 
 
 
 
 
STM32H747xI/G  
Electrical characteristics  
4. To sustain a voltage higher than 4V the internal pull-up/pull-down resistors must be disabled.  
Table 20. Current characteristics  
Ratings  
Symbols  
Max  
Unit  
ΣIVDD  
ΣIVSS  
IVDD  
IVSS  
IIO  
Total current into sum of all VDD power lines (source)(1)  
Total current out of sum of all VSS ground lines (sink)(1)  
Maximum current into each VDD power pin (source)(1)  
Maximum current out of each VSS ground pin (sink)(1)  
Output current sunk by any I/O and control pin  
620  
620  
100  
100  
20  
Total output current sunk by sum of all I/Os and control pins(2)  
Total output current sourced by sum of all I/Os and control pins(2)  
140  
140  
mA  
ΣI(PIN)  
Injected current on FT_xxx, TT_xx, RST and B pins except PA4,  
PA5  
5/+0  
(3)(4)  
IINJ(PIN)  
Injected current on PA4, PA5  
0/0  
ΣIINJ(PIN)  
Total injected current (sum of all I/Os and control pins)(5)  
±25  
1. All main power (VDD, VDDA, VDD33USB) and ground (VSS, VSSA) pins must always be connected to the  
external power supplies, in the permitted range.  
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output  
current must not be sunk/sourced between two consecutive power supply pins referring to high pin count  
QFP packages.  
3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the  
specified maximum value.  
4. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. IINJ(PIN) must  
never be exceeded. Refer also to Table 19: Voltage characteristics for the maximum allowed input voltage  
values.  
5. When several inputs are submitted to a current injection, the maximum IINJ(PIN) is the absolute sum of the  
positive and negative injected currents (instantaneous values).  
Table 21. Thermal characteristics  
Symbol  
Ratings  
Value  
Unit  
TSTG  
TJ  
Storage temperature range  
65 to +150  
°C  
Maximum junction temperature  
125  
DS12930 Rev 1  
99/242  
221  
 
 
 
 
 
Electrical characteristics  
STM32H747xI/G  
6.3  
Operating conditions  
6.3.1  
General operating conditions  
Table 22. General operating conditions  
Operating  
conditions  
Symbol  
VDD  
Parameter  
Min  
Typ  
Max  
Unit  
V
-
Standard operating voltage  
-
1.62(1)  
1.62(1)  
1.2(2)  
3.6  
3.6  
3.6  
-
-
Supply voltage for the internal  
regulator  
VDDLDO  
VDDLDO VDD  
V
Supply voltage for the internal SMPS  
Step-down converter  
VDDSMPS  
VDDSMPS = VDD  
1.62(1)  
-
3.6  
V
USB used  
3.0  
0
-
-
-
-
-
-
3.6  
3.6  
Standard operating voltage, USB  
domain  
VDD33USB  
USB not used  
ADC or COMP used  
DAC used  
1.62  
1.8  
2.0  
1.8  
OPAMP used  
VREFBUF used  
VDDA  
Analog operating voltage  
3.6  
ADC, DAC, OPAMP,  
COMP, VREFBUF not  
used  
V
0
-
TT_xx I/O  
BOOT0  
0.3  
-
-
VDD+0.3  
9
0
VIN  
I/O Input voltage  
Min(VDD, VDDA  
,
All I/O except BOOT0  
and TT_xx  
VDD33USB  
+3.6V <  
)
0.3  
-
5.5V(3)(4)  
100/242  
DS12930 Rev 1  
 
 
 
 
STM32H747xI/G  
Symbol  
Electrical characteristics  
Table 22. General operating conditions (continued)  
Operating  
conditions  
Parameter  
Min  
Typ  
Max  
Unit  
VOS3 (max frequency  
200 MHz)  
0.95  
1.05  
1.15  
1.26  
0.95  
1.05  
1.15  
0.98  
1.08  
1.17  
1.37  
1.0  
1.26  
1.26  
1.26  
1.40  
1.26  
1.26  
1.26  
1.26  
1.26  
1.26  
1.40  
VOS2 (max frequency  
300 MHz)  
1.10  
1.20  
1.35  
1.0  
Internal regulator ON (LDO)  
VOS1 (max frequency  
400 MHz)  
VOS0(5) (max  
frequency 480 MHz(6)  
)
VOS3 (max frequency  
200 MHz)  
Internal regulator ON (SMPS step-  
down converter)(7)  
VOS2 (max frequency  
300 MHz)  
VCORE  
1.10  
1.20  
1.03  
1.13  
1.23  
1.38  
V
VOS1 (max frequency  
400 MHz)  
VOS3 (max frequency  
200 MHz)  
VOS2 (max frequency  
300 MHz)  
Regulator OFF: external VCORE  
voltage must be supplied from external  
regulator on two VCAP pins  
VOS1 (max frequency  
400 MHz)  
VOS0 (max frequency  
480 MHz(6)  
)
DS12930 Rev 1  
101/242  
221  
Electrical characteristics  
STM32H747xI/G  
Table 22. General operating conditions (continued)  
Operating  
conditions  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
VOS3  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
200  
300  
VOS2  
VOS1  
VOS0  
VOS3  
VOS2  
VOS1  
VOS0  
VOS3  
VOS2  
VOS1  
VOS0  
VOS3  
VOS2  
VOS1  
VOS0  
VOS3  
VOS2  
VOS1  
VOS0  
fCPU1  
Arm® Cortex®-M7 clock frequency  
400  
480(6)  
200  
150  
fCPU2  
fACLK  
fHCLK  
fPCLK  
Arm® Cortex®-M4 clock frequency  
200  
240(6)  
100  
150  
AXI clock frequency  
MHz  
200  
240(6)  
100  
150  
AHB clock frequency  
200  
240(6)  
50(8)  
75  
APB clock frequency  
100  
120(6)  
1. When RESET is released functionality is guaranteed down to VBOR0 min  
2. Only for power-up sequence when the SMPS step-down converter is configured to supply the LDO and TJMax = 105 °C.  
3. This formula has to be applied on power supplies related to the IO structure described by the pin definition table.  
4. For operation with voltage higher than Min (VDD, VDDA, VDD33USB) +0.3V, the internal Pull-up and Pull-Down resistors must  
be disabled.  
5. VOS0 is available only when the LDO regulator is ON.  
6. TJmax = 105 °C.  
7. At startup, the external VCORE voltage must remain higher or equal to 1.10 V before disabling the internal regulator (LDO).  
8. Maximum APB clock frequency when at least one peripheral is enabled.  
102/242  
DS12930 Rev 1  
STM32H747xI/G  
Electrical characteristics  
Table 23. Supply voltage and maximum frequency configuration  
Power scale  
VCORE source  
Max TJ (°C) Max frequency (MHz)  
Min VDD (V)  
LDO  
105  
-
480  
-
1.7  
VOS0  
VOS1  
VOS2  
SMPS step-down  
converter(1)  
-
LDO  
125  
400  
1.62  
SMPS step-down  
converter  
LDO  
125  
125  
300  
64  
1.62  
1.2(2)  
1.62  
SMPS step-down  
converter  
LDO(2)  
105  
125  
LDO  
VOS3  
200  
SMPS step-down  
converter  
125  
105  
125  
105  
125  
LDO  
SVOS4  
SVOS5  
N/A  
N/A  
1.62  
1.62  
SMPS step-down  
converter  
LDO  
SMPS step-down  
converter  
1. VOS0 (power scale 0) is not available when the SMPS step-down converter directly supplies VCORE  
2. Only for power-up sequence when the SMPS step-down converter supplies the LDO.  
.
6.3.2  
VCAP external capacitor  
Stabilization for the main regulator is achieved by connecting an external capacitor C  
to  
EXT  
the VCAP pin. C  
VCAP pins.  
is specified in Table 24. Two external capacitors can be connected to  
EXT  
Figure 15. External capacitor C  
EXT  
C
ESR  
R Leak  
MS19044V2  
1. Legend: ESR is the equivalent series resistance.  
DS12930 Rev 1  
103/242  
221  
 
 
 
Electrical characteristics  
Symbol  
STM32H747xI/G  
(1)  
Table 24. VCAP operating conditions  
Parameter  
Conditions  
CEXT  
ESR  
Capacitance of external capacitor  
ESR of external capacitor  
2.2 µF(2)  
< 100 mΩ  
1. When bypassing the voltage regulator, the two 2.2 µF VCAP capacitors are not required and should be  
replaced by two 100 nF decoupling capacitors.  
2. This value corresponds to CEXT typical value. A variation of +/-20% is tolerated.  
6.3.3  
SMPS step-down converter  
The devices embed a high power efficiency SMPS step-down converter. SMPS  
characteristics for external usage are given in Table 26. The SMPS step-down converter  
requires external components that are specified in Figure 16 and Table 25.  
Figure 16. External components for SMPS step-down converter  
VDDSMPS  
VDDSMPS  
VDDSMPS  
VDDSMPS  
VDD  
VDD  
VDD  
VDD  
L
VLXSMPS  
VLXSMPS  
L
VLXSMPS  
VLXSMPS  
Cin  
Cin  
SMPS  
SMPS  
SMPS  
SMPS  
Cfilt  
Cfilt  
VFBSMPS  
VFBSMPS  
VFBSMPS  
VFBSMPS  
(ON)  
(ON)  
(ON)  
(ON)  
VDD_  
VDD  
External  
External  
Cout1  
2xCout  
VSSSMPS  
VSSSMPS  
VSSSMPS  
VSSSMPS  
VCAP  
VCAP  
VCAP  
VCAP  
VDDLDO  
VDDLDO  
VDDLDO  
VDDLDO  
VCORE  
VCORE  
VCORE  
VCORE  
V reg  
V reg  
V reg  
V reg  
Cout2  
CEXT  
(OFF)  
(OFF)  
(ON)  
(ON)  
VSS  
VSS  
VSS  
VSS  
External SMPS supply, LDO supplied  
by SMPS  
Direct SMPS supply  
MSv61398V2  
Table 25. Characteristics of SMPS step-down converter external components  
Symbol  
Parameter  
Conditions  
Capacitance of external capacitor on VDDSMPS  
ESR of external capacitor  
4.7 µF  
100 mΩ  
220 pF  
10 µF  
Cin  
Cfilt  
Capacitance of external capacitor on VLXSMPS pin  
Capacitance of external capacitor on VFBSMPS pin  
ESR of external capacitor  
COUT  
20 mΩ  
2.2 µH  
150 mΩ  
L
-
Inductance of external Inductor on VLXSMPS pin  
Serial DC resistor  
104/242  
DS12930 Rev 1  
 
 
 
 
 
STM32H747xI/G  
Electrical characteristics  
Table 25. Characteristics of SMPS step-down converter external components  
Symbol  
Parameter  
Conditions  
DC current at which the inductance drops 30% from  
its value without current.  
ISAT  
1.7 A  
Average current for a 40 °C rise: rated current for  
which the temperature of the inductor is raised 40°C  
by DC current  
IRMS  
1.4 A  
Table 26. SMPS step-down converter characteristics for external usage  
Parameters  
Conditions  
Min  
Typ  
Max  
Unit  
VOUT = 1.8 V  
VOUT = 2.5 V  
2.3  
-
3.6  
3.6  
(1)  
VDDSMPS  
V
3
-
2.5  
1.8  
-
2.25  
2.75  
1.98  
600  
600  
120  
-
(2)  
VOUT  
Iout=600 mA  
V
1.62  
internal and external usage  
External usage only(3)  
-
-
-
-
-
-
-
IOUT  
mA  
-
RDSON  
100  
220  
-
mꢁ  
IDDSMPS_Q  
Quiescent current  
VOUT = 1.8 V  
µA  
225  
300  
TSMPS_START  
µs  
VOUT = 2.5 V  
-
1. The switching frequency is 2.4 MHz±10%  
2. Including line transient and load transient.  
3. These characteristics are given for SDEXTHP bit is set in the PWR_CR3 register.  
6.3.4  
Operating conditions at power-up / power-down  
Subject to general operating conditions for T .  
A
Table 27. Operating conditions at power-up / power-down (regulator ON)  
Symbol  
Parameter  
VDD rise time rate  
Min  
Max  
Unit  
0
10  
0
tVDD  
VDD fall time rate  
VDDA rise time rate  
tVDDA  
µs/V  
VDDA fall time rate  
10  
0
VDDUSB rise time rate  
VDDUSB fall time rate  
tVDDUSB  
10  
DS12930 Rev 1  
105/242  
221  
 
 
 
Electrical characteristics  
STM32H747xI/G  
6.3.5  
Embedded reset and power control block characteristics  
The parameters given in Table 28 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 22: General operating  
DD  
conditions.  
Table 28. Reset and power control block characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Reset temporization  
after BOR0 released  
(1)  
tRSTTEMPO  
-
-
377  
-
µs  
Rising edge(1)  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge in Run mode  
1.62  
1.58  
2.04  
1.95  
2.34  
2.25  
2.63  
2.54  
1.90  
1.81  
2.05  
1.96  
2.19  
2.10  
2.35  
2.25  
2.49  
2.39  
2.64  
2.55  
2.78  
2.69  
1.67  
1.62  
2.10  
2.00  
2.41  
2.31  
2.70  
2.61  
1.96  
1.86  
2.10  
2.01  
2.26  
2.15  
2.41  
2.31  
2.56  
2.45  
2.71  
2.61  
2.86  
2.76  
1.71  
1.68  
2.15  
2.06  
2.47  
2.37  
2.78  
2.68  
2.01  
1.91  
2.16  
2.06  
2.32  
2.21  
2.47  
2.37  
2.62  
2.51  
2.78  
2.68  
2.94  
2.83  
VBOR0  
Brown-out reset threshold 0  
Brown-out reset threshold 1  
Brown-out reset threshold 2  
Brown-out reset threshold 3  
VBOR1  
VBOR2  
VBOR3  
VPVD0  
VPVD1  
VPVD2  
VPVD3  
VPVD4  
VPVD5  
VPVD6  
Programmable Voltage  
Detector threshold 0  
Programmable Voltage  
Detector threshold 1  
V
Programmable Voltage  
Detector threshold 2  
Programmable Voltage  
Detector threshold 3  
Programmable Voltage  
Detector threshold 4  
Programmable Voltage  
Detector threshold 5  
Programmable Voltage  
Detector threshold 6  
Hysteresis voltage of BOR  
(unless BOR0) and PVD  
Vhyst_BOR_PVD  
Hysteresis in Run mode  
-
-
-
100  
-
mV  
µA  
BOR(2) (unless BOR0) and  
PVD consumption from VDD  
(1)  
IDD_BOR_PVD  
0.630  
106/242  
DS12930 Rev 1  
 
 
 
STM32H747xI/G  
Electrical characteristics  
Table 28. Reset and power control block characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
1.66  
1.56  
2.06  
1.96  
2.42  
2.35  
2.74  
2.64  
1.71  
1.61  
2.12  
2.02  
2.50  
2.42  
2.83  
2.72  
1.76  
1.66  
2.19  
2.08  
2.58  
2.49  
2.91  
2.80  
Analog voltage detector for  
VDDA threshold 0  
VAVM_0  
Analog voltage detector for  
VDDA threshold 1  
VAVM_1  
VAVM_2  
VAVM_3  
V
Analog voltage detector for  
VDDA threshold 2  
Analog voltage detector for  
VDDA threshold 3  
Hysteresis of VDDA voltage  
detector  
Vhyst_VDDA  
IDD_PVM  
-
-
-
-
100  
-
mV  
µA  
µA  
PVM consumption from  
VDD(1)  
-
-
-
0.25  
2.5  
Voltage detector  
consumption on VDDA  
IDD_VDDA  
Resistor bridge  
(1)  
1. Guaranteed by design.  
2. BOR0 is enabled in all modes and its consumption is therefore included in the supply current characteristics tables (refer to  
Section 6.3.7: Supply current characteristics).  
6.3.6  
Embedded reference voltage  
The parameters given in Table 29 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 22: General operating  
DD  
conditions.  
Table 29. Embedded reference voltage  
Symbol  
VREFINT  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
-40°C < TJ < 125 °C,  
VDD = 3.3 V  
Internal reference voltages  
1.180  
1.216  
1.255  
V
ADC sampling time when  
reading the internal reference  
voltage  
(1)(2)  
tS_vrefint  
-
-
4.3  
-
-
µs  
VBAT sampling time when  
reading the internal VBAT  
reference voltage  
(1)(2)  
tS_vbat  
9
9
-
-
13.5  
5
-
Reference Buffer  
consumption for ADC  
(2)  
Irefbuf  
V
DDA=3.3 V  
23  
15  
µA  
Internal reference voltage  
spread over the temperature  
range  
(2)  
(2)  
ΔVREFINT  
-40°C < TJ < 125 °C  
mV  
Average temperature  
coefficient  
Average temperature  
coefficient  
(2)  
Tcoeff  
-
-
20  
10  
70  
ppm/°C  
ppm/V  
VDDcoeff  
Average Voltage coefficient  
3.0V < VDD < 3.6V  
1370  
DS12930 Rev 1  
107/242  
221  
 
 
 
 
Electrical characteristics  
STM32H747xI/G  
Table 29. Embedded reference voltage (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
25  
Max  
Unit  
VREFINT_DIV1 1/4 reference voltage  
VREFINT_DIV2 1/2 reference voltage  
VREFINT_DIV3 3/4 reference voltage  
-
-
-
-
-
-
-
-
-
%
50  
VREFINT  
75  
1. The shortest sampling time for the application can be determined by multiple iterations.  
2. Guaranteed by design.  
Table 30. Internal reference voltage calibration values  
Parameter Memory address  
VREFIN_CAL Raw data acquired at temperature of 30 °C, VDDA = 3.3 V 1FF1E860 - 1FF1E861  
Symbol  
6.3.7  
Supply current characteristics  
The current consumption is a function of several parameters and factors such as the  
operating voltage, ambient temperature, I/O pin loading, device software configuration,  
operating frequencies, I/O pin switching rate, program location in memory and executed  
binary code.  
The current consumption is measured as described in Figure 14: Current consumption  
measurement scheme.  
All the run-mode current consumption measurements given in this section are performed  
with a CoreMark code.  
Typical and maximum current consumption  
The MCU is placed under the following conditions:  
All I/O pins are in analog input mode.  
All peripherals are disabled except when explicitly mentioned.  
The Flash memory access time is adjusted with the minimum wait states number,  
depending on the fACLK frequency (refer to the table “Number of wait states according to  
CPU clock (f  
) frequency and V  
range” available in the reference manual).  
rcc_c_ck  
CORE  
When the peripherals are enabled, the AHB clock frequency is the CPU1 frequency  
divided by 2 and the APB clock frequency is AHB clock frequency divided by 2.  
The parameters given in the below tables are derived from tests performed under ambient  
temperature and supply voltage conditions summarized in Table 22: General operating  
conditions.  
108/242  
DS12930 Rev 1  
 
 
STM32H747xI/G  
Electrical characteristics  
Table 31. Typical and maximum current consumption in Run mode, code with data processing  
running from ITCM for Cortex-M7 core, and Flash memory for Cortex-M4  
(1)(2)  
(ART accelerator ON), LDO regulator ON  
Arm  
Arm  
Max(3)  
Cortex- Cortex-  
Symbol Parameter  
Conditions  
M7  
fCPU1  
(MHz)  
M4  
fCPU2  
(MHz)  
Typ  
Unit  
Tj=  
Tj=  
Tj=  
Tj=  
25 °C 85 °C 105°C 125°C  
480  
400  
400  
300  
200  
480  
400  
400  
300  
200  
240  
200  
200  
150  
100  
240  
200  
200  
150  
100  
179  
151  
132  
91  
272  
-
387  
-
498  
-
VOS0  
All  
peripherals VOS1  
181  
122  
79  
292  
211  
150  
462  
-
382  
281  
206  
571  
-
502  
377  
284  
disabled  
VOS2  
Supply  
current in  
Run mode  
VOS3  
VOS0  
56  
IDD  
mA  
247  
208  
181  
126  
78  
374  
-
All  
peripherals VOS1  
232  
163  
104  
337  
248  
173  
422  
318  
229  
541  
414  
307  
enabled  
VOS2  
VOS3  
1. Data are in DTCM for best computation performance, the cache has no influence on consumption in this case.  
2. The grayed cells correspond to the forbidden configurations.  
3. Guaranteed by characterization results, unless otherwise specified.  
Table 32. Typical and maximum current consumption in Run mode, code with data processing  
running from ITCM for Arm Cortex-M7 and Flash memory for Arm Cortex-M4,  
(1)  
ART accelerator ON, SMPS regulator  
Arm  
Cortex-  
M4  
Max  
Arm  
Cortex-  
M7  
fCPU1  
(MHz)  
Symbol Parameter  
Conditions  
Typ  
Unit  
Tj=  
Tj=  
Tj=  
Tj=  
fCPU2  
(MHz)  
25 °C 85 °C 105°C 125°C  
VOS1  
400  
300  
200  
400  
300  
200  
200  
150  
100  
200  
150  
100  
58.3 79.0 129.0 175.1 236.0  
All  
peripherals  
disabled  
VOS2  
VOS3  
VOS1  
VOS2  
VOS3  
37.0 50.2  
21.5 29.9  
84.7 115.6 161.1  
56.1 77.1 107.6  
Supply  
IDD  
current in  
mA  
78.1 100.1 148.9 193.4 254.3  
51.2 65.5 100.8 130.9 176.9  
Run mode  
All  
peripherals  
enabled  
29.5 39.4  
63.9  
86.7 116.3  
1. The parameters given in the above table for the SMPS regulator are derived by extrapolation from the LDO consumption  
and typical SMPS efficiency factors.  
DS12930 Rev 1  
109/242  
221  
 
 
Electrical characteristics  
STM32H747xI/G  
Table 33. Typical and maximum current consumption in Run mode, code with data processing  
running from Flash memory, both cores running, cache ON,  
(1)  
ART accelerator ON, LDO regulator ON  
Arm  
Arm  
Max(2)  
Cortex Cortex-  
Symbol Parameter  
Conditions  
-M7  
fCPU1  
(MHz)  
M4  
fCPU2  
(MHz)  
Typ  
Unit  
Tj=  
Tj=  
Tj=  
Tj=  
25 °C 85 °C 105°C 125°C  
480  
400  
400  
300  
200  
480  
400  
300  
200  
240  
200  
200  
150  
100  
240  
200  
150  
100  
173  
147  
128  
88  
268  
-
385  
-
496  
-
VOS0  
All  
peripherals VOS1  
175  
120  
77  
288  
209  
149  
459  
334  
246  
172  
379  
279  
205  
569  
419(3)  
316  
228  
499  
374  
283  
disabled  
VOS2  
Supply  
current in  
Run mode  
IDD  
VOS3  
VOS0  
55  
mA  
242  
178  
123  
77  
368  
229(3)  
161  
102  
All  
VOS1  
537  
412  
306  
peripherals  
enabled  
VOS2  
VOS3  
1. The grayed cells correspond to the forbidden configurations.  
2. Guaranteed by characterization results, unless otherwise specified.  
3. Guaranteed by tests in production.  
Table 34. Typical and maximum current consumption in Run mode, code with data processing  
running from Flash memory, both cores running, cache OFF,  
(1)  
ART accelerator OFF, LDO regulator ON  
Arm  
Arm  
Max(2)  
Cortex- Cortex-  
Symbol Parameter  
Conditions  
M7  
fCPU1  
(MHz) (MHz)  
M4  
fCPU2  
Typ  
Unit  
Tj=  
Tj=  
Tj=  
Tj=  
25 °C 85 °C 105°C 125°C  
VOS0  
480  
400  
300  
200  
480  
400  
300  
200  
240  
200  
150  
100  
240  
200  
150  
100  
109  
96  
191  
149  
95  
330  
256  
187  
136  
403  
310  
224  
159  
444  
347  
257  
192  
517  
401  
295  
215  
All  
VOS1  
VOS2  
VOS3  
VOS0  
VOS1  
VOS2  
VOS3  
468  
354  
270  
peripherals  
disabled  
67  
Supply  
43  
62  
IDD  
current in  
mA  
178  
147  
103  
64  
291  
224  
136  
87  
Run mode  
All  
523  
392  
293  
peripherals  
enabled  
1. The grayed cells correspond to the forbidden configurations.  
2. Guaranteed by characterization results, unless otherwise specified.  
110/242  
DS12930 Rev 1  
 
 
STM32H747xI/G  
Electrical characteristics  
Table 35. Typical and maximum current consumption in Run mode, code with data processing  
(1)(2)  
running from ITCM, only Arm Cortex-M7 running, LDO regulator ON  
Max(3)  
fCPU1  
(MHz)  
Symbol Parameter  
Conditions  
Typ  
Unit  
Tj=25  
°C  
Tj=85  
°C  
Tj=105 Tj=125  
°C  
°C  
480  
400  
400  
300  
300  
216  
200  
200  
180  
168  
144  
60  
148  
125  
110  
84  
226  
-
307  
-
390  
-
VOS0  
168  
-
230  
-
296  
-
384  
-
VOS1  
VOS2  
76  
114  
88  
-
170  
152  
-
224  
205  
-
297  
278  
-
56  
All  
peripherals  
disabled  
53  
47  
71  
64  
63  
55  
36  
24  
222  
-
121  
116  
115  
109  
92  
83  
439  
-
164  
159  
158  
153  
135  
126  
550  
-
223  
218  
217  
212  
194  
185  
43  
Supply  
current in  
Run mode  
40  
IDD  
VOS3  
mA  
35  
16  
25  
12  
480  
400  
400  
300  
300  
200  
200  
226  
190  
167  
135  
122  
85  
VOS0  
VOS1  
222  
-
327  
-
416  
-
536  
-
All  
peripherals  
enabled  
160  
-
248  
-
320  
-
419  
-
VOS2  
VOS3  
76  
103  
174  
233  
313  
1. Data are in DTCM for best computation performance, the cache has no influence on consumption in this case.  
2. The grayed cells correspond to the forbidden configurations.  
3. Guaranteed by characterization results, unless otherwise specified.  
DS12930 Rev 1  
111/242  
221  
 
Electrical characteristics  
STM32H747xI/G  
Table 36. Typical and maximum current consumption in Run mode, code with data processing  
(1)  
running from ITCM, only Arm Cortex-M7 running, SMPS regulator  
Max  
fCPU1  
(MHz)  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
Tj=25 Tj=85 Tj=105 Tj=125  
°C  
°C  
°C  
°C  
VOS1  
400  
300  
200  
400  
300  
200  
48.6  
31.3  
18.0  
72.9  
49.6  
28.8  
73.3  
46.3  
26.9  
95.8  
64.3  
38.5  
100.4 132.4  
176.0  
122.2  
82.4  
All  
peripherals VOS2  
68.3  
45.3  
90.0  
60.6  
disabled  
Supply  
current in  
Run mode  
VOS3  
IDD  
mA  
VOS1  
All  
peripherals VOS2  
144.5 190.7  
252.0  
179.1  
118.6  
99.6  
64.3  
131.7  
88.3  
enabled  
VOS3  
1. The parameters given in the above table for the SMPS regulator are derived by extrapolation from the LDO consumption  
and typical SMPS efficiency factors.  
Table 37. Typical and maximum current consumption in Run mode, code with data processing  
running from Flash memory, only Arm Cortex-M7 running, cache ON,  
(1)  
LDO regulator ON  
Max(2)  
Tj=85 Tj=105 Tj=125  
fCPU1  
(MHz)  
Symbol Parameter  
Conditions  
Typ  
Unit  
Tj=25  
°C  
°C  
°C  
°C  
480  
400  
400  
300  
216  
200  
200  
480  
400  
400  
300  
300  
200  
200  
110  
91  
222  
-
304  
-
388  
-
VOS0  
80  
162  
-
228  
-
294  
-
381  
-
All  
VOS1  
peripherals  
disabled  
61.5  
55  
111  
-
168  
-
222  
-
294  
-
VOS2  
VOS3  
VOS0  
38.5  
34.5  
220  
195  
175  
135  
120  
83  
Supply  
current in  
Run mode  
69  
342  
-
120  
436  
-
163  
546  
-
222  
IDD  
mA  
264  
-
336  
-
424  
-
544  
-
All  
VOS1  
peripherals  
enabled  
180  
-
246  
-
318  
-
418  
-
VOS2  
VOS3  
75  
114  
173  
232  
312  
1. The grayed cells correspond to the forbidden configurations.  
2. Guaranteed by characterization results, unless otherwise specified.  
112/242  
DS12930 Rev 1  
 
 
STM32H747xI/G  
Electrical characteristics  
Table 38. Typical and maximum current consumption in Run mode, code with data processing  
running from Flash memory, only Arm Cortex-M7 running, cache OFF,  
(1)  
LDO regulator ON  
Max(2)  
Tj=105 Tj=125  
fCPU1  
(MHz)  
Symbol Parameter  
Conditions  
Typ  
Unit  
Tj=25°C Tj=85°C  
°C  
°C  
VOS0  
480  
400  
300  
200  
480  
400  
300  
200  
87  
73  
157  
123  
85  
259  
201  
150  
109  
390  
308  
228  
167  
342  
267  
204  
152  
504  
397  
301  
226  
All  
VOS1  
VOS2  
VOS3  
VOS0  
VOS1  
VOS2  
VOS3  
355  
277  
212  
peripherals  
disabled  
52  
Supply  
34  
54  
IDD  
current in  
mA  
168  
135  
100  
70  
276  
224  
154  
103  
Run mode  
All  
519  
401  
307  
peripherals  
enabled  
1. The grayed cells correspond to the forbidden configurations.  
2. Guaranteed by characterization results, unless otherwise specified.  
Table 39. Typical and maximum current consumption batch acquisition mode,  
LDO regulator ON  
Max(1)  
fHCLK  
(MHz)  
Symbol Parameter  
Conditions  
Typ  
Unit  
Tj=105 Tj=125  
Tj=25°C Tj=85°C  
°C  
°C  
D1  
Standby,  
D2  
Standby,  
D3 Run  
64  
2.7  
1.1  
4.7  
-
12.9  
-
19.0  
27.5  
Supply  
current in  
VOS3  
8
-
-
IDD  
batch  
acquisition  
mode  
mA  
D1 Stop,  
D2 Stop, VOS3  
D3 Run  
64  
8
5.4  
3.8  
18.4  
-
83.7  
-
132.6  
-
202.4  
-
1. Guaranteed by characterization results, unless otherwise specified.  
DS12930 Rev 1  
113/242  
221  
 
 
Electrical characteristics  
STM32H747xI/G  
Table 40. Typical and maximum current consumption in Run mode, code with data processing  
running from Flash memory, only Arm Cortex-M4 running, ART accelerator ON,  
(1)  
LDO regulator ON  
Max(2)  
fCPU2  
(MHz)  
Symbol Parameter  
Conditions  
Typ  
Unit  
Tj=25  
°C  
Tj=85  
°C  
Tj=105 Tj=125  
°C  
°C  
240  
200  
200  
150  
150  
100  
240  
200  
200  
150  
100  
121  
90  
203  
-
339  
-
453  
-
VOS0  
All  
79  
123  
-
234  
-
323  
-
444  
-
peripherals  
disabled  
VOS1  
61  
VOS2  
VOS3  
56  
85  
59  
303  
-
178  
131  
412  
-
250  
189  
525  
-
350  
269  
Supply  
current in  
Run mode  
IDD  
35  
mA  
190  
146  
129  
90  
VOS0  
All  
peripherals  
enabled  
VOS1  
VOS2  
VOS3  
195  
134  
100  
287  
214  
158  
376  
287  
216  
499  
386  
297  
61  
1. The grayed cells correspond to the forbidden configurations.  
2. Guaranteed by characterization results, unless otherwise specified.  
Table 41. Typical and maximum current consumption in Run mode, code with data processing  
running from Flash bank 2, only Arm Cortex-M4 running, ART accelerator ON,  
(1)  
SMPS regulator  
Max  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
Tj=25  
°C  
Tj=85  
°C  
Tj=105  
°C  
Tj=125  
°C  
VOS1  
35.3  
23.3  
13.6  
57.0  
36.6  
23.1  
54.3  
35.0  
22.3  
84.1  
54.5  
37.4  
102.1  
70.6  
49.0  
126.8  
84.9  
58.4  
144.4  
99.2  
203.5  
145.8  
101.9  
234.6  
165.0  
112.5  
All  
peripherals  
disabled  
VOS2  
VOS3  
VOS1  
VOS2  
VOS3  
Supply  
current in Run  
mode  
69.8  
IDD  
mA  
172.3  
118.1  
79.8  
All  
peripherals  
enabled  
1. The parameters given in the above table for the SMPS regulator are derived by extrapolation from the LDO consumption  
and typical SMPS efficiency factors.  
114/242  
DS12930 Rev 1  
 
 
STM32H747xI/G  
Electrical characteristics  
(1)  
Table 42. Typical and maximum current consumption in Stop, LDO regulator ON  
Max(2)  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
Tj=105  
°C  
Tj=125  
°C  
Tj=25°C Tj=85°C  
SVOS5  
SVOS4  
SVOS3  
SVOS5  
SVOS4  
SVOS3  
SVOS5  
SVOS4  
SVOS3  
SVOS5  
SVOS4  
SVOS3  
SVOS5  
SVOS4  
SVOS3  
SVOS5  
SVOS4  
SVOS3  
1.27  
1.96  
2.78  
1.27  
2.25  
3.07  
0.91  
1.42  
2.02  
0.91  
1.70  
2.31  
0.49  
0.76  
1.10  
0.15  
0.22  
0.35  
6.3  
9.4  
42.5  
57.4  
75.9  
42.5  
57.9  
76.4  
30.4  
41.1  
54.4  
30.4  
41.5  
54.9  
16.5  
22.2  
29.3  
4.3  
72.0  
94.6  
Flash  
memory  
OFF, no  
IWDG  
13.8(3)  
121.3(3)  
183.8  
184.8  
130.0  
130.8  
71.2  
D1 Stop,  
D2 Stop,  
D3 Stop  
6.3  
72.0  
Flash  
memory  
ON, no  
IWDG  
9.8  
95.2  
14.1  
4.6  
122.0  
51.2  
Flash  
memory  
OFF, no  
IWDG  
6.8  
67.3  
D1 Stop,  
IDD (Stop) D2 Standby,  
D3 Stop  
10.0  
4.6  
86.6  
mA  
51.2  
Flash  
memory  
ON, no  
IWDG  
7.2  
67.9  
10.3  
2.4  
87.1  
28.0  
D1 Standby,  
D2 Stop,  
D3 Stop  
3.6  
36.6  
Flash  
memory  
OFF, no  
IWDG  
5.3  
46.9  
0.7(3)  
7.3(3)  
D1 Standby,  
D2 Standby,  
D3 Stop  
1.0  
5.8  
9.6  
1.5(3)  
7.8  
12.3(3)  
18.6  
1. The parameters given in the above table for the SMPS regulator are derived by extrapolation from the LDO consumption  
and typical SMPS efficiency factors.  
2. Guaranteed by characterization results, unless otherwise specified.  
3. Guaranteed by tests in production.  
DS12930 Rev 1  
115/242  
221  
 
Electrical characteristics  
STM32H747xI/G  
(1)  
Table 43. Typical and maximum current consumption in Stop, SMPS regulator  
Max  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
mA  
µA  
Tj=105  
°C  
Tj=125  
°C  
Tj=25°C  
Tj=85°C  
SVOS5  
0.36  
0.63  
1.00  
0.36  
0.73  
1.11  
0.25  
0.46  
0.73  
0.25  
0.55  
0.83  
0.15  
0.26  
0.40  
0.06  
0.08  
0.13  
1.73  
3.05  
4.98  
1.73  
3.18  
5.09  
1.24  
2.21  
3.57  
1.24  
2.34  
3.67  
0.67  
1.17  
1.90  
0.20  
0.33  
0.54  
11.91  
19.57  
29.11  
11.91  
19.74  
29.31  
8.21  
21.53  
33.51  
47.13  
21.53  
33.72  
47.40  
14.00  
22.94  
32.80  
14.00  
23.15  
32.99  
7.85  
-
Flash  
OFF, no  
IWDG  
SVOS4  
SVOS3  
SVOS5  
SVOS4  
SVOS3  
SVOS5  
SVOS4  
SVOS3  
SVOS5  
SVOS4  
SVOS3  
SVOS5  
SVOS4  
SVOS3  
SVOS5  
SVOS4  
SVOS3  
-
D1 Stop,  
D2 Stop,  
D3 Stop  
68.76  
-
Flash  
ON, no  
IWDG  
-
69.14  
-
Flash  
OFF, no  
IWDG  
14.01  
19.62  
8.21  
-
D1 Stop,  
49.24  
IDD (Stop) D2 Standby,  
D3 Stop  
-
Flash  
ON, no  
IWDG  
14.15  
19.81  
4.51  
-
49.55  
-
D1 Standby,  
D2 Stop,  
D3 Stop  
Flash  
OFF, no  
IWDG  
7.21  
12.32  
17.12  
2.05  
-
10.57  
1.18  
26.97  
-
-
D1 Standby,  
D2 Standby,  
D3 Stop  
Flash  
ON, no  
IWDG  
1.90  
3.11  
2.80  
4.47  
6.77  
1. The parameters given in the above table for the SMPS regulator are derived by extrapolation from the LDO consumption  
and typical SMPS efficiency factors.  
116/242  
DS12930 Rev 1  
 
STM32H747xI/G  
Electrical characteristics  
(1)  
Table 44. Typical and maximum current consumption in Sleep mode, LDO regulator  
Max(2)  
fHCLK  
(MHz)  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
Tj=25  
°C  
Tj=85 Tj=105 Tj=125  
°C  
°C  
°C  
480  
400  
400  
300  
300  
200  
200  
480  
400  
400  
300  
300  
200  
200  
50.7  
43.4  
35.3  
27.9  
24.6  
18.8  
16.5  
136.0  
115.0  
97.7  
74.9  
67.3  
52.8  
47.1  
96.3  
87.8  
66.5  
-
253.4  
245.5  
181.3  
-
366.1  
357.9  
265.8  
-
VOS0  
379.6  
All  
VOS1  
peripherals  
disabled  
-
47.3  
-
139.1  
-
207.3  
-
300.4  
-
VOS2  
VOS3  
VOS0  
Supply  
current in  
Sleep mode  
33.6  
194.7  
169.0  
138.2  
-
106.4  
348.5  
325.9  
251.3  
-
160.9  
464.4  
441.7  
338.4  
-
236.1  
IDD (Sleep)  
mA  
456.4  
All  
VOS1  
peripherals  
enabled  
-
95.8  
-
187.6  
-
257.9  
-
354.1  
-
VOS2  
VOS3  
69.3  
141.4  
197.7  
275.1  
1. The parameters given in the above table for the SMPS regulator are derived by extrapolation from the LDO consumption  
and typical SMPS efficiency factors.  
2. Guaranteed by characterization results, unless otherwise specified.  
(1)  
Table 45. Typical and maximum current consumption in Sleep mode, SMPS regulator  
Max  
fHCLK  
(MHz)  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
Tj=25  
°C  
Tj=85  
°C  
Tj=105 Tj=125  
°C °C  
400  
300  
300  
200  
200  
400  
300  
200  
15.93  
12.58  
10.21  
7.89  
29.69  
-
79.01  
-
118.72 173.80  
VOS1  
-
-
All  
peripherals  
disabled  
19.63  
-
56.46  
-
82.14  
-
123.46  
-
VOS2  
Supply  
current in  
Sleep mode  
IDD (Sleep)  
mA  
VOS3  
VOS1  
6.50  
12.98  
59.62  
38.94  
26.14  
39.73  
59.35  
87.10  
42.65  
27.70  
17.95  
110.88 153.00 211.65  
All  
peripherals VOS2  
75.26  
52.75  
102.22 147.38  
72.95 104.09  
Enabled  
VOS3  
1. The parameters given in the above table for the SMPS regulator are derived by extrapolation from the LDO consumption  
and typical SMPS efficiency factors.  
DS12930 Rev 1  
117/242  
221  
 
 
Electrical characteristics  
STM32H747xI/G  
Table 46. Typical and maximum current consumption in Standby  
Typ  
Max(1)  
Conditions  
3 V  
Symbol  
Parameter  
Unit  
RTC  
and  
LSE  
1.62 V 2.4 V 3 V 3.3 V  
Backup  
SRAM  
Tj=25 Tj=85 Tj=105 Tj=125  
°C  
°C  
°C  
°C  
OFF  
ON  
OFF  
OFF  
ON  
1,92  
3,33  
2,43  
3,82  
1,95 2,06 2,16  
4
18  
47  
-
40  
83  
-
90  
Supply  
current in  
Standby  
mode  
3,44 3,6 3,79 8.2  
141  
IDD  
µA  
(Standby)  
OFF  
ON  
2,57 2,77 2,95  
4,05 4,31 4,55  
-
-
-
-
ON  
-
-
1. Guaranteed by characterization results, unless otherwise specified.  
Table 47. Typical and maximum current consumption in V  
mode  
BAT  
Conditions  
Typ  
Max(1)  
3 V  
Tj=25 Tj=85 Tj=105 Tj=125  
RTC  
Symbol Parameter  
Unit  
Backup  
SRAM  
and 1.2 V 2 V  
LSE  
3 V 3.4 V  
°C  
°C  
°C  
°C  
OFF  
ON  
OFF 0,02 0,02 0,03 0,05  
OFF 1,33 1,45 1,58 1,7  
0,46 0,57 0,75 0,87  
1,77 2,3 2,5  
0,5  
4,4  
-
4,1  
22  
-
10  
48  
-
24  
87  
-
Supply  
IDD  
current in  
µA  
(VBAT)  
OFF  
ON  
ON  
ON  
VBAT mode  
2
-
-
-
-
1. Guaranteed by characterization results, unless otherwise specified.  
118/242  
DS12930 Rev 1  
 
 
STM32H747xI/G  
Electrical characteristics  
Typical SMPS efficiency versus load current and temperature  
Figure 17. Typical SMPS efficiency (%) vs load current (A) in Run mode at T = 30 °C  
J
100  
90  
80  
70  
VDDSMPS =  
1.8V, VOS1  
60  
VDDSMPS =  
3.3V, VOS1  
VDDSMPS =  
1.8V, VOS2  
50  
VDDSMPS =  
3.3V, VOS2  
40  
VDDSMPS =  
1.8V, VOS3  
VDDSMPS =  
3.3V, VOS3  
30  
20  
10  
0
0.001  
0.01  
0.1  
1
MSv62424V1  
Figure 18. Typical SMPS efficiency (%) vs load current (A) in Run mode at T = T  
J
Jmax  
100  
90  
80  
70  
VDDSMPS =  
1.8V, VOS1  
VDDSMPS =  
3.3V, VOS1  
VDDSMPS =  
1.8V, VOS2  
VDDSMPS =  
3.3V, VOS2  
VDDSMPS =  
1.8V, VOS3  
VDDSMPS =  
3.3V, VOS3  
60  
50  
40  
30  
20  
10  
0
0.001  
0.01  
0.1  
1
MSv62425V1  
DS12930 Rev 1  
119/242  
221  
 
 
Electrical characteristics  
STM32H747xI/G  
Figure 19. Typical SMPS efficiency (%) vs load current (A) in low-power mode at  
T = 30 °C  
J
°
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VDDSMPS =  
1.8V, SVOS5  
VDDSMPS =  
3.3V, SVOS5  
VDDSMPS =  
1.8V, SVOS4  
VDDSMPS =  
3.3V, SVOS4  
VDDSMPS =  
1.8V, SVOS3  
VDDSMPS =  
3.3V, SVOS3  
0.00001  
0.0001  
0.001  
0.01  
0.1  
MSv62426V1  
120/242  
DS12930 Rev 1  
 
STM32H747xI/G  
Electrical characteristics  
Figure 20. Typical SMPS efficiency (%) vs load current (A) in low-power mode at  
T = T  
J
Jmax  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VDDSMPS =  
1.8V, SVOS5  
VDDSMPS =  
3.3V, SVOS5  
VDDSMPS =  
1.8V, SVOS4  
VDDSMPS =  
3.3V, SVOS4  
VDDSMPS =  
1.8V, SVOS3  
VDDSMPS =  
3.3V, SVOS3  
0.00001  
0.0001  
0.001  
0.01  
0.1  
MSv62427V1  
I/O system current consumption  
The current consumption of the I/O system has two components: static and dynamic.  
I/O static current consumption  
All the I/Os used as inputs with pull-up generate a current consumption when the pin is  
externally held low. The value of this current consumption can be simply computed by using  
the pull-up/pull-down resistors values given in Table 71: I/O static characteristics.  
For the output pins, any external pull-down or external load must also be considered to  
estimate the current consumption.  
An additional I/O current consumption is due to I/Os configured as inputs if an intermediate  
voltage level is externally applied. This current consumption is caused by the input Schmitt  
trigger circuits used to discriminate the input value. Unless this specific configuration is  
required by the application, this supply current consumption can be avoided by configuring  
these I/Os in analog mode. This is notably the case of ADC input pins which should be  
configured as analog inputs.  
Caution:  
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,  
as a result of external electromagnetic noise. To avoid a current consumption related to  
floating pins, they must either be configured in analog mode, or forced internally to a definite  
digital value. This can be done either by using pull-up/down resistors or by configuring the  
pins in output mode.  
DS12930 Rev 1  
121/242  
221  
 
Electrical characteristics  
STM32H747xI/G  
I/O dynamic current consumption  
In addition to the internal peripheral current consumption (see Table 48: Peripheral current  
consumption in Run mode), the I/Os used by an application also contribute to the current  
consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to  
supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external)  
connected to the pin:  
ISW = VDDx × fSW × CL  
where  
I
is the current sunk by a switching I/O to charge/discharge the capacitive load  
SW  
V
is the MCU supply voltage  
DDx  
f
is the I/O switching frequency  
SW  
C is the total capacitance seen by the I/O pin: C = C + C  
EXT  
L
INT  
The test pin is configured in push-pull output mode and is toggled by software at a fixed  
frequency.  
On-chip peripheral current consumption  
The MCU is placed under the following conditions:  
At startup, all I/O pins are in analog input configuration.  
All peripherals are disabled unless otherwise mentioned.  
The I/O compensation cell is enabled.  
f
is the CPU clock. f  
= f  
/4, and f  
= f  
/2.  
rcc_c_ck  
PCLK  
rcc_c_ck  
HCLK  
rcc_c_ck  
The given value is calculated by measuring the difference of current consumption  
with all peripherals clocked off  
with only one peripheral clocked on  
f
= 480 MHz (Scale 0), f  
= 400 MHz (Scale 1), f  
= 300 MHz  
rcc_c_ck  
rcc_c_ck  
rcc_c_ck  
(Scale 2), f  
= 200 MHz (Scale 3)  
rcc_c_ck  
The ambient operating temperature is 25 °C and V =3.3 V.  
DD  
122/242  
DS12930 Rev 1  
STM32H747xI/G  
Bus  
Electrical characteristics  
Table 48. Peripheral current consumption in Run mode  
Peripheral  
VOS0  
VOS1  
VOS2  
VOS3  
Unit  
MDMA  
DMA2D  
4.6  
2.9  
3.8  
2.4  
3.4  
2.1  
3.2  
1.9  
JPGDEC  
4.1  
3.7  
3.4  
3.1  
FLASH  
17.0  
0.9  
15.0  
1.1  
14.0  
0.9  
12.0  
0.8  
FMC registers  
FMC kernel  
QUADSPI registers  
QSPI kernel  
SDMMC1 registers  
SDMMC1 kernel  
DTCM1  
7.0  
6.1  
5.6  
5.0  
1.5  
1.5  
1.4  
1.3  
1.0  
0.9  
0.8  
0.7  
AHB3  
8.2  
7.2  
6.7  
6.0  
1.3  
1.2  
0.9  
0.9  
7.9  
6.8  
6.0  
5.3  
DTCM2  
8.3  
7.2  
6.4  
5.7  
ITCM  
7.0  
6.3  
5.6  
5.1  
D1SRAM1  
13.0  
35.0  
120  
54.0  
55.0  
4.5  
11.0  
32.0  
106  
48.0  
49.0  
4.1  
9.9  
8.7  
AHB3 bridge  
Total AHB3  
DMA1  
29.0  
96  
26.0  
86  
µA/MHz  
41.0  
42.0  
3.7  
37.0  
37.0  
3.3  
DMA2  
ADC12 registers  
ADC12 kernel  
ART accelerator  
ETH1MAC  
1.0  
0.7  
0.4  
0.6  
4.1  
3.7  
3.2  
2.9  
17.0  
0.1  
15.0  
0.1  
14.0  
0.1  
12.0  
0.1  
ETH1TX  
ETH1RX  
0.1  
0.1  
0.1  
0.1  
AHB1  
USB1 OTG registers  
USB1 OTG kernel  
USB1 ULPI  
USB2 OTG registers  
USB2 OTG kernel  
USB2 ULPI  
AHB1 bridge  
Total AHB1  
23.0  
8.2  
21.0  
0.5  
19.0  
8.3  
17.0  
8.2  
0.1  
0.1  
0.1  
0.1  
21.0  
8.5  
19.0  
0.4  
17.0  
8.6  
15.0  
8.3  
23.0  
0.1  
19.0  
0.1  
20.0  
0.1  
19.0  
0.1  
220  
181  
178  
161  
DS12930 Rev 1  
123/242  
221  
 
Electrical characteristics  
STM32H747xI/G  
Table 48. Peripheral current consumption in Run mode (continued)  
Bus  
Peripheral  
VOS0  
VOS1  
VOS2  
VOS3  
Unit  
DCMI  
RNG registers  
RNG kernel  
SDMMC2 registers  
SDMMC2 kernel  
D2SRAM1  
D2SRAM2  
D2SRAM3  
AHB2 bridge  
Total AHB2  
GPIOA  
2.1  
1.7  
11.0  
47.0  
1.7  
5.7  
5.2  
4.1  
0.1  
79  
1.9  
2.0  
0.1  
41.0  
1.2  
4.9  
4.5  
3.6  
0.1  
60  
1.8  
1.3  
9.7  
37.0  
1.1  
4.4  
4.0  
3.2  
0.1  
63  
1.6  
1.2  
9.4  
34.0  
1.0  
3.9  
3.5  
2.8  
0.1  
58  
AHB2  
1.5  
1.2  
0.8  
1.1  
0.7  
0.8  
0.9  
1.1  
0.9  
0.8  
0.7  
0.4  
6.6  
1.7  
0.4  
2.3  
0.1  
22  
1.3  
1.0  
0.7  
1.0  
0.7  
0.8  
0.8  
1.0  
0.9  
0.8  
0.8  
0.5  
5.9  
1.5  
0.3  
1.9  
0.1  
20  
1.3  
1.0  
0.7  
1.0  
0.7  
0.7  
0.8  
1.0  
0.8  
0.7  
0.7  
0.4  
5.3  
1.2  
0.5  
1.7  
0.1  
19  
1.1  
0.9  
0.6  
0.9  
0.6  
0.6  
0.7  
0.9  
0.7  
0.7  
0.6  
0.3  
4.8  
1.2  
0.2  
1.5  
0.1  
16  
GPIOB  
GPIOC  
GPIOD  
GPIOE  
µA/MHz  
GPIOF  
GPIOG  
GPIOH  
GPIOI  
AHB4  
GPIOJ  
GPIOK  
CRC  
BDMA  
ADC3 registers  
ADC3 kernel  
BKPRAM  
AHB4 bridge  
Total AHB4  
WWDG1  
0.7  
81.0  
4.7  
0.1  
0.3  
87  
0.5  
36.0  
4.2  
0.1  
0.2  
41  
0.5  
33.0  
4.0  
0.1  
0.1  
38  
0.2  
30.0  
3.6  
0.1  
0.1  
34  
LCD-TFT  
DSI registers  
DSI kernel  
APB3 bridge  
Total APB3  
APB3  
µA/MHz  
124/242  
DS12930 Rev 1  
STM32H747xI/G  
Bus  
Electrical characteristics  
Table 48. Peripheral current consumption in Run mode (continued)  
Peripheral  
VOS0  
VOS1  
VOS2  
VOS3  
Unit  
TIM2  
TIM3  
7.7  
6.7  
6.3  
7.4  
1.4  
1.4  
3.2  
2.3  
2.1  
0.7  
2.4  
0.6  
2.0  
0.8  
1.8  
0.7  
0.5  
3.5  
1.9  
4.3  
1.9  
4.4  
1.7  
3.9  
1.6  
3.8  
1.1  
2.5  
1.0  
3.6  
3.2  
3.1  
3.5  
0.7  
0.7  
1.5  
1.1  
1.1  
0.5  
2.3  
0.5  
1.8  
0.6  
1.6  
0.9  
0.7  
2.8  
1.7  
3.9  
1.7  
3.9  
1.5  
3.4  
1.4  
3.4  
0.8  
2.3  
0.8  
3.3  
3.0  
2.8  
3.2  
0.8  
0.7  
1.5  
1.1  
1.1  
0.8  
1.9  
0.5  
1.7  
0.5  
1.6  
0.7  
0.7  
2.4  
1.4  
3.6  
1.4  
3.5  
1.4  
3.1  
1.4  
3.0  
0.9  
2.0  
0.9  
3.0  
2.7  
2.5  
2.8  
0.6  
0.6  
1.3  
0.9  
0.9  
0.7  
1.7  
0.4  
1.4  
0.6  
1.3  
0.7  
0.6  
2.2  
1.3  
3.2  
1.3  
3.2  
1.4  
2.8  
1.3  
2.7  
0.8  
1.9  
0.8  
TIM4  
TIM5  
TIM6  
TIM7  
TIM12  
TIM13  
TIM14  
LPTIM1 registers  
LPTIM1 kernel  
WWDG2  
SPI2 registers  
SPI2 kernel  
SPI3 registers  
SPI3 kernel  
SPDIFRX1 registers  
SPDIFRX1 kernel  
USART2 registers  
USART2 kernel  
USART3 registers  
USART3 kernel  
UART4 registers  
UART4 kernel  
UART5 registers  
UART5 kernel  
I2C1 registers  
I2C1 kernel  
I2C2 registers  
APB1  
µA/MHz  
DS12930 Rev 1  
125/242  
221  
Electrical characteristics  
STM32H747xI/G  
Table 48. Peripheral current consumption in Run mode (continued)  
Bus  
Peripheral  
VOS0  
VOS1  
VOS2  
VOS3  
Unit  
I2C2 kernel  
I2C3 registers  
I2C3 kernel  
2.3  
0.8  
2.4  
0.7  
0.1  
3.6  
1.8  
4.0  
2.0  
3.9  
6.4  
2.7  
0.1  
0.2  
3.3  
19.0  
9.1  
0.1  
142  
11.0  
10.0  
3.6  
0.1  
4.5  
0.1  
2.0  
0.9  
2.1  
0.6  
5.5  
4.1  
4.1  
2.0  
0.5  
1.3  
2.2  
1.0  
1.9  
0.5  
0.1  
1.3  
1.8  
3.3  
1.6  
3.4  
5.5  
2.4  
0.1  
0.3  
2.9  
17.0  
7.9  
0.1  
108  
5.0  
4.7  
2.5  
0.1  
3.0  
0.1  
1.7  
0.8  
1.7  
0.5  
2.5  
2.0  
1.9  
1.8  
0.4  
1.1  
1.9  
0.8  
1.8  
0.6  
3.2  
1.2  
1.6  
3.0  
1.6  
3.1  
5.0  
2.3  
0.1  
0.3  
2.6  
15.0  
6.9  
0.1  
102  
4.5  
4.3  
2.7  
0.1  
3.1  
0.1  
1.6  
0.7  
1.6  
0.5  
2.3  
1.8  
1.8  
1.6  
0.4  
1.1  
1.7  
0.8  
1.6  
0.5  
0.1  
1.0  
1.4  
2.8  
1.4  
2.8  
4.5  
1.9  
0.1  
0.2  
2.3  
13.0  
6.4  
0.1  
88  
HDMI-CEC registers  
HDMI-CEC kernel  
DAC12  
USART7 registers  
USART7 kernel  
USART8 registers  
USART8 kernel  
CRS  
APB1  
(continued)  
SWPMI registers  
SWPMI kernel  
OPAMP  
MDIO  
FDCAN registers  
FDCAN kernel  
APB1 bridge  
Total APB1  
TIM1  
µA/MHz  
4.0  
3.8  
2.9  
0.1  
3.4  
0.1  
1.4  
0.6  
1.5  
0.3  
2.1  
1.7  
1.6  
1.3  
0.5  
1.0  
TIM8  
USART1 registers  
USART1 kernel  
USART6 registers  
USART6 kernel  
SPI1 registers  
SPI1 kernel  
APB2  
SPI4 registers  
SPI4 kernel  
TIM15  
TIM16  
TIM17  
SPI5 registers  
SPI5 kernel  
SAI1 registers  
126/242  
DS12930 Rev 1  
STM32H747xI/G  
Bus  
Electrical characteristics  
Table 48. Peripheral current consumption in Run mode (continued)  
Peripheral  
VOS0  
VOS1  
VOS2  
VOS3  
Unit  
SAI1 kernel  
SAI2 registers  
SAI2 kernel  
1.4  
1.5  
1.1  
1.6  
1.1  
6.5  
0.3  
84.0  
0.2  
150  
0.9  
1.1  
2.9  
1.8  
0.4  
0.9  
2.2  
0.8  
2.3  
0.7  
2.1  
0.8  
2.2  
0.5  
2.0  
0.6  
0.4  
1.1  
1.7  
2.0  
0.1  
28  
1.1  
1.3  
1.0  
1.3  
1.2  
5.8  
0.2  
39.0  
0.1  
81  
1.0  
1.2  
0.9  
1.1  
1.1  
5.2  
0.2  
35.0  
0.1  
74  
0.8  
1.0  
0.9  
1.0  
0.9  
4.7  
0.4  
32.0  
0.2  
68  
SAI3 registers  
SAI3 kernel  
APB2  
(continued)  
DFSDM1 registers  
DFSDM1 kernel  
HRTIM  
APB2 bridge  
Total APB2  
SYSCFG  
1.0  
1.3  
2.2  
1.6  
0.4  
0.7  
2.1  
0.6  
2.1  
0.7  
1.7  
0.4  
2.0  
0.4  
1.8  
0.4  
0.2  
0.9  
1.4  
2.0  
0.1  
24.4  
0.7  
1.0  
2.2  
1.4  
0.5  
0.7  
1.9  
0.7  
1.8  
0.7  
1.6  
0.6  
1.7  
0.6  
1.5  
0.5  
0.2  
1.0  
1.3  
1.8  
0.1  
22.4  
0.8  
0.8  
2.1  
1.3  
0.3  
0.4  
1.8  
0.5  
1.4  
0.4  
1.5  
0.4  
1.5  
0.4  
1.2  
0.2  
0.1  
0.6  
1.0  
1.6  
0.1  
18.9  
LPUART1 registers  
LPUART1 kernel  
SPI6 registers  
SPI6 kernel  
I2C4 registers  
I2C4 kernel  
µA/MHz  
LPTIM2 registers  
LPTIM2 kernel  
LPTIM3 registers  
LPTIM3 kernel  
LPTIM4 registers  
LPTIM4 kernel  
LPTIM5 registers  
LPTIM5 kernel  
COMP12  
APB4  
VREF  
RTC  
SAI4 registers  
SAI4 kernel  
APB4 bridge  
Total APB4  
DS12930 Rev 1  
127/242  
221  
Electrical characteristics  
STM32H747xI/G  
6.3.8  
Wakeup time from low-power modes  
The wakeup times given in Table 49 are measured starting from the wakeup event trigger up  
to the first instruction executed by the CPU:  
For Stop or Sleep modes: the wakeup event is WFE.  
WKUP (PC1) pin is used to wakeup from Standby, Stop and Sleep modes.  
All timings are derived from tests performed under ambient temperature and V =3.3 V.  
DD  
(1)  
Table 49. Low-power mode wakeup timings  
Typ(2)  
Max(2)  
Symbol  
Parameter  
Conditions  
Unit  
CPU  
clock  
cycles  
(3)  
tWUSLEEP  
Wakeup from Sleep  
-
9
10  
VOS3, HSI, Flash memory in normal mode  
4.4  
12  
15  
23  
39  
39  
30  
36  
38  
47  
68  
68  
5.6  
15  
20  
28  
71  
47  
37  
50  
48  
61  
75  
77  
VOS3, HSI, Flash memory in low-power  
mode  
VOS4, HSI, Flash memory in normal mode  
VOS4, HSI, Flash memory in low-power  
mode  
VOS5, HSI, Flash memory in normal mode  
VOS5, HSI, Flash memory in low-power  
mode  
(3)  
tWUSTOP  
Wakeup from Stop  
VOS3, CSI, Flash memory in normal mode  
VOS3, CSI, Flash memory in low power  
mode  
µs  
VOS4, CSI, Flash memory in normal mode  
VOS4, CSI, Flash memory in low-power  
mode  
VOS5, CSI, Flash memory in normal mode  
VOS5, CSI, Flash memory in low-power  
mode  
VOS3, HSI, Flash memory in normal mode  
VOS3, CSI, Flash memory in normal mode  
2.6  
26  
3.4  
36  
tWUSTOP_  
Wakeup from Stop,  
clock kept running  
(3)  
KERON  
Wakeup from Standby  
mode  
(3)  
tWUSTDBY  
-
390  
500  
1. The wakeup timings is valid for both CPUs.  
2. Guaranteed by characterization results.  
3. The wakeup times are measured from the wakeup event to the point in which the application code reads the first instruction.  
128/242  
DS12930 Rev 1  
 
 
 
 
 
STM32H747xI/G  
Electrical characteristics  
6.3.9  
External clock source characteristics  
High-speed external user clock generated from an external source  
In bypass mode the HSE oscillator is switched off and the input pin is a standard I/O.  
The external clock signal has to respect the Table 71: I/O static characteristics. However,  
the recommended clock input waveform is shown in Figure 21.  
(1)  
Table 50. High-speed external user clock characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
fHSE_ext  
User external clock source frequency  
4
25  
50  
MHz  
VSW  
(VHSEHVHSEL)  
OSC_IN amplitude  
0.7VDD  
-
VDD  
V
VDC  
OSC_IN input voltage  
VSS  
7
-
-
0.3VSS  
-
tW(HSE)  
OSC_IN high or low time  
ns  
1. Guaranteed by design.  
Figure 21. High-speed external clock source AC timing diagram  
V
HSEH  
90%  
10 %  
HSEL  
V
t
t
t
W(HSE)  
t
t
W(HSE)  
r(HSE)  
f(HSE)  
T
HSE  
f
HSE_ext  
External  
I
L
OSC _I N  
clock source  
STM32  
ai17528b  
DS12930 Rev 1  
129/242  
221  
 
 
 
 
Electrical characteristics  
STM32H747xI/G  
Low-speed external user clock generated from an external source  
In bypass mode the LSE oscillator is switched off and the input pin is a standard I/O. The  
external clock signal has to respect the Table 71: I/O static characteristics. However, the  
recommended clock input waveform is shown in Figure 22.  
(1)  
Table 51. Low-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fLSE_ext User external clock source frequency  
VLSEH OSC32_IN input pin high level voltage  
VLSEL OSC32_IN input pin low level voltage  
-
-
-
-
32.768  
1000  
VDDIOx  
kHz  
0.7 VDDIOx  
VSS  
-
-
V
0.3 VDDIOx  
tw(LSEH)  
OSC32_IN high or low time  
tw(LSEL)  
-
250  
-
-
ns  
1. Guaranteed by design.  
Note:  
For information on selecting the crystal, refer to the application note AN2867 “Oscillator  
design guide for ST microcontrollers” available from the ST website www.st.com.  
Figure 22. Low-speed external clock source AC timing diagram  
V
LSEH  
90%  
10%  
V
LSEL  
t
t
W(LSE)  
t
t
t
W(LSE)  
r(LSE)  
f(LSE)  
T
LSE  
f
LSE_ext  
External  
I
L
OSC32_IN  
clock source  
STM32  
ai17529b  
130/242  
DS12930 Rev 1  
 
 
 
STM32H747xI/G  
Electrical characteristics  
High-speed external clock generated from a crystal/ceramic resonator  
The high-speed external (HSE) clock can be supplied with a 4 to 48 MHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on  
characterization results obtained with typical external components specified in Table 52. In  
the application, the resonator and the load capacitors have to be placed as close as  
possible to the oscillator pins in order to minimize output distortion and startup stabilization  
time. Refer to the crystal resonator manufacturer for more details on the resonator  
characteristics (frequency, package, accuracy).  
(1)  
Table 52. 4-48 MHz HSE oscillator characteristics  
Operating  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
conditions(2)  
F
Oscillator frequency  
Feedback resistor  
-
4
-
-
200  
-
48  
-
MHz  
RF  
-
kꢁ  
During startup(3)  
-
4
V
DD=3 V, Rm=30 ꢁ  
-
-
-
-
-
0.35  
0.40  
0.45  
0.65  
0.95  
-
-
-
-
-
CL=10pF@4MHz  
VDD=3 V, Rm=30 ꢁ  
CL=10 pF at 8 MHz  
IDD(HSE)  
HSE current consumption  
mA  
VDD=3 V, Rm=30 ꢁ  
CL=10 pF at 16 MHz  
VDD=3 V, Rm=30 ꢁ  
CL=10 pF at 32 MHz  
VDD=3 V, Rm=30 ꢁ  
CL=10 pF at 48 MHz  
Gmcritmax  
Maximum critical crystal gm  
Start-up time  
Startup  
-
-
-
1.5  
-
mA/V  
ms  
(4)  
tSU  
VDD is stabilized  
2
1. Guaranteed by design.  
2. Resonator characteristics given by the crystal/ceramic resonator manufacturer.  
3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time.  
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is  
reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.  
For C and C , it is recommended to use high-quality external ceramic capacitors in the  
L1  
L2  
5 pF to 25 pF range (typical), designed for high-frequency applications, and selected to  
match the requirements of the crystal or resonator (see Figure 23). C and C are usually  
L1  
L2  
the same size. The crystal manufacturer typically specifies a load capacitance which is the  
series combination of C and C . The PCB and MCU pin capacitance must be included  
L1  
L2  
(10 pF can be used as a rough estimate of the combined pin and board capacitance) when  
sizing C and C .  
L1  
L2  
Note:  
For information on selecting the crystal, refer to the application note AN2867 “Oscillator  
design guide for ST microcontrollers” available from the ST website www.st.com.  
DS12930 Rev 1  
131/242  
221  
 
 
Electrical characteristics  
STM32H747xI/G  
Figure 23. Typical application with an 8 MHz crystal  
Resonator with  
integrated capacitors  
C
L1  
f
OSC_IN  
HSE  
Bias  
controlled  
gain  
8 MHz  
resonator  
R
F
OSC_OUT  
(1)  
STM32  
R
EXT  
C
L2  
ai17530b  
1. REXT value depends on the crystal characteristics.  
Low-speed external clock generated from a crystal/ceramic resonator  
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on  
characterization results obtained with typical external components specified in Table 53. In  
the application, the resonator and the load capacitors have to be placed as close as  
possible to the oscillator pins in order to minimize output distortion and startup stabilization  
time. Refer to the crystal resonator manufacturer for more details on the resonator  
characteristics (frequency, package, accuracy).  
(1)  
Table 53. Low-speed external user clock characteristics  
Symbol  
Parameter  
Operating conditions(2)  
Min  
Typ  
Max  
Unit  
F
Oscillator frequency  
-
-
32.768  
-
kHz  
LSEDRV[1:0] = 00,  
Low drive capability  
-
-
-
-
-
-
-
290  
390  
550  
900  
-
-
-
LSEDRV[1:0] = 01,  
Medium Low drive capability  
LSE current  
consumption  
IDD  
nA  
LSEDRV[1:0] = 10,  
Medium high drive capability  
-
LSEDRV[1:0] = 11,  
High drive capability  
-
LSEDRV[1:0] = 00,  
Low drive capability  
0.5  
0.75  
1.7  
LSEDRV[1:0] = 01,  
Medium Low drive capability  
-
Maximum critical crystal  
gm  
Gmcritmax  
µA/V  
LSEDRV[1:0] = 10,  
Medium high drive capability  
-
LSEDRV[1:0] = 11,  
High drive capability  
-
-
-
2.7  
-
(3)  
tSU  
Startup time  
VDD is stabilized  
2
s
1. Guaranteed by design.  
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for  
ST microcontrollers.  
3. tSU is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768k Hz oscillation is  
reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.  
132/242  
DS12930 Rev 1  
 
 
 
STM32H747xI/G  
Electrical characteristics  
Note:  
For information on selecting the crystal, refer to the application note AN2867 “Oscillator  
design guide for ST microcontrollers” available from the ST website www.st.com.  
Figure 24. Typical application with a 32.768 kHz crystal  
Resonator with  
integrated capacitors  
C
L1  
f
OSC32_IN  
LSE  
Bias  
controlled  
gain  
32.768 kHz  
resonator  
R
F
OSC32_OUT  
STM32  
C
L2  
ai17531b  
1. An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one.  
6.3.10  
Internal clock source characteristics  
The parameters given in Table 54 to Table 57 are derived from tests performed under  
ambient temperature and V supply voltage conditions summarized in Table 22: General  
DD  
operating conditions.  
48 MHz high-speed internal RC oscillator (HSI48)  
Table 54. HSI48 oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VDD=3.3 V,  
TJ=30 °C  
fHSI48  
HSI48 frequency  
47.5(1)  
-
48  
48.5(1) MHz  
TRIM(2)  
USER trimming step  
USER TRIMMING Coverage  
Duty Cycle  
-
± 32 steps  
-
0.175  
-
-
%
%
%
%
USER TRIM  
COVERAGE(3)  
±4.79 ±5.60  
DuCy(HSI48)(2)  
45  
-
-
55  
3.5  
Accuracy of the HSI48 oscillator over  
temperature (factory calibrated)  
ACCHSI48_REL(3)(4)  
TJ=-40 to 125 °C  
–4.5  
VDD=3 to 3.6 V  
-
-
-
-
0.025  
0.05  
2.1  
0.05  
0.1  
HSI48 oscillator frequency drift with  
VDD  
VDD(HSI48)(3)  
%
(5)  
VDD=1.62 V to 3.6 V  
(2)  
tsu(HSI48)  
HSI48 oscillator start-up time  
-
-
4.0  
µs  
(2)  
IDD(HSI48)  
HSI48 oscillator power consumption  
350  
400  
µA  
Next transition jitter  
Accumulated jitter on 28 cycles(6)  
NT jitter  
PT jitter  
-
-
-
-
± 0.15  
± 0.25  
-
-
ns  
ns  
Paired transition jitter  
Accumulated jitter on 56 cycles(6)  
1. Guaranteed by test in production.  
2. Guaranteed by design.  
3. Guaranteed by characterization.  
4. fHSI = ACCHSI48_REL + VDD  
.
DS12930 Rev 1  
133/242  
221  
 
 
 
 
 
 
 
Electrical characteristics  
STM32H747xI/G  
5. These values are obtained by using the formula: (Freq(3.6V) - Freq(3.0V)) / Freq(3.0V) or (Freq(3.6V) - Freq(1.62V)) /  
Freq(1.62V).  
6. Jitter measurements are performed without clock source activated in parallel.  
64 MHz high-speed internal RC oscillator (HSI)  
(1)  
Table 55. HSI oscillator characteristics  
Symbol  
Parameter  
HSI frequency  
Conditions  
Min  
Typ  
Max  
Unit  
fHSI  
VDD=3.3 V, TJ=30 °C  
63.7(2)  
64  
64.3(2)  
MHz  
Trimming is not a multiple  
of 32  
-
0.24  
1.8  
0.8  
0.32  
Trimming is 128, 256 and  
384  
5.2  
1.4  
-
-
Trimming is 64, 192, 320  
and 448  
TRIM  
HSI user trimming step  
%
Other trimming are a  
multiple of 32 (not  
including multiple of 64  
and 128)  
0.6  
0.25  
-
DuCy(HSI) Duty Cycle  
-
45  
-
-
55  
%
%
HSI oscillator frequency drift over  
ΔVDD (HSI)  
VDD=1.62 to 3.6 V  
0.12  
0.03  
VDD (reference is 3.3 V)  
TJ=-20 to 105 °C  
1(3)  
-
-
1(3)  
1(3)  
2
HSI oscillator frequency drift over  
temperature (reference is 64 MHz)  
ΔTEMP (HSI)  
%
TJ=40 to TJmax °C  
2(3)  
tsu(HSI)  
HSI oscillator start-up time  
-
-
-
-
1.4  
4
µs  
µs  
µA  
tstab(HSI) HSI oscillator stabilization time  
DD(HSI) HSI oscillator power consumption  
at 1% of target frequency  
-
8
I
300  
400  
1. Guaranteed by design unless otherwise specified.  
2. Guaranteed by test in production.  
3. Guaranteed by characterization.  
4 MHz low-power internal RC oscillator (CSI)  
Table 56. CSI oscillator characteristics  
(1)  
Symbol  
Parameter  
CSI frequency  
Conditions  
Min  
Typ  
Max  
Unit  
fCSI  
TRIM  
VDD=3.3 V, TJ=30 °C  
3.96(2)  
4
0.35  
-
4.04(2) MHz  
Trimming step  
Duty Cycle  
-
-
45  
-
-
%
%
DuCy(CSI)  
-
55  
TJ = 0 to 85 °C  
TJ = 40 to 125 °C  
3.7(3) 4.5(3)  
CSI oscillator frequency drift over  
temperature  
TEMP (CSI)  
%
%
-
11(3)  
7.5(3)  
CSI oscillator frequency drift over  
VDD  
DVDD (CSI)  
VDD = 1.62 to 3.6 V  
-
0.06  
0.06  
134/242  
DS12930 Rev 1  
 
 
 
 
STM32H747xI/G  
Electrical characteristics  
(1)  
Table 56. CSI oscillator characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tsu(CSI)  
CSI oscillator startup time  
-
-
1
2
µs  
CSI oscillator stabilization time  
tstab(CSI)  
IDD(CSI)  
-
-
-
-
-
4
cycle  
µA  
(to reach ±3% of fCSI  
)
CSI oscillator power consumption  
23  
30  
1. Guaranteed by design.  
2. Guaranteed by test in production.  
3. Guaranteed by characterization.  
Low-speed internal (LSI) RC oscillator  
Table 57. LSI oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VDD = 3.3 V, TJ = 25 °C  
31.4(1)  
32  
32.6(1)  
TJ = –40 to 110 °C, VDD = 1.62 to  
3.6 V  
29.76(2)  
-
-
33.6(2)  
fLSI  
LSI frequency  
kHz  
TJ = –40 to 125 °C, VDD = 1.62 to  
3.6 V  
29.4  
-
33.6  
LSI oscillator  
startup time  
(3)  
tsu(LSI)  
-
80  
130  
LSI oscillator  
stabilization  
time (5% of  
final value)  
µs  
(3)  
tstab(LSI)  
-
-
-
120  
130  
170  
280  
LSI oscillator  
power  
(3)  
IDD(LSI)  
-
nA  
consumption  
1. Guaranteed by test in production.  
2. Guaranteed by characterization results.  
3. Guaranteed by design.  
DS12930 Rev 1  
135/242  
221  
 
 
Electrical characteristics  
STM32H747xI/G  
6.3.11  
PLL characteristics  
The parameters given in Table 58 are derived from tests performed under temperature and  
V
supply voltage conditions summarized in Table 22: General operating conditions.  
DD  
(1)  
Table 58. PLL characteristics (wide VCO frequency range)  
Symbol  
fPLL_IN  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
PLL input clock  
-
2
10  
1.5  
1.5  
1.5  
1.5  
192  
-
-
16  
MHz  
%
PLL input clock duty cycle  
-
-
90  
VOS0  
VOS1  
VOS2  
VOS3  
-
-
480(2)  
400(2)  
300(2)  
200(2)  
960  
-
fPLL_P_OUT PLL multiplier output clock P  
-
MHz  
µs  
-
fVCO_OUT  
PLL VCO output  
PLL lock time  
-
Normal mode  
50(3)  
150(3)  
tLOCK  
Sigma-delta mode  
(CKIN 8 MHz)  
-
-
-
-
-
-
58(3)  
134  
134  
76  
166(3)  
VCO =  
192 MHz  
-
-
-
-
-
VCO =  
200 MHz  
Cycle-to-cycle jitter(4)  
-
±ps  
VCO =  
400 MHz  
VCO =  
800 MHz  
39  
VCO =  
800 MHz  
Normal mode  
±0.7  
Jitter  
Long term jitter  
%
Sigma-delta  
mode (CKIN =  
16 MHz)  
VCO =  
800 MHz  
-
±0.8  
-
VDDA  
VCORE  
VDDA  
-
-
-
-
590  
720  
180  
280  
1500  
VCO freq =  
836 MHz  
-
600  
-
(3)  
IDD(PLL)  
PLL power consumption on VDD  
µA  
VCO freq =  
192 MHz  
VCORE  
1. Guaranteed by design unless otherwise specified.  
2. This value must be limited to the maximum frequency due to the product limitation (480 MHz for VOS0, 400 MHz for VOS1,  
300 MHz for VOS2, 200 MHz for VOS3).  
3. Guaranteed by characterization results.  
4. Integer mode only.  
136/242  
DS12930 Rev 1  
 
 
 
 
 
STM32H747xI/G  
Symbol  
Electrical characteristics  
(1)  
Table 59. PLL characteristics (medium VCO frequency range)  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
PLL input clock  
-
1
-
-
-
-
-
-
2
MHz  
%
fPLL_IN  
PLL input clock duty cycle  
-
VOS1  
10  
90  
1.17  
1.17  
1.17  
150  
-
210  
210  
200  
420  
PLL multiplier output clock P, Q,  
R
fPLL_OUT  
VOS2  
MHz  
µs  
VOS3  
fVCO_OUT  
tLOCK  
PLL VCO output  
PLL lock time  
-
Normal mode  
Sigma-delta mode  
60(2) 100(2)  
forbidden  
VCO =  
150 MHz  
-
-
-
-
-
-
-
145  
-
-
-
-
-
-
-
VCO =  
300 MHz  
91  
64  
Cycle-to-cycle jitter(3)  
-
±ps  
VCO =  
400 MHz  
VCO =  
420 MHz  
Jitter  
63  
VCO =  
150 MHz  
55  
fPLL_OUT  
50 MHz  
=
Period jitter  
±-ps  
%
VCO =  
400 MHz  
30  
VCO =  
400 MHz  
Long term jitter  
Normal mode  
±0.3  
VDD  
VCORE  
VDD  
-
-
-
-
440  
530  
180  
200  
1150  
VCO freq =  
420MHz  
-
500  
-
I(PLL)(2)  
PLL power consumption on VDD  
µA  
VCO freq =  
150MHz  
VCORE  
1. Guaranteed by design unless otherwise specified.  
2. Guaranteed by characterization results.  
3. Integer mode only.  
6.3.12  
MIPI D-PHY characteristics  
The parameters given in Table 60 and Table 61 are derived from tests performed under  
temperature and V supply voltage conditions summarized in Table 22: General operating  
DD  
conditions.  
(1)  
Table 60. MIPI D-PHY characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
ns  
Hi-Speed Input/Output Characteristics  
UINST  
UI instantaneous  
-
2
-
12.5  
DS12930 Rev 1  
137/242  
221  
 
 
 
 
 
Electrical characteristics  
STM32H747xI/G  
(1)  
Table 60. MIPI D-PHY characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
HS transmit common mode  
voltage  
VCMTX  
-
150  
200  
250  
VCMTX mismatch when output  
is Differential-1 or Differential-0  
|VCMTX  
|VOD  
|VOD  
VOHHS  
ZOS  
|
-
-
-
-
-
-
140  
-
-
200  
-
5
mV  
|
HS transmit differential voltage  
270  
14  
VOD mismatch when output is  
Differential-1 or Differential-0  
|
HS output high voltage  
-
-
360  
62.5  
Single ended output  
impedance  
40  
50  
Single ended output  
impedance mismatch  
ZOS  
-
-
-
-
-
10  
%
tHSr & tHSf 20%-80% rise and fall time  
100  
0.35*UI  
ps  
LP Receiver Input Characteristics  
Logic 0 input voltage (not in  
ULP State)  
VIL  
-
-
-
-
-
-
550  
300  
Logic 0 input voltage in ULP  
State  
VIL-ULPS  
mV  
VIH  
Input high level voltage  
Voltage hysteresis  
-
-
880  
25  
-
-
-
-
Vhys  
LP Emitter Output Characteristics  
VIL  
Output low level voltage  
-
-
1.1  
-50  
1.2  
-
1.2  
50  
V
VIL-ULPS Output high level voltage  
mV  
Output impedance of LP  
transmitter  
VIH  
-
-
110  
-
-
-
-
Vhys  
15%-85% rise and fall time  
25  
ns  
LP Contention Detector Characteristics  
VILCD  
VIHCD  
Logic 0 contention threshold  
Logic 0 contention threshold  
-
-
-
-
-
200  
-
mV  
450  
1. Guaranteed based on test during characterization.  
138/242  
DS12930 Rev 1  
STM32H747xI/G  
Electrical characteristics  
Table 61. MIPI D-PHY AC characteristics LP mode and HS/LP  
(1)  
transitions  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Transmitted length of any Low-  
Power state period  
TLPX  
-
50  
-
-
Time that the transmitter drives  
the Clock Lane LP-00 Line  
TCLK-PREPARE state immediately before the  
HS-0 Line state starting the HS  
transmission.  
-
-
-
38  
300  
8
-
-
-
95  
-
ns  
TCLK-PREPARE Time that the transmitter drives  
+
the HS-0 state prior to starting  
the clock.  
TCLK-ZERO  
Time that the HS clock shall be  
driven by the transmitter prior to  
any associated Data Lane  
beginning the transition from  
LP to HS mode.  
TCLK-PRE  
-
UI  
Time that the transmitter  
continues to send HS clock  
after the last associated Data  
Lane has transitioned to LP  
Mode.  
TCLK-POST  
-
-
-
62+52*UI  
-
-
-
-
Time that the transmitter drives  
the HS-0 state after the last  
payload clock bit of an HS  
transmission burst.  
TCLK-TRAIL  
60  
-
Time that the transmitter drives  
the Data Lane LP-00 Line state  
THS-PREPARE immediately before the HS-0  
Line state starting the HS  
transmission.  
40+4*UI  
145+10*UI  
85+6*UI  
THS-PREPARE+ Time that the  
transmitter drives the HS-0  
THS-PREPARE  
ns  
+
-
-
-
-
-
-
state prior to transmitting the  
THS-ZERO  
Sync sequence.  
Time that the transmitter drives  
the flipped differential state  
after last payload data bit of a  
HS transmission burst.  
Max  
(n*8*UI,  
60+n*4*UI)  
THS-TRAIL  
Time that the transmitter drives  
THS-EXIT  
-
-
100  
-
-
-
-
LP-11 following a HS burst.  
TREOT  
30%-85% rise time and fall time  
35  
Transmitted time interval from  
the start of THS-TRAIL or  
TCLK-TRAIL, to the start of the  
LP-11 state following a HS  
burst.  
105+  
n*12UI  
TEOT  
-
-
-
1. Guaranteed based on test during characterization.  
DS12930 Rev 1  
139/242  
221  
 
Electrical characteristics  
STM32H747xI/G  
Figure 25. MIPI D-PHY HS/LP clock lane transition timing diagram  
TCLK-POST  
TEOT  
VIL  
Clock  
Lane  
TCLK-TRAIL THS-EXIT  
TLPX TCLK-PREPARE TCLK-ZERO TCLK-PRE  
TLPX THS-PREPARE  
VIL  
Data  
Lane  
MS38282V1  
Figure 26. MIPI D-PHY HS/LP data lane transition timing diagram  
Clock  
Lane  
TLPX  
THS-PREPARE THS-ZERO  
Data  
Lane  
VIL  
TREOT  
LP-11  
LP-01 LP-00  
TEOT  
THS-TRAIL  
THS-EXIT  
MS38283V1  
6.3.13  
MIPI D-PHY regulator characteristics  
The parameters given in Table 62 are derived from tests performed under temperature and  
V
supply voltage conditions summarized in Table 22: General operating conditions.  
DD  
(1)  
Table 62. DSI regulator characteristics  
Symbol  
Parameter  
Regulator output voltage on VDDDSI  
Conditions  
Min Typ Max Unit  
VDDDSI  
-
1.62  
-
-
V
VDD12DSI 1.2 V internal voltage on VDD12DSI  
-
1.15 1.20 1.26  
0.5 2.2(2) 3.3  
CEXT  
ESR  
External capacitor on VCAPDSI  
External serial resistor  
Static load current  
-
μF  
-
0
-
25  
-
600 mꢁ  
ILOAD  
-
50  
mA  
ILOAD = 0 mA  
ILOAD = 50 mA  
110 170 220  
140 200 260  
IDDDSIREG Regulator power consumption on VDDDSI  
µA  
140/242  
DS12930 Rev 1  
 
 
 
 
 
STM32H747xI/G  
Electrical characteristics  
(1)  
Table 62. DSI regulator characteristics (continued)  
Parameter Conditions  
Symbol  
Min Typ Max Unit  
C
EXT = 2.2 µF  
-
-
-
80  
-
-
tWAKEUP Startup delay  
µs  
CEXT = 3.3 µF  
160  
250  
IINRUSH  
Inrush current on VDDDSI  
External capacitor load at start  
60  
mA  
1. Based on test during characterization.  
2. CEXT recommended value is 2.2 μF to achieve a better dynamic performance of the regulator. A 1 μF capacitor can be  
used only if the minimum value does not drop below 0.5 μF.  
6.3.14  
Memory characteristics  
Flash memory  
The characteristics are given at T = –40 to 125 °C unless otherwise specified.  
J
The devices are shipped to customers with the Flash memory erased.  
Table 63. Flash memory characteristics  
Symbol  
Parameter  
Conditions  
Write / Erase 8-bit mode  
Min  
Typ  
Max  
Unit  
-
-
-
-
6.5  
11.5  
20  
-
-
-
-
Write / Erase 16-bit mode  
Write / Erase 32-bit mode  
Write / Erase 64-bit mode  
IDD  
Supply current  
mA  
35  
Table 64. Flash memory programming (single bank configuration nDBANK=1)  
Symbol  
Parameter  
Conditions  
Min(1)  
Typ  
Max(1) Unit  
Program/erase parallelism x 8  
Program/erase parallelism x 16  
Program/erase parallelism x 32  
Program/erase parallelism x 64  
Program/erase parallelism x 8  
Program/erase parallelism x 16  
Program/erase parallelism x 32  
Program/erase parallelism x 8  
Program/erase parallelism x 16  
Program/erase parallelism x 32  
Program/erase parallelism x 64  
-
-
-
-
-
-
-
-
-
-
-
290  
180  
130  
100  
2
580(2)  
360  
µs  
260  
Word (266 bits) programming  
time  
tprog  
200  
4
tERASE128KB Sector (128 KB) erase time  
1.8  
3.6  
13  
8
26  
16  
12  
10  
s
tME  
Mass erase time  
6
5
DS12930 Rev 1  
141/242  
221  
 
 
 
Electrical characteristics  
STM32H747xI/G  
Table 64. Flash memory programming (single bank configuration nDBANK=1) (continued)  
Symbol  
Parameter  
Conditions  
Min(1)  
Typ  
Max(1) Unit  
Program parallelism x 8  
Program parallelism x 16  
Program parallelism x 32  
Program parallelism x 64  
1.62  
1.8  
-
-
3.6  
V
Vprog  
Programming voltage  
3.6  
1. Guaranteed by characterization results.  
2. The maximum programming time is measured after 10K erase operations.  
Table 65. Flash memory endurance and data retention  
Value  
Min(1)  
Symbol  
Parameter  
Conditions  
Unit  
NEND  
tRET  
Endurance  
Data retention  
TJ = –40 to +125 °C (6 suffix versions)  
1 kcycle at TA = 85 °C  
kcycles  
Years  
10  
30  
20  
10 kcycles at TA = 55 °C  
1. Guaranteed by characterization results.  
6.3.15  
EMC characteristics  
Susceptibility tests are performed on a sample basis during device characterization.  
Functional EMS (electromagnetic susceptibility)  
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).  
the device is stressed by two electromagnetic events until a failure occurs. The failure is  
indicated by the LEDs:  
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until  
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.  
FTB: A burst of fast transient voltage (positive and negative) is applied to V and V  
through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant  
with the IEC 61000-4-4 standard.  
DD  
SS  
A device reset allows normal operations to be resumed.  
The test results are given in Table 66. They are based on the EMS levels and classes  
defined in application note AN1709.  
Table 66. EMS characteristics  
Level/  
Class  
Symbol  
Parameter  
Conditions  
Voltage limits to be applied on any I/O pin to induce  
a functional disturbance  
VFESD  
3B  
5A  
VDD = 3.3 V, TA = +25 °C,  
UFBGA240, frcc_c_ck  
=
Fast transient voltage burst limits to be applied  
through 100 pF on VDD and VSS pins to induce a  
functional disturbance  
400 MHz, conforms to  
IEC 61000-4-2  
VFTB  
142/242  
DS12930 Rev 1  
 
 
 
 
STM32H747xI/G  
Electrical characteristics  
As a consequence, it is recommended to add a serial resistor (1 kΏ) located as close as  
possible to the MCU to the pins exposed to noise (connected to tracks longer than 50 mm  
on PCB).  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
Software recommendations  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical Data corruption (control registers...)  
Prequalification trials  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1  
second.  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring (see application note AN1015).  
Electromagnetic Interference (EMI)  
The electromagnetic field emitted by the device are monitored while a simple application,  
executing EEMBC code, is running. This emission test is compliant with SAE IEC61967-2  
standard which specifies the test board and the pin loading.  
Table 67. EMI characteristics  
Max vs.  
Monitored  
frequency band  
[fHSE/fCPU  
]
Symbol Parameter  
Conditions  
Unit  
8/400 MHz  
0.1 to 30 MHz  
30 to 130 MHz  
130 MHz to 1 GHz  
1 GHz to 2 GHz  
EMI Level  
11  
6
dBµV  
-
VDD = 3.6 V, TA = 25 °C, UFBGA240 package,  
conforming to IEC61967-2  
SEMI  
Peak level  
12  
7
2.5  
DS12930 Rev 1  
143/242  
221  
 
Electrical characteristics  
STM32H747xI/G  
6.3.16  
Absolute maximum ratings (electrical sensitivity)  
Based on three different tests (ESD, LU) using specific measurement methods, the device is  
stressed in order to determine its performance in terms of electrical sensitivity.  
Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse) are applied to the pins of each  
sample according to each pin combination. This test conforms to the ANSI/ESDA/JEDEC  
JS-001 and ANSI/ESDA/JEDEC JS-002 standards.  
Table 68. ESD absolute maximum ratings  
Maximum  
Symbol  
Ratings  
Conditions  
Packages  
Class  
Unit  
value(1)  
Electrostatic discharge  
VESD(HBM) voltage (human body  
model)  
TA = +25 °C conforming to  
ANSI/ESDA/JEDEC JS-  
001  
All  
1C  
1000  
V
Electrostatic discharge  
VESD(CDM) voltage (charge device  
model)  
TA = +25 °C conforming to  
ANSI/ESDA/JEDEC JS-  
002  
All  
C1  
250  
1. Guaranteed by characterization results.  
Static latchup  
Two complementary static tests are required on six parts to assess the latchup  
performance:  
A supply overvoltage is applied to each power supply pin  
A current injection is applied to each input, output and configurable I/O pin  
These tests are compliant with JESD78 IC latchup standard.  
Table 69. Electrical sensitivities  
Symbol  
Parameter  
Conditions  
Class  
LU  
Static latchup class  
TA = +25 °C conforming to JESD78  
II level A  
144/242  
DS12930 Rev 1  
 
 
 
STM32H747xI/G  
Electrical characteristics  
6.3.17  
I/O current injection characteristics  
As a general rule, a current injection to the I/O pins, due to external voltage below V or  
SS  
above V (for standard, 3.3 V-capable I/O pins) should be avoided during the normal  
DD  
product operation. However, in order to give an indication of the robustness of the  
microcontroller in cases when an abnormal injection accidentally happens, susceptibility  
tests are performed on a sample basis during the device characterization.  
Functional susceptibility to I/O current injection  
While a simple application is executed on the device, the device is stressed by injecting  
current into the I/O pins programmed in floating input mode. While current is injected into  
the I/O pin, one at a time, the device is checked for functional failures.  
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher  
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out  
of –5 µA/+0 µA range), or other functional failure (for example reset, oscillator frequency  
deviation).  
The following tables are the compilation of the SIC1/SIC2 and functional ESD results.  
Negative induced A negative induced leakage current is caused by negative injection and  
positive induced leakage current by positive injection.  
Table 70. I/O current injection susceptibility(1)  
Functional susceptibility  
Symbol  
Description  
Unit  
Negative  
injection  
Positive  
injection  
PA7, PC5, PG1, PB14, PJ7, PA11, PA12, PA13, PA14, PA15,  
PJ12, PB4  
5
0
0
5
0
PA2, PH2, PH3, PE8, PA6, PA7, PC4, PE7, PE10, PE11  
NA  
0
IINJ  
mA  
PA0, PA_C, PA1, PA1_C, PC2, PC2_C, PC3, PC3_C, PA4,  
PA5, PH4, PH5, BOOT0  
All other I/Os  
NA  
1. Guaranteed by characterization.  
DS12930 Rev 1  
145/242  
221  
 
 
 
Electrical characteristics  
STM32H747xI/G  
6.3.18  
I/O port characteristics  
General input/output characteristics  
Unless otherwise specified, the parameters given in Table 71: I/O static characteristics are  
derived from tests performed under the conditions summarized in Table 22: General  
operating conditions. All I/Os are CMOS and TTL compliant (except for BOOT0).  
Table 71. I/O static characteristics  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
I/O input low level voltage except  
BOOT0  
(1)  
-
-
0.3VDD  
I/O input low level voltage except  
BOOT0  
0.4VDD0.  
VIL  
1.62 V<VDDIOx<3.6 V  
-
-
-
V
1(2)  
0.19VDD  
+
BOOT0 I/O input low level voltage  
-
0.1(2)  
I/O input high level voltage except  
BOOT0  
(1)  
0.7VDD  
-
-
-
-
-
I/O input high level voltage except  
BOOT0(3)  
0.47VDD+0.  
25(2)  
VIH  
1.62 V<VDDIOx<3.6 V  
-
-
V
BOOT0 I/O input high level  
voltage(3)  
0.17VDD+0.  
6(2)  
TT_xx, FT_xxx and NRST I/O  
input hysteresis  
-
250  
(2)  
VHYS  
1.62 V< VDDIOx <3.6 V  
mV  
BOOT0 I/O input hysteresis  
-
-
200  
-
-
(9)  
0< VIN Max(VDDXXX  
)
+/-250  
FT_xx Input leakage current(2)  
Max(VDDXXX) < VIN 5.5 V  
-
-
-
-
-
-
1500  
(5)(6)(9)  
(9)  
0< VIN Max(VDDXXX  
)
+/- 350  
5000(7)  
(4)  
FT_u IO  
Ileak  
Max(VDDXXX) < VIN 5.5 V  
nA  
(5)(6)(9)  
(9)  
TT_xx Input leakage current  
0< VIN Max(VDDXXX  
0< VIN VDDIOX  
)
-
-
-
-
+/-250  
15  
VPP (BOOT0 alternate function)  
VDDIOX < VIN 9 V  
35  
Weak pull-up equivalent  
resistor(8)  
RPU  
VIN=VSS  
30  
40  
50  
kꢁ  
Weak pull-down equivalent  
resistor(8)  
(9)  
RPD  
CIO  
VIN=VDD  
-
30  
-
40  
5
50  
-
I/O pin capacitance  
pF  
1. Compliant with CMOS requirements.  
2. Guaranteed by design.  
3. VDDIOx represents VDDIO1, VDDIO2 or VDDIO3. VDDIOx= VDD.  
4. This parameter represents the pad leakage of the I/O itself. The total product pad leakage is provided by the following  
formula: ITotal_Ileak_max = 10 μA + [number of I/Os where VIN is applied on the pad] Ilkg(Max)  
.
5. All FT_xx IO except FT_lu, FT_u and PC3.  
146/242  
DS12930 Rev 1  
 
 
 
 
 
 
 
STM32H747xI/G  
Electrical characteristics  
6. VIN must be less than Max(VDDXXX) + 3.6 V.  
7. To sustain a voltage higher than MIN(VDD, VDDA, VDD33USB) +0.3 V, the internal pull-up and pull-down resistors must be  
disabled.  
8. The pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This  
PMOS/NMOS contribution to the series resistance is minimal (~10% order).  
9. Max(VDDXXX) is the maximum value of all the I/O supplies.  
All I/Os are CMOS and TTL compliant (no software configuration required). Their  
characteristics cover more than the strict CMOS-technology or TTL parameters. The  
coverage of these requirements for FT I/Os is shown in Figure 27.  
Figure 27. V /V for all I/Os except BOOT0  
IL IH  
3
2.5  
2
TLL requirement: VIHmin = 2 V  
1.5  
1
TLL requirement: VILmin = 0.8 V  
0.5  
0
2.8  
1.6  
1.8  
2
2.2  
2.4  
2.6  
3
3.2  
3.4  
3.6  
MSv46121V3  
Output driving current  
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or  
source up to ±20 mA (with a relaxed V /V ).  
OL OH  
In the user application, the number of I/O pins which can drive current must be limited to  
respect the absolute maximum rating specified in Section 6.2. In particular:  
The sum of the currents sourced by all the I/Os on V  
plus the maximum Run  
DD,  
consumption of the MCU sourced on V  
cannot exceed the absolute maximum rating  
DD,  
ΣI  
(see Table 20).  
VDD  
The sum of the currents sunk by all the I/Os on V plus the maximum Run  
SS  
consumption of the MCU sunk on V cannot exceed the absolute maximum rating  
SS  
ΣI  
(see Table 20).  
VSS  
DS12930 Rev 1  
147/242  
221  
 
 
Electrical characteristics  
STM32H747xI/G  
Output voltage levels  
Unless otherwise specified, the parameters given in Table 72: Output voltage characteristics  
for all I/Os except PC13, PC14, PC15 and PI8 and Table 73: Output voltage characteristics  
for PC13, PC14, PC15 and PI8 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 22: General operating  
DD  
conditions. All I/Os are CMOS and TTL compliant.  
(1)  
Table 72. Output voltage characteristics for all I/Os except PC13, PC14, PC15 and PI8  
Symbol  
Parameter  
Conditions(3)  
Min  
Max  
Unit  
CMOS port(2)  
IIO=8 mA  
VOL  
Output low level voltage  
-
0.4  
2.7 VVDD 3.6 V  
CMOS port(2)  
IIO=-8 mA  
VOH  
Output high level voltage  
Output low level voltage  
Output high level voltage  
V
DD0.4  
-
0.4  
-
2.7 VVDD 3.6 V  
TTL port(2)  
IIO=8 mA  
(3)  
VOL  
-
2.7 VVDD 3.6 V  
TTL port(2)  
IIO=-8 mA  
(3)  
VOH  
2.4  
-
2.7 VVDD 3.6 V  
V
IIO=20 mA  
(3)  
VOL  
Output low level voltage  
Output high level voltage  
Output low level voltage  
Output high level voltage  
1.3  
-
2.7 VVDD 3.6 V  
IIO=-20 mA  
(3)  
VOH  
VDD1.3  
2.7 VVDD 3.6 V  
IIO=4 mA  
(3)  
VOL  
-
0.4  
-
1.62 VVDD 3.6 V  
IIO=-4 mA  
1.62 VVDD<3.6 V  
(3)  
VOH  
VDD-0.4  
IIO= 20 mA  
-
-
0.4  
0.4  
2.3 VVDD3.6 V  
Output low level voltage for an FTf  
I/O pin in FM+ mode  
(3)  
VOLFM+  
IIO= 10 mA  
1.62 VVDD 3.6 V  
1. The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 19:  
Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always  
respect the absolute maximum ratings ΣIIO.  
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.  
3. Guaranteed by design.  
148/242  
DS12930 Rev 1  
 
 
 
 
STM32H747xI/G  
Electrical characteristics  
(1)  
Table 73. Output voltage characteristics for PC13, PC14, PC15 and PI8  
Symbol  
Parameter  
Conditions(3)  
Min  
Max  
Unit  
CMOS port(2)  
IIO=3 mA  
VOL  
Output low level voltage  
-
0.4  
2.7 VVDD 3.6 V  
CMOS port(2)  
IIO=-3 mA  
VOH  
Output high level voltage  
Output low level voltage  
Output high level voltage  
V
DD0.4  
-
0.4  
-
2.7 VVDD 3.6 V  
TTL port(2)  
IIO=3 mA  
(3)  
VOL  
-
V
2.7 VVDD 3.6 V  
TTL port(2)  
IIO=-3 mA  
(2)  
VOH  
2.4  
-
2.7 VVDD 3.6 V  
IIO=1.5 mA  
(2)  
VOL  
Output low level voltage  
Output high level voltage  
0.4  
-
1.62 VVDD 3.6 V  
IIO=-1.5 mA  
(2)  
VOH  
VDD0.4  
1.62 VVDD 3.6 V  
1. The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 19:  
Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always  
respect the absolute maximum ratings ΣIIO.  
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.  
3. Guaranteed by design.  
DS12930 Rev 1  
149/242  
221  
 
 
 
Electrical characteristics  
STM32H747xI/G  
Output buffer timing characteristics (HSLV option disabled)  
The HSLV bit of SYSCFG_CCCSR register can be used to optimize the I/O speed when the  
product voltage is below 2.7 V.  
(1)(2)  
Table 74. Output timing characteristics (HSLV OFF)  
Speed Symbol  
Parameter  
conditions  
Min  
Max  
Unit  
C=50 pF, 2.7 VVDD3.6 V  
C=50 pF, 1.62 VVDD2.7 V  
C=30 pF, 2.7 VVDD3.6 V  
C=30 pF, 1.62 VVDD2.7 V  
C=10 pF, 2.7 VVDD3.6 V  
C=10 pF, 1.62 VVDD2.7 V  
C=50 pF, 2.7 VVDD3.6 V  
C=50 pF, 1.62 VVDD2.7 V  
C=30 pF, 2.7 VVDD3.6 V  
C=30 pF, 1.62 VVDD2.7 V  
C=10 pF, 2.7 VVDD3.6 V  
C=10 pF, 1.62 VVDD2.7 V  
C=50 pF, 2.7 VVDD3.6 V  
C=50 pF, 1.62 VVDD2.7 V  
C=30 pF, 2.7 VVDD3.6 V  
C=30 pF, 1.62 VVDD2.7 V  
C=10 pF, 2.7 VVDD3.6 V  
C=10 pF, 1.62 VVDD2.7 V  
C=50 pF, 2.7 VVDD3.6 V  
C=50 pF, 1.62 VVDD2.7 V  
C=30 pF, 2.7 VVDD3.6 V  
C=30 pF, 1.62 VVDD2.7 V  
C=10 pF, 2.7 VVDD3.6 V  
C=10 pF, 1.62 VVDD2.7 V  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
12  
3
12  
(3)  
Fmax  
Maximum frequency  
MHz  
3
16  
4
00  
16.6  
33.3  
13.3  
25  
Output high to low level  
fall time and output low  
to high level rise time  
tr/tf(4)  
ns  
MHz  
ns  
10  
20  
60  
15  
80  
(3)  
Fmax  
Maximum frequency  
15  
110  
20  
01  
5.2  
10  
Output high to low level  
fall time and output low  
to high level rise time  
4.2  
7.5  
2.8  
5.2  
tr/tf(4)  
150/242  
DS12930 Rev 1  
 
STM32H747xI/G  
Electrical characteristics  
(continued)  
(1)(2)  
Table 74. Output timing characteristics (HSLV OFF)  
Speed Symbol  
Parameter  
conditions  
Min  
Max  
Unit  
C=50 pF, 2.7 VVDD3.6 V(5)  
C=50 pF, 1.62 VVDD2.7 V(5)  
C=30 pF, 2.7 VVDD3.6 V(5)  
C=30 pF, 1.62 VVDD2.7 V(5)  
C=10 pF, 2.7 VVDD3.6 V(5)  
C=10 pF, 1.62 VVDD2.7 V(5)  
C=50 pF, 2.7 VVDD3.6 V(5)  
C=50 pF, 1.62 VVDD2.7 V(5)  
C=30 pF, 2.7 VVDD3.6 V(5)  
C=30 pF, 1.62 VVDD2.7 V(5)  
C=10 pF, 2.7 VVDD3.6 V(5)  
C=10 pF, 1.62 VVDD2.7 Vv  
C=50 pF, 2.7 VVDD3.6 Vv  
C=50 pF, 1.62 VVDD2.7 V(5)  
C=30 pF, 2.7 VVDD3.6 Vv  
C=30 pF, 1.62 VVDD2.7 V(5)  
C=10 pF, 2.7 VVDD3.6 V(5)  
C=10 pF, 1.62 VVDD2.7 V(5)  
C=50 pF, 2.7 VVDD3.6 V(5)  
C=50 pF, 1.62 VVDD2.7 V(5)  
C=30 pF, 2.7 VVDD3.6 V(5)  
C=30 pF, 1.62 VVDD2.7 V(5)  
C=10 pF, 2.7 VVDD3.6 V(5)  
C=10 pF, 1.62 VVDD2.7 V(5)  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
85  
35  
110  
40  
(3)  
Fmax  
Maximum frequency  
MHz  
166  
100  
3.8  
6.9  
2.8  
5.2  
1.8  
3.3  
100  
50  
10  
Output high to low level  
fall time and output low  
to high level rise time  
tr/tf(4)  
ns  
MHz  
ns  
133  
66  
(3)  
Fmax  
Maximum frequency  
220  
85  
11  
3.3  
6.6  
2.4  
4.5  
1.5  
2.7  
Output high to low level  
fall time and output low  
to high level rise time  
tr/tf(4)  
1. Guaranteed by design.  
2. The frequency of the GPIOs that can be supplied in VBAT mode (PC13, PC14, PC15 and PI8) is limited to 2 MHz  
3. The maximum frequency is defined with the following conditions:  
(tr+tf) 2/3 T  
Skew 1/20 T  
45%<Duty cycle<55%  
4. The fall and rise times are defined between 90% and 10% and between 10% and 90% of the output waveform, respectively.  
5. Compensation system enabled.  
DS12930 Rev 1  
151/242  
221  
 
 
 
Electrical characteristics  
STM32H747xI/G  
Output buffer timing characteristics (HSLV option enabled)  
(1)  
Table 75. Output timing characteristics (HSLV ON)  
Speed Symbol  
Parameter  
conditions  
Min  
Max  
Unit  
C=50 pF, 1.62 VVDD2.7 V  
C=30 pF, 1.62 VVDD2.7 V  
C=10 pF, 1.62 VVDD2.7 V  
C=50 pF, 1.62 VVDD2.7 V  
C=30 pF, 1.62 VVDD2.7 V  
C=10 pF, 1.62 VVDD2.7 V  
C=50 pF, 1.62 VVDD2.7 V  
C=30 pF, 1.62 VVDD2.7 V  
C=10 pF, 1.62 VVDD2.7 V  
C=50 pF, 1.62 VVDD2.7 V  
C=30 pF, 1.62 VVDD2.7 V  
C=10 pF, 1.62 VVDD2.7 V  
C=50 pF, 1.62 VVDD2.7 V(4)  
C=30 pF, 1.62 VVDD2.7 V(4)  
C=10 pF, 1.62 VVDD2.7 V(4)  
C=30 pF, 1.62 VVDD2.7 V(4)  
C=30 pF, 1.62 VVDD2.7 V(4)  
C=30 pF, 1.62 VVDD2.7 V(4)  
C=30 pF, 1.62 VVDD2.7 V(4)  
C=30 pF, 1.62 VVDD2.7 V(4)  
C=30 pF, 1.62 VVDD2.7 V(4)  
C=30 pF, 1.62 VVDD2.7 V(4)  
C=30 pF, 1.62 VVDD2.7 V(4)  
C=30 pF, 1.62 VVDD2.7 V(4)  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
10  
10  
10  
11  
(2)  
Fmax  
Maximum frequency  
MHz  
00  
Output high to low level  
fall time and output low  
to high level rise time  
tr/tf(3)  
9
ns  
MHz  
ns  
6.6  
50  
58  
66  
6.6  
4.8  
3
(2)  
Fmax  
Maximum frequency  
01  
Output high to low level  
fall time and output low  
to high level rise time  
tr/tf(3)  
55  
80  
133  
5.8  
4
(2)  
Fmax  
Maximum frequency  
MHz  
ns  
10  
Output high to low level  
fall time and output low  
to high level rise time  
tr/tf(3)  
2.4  
60  
90  
175  
5.3  
3.6  
1.9  
(2)  
Fmax  
Maximum frequency  
MHz  
ns  
11  
Output high to low level  
fall time and output low  
to high level rise time  
tr/tf(3)  
1. Guaranteed by design.  
2. The maximum frequency is defined with the following conditions:  
(tr+tf) 2/3 T  
Skew 1/20 T  
45%<Duty cycle<55%  
3. The fall and rise times are defined between 90% and 10% and between 10% and 90% of the output waveform, respectively.  
4. Compensation system enabled.  
152/242  
DS12930 Rev 1  
 
 
 
 
STM32H747xI/G  
Electrical characteristics  
6.3.19  
NRST pin characteristics  
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up  
resistor, R (see Table 71: I/O static characteristics).  
PU  
Unless otherwise specified, the parameters given in Table 76 are derived from tests  
performed under the ambient temperature and V supply voltage conditions summarized  
DD  
in Table 22: General operating conditions.  
Table 76. NRST pin characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
Weak pull-up equivalent  
resistor(1)  
(2)  
RPU  
VIN = VSS  
30  
40  
50  
(2)  
VF(NRST)  
NRST Input filtered pulse  
1.71 V < VDD < 3.6 V  
1.71 V < VDD < 3.6 V  
-
-
-
-
50  
-
300  
ns  
(2)  
VNF(NRST)  
NRST Input not filtered pulse  
1.62 V < VDD < 3.6 V 1000  
-
1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution  
to the series resistance must be minimum (~10% order).  
2. Guaranteed by design.  
Figure 28. Recommended NRST pin protection  
V
DD  
External  
reset circuit  
(1)  
R
PU  
(2)  
Internal Reset  
NRST  
Filter  
0.1 μF  
STM32  
ai14132d  
1. The reset network protects the device against parasitic resets.  
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in  
Table 71. Otherwise the reset is not taken into account by the device.  
6.3.20  
FMC characteristics  
Unless otherwise specified, the parameters given in Table 77 to Table 90 for the FMC  
interface are derived from tests performed under the ambient temperature, f  
frequency  
HCLK  
and V supply voltage conditions summarized in Table 22: General operating conditions,  
DD  
with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 11  
Measurement points are done at CMOS levels: 0.5V  
IO Compensation cell activated.  
DD  
HSLV activated when V 2.7 V  
DD  
VOS level set to VOS1.  
DS12930 Rev 1  
153/242  
221  
 
 
 
 
 
 
Electrical characteristics  
STM32H747xI/G  
Refer to Section 6.3.18: I/O port characteristics for more details on the input/output alternate  
function characteristics.  
Asynchronous waveforms and timings  
Figure 29 through Figure 31 represent asynchronous waveforms and Table 77 through  
Table 84 provide the corresponding timings. The results shown in these tables are obtained  
with the following FMC configuration:  
AddressSetupTime = 0x1  
AddressHoldTime = 0x1  
DataSetupTime = 0x1 (except for asynchronous NWAIT mode , DataSetupTime = 0x5)  
BusTurnAroundDuration = 0x0  
Capacitive load C = 30 pF  
L
In all timing tables, the T  
is the f  
clock period.  
KERCK  
mc_ker_ck  
Figure 29. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms  
t
w(NE)  
FMC_NE  
t
t
t
h(NE_NOE)  
w(NOE)  
v(NOE_NE)  
FMC_NOE  
FMC_NWE  
tv(A_NE)  
t
h(A_NOE)  
FMC_A[25:0]  
Address  
tv(BL_NE)  
t
h(BL_NOE)  
FMC_NBL[1:0]  
t
h(Data_NE)  
t
t
su(Data_NOE)  
h(Data_NOE)  
t
su(Data_NE)  
Data  
FMC_D[15:0]  
t
v(NADV_NE)  
t
w(NADV)  
(1)  
FMC_NADV  
FMC_NWAIT  
th(NE_NWAIT)  
tsu(NWAIT_NE)  
MS32753V1  
1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.  
154/242  
DS12930 Rev 1  
 
 
STM32H747xI/G  
Electrical characteristics  
(1)  
Table 77. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
tv(NOE_NE)  
tw(NOE)  
FMC_NE low time  
FMC_NEx low to FMC_NOE low  
FMC_NOE low time  
3Tfmc_ker_ck–1  
0
3Tfmc_ker_ck+1  
0.5  
2Tfmc_ker_ck –1  
2Tfmc_ker_ck+1  
FMC_NOE high to FMC_NE high  
hold time  
th(NE_NOE)  
tv(A_NE)  
0
-
-
0.5  
-
FMC_NEx low to FMC_A valid  
Address hold time after  
FMC_NOE high  
th(A_NOE)  
0
Data to FMC_NEx high setup  
time  
ns  
tsu(Data_NE)  
tsu(Data_NOE)  
th(Data_NOE)  
th(Data_NE)  
11  
11  
0
-
-
-
-
Data to FMC_NOEx high setup  
time  
Data hold time after FMC_NOE  
high  
Data hold time after FMC_NEx  
high  
0
tv(NADV_NE) FMC_NEx low to FMC_NADV low  
tw(NADV) FMC_NADV low time  
-
-
0
Tfmc_ker_ck+1  
1. Guaranteed by characterization results.  
Table 78. Asynchronous non-multiplexed SRAM/PSRAM/NOR read-NWAIT  
(1)(2)  
timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
tw(NOE)  
tw(NWAIT)  
FMC_NE low time  
FMC_NOE low time  
FMC_NWAIT low time  
7Tfmc_ker_ck+1  
5Tfmc_ker_ck–1  
Tfmc_ker_ck– 0.5  
7Tfmc_ker_ck+1  
5Tfmc_ker_ck +1  
-
ns  
FMC_NWAIT valid before FMC_NEx  
high  
tsu(NWAIT_NE)  
th(NE_NWAIT)  
4Tfmc_ker_ck +11  
3Tfmc_ker_ck+11.5  
-
-
FMC_NEx hold time after  
FMC_NWAIT invalid  
1. Guaranteed by characterization results.  
2. NWAIT pulse width is equal to 1 AHB cycle.  
DS12930 Rev 1  
155/242  
221  
 
 
Electrical characteristics  
STM32H747xI/G  
Figure 30. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms  
t
w(NE)  
FMC_NEx  
FMC_NOE  
FMC_NWE  
t
t
w(NWE)  
t
h(NE_NWE)  
v(NWE_NE)  
t
th(A_NWE)  
v(A_NE)  
FMC_A[25:0]  
Address  
t
t
v(BL_NE)  
h(BL_NWE)  
FMC_NBL[1:0]  
NBL  
t
t
v(Data_NE)  
h(Data_NWE)  
Data  
FMC_D[15:0]  
t
v(NADV_NE)  
t
w(NADV)  
(1)  
FMC_NADV  
FMC_NWAIT  
th(NE_NWAIT)  
tsu(NWAIT_NE)  
MS32754V1  
1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.  
156/242  
DS12930 Rev 1  
 
STM32H747xI/G  
Electrical characteristics  
(1)  
Table 79. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
tv(NWE_NE)  
tw(NWE)  
FMC_NE low time  
FMC_NEx low to FMC_NWE low  
FMC_NWE low time  
3Tfmc_ker_ck –1  
Tfmc_ker_ck  
3Tfmc_ker_ck  
Tfmc_ker_ck+1  
Tfmc_ker_ck+0.5  
Tfmc_ker_ck –0.5  
FMC_NWE high to FMC_NE high  
hold time  
th(NE_NWE)  
tv(A_NE)  
th(A_NWE)  
tv(BL_NE)  
th(BL_NWE)  
tv(Data_NE)  
Tfmc_ker_ck  
-
2
FMC_NEx low to FMC_A valid  
-
Address hold time after FMC_NWE  
high  
Tfmc_ker_ck –0.5  
-
-
ns  
FMC_NEx low to FMC_BL valid  
0.5  
-
FMC_BL hold time after FMC_NWE  
high  
Tfmc_ker_ck –0.5  
Data to FMC_NEx low to Data valid  
-
Tfmc_ker_ck+ 2.5  
th(Data_NWE) Data hold time after FMC_NWE high  
Tfmc_ker_ck+0.5  
-
tv(NADV_NE)  
tw(NADV)  
FMC_NEx low to FMC_NADV low  
FMC_NADV low time  
-
-
0
Tfmc_ker_ck+ 1  
1. Guaranteed by characterization results.  
Table 80. Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT  
(1)(2)  
timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
FMC_NE low time  
8Tfmc_ker_ck –1  
8Tfmc_ker_ck+1  
tw(NWE)  
FMC_NWE low time  
6Tfmc_ker_ck –1.5  
6Tfmc_ker_ck+0.5  
FMC_NWAIT valid before FMC_NEx  
high  
ns  
tsu(NWAIT_NE)  
th(NE_NWAIT)  
5Tfmc_ker_ck+13  
4Tfmc_ker_ck+13  
-
-
FMC_NEx hold time after  
FMC_NWAIT invalid  
1. Guaranteed by characterization results.  
2. NWAIT pulse width is equal to 1 AHB cycle.  
DS12930 Rev 1  
157/242  
221  
 
 
Electrical characteristics  
STM32H747xI/G  
Figure 31. Asynchronous multiplexed PSRAM/NOR read waveforms  
t
w(NE)  
FMC_ NE  
FMC_NOE  
t
t
h(NE_NOE)  
v(NOE_NE)  
t
w(NOE)  
t
FMC_NWE  
t
h(A_NOE)  
v(A_NE)  
FMC_ A[25:16]  
Address  
NBL  
t
t
v(BL_NE)  
h(BL_NOE)  
FMC_ NBL[1:0]  
t
h(Data_NE)  
t
su(Data_NE)  
t
t
t
h(Data_NOE)  
v(A_NE)  
Address  
su(Data_NOE)  
Data  
FMC_ AD[15:0]  
t
t
h(AD_NADV)  
v(NADV_NE)  
t
w(NADV)  
FMC_NADV  
FMC_NWAIT  
th(NE_NWAIT)  
tsu(NWAIT_NE)  
MS32755V1  
158/242  
DS12930 Rev 1  
 
STM32H747xI/G  
Electrical characteristics  
(1)  
Table 81. Asynchronous multiplexed PSRAM/NOR read timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
FMC_NE low time  
4Tfmc_ker_ck –1  
4Tfmc_ker_ck +1  
2Tfmc_ker_ck  
+0.5  
tv(NOE_NE)  
FMC_NEx low to FMC_NOE low  
FMC_NOE low time  
2Tfmc_ker_ck  
Tfmc_ker_ck –1  
0
ttw(NOE)  
Tfmc_ker_ck +1  
-
FMC_NOE high to FMC_NE high hold  
time  
th(NE_NOE)  
tv(A_NE)  
tv(NADV_NE)  
tw(NADV)  
FMC_NEx low to FMC_A valid  
FMC_NEx low to FMC_NADV low  
FMC_NADV low time  
-
0.5  
0.5  
0
ns  
Tfmc_ker_ck –0.5  
Tfmc_ker_ck +1  
FMC_AD(address) valid hold time  
after FMC_NADV high)  
th(AD_NADV)  
th(A_NOE)  
Tfmc_ker_ck +0.5  
Tfmc_ker_ck –0.5  
-
-
Address hold time after FMC_NOE  
high  
tsu(Data_NE)  
tsu(Data_NOE)  
th(Data_NE)  
Data to FMC_NEx high setup time  
Data to FMC_NOE high setup time  
Data hold time after FMC_NEx high  
Data hold time after FMC_NOE high  
11  
11  
0
-
-
-
th(Data_NOE)  
0
-
1. Guaranteed by characterization results.  
(1)(2)  
Table 82. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
FMC_NE low time  
8Tfmc_ker_ck –1  
8Tfmc_ker_ck  
tw(NOE)  
FMC_NWE low time  
5Tfmc_ker_ck –1.5  
5Tfmc_ker_ck +0.5  
FMC_NWAIT valid before  
FMC_NEx high  
ns  
tsu(NWAIT_NE)  
th(NE_NWAIT)  
4Tfmc_ker_ck +11  
-
-
FMC_NEx hold time after  
FMC_NWAIT invalid  
3Tfmc_ker_ck +11.5  
1. Guaranteed by characterization results.  
2. NWAIT pulse width is equal to 1 AHB cycle.  
DS12930 Rev 1  
159/242  
221  
 
 
Electrical characteristics  
STM32H747xI/G  
(1)  
Table 83. Asynchronous multiplexed PSRAM/NOR write timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
tv(NWE_NE)  
tw(NWE)  
FMC_NE low time  
FMC_NEx low to FMC_NWE low  
FMC_NWE low time  
4Tfmc_ker_ck –1  
Tfmc_ker_ck –1  
4Tfmc_ker_ck  
Tfmc_ker_ck +0.5  
2Tfmc_ker_ck –0.5 2Tfmc_ker_ck +0.5  
FMC_NWE high to FMC_NE high hold  
time  
th(NE_NWE)  
Tfmc_ker_ck –0.5  
-
tv(A_NE)  
tv(NADV_NE)  
tw(NADV)  
FMC_NEx low to FMC_A valid  
FMC_NEx low to FMC_NADV low  
FMC_NADV low time  
-
0
0.5  
0
Tfmc_ker_ck  
Tfmc_ker_ck + 1  
ns  
FMC_AD(adress) valid hold time after  
FMC_NADV high)  
th(AD_NADV)  
th(A_NWE)  
Tfmc_ker_ck +0.5  
-
-
-
Address hold time after FMC_NWE  
high  
Tfmc_ker_ck +0.5  
FMC_BL hold time after FMC_NWE  
high  
th(BL_NWE)  
Tfmc_ker_ck – 0.5  
tv(BL_NE)  
FMC_NEx low to FMC_BL valid  
FMC_NADV high to Data valid  
-
-
0.5  
tv(Data_NADV)  
th(Data_NWE)  
Tfmc_ker_ck +2  
-
Data hold time after FMC_NWE high  
Tfmc_ker_ck +0.5  
1. Guaranteed by characterization results.  
(1)(2)  
Table 84. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
FMC_NE low time  
9Tfmc_ker_ck –1  
9Tfmc_ker_ck  
tw(NWE)  
FMC_NWE low time  
7Tfmc_ker_ck –0.5  
7Tfmc_ker_ck +0.5  
FMC_NWAIT valid before FMC_NEx  
high  
ns  
tsu(NWAIT_NE)  
th(NE_NWAIT)  
5Tfmc_ker_ck +11  
-
-
FMC_NEx hold time after  
FMC_NWAIT invalid  
4Tfmc_ker_ck +11.5  
1. Guaranteed by characterization results.  
2. NWAIT pulse width is equal to 1 AHB cycle.  
Synchronous waveforms and timings  
Figure 32 through Figure 35 represent synchronous waveforms and Table 85 through  
Table 88 provide the corresponding timings. The results shown in these tables are obtained  
with the following FMC configuration:  
BurstAccessMode = FMC_BurstAccessMode_Enable  
MemoryType = FMC_MemoryType_CRAM  
WriteBurst = FMC_WriteBurst_Enable  
CLKDivision = 1  
DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM  
160/242  
DS12930 Rev 1  
 
 
STM32H747xI/G  
Electrical characteristics  
In all the timing tables, the Tfmc_ker_ck is the f  
clock period, with the following  
mc_ker_ck  
FMC_CLK maximum values:  
For 2.7 V<V <3.6 V, FMC_CLK = 125 MHz at 20 pF  
DD  
For 1.8 V<V <1.9 V, FMC_CLK = 100 MHz at 20 pF  
DD  
For 1.62 V<V <1.8 V, FMC_CLK = 100 MHz at 15 pF  
DD  
Figure 32. Synchronous multiplexed NOR/PSRAM read timings  
BUSTURN = 0  
t
t
w(CLK)  
w(CLK)  
FMC_CLK  
Data latency = 0  
d(CLKL-NExL)  
t
td(CLKH-NExH)  
FMC_NEx  
t
t
d(CLKL-NADVL)  
d(CLKL-NADVH)  
FMC_NADV  
t
td(CLKH-AIV)  
d(CLKL-AV)  
FMC_A[25:16]  
t
td(CLKH-NOEH)  
d(CLKL-NOEL)  
FMC_NOE  
t
t
t
h(CLKH-ADV)  
d(CLKL-ADIV)  
t
t
t
su(ADV-CLKH)  
su(ADV-CLKH)  
d(CLKL-ADV)  
h(CLKH-ADV)  
FMC_AD[15:0]  
AD[15:0]  
t
D1  
D2  
t
su(NWAITV-CLKH)  
h(CLKH-NWAITV)  
FMC_NWAIT  
(WAITCFG = 1b,  
WAITPOL + 0b)  
t
t
su(NWAITV-CLKH)  
h(CLKH-NWAITV)  
FMC_NWAIT  
(WAITCFG = 0b,  
WAITPOL + 0b)  
t
t
h(CLKH-NWAITV)  
su(NWAITV-CLKH)  
MS32757V1  
DS12930 Rev 1  
161/242  
221  
 
Electrical characteristics  
STM32H747xI/G  
(1)  
Table 85. Synchronous multiplexed NOR/PSRAM read timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(CLK)  
FMC_CLK period  
2Tfmc_ker_ck –1  
-
1
td(CLKL-NExL)  
td(CLKH_NExH)  
td(CLKL-NADVL)  
td(CLKL-NADVH)  
td(CLKL-AV)  
FMC_CLK low to FMC_NEx low (x=0..2)  
FMC_CLK high to FMC_NEx high (x= 0…2)  
FMC_CLK low to FMC_NADV low  
-
Tfmc_ker_ck+0.5  
-
-
0
-
1
FMC_CLK low to FMC_NADV high  
FMC_CLK low to FMC_Ax valid (x=16…25)  
-
2.5  
FMC_CLK high to FMC_Ax invalid  
(x=16…25)  
td(CLKH-AIV)  
Tfmc_ker_ck  
-
td(CLKL-NOEL)  
td(CLKH-NOEH)  
td(CLKL-ADV)  
td(CLKL-ADIV)  
FMC_CLK low to FMC_NOE low  
FMC_CLK high to FMC_NOE high  
FMC_CLK low to FMC_AD[15:0] valid  
FMC_CLK low to FMC_AD[15:0] invalid  
-
1.5  
ns  
Tfmc_ker_ck –0.5  
-
3
-
-
0
FMC_A/D[15:0] valid data before FMC_CLK  
high  
tsu(ADV-CLKH)  
th(CLKH-ADV)  
2
1
-
-
FMC_A/D[15:0] valid data after FMC_CLK  
high  
tsu(NWAIT-CLKH)  
th(CLKH-NWAIT)  
FMC_NWAIT valid before FMC_CLK high  
FMC_NWAIT valid after FMC_CLK high  
2
2
-
-
1. Guaranteed by characterization results.  
162/242  
DS12930 Rev 1  
 
STM32H747xI/G  
Electrical characteristics  
Figure 33. Synchronous multiplexed PSRAM write timings  
BUSTURN = 0  
t
t
w(CLK)  
w(CLK)  
FMC_CLK  
Data latency = 0  
d(CLKL-NExL)  
t
t
d(CLKH-NExH)  
FMC_NEx  
t
t
d(CLKL-NADVL)  
d(CLKL-NADVH)  
FMC_NADV  
t
d(CLKH-AIV)  
t
t
d(CLKL-AV)  
FMC_A[25:16]  
t
d(CLKH-NWEH)  
d(CLKL-NWEL)  
FMC_NWE  
t
t
t
d(CLKL-ADIV)  
t
d(CLKL-Data)  
d(CLKL-Data)  
d(CLKL-ADV)  
FMC_AD[15:0]  
AD[15:0]  
D1  
D2  
FMC_NWAIT  
(WAITCFG = 0b,  
WAITPOL + 0b)  
t
t
h(CLKH-NWAITV)  
su(NWAITV-CLKH)  
t
d(CLKH-NBLH)  
FMC_NBL  
MS32758V1  
DS12930 Rev 1  
163/242  
221  
 
Electrical characteristics  
Symbol  
STM32H747xI/G  
(1)  
Table 86. Synchronous multiplexed PSRAM write timings  
Parameter  
Min  
Max  
Unit  
2Tfmc_ker_ck –1  
1
tw(CLK)  
FMC_CLK period, VDD = 2.7 to 3.6 V  
-
1
-
td(CLKL-NExL)  
td(CLKH-NExH)  
FMC_CLK low to FMC_NEx low (x =0..2)  
-
FMC_CLK high to FMC_NEx high  
(x = 0…2)  
T
fmc_ker_ck +0.5  
td(CLKL-NADVL)  
td(CLKL-NADVH)  
FMC_CLK low to FMC_NADV low  
FMC_CLK low to FMC_NADV high  
-
1.5  
-
0
FMC_CLK low to FMC_Ax valid  
(x =16…25)  
td(CLKL-AV)  
td(CLKH-AIV)  
-
2
-
FMC_CLK high to FMC_Ax invalid  
(x =16…25)  
Tfmc_ker_ck  
Ns  
td(CLKL-NWEL)  
t(CLKH-NWEH)  
td(CLKL-ADV)  
td(CLKL-ADIV)  
FMC_CLK low to FMC_NWE low  
FMC_CLK high to FMC_NWE high  
FMC_CLK low to to FMC_AD[15:0] valid  
FMC_CLK low to FMC_AD[15:0] invalid  
-
1.5  
-
Tfmc_ker_ck +0.5  
-
2.5  
-
0
FMC_A/D[15:0] valid data after FMC_CLK  
low  
td(CLKL-DATA)  
-
2.5  
td(CLKL-NBLL)  
td(CLKH-NBLH)  
tsu(NWAIT-CLKH)  
th(CLKH-NWAIT)  
FMC_CLK low to FMC_NBL low  
FMC_CLK high to FMC_NBL high  
-
2
-
Tfmc_ker_ck +0.5  
FMC_NWAIT valid before FMC_CLK high  
FMC_NWAIT valid after FMC_CLK high  
2
2
-
-
1. Guaranteed by characterization results.  
164/242  
DS12930 Rev 1  
 
STM32H747xI/G  
Electrical characteristics  
Figure 34. Synchronous non-multiplexed NOR/PSRAM read timings  
t
t
w(CLK)  
w(CLK)  
FMC_CLK  
t
t
d(CLKH-NExH)  
d(CLKL-NExL)  
Data latency = 0  
d(CLKL-NADVH)  
FMC_NEx  
t
t
d(CLKL-NADVL)  
FMC_NADV  
FMC_A[25:0]  
t
t
d(CLKH-AIV)  
d(CLKL-AV)  
t
t
d(CLKL-NOEL)  
d(CLKH-NOEH)  
FMC_NOE  
t
t
su(DV-CLKH)  
h(CLKH-DV)  
t
t
h(CLKH-DV)  
su(DV-CLKH)  
FMC_D[15:0]  
FMC_NWAIT  
D1  
D2  
t
t
su(NWAITV-CLKH)  
h(CLKH-NWAITV)  
(WAITCFG = 1b,  
WAITPOL + 0b)  
t
t
h(CLKH-NWAITV)  
su(NWAITV-CLKH)  
FMC_NWAIT  
(WAITCFG = 0b,  
WAITPOL + 0b)  
t
t
su(NWAITV-CLKH)  
h(CLKH-NWAITV)  
MS32759V1  
DS12930 Rev 1  
165/242  
221  
 
Electrical characteristics  
STM32H747xI/G  
(1)  
Table 87. Synchronous non-multiplexed NOR/PSRAM read timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(CLK)  
FMC_CLK period  
2Tfmc_ker_ck –1  
-
-
t(CLKL-NExL)  
FMC_CLK low to FMC_NEx low (x=0..2)  
1
FMC_CLK high to FMC_NEx high  
(x= 0…2)  
td(CLKH-NExH)  
2Tfmc_ker_ck+0.5  
-
td(CLKL-NADVL)  
td(CLKL-NADVH)  
FMC_CLK low to FMC_NADV low  
FMC_CLK low to FMC_NADV high  
-
0.5  
-
0
FMC_CLK low to FMC_Ax valid  
(x=16…25)  
td(CLKL-AV)  
td(CLKH-AIV)  
-
2
-
FMC_CLK high to FMC_Ax invalid  
(x=16…25)  
2Tfmc_ker_ck  
ns  
td(CLKL-NOEL)  
td(CLKH-NOEH)  
FMC_CLK low to FMC_NOE low  
FMC_CLK high to FMC_NOE high  
-
1.5  
-
2Tfmc_ker_ck-0.5  
FMC_D[15:0] valid data before FMC_CLK  
high  
tsu(DV-CLKH)  
th(CLKH-DV)  
2
1
-
-
FMC_D[15:0] valid data after FMC_CLK  
high  
t(NWAIT-CLKH)  
th(CLKH-NWAIT)  
FMC_NWAIT valid before FMC_CLK high  
FMC_NWAIT valid after FMC_CLK high  
2
2
-
-
1. Guaranteed by characterization results.  
166/242  
DS12930 Rev 1  
 
STM32H747xI/G  
Electrical characteristics  
Figure 35. Synchronous non-multiplexed PSRAM write timings  
t
t
w(CLK)  
w(CLK)  
FMC_CLK  
t
t
d(CLKL-NExL)  
FMC_NEx  
d(CLKH-NExH)  
Data latency = 0  
d(CLKL-NADVH)  
t
t
d(CLKL-NADVL)  
FMC_NADV  
t
d(CLKH-AIV)  
t
t
d(CLKL-AV)  
FMC_A[25:0]  
FMC_NWE  
td(CLKH-NWEH)  
d(CLKL-NWEL)  
t
t
d(CLKL-Data)  
d(CLKL-Data)  
FMC_D[15:0]  
D1  
D2  
FMC_NWAIT  
(WAITCFG = 0b, WAITPOL + 0b)  
FMC_NBL  
t
t
d(CLKH-NBLH)  
su(NWAITV-CLKH)  
t
h(CLKH-NWAITV)  
MS32760V1  
DS12930 Rev 1  
167/242  
221  
 
Electrical characteristics  
STM32H747xI/G  
(1)  
Table 88. Synchronous non-multiplexed PSRAM write timings  
Symbol  
Parameter  
Min  
Max  
Unit  
t(CLK)  
FMC_CLK period  
2Tfmc_ker_ck –1  
-
-
td(CLKL-NExL)  
FMC_CLK low to FMC_NEx low (x=0..2)  
2
FMC_CLK high to FMC_NEx high  
(x= 0…2)  
t(CLKH-NExH)  
Tfmc_ker_ck+0.5  
-
td(CLKL-NADVL)  
td(CLKL-NADVH)  
FMC_CLK low to FMC_NADV low  
FMC_CLK low to FMC_NADV high  
-
0.5  
-
0
FMC_CLK low to FMC_Ax valid  
(x=16…25)  
td(CLKL-AV)  
td(CLKH-AIV)  
-
2.  
-
FMC_CLK high to FMC_Ax invalid  
(x=16…25)  
Tfmc_ker_ck  
ns  
td(CLKL-NWEL)  
td(CLKH-NWEH)  
FMC_CLK low to FMC_NWE low  
FMC_CLK high to FMC_NWE high  
-
1.5  
-
Tfmc_ker_ck+1  
FMC_D[15:0] valid data after FMC_CLK  
low  
td(CLKL-Data)  
-
3.5  
td(CLKL-NBLL)  
td(CLKH-NBLH)  
FMC_CLK low to FMC_NBL low  
FMC_CLK high to FMC_NBL high  
-
2
-
Tfmc_ker_ck+1  
tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high  
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high  
2
2
-
-
1. Guaranteed by characterization results.  
168/242  
DS12930 Rev 1  
 
STM32H747xI/G  
Electrical characteristics  
NAND controller waveforms and timings  
Figure 36 through Figure 39 represent synchronous waveforms, and Table 89 and Table 90  
provide the corresponding timings. The results shown in this table are obtained with the  
following FMC configuration:  
COM.FMC_SetupTime = 0x01  
COM.FMC_WaitSetupTime = 0x03  
COM.FMC_HoldSetupTime = 0x02  
COM.FMC_HiZSetupTime = 0x01  
ATT.FMC_SetupTime = 0x01  
ATT.FMC_WaitSetupTime = 0x03  
ATT.FMC_HoldSetupTime = 0x02  
ATT.FMC_HiZSetupTime = 0x01  
Bank = FMC_Bank_NAND  
MemoryDataWidth = FMC_MemoryDataWidth_16b  
ECC = FMC_ECC_Enable  
ECCPageSize = FMC_ECCPageSize_512Bytes  
TCLRSetupTime = 0  
TARSetupTime = 0  
Capacitive load C = 30 pF  
L
In all timing tables, the Tfmc_ker_ck is the fmc_ker_ck clock period.  
Figure 36. NAND controller waveforms for read access  
FMC_NCEx  
ALE (FMC_A17)  
CLE (FMC_A16)  
FMC_NWE  
t
th(NOE-ALE)  
d(ALE-NOE)  
FMC_NOE (NRE)  
t
t
h(NOE-D)  
su(D-NOE)  
FMC_D[15:0]  
MS32767V1  
DS12930 Rev 1  
169/242  
221  
 
 
Electrical characteristics  
STM32H747xI/G  
Figure 37. NAND controller waveforms for write access  
FMC_NCEx  
ALE (FMC_A17)  
CLE (FMC_A16)  
t
t
h(NWE-ALE)  
d(ALE-NWE)  
FMC_NWE  
FMC_NOE (NRE)  
FMC_D[15:0]  
t
t
h(NWE-D)  
v(NWE-D)  
MS32768V1  
Figure 38. NAND controller waveforms for common memory read access  
FMC_NCEx  
ALE (FMC_A17)  
CLE (FMC_A16)  
t
t
h(NOE-ALE)  
d(ALE-NOE)  
FMC_NWE  
FMC_NOE  
t
w(NOE)  
t
t
h(NOE-D)  
su(D-NOE)  
FMC_D[15:0]  
MS32769V1  
170/242  
DS12930 Rev 1  
 
 
STM32H747xI/G  
Electrical characteristics  
Figure 39. NAND controller waveforms for common memory write access  
FMC_NCEx  
ALE (FMC_A17)  
CLE (FMC_A16)  
t
t
t
h(NOE-ALE)  
d(ALE-NOE)  
w(NWE)  
FMC_NWE  
FMC_N OE  
t
d(D-NWE)  
t
t
v(NWE-D)  
h(NWE-D)  
FMC_D[15:0]  
MS32770V1  
(1)  
Table 89. Switching characteristics for NAND Flash read cycles  
Symbol  
Parameter  
Min  
Max  
4Tfmc_ker_ck+0.5  
Unit  
tw(N0E)  
FMC_NOE low width  
4Tfmc_ker_ck – 0.5  
FMC_D[15-0] valid data before  
FMC_NOE high  
tsu(D-NOE)  
th(NOE-D)  
8
0
-
FMC_D[15-0] valid data after  
FMC_NOE high  
ns  
-
td(ALE-NOE) FMC_ALE valid before FMC_NOE low  
th(NOE-ALE) FMC_NWE high to FMC_ALE invalid  
1. Guaranteed by characterization results.  
-
3Tfmc_ker_ck +1  
-
4Tfmc_ker_ck –2  
(1)  
Table 90. Switching characteristics for NAND Flash write cycles  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NWE)  
FMC_NWE low width  
4Tfmc_ker_ck – 0.5  
4Tfmc_ker_ck +0.5  
FMC_NWE low to FMC_D[15-0]  
valid  
tv(NWE-D)  
th(NWE-D)  
0
-
FMC_NWE high to FMC_D[15-0]  
invalid  
2Tfmc_ker_ck – 0.5  
5Tfmc_ker_ck – 1  
-
-
ns  
FMC_D[15-0] valid before  
FMC_NWE high  
td(D-NWE)  
-
FMC_ALE valid before FMC_NWE  
low  
td(ALE-NWE)  
th(NWE-ALE)  
3Tfmc_ker_ck +0.5  
-
FMC_NWE high to FMC_ALE  
invalid  
2Tfmc_ker_ck – 1  
1. Guaranteed by characterization results.  
DS12930 Rev 1  
171/242  
221  
 
 
 
Electrical characteristics  
STM32H747xI/G  
SDRAM waveforms and timings  
In all timing tables, the TKERCK is the fmc_ker_ck clock period, with the following  
FMC_SDCLK maximum values:  
For 2.7 V<V <3.6 V: FMC_CLK =110 MHz at 20 pF  
DD  
For 1.8 V<V <1.9 V: FMC_CLK =100 MHz at 20 pF  
DD  
For 1.62 V< <1.8 V, FMC_CLK =100 MHz at 15 pF  
DD  
Figure 40. SDRAM read access waveforms (CL = 1)  
FMC_SDCLK  
td(SDCLKL_AddC)  
th(SDCLKL_AddR)  
td(SDCLKL_AddR)  
Row n  
Col1  
Col2  
Coli  
Coln  
FMC_A[12:0]  
th(SDCLKL_AddC)  
th(SDCLKL_SNDE)  
th(SDCLKL_NCAS)  
td(SDCLKL_SNDE)  
FMC_SDNE[1:0]  
td(SDCLKL_NRAS)  
th(SDCLKL_NRAS)  
FMC_SDNRAS  
FMC_SDNCAS  
td(SDCLKL_NCAS)  
FMC_SDNWE  
FMC_D[31:0]  
tsu(SDCLKH_Data)  
th(SDCLKH_Data)  
Data1 Data2 Datai  
Datan  
MS32751V2  
172/242  
DS12930 Rev 1  
 
STM32H747xI/G  
Electrical characteristics  
(1)  
Table 91. SDRAM read timings  
Symbol  
Parameter  
Min  
Max  
Unit  
2Tfmc_ker_ck  
+0.5  
tw(SDCLK)  
FMC_SDCLK period  
2Tfmc_ker_ck – 1  
tsu(SDCLKH _Data)  
th(SDCLKH_Data)  
Data input setup time  
Data input hold time  
Address valid time  
Chip select valid time  
Chip select hold time  
SDNRAS valid time  
SDNRAS hold time  
SDNCAS valid time  
SDNCAS hold time  
2
1
-
-
td(SDCLKL_Add)  
-
1.5  
1.5  
-
td(SDCLKL- SDNE)  
th(SDCLKL_SDNE)  
td(SDCLKL_SDNRAS)  
th(SDCLKL_SDNRAS)  
td(SDCLKL_SDNCAS)  
th(SDCLKL_SDNCAS)  
-
ns  
0.5  
-
1
0.5  
-
-
0.5  
-
0
1. Guaranteed by characterization results.  
(1)  
Table 92. LPSDR SDRAM read timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tW(SDCLK)  
FMC_SDCLK period  
Data input setup time  
Data input hold time  
Address valid time  
Chip select valid time  
Chip select hold time  
SDNRAS valid time  
SDNRAS hold time  
SDNCAS valid time  
SDNCAS hold time  
2Tfmc_ker_ck – 1 2Tfmc_ker_ck+0.5  
tsu(SDCLKH_Data)  
th(SDCLKH_Data)  
td(SDCLKL_Add)  
2
1.5  
-
-
-
2.5  
2.5  
-
td(SDCLKL_SDNE)  
th(SDCLKL_SDNE)  
td(SDCLKL_SDNRAS  
th(SDCLKL_SDNRAS)  
td(SDCLKL_SDNCAS)  
th(SDCLKL_SDNCAS)  
-
ns  
0
-
0.5  
-
0
-
1.5  
-
0
1. Guaranteed by characterization results.  
DS12930 Rev 1  
173/242  
221  
 
 
Electrical characteristics  
STM32H747xI/G  
Figure 41. SDRAM write access waveforms  
FMC_SDCLK  
td(SDCLKL_AddC)  
th(SDCLKL_AddR)  
td(SDCLKL_AddR)  
Row n  
Col1  
Col2  
Coli  
Coln  
FMC_A[12:0]  
th(SDCLKL_AddC)  
th(SDCLKL_SNDE)  
td(SDCLKL_SNDE)  
FMC_SDNE[1:0]  
td(SDCLKL_NRAS)  
th(SDCLKL_NRAS)  
FMC_SDNRAS  
FMC_SDNCAS  
FMC_SDNWE  
th(SDCLKL_NCAS)  
th(SDCLKL_NWE)  
td(SDCLKL_NCAS)  
td(SDCLKL_NWE)  
td(SDCLKL_Data)  
Data1  
Data2  
Datai  
Datan  
FMC_D[31:0]  
td(SDCLKL_NBL)  
FMC_NBL[3:0]  
th(SDCLKL_Data)  
MS32752V2  
(1)  
Table 93. SDRAM Write timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(SDCLK)  
FMC_SDCLK period  
Data output valid time  
Data output hold time  
Address valid time  
SDNWE valid time  
SDNWE hold time  
2Tfmc_ker_ck – 1 2Tfmc_ker_ck+0.5  
td(SDCLKL _Data  
th(SDCLKL _Data)  
td(SDCLKL_Add)  
)
-
0
1
-
-
1.5  
1.5  
-
td(SDCLKL_SDNWE)  
th(SDCLKL_SDNWE)  
td(SDCLKL_ SDNE)  
th(SDCLKL-_SDNE)  
td(SDCLKL_SDNRAS)  
th(SDCLKL_SDNRAS)  
td(SDCLKL_SDNCAS)  
td(SDCLKL_SDNCAS)  
-
0.5  
-
ns  
Chip select valid time  
Chip select hold time  
SDNRAS valid time  
SDNRAS hold time  
SDNCAS valid time  
SDNCAS hold time  
1.5  
-
0.5  
-
1
0.5  
-
-
1
0.5  
-
1. Guaranteed by characterization results.  
174/242  
DS12930 Rev 1  
 
 
STM32H747xI/G  
Electrical characteristics  
(1)  
Table 94. LPSDR SDRAM Write timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(SDCLK)  
FMC_SDCLK period  
Data output valid time  
Data output hold time  
Address valid time  
SDNWE valid time  
SDNWE hold time  
2Tfmc_ker_ck – 1 2Tfmc_ker_ck+0.5  
td(SDCLKL _Data  
)
-
0
-
2.5  
-
th(SDCLKL _Data)  
td(SDCLKL_Add)  
2.5  
2.5  
-
td(SDCLKL-SDNWE)  
th(SDCLKL-SDNWE)  
td(SDCLKL- SDNE)  
th(SDCLKL- SDNE)  
td(SDCLKL-SDNRAS)  
th(SDCLKL-SDNRAS)  
td(SDCLKL-SDNCAS)  
td(SDCLKL-SDNCAS)  
-
0
-
ns  
Chip select valid time  
Chip select hold time  
SDNRAS valid time  
SDNRAS hold time  
SDNCAS valid time  
SDNCAS hold time  
3
0
-
-
1.5  
-
0
-
1.5  
-
0
1. Guaranteed by characterization results.  
6.3.21  
Quad-SPI interface characteristics  
Unless otherwise specified, the parameters given in Table 95 and Table 96 for QUADSPI  
are derived from tests performed under the ambient temperature, f frequency and V  
AHB  
DD  
supply voltage conditions summarized in Table 22: General operating conditions, with the  
following configuration:  
Output speed is set to OSPEEDRy[1:0] = 11  
Measurement points are done at CMOS levels: 0.5V  
IO Compensation cell activated.  
DD  
HSLV activated when V 2.7 V  
DD  
VOS level set to VOS1  
Refer to Section 6.3.18: I/O port characteristics for more details on the input/output alternate  
function characteristics.  
The following table summarizes the parameters measured in SDR mode.  
(1)  
Table 95. QUADSPI characteristics in SDR mode  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
2.7<VDD<3.6 V  
CL = 20 pF  
-
-
133  
QUADSPI clock  
frequency  
Fck11/TCK  
MHz  
1.62<VDD<3.6 V  
CL = 15 pF  
-
-
100  
DS12930 Rev 1  
175/242  
221  
 
 
 
 
Electrical characteristics  
STM32H747xI/G  
(1)  
Table 95. QUADSPI characteristics in SDR mode (continued)  
Symbol  
tw(CKH)  
tw(CKL)  
tw(CKH)  
Parameter  
Conditions  
Min  
TCK/2–0.5  
Typ  
Max  
TCK/2  
Unit  
QUADSPI clock high  
and low time Even  
division  
-
-
-
PRESCALER[7:0] =  
n = 0,1,3,5...  
TCK/2  
TCK/2+0.5  
(n/2)*TCK/ (n+1)  
(n/2)*TCK/(n+1)-0.5  
QUADSPI clock high  
and low time Odd  
division  
PRESCALER[7:0] =  
n = 2,4,6,8...  
(n/2+1)*TCK  
(n+1)+0.5  
/
tw(CKL)  
(n/2+1)*TCK/(n+1)  
-
ns  
ts(IN)  
th(IN)  
tv(OUT)  
th(OUT)  
Data input setup time  
Data input hold time  
Data output valid time  
Data output hold time  
1
3.5  
-
-
-
-
-
-
-
-
1
-
2
-
0
1. Guaranteed by characterization results.  
The following table summarizes the parameters measured in DDR mode.  
(1)  
Table 96. QUADSPI characteristics in DDR mode  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
2.7<VDD<3.6 V  
CL = 20 pF  
-
-
100  
Fck11/TCK  
QUADSPI clock frequency  
MHz  
1.62<VDD<3.6 V  
CL = 15 pF  
-
-
100  
tw(CKH)  
tw(CKL)  
TCK/2–0.5  
TCK/2  
-
-
TCK/2  
QUADSPI clock high and PRESCALER[7:0] =  
low time Even division n = 0,1,3,5...  
TCK/2+0.5  
(n/2)*TCK  
(n+1)-0.5  
/
(n/2)*TCK  
(n+1)  
/
tw(CKH)  
-
-
QUADSPI clock high and PRESCALER[7:0] =  
low time Odd division  
n = 2,4,6,8...  
(n/2+1)*TCK  
/
(n/2+1)*TCK  
(n+1)+0.5  
/
tw(CKL)  
(n+1)  
tsr(IN), tsf(IN)  
Data input setup time  
Data input hold time  
-
-
1.5  
3.5  
-
-
-
-
-
thr(IN),thf(IN)  
ns  
DHHC=0  
DHHC=1  
5
6
tvr(OUT)  
,
Data output valid time  
Data output hold time  
tvf(OUT)  
-
3
TCK/4+1  
TCK/4+2  
PRESCALER[7:0] =  
1,2…  
DHHC=0  
-
-
-
-
thr(OUT)  
,
DHHC=1  
thf(OUT)  
TCK/4  
PRESCALER[7:0]=1  
,2…  
1. Guaranteed by characterization results.  
176/242  
DS12930 Rev 1  
 
STM32H747xI/G  
Electrical characteristics  
Figure 42. Quad-SPI timing diagram - SDR mode  
tr(CK)  
t(CK)  
tw(CKH)  
tw(CKL)  
tf(CK)  
Clock  
tv(OUT)  
th(OUT)  
Data output  
Data input  
D0  
D1  
D2  
ts(IN)  
th(IN)  
D0  
D1  
D2  
MSv36878V1  
Figure 43. Quad-SPI timing diagram - DDR mode  
tr(CK)  
t(CK)  
tw(CKH)  
tw(CKL)  
tf(CK)  
Clock  
tvf(OUT) thr(OUT)  
D0  
tvr(OUT)  
thf(OUT)  
D3  
Data output  
D1  
D2  
D4  
tsr(IN)thr(IN)  
D5  
tsf(IN) thf(IN)  
Data input  
D0  
D1  
D2  
D3  
D4  
D5  
MSv36879V1  
6.3.22  
Delay block (DLYB) characteristics  
Unless otherwise specified, the parameters given in Table 97 for Delay Block are derived  
from tests performed under the ambient temperature, f frequency and VDD supply  
rcc_c_ck  
voltage summarized in Table 22: General operating conditions, with the following  
configuration:  
Table 97. Delay Block characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tinit  
t∆  
Initial delay  
Unit Delay  
-
-
1400  
35  
2200  
40  
2400  
45  
ps  
-
DS12930 Rev 1  
177/242  
221  
 
 
 
 
 
Electrical characteristics  
STM32H747xI/G  
6.3.23  
16-bit ADC characteristics  
Unless otherwise specified, the parameters given in Table 98 are derived from tests  
performed under the ambient temperature, f  
frequency and V  
supply voltage  
PCLK2  
DDA  
conditions summarized in Table 22: General operating conditions.  
(1)(2)  
Table 98. ADC characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Analog supply  
voltage for ADC  
ON  
V
-
1.62  
-
3.6  
V
DDA  
Positive reference  
voltage  
V
-
-
1.62  
-
V
V
V
REF+  
DDA  
Negative  
reference voltage  
V
V
SSA  
REF-  
BOOST = 11  
BOOST = 10  
BOOST = 01  
BOOST = 00  
0.12  
0.12  
0.12  
-
-
-
-
-
50  
25  
ADC clock  
frequency  
f
1.62 V VDDA 3.6 V  
MHz  
ADC  
12.5  
6.25  
Resolution = 16 bits,  
>2.5 V  
f
f
=36 MHz  
SMP = 1.5  
-
-
3.60  
ADC  
V
DDA  
T
= 90 °C  
= 125 °C  
= 90 °C  
J
Resolution = 16 bits  
Resolution = 14 bits  
Resolution = 12 bits  
Resolution = 10 bits  
Resolution = 8 bits  
Resolution = 16 bits,  
=37 MHz  
= 50 MHz  
= 50 MHz  
= 50 MHz  
= 50 MHz  
SMP = 2.5  
SMP = 2.5  
SMP = 2.5  
SMP = 1.5  
SMP = 1.5  
-
-
-
-
-
-
-
-
-
-
3.35  
5.00  
5.50  
7.10  
8.30  
ADC  
Sampling rate for  
f
f
f
f
ADC  
ADC  
ADC  
ADC  
(4)  
Direct channels  
T
J
f
f
=32 MHz  
SMP = 2.5  
-
-
2.90  
ADC  
ADC  
V
>2.5 V  
DDA  
T
J
Resolution = 16 bits  
Resolution = 14 bits  
Resolution = 12 bits  
Resolution = 10 bits  
Resolution = 8 bits  
Resolution = 16 bits  
resolution = 14 bits  
resolution = 12 bits  
resolution = 10 bits  
resolution = 8 bits  
=31 MHz  
= 33 MHz  
= 39 MHz  
= 48 MHz  
= 50 MHz  
SMP = 2.5  
SMP = 2.5  
SMP = 2.5  
SMP = 2.5  
SMP = 2.5  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2.80  
3.30  
4.30  
6.00  
7.10  
(3)  
f
MSps  
s
Sampling rate for  
Fast channels  
f
f
f
f
ADC  
ADC  
ADC  
ADC  
T
= 125 °C  
= 90 °C  
J
T
J
Sampling rate for  
Slow channels  
f
= 10 MHz  
SMP = 1.5  
1.00  
10  
ADC  
T
= 125 °C  
J
External trigger  
period  
1/  
t
Resolution = 16 bits  
-
-
-
TRIG  
f
ADC  
Conversion  
voltage range  
(5)  
AIN  
V
-
-
0
V
REF+  
V
Common mode  
input voltage  
V
/2  
V
/
V
/2  
REF  
REF  
10%  
REF  
2
V
V
CMIV  
+ 10%  
178/242  
DS12930 Rev 1  
 
 
 
STM32H747xI/G  
Electrical characteristics  
(1)(2)  
Table 98. ADC characteristics  
(continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Resolution = 16 bits, T = 125 °C  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
170  
435  
J
Resolution = 14 bits, T = 125 °C  
-
-
-
-
J
External input  
impedance  
(6)  
R
Resolution = 12 bits, T =125 °C  
1150  
5650  
26500  
AIN  
J
Resolution = 10 bits, T = 125 °C  
J
Resolution = 8 bits, T = 125 °C  
J
Internal sample  
and hold  
capacitor  
C
-
-
-
4
5
-
-
10  
-
pF  
us  
ADC  
t
ADC LDO startup  
time  
ADCVREG  
_STUP  
-
conver  
sion  
cycle  
ADC Power-up  
time  
t
LDO already started  
1
STAB  
Offset and  
linearity  
calibration time  
t
-
-
165010  
1280  
-
-
-
-
1/f  
1/f  
CAL  
ADC  
ADC  
t
Offset calibration  
time  
OFF_  
CAL  
CKMODE = 00  
CKMODE = 01  
CKMODE = 10  
CKMODE = 11  
CKMODE = 00  
CKMODE = 01  
CKMODE = 10  
CKMODE = 11  
-
1.5  
2
-
2.5  
2.5  
Trigger  
conversion  
latency regular  
and injected  
channels without  
conversion abort  
-
t
1/f  
1/f  
LATR  
ADC  
-
-
2.5  
-
2.5  
-
-
2.25  
3.5  
3
-
Trigger  
conversion  
latency regular  
injected channels  
aborting a regular  
conversion  
3.5  
t
LATRINJ  
ADC  
-
-
3.5  
-
-
3.25  
810.5  
t
Sampling time  
1.5  
-
1/f  
1/f  
S
ADC  
ADC  
Total conversion  
time (including  
sampling time)  
ts + 0.5  
+ N/2  
t
Resolution = N bits  
-
-
CONV  
DS12930 Rev 1  
179/242  
221  
Electrical characteristics  
STM32H747xI/G  
(1)(2)  
Table 98. ADC characteristics  
(continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Resolution = 16 bits, f  
Resolution = 14 bits, f  
Resolution = 12 bits, f  
=25 MHz  
=30 MHz  
=40 MHz  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1440  
1350  
990  
1080  
810  
585  
630  
432  
315  
360  
270  
225  
720  
675  
495  
540  
405  
292.5  
315  
216  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ADC  
ADC  
ADC  
ADCconsumption  
on V  
,
DDA  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
BOOST=11,  
Differential mode  
ADCconsumption  
Resolution = 16 bits  
Resolution = 14 bits  
Resolution = 12 bits  
Resolution = 16 bits  
Resolution = 14 bits  
Resolution = 12 bits  
Resolution = 16 bits  
Resolution = 14 bits  
Resolution = 12 bits  
on V  
DDA  
BOOST=10,  
Differential mode  
f
=25 MHz  
ADC  
I
_
D
DDA  
(ADC)  
ADCconsumption  
on V  
DDA  
BOOST=01,  
Differential mode  
f
=12.5 MHz  
ADC  
ADCconsumption  
on V  
DDA  
BOOST=00,  
Differential mode  
f
=6.25 MHz  
ADC  
ADCconsumption  
on V  
Resolution = 16 bits, f  
=25 MHz  
ADC  
DDA  
Resolution = 14 bits, f  
Resolution = 12 bits, f  
=30 MHz  
=40 MHz  
BOOST=11,  
Single-ended  
mode  
ADC  
ADC  
µA  
ADCconsumption  
Resolution = 16 bits  
Resolution = 14 bits  
Resolution = 12 bits  
Resolution = 16 bits  
Resolution = 14 bits  
on V  
DDA  
BOOST=10,  
Singl-ended mode  
f
=25 MHz  
ADC  
I
_
(
DDA SE  
ADCconsumption  
on V  
ADC)  
DDA  
BOOST=01,  
Single-ended  
mode  
Resolution = 12 bits  
-
-
-
157.5  
-
f
=12.5 MHz  
ADC  
ADCconsumption  
on V  
BOOST=00,  
Single-ended  
mode  
Resolution = 16 bits  
Resolution = 14 bits  
-
-
-
-
-
-
180  
135  
-
-
DDA  
Resolution = 12 bits  
-
-
-
112.5  
-
f
=6.25 MHz  
ADC  
f
=50 MHz  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
400  
220  
180  
120  
80  
-
-
-
-
-
ADC  
f
=25 MHz  
ADC  
I
ADCconsumption  
on V  
DD  
f
f
=12.5 MHz  
=6.25 MHz  
ADC  
ADC  
(ADC)  
DD  
f
=3.125 MHz  
ADC  
1. Guaranteed by design.  
2. The voltage booster on ADC switches must be used for VDDA < 2.4 V (embedded I/O switches).  
3. These values are valid for UFBGA169 and one ADC. The values for other packages and multiple ADCs may be different.  
4. Direct channels are connected to analog I/Os (PA0_C, PA1_C, PC2_C and PC3_C) to optimize ADC performance.  
5. Depending on the package, VREF+ can be internally connected to VDDA and VREF- to VSSA  
.
6. The tolerance is 10 LSBs for 16-bit resolution, 4 LSBs for 14-bit resolution, and 2 LSBs for 12-bit, 10-bit and 8-bit resolutions.  
180/242  
DS12930 Rev 1  
STM32H747xI/G  
Electrical characteristics  
(1)(2)  
AIN  
Table 99. Minimum sampling time vs R  
Minimum sampling time (s)  
Resolution  
RAIN ()  
Direct  
Fast channels(4) Slow channels(5)  
channels(3)  
16 bits  
47  
47  
7.37E-08  
6.29E-08  
6.84E-08  
7.80E-08  
9.86E-08  
1.32E-07  
5.32E-08  
5.74E-08  
6.58E-08  
8.37E-08  
1.11E-07  
1.56E-07  
2.16E-07  
3.01E-07  
4.34E-08  
4.68E-08  
5.35E-08  
6.68E-08  
8.80E-08  
1.24E-07  
1.69E-07  
2.38E-07  
3.45E-07  
5.15E-07  
7.42E-07  
1.10E-06  
1.14E-07  
9.74E-08  
1.02E-07  
1.12E-07  
1.32E-07  
1.61E-07  
8.00E-08  
8.50E-08  
9.31E-08  
1.10E-07  
1.34E-07  
1.78E-07  
2.39E-07  
3.29E-07  
6.51E-08  
6.89E-08  
7.55E-08  
8.77E-08  
1.08E-07  
1.43E-07  
1.89E-07  
2.60E-07  
3.66E-07  
5.35E-07  
7.75E-07  
1.14E-06  
1.72E-07  
1.55E-07  
1.58E-07  
1.62E-07  
1.80E-07  
2.01E-07  
1.29E-07  
1.32E-07  
1.40E-07  
1.51E-07  
1.73E-07  
2.14E-07  
2.68E-07  
3.54E-07  
1.08E-07  
1.11E-07  
1.16E-07  
1.26E-07  
1.40E-07  
1.71E-07  
2.13E-07  
2.80E-07  
3.84E-07  
5.48E-07  
7.78E-07  
1.14E-06  
68  
14 bits  
100  
150  
220  
47  
68  
100  
150  
220  
330  
470  
680  
47  
12 bits  
68  
100  
150  
220  
330  
470  
680  
1000  
1500  
2200  
3300  
10 bits  
DS12930 Rev 1  
181/242  
221  
 
Electrical characteristics  
STM32H747xI/G  
(1)(2)  
Table 99. Minimum sampling time vs R  
(continued)  
AIN  
Minimum sampling time (s)  
Resolution  
RAIN ()  
Direct  
Fast channels(4) Slow channels(5)  
channels(3)  
47  
68  
3.32E-08  
3.59E-08  
4.10E-08  
5.06E-08  
6.61E-08  
9.17E-08  
1.24E-07  
1.74E-07  
2.53E-07  
3.73E-07  
5.39E-07  
8.02E-07  
1.13E-06  
1.62E-06  
2.36E-06  
3.50E-06  
5.10E-08  
5.35E-08  
5.83E-08  
6.76E-08  
8.22E-08  
1.08E-07  
1.40E-07  
1.91E-07  
2.70E-07  
3.93E-07  
5.67E-07  
8.36E-07  
1.18E-06  
1.69E-06  
2.47E-06  
3.69E-06  
8.61E-08  
8.83E-08  
9.22E-08  
9.95E-08  
1.11E-07  
1.32E-07  
1.63E-07  
2.12E-07  
2.85E-07  
4.05E-07  
5.75E-07  
8.38E-07  
1.18E-06  
1.68E-06  
2.45E-06  
3.65E-06  
100  
150  
220  
330  
470  
680  
8 bits  
1000  
1500  
2200  
3300  
4700  
6800  
10000  
15000  
1. Guaranteed by design.  
2. Data valid at up to 125 °C, with a 47 pF PCB capacitor, and VDDA=1.6 V.  
3. Direct channels are connected to analog I/Os (PA0_C, PA1_C, PC2_C and PC3_C) to optimize ADC performance.  
4. Fast channels correspond to PF3, PF5, PF7, PF9, PA6, PC4, PB1, PF11 and PF13.  
5. Slow channels correspond to all ADC inputs except for the Direct and Fast channels.  
182/242  
DS12930 Rev 1  
STM32H747xI/G  
Symbol  
Electrical characteristics  
(1)(2)  
Table 100. ADC accuracy  
Conditions(3)  
Parameter  
Min  
Typ  
Max  
Unit  
Single ended  
Differential  
-
-
-
-
-
+10/–20  
±15  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Direct  
channel  
Single ended  
Differential  
+10/–20  
±15  
ET  
Total undadjusted error  
Fast channel  
Single ended  
Differential  
±10  
Slow  
channel  
±10  
EO  
EG  
Offset error  
Gain error  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
±10  
±15  
LSB  
Single ended  
Differential  
+3/–1  
+4.5/–1  
±11  
ED  
Differential linearity error  
Integral linearity error  
Effective number of bits  
Single ended  
Direct  
channel  
Differential  
Single ended  
Differential  
±7  
±13  
EL  
Fast channel  
±7  
Single ended  
Differential  
±10  
Slow  
channel  
±6  
Single ended  
12.2  
13.2  
75.2  
81.2  
77.0  
81.0  
87  
ENOB  
SINAD  
SNR  
Bits  
dB  
Differential  
Single ended  
Differential  
Signal-to-noise and  
distortion ratio  
Single ended  
Differential  
Signal-to-noise ratio  
Single ended  
Differential  
THD  
Total harmonic distortion  
90  
1. Data guaranteed by characterization for BGA packages. The values for LQFP packages might differ.  
2. ADC DC accuracy values are measured after internal calibration.  
3. ADC clock frequency = 25 MHz, ADC resolution = 16 bits, VDDA=VREF+=3.3 V and BOOST=11.  
Note:  
ADC accuracy vs. negative injection current: injecting a negative current on any analog  
input pins should be avoided as this significantly reduces the accuracy of the conversion  
being performed on another analog input. It is recommended to add a Schottky diode (pin to  
ground) to analog pins which may potentially inject negative currents.  
Any positive injection current within the limits specified for I  
Section 6.3.17 does not affect the ADC accuracy.  
and ΣI  
in  
INJ(PIN)  
INJ(PIN)  
DS12930 Rev 1  
183/242  
221  
 
Electrical characteristics  
STM32H747xI/G  
Figure 44. ADC accuracy characteristics (12-bit resolution)  
V
V
DDA  
4096  
REF+  
[1LSB  
=
(or  
depending on package)]  
IDEAL  
4096  
E
G
4095  
4094  
4093  
(2)  
E
T
(3)  
7
6
5
4
3
2
1
(1)  
E
E
O
L
E
D
1L SB  
IDEAL  
7
0
V
1
2
3
456  
4093 4094 4095 4096  
V
DDA  
SSA  
ai14395c  
1. Example of an actual transfer curve.  
2. Ideal transfer curve.  
3. End point correlation line.  
4. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves.  
EO = Offset Error: deviation between the first actual transition and the first ideal one.  
EG = Gain Error: deviation between the last ideal transition and the last actual one.  
ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.  
EL = Integral Linearity Error: maximum deviation between any actual transition and the end point  
correlation line.  
Figure 45. Typical connection diagram using the ADC  
STM32  
V
DD  
Sample and hold ADC  
V
T
converter  
0.6 V  
(1)  
AIN  
(1)  
R
R
ADC  
AINx  
12-bit  
converter  
V
0.6 V  
T
V
AIN  
C
(1)  
ADC  
C
parasitic  
I
1 μA  
L
ai17534b  
1. Refer to Table 98 for the values of RAIN, RADC and CADC  
.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the  
pad capacitance (roughly 5 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this,  
f
ADC should be reduced.  
184/242  
DS12930 Rev 1  
 
 
STM32H747xI/G  
Electrical characteristics  
General PCB design guidelines  
Power supply decoupling should be performed as shown in Figure 46 or Figure 47,  
depending on whether V is connected to V or not. The 100 nF capacitors should be  
REF+  
DDA  
ceramic (good quality). They should be placed them as close as possible to the chip.  
Figure 46. Power supply and reference decoupling (V  
not connected to V  
)
DDA  
REF+  
STM32  
(1)  
VREF+  
1 μF // 100 nF  
VDDA  
1 μF // 100 nF  
(1)  
VSSA/VREF+  
MSv50648V1  
1. VREF+ input is available on all package whereas the VREF– s available only on UFBGA176+25 and  
TFBGA240+25. When VREF- is not available, it is internally connected to VDDA and VSSA  
.
Figure 47. Power supply and reference decoupling (V  
connected to V  
)
DDA  
REF+  
STM32  
(1)  
VREF+/VDDA  
1 μF // 100 nF  
(1)  
VREF-/VSSA  
MSv50649V1  
1. VREF+ input is available on all package whereas the VREF– s available only on UFBGA176+25 and  
TFBGA240+25. When VREF- is not available, it is internally connected to VDDA and VSSA  
.
DS12930 Rev 1  
185/242  
221  
 
 
 
 
Electrical characteristics  
STM32H747xI/G  
6.3.24  
DAC characteristics  
(1)(2)  
Table 101. DAC characteristics  
Conditions  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
VDDA  
Analog supply voltage  
-
1.8  
3.3  
-
3.6  
VREF+  
Positive reference voltage  
-
-
1.80  
VDDA  
V
Negative reference  
voltage  
VREF-  
-
VSSA  
-
-
-
connected  
to VSSA  
5
DAC output buffer  
ON  
RL  
RO  
Resistive Load  
connected  
to VDDA  
kꢁ  
25  
10.3  
-
-
13  
-
-
Output Impedance  
DAC output buffer OFF  
16  
1.6  
VDD  
2.7 V  
=
=
Output impedance  
sample and hold mode,  
output buffer ON  
DAC output buffer  
ON  
RBON  
kꢁ  
kꢁ  
VDD  
-
-
-
-
-
-
2.6  
2.0 V  
VDD  
=
17.8  
18.7  
Output impedance  
sample and hold mode,  
output buffer OFF  
2.7 V  
DAC output buffer  
OFF  
RBOFF  
VDD  
=
2.0 V  
CL  
DAC output buffer OFF  
Sample and Hold mode  
-
-
-
50  
1
pF  
µF  
Capacitive Load  
CSH  
0.1  
VDDA  
0.2  
DAC output buffer ON  
DAC output buffer OFF  
0.2  
-
Voltage on DAC_OUT  
output  
VDAC_OUT  
V
0
-
-
VREF+  
±0.5 LSB  
2.05  
1.97  
1.67  
1.66  
1.65  
-
-
-
-
-
Settling time (full scale:  
for a 12-bit code transition  
between the lowest and  
the highest input codes  
when DAC_OUT reaches  
the final value of ±0.5LSB,  
±1LSB, ±2LSB, ±4LSB,  
±8LSB)  
±1 LSB  
±2 LSB  
±4 LSB  
±8 LSB  
-
Normal mode, DAC  
output buffer ON,  
CL 50 pF,  
-
tSETTLING  
µs  
RL 5 ㏀  
-
-
Normal mode, DAC output buffer  
OFF, ±1LSB CL=10 pF  
-
-
1.7  
5
2
Wakeup time from off  
state (setting the ENx bit  
in the DAC Control  
register) until the final  
value of ±1LSB is reached  
Normal mode, DAC output buffer  
7.5  
ON, CL 50 pF, RL = 5 ㏀  
(3)  
tWAKEUP  
µs  
Normal mode, DAC output buffer  
2
5
OFF, CL 10 pF  
DC VDDA supply rejection Normal mode, DAC output buffer  
PSRR  
-
80  
28  
dB  
ratio  
ON, CL 50 pF, RL = 5 ㏀  
186/242  
DS12930 Rev 1  
 
 
STM32H747xI/G  
Symbol  
Electrical characteristics  
(1)(2)  
Table 101. DAC characteristics  
Parameter Conditions  
Sampling time in Sample  
(continued)  
Min  
Typ  
Max  
Unit  
MODE<2:0>_V12=100/101  
(BUFFER ON)  
-
-
0.7  
2.6  
and Hold mode  
ms  
CL=100 nF  
MODE<2:0>_V12=110  
(BUFFER OFF)  
11.5  
0.3  
18.7  
0.6  
(code transition between  
the lowest input code and  
the highest input code  
when DAC_OUT reaches  
the ±1LSB final value)  
tSAMP  
MODE<2:0>_V12=111  
-
µs  
(INTERNAL BUFFER OFF)  
Internal sample and hold  
capacitor  
CIint  
-
1.8  
2.2  
-
2.6  
-
pF  
µs  
Middle code offset trim  
time  
Minimum time to verify the each  
code  
tTRIM  
50  
VREF+ = 3.6 V  
VREF+ = 1.8 V  
-
-
850  
425  
-
-
Middle code offset for 1  
trim code step  
Voffset  
µV  
No load,  
middle  
code  
-
-
-
-
-
-
-
360  
490  
-
-
-
-
-
-
-
DAC output buffer  
(0x800)  
ON  
No load,  
worst code  
(0xF1C)  
DAC quiescent  
IDDA(DAC)  
consumption from VDDA  
No load,  
DAC output buffer middle/wor  
20  
OFF  
st code  
(0x800)  
360*TON  
/
Sample and Hold mode,  
CSH=100 nF  
(TON+TOFF  
)
(4)  
No load,  
middle  
code  
µA  
170  
170  
160  
DAC output buffer  
ON  
(0x800)  
No load,  
worst code  
(0xF1C)  
No load,  
DAC output buffer middle/wor  
DAC consumption from  
VREF+  
IDDV(DAC)  
OFF  
st code  
(0x800)  
170*TON  
/
Sample and Hold mode, Buffer  
ON, CSH=100 nF (worst code)  
-
-
(TON+TOFF  
)
)
-
-
(4)  
160*TON  
/
Sample and Hold mode, Buffer  
OFF, CSH=100 nF (worst code)  
(TON+TOFF  
(4)  
1. Guaranteed by design unless otherwise specified.  
DS12930 Rev 1  
187/242  
221  
Electrical characteristics  
STM32H747xI/G  
2. TBD stands for “to be defined”.  
3. In buffered mode, the output can overshoot above the final value for low input code (starting from the minimum value).  
4. TON is the refresh phase duration, while TOFF is the hold phase duration. Refer to the product reference manual for more  
details.  
(1)  
Table 102. DAC accuracy  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DAC output buffer ON  
DAC output buffer OFF  
10 bits  
2  
2  
-
-
-
-
2
2
-
Differential non  
linearity(2)  
DNL  
-
LSB  
-
Monotonicity  
DAC output buffer ON, CL 50 pF,  
RL 5 ㏀  
4  
-
4
INL  
Integral non linearity(3)  
LSB  
DAC output buffer OFF,  
4  
-
-
4
CL 50 pF, no RL  
DAC output  
buffer ON,  
CL 50 pF,  
RL 5 ㏀  
V
REF+ = 3.6 V  
-
±15  
Offset error at code  
0x800 (3)  
VREF+ = 1.8 V  
-
-
-
-
±30  
±8  
Offset  
LSB  
DAC output buffer OFF,  
CL 50 pF, no RL  
Offset error at code  
0x001(4)  
DAC output buffer OFF,  
Offset1  
-
-
-
-
±5  
±6  
LSB  
LSB  
CL 50 pF, no RL  
DAC output  
VREF+ = 3.6 V  
Offset error at code  
0x800 after factory  
calibration  
buffer ON,  
OffsetCal  
CL 50 pF,  
RL 5 ㏀  
VREF+ = 1.8 V  
-
-
±7  
DAC output buffer ON,CL 50 pF,  
RL 5 ㏀  
-
-
-
-
-
±1  
±1  
-
Gain  
SNR  
Gain error(5)  
%
DAC output buffer OFF,  
CL 50 pF, no RL  
DAC output buffer ON,CL 50 pF,  
RL 5 , 1 kHz, BW = 500 KHz  
67.8  
Signal-to-noise ratio(6)  
dB  
DAC output buffer OFF,  
CL 50 pF, no RL,1 kHz, BW =  
500 KHz  
-
67.8  
-
DAC output buffer ON, CL 50 pF,  
RL 5 , 1 kHz  
-
-
-
-
78.6  
78.6  
67.5  
-
-
-
-
Total harmonic  
distortion(6)  
THD  
dB  
dB  
DAC output buffer OFF,  
CL 50 pF, no RL, 1 kHz  
DAC output buffer ON, CL 50 pF,  
RL 5 , 1 kHz  
Signal-to-noise and  
distortion ratio(6)  
SINAD  
DAC output buffer OFF,  
CL 50 pF, no RL, 1 kHz  
67.5  
188/242  
DS12930 Rev 1  
 
STM32H747xI/G  
Electrical characteristics  
(1)  
Table 102. DAC accuracy (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DAC output buffer ON,  
-
10.9  
-
CL 50 pF, RL 5 , 1 kHz  
Effective number of  
bits  
ENOB  
bits  
DAC output buffer OFF,  
CL 50 pF, no RL, 1 kHz  
-
10.9  
-
1. Guaranteed by characterization.  
2. Difference between two consecutive codes minus 1 LSB.  
3. Difference between the value measured at Code i and the value measured at Code i on a line drawn between Code 0 and  
last Code 4095.  
4. Difference between the value measured at Code (0x001) and the ideal value.  
5. Difference between the ideal slope of the transfer function and the measured slope computed from code 0x000 and 0xFFF  
when the buffer is OFF, and from code giving 0.2 V and (VREF+ - 0.2 V) when the buffer is ON.  
6. Signal is 0.5dBFS with Fsampling=1 MHz.  
Figure 48. 12-bit buffered /non-buffered DAC  
Buffered/Non-buffered DAC  
Buffer(1)  
R
L
DAC_OUTx  
12-bit  
digital to  
analog  
converter  
C
L
ai17157V3  
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly  
without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the  
DAC_CR register.  
DS12930 Rev 1  
189/242  
221  
 
Electrical characteristics  
STM32H747xI/G  
6.3.25  
Voltage reference buffer characteristics  
(1)  
Table 103. VREFBUF characteristics  
Conditions  
Symbol  
Parameter  
Min  
2.8  
Typ  
Max  
3.6  
Unit  
VSCALE = 000  
3.3  
VSCALE = 001  
Normal mode  
2.4  
-
3.6  
VSCALE = 010  
2.1  
-
3.6  
VSCALE = 011  
VSCALE = 000  
1.8  
-
3.6  
VDDA  
Analog supply voltage  
1.62  
1.62  
1.62  
1.62  
2.498  
2.046  
1.801  
-
2.80  
2.40  
2.10  
1.80  
2.5035  
2.052  
1.806  
1.504  
VSCALE = 001  
Degraded mode  
-
-
VSCALE = 010  
VSCALE = 011  
VSCALE = 000  
-
2.5  
2.049  
1.804  
V
VSCALE = 001  
Normal mode  
VSCALE = 010  
VSCALE = 011 1.4995 1.5015  
VDDA  
150 mV  
Voltage Reference  
Buffer Output, at 30 °C,  
Iload= 100 µA  
VSCALE = 000  
VSCALE = 001  
VSCALE = 010  
VSCALE = 011  
-
-
-
-
VDDA  
VDDA  
VDDA  
VDDA  
VREFBUF  
_OUT  
VDDA  
150 mV  
Degraded mode(2)  
VDDA  
150 mV  
VDDA  
150 mV  
TRIM  
CL  
Trim step resolution  
Load capacitor  
-
-
-
-
-
±0.05  
1
±0.1  
1.50  
%
0.5  
uF  
Equivalent Serial  
Resistor of CL  
esr  
-
-
-
-
-
-
2
Iload  
Static load current  
-
-
-
-
4
-
mA  
I
load = 500 µA  
Iload = 4 mA  
200  
100  
Iline_reg  
Line regulation  
2.8 V VDDA 3.6 V  
ppm/V  
-
ppm/  
mA  
Iload_reg  
Load regulation  
500 µA ILOAD 4 mA Normal Mode  
40 °C < TJ < +125 °C  
-
-
50  
-
-
Tcoeff  
VREFINT  
+ 100  
ppm/  
°C  
Tcoeff  
Temperature coefficient  
DC  
-
-
-
-
60  
40  
-
-
PSRR  
Power supply rejection  
dB  
100KHz  
190/242  
DS12930 Rev 1  
 
 
STM32H747xI/G  
Electrical characteristics  
(1)  
Table 103. VREFBUF characteristics (continued)  
Symbol  
Parameter  
Conditions  
CL=0.5 µF  
Min  
Typ  
300  
500  
650  
Max  
Unit  
-
-
-
-
-
-
-
-
-
tSTART  
Start-up time  
CL=1 µF  
µs  
CL=1.5 µF  
Control of maximum  
DC current drive on  
VREFBUF_OUT during  
startup phase(3)  
IINRUSH  
-
-
8
-
mA  
µA  
ILOAD = 0 µA  
-
-
-
-
-
-
15  
16  
32  
25  
30  
50  
VREFBUF  
consumption from  
VDDA  
IDDA(VRE  
ILOAD = 500 µA  
FBUF)  
ILOAD = 4 mA  
1. Guaranteed by design.  
2. In degraded mode, the voltage reference buffer cannot accurately maintain the output voltage (VDDAdrop voltage).  
3. To properly control VREFBUF IINRUSH current during the startup phase and the change of scaling, VDDA voltage should be in  
the range of 1.8 V-3.6 V, 2.1 V-3.6 V, 2.4 V-3.6 V and 2.8 V-3.6 V for VSCALE = 011, 010, 001 and 000, respectively.  
6.3.26  
Temperature sensor characteristics  
Table 104. Temperature sensor characteristics  
Symbol  
Parameter  
Min Typ Max Unit  
(1)  
TL  
VSENSE linearity with temperature  
-
-
-
3
°C  
mV/°C  
V
Avg_Slope(2) Average slope  
2
-
(3)  
V30  
Voltage at 30°C ± 5 °C  
-
0.62  
-
25.2  
-
tstart_run  
Startup time in Run mode (buffer startup)  
ADC sampling time when reading the temperature  
Sensor consumption  
-
-
-
µs  
(1)  
tS_temp  
9
-
(1)  
Isens  
0.18 0.31  
3.8 6.5  
µA  
(1)  
Isensbuf  
Sensor buffer consumption  
-
1. Guaranteed by design.  
2. Guaranteed by characterization.  
3. Measured at VDDA = 3.3 V ± 10 mV. The V30 ADC conversion result is stored in the TS_CAL1  
byte.  
Table 105. Temperature sensor calibration values  
Symbol  
Parameter  
Memory address  
Temperature sensor raw data acquired value at  
30 °C, VDDA=3.3 V  
TS_CAL1  
0x1FF1 E820 -0x1FF1 E821  
Temperature sensor raw data acquired value at  
110 °C, VDDA=3.3 V  
TS_CAL2  
0x1FF1 E840 - 0x1FF1 E841  
DS12930 Rev 1  
191/242  
221  
 
 
 
 
Electrical characteristics  
STM32H747xI/G  
6.3.27  
Temperature and V  
monitoring  
BAT  
Table 106. V  
monitoring characteristics  
BAT  
Symbol  
Parameter  
Resistor bridge for VBAT  
Min  
Typ  
Max  
Unit  
R
Q
-
26  
4
-
Kꢁ  
-
Ratio on VBAT measurement  
Error on Q  
-
-
Er(1)  
–10  
-
+10  
%
µs  
(1)  
tS_vbat  
ADC sampling time when reading VBAT input  
High supply monitoring  
9
-
-
-
-
-
VBAThigh  
VBATlow  
3.55  
1.36  
V
Low supply monitoring  
-
1. Guaranteed by design.  
Table 107. V  
charging characteristics  
BAT  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
VBRS in PWR_CR3= 0  
VBRS in PWR_CR3= 1  
-
5
-
-
RBC  
Battery charging resistor  
Kꢁ  
1.5  
Table 108. Temperature monitoring characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
TEMPhigh  
TEMPlow  
High temperature monitoring  
Low temperature monitoring  
-
-
117  
-
-
°C  
25  
6.3.28  
Voltage booster for analog switch  
(1)  
Table 109. Voltage booster for analog switch characteristics  
Symbol  
Parameter  
Supply voltage  
Condition  
Min Typ Max Unit  
VDD  
-
1.62 2.6 3.6  
V
Booster startup time  
-
-
-
-
-
-
-
50  
µs  
tSU(BOOST)  
1.62 V VDD 2.7 V  
2.7 V < VDD < 3.6 V  
125  
250  
Booster consumption  
µA  
IDD(BOOST)  
1. Guaranteed by characterization results.  
192/242  
DS12930 Rev 1  
 
 
 
 
 
 
 
STM32H747xI/G  
Electrical characteristics  
6.3.29  
Comparator characteristics  
(1)  
Table 110. COMP characteristics  
Conditions  
Symbol  
VDDA  
Parameter  
Min  
Typ  
Max  
Unit  
Analog supply voltage  
-
-
1.62  
3.3  
3.6  
Comparator input voltage  
range  
VIN  
0
-
VDDA  
V
(2)  
VBG  
VSC  
Scaler input voltage  
Scaler offset voltage  
-
-
-
-
±5  
0.2  
0.8  
140  
2
±10  
0.3  
1
mV  
µA  
µs  
BRG_EN=0 (bridge disable)  
BRG_EN=1 (bridge enable)  
-
Scaler static consumption  
from VDDA  
IDDA(SCALER)  
-
tSTART_SCALER Scaler startup time  
-
250  
5
High-speed mode  
Medium mode  
-
Comparator startup time to  
reach propagation delay  
tSTART  
-
5
20  
80  
80  
1.2  
7
µs  
specification  
Ultra-low-power mode  
High-speed mode  
Medium mode  
-
15  
50  
0.5  
2.5  
50  
0.5  
2.5  
±5  
0
-
ns  
µs  
Propagation delay for  
200 mV step with 100 mV  
overdrive  
-
Ultra-low-power mode  
High-speed mode  
Medium mode  
-
(3)  
tD  
-
120  
1.2  
7
ns  
Propagation delay for step  
> 200 mV with 100 mV  
overdrive only on positive  
inputs  
-
µs  
Ultra-low-power mode  
Full common mode range  
No hysteresis  
-
Voffset  
Comparator offset error  
-
±20  
-
mV  
-
Low hysteresis  
5
8
16  
-
10  
20  
30  
400  
22  
37  
52  
600  
Vhys  
Comparator hysteresis  
mV  
nA  
Medium hysteresis  
High hysteresis  
Static  
Ultra-low-  
With 50 kHz  
±100 mV overdrive  
square signal  
power mode  
-
-
-
-
-
800  
5
-
Static  
7
Comparator consumption  
from VDDA  
With 50 kHz  
I
DDA(COMP)  
Medium mode  
±100 mV overdrive  
square signal  
6
-
100  
-
µA  
Static  
70  
75  
High-speed  
mode  
With 50 kHz  
±100 mV overdrive  
square signal  
1. Guaranteed by design, unless otherwise specified.  
2. Refer to Table 29: Embedded reference voltage.  
DS12930 Rev 1  
193/242  
221  
 
 
Electrical characteristics  
STM32H747xI/G  
3. Guaranteed by characterization results.  
6.3.30  
Operational amplifier characteristics  
Table 111. Operational amplifier characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Analog supply voltage  
Range  
VDDA  
CMIR  
-
2
3.3  
3.6  
V
Common Mode Input  
Range  
-
0
-
-
VDDA  
±1.5  
±2.5  
-
25°C, no load on output  
-
-
VIOFFSET  
Input offset voltage  
mV  
All voltages and  
temperature, no load  
-
ΔVIOFFSET  
Input offset voltage drift  
-
-
-
±3.0  
μV/°C  
Offset trim step at low  
common input voltage  
TRIMOFFSETP  
-
-
1.1  
1.1  
1.5  
1.5  
TRIMLPOFFSETP  
(0.1*VDDA  
)
mV  
Offset trim step at high  
common input voltage  
TRIMOFFSETN  
-
TRIMLPOFFSETN  
(0.9*VDDA  
)
ILOAD  
ILOAD_PGA  
CLOAD  
Drive current  
Drive current in PGA mode  
Capacitive load  
-
-
-
-
-
-
-
-
-
500  
270  
50  
μA  
pF  
dB  
Common mode rejection  
ratio  
CMRR  
PSRR  
-
-
80  
66  
-
-
CLOAD 50pf /  
RLOAD 4 k(1) at 1 kHz,  
Vcom=VDDA/2  
Power supply rejection  
ratio  
50  
4
dB  
Gain bandwidth for high  
supply range  
200 mV Output dynamic  
range VDDA - 200 mV  
GBW  
SR  
7.3  
12.3  
MHz  
V/µs  
dB  
Normal mode  
-
-
3
-
-
Slew rate (from 10% and  
90% of output voltage)  
High-speed mode  
30  
200 mV Output dynamic  
range VDDA - 200 mV  
AO  
Open loop gain  
59  
90  
129  
φm  
Phase margin  
Gain margin  
-
-
-
-
55  
12  
-
-
°
GM  
dB  
I
load=max or RLOAD=min,  
Input at VDDA  
VDDA  
100 mV  
VOHSAT  
High saturation voltage  
Low saturation voltage  
-
-
-
mV  
Iload=max or RLOAD=min,  
Input at 0 V  
VOLSAT  
-
100  
194/242  
DS12930 Rev 1  
 
 
STM32H747xI/G  
Symbol  
Electrical characteristics  
Table 111. Operational amplifier characteristics (continued)  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
CLOAD 50pf,  
Normal RLOAD 4 k,  
-
0.8  
3.2  
mode  
follower  
configuration  
Wake up time from OFF  
state  
tWAKEUP  
µs  
CLOAD 50pf,  
RLOAD 4 k,  
follower  
High  
speed  
mode  
-
0.9  
2.8  
configuration  
PGA gain = 2  
1  
2  
2.5  
3  
1  
1  
2  
3  
1  
3  
3.5  
4  
-
-
1
2
2.5  
3
1
1
2
3
1
3
3.5  
4
-
PGA gain = 4  
PGA gain = 8  
PGA gain = 16  
PGA gain = 2  
PGA gain = 4  
PGA gain = 8  
PGA gain = 16  
PGA gain = 2  
PGA gain = 4  
PGA gain = 8  
PGA gain = 16  
PGA Gain=2  
PGA Gain=4  
PGA Gain=8  
PGA Gain=16  
PGA Gain = -1  
PGA Gain = -3  
PGA Gain = -7  
PGA Gain = -15  
-
Non inverting gain error  
value  
-
-
-
-
PGA gain  
Inverting gain error value  
%
-
-
-
-
External non-inverting gain  
error value  
-
-
10/10  
30/10  
70/10  
150/10  
10/10  
30/10  
70/10  
150/10  
R2/R1 internal resistance  
values in non-inverting  
PGA mode(2)  
-
-
-
-
-
-
k/  
kꢁ  
Rnetwork  
-
-
R2/R1 internal resistance  
values in inverting PGA  
mode(2)  
-
-
-
-
-
-
Resistance variation (R1  
or R2)  
Delta R  
-
15  
-
15  
%
DS12930 Rev 1  
195/242  
221  
Electrical characteristics  
STM32H747xI/G  
Table 111. Operational amplifier characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Gain=2  
Gain=4  
-
-
-
-
-
-
-
-
GBW/2  
GBW/4  
GBW/8  
GBW/16  
5.00  
-
-
-
-
-
-
-
-
PGA bandwidth for  
different non inverting gain  
MHz  
Gain=8  
Gain=16  
Gain = -1  
Gain = -3  
Gain = -7  
Gain = -15  
PGA BW  
3.00  
PGA bandwidth for  
different inverting gain  
MHz  
1.50  
0.80  
at  
1 KHz  
-
-
-
140  
55  
-
-
output loaded  
with 4 kꢁ  
nV/√  
Hz  
en  
Voltage noise density  
at  
10 KHz  
Normal  
mode  
570  
1000  
no Load,  
quiescent mode,  
follower  
OPAMP consumption from  
VDDA  
IDDA(OPAMP)  
µA  
High-  
speed  
mode  
-
610  
1200  
1. RLOAD is the resistive load connected to VSSA or to VDDA.  
2. R2 is the internal resistance between the OPAMP output and th OPAMP inverting input. R1 is the internal resistance  
between the OPAMP inverting input and ground. PGA gain = 1 + R2/R1.  
6.3.31  
Digital filter for Sigma-Delta Modulators (DFSDM) characteristics  
Unless otherwise specified, the parameters given in Table 112 for DFSDM are derived from  
tests performed under the ambient temperature, fPCLKx frequency and supply voltage  
conditions summarized in Table 22: General operating conditions.  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C = 30 pF  
L
Measurement points are done at CMOS levels: 0.5V  
VOS level set to VOS1  
DD  
Refer to Section 6.3.18: I/O port characteristics for more details on the input/output alternate  
function characteristics (DìFSDM_CKINx, DFSDM_DATINx, DFSDM_CKOUT for DFSDM).  
196/242  
DS12930 Rev 1  
 
STM32H747xI/G  
Electrical characteristics  
Table 112. DFSDM measured timing 1.62-3.6 V  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DFSDM  
clock  
fDFSDMCLK  
1.62 < VDD < 3.6 V  
-
-
133  
SPI mode (SITP[1:0]=0,1),  
External clock mode  
(SPICKSEL[1:0]=0),  
1.62 < VDD < 3.6 V  
-
-
-
-
-
-
-
-
20  
20  
20  
20  
SPI mode (SITP[1:0]=0,1),  
External clock mode  
(SPICKSEL[1:0]=0),  
2.7 < VDD < 3.6 V  
fCKIN  
(1/TCKIN  
Input clock  
frequency  
MH  
z
)
SPI mode (SITP[1:0]=0,1),  
Internal clock mode  
(SPICKSEL[1:0]¹0),  
1.62 < VDD < 3.6 V  
SPI mode (SITP[1:0]=0,1),  
Internal clock mode  
(SPICKSEL[1:0]¹0),  
2.7 < VDD < 3.6 V  
Output clock  
frequency  
fCKOUT  
1.62 < VDD < 3.6 V  
1.62 < VDD < 3.6 V  
-
-
20  
55  
Output clock  
frequency  
duty cycle  
DuCyCKOU  
45  
50  
%
T
SPI mode (SITP[1:0]=0,1),  
External clock mode  
(SPICKSEL[1:0]=0),  
1.62 < VDD < 3.6 V  
Input clock  
high and low  
time  
twh(CKIN)  
twl(CKIN)  
TCKIN/2-0.5  
TCKIN/2  
-
-
-
SPI mode (SITP[1:0]=0,1),  
External clock mode  
(SPICKSEL[1:0]=0),  
1.62 < VDD < 3.6 V  
Data input  
setup time  
tsu  
1.5  
0.5  
-
-
-
ns  
SPI mode (SITP[1:0]=0,1),  
External clock mode  
(SPICKSEL[1:0]=0),  
1.62 < VDD < 3.6 V  
Data input  
hold time  
th  
Manchester Manchester mode (SITP[1:0]=2,3),  
data period  
(recovered  
clock period)  
Internal clock mode  
(SPICKSEL[1:0]¹0),  
1.62 < VDD < 3.6 V  
(CKOUTDIV+1)  
* TDFSDMCLK  
(2*CKOUTDIV)  
* TDFSDMCLK  
TManchester  
DS12930 Rev 1  
197/242  
221  
 
Electrical characteristics  
STM32H747xI/G  
Figure 49. Channel transceiver timing diagrams  
(SPICKSEL=0)  
tr  
tf  
twl  
twh  
tsu  
th  
SITP = 00  
SITP = 01  
tsu  
th  
SPICKSEL=3  
SPICKSEL=2  
SPICKSEL=1  
tr  
tf  
twl  
twh  
tsu  
th  
SITP = 0  
SITP = 1  
tsu  
th  
SITP = 2  
SITP = 3  
recovered clock  
recovered data  
0
0
1
1
0
MS30766V2  
198/242  
DS12930 Rev 1  
 
STM32H747xI/G  
Electrical characteristics  
6.3.32  
Camera interface (DCMI) timing specifications  
Unless otherwise specified, the parameters given in Table 113 for DCMI are derived from  
tests performed under the ambient temperature, f  
frequency and VDD supply voltage  
HCLK  
summarized in Table 22: General operating conditions, with the following configuration:  
DCMI_PIXCLK polarity: falling  
DCMI_VSYNC and DCMI_HSYNC polarity: high  
Data formats: 14 bits  
Capacitive load C =30 pF  
L
Measurement points are done at CMOS levels: 0.5V  
VOS level set to VOS1  
DD  
(1)  
Table 113. DCMI characteristics  
Symbol  
Parameter  
Min  
Max  
Unit  
-
Frequency ratio DCMI_PIXCLK/fHCLK  
Pixel Clock input  
-
-
0.4  
80  
70  
-
-
DCMI_PIXCLK  
Dpixel  
MHz  
%
Pixel Clock input duty cycle  
Data input setup time  
30  
3
t
su(DATA)  
-
th(DATA)  
Data hold time  
1
-
tsu(HSYNC),  
tsu(VSYNC)  
DCMI_HSYNC/ DCMI_VSYNC input setup time  
DCMI_HSYNC/ DCMI_VSYNC input hold time  
2
1
-
-
ns  
-
th(HSYNC),  
th(VSYNC)  
1. Guaranteed by characterization results.  
Figure 50. DCMI timing diagram  
1/DCMI_PIXCLK  
DCMI_PIXCLK  
DCMI_HSYNC  
DCMI_VSYNC  
DATA[0:13]  
th(HSYNC)  
tsu(HSYNC)  
th(HSYNC)  
tsu(VSYNC)  
tsu(DATA) th(DATA)  
MS32414V2  
DS12930 Rev 1  
199/242  
221  
 
 
 
 
Electrical characteristics  
STM32H747xI/G  
6.3.33  
LCD-TFT controller (LTDC) characteristics  
Unless otherwise specified, the parameters given in Table 114 for LCD-TFT are derived  
from tests performed under the ambient temperature, f frequency and VDD supply  
HCLK  
voltage summarized in Table 22: General operating conditions, with the following  
configuration:  
LCD_CLK polarity: high  
LCD_DE polarity: low  
LCD_VSYNC and LCD_HSYNC polarity: high  
Pixel formats: 24 bits  
Output speed is set to OSPEEDRy[1:0] = 11  
Capacitive load C =30 pF  
L
Measurement points are done at CMOS levels: 0.5VDD  
IO Compensation cell activated.  
HSLV activated when V 2.7 V  
DD  
VOS level set to VOS1  
(1)  
Table 114. LTDC characteristics  
Symbol  
Parameter  
Min  
Max  
Unit  
2.7<VD <3.6 V  
D
150  
LTDC clock  
output  
frequency  
20pF  
fCLK  
-
MHz  
%
2.7<VD <3.6 V  
133  
90  
D
1.62<VD <3.6 V  
D
DCLK  
LTDC clock output duty cycle  
Clock High time, low time  
45  
55  
tw(CLKH),  
tw(CLKL)  
tw(CLK)//2-0.5  
tw(CLK)//2+0.5  
tv(DATA)  
th(DATA)  
tv(DATA)  
2.7<VD <3.6 V  
0.5  
5
D
-
Data output valid time  
-
1.62<VD <3.6 V  
D
Data output hold time  
0
-
-
tv(HSYNC),  
tv(VSYNC),  
tv(DE)  
2.7<VD <3.6 V  
0.5  
D
HSYNC/VSYNC/DE output  
valid time  
1.62<VD <3.6 V  
-
5
D
th(HSYNC),  
HSYNC/VSYNC/DE output hold time  
0
-
th(VSYNC)  
,
th(DE)  
1. Guaranteed by characterization results.  
200/242  
DS12930 Rev 1  
 
 
 
STM32H747xI/G  
Electrical characteristics  
Figure 51. LCD-TFT horizontal timing diagram  
tCLK  
LCD_CLK  
LCD_VSYNC  
tv(HSYNC)  
tv(HSYNC)  
LCD_HSYNC  
th(DE)  
tv(DE)  
LCD_DE  
tv(DATA)  
LCD_R[0:7]  
LCD_G[0:7]  
LCD_B[0:7]  
Pixel Pixel  
1
Pixel  
N
2
th(DATA)  
Active width  
HSYNCHorizontal  
width back porch  
Horizontal  
back porch  
One line  
MS32749V1  
Figure 52. LCD-TFT vertical timing diagram  
tCLK  
LCD_CLK  
tv(VSYNC)  
tv(VSYNC)  
LCD_VSYNC  
LCD_R[0:7]  
LCD_G[0:7]  
LCD_B[0:7]  
M lines data  
VSYNC Vertical  
width back porch  
Active width  
One frame  
Vertical  
back porch  
MS32750V1  
DS12930 Rev 1  
201/242  
221  
 
 
Electrical characteristics  
STM32H747xI/G  
6.3.34  
Timer characteristics  
The parameters given in Table 115 are guaranteed by design.  
Refer to Section 6.3.18: I/O port characteristics for details on the input/output alternate  
function characteristics (output compare, input capture, external clock, PWM output).  
(1)(2)  
Table 115. TIMx characteristics  
Conditions(3)  
Symbol  
Parameter  
Min  
Max  
Unit  
AHB/APBx prescaler=1  
or 2 or 4, fTIMxCLK  
=
tTIMxCLK  
1
-
240 MHz  
tres(TIM)  
Timer resolution time  
AHB/APBx  
prescaler>4, fTIMxCLK  
=
tTIMxCLK  
1
-
120 MHz  
Timer external clock  
frequency on CH1 to CH4  
fEXT  
fTIMxCLK/2  
16/32  
0
-
MHz  
bit  
f
TIMxCLK = 240 MHz  
ResTIM  
Timer resolution  
Maximum possible count  
with 32-bit counter  
65536 ×  
65536  
tMAX_COUNT  
tTIMxCLK  
-
-
1. TIMx is used as a general term to refer to the TIM1 to TIM17 timers.  
2. Guaranteed by design.  
3. The maximum timer frequency on APB1 or APB2 is up to 240 MHz, by setting the TIMPRE bit in the  
RCC_CFGR register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = rcc_hclk1, otherwise TIMxCLK = 4x  
Frcc_pclkx_d2  
.
6.3.35  
Communication interfaces  
I2C interface characteristics  
2
The I C interface meets the timings requirements of the I2C-bus specification and user  
manual revision 03 for:  
Standard-mode (Sm): with a bit rate up to 100 kbit/s  
Fast-mode (Fm): with a bit rate up to 400 kbit/s  
Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.  
2
2
The I C timings requirements are guaranteed by design when the I C peripheral is properly  
configured (refer to RM0399 reference manual) and when the i2c_ker_ck frequency is  
greater than the minimum shown in the table below:  
202/242  
DS12930 Rev 1  
 
 
 
 
STM32H747xI/G  
Electrical characteristics  
2
Table 116. Minimum i2c_ker_ck frequency in all I C modes  
Symbol  
Parameter  
Condition  
Min  
Unit  
Standard-mode  
Fast-mode  
-
2
Analog Filtre ON  
DNF=0  
8
9
MHz  
Analog Filtre OFF  
DNF=1  
I2CCLK  
frequency  
f(I2CCLK)  
Analog Filtre ON  
DNF=0  
17  
16  
Fast-mode Plus  
Analog Filtre OFF  
DNF=1  
-
The SDA and SCL I/O requirements are met with the following restrictions:  
The SDA and SCL I/O pins are not “true” open-drain. When configured as open-drain,  
the PMOS connected between the I/O pin and V is disabled, but still present.  
DDIOx  
The 20 mA output drive requirement in Fast-mode Plus is not supported. This limits the  
maximum load C supported in Fm+, which is given by these formulas:  
Load  
t
=0.8473xR xC  
P Load  
r(SDA/SCL)  
R
= (V -V  
)/I  
P(min)  
DD OL(max) OL(max)  
Where R is the I2C lines pull-up. Refer to Section 6.3.18: I/O port characteristics for  
P
2
the I C I/Os characteristics.  
2
All I C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog fil-  
ter characteristics:  
2
(1)  
Table 117. I C analog filter characteristics  
Symbol  
Parameter  
Min  
Max  
Unit  
Maximum pulse width of spikes  
that are suppressed by analog  
filter  
tAF  
50(2)  
80(3)  
ns  
1. Guaranteed by characterization results.  
2. Spikes with widths below tAF(min) are filtered.  
3. Spikes with widths above tAF(max) are not filtered.  
USART interface characteristics  
Unless otherwise specified, the parameters given in Table 118 for USART are derived from  
tests performed under the ambient temperature, f frequency and V supply voltage  
PCLKx  
DD  
conditions summarized in Table 22: General operating conditions, with the following  
configuration:  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C = 30 pF  
L
Measurement points are done at CMOS levels: 0.5V  
IO Compensation cell activated.  
DD  
VOS level set to VOS1  
DS12930 Rev 1  
203/242  
221  
 
 
Electrical characteristics  
STM32H747xI/G  
Refer to Section 6.3.18: I/O port characteristics for more details on the input/output alternate  
function characteristics (NSS, CK, TX, RX for USART).  
(1)  
Table 118. USART characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Master mode  
Slave mode  
Slave mode  
Slave mode  
12.5  
fCK  
USART clock frequency  
-
-
MHz  
25  
-
tsu(NSS)  
th(NSS)  
tw(SCKH)  
NSS setup time  
NSS hold time  
tker+1  
2
-
-
-
-
,
CK high and low time  
Data input setup time  
Master mode  
1/fCK/2-2  
1/fCK/2  
1/fCK/2+2  
tw(SCKL)  
Master mode  
Slave mode  
Master mode  
Slave mode  
Slave mode  
Master mode  
Slave mode  
Master mode  
t
ker+6  
-
-
-
-
tsu(RX)  
th(RX)  
tv(TX)  
th(TX)  
1.5  
0
-
-
Data input hold time  
Data output valid time  
Data output hold time  
1.5  
-
-
-
ns  
12  
0.5  
-
20  
1
-
-
9
0
-
-
1. Guaranteed by characterization results.  
204/242  
DS12930 Rev 1  
 
STM32H747xI/G  
Electrical characteristics  
Figure 53. USART timing diagram in Master mode  
High  
NSS input  
t
c(SCK)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
t
t
t
w(SCKH)  
w(SCKL)  
r(SCK)  
t
su(MI)  
t
f(SCK)  
MISO  
INPUT  
BIT6 IN  
LSB IN  
MSB IN  
t
h(MI)  
MOSI  
OUTPUT  
BIT1 OUT  
LSB OUT  
MSB OUT  
t
t
h(MO)  
v(MO)  
ai14136c  
1. Measurement points are done at 0.5VDD and with external CL = 30 pF.  
Figure 54. USART timing diagram in Slave mode  
NSS input  
tc(SCK)  
th(NSS)  
tsu(NSS)  
tw(SCKH)  
tr(SCK)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
ta(SO)  
tw(SCKL)  
tv(SO)  
th(SO)  
tf(SCK)  
Last bit OUT  
tdis(SO)  
MISO output  
MOSI input  
First bit OUT  
th(SI)  
Next bits OUT  
tsu(SI)  
First bit IN  
Next bits IN  
Last bit IN  
MSv41658V1  
DS12930 Rev 1  
205/242  
221  
 
 
Electrical characteristics  
STM32H747xI/G  
SPI interface characteristics  
Unless otherwise specified, the parameters given in Table 119 for SPI are derived from tests  
performed under the ambient temperature, f frequency and V supply voltage  
PCLKx  
DD  
conditions summarized in Table 22: General operating conditions, with the following  
configuration:  
Output speed is set to OSPEEDRy[1:0] = 11  
Capacitive load C = 30 pF  
L
Measurement points are done at CMOS levels: 0.5V  
IO Compensation cell activated.  
DD  
HSLV activated when VDD 2.7 V  
VOS level set to VOS1  
Refer to Section 6.3.18: I/O port characteristics for more details on the input/output alternate  
function characteristics (NSS, SCK, MOSI, MISO for SPI).  
(1)  
Table 119. SPI characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Master mode  
1.62<VDD<3.6 V  
SPI1, 2, 3  
80  
Master mode  
2.7<VDD<3.6 V  
SPI1, 2, 3  
100  
50  
Master mode  
1.62<VDD<3.6 V  
SPI4, 5, 6  
fSCK  
SPI clock frequency  
-
-
MHz  
Slave receiver mode  
1.62<VDD<3.6 V  
100  
31  
Slave mode transmitter/full duplex  
2.7<VDD<3.6 V  
Slave mode transmitter/full duplex  
1.62 <VDD<3.6 V  
29  
tsu(NSS)  
th(NSS)  
tw(SCKH)  
NSS setup time  
NSS hold time  
Slave mode  
Slave mode  
2
1
-
-
-
-
-
,
SCK high and low time Master mode  
TPCLK-2 TPCLK TPCLK+2  
tw(SCKL)  
206/242  
DS12930 Rev 1  
 
 
STM32H747xI/G  
Electrical characteristics  
(1)  
Table 119. SPI characteristics (continued)  
Parameter Conditions Min  
Master mode  
Symbol  
Typ  
Max  
Unit  
tsu(MI)  
1
1
4
2
9
0
-
-
-
-
Data input setup time  
tsu(SI)  
th(MI)  
Slave mode  
Master mode  
Slave mode  
-
-
Data input hold time  
th(SI)  
-
-
ta(SO)  
tdis(SO)  
Data output access time Slave mode  
Data output disable time Slave mode  
13  
1
27  
5
Slave mode  
ns  
-
12.5  
16  
2.7<VDD<3.6 V  
tv(SO)  
Data output valid time  
Data output hold time  
Slave mode  
-
-
12.5  
17  
3
-
1.62<VDD<3.6 V  
tv(MO)  
th(SO)  
th(MO)  
Master mode  
1
-
Slave mode  
10  
0
1.62<VDD<3.6 V  
Master mode  
-
-
1. Guaranteed by characterization results.  
Figure 55. SPI timing diagram - slave mode and CPHA = 0  
NSS input  
tc(SCK)  
th(NSS)  
tsu(NSS)  
tw(SCKH)  
tr(SCK)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
ta(SO)  
tw(SCKL)  
tv(SO)  
th(SO)  
tf(SCK)  
Last bit OUT  
tdis(SO)  
MISO output  
MOSI input  
First bit OUT  
th(SI)  
Next bits OUT  
tsu(SI)  
First bit IN  
Next bits IN  
Last bit IN  
MSv41658V1  
DS12930 Rev 1  
207/242  
221  
 
Electrical characteristics  
STM32H747xI/G  
(1)  
Figure 56. SPI timing diagram - slave mode and CPHA = 1  
NSS input  
tc(SCK)  
tsu(NSS)  
tw(SCKH)  
tf(SCK)  
th(NSS)  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
ta(SO)  
tw(SCKL)  
tv(SO)  
First bit OUT  
tsu(SI) th(SI)  
First bit IN  
th(SO)  
Next bits OUT  
tr(SCK)  
tdis(SO)  
MISO output  
MOSI input  
Last bit OUT  
Next bits IN  
Last bit IN  
MSv41659V1  
1. Measurement points are done at 0.5VDD and with external CL = 30 pF.  
(1)  
Figure 57. SPI timing diagram - master mode  
High  
NSS input  
t
c(SCK)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
t
t
t
t
w(SCKH)  
w(SCKL)  
r(SCK)  
f(SCK)  
t
su(MI)  
MISO  
INPUT  
BIT6 IN  
LSB IN  
MSB IN  
t
h(MI)  
MOSI  
OUTPUT  
BIT1 OUT  
LSB OUT  
MSB OUT  
t
t
h(MO)  
v(MO)  
ai14136c  
1. Measurement points are done at 0.5VDD and with external CL = 30 pF.  
208/242  
DS12930 Rev 1  
 
 
STM32H747xI/G  
Electrical characteristics  
I2S Interface characteristics  
2
Unless otherwise specified, the parameters given in Table 120 for I S are derived from tests  
performed under the ambient temperature, f  
frequency and V supply voltage  
PCLKx  
DD  
conditions summarized in Table 22: General operating conditions, with the following  
configuration:  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C = 30 pF  
L
Measurement points are done at CMOS levels: 0.5V  
IO Compensation cell activated.  
DD  
HSLV activated when VDD 2.7 V  
VOS level set to VOS1  
Refer to Section 6.3.18: I/O port characteristics for more details on the input/output alternate  
function characteristics (CK,SD,WS).  
2
(1)  
Table 120. I S dynamic characteristics  
Parameter Conditions  
Symbol  
Min  
Max  
Unit  
fMCK  
I2S main clock output  
-
256x8K  
256FS  
MHz  
Master data  
-
64FS  
fCK  
I2S clock frequency  
MHz  
Slave data  
-
64FS  
tv(WS)  
th(WS)  
WS valid time  
WS hold time  
WS setup time  
WS hold time  
Master mode  
Master mode  
Slave mode  
-
3
-
-
-
-
-
-
-
0
1
1
1
1
4
2
tsu(WS)  
th(WS)  
Slave mode  
tsu(SD_MR)  
tsu(SD_SR)  
th(SD_MR)  
th(SD_SR)  
Master receiver  
Slave receiver  
Master receiver  
Slave receiver  
Data input setup time  
Data input hold time  
ns  
Slave transmitter (after enable  
edge)  
tv(SD_ST)  
tv(SD_MT)  
th(SD_ST)  
th(SD_MT)  
-
-
17  
3
-
Data output valid time  
Data output hold time  
Master transmitter (after  
enable edge)  
Slave transmitter (after enable  
edge)  
9
0
Master transmitter (after  
enable edge)  
-
1. Guaranteed by characterization results.  
DS12930 Rev 1  
209/242  
221  
 
 
Electrical characteristics  
STM32H747xI/G  
2
(1)  
Figure 58. I S slave timing diagram (Philips protocol)  
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first  
byte.  
2
(1)  
Figure 59. I S master timing diagram (Philips protocol)  
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first  
byte.  
210/242  
DS12930 Rev 1  
 
 
STM32H747xI/G  
Electrical characteristics  
SAI characteristics  
Unless otherwise specified, the parameters given in Table 121 for SAI are derived from tests  
performed under the ambient temperature, f frequency and VDD supply voltage  
PCLKx  
conditions summarized in Table 22: General operating conditions, with the following  
configuration:  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C = 30 pF  
L
IO Compensation cell activated.  
Measurement points are done at CMOS levels: 0.5VDD  
VOS level set to VOS1.  
Refer to Section 6.3.18: I/O port characteristics for more details on the input/output  
alternate function characteristics (SCK,SD,WS).  
(1)  
Table 121. SAI characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
fMCK  
SAI Main clock output  
-
256x8K 256xFS  
(3)  
(3)  
Master Data: 32 bits  
Slave Data: 32 bits  
-
-
128xFS  
128xFS  
MHz  
SAI clock  
fCK  
frequency(2)  
DS12930 Rev 1  
211/242  
221  
 
 
Electrical characteristics  
STM32H747xI/G  
(1)  
Table 121. SAI characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Master mode  
-
-
13  
2.7VDD3.6  
tv(FS)  
FS valid time  
Master mode  
20  
1.62VDD3.6  
tsu(FS)  
th(FS)  
FS hold time  
FS setup time  
FS hold time  
Master mode  
Slave mode  
8
1
-
-
-
-
-
-
-
Slave mode  
1
tsu(SD_A_MR)  
tsu(SD_B_SR)  
th(SD_A_MR)  
th(SD_B_SR)  
Master receiver  
Slave receiver  
Master receiver  
Slave receiver  
0.5  
1
Data input setup time  
Data input hold time  
3.5  
2
Slave transmitter (after enable  
edge)  
-
14  
ns  
2.7VDD3.6  
tv(SD_B_ST) Data output valid time  
th(SD_B_ST) Data output hold time  
tv(SD_A_MT) Data output valid time  
Slave transmitter (after enable  
edge)  
-
9
-
20  
-
1.62VDD3.6  
Slave transmitter (after enable  
edge)  
Master transmitter (after enable  
edge)  
12  
2.7VDD3.6  
Master transmitter (after enable  
edge)  
-
19  
-
1.62VDD3.6  
Master transmitter (after enable  
edge)  
th(SD_A_MT) Data output hold time  
7.5  
1. Guaranteed by characterization results.  
2. APB clock frequency must be at least twice SAI clock frequency.  
3. With FS=192 kHz.  
212/242  
DS12930 Rev 1  
STM32H747xI/G  
Electrical characteristics  
Figure 60. SAI master timing waveforms  
1/f  
SCK  
SAI_SCK_X  
t
h(FS)  
SAI_FS_X  
(output)  
t
t
t
h(SD_MT)  
v(FS)  
v(SD_MT)  
SAI_SD_X  
(transmit)  
Slot n  
Slot n+2  
t
t
h(SD_MR)  
su(SD_MR)  
SAI_SD_X  
(receive)  
Slot n  
MS32771V1  
Figure 61. SAI slave timing waveforms  
1/f  
SCK  
SAI_SCK_X  
t
t
t
h(FS)  
w(CKH_X)  
w(CKL_X)  
SAI_FS_X  
(input)  
t
t
t
h(SD_ST)  
su(FS)  
v(SD_ST)  
SAI_SD_X  
(transmit)  
Slot n  
Slot n+2  
t
t
h(SD_SR)  
su(SD_SR)  
SAI_SD_X  
(receive)  
Slot n  
MS32772V1  
MDIO characteristics  
Table 122. MDIO Slave timing parameters  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
FMDC  
td(MDIO)  
tsu(MDIO)  
th(MDIO)  
Management Data Clock  
-
-
10  
-
30  
19  
-
MHz  
Management Data Iput/output output valid time  
Management Data Iput/output setup time  
Management Data Iput/output hold time  
8
1
1
ns  
-
-
DS12930 Rev 1  
213/242  
221  
 
 
 
Electrical characteristics  
STM32H747xI/G  
Figure 62. MDIO Slave timing diagram  
tMDC)  
td(MDIO)  
tsu(MDIO)  
th(MDIO)  
MSv40460V1  
SD/SDIO MMC card host interface (SDMMC) characteristics  
Unless otherwise specified, the parameters given in Table 123 and Table 124 for SDIO are  
derived from tests performed under the ambient temperature, f frequency and VDD  
PCLKx  
supply voltage summarized in Table 22: General operating conditions, with the following  
configuration:  
Output speed is set to OSPEEDRy[1:0] = 0x11  
Capacitive load C =30 pF  
L
Measurement points are done at CMOS levels: 0.5V  
IO Compensation cell activated.  
DD  
HSLV activated when V 2.7 V  
DD  
VOS level set to VOS1  
Refer to Section 6.3.18: I/O port characteristics for more details on the input/output  
characteristics.  
(1)(2)  
Table 123. Dynamics characteristics: SD / MMC characteristics, V =2.7 to 3.6 V  
DD  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fPP  
-
tW(CKL)  
tW(CKH)  
Clock frequency in data transfer mode  
SDIO_CK/fPCLK2 frequency ratio  
Clock low time  
-
0
-
-
133  
MHz  
-
-
-
8/3  
fPP =52MHz  
fPP =52MHz  
8.5  
8.5  
9.5  
9.5  
-
-
ns  
Clock high time  
CMD, D inputs (referenced to CK) in eMMC legacy/SDR/DDR and SD HS/SDR(3)/DDR(3) mode  
tISU  
tIH  
Input setup time HS  
Input hold time HS  
-
-
-
1.5  
1.5  
3
-
-
-
-
-
-
ns  
-
(4)  
tIDW  
Input valid window (variable window)  
CMD, D outputs (referenced to CK) in eMMC legacy/SDR/DDR and SD HS/SDR/DDR(3) mode  
tOV  
tOH  
Output valid time HS  
Output hold time HS  
-
-
-
3.5  
-
5
-
ns  
2
214/242  
DS12930 Rev 1  
 
 
 
STM32H747xI/G  
Electrical characteristics  
(1)(2)  
Table 123. Dynamics characteristics: SD / MMC characteristics, V =2.7 to 3.6 V  
(continued)  
DD  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
CMD, D inputs (referenced to CK) in SD default mode  
Input setup time SD  
Input hold time SD  
-
-
1.5  
1.5  
-
-
tISUD  
tIHD  
ns  
CMD, D outputs (referenced to CK) in SD default mode  
tOVD  
tOHD  
Output valid default time SD  
Output hold default time SD  
-
-
-
0.5  
-
2
-
ns  
0
1. Guaranteed by characterization results.  
2. Above 100 MHz, CL = 20 pF.  
3. An external voltage converter is required to support SD 1.8 V.  
4. The minimum window of time where the data needs to be stable for proper sampling in tuning mode.  
(1)(2)  
Unit  
Table 124. Dynamics characteristics: eMMC characteristics VDD=1.71V to 1.9V  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Clock frequency in data transfer  
mode  
fPP  
-
0
-
120  
MHz  
-
-
SDIO_CK/fPCLK2 frequency ratio  
Clock low time  
-
-
-
8/3  
tW(CKL)  
tW(CKH)  
fPP =52 MHz  
fPP =52 MHz  
8.5  
8.5  
9.5  
9.5  
-
-
ns  
ns  
ns  
Clock high time  
CMD, D inputs (referenced to CK) in eMMC mode  
tISU  
tIH  
Input setup time HS  
Input hold time HS  
-
-
1
-
-
-
-
2.5  
Input valid window (variable  
window)  
(3)  
tIDW  
-
3.5  
-
-
CMD, D outputs (referenced to CK) in eMMC mode  
tOVD  
tOHD  
Output valid time HS  
Output hold time HS  
-
-
-
5
-
7
-
3
1. Guaranteed by characterization results.  
2. CL = 20 pF.  
3. The minimum window of time where the data needs to be stable for proper sampling in tuning mode.  
DS12930 Rev 1  
215/242  
221  
 
Electrical characteristics  
STM32H747xI/G  
Figure 63. SDIO high-speed mode  
Figure 64. SD default mode  
CK  
t
t
OVD  
OHD  
D, CMD  
(output)  
ai14888  
Figure 65. DDR mode  
tr(CK)  
t(CK)  
tw(CKH)  
tw(CKL)  
tf(CK)  
Clock  
tvf(OUT) thr(OUT)  
D0  
tvr(OUT)  
thf(OUT)  
D3  
Data output  
D1  
D2  
D4  
D5  
tsf(IN) thf(IN)  
tsr(IN)thr(IN)  
Data input  
D0  
D1  
D2  
D3  
D4  
D5  
MSv36879V1  
216/242  
DS12930 Rev 1  
 
 
 
STM32H747xI/G  
Electrical characteristics  
USB OTG_HS characteristics  
Unless otherwise specified, the parameters given in Table 125 for ULPI are derived from  
tests performed under the ambient temperature, f frequency and V supply voltage  
PCLKx  
DD  
summarized in Table 22: General operating conditions, with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 11  
Capacitive load C =20 pF  
L
Measurement points are done at CMOS levels: 0.5V  
IO Compensation cell activated.  
DD  
VOS level set to VOS1  
Refer to Section 6.3.18: I/O port characteristics for more details on the input/output  
characteristics.  
(1)  
Table 125. Dynamics characteristics: USB ULPI  
Symbol  
Parameter  
Condition  
Min Typ Max Unit  
Control in (ULPI_DIR , ULPI_NXT) setup  
time  
tSC  
-
2.5  
2
-
-
-
-
Control in (ULPI_DIR, ULPI_NXT) hold  
time  
tHC  
-
tSD  
tHD  
Data in setup time  
Data in hold time  
-
-
2.5  
0
-
-
-
-
ns  
2.7<VDD<3.6 V  
CL=20 pF  
-
-
9
9
9.5  
14  
t
DC/tDD  
Control/Datal output delay  
1.71<VDD<3.6 V  
CL=15 pF  
1. Guaranteed by characterization results.  
Figure 66. ULPI timing diagram  
Clock  
t
t
HC  
SC  
Control In  
(ULPI_DIR,  
ULPI_NXT)  
t
t
HD  
SD  
data In  
(8-bit)  
t
t
DC  
DC  
Control out  
(ULPI_STP)  
t
DD  
data out  
(8-bit)  
ai17361c  
DS12930 Rev 1  
217/242  
221  
 
 
 
Electrical characteristics  
STM32H747xI/G  
Ethernet interface characteristics  
Unless otherwise specified, the parameters given in Table 126, Table 127 and Table 128 for  
SMI, RMII and MII are derived from tests performed under the ambient temperature,  
f
frequency and V supply voltage conditions summarized in Table 22: General  
rcc_c_ck  
DD  
operating conditions, with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C =20 pF  
L
Measurement points are done at CMOS levels: 0.5V  
IO Compensation cell activated.  
DD  
HSLV activated when VDD 2.7 V  
VOS level set to VOS1  
Refer to Section 6.3.18: I/O port characteristics for more details on the input/output  
characteristics:  
(1)  
Table 126. Dynamics characteristics: Ethernet MAC signals for SMI  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
tMDC  
MDC cycle time( 2.5 MHz)  
Write data valid time  
Read data setup time  
Read data hold time  
400  
0.5  
12.5  
0
400  
403  
Td(MDIO)  
tsu(MDIO)  
th(MDIO)  
1.5  
4
-
ns  
-
-
-
1. Guaranteed by characterization results.  
Figure 67. Ethernet SMI timing diagram  
tMDC  
ETH_MDC  
td(MDIO)  
ETH_MDIO(O)  
ETH_MDIO(I)  
tsu(MDIO)  
th(MDIO)  
MS31384V1  
218/242  
DS12930 Rev 1  
 
 
 
STM32H747xI/G  
Electrical characteristics  
(1)  
Table 127. Dynamics characteristics: Ethernet MAC signals for RMII  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
tsu(RXD)  
tih(RXD)  
tsu(CRS)  
tih(CRS)  
td(TXEN)  
td(TXD)  
Receive data setup time  
Receive data hold time  
2
2
-
-
-
-
Carrier sense setup time  
Carrier sense hold time  
1.5  
1.5  
7
-
-
ns  
-
-
Transmit enable valid delay time  
Transmit data valid delay time  
8
9
9.5  
11  
8
1. Guaranteed by characterization results.  
Figure 68. Ethernet RMII timing diagram  
RMII_REF_CLK  
t
t
d(TXEN)  
d(TXD)  
RMII_TX_EN  
RMII_TXD[1:0]  
t
t
t
t
su(RXD)  
su(CRS)  
ih(RXD)  
ih(CRS)  
RMII_RXD[1:0]  
RMII_CRS_DV  
ai15667b  
(1)  
Table 128. Dynamics characteristics: Ethernet MAC signals for MII  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
tsu(RXD)  
tih(RXD)  
tsu(DV)  
tih(DV)  
Receive data setup time  
Receive data hold time  
Data valid setup time  
Data valid hold time  
2
-
-
-
2
-
1.5  
1.5  
1.5  
0.5  
9
-
-
-
-
-
ns  
tsu(ER)  
tih(ER)  
td(TXEN)  
td(TXD)  
Error setup time  
-
Error hold time  
-
-
Transmit enable valid delay time  
Transmit data valid delay time  
10  
9.5  
11  
12.5  
8.5  
1. Guaranteed by characterization results.  
DS12930 Rev 1  
219/242  
221  
 
 
 
Electrical characteristics  
STM32H747xI/G  
Figure 69. Ethernet MII timing diagram  
MII_RX_CLK  
t
t
t
t
t
t
su(RXD)  
su(ER)  
su(DV)  
ih(RXD)  
ih(ER)  
ih(DV)  
MII_RXD[3:0]  
MII_RX_DV  
MII_RX_ER  
MII_TX_CLK  
t
t
d(TXEN)  
d(TXD)  
MII_TX_EN  
MII_TXD[3:0]  
ai15668b  
JTAG/SWD interface characteristics  
Unless otherwise specified, the parameters given in Table 129 and Table 130 for  
JTAG/SWD are derived from tests performed under the ambient temperature, f  
rcc_c_ck  
frequency and V supply voltage summarized in Table 22: General operating conditions,  
DD  
with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 0x10  
Capacitive load C =30 pF  
L
Measurement points are done at CMOS levels: 0.5V  
VOS level set to VOS1  
DD  
Refer to Section 6.3.18: I/O port characteristics for more details on the input/output  
characteristics:  
Table 129. Dynamics JTAG characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Fpp  
2.7V <VDD< 3.6 V  
-
-
-
-
37  
TCK clock frequency  
1/tc(TCK)  
tisu(TMS)  
tih(TMS)  
tisu(TDI)  
tih(TDI)  
1.62 <VDD< 3.6 V  
27.5  
MHz  
TMS input setup time  
TMS input hold time  
TDI input setup time  
TDI input hold time  
-
2.5  
1
-
-
-
-
-
-
1.5  
1
-
-
-
-
-
-
-
-
-
-
2.7V <VDD< 3.6 V  
1.62 <VDD< 3.6 V  
-
-
8
8
-
13.5  
18  
-
tov(TDO)  
toh(TDO)  
TDO output valid time  
TDO output hold time  
-
7
220/242  
DS12930 Rev 1  
 
 
 
STM32H747xI/G  
Electrical characteristics  
Table 130. Dynamics SWD characteristics:  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Fpp  
2.7V <VDD< 3.6 V  
-
-
-
-
71  
52.5  
-
SWCLK clock frequency  
MHz  
1/tc(SWCLK)  
tisu(SWDIO)  
tih(SWDIO)  
1.62 <VDD< 3.6 V  
SWDIO input setup time  
SWDIO input hold time  
-
2.5  
1
-
-
-
-
-
-
-
2.7V <VDD< 3.6 V  
1.62 <VDD< 3.6 V  
-
8.5  
14  
tov(SWDIO)  
SWDIO output valid time  
SWDIO output hold time  
-
8.5  
-
19  
-
-
-
toh(SWDIO)  
-
8
Figure 70. JTAG timing diagram  
tc(TCK)  
TCK  
TDI/TMS  
TDO  
tsu(TMS/TDI)  
th(TMS/TDI)  
tw(TCKL)  
tw(TCKH)  
tov(TDO)  
toh(TDO)  
MSv40458V1  
Figure 71. SWD timing diagram  
tc(SWCLK)  
SWCLK  
tsu(SWDIO)  
th(SWDIO)  
twSWCLKL)  
tw(SWCLKH)  
SWDIO  
(receive)  
tov(SWDIO)  
toh(SWDIO)  
SWDIO  
(transmit)  
MSv40459V1  
DS12930 Rev 1  
221/242  
221  
 
 
 
Package information  
STM32H747xI/G  
7
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at www.st.com.  
®
ECOPACK is an ST trademark.  
7.1  
WLCSP156 package information  
WLCSP156 is a 156-bump, 4.96 x 4.64 mm, 0.35 mm pitch, wafer level chip scale  
package.  
Figure 72. WLCSP156 package outline  
bbb  
Z
F
A1 ball location  
e1  
A1  
G
Detail A  
e2  
E
E
e
A
D
D
e
A2  
TOP VIEW  
BOTTOM VIEW  
SIDE  
VIEW  
A3  
A2  
BUMP  
b
A1  
FRONT VIEW  
Z
ccc  
ddd  
Z X Y  
Z
DETAIL A  
ROTATED 90  
SEATING  
PLANE  
A086_WLCSP156_ME_V1  
1. Drawing is not to scale.  
222/242  
DS12930 Rev 1  
 
 
 
STM32H747xI/G  
Package information  
Table 131. WLCSP156 package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
A3  
b
-
-
0.17  
0.38  
0.025(2)  
0.24  
4.96  
4.64  
4.20  
3.85  
0.35  
0.380(3)  
0.395(3)  
-
0.58  
-
-
0.023  
-
-
-
0.006  
0.015  
0.001  
0.009  
0.195  
0.182  
0.014  
0.165  
0.152  
0.015  
0.015  
-
-
-
-
-
-
-
-
-
-
0.21  
0.27  
4.98  
4.66  
-
0.008  
0.011  
0.196  
0.183  
-
D
4.94  
0.193  
E
4.62  
0.181  
e1  
e2  
e
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
F
-
-
G
-
-
aaa  
bbb  
ccc  
ddd  
eee  
0.10  
0.10  
0.10  
0.05  
0.05  
0.004  
0.004  
0.004  
0.002  
0.002  
-
-
-
-
-
-
-
-
1. Values in inches are converted from mm and rounded to the 3rd decimal digits.  
2. Back side coating. Nominal dimension rounded to the 3rd decimal place resulting from process capability.  
3. Calculated dimensions are rounded to 3rd decimal place.  
Figure 73. WLCSP156 bump recommended footprint  
Dpad  
Dsm  
A086_WLCSP156_FP_V1  
1. Dimensions are expressed in millimeters.  
DS12930 Rev 1  
223/242  
240  
 
 
Package information  
STM32H747xI/G  
Table 132. WLCSP156 bump recommended PCB design rules  
Dimension Recommended values  
Pitch  
Dpad  
0.35 mm  
0.210 mm  
0.275 mm typ. (depends on the soldermask  
registration tolerance)  
Dsm  
Stencil opening  
Stencil thickness  
0.235 mm  
0.100 mm  
Device marking for WLSCP156  
The following figure gives an example of topside marking versus pin 1 position identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which depend on supply chain operations, are  
not indicated below.  
Figure 74. WLCSP156 marking example (package top view)  
Ball A1  
identifier  
ES32H747ZI6  
Product  
identification(1)  
Date code  
Revision code  
Y WW  
R
MSv61385V1  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not approved for use in production. ST is not responsible for any consequences  
resulting from such use. In no event will ST be liable for the customer using any of these engineering  
samples in production. ST’s Quality department must be contacted prior to any decision to use these  
engineering samples to run a qualification activity.  
224/242  
DS12930 Rev 1  
 
 
STM32H747xI/G  
Package information  
7.2  
UFBGA169 package information  
UFBGA169 is a 169-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package.  
Figure 75. UFBGA169 package outline  
Z
Seating plane  
A4  
A2  
ddd  
Z
A
A3  
A1  
b
SIDE VIEW  
A1 ball  
index area  
A1 ball  
identifier  
X
E
E1  
e
F
A
F
D
D1  
e
Y
N
13  
1
Øb (169 balls)  
BOTTOM VIEW  
TOP VIEW  
Øeee M  
Øfff  
Z
Z
X Y  
M
A0YV_ME_V2  
1. Drawing is not in scale.  
Table 133. UFBGA169 package mechanical data  
millimeters  
Typ.  
inches(1)  
Symbol  
Min.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
A2  
A3  
A4  
b
0.460  
0.050  
0.400  
-
0.530  
0.080  
0.450  
0.130  
0.320  
0.280  
7.000  
6.000  
7.000  
6.000  
0.500  
0.500  
0.600  
0.110  
0.500  
-
0.0181  
0.0020  
0.0157  
-
0.0209  
0.0031  
0.0177  
0.0051  
0.0126  
0.0110  
0.2756  
0.2362  
0.2756  
0.2362  
0.0197  
0.0197  
0.0236  
0.0043  
0.0197  
-
0.270  
0.230  
6.950  
5.950  
6.950  
5.950  
-
0.370  
0.330  
7.050  
6.050  
7.050  
6.050  
-
0.0106  
0.0091  
0.2736  
0.2343  
0.2736  
0.2343  
-
0.0146  
0.0130  
0.2776  
0.2382  
0.2776  
0.2382  
-
D
D1  
E
E1  
e
F
0.450  
0.550  
0.0177  
0.0217  
DS12930 Rev 1  
225/242  
240  
 
 
 
Package information  
STM32H747xI/G  
Table 133. UFBGA169 package mechanical data (continued)  
millimeters  
Typ.  
inches(1)  
Symbol  
Min.  
Max.  
Min.  
Typ.  
Max.  
ddd  
eee  
fff  
-
-
-
-
-
-
0.100  
0.150  
0.050  
-
-
-
-
-
-
0.0039  
0.0059  
0.0020  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Device marking for UFBGA169  
The following figure gives an example of topside marking versus pin 1 position identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which depend on supply chain operations, are  
not indicated below.  
Figure 76. UFBGA169 marking example (package top view)  
Ball A1  
identifier  
ES32H747  
Product identification(1)  
AII6  
Date code  
Y WW  
Revision code  
R
MSv61387V1  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not approved for use in production. ST is not responsible for any consequences  
resulting from such use. In no event will ST be liable for the customer using any of these engineering  
samples in production. ST’s Quality department must be contacted prior to any decision to use these  
engineering samples to run a qualification activity.  
226/242  
DS12930 Rev 1  
 
STM32H747xI/G  
Package information  
7.3  
LQFP176 package information  
LQFP176 is a 176-pin, 24 x 24 mm low profile quad flat package.  
Figure 77. LQFP176 package outline  
Seating plane  
C
0.25 mm  
gauge plane  
k
A1  
L
HD  
L1  
PIN 1  
IDENTIFICATION  
D
ZE  
E
HE  
e
ZD  
b
1T_ME_V2  
1. Drawing is not to scale.  
Table 134. LQFP176 package mechanical data  
Dimensions  
Ref.  
Millimeters  
Inches(1)  
Typ.  
Min.  
Typ.  
Max.  
Min.  
Max.  
A
A1  
A2  
b
-
-
-
-
-
-
1.600  
0.150  
1.450  
0.270  
0.200  
-
-
-
-
-
-
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.050  
1.350  
0.170  
0.090  
0.0020  
0.0531  
0.0067  
0.0035  
c
DS12930 Rev 1  
227/242  
240  
 
 
 
Package information  
STM32H747xI/G  
Table 134. LQFP176 package mechanical data (continued)  
Dimensions  
Ref.  
Millimeters  
Typ.  
Inches(1)  
Typ.  
Min.  
Max.  
Min.  
Max.  
D
HD  
ZD  
E
23.900  
-
24.100  
0.9409  
-
0.9488  
25.900  
-
26.100  
1.0197  
-
1.0276  
-
1.250  
-
-
0.0492  
-
23.900  
-
24.100  
0.9409  
-
0.9488  
HE  
ZE  
e
25.900  
-
26.100  
1.0197  
-
1.0276  
-
1.250  
-
-
0.0492  
-
-
0.500  
-
0.750  
-
-
0.0197  
-
0.0295  
-
L(2)  
L1  
k
0.450  
-
0.0177  
-
-
0°  
-
1.000  
-
0°  
-
0.0394  
-
-
7°  
-
-
7°  
ccc  
0.080  
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
2. L dimension is measured at gauge plane at 0.25 mm above the seating plane.  
228/242  
DS12930 Rev 1  
STM32H747xI/G  
Package information  
Figure 78. LQFP176 package recommended footprint  
1.2  
176  
133  
132  
0.5  
1
0.3  
44  
45  
89  
88  
1.2  
21.8  
26.7  
1T_FP_V1  
1. Dimensions are expressed in millimeters.  
DS12930 Rev 1  
229/242  
240  
 
Package information  
STM32H747xI/G  
Device marking for LQFP176  
The following figure gives an example of topside marking versus pin 1 position identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which depend on supply chain operations, are  
not indicated below.  
Figure 79. LQFP176 marking example (package top view)  
Product identification(1)  
ES32H747IIT6  
Date code  
Revision code  
Y WW  
R
Pin 1identifier  
MSv61389V1  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not approved for use in production. ST is not responsible for any consequences  
resulting from such use. In no event will ST be liable for the customer using any of these engineering  
samples in production. ST’s Quality department must be contacted prior to any decision to use these  
engineering samples to run a qualification activity.  
230/242  
DS12930 Rev 1  
 
STM32H747xI/G  
Package information  
7.4  
LQFP208 package information  
LQFP208 is a 208-pin, 28 x 28 mm low-profile quad flat package.  
Figure 80. LQFP208 package outline  
SEATING  
PLANE  
C
ccc  
C
0.25 mm  
GAUGE PLANE  
K
L
D
L1  
D1  
D3  
105  
156  
104  
157  
208  
53  
PIN 1  
IDENTIFICATION  
1
52  
e
UH_ME_V2  
1. Drawing is not to scale.  
DS12930 Rev 1  
231/242  
240  
 
 
Package information  
STM32H747xI/G  
Table 135. LQFP208 package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
-
0.050  
1.350  
0.170  
0.090  
29.800  
27.800  
-
-
1.600  
0.150  
1.450  
0.270  
0.200  
30.200  
28.200  
-
-
-
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
-
0.0020  
0.0531  
0.0067  
0.0035  
1.1811  
1.1024  
-
-
1.400  
0.220  
-
0.0551  
0.0087  
-
c
D
30.000  
28.000  
25.500  
30.000  
28.000  
25.500  
0.500  
0.600  
1.000  
3.5°  
1.1732  
1.0945  
1.0039  
1.1732  
1.0945  
1.0039  
0.0197  
0.0236  
0.0394  
3.5°  
1.1890  
D1  
D3  
E
1.1102  
-
29.800  
27.800  
-
30.200  
28.200  
-
1.1811  
1.1024  
-
1.1890  
E1  
E3  
e
1.1102  
-
-
-
-
-
0.0295  
-
L
0.450  
-
0.750  
-
0.0177  
-
L1  
k
0°  
7°  
0°  
7°  
ccc  
-
-
0.080  
-
-
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
232/242  
DS12930 Rev 1  
 
STM32H747xI/G  
Package information  
Figure 81. LQFP208 package recommended footprint  
208  
157  
0.5  
1
156  
52  
105  
1.2  
53  
104  
25.8  
30.7  
UH_FP_V2  
1. Dimensions are expressed in millimeters.  
DS12930 Rev 1  
233/242  
240  
 
Package information  
STM32H747xI/G  
Device marking for LQFP208  
The following figure gives an example of topside marking versus pin 1 position identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which depend on supply chain operations, are  
not indicated below.  
Figure 82. LQFP208 marking example (package top view)  
Revision code  
R
Product identification(1)  
ES32H747BIT6  
Y WW  
Date code  
Pin 1 identifier  
MSv61391V1  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not approved for use in production. ST is not responsible for any consequences  
resulting from such use. In no event will ST be liable for the customer using any of these engineering  
samples in production. ST’s Quality department must be contacted prior to any decision to use these  
engineering samples to run a qualification activity.  
234/242  
DS12930 Rev 1  
 
STM32H747xI/G  
Package information  
7.5  
TFBGA240+25 package information  
TFBGA240+25 is a 265 ball, 14x14 mm, 0.8 mm pitch, fine pitch ball grid array  
package.  
Figure 83. TFBGA240+25 package outline  
SEATING  
PLANE  
C
A1 ball identifier  
D
D1  
e
A
e
S
1
17  
F
b (240 + 25 balls)  
BOTTOM VIEW  
TOP VIEW  
A07U_ME_V1  
1. Dimensions are expressed in millimeters.  
DS12930 Rev 1  
235/242  
240  
 
 
Package information  
STM32H747xI/G  
Table 136. TFBG240+25 ball package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
-
-
1.100  
-
-
0.0433  
0.150  
-
-
0.0059  
-
-
-
0.760  
0.400  
14.000  
12.800  
14.000  
12.800  
0.800  
0.600  
0.600  
-
-
-
0.0299  
0.0157  
0.5512  
0.5039  
0.5512  
0.5039  
0.0315  
0.0236  
0.0236  
-
-
0.350  
0.450  
0.0138  
0.0177  
D
13.850  
14.150  
0.5453  
0.5571  
D1  
E
-
-
-
-
13.850  
14.150  
0.5453  
0.5571  
E1  
e
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
F
-
-
G
-
-
ddd  
eee  
fff  
0.100  
0.150  
0.080  
0.0039  
0.0059  
0.0031  
-
-
-
-
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 84. TFBGA240+25 package recommended footprint  
Dpad  
Dsm  
A07U_FP_V2  
1. Dimensions are expressed in millimeters.  
236/242  
DS12930 Rev 1  
 
 
STM32H747xI/G  
Package information  
Table 137. TFBGA240+25 recommended PCB design rules (0.8 mm pitch)  
Dimension Recommended values  
Pitch  
0.8 mm  
Dpad  
Dsm  
0.225 mm  
0.290 mm typ. (depends on the soldermask  
registration tolerance)  
Stencil opening  
Stencil thickness  
0.250 mm  
0.100 mm  
Device marking for TFBGA240+25  
The following figure gives an example of topside marking versus pin 1 position identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which depend on supply chain operations, are  
not indicated below.  
Figure 85. TFBGA240+25 marking example (package top view)  
Product  
identification(1)  
ES32H747XIH6  
Revision code  
R
Date code  
Ball  
A1identifier  
Y WW  
MSv61393V1  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not approved for use in production. ST is not responsible for any consequences  
resulting from such use. In no event will ST be liable for the customer using any of these engineering  
samples in production. ST’s Quality department must be contacted prior to any decision to use these  
engineering samples to run a qualification activity.  
DS12930 Rev 1  
237/242  
240  
 
 
Package information  
STM32H747xI/G  
7.6  
Thermal characteristics  
The maximum chip-junction temperature, T max, in degrees Celsius, may be calculated  
J
using the following equation:  
T max = T max + (P max × Θ )  
J
A
D
JA  
Where:  
T max is the maximum ambient temperature in ° C,  
A
Θ
is the package junction-to-ambient thermal resistance, in ° C/W,  
JA  
P max is the sum of P  
max and P max (P max = P  
max + P max),  
INT I/O  
D
INT  
I/O  
D
P
max is the product of I and V , expressed in Watts. This is the maximum chip  
DD DD  
INT  
internal power.  
P
max represents the maximum power dissipation on output pins where:  
I/O  
P
max = Σ (V × I ) + Σ((V – V ) × I ),  
OL OL DD OH OH  
I/O  
taking into account the actual V / I and V / I of the I/Os at low and high level in the  
OL OL  
OH OH  
application.  
Table 138. Thermal characteristics  
Parameter  
Symbol  
Definition  
Value  
Unit  
Thermal resistance junction-ambient  
35  
WLCSP156 - 4.96 x 4.64 mm /0.35 mm pitch  
Thermal resistance junction-ambient  
37.7  
43.0  
42.4  
36.6  
18.1  
17.3  
39.4  
40.3  
24.3  
UFBGA169 - 7 x 7 mm /0.5 mm pitch  
Thermal resistance junction-ambient  
Thermal resistance  
junction-ambient  
Θ
°C/W  
JA  
LQFP176 - 24 x 24 mm /0.5 mm pitch  
Thermal resistance junction-ambient  
LQFP208 - 28 x 28 mm /0.5 mm pitch  
Thermal resistance junction-ambient  
TFBGA240+25 - 14 x 14 mm / 0.8 mm pitch  
Thermal resistance junction-ambient  
WLCSP156 - 4.96 x 4.64 mm /0.35 mm pitch  
Thermal resistance junction-ambient  
UFBGA169 - 7 x 7 mm /0.5 mm pitch  
Thermal resistance junction-ambient  
Thermal resistance  
junction-board  
Θ
°C/W  
JB  
LQFP176 - 24 x 24 mm /0.5 mm pitch  
Thermal resistance junction-ambient  
LQFP208 - 28 x 28 mm /0.5 mm pitch  
Thermal resistance junction-ambient  
TFBGA240+25 - 14 x 14 mm / 0.8 mm pitch  
238/242  
DS12930 Rev 1  
 
 
STM32H747xI/G  
Package information  
Table 138. Thermal characteristics (continued)  
Symbol  
Definition  
Parameter  
Value  
Unit  
Thermal resistance junction-ambient  
1
WLCSP156 - 4.96 x 4.64 mm /0.35 mm pitch  
Thermal resistance junction-ambient  
11  
UFBGA169 - 7 x 7 mm /0.5 mm pitch  
Thermal resistance junction-ambient  
Thermal resistance  
junction-case  
Θ
11.2  
11.1  
7.4  
°C/W  
JC  
LQFP176 - 24 x 24 mm /0.5 mm pitch  
Thermal resistance junction-ambient  
LQFP208 - 28 x 28 mm /0.5 mm pitch  
Thermal resistance junction-ambient  
TFBGA240+25 - 14 x 14 mm / 0.8 mm pitch  
7.6.1  
Reference document  
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural  
Convection (Still Air). Available from www.jedec.org.  
For information on thermal management, refer to application note “Thermal  
management guidelines for STM32 32-bit Arm Cortex MCUs applications” (AN5036)  
available from www.st.com.  
DS12930 Rev 1  
239/242  
240  
 
Ordering information  
STM32H747xI/G  
8
Ordering information  
Example:  
STM32 H  
747  
X
I
T
6
TR  
Device family  
STM32 = Arm-based 32-bit microcontroller  
Product type  
H = High performance  
Device subfamily  
747 = STM32H7x7 dual core MIPI-DSI line  
Pin count  
Z = 156 pins  
A = 169 pins  
I = 176 pins/balls  
B = 208 pins  
X = 240 balls  
Flash memory size  
G = 1 Mbytes  
I = 2 Mbytes  
Package  
T = LQFP ECOPACK®2  
I = UFBGA pitch 0.5 mm ECOPACK®2  
H = TFBGA ECOPACK®2  
Y = WLCSP ECOPACK®2  
Temperature range  
6 = –40 to 85 °C  
Packing  
TR = tape and reel  
No character = tray or tube  
For a list of available options (speed, package, etc.) or for further information on any aspect  
of this device, please contact your nearest ST sales office.  
240/242  
DS12930 Rev 1  
 
STM32H747xI/G  
Revision history  
9
Revision history  
Table 139. Document revision history  
Date  
Revision  
Changes  
16-May-2019  
1
Initial release.  
DS12930 Rev 1  
241/242  
241  
 
 
STM32H747xI/G  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and  
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on  
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order  
acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or  
the design of Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other  
product or service names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2019 STMicroelectronics – All rights reserved  
242/242  
DS12930 Rev 1  

相关型号:

STM32H747BGH6TR

Dual 32-bit Arm® Cortex®-M7 up to 480MHz and -M4 MCUs, up to 2MB Flash, 1MB RAM, 46 com. and analog interfaces, SMPS, DSI

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32H747BGI6TR

Dual 32-bit Arm® Cortex®-M7 up to 480MHz and -M4 MCUs, up to 2MB Flash, 1MB RAM, 46 com. and analog interfaces, SMPS, DSI

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32H747BGT6TR

Dual 32-bit Arm® Cortex®-M7 up to 480MHz and -M4 MCUs, up to 2MB Flash, 1MB RAM, 46 com. and analog interfaces, SMPS, DSI

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32H747BGY6TR

Dual 32-bit Arm® Cortex®-M7 up to 480MHz and -M4 MCUs, up to 2MB Flash, 1MB RAM, 46 com. and analog interfaces, SMPS, DSI

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32H747BI

带DSP和DP-FPU的高性能ARM Cortex-M7 + Cortex-M4 MCU,具有2 MB Flash、1 MB RAM、480 MHz CPU、ART加速器、一级缓存、外部存储器接口、大量外设、SMPS和MIPI-DSI

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32H747BIH6TR

Dual 32-bit Arm® Cortex®-M7 up to 480MHz and -M4 MCUs, up to 2MB Flash, 1MB RAM, 46 com. and analog interfaces, SMPS, DSI

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32H747BII6TR

Dual 32-bit Arm® Cortex®-M7 up to 480MHz and -M4 MCUs, up to 2MB Flash, 1MB RAM, 46 com. and analog interfaces, SMPS, DSI

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32H747BIT6TR

Dual 32-bit Arm® Cortex®-M7 up to 480MHz and -M4 MCUs, up to 2MB Flash, 1MB RAM, 46 com. and analog interfaces, SMPS, DSI

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32H747BIY6TR

Dual 32-bit Arm® Cortex®-M7 up to 480MHz and -M4 MCUs, up to 2MB Flash, 1MB RAM, 46 com. and analog interfaces, SMPS, DSI

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32H747IG

带DSP和DP-FPU的高性能ARM Cortex-M7 + Cortex-M4 MCU,具有1 MB Flash、1 MB RAM、480 MHz CPU、ART加速器、一级缓存、外部存储器接口、大量外设、SMPS和MIPI-DSI

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32H747IGH6TR

Dual 32-bit Arm® Cortex®-M7 up to 480MHz and -M4 MCUs, up to 2MB Flash, 1MB RAM, 46 com. and analog interfaces, SMPS, DSI

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32H747IGI6TR

Dual 32-bit Arm® Cortex®-M7 up to 480MHz and -M4 MCUs, up to 2MB Flash, 1MB RAM, 46 com. and analog interfaces, SMPS, DSI

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR