STM704M6F [STMICROELECTRONICS]

5V Supervisor with Battery Switchover; 5V监控器电池切换
STM704M6F
型号: STM704M6F
厂家: ST    ST
描述:

5V Supervisor with Battery Switchover
5V监控器电池切换

电池 监控
文件: 总37页 (文件大小:775K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM690A, STM692A, STM703  
STM704, STM802, STM805, STM817/8/9  
5V Supervisor with Battery Switchover  
FEATURES SUMMARY  
5V OPERATING VOLTAGE  
Figure 1. Packages  
NVRAM SUPERVISOR FOR EXTERNAL  
LPSRAM  
CHIP-ENABLE GATING (STM818 only) FOR  
EXTERNAL LPSRAM (7ns max PROP  
DELAY)  
8
RST AND RST OUTPUTS  
200ms (TYP) t  
rec  
1
WATCHDOG TIMER - 1.6sec (TYP)  
AUTOMATIC BATTERY SWITCHOVER  
LOW BATTERY SUPPLY CURRENT - 0.4µA  
(TYP)  
SO8 (M)  
POWER-FAIL COMPARATOR (PFI/PFO)  
LOW SUPPLY CURRENT - 40µA (TYP)  
GUARANTEED RST (RST) ASSERTION  
DOWN TO V = 1.0V  
CC  
TSSOP8 3x3 (DS)*  
OPERATING TEMPERATURE:  
–40°C to 85°C (Industrial Grade)  
RoHS COMPLIANCE  
Lead-free components are compliant with the  
RoHS Directive.  
Table 1. Device Options  
Active-  
Low  
Active-  
High  
Manual  
Reset  
Input  
Battery  
Switch-  
over  
Chip-  
Enable  
Gating  
Battery  
Freshness  
Seal  
Watchdog  
Input  
Power-fail  
Comparator  
(1)  
(1)  
RST  
RST  
STM690A  
STM692A  
STM703  
STM704  
STM802L/M  
STM805L  
STM817L/M  
STM818L/M  
STM819L/M  
Note: 1. All RST and RST outputs are push-pull.  
* Contact local ST sales office for availability.  
January 2006  
Rev 7.0  
1/37  
STM690A/692A/703/704/802/805/817/818/819  
TABLE OF CONTENTS  
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 1. Packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Table 1. Device Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 2. Logic Diagram (STM690A/692A/802/805/817) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 3. Logic Diagram (STM703/704/819). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 4. Logic Diagram (STM818). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Table 2. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 5. STM690A/692A/802/805/817 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 6. STM703/704/819 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 7. STM818 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Table 3. Pin Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Figure 8. Block Diagram (STM690A/692A/802/805/817) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 9. Block Diagram (STM703/704/819) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 10.Block Diagram (STM818) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 11.Hardware Hookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Reset Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Push-button Reset Input (STM703/704/819) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Watchdog Input (NOT available on STM703/704/819) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Back-up Battery Switchover. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Table 4. I/O Status in Battery Back-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Chip-Enable Gating (STM818 only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Chip Enable Input (STM818 only). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Chip Enable Output (STM818 only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 12.Chip-Enable Gating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Figure 13.Chip Enable Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Power-fail Input/Output (NOT available on STM818) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 14.Power-fail Comparator Waveform (STM817/818/819) . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 15.Power-fail Comparator Waveform (STM690A/692A/703/704/802/805) . . . . . . . . . . . . . 13  
Using a SuperCap™ as a Backup Power Source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Negative-Going V Transients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
CC  
Battery Freshness Seal (STM817/818/819) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 16.Using a SuperCap™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 17.Freshness Seal Enable Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
TYPICAL OPERATING CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 18.V -to-V  
On-Resistance vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
OUT  
CC  
Figure 19.V  
-to-V  
On-Resistance vs. Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
OUT  
BAT  
2/37  
STM690A/692A/703/704/802/805/817/818/819  
Figure 20.Supply Current vs. Temperature (no load) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 21.Battery Current vs. Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 22.V  
Threshold vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
PFI  
Figure 23.Reset Comparator Propagation Delay vs. Temperature (Other than STM817/818/819) 17  
Figure 24.Reset Comparator Propagation Delay vs. Temperature (V =3.0V; STM817/818/819)18  
BAT  
Figure 25.Power-up t vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
rec  
Figure 26.Normalized Reset Threshold vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 27.Watchdog Time-out Period vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 28.E to E  
On-Resistance vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
CON  
Figure 29.PFI to PFO Propagation Delay vs. Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 30.Output Voltage vs. Load Current (V = 5V; V  
= 2.8V; T = 25°C). . . . . . . . . . . . . . 21  
A
CC  
BAT  
BAT  
Figure 31.Output Voltage vs. Load Current (V = 0V; V  
= 2.8V; T = 25°C). . . . . . . . . . . . . . 21  
A
CC  
Figure 32.RST Output Voltage vs. Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 33.RST Output Voltage vs. Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 34.RST Response Time (Assertion). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 35.RST Response Time (Assertion). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 36.Power-fail Comparator Response Time (Assertion) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 37.Power-fail Comparator Response Time (De-Assertion) . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 38.Maximum Transient Duration vs. Reset Threshold Overdrive. . . . . . . . . . . . . . . . . . . . . 25  
Figure 39.E to E  
Propagation Delay vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
CON  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 5. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 6. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 40.E to ECON Propagation Delay Test Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 41.AC Testing Input/Output Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 42.MR Timing Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 43.Watchdog Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 7. DC and AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 44.SO8 – 8-lead Plastic Small Outline, 150 mils body width, Package Mech. Drawing. . . . 32  
Table 8. SO8 – 8-lead Plastic Small Outline, 150 mils body width, Package Mechanical Data . . 32  
Figure 45.TSSOP8 – 8-lead, Thin Shrink Small Outline, 3x3mm body size, Outline . . . . . . . . . . . 33  
Table 9. TSSOP8 – 8-lead, Thin Shrink Small Outline, 3x3mm body size, Mechanical Data . . . . 33  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 10. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 11. Marking Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 12. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
3/37  
STM690A/692A/703/704/802/805/817/818/819  
SUMMARY DESCRIPTION  
The STM690A/692A/703/704/802/805/817/818/  
819 Supervisors are self-contained devices which  
provide microprocessor supervisory functions with  
the ability to non-volatize and write-protect exter-  
nal LPSRAM. A precision voltage reference and  
offer a watchdog timer (except for STM703/704/  
819) as well as a power-fail comparator (except for  
STM818) to provide the system with an early  
warning of impending power failure.  
These devices are available in a standard 8-pin  
SOIC package or a space-saving 8-pin TSSOP  
package.  
comparator monitors the V  
tolerance condition. When an invalid V  
input for an out-of-  
CC  
condi-  
CC  
tion occurs, the reset output (RST) is forced low  
(or high in the case of RST). These devices also  
Figure 2. Logic Diagram (STM690A/692A/802/  
805/817)  
Figure 4. Logic Diagram (STM818)  
V
V
BAT  
CC  
V
V
BAT  
CC  
V
OUT  
WDI  
E
V
OUT  
RST  
STM818  
WDI  
PFI  
STM690A/  
692A/802/  
805/817  
(1)  
RST(RST)  
E
CON  
PFO  
V
SS  
AI07896  
V
SS  
AI07894  
Note: 1. For STM805, reset output is active-high.  
Table 2. Signal Names  
MR  
WDI  
RST  
RST  
Push-button Reset Input  
Watchdog Input  
Figure 3. Logic Diagram (STM703/704/819)  
V
V
BAT  
Active-Low Reset Output  
Active-High Reset Output  
Chip Enable Input  
CC  
(1)  
E
V
OUT  
MR  
PFI  
STM703/  
704/819  
(1)  
Conditioned Chip Enable Output  
E
CON  
RST  
PFO  
V
Supply Voltage Output  
Supply Voltage  
OUT  
V
CC  
V
Back-up Supply Voltage  
Power-fail Input  
Power-fail Output  
Ground  
BAT  
V
SS  
AI07895  
PFI  
PFO  
V
SS  
Note: 1. STM818  
4/37  
STM690A/692A/703/704/802/805/817/818/819  
Figure 5. STM690A/692A/802/805/817  
Connections  
Figure 6. STM703/704/819 Connections  
SO8/TSSOP8  
SO8/TSSOP8  
V
V
BAT  
OUT  
1
2
3
4
8
7
6
5
V
V
BAT  
V
OUT  
1
2
3
4
8
7
6
5
RST  
MR  
CC  
(1)  
V
RST(RST)  
WDI  
V
CC  
SS  
V
SS  
PFI  
PFO  
PFI  
PFO  
AI07890  
AI07889  
Note: 1. For STM805, reset output is active-high.  
Figure 7. STM818 Connections  
SO8/TSSOP8  
V
V
BAT  
OUT  
1
2
3
4
8
7
6
5
V
CC  
RST  
WDI  
E
V
SS  
E
CON  
AI07892  
5/37  
STM690A/692A/703/704/802/805/817/818/819  
Pin Descriptions  
MR. A logic low on /MR asserts the reset output.  
Reset remains asserted as long as MR is low and  
V
. When V is above the switchover voltage  
OUT CC  
(V ), V  
is connected to V  
through a P-  
SO  
OUT  
CC  
for t after MR returns high. This active-low input  
channel MOSFET switch. When V  
falls below  
CC  
rec  
has an internal pull-up. It can be driven from a TTL  
or CMOS logic line, or shorted to ground with a  
switch. Leave open if unused.  
V
, V  
SO BAT  
connects to V  
. Connect to V if no  
OUT CC  
battery is used.  
V
. When V  
BAT  
falls below V , V  
switches  
OUT  
CC  
SO  
WDI. If WDI remains high or low for 1.6sec, the in-  
ternal watchdog timer runs out and reset is trig-  
gered. The internal watchdog timer clears while  
reset is asserted or when WDI sees a rising or fall-  
ing edge.  
from V  
hysteresis, V  
ceed V . Connect to V if no battery is used.  
E. The input to the chip-enable gating circuit. Con-  
to V  
. When V  
reconnects to V . V  
rises above V  
+
CC  
BAT  
CC  
SO  
may ex-  
OUT  
CC BAT  
CC  
CC  
nect to ground if unused.  
The watchdog function can be disabled by allow-  
ing the WDI pin to float.  
E
. E  
goes low only when E is low and re-  
CON  
CON  
set is not asserted. If E  
is low when reset is as-  
CON  
RST. Pulses low for t when triggered, and stays  
serted, E  
will remain low for 15µs or until E  
rec  
CON  
low whenever V  
is below the reset threshold or  
goes high, whichever occurs first. In the disabled  
CC  
when MR is a logic low. It remains low for t after  
mode, E is pulled up to V  
.
OUT  
rec  
CON  
either V  
rises above the reset threshold, the  
CC  
PFI. When PFI is less than V  
or when V falls  
CC  
PFI  
watchdog triggers a reset, or MR goes from low to  
high.  
below 2.4V (or V ), PFO goes low; otherwise,  
SO  
PFO remains high. Connect to ground if unused.  
RST. Pulses high for t  
stays high whenever V  
when triggered, and  
is above the reset  
rec  
CC  
PFO. When PFI is less than V , or V falls be-  
PFI  
CC  
low 2.4V (or V ), PFO goes low; otherwise, PFO  
SO  
threshold or when MR is a logic high. It remains  
high for t after either V falls below the reset  
remains high. Leave open if unused.  
rec  
CC  
threshold, the watchdog triggers a reset, or MR  
goes from high to low.  
Table 3. Pin Description  
Pin  
Name  
Function  
STM690A  
STM692A  
STM802  
STM817  
STM703  
STM704  
STM819  
STM818  
STM805  
6
7
1
2
8
4
5
3
6
7
1
2
8
4
5
3
6
7
1
2
8
4
5
3
6
7
1
2
8
4
5
3
MR  
Push-button Reset Input  
WDI Watchdog Input  
RST Active-Low Reset Output  
RST Active-High Reset Output  
V
OUT  
Supply Output for External LPSRAM  
Supply Voltage  
V
CC  
V
Backup-Battery Input  
BAT  
E
Chip Enable Input  
E
CON  
Conditioned Chip Enable Output  
PFI Power-fail Input  
PFI  
PFO PFO Power-fail Output  
V
SS  
Ground  
6/37  
STM690A/692A/703/704/802/805/817/818/819  
Figure 8. Block Diagram (STM690A/692A/802/805/817)  
VCC  
VOUT  
VBAT  
COMPARE  
COMPARE  
VSO  
VRST  
trec  
Generator  
RST(RST)(1)  
WATCHDOG  
TIMER  
WDI  
PFI  
VPFI  
COMPARE  
PFO  
AI07897  
Note: 1. For STM805, reset output is active-high.  
Figure 9. Block Diagram (STM703/704/819)  
VCC  
VOUT  
VBAT  
COMPARE  
VSO  
COMPARE  
VRST  
trec  
Generator  
RST  
MR  
PFI  
VPFI  
COMPARE  
PFO  
AI07898  
7/37  
STM690A/692A/703/704/802/805/817/818/819  
Figure 10. Block Diagram (STM818)  
VCC  
VOUT  
VBAT  
COMPARE  
COMPARE  
VSO  
VRST  
trec  
Generator  
WATCHDOG  
TIMER  
RST  
WDI  
ECON OUTPUT  
CONTROL  
E
ECON  
AI07899a  
Figure 11. Hardware Hookup  
Regulator  
VIN VCC  
Unregulated  
Voltage  
VCC  
VCC  
VOUT  
VCC  
LPSRAM  
STM690A/692A/  
703/704/802/805/  
817/818/819  
0.1µF  
E
E
0.1µF  
WDI(1)  
From Microprocessor  
E(2)  
(2)  
ECON  
R1  
R2  
PFI(3)  
MR(4)  
VBAT  
PFO(3)  
RST  
To Microprocessor NMI  
To Microprocessor Reset  
Push-Button  
AI07893  
Note: 1. For STM690A/692A/802/805/817/818.  
2. For STM818 only.  
3. Not available on STM818.  
4. For STM703/704/819.  
8/37  
STM690A/692A/703/704/802/805/817/818/819  
OPERATION  
Reset Output  
The STM690A/692A/703/704/802/805/817/818/  
819 Supervisor asserts a reset signal to the MCU  
not required. If MR is driven from long cables or  
the device is used in a noisy environment, connect  
a 0.1µF capacitor from MR to GND to provide ad-  
ditional noise immunity. MR may float, or be tied to  
whenever V  
goes below the reset threshold  
CC  
(V ), a watchdog time-out occurs, or when the  
RST  
Push-button Reset Input (MR) is taken low. RST is  
guaranteed to be a logic low (logic high for  
V
when not used.  
CC  
Watchdog Input (NOT available on STM703/  
704/819)  
The watchdog timer can be used to detect an out-  
of-control MCU. If the MCU does not toggle the  
Watchdog Input (WDI) within t  
reset is asserted. The internal watchdog timer is  
cleared by either:  
STM805) for 0V < V  
< V  
if V  
is greater  
CC  
RST  
BAT  
than 1V. Without a back-up battery, RST is guar-  
anteed valid down to V =1V.  
CC  
During power-up, once V  
exceeds the reset  
CC  
(1.6sec typ), the  
WD  
threshold an internal timer keeps RST low for the  
reset time-out period, t . After this interval RST  
rec  
returns high.  
1. a reset pulse, or  
If V drops below the reset threshold, RST goes  
CC  
2. by toggling WDI (high-to-low or low-to-high),  
which can detect pulses as short as 50ns. If  
WDI is tied high or low, a reset pulse is  
low. Each time RST is asserted, it stays low for at  
least the reset time-out period (t ). Any time V  
rec  
CC  
goes below the reset threshold the internal timer  
triggered every 1.8sec (t  
+ t ).  
WD  
rec  
clears. The reset timer starts when V  
above the reset threshold.  
returns  
CC  
The timer remains cleared and does not count for  
as long as reset is asserted. As soon as reset is re-  
leased, the timer starts counting (see Figure  
43., page 28).  
Note: The watchdog function may be disabled by  
floating WDI or tri-stating the driver connected to  
WDI. When tri-stated or disconnected, the maxi-  
mum allowable leakage current is 10uA and the  
maximum allowable load capacitance is 200pF.  
Push-button Reset Input (STM703/704/819)  
A logic low on MR asserts reset. Reset remains  
asserted while MR is low, and for t (see Figure  
rec  
42., page 28) after it returns high. The MR input  
has an internal 40kpull-up resistor, allowing it to  
be left open if not used. This input can be driven  
with TTL/CMOS-logic levels or with open-drain/  
collector outputs. Connect a normally open mo-  
mentary switch from MR to GND to create a man-  
ual reset function; external debounce circuitry is  
Note: Input frequency greater than 20ns (50MHz)  
will be filtered.  
9/37  
STM690A/692A/703/704/802/805/817/818/819  
Back-up Battery Switchover  
Chip-Enable Gating (STM818 only)  
In the event of a power failure, it may be necessary  
to preserve the contents of external SRAM  
Internal gating of the chip enable (E) signal pre-  
vents erroneous data from corrupting the external  
CMOS RAM in the event of an undervoltage con-  
dition. The STM818 uses a series transmission  
through V  
. With a backup battery installed with  
, the devices automatically switch the  
OUT  
voltage V  
BAT  
SRAM to the back-up supply when V falls.  
Note: If back-up battery is not used, connect both  
gate from E to E  
(see Figure 12., page 11).  
CC  
CON  
During normal operation (reset not asserted), the  
E transmission gate is enabled and passes all E  
transitions. When reset is asserted, this path be-  
comes disabled, preventing erroneous data from  
corrupting the CMOS RAM. The short E propaga-  
V
and V  
to V  
.
BAT  
OUT  
CC  
This family of Supervisors does not always con-  
nect V to V when V is greater than V  
.
CC  
BAT  
OUT  
BAT  
V
connects to V  
CC  
(through a 100switch)  
BAT  
OUT  
RST  
tion delay from E to E  
enables the STM818 to  
CON  
when V is below V  
and V  
. This is done to  
BAT  
be used with most µPs. If E is low when reset as-  
serts, E remains low for typically 15µs to per-  
allow the back-up battery (e.g., a 3.6V lithium cell)  
to have a higher voltage than V  
CON  
.
CC  
mit the current WRITE cycle to complete. Connect  
Assuming V  
> 2.0V, switchover at V ensures  
SO  
BAT  
E to V if unused.  
SS  
that battery back-up mode is entered before V  
gets too close to the 2.0V minimum required to re-  
liably retain data in most external SRAMs. When  
OUT  
Chip Enable Input (STM818 only)  
The chip-enable transmission gate is disabled and  
E is high impedance (disabled mode) while reset  
is asserted. During a power-down sequence when  
V
recovers, hysteresis is used to avoid oscilla-  
CC  
tion around the V  
point. V  
is connected to  
SO  
OUT  
V
passes the reset threshold, the chip-enable  
CC  
V
through a 3PMOS power switch.  
CC  
transmission gate disables and E immediately be-  
comes high impedance if the voltage at E is high.  
If E is low when reset asserts, the chip-enable  
transmission gate will disable 15µs after reset as-  
serts (see Figure 13., page 11). This permits the  
current WRITE cycle to complete during power-  
down.  
Note: The back-up battery may be removed while  
is valid, assuming V is adequately decou-  
pled (0.1µF typ), without danger of triggering a re-  
set.  
V
CC  
BAT  
Table 4. I/O Status in Battery Back-up  
Any time a reset is generated, the chip-enable  
transmission gate remains disabled and E remains  
high impedance (regardless of E activity) for the  
reset time-out period. When the chip enable trans-  
mission gate is enabled, the impedance of E ap-  
pears as a 40resistor in series with the load at  
Pin  
Status  
V
OUT  
Connected to V  
through internal switch  
BAT  
V
Disconnected from V  
Disabled  
CC  
PFI  
PFO  
E
OUT  
E
. The propagation delay through the chip-en-  
CON  
Logic low  
able transmission gate depends on V , the  
CC  
source impedance of the drive connected to E,  
High impedance  
Logic high  
and the loading on E  
. The chip enable propa-  
CON  
E
CON  
gation delay is production tested from the 50%  
point on E to the 50% point on E using a 50Ω  
CON  
WDI  
Watchdog timer is disabled  
driver and a 50pF load capacitance (see Figure  
40., page 28). For minimum propagation delay,  
WDO Logic low  
minimize the capacitive load at E  
low-output impedance driver.  
and use a  
CON  
MR  
RST  
RST  
Disabled  
Logic low  
Chip Enable Output (STM818 only)  
When the chip-enable transmission gate is en-  
abled, the impedance of E is equivalent to a  
Logic high  
Connected to V  
CON  
V
BAT  
OUT  
40resistor in series with the source driving E. In  
the disabled mode, the transmission gate is off  
and an active pull-up connects E  
to V  
(see  
CON  
OUT  
Figure 12., page 11). This pull-up turns off when  
the transmission gate is enabled.  
10/37  
STM690A/692A/703/704/802/805/817/818/819  
Figure 12. Chip-Enable Gating  
VCC  
trec  
Generator  
RST  
COMPARE  
VRST  
VOUT  
ECON OUTPUT  
CONTROL  
E
ECON  
AI08802  
Figure 13. Chip Enable Waveform  
VCC  
VRST  
VBAT  
ECON  
trec  
15µs  
trec  
RST  
E
AI08803b  
11/37  
STM690A/692A/703/704/802/805/817/818/819  
Power-fail Input/Output (NOT available on STM818)  
The Power-fail Input (PFI) is compared to an inter-  
During battery back-up, the power-fail comparator  
turns off and PFO goes (or remains) low (see Fig-  
ure 14 and Figure 15., page 13). This occurs after  
nal reference voltage (independent from the V  
RST  
comparator). If PFI is less than the power-fail  
threshold (V ), the Power-Fail Output (PFO) will  
V
drops below 2.4V (or V ). When power re-  
PFI  
CC SO  
go low. This function is intended for use as an un-  
dervoltage detector to signal a failing power sup-  
ply. Typically PFI is connected through an external  
voltage divider (see Figure 11., page 8) to either  
the unregulated DC input (if it is available) or the  
turns, PFO is forced high (STM817/819 only), irre-  
spective of V for the WRITE protect time (t ).  
At the end of this time, the power-fail comparator  
is enabled and PFO follows PFI. If the comparator  
PFI  
rec  
is unused, PFI should be connected to V  
and  
SS  
regulated output of the V regulator. The voltage  
divider can be set up such that the voltage at PFI  
PFO left unconnected. PFO may be connected to  
MR on the STM703/704/818 so that a low voltage  
on PFI will generate a reset output.  
CC  
falls below V  
several milliseconds before the  
PFI  
regulated V  
input to the STM690A/692A/703/  
CC  
Applications Information  
These Supervisor circuits are not short-circuit pro-  
704/802/805/817/818/819 Supervisor or the mi-  
croprocessor drops below the minimum operating  
voltage.  
tected. Shorting V  
to ground - excluding pow-  
OUT  
er-up transients such as charging a decoupling  
capacitor - destroys the device. Decouple both  
V
and V  
pins to ground by placing 0.1µF ca-  
BAT  
CC  
pacitors as close to the device as possible.  
Figure 14. Power-fail Comparator Waveform (STM817/818/819)  
VCC  
VRST  
VSO (or 2.4V)  
trec  
PFO  
(STM817/819)  
PFO follows PFI  
PFO follows PFI  
RST to ECON Delay (STM818)  
RST  
ECON (STM818)  
AI08804a  
12/37  
STM690A/692A/703/704/802/805/817/818/819  
Figure 15. Power-fail Comparator Waveform (STM690A/692A/703/704/802/805)  
VCC  
VRST  
2.4V (or VSO  
)
trec  
PFO  
PFO follows PFI  
PFO follows PFI  
RST  
AI08832a  
13/37  
STM690A/692A/703/704/802/805/817/818/819  
Using a SuperCap™ as a Backup Power  
Source  
Use the same procedure for the STM818, but  
ground E instead of PFO. Once the battery  
freshness seal is enabled (disconnecting the  
back-up battery from internal circuitry and any-  
CON  
SuperCaps™ are capacitors with extremely high  
capacitance values (e.g., order of 0.47F) for their  
size. Figure 16 shows how to use a SuperCap as  
a back-up power source. The SuperCap may be  
connected through a diode to the 5V input. Since  
thing connected to V  
), it remains enabled until  
OUT  
V
is brought above V  
.
CC  
RST  
V
can exceed V while V is above the reset  
BAT  
CC CC  
Figure 16. Using a SuperCap™  
threshold, there are no special precautions when  
using these supervisors with a SuperCap.  
5V  
Negative-Going V Transients  
CC  
The STM690A/692A/703/704/802/805/817/818/  
819 Supervisor are relatively immune to negative-  
VCC  
VOUT  
To external SRAM  
going  
V
transients  
(glitches).  
Figure  
CC  
38., page 25 shows typical transient duration ver-  
sus reset comparator overdrive (for which the  
STM690A/692A/703/704/802/805/817/818/819  
will NOT generate a reset pulse). The graph was  
STMXXX  
VBAT  
RST  
To µP  
generated using a negative pulse applied to V  
,
CC  
GND  
starting at V  
+ 0.3V and ending below the reset  
RST  
threshold by the magnitude indicated (comparator  
overdrive). The graph indicates the maximum  
AI08805  
pulse width a negative V  
transient can have  
CC  
without causing a reset pulse. As the magnitude of  
the transient increases (further below the thresh-  
old), the maximum allowable pulse width decreas-  
es. Any combination of duration and overdrive  
which lies under the curve will NOT generate a re-  
Figure 17. Freshness Seal Enable Waveform  
set signal. Typically, a V  
100mV below the reset threshold and lasts 40µs or  
less will not cause a reset pulse. A 0.1µF bypass  
capacitor mounted as close as possible to the V  
pin provides additional transient immunity.  
transient that goes  
CC  
VRST  
VCC  
CC  
trec  
Battery Freshness Seal (STM817/818/819)  
RST  
The battery freshness seal disconnects the back-  
up battery from internal circuitry and V until it is  
needed. This allows an OEM to ensure that the  
ECON out state latched  
OUT  
at 1/2 trec  
,
Freshness  
(Externally held at 0V)  
Seal enabled  
ECON  
back-up battery connected to V will be fresh  
BAT  
(STM818)  
PFO out state latched  
when the final product is put to use. To enable the  
freshness seal:  
at 1/2 trec  
,
Freshness  
Seal Enabled  
(Externally held at 0V)  
PFO  
1. Connect a battery to V  
2. Ground PFO;  
;
BAT  
(STM817/819)  
AI08806  
3. Bring V above the reset threshold and hold  
CC  
it there until reset is deasserted following the  
reset timeout period; and  
4. Bring V down again (Figure 17).  
CC  
14/37  
STM690A/692A/703/704/802/805/817/818/819  
TYPICAL OPERATING CHARACTERISTICS  
Note: Typical values are at T = 25°C  
A
Figure 18. V -to-V  
On-Resistance vs. Temperature  
OUT  
CC  
5.0  
4.0  
3.0  
2.0  
1.0  
V
V
V
= 3.0V  
= 4.5V  
= 5.5V  
CC  
CC  
CC  
0.0  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
Temperature (°C)  
AI10498  
Figure 19. V  
-to-V  
BAT  
On-Resistance vs. Temperature  
OUT  
160  
140  
120  
100  
80  
60  
V
V
V
V
= 2.0V  
BAT  
BAT  
BAT  
BAT  
= 3.0V  
= 3.3V  
= 3.6V  
40  
20  
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
AI09140b  
15/37  
STM690A/692A/703/704/802/805/817/818/819  
Figure 20. Supply Current vs. Temperature (no load)  
30  
25  
20  
15  
10  
5
V
V
V
V
V
= 2.7V  
= 3.0V  
= 3.6V  
= 4.5V  
= 5.5V  
CC  
CC  
CC  
CC  
CC  
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
AI09141b  
Figure 21. Battery Current vs. Temperature  
1000  
100  
10  
V
V
V
= 2.0V  
BAT  
BAT  
BAT  
= 3.0V  
= 3.6V  
1
0.1  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
AI10499  
16/37  
STM690A/692A/703/704/802/805/817/818/819  
Figure 22. V  
Threshold vs. Temperature  
PFI  
1.270  
1.265  
1.260  
1.255  
1.250  
1.245  
1.240  
1.235  
1.230  
1.225  
V
V
V
V
= 3.0V  
= 4.5V  
= 4.75V  
= 5.5V  
CC  
CC  
CC  
CC  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
AI09142c  
Figure 23. Reset Comparator Propagation Delay vs. Temperature (Other than STM817/818/819)  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
AI09143b  
17/37  
STM690A/692A/703/704/802/805/817/818/819  
Figure 24. Reset Comparator Propagation Delay vs. Temperature (V  
=3.0V; STM817/818/819)  
BAT  
350  
1v/ms  
300  
250  
200  
150  
100  
50  
10V/ms  
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
AI11100  
Figure 25. Power-up t  
vs. Temperature  
rec  
240  
235  
230  
225  
220  
215  
210  
V
= 3.0V  
= 4.5V  
= 5.5V  
CC  
CC  
CC  
V
V
–40  
–20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
AI09144b  
18/37  
STM690A/692A/703/704/802/805/817/818/819  
Figure 26. Normalized Reset Threshold vs. Temperature  
1.004  
1.002  
1.000  
0.998  
0.996  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
AI09145b  
Figure 27. Watchdog Time-out Period vs. Temperature  
1.90  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
V
V
V
= 3.0V  
CC  
= 4.5V  
= 5.5V  
CC  
CC  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
AI09146b  
19/37  
STM690A/692A/703/704/802/805/817/818/819  
Figure 28. E to E  
On-Resistance vs. Temperature  
CON  
60  
50  
40  
30  
20  
10  
V
V
V
= 3.0V  
= 4.5V  
= 5.5V  
CC  
CC  
CC  
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
AI09147b  
Figure 29. PFI to PFO Propagation Delay vs. Temperature  
4.0  
V
V
V
V
= 3.0V  
= 3.6V  
= 4.5V  
= 5.5V  
CC  
CC  
CC  
CC  
3.0  
2.0  
1.0  
0.0  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
AI09148b  
20/37  
STM690A/692A/703/704/802/805/817/818/819  
Figure 30. Output Voltage vs. Load Current (V = 5V; V  
= 2.8V; T = 25°C)  
A
CC  
BAT  
5.00  
4.98  
4.96  
4.94  
0
10  
20  
30  
40  
50  
I
(mA)  
OUT  
AI10496  
Figure 31. Output Voltage vs. Load Current (V = 0V; V  
= 2.8V; T = 25°C)  
A
CC  
BAT  
2.80  
2.78  
2.76  
2.74  
2.72  
2.70  
2.68  
2.66  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
I
(mA)  
OUT  
AI10497  
21/37  
STM690A/692A/703/704/802/805/817/818/819  
Figure 32. RST Output Voltage vs. Supply Voltage  
5
5
4
3
2
1
0
V
V
RST  
CC  
4
3
2
1
0
500ms/div  
AI09149b  
Figure 33. RST Output Voltage vs. Supply Voltage  
5
4
3
2
1
5
V
V
RST  
CC  
4
3
2
1
0
0
500ms/div  
AI09150b  
22/37  
STM690A/692A/703/704/802/805/817/818/819  
Figure 34. RST Response Time (Assertion)  
5V  
1V/div  
4V  
V
CC  
5V  
4V  
RST  
1V/div  
0V  
5µs/div  
AI09151b  
23/37  
STM690A/692A/703/704/802/805/817/818/819  
Figure 35. RST Response Time (Assertion)  
5V  
4V  
V
CC  
1V/div  
4V  
RST  
1V/div  
0V  
5µs/div  
AI09152b  
Figure 36. Power-fail Comparator Response Time (Assertion)  
5V  
1V/div  
PFO  
0V  
1.3V  
PFI  
500mV/div  
0V  
500ns/div  
AI09153b  
24/37  
STM690A/692A/703/704/802/805/817/818/819  
Figure 37. Power-fail Comparator Response Time (De-Assertion)  
5V  
1V/div  
PFO  
0V  
1.3V  
PFI  
500mV/div  
0V  
500ns/div  
AI09154b  
Figure 38. Maximum Transient Duration vs. Reset Threshold Overdrive  
6000  
5000  
4000  
Reset occurs  
above the curve.  
3000  
2000  
1000  
0
0.001  
0.01  
0.1  
1
10  
Reset Comparator Overdrive, V  
– V (V)  
CC  
RST  
AI09156b  
25/37  
STM690A/692A/703/704/802/805/817/818/819  
Figure 39. E to E  
Propagation Delay vs. Temperature  
CON  
4.0  
3.0  
2.0  
1.0  
V
V
V
= 3.0V  
= 4.5V  
= 5.5V  
CC  
CC  
CC  
0.0  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
AI09157b  
26/37  
STM690A/692A/703/704/802/805/817/818/819  
MAXIMUM RATING  
Stressing the device above the rating listed in the  
Absolute Maximum Ratings” table may cause per-  
manent damage to the device. These are stress  
ratings only and operation of the device at these or  
any other conditions above those indicated in the  
Operating sections of this specification is not im-  
plied. Exposure to Absolute Maximum Rating con-  
ditions for extended periods may affect device  
reliability. Refer also to the STMicroelectronics  
SURE Program and other relevant quality docu-  
ments.  
Table 5. Absolute Maximum Ratings  
Symbol  
Parameter  
Value  
Unit  
T
Storage Temperature (V Off)  
–55 to 150  
°C  
STG  
CC  
Lead Solder Temperature for 10 seconds  
Input or Output Voltage  
Supply Voltage  
(1)  
260  
°C  
V
T
SLD  
V
–0.3 to V +0.3  
IO  
CC  
V
/V  
–0.3 to 6.0  
20  
V
CC BAT  
I
O
Output Current  
mA  
mW  
P
Power Dissipation  
320  
D
Note: 1. Reflow at peak temperature of 255°C to 260°C for < 30 seconds (total thermal budget not to exceed 180°C for between 90 to 150  
seconds).  
DC AND AC PARAMETERS  
This section summarizes the operating measure-  
ment conditions, and the DC and AC characteris-  
tics of the device. The parameters in the DC and  
AC characteristics Tables that follow, are derived  
from tests performed under the Measurement  
Conditions summarized in Table 6, Operating and  
AC Measurement Conditions. Designers should  
check that the operating conditions in their circuit  
match the operating conditions when relying on  
the quoted parameters.  
Table 6. Operating and AC Measurement Conditions  
Parameter  
STM690A/692A/703/704/802/  
Unit  
805/817/818/819  
V
/V  
Supply Voltage  
1.0 to 5.5  
–40 to 85  
5  
V
°C  
ns  
V
CC BAT  
Ambient Operating Temperature (T )  
A
Input Rise and Fall Times  
0.2 to 0.8V  
Input Pulse Voltages  
CC  
0.3 to 0.7V  
Input and Output Timing Ref. Voltages  
V
CC  
27/37  
STM690A/692A/703/704/802/805/817/818/819  
Figure 40. E to ECON Propagation Delay Test Circuit  
VCC  
VCC  
VBAT  
3.6V  
STMXXX  
25Equivalent  
Source Impedance  
E
ECON  
50Ω  
50Cable  
(1)  
50pF CL  
50Ω  
GND  
AI08854  
Note: 1. C includes load capacitance and scope probe capacitance.  
L
Figure 41. AC Testing Input/Output Waveforms  
0.8V  
CC  
0.7V  
0.3V  
CC  
CC  
0.2V  
CC  
AI02568  
Figure 42. MR Timing Waveform  
MR  
tMLRL  
RST (1)  
trec  
tMLMH  
AI07837a  
Note: 1. RST for STM805.  
Figure 43. Watchdog Timing  
VCC  
trec  
RST  
tWD  
WDI  
AI07891  
28/37  
STM690A/692A/703/704/802/805/817/818/819  
Table 7. DC and AC Characteristics  
Alter-  
(1)  
Sym  
Description  
Min  
Typ  
Max  
Unit  
Test Condition  
native  
V
,
CC  
(2)  
(3)  
T = –40 to +85°C  
Operating Voltage  
5.5  
60  
35  
V
A
1.2  
V
BAT  
V
V
Supply Current  
Excluding I  
Excluding I  
(V < 5.5V)  
CC  
25  
25  
µA  
µA  
CC  
OUT  
I
CC  
(V  
BAT  
= 2.3V,  
Supply Current in  
OUT  
CC  
V
= 2.0V, MR = V  
)
Battery Back-up Mode  
CC  
CC  
V
Supply Current in  
BAT  
(4)  
Excluding I  
(V  
= 3.6V)  
0.4  
1.0  
µA  
V
I
OUT  
BAT  
BAT  
Battery Back-up Mode  
V
0.03  
V
CC  
CC  
(5)  
I
= 5mA  
OUT1  
0.015  
V
0.3  
V
0.15  
CC  
CC  
V
V
V
Voltage (Active)  
Voltage (Battery  
I
= 75mA  
V
OUT1  
OUT  
OUT1  
V
CC  
V
CC  
(5)  
V
I
= 250µA, V > 2.5V  
CC  
OUT1  
0.0015 0.0006  
V
BAT  
V
BAT  
I
= 250µA, V  
= 1mA, V  
= 2.3V  
BAT  
V
OUT2  
0.1  
0.034  
OUT  
V
OUT2  
Back-up)  
V
BAT  
I
= 2.3V  
BAT  
V
OUT2  
0.14  
V
V
to V  
On-resistance  
3
4
CC  
OUT  
to V  
On-resistance  
100  
125  
2
BAT  
OUT  
4.5V < V < 5.5V  
Input Leakage Current (MR)  
Input Leakage Current (PFI)  
75  
300  
+25  
160  
µA  
nA  
µA  
µA  
V
CC  
0V = V = V  
–25  
IN  
CC  
I
LI  
WDI = V , time average  
120  
–15  
CC  
Input Leakage Current  
(6)  
(WDI)  
WDI = GND, time average  
–20  
2.0  
V
V
4.5V < V < 5.5V  
Input High Voltage (MR)  
Input High Voltage (WDI)  
Input Low Voltage (MR)  
Input Low Voltage (WDI)  
IH  
CC  
V
(max) < V < 5.5V  
0.7V  
CC  
V
IH  
RST  
CC  
V
4.5V < V < 5.5V  
0.8  
V
IL  
IL  
CC  
V
V
(max) < V < 5.5V  
0.3V  
CC  
V
RST  
CC  
V
= V  
(max), I  
3.2mA  
=
Output Low Voltage (PFO,  
RST, RST)  
CC  
RST  
SINK  
0.3  
V
V
V
V
V
OL  
V
CC  
= V (max),  
RST  
Output Low Voltage (E  
)
0.2V  
CON  
CC  
I
= 1.6mA, E = 0V  
OUT  
I
= 50µA, V = 1.0V,  
CC  
= V , T = 0°C to 85°C  
CC A  
SINK  
0.3  
0.3  
V
BAT  
V
OL  
Output Low Voltage (RST)  
I
= 100µA, V  
V
= 1.2V,  
SINK  
CC  
= V  
BAT  
CC  
29/37  
STM690A/692A/703/704/802/805/817/818/819  
Alter-  
native  
(1)  
Sym  
Description  
Min  
2.4  
Typ  
Max  
Unit  
V
Test Condition  
I
= 1mA,  
(max)  
Output High Voltage (RST,  
RST)  
SOURCE  
V
CC  
= V  
RST  
V
= V  
(max),  
CC  
RST  
V
OH  
Output High Voltage (E  
)
0.8V  
CC  
V
CON  
I
= 1.6mA, E = V  
CC  
OUT  
I
V
= 75µA,  
SOURCE  
0.8V  
Output High Voltage (PFO)  
Output High Voltage  
V
CC  
= V  
(max)  
CC  
RST  
I
V
= 4µA, V  
= 1.1V,  
CC  
SOURCE  
0.8  
0.9  
V
= V , T = 0°C to 85°C  
CC A  
BAT  
V
OH  
I
= 4µA, V  
= 1.2V,  
CC  
SOURCE  
V
V
= V  
CC  
BAT  
I
= 100µA,  
V
RST)  
Battery Back-up (RST,  
SOURCE  
OH  
0.8V  
V
BAT  
BAT  
V
V
= 0, V  
= 2.8V  
CC  
BAT  
V
OHB  
I
= 75µA,  
SOURCE  
V
OH  
Battery Back-up (E )  
CON  
0.8V  
V
= 0, V  
= 2.8V  
BAT  
CC  
Power-fail Comparator (NOT available on STM818)  
All other  
versions  
1.20  
1.25  
1.250  
2
1.30  
V
V
PFI Falling  
(V = 5V)  
V
PFI Input Threshold  
PFI  
CC  
STM802  
1.225  
1.275  
PFI to PFO Propagation  
Delay  
t
µs  
PFD  
PFO Output Short to  
GND Current  
I
V = 5V, V  
CC PFO  
= 0V  
0.1  
0.75  
2.0  
mA  
SC  
Battery Switchover  
V
RST  
V
RST  
V
RST  
V
RST  
> V  
< V  
> V  
< V  
V
V
V
BAT  
BAT  
BAT  
BAT  
BAT  
Power-down  
Power-up  
Battery Back-up  
V
RST  
(7,8)  
Switchover Voltage  
V
SO  
V
BAT  
V
(V < V  
& V < V  
)
CC  
BAT  
CC  
RST  
V
V
RST  
Hysteresis  
40  
mV  
Reset Thresholds  
STM690A/703, STM8XXL  
STM692A/704, STM8XXM  
4.50  
4.25  
4.65  
4.40  
25  
4.75  
4.50  
V
V
(9)  
V
Reset Threshold  
RST  
Reset Threshold Hysteresis  
to RST Delay (from  
mV  
V
CC  
STM817/818/819  
100  
200  
µs  
V
, V falling at 10V/ms)  
RST CC  
t
RST Pulse Width  
140  
280  
ms  
rec  
30/37  
STM690A/692A/703/704/802/805/817/818/819  
Alter-  
native  
(1)  
Sym  
Description  
Min  
Typ  
Max  
Unit  
Test Condition  
Push-button Reset Input (STM703/704/819)  
STM703/704  
STM819  
150  
1
ns  
µs  
ns  
ns  
ns  
kΩ  
t
t
MR  
MR Pulse Width  
MLMH  
STM703/704  
STM819  
250  
t
t
MRD  
MR to RST Output Delay  
MLRL  
120  
100  
63  
MR Glitch Immunity  
MR Pull-up Resistor  
STM819  
MR = 0V, V = 5V  
45  
85  
CC  
Watchdog Timer (NOT available on STM703/704/819)  
t
V
(max) < V < 5.5V  
Watchdog Timeout Period  
WDI Pulse Width  
1.12  
50  
1.60  
2.24  
s
WD  
RST  
CC  
V
RST  
(max) < V < 5.5V  
ns  
CC  
Chip-Enable Gating (STM818 only)  
E-to-E Resistance  
V
= V  
(max)  
40  
2
150  
7
CON  
CC  
RST  
E-to-E  
Propagation Delay  
4.5V < V < 5.5V  
ns  
µs  
CON  
CC  
Reset-to-E  
High Delay  
(Power-down)  
15  
CON  
V
= 5V, Disable Mode,  
CC  
E
CON  
Short Circuit Current  
0.1  
0.75  
2.0  
mA  
E = Logic high, E  
= 0V  
CON  
Note: 1. Valid for Ambient Operating Temperature: T = –40 to 85°C; V = 4.75V to 5.5V for “L” versions; V = 4.5V to 5.5V for “M” ver-  
A
CC  
CC  
sions; and V  
= 2.8V (except where noted).  
BAT  
2. V supply current, logic input leakage, Watchdog functionality, Push-button Reset functionality, PFI functionality, state of RST and  
CC  
RST tested at V  
= 3.6V, and V = 5.5V. The state of RST or RST and PFO is tested at V = V (min). Either V or V  
BAT  
CC CC CC CC BAT  
can go to 0V if the other is greater than 2.0V.  
3. V (min) = 1.0V for T = 0°C to +85°C.  
CC  
A
4. Tested at V  
= 3.6V, V = 3.5V and 0V.  
BAT  
CC  
5. Guaranteed by design.  
6. WDI input is designed to be driven by a three-state output device. To float WDI, the “high impedance mode” of the output device  
must have a maximum leakage current of 10µA and a maximum output capacitance of 200pF. The output device must also be able  
to source and sink at least 200µA when active.  
7. When V  
8. When V  
> V > V  
, V  
remains connected to V until V drops below V  
.
BAT  
RST  
CC  
RST  
OUT  
CC  
CC  
RST  
> V > V  
, V  
remains connected to V until V drops below the battery voltage (V  
) – 75mV.  
BAT  
CC  
BAT OUT  
CC  
CC  
9. For V falling.  
CC  
31/37  
STM690A/692A/703/704/802/805/817/818/819  
PACKAGE MECHANICAL  
Figure 44. SO8 – 8-lead Plastic Small Outline, 150 mils body width, Package Mech. Drawing  
h x 45˚  
A2  
A
C
B
ddd  
e
D
8
1
E
H
A1  
α
L
SO-A  
Note: Drawing is not to scale.  
Table 8. SO8 – 8-lead Plastic Small Outline, 150 mils body width, Package Mechanical Data  
mm  
Min  
1.35  
0.10  
0.33  
0.19  
4.80  
inches  
Min  
Symb  
Typ  
Max  
1.75  
0.25  
0.51  
0.25  
5.00  
0.10  
4.00  
Typ  
Max  
0.069  
0.010  
0.020  
0.010  
0.197  
0.004  
0.157  
A
A1  
B
0.053  
0.004  
0.013  
0.007  
0.189  
C
D
ddd  
E
3.80  
0.150  
e
1.27  
0.050  
H
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
0.90  
8°  
0.228  
0.010  
0.016  
0°  
0.244  
0.020  
0.035  
8°  
h
L
α
N
8
8
32/37  
STM690A/692A/703/704/802/805/817/818/819  
Figure 45. TSSOP8 – 8-lead, Thin Shrink Small Outline, 3x3mm body size, Outline  
D
8
1
5
4
c
E1  
E
α
A1  
L
A
A2  
L1  
CP  
b
e
TSSOP8BM  
Note: Drawing is not to scale.  
Table 9. TSSOP8 – 8-lead, Thin Shrink Small Outline, 3x3mm body size, Mechanical Data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
1.10  
0.15  
0.95  
0.40  
0.23  
0.10  
3.10  
Typ  
Max  
0.043  
0.006  
0.037  
0.016  
0.009  
0.004  
0.122  
A
A1  
A2  
b
0.05  
0.75  
0.25  
0.13  
0.002  
0.030  
0.010  
0.005  
0.85  
0.034  
c
CP  
D
3.00  
0.65  
4.90  
3.00  
0.55  
0.95  
2.90  
0.118  
0.026  
0.193  
0.118  
0.022  
0.037  
0.114  
e
E
4.65  
2.90  
0.40  
5.15  
3.10  
0.70  
0.183  
0.114  
0.016  
0.203  
0.122  
0.030  
E1  
L
L1  
α
0°  
6°  
0°  
6°  
N
8
8
33/37  
STM690A/692A/703/704/802/805/817/818/819  
PART NUMBERING  
Table 10. Ordering Information Scheme  
Example:  
STM690A  
M
6
E
Device Type  
STM690A/692A/703/704/802/805/817/818/819  
Reset Threshold Voltage  
STM690A/703: blank = V  
= 4.50V to 4.75V  
RST  
STM8xxL: L = V  
= 4.50V to 4.75V  
RST  
STM692A/704: blank = V  
= 4.25V to 4.50V  
RST  
STM8xxM: M = V  
= 4.25V to 4.50V  
RST  
Package  
M = SO8  
(1)  
DS = TSSOP8  
Temperature Range  
6 = –40 to 85°C  
Shipping Method  
E = ECOPACK Package, Tubes  
F = ECOPACK Package, Tape & Reel  
Note: 1. Contact local ST sales office for availability.  
For other options, or for more information on any aspect of this device, please contact the ST Sales Office  
nearest you.  
34/37  
STM690A/692A/703/704/802/805/817/818/819  
Table 11. Marking Description  
Part Number  
STM690A  
STM692A  
STM703  
Reset Threshold  
Package  
SO8  
Topside Marking  
4.65V  
4.40V  
4.65V  
4.40V  
4.65V  
4.40V  
4.65V  
690A  
692A  
703  
SO8  
SO8  
STM704  
SO8  
704  
STM802L  
STM802M  
STM805L  
SO8  
802L  
802M  
805L  
SO8  
SO8  
SO8  
STM817L  
STM817M  
STM818L  
STM818M  
STM819L  
STM819M  
4.65V  
4.40V  
4.65V  
4.40V  
4.65V  
4.40V  
817L  
817M  
818L  
818M  
819L  
819M  
TSSOP8  
SO8  
TSSOP8  
SO8  
TSSOP8  
SO8  
TSSOP8  
SO8  
TSSOP8  
SO8  
TSSOP8  
35/37  
STM690A/692A/703/704/802/805/817/818/819  
REVISION HISTORY  
Table 12. Document Revision History  
Date  
Version  
1.0  
Revision Details  
October 2003  
31-Oct-03  
First Issue  
1.1  
Update DC Characteristics (Table 7)  
Reformatted; updated characteristics (Figure 1, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15,  
17; Table 3, 4, 7, 9, 11)  
22-Dec-03  
2.0  
Add Typical Characteristics (Figure 19, 20, 22, 23, 25, 26, 27, 28, 29, 32, 33, 34,  
35, 36, 37, 38, 39)  
16-Jan-04  
08-Apr-04  
25-May-04  
2.1  
2.2  
3.0  
Update characteristics (Figure 13, 23, 29, 33, 34, 35, 38; Table 1,7)  
Remove references to ‘Open Drain’ (Figure 2, 5, 8; Table 2); update characteristics  
(Table 3, 7)  
Update package availability, pin description; promote document (Figure 1, 14, 15;  
Table 3. 7, 10)  
05-Jul-04  
29-Sep-04  
01-Mar-05  
20-Jan-05  
4.0  
5.0  
6.0  
7.0  
Clarify root part numbers, pin descriptions (Figure 11, 13, 40; Table 7, 10)  
Update characteristics (Figure 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,  
32, 33, 34, 35, 36, 37, 38, 39)  
Correct marking, update Lead-free text (Table 10, 11)  
36/37  
STM690A/692A/703/704/802/805/817/818/819  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2006 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
37/37  

相关型号:

STM704MM6F

IC,POWER SUPPLY SUPERVISOR,SOP,8PIN,PLASTIC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM704R

3V Supervisor with Battery Switchover

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM704RDS6E

3V Supervisor with Battery Switchover

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM704RDS6F

3V Supervisor with Battery Switchover

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM704RM6E

3V Supervisor with Battery Switchover

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM704RM6F

3V Supervisor with Battery Switchover

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM704S

3V Supervisor with Battery Switchover

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM704SDS6E

3V Supervisor with Battery Switchover

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM704SDS6F

3V Supervisor with Battery Switchover

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM704SM6E

3V Supervisor with Battery Switchover

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM704SM6F

3V Supervisor with Battery Switchover

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM704T

3V Supervisor with Battery Switchover

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR