STM8AF6223 [STMICROELECTRONICS]

Automotive 8-bit MCU, with up to 8 Kbyte Flash, data EEPROM, 10-bit ADC, timers, LIN, SPI, IC, 3 to 5.5 V;
STM8AF6223
型号: STM8AF6223
厂家: ST    ST
描述:

Automotive 8-bit MCU, with up to 8 Kbyte Flash, data EEPROM, 10-bit ADC, timers, LIN, SPI, IC, 3 to 5.5 V

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器
文件: 总106页 (文件大小:1934K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM8AF6213 STM8AF6223  
STM8AF6223A STM8AF6226  
Automotive 8-bit MCU, with up to 8 Kbyte Flash, data EEPROM,  
10-bit ADC, timers, LIN, SPI, I²C, 3 to 5.5 V  
Datasheet - production data  
Features  
Core  
– Max f  
: 16 MHz  
CPU  
– Advanced STM8A core with Harvard  
architecture and 3-stage pipeline  
– Extended instruction set  
LQFP32 7x7 mm  
TSSOP20 (6.4x4.4 mm)  
I/Os  
Memories  
– Up to 28 I/Os on a 32-pin package  
including 21 high sink outputs  
– Highly robust I/O design, immune against  
current injection  
– Program memory: 4 to 8 Kbyte Flash  
program; data retention 20 years at 55 °C  
after 1 kcycle  
– Data memory: 640 byte true data  
EEPROM; endurance 300 kcycle  
– RAM: 1 Kbyte  
Communication interfaces  
– LINUART LIN 2.2 compliant, master/slave  
modes with automatic resynchronization  
Clock management  
– SPI interface up to 8 Mbit/s or f  
/2  
MASTER  
– Low-power crystal resonator oscillator with  
2
– I C interface up to 400 Kbit/s  
external clock input  
– Internal, user-trimmable 16 MHz RC and  
low-power 128 kHz RC oscillators  
– Clock security system with clock monitor  
Analog to digital converter (ADC)  
– 10-bit, ± 1 LSB ADC with up to 7 muxed  
channels + 1 internal channel, scan mode  
and analog watchdog  
Reset and supply management  
– Wait/auto-wakeup/Halt low-power modes  
with user definable clock gating  
– Low-consumption power-on and power-  
down reset  
– Internal reference voltage measurement  
Operating temperature up to 150 °C  
Qualification conforms to AEC-Q100 rev G  
Interrupt management  
– Nested interrupt controller with 32  
interrupts  
– Up to 28 external interrupts on 7 vectors  
Timers  
– Advanced control timer: 16-bit, 4 CAPCOM  
channels, 3 complementary outputs, dead-  
time insertion and flexible synchronization  
– 16-bit general purpose timer with 3  
CAPCOM channels each (IC, OC, PWM)  
– 8-bit AR basic timer with 8-bit prescaler  
– Auto-wakeup timer  
– Window and independent watchdog timers  
June 2015  
DocID025118 Rev 5  
1/106  
This is information on a product in full production.  
www.st.com  
Contents  
STM8AF6213/23/23A/26  
Contents  
1
2
3
4
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Product overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4.1  
Central processing unit (CPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4.1.1  
4.1.2  
4.1.3  
Architecture and registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4.2  
Single wire interface module (SWIM) and debug module (DM) . . . . . . . . 14  
4.2.1  
4.2.2  
SWIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Debug module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
4.3  
4.4  
Interrupt controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Flash program and data EEPROM memory . . . . . . . . . . . . . . . . . . . . . . . 14  
4.4.1  
4.4.2  
Write protection (WP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Read-out protection (ROP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
4.5  
Clock controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
4.5.1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
4.6  
4.7  
4.8  
4.9  
Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Watchdog timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Auto wakeup counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
4.10 TIM1 - 16-bit advanced control timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
4.11 TIM5 - 16-bit general purpose timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
4.12 TIM6 - 8-bit basic timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
4.13 Analog-to-digital converter (ADC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
4.14 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
4.14.1 LINUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
4.14.2 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
2
4.14.3 Inter integrated circuit (I C) interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
2/106  
DocID025118 Rev 5  
STM8AF6213/23/23A/26  
Contents  
5
Pinout and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
5.1  
5.2  
5.3  
TSSOP20 pinouts and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
LQFP32 pinout and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Alternate function remapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
6
Memory and register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
6.1  
6.2  
Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
6.2.1  
6.2.2  
I/O port hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
CPU/SWIM/debug module/interrupt controller registers . . . . . . . . . . . . 43  
7
8
Interrupt vector mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
8.1  
8.2  
Option byte description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
STM8AF6213/23/23A/26 alternate function remapping bits . . . . . . . . . . . 49  
9
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
9.1  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
9.1.1  
9.1.2  
9.1.3  
9.1.4  
9.1.5  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
9.2  
9.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
9.3.1  
9.3.2  
9.3.3  
9.3.4  
9.3.5  
9.3.6  
9.3.7  
9.3.8  
9.3.9  
VCAP external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
External clock sources and timing characteristics . . . . . . . . . . . . . . . . . 67  
Internal clock sources and timing characteristics . . . . . . . . . . . . . . . . . 69  
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Reset pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
SPI serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
2
I C interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
9.3.10 10-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
DocID025118 Rev 5  
3/106  
4
Contents  
STM8AF6213/23/23A/26  
9.3.11  
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
10  
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
10.1 LQFP32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
10.2 TSSOP20 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
10.3 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
10.3.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
10.3.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . . 98  
11  
12  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
STM8 development tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
12.1 Emulation and in-circuit debugging tools . . . . . . . . . . . . . . . . . . . . . . . . 101  
12.1.1 STice key features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
12.2 Software tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
12.2.1 STM8 toolset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
12.2.2 C and assembly toolchains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
12.3 Programming tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
13  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
4/106  
DocID025118 Rev 5  
STM8AF6213/23/23A/26  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
STM8AF6213/23/23A/26 features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers. . . . . . . . . . . . . . . 16  
TIM timer features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Communication peripheral naming correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Legend/abbreviations for pinout tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
STM8AF6213/STM8AF6223 TSSOP20 pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
STM8AF6223A TSSOP20 pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
STM8AF6226 LQFP32 pin description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Memory model for the devices covered in this datasheet. . . . . . . . . . . . . . . . . . . . . . . . . . 35  
I/O port hardware register map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
General hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
CPU/SWIM/debug module/interrupt controller registers. . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Interrupt mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Option byte description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
STM8AF6226 alternate function remapping bits [7:2] for 32-pin packages . . . . . . . . . . . . 49  
STM8AF6213 and STM8AF6223 alternate function remapping bits [7:2]  
for 20-pin packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
STM8AF6223A alternate function remapping bits [7:2] for 20-pin packages . . . . . . . . . . . 50  
STM8AF6226 alternate function remapping bits [1:0] for 32-pin packages . . . . . . . . . . . . 51  
STM8AF6213/STM8AF6223 alternate function remapping bits [1:0]  
Table 18.  
Table 19.  
Table 20.  
for 20-pin packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
STM8AF6223A alternate function remapping bits [1:0] for 20-pin packages . . . . . . . . . . . 52  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Operating lifetime (OLF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Operating conditions at power-up/power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
Table 44.  
Table 45.  
Table 46.  
Total current consumption with code execution in run mode at V = 5 V. . . . . . . . . . . . . 58  
DD  
Total current consumption with code execution in run mode at V = 3.3 V . . . . . . . . . . . 59  
DD  
Total current consumption in wait mode at V = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
DD  
Total current consumption in wait mode at V = 3.3 V. . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
DD  
Total current consumption in active halt mode at V = 5 V . . . . . . . . . . . . . . . . . . . . . . . 61  
DD  
Total current consumption in active halt mode at V = 3.3 V . . . . . . . . . . . . . . . . . . . . . . 61  
DD  
Total current consumption in halt mode at V = 5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
DD  
Total current consumption in halt mode at V = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
DD  
Wakeup times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Total current consumption and timing in forced reset state . . . . . . . . . . . . . . . . . . . . . . . . 63  
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
HSE user external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Flash program memory/data EEPROM memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Flash program memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Data memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
DocID025118 Rev 5  
5/106  
6
List of tables  
STM8AF6213/23/23A/26  
Table 47.  
Table 48.  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
Table 54.  
Table 55.  
Table 56.  
Table 57.  
Table 58.  
Table 59.  
Table 60.  
Table 61.  
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Output driving current (standard ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Output driving current (true open drain ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Output driving current (high sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
2
I C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
ADC accuracy with RAIN < 10 k, V = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
DD  
ADC accuracy with RAIN < 10 k, V = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
DD  
EMS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
EMI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package   
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Table 62.  
TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,   
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Table 63.  
Table 64.  
6/106  
DocID025118 Rev 5  
STM8AF6213/23/23A/26  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
STM8AF6213/23/23A/26 block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Flash memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
STM8AF6213/STM8AF6223 TSSOP20 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
STM8AF6223A TSSOP20 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
STM8AF6226 LQFP32 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
f
versus V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
CPUmax  
DD  
Figure 10. External capacitor C  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
EXT  
Figure 11. Typ I  
Figure 12. Typ I  
Figure 13. Typ I  
Figure 14. Typ I  
Figure 15. Typ I  
Figure 16. Typ I  
vs. V HSE user external clock, f  
= 16 MHz . . . . . . . . . . . . . . . . . . . . . 64  
DD(RUN)  
DD(RUN)  
DD(RUN)  
DD(WFI)  
DD(WFI)  
DD(WFI)  
DD  
CPU  
vs. f  
HSE user external clock, V = 5 V . . . . . . . . . . . . . . . . . . . . . . . . 64  
CPU  
DD  
vs. V HSEI RC osc., f  
= 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
CPU  
DD  
vs. V HSE user external clock, f  
= 16 MHz . . . . . . . . . . . . . . . . . . . . . 65  
DD  
CPU  
vs. f  
HSE user external clock, V = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . 66  
CPU  
DD  
vs. V HSI RC osc., f  
= 16 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
CPU  
DD  
Figure 17. HSE external clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Figure 18. HSE oscillator circuit diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Figure 19. Typical V and V vs V @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
IL  
IH  
DD  
Figure 20. Typical pull-up resistance R vs V @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . 73  
PU  
DD  
Figure 21. Typical pull-up current I vs V @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
pu  
DD  
Figure 22. Typ. V @ V = 5 V (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
OL  
DD  
Figure 23. Typ. V @ V = 3.3 V (standard ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
OL  
DD  
Figure 24. Typ. V @ V = 5 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
OL  
DD  
Figure 25. Typ. V @ V = 3.3 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
OL  
DD  
Figure 26. Typ. V @ V = 5 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
OL  
DD  
Figure 27. Typ. V @ V = 3.3 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
OL  
DD  
Figure 28. Typ. V - V @ V = 5 V (standard ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
DD  
OH  
DD  
Figure 29. Typ. V - V @ V = 3.3 V (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
DD  
OH  
DD  
Figure 30. Typ. V - V @ V = 5 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
DD  
OH  
DD  
Figure 31. Typ. V - V @ V = 3.3 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
DD  
OH  
DD  
Figure 32. Typical NRST V and V vs V @ 4 temperatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
IL  
IH  
DD  
Figure 33. Typical NRST pull-up resistance vs V @ 4 temperatures. . . . . . . . . . . . . . . . . . . . . . . . 80  
DD  
Figure 34. Typical NRST pull-up current vs V @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
DD  
Figure 35. Recommended reset pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Figure 36. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Figure 37. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
(1)  
Figure 38. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Figure 39. Typical application with I2C bus and timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Figure 40. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Figure 41. Typical application with ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Figure 42. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . 92  
Figure 43. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package   
recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Figure 44. LQFP32 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Figure 45. TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,   
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Figure 46. TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,   
DocID025118 Rev 5  
7/106  
8
List of figures  
STM8AF6213/23/23A/26  
package footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Figure 47. TSSOP20 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
(1) (2)  
Figure 48. STM8AF6213/23/23A/26 ordering information scheme  
. . . . . . . . . . . . . . . . . . . . . . 100  
8/106  
DocID025118 Rev 5  
STM8AF6213/23/23A/26  
Introduction  
1
Introduction  
The datasheet contains the description of STM8AF6213, STM8AF6223, STM8AF6223A  
and STM8AF6226 features, pinout, electrical characteristics, mechanical data and ordering  
information.  
For complete information on the STM8A microcontroller memory, registers and  
peripherals, please refer to STM8S series and STM8AF series 8-bit microcontrollers  
reference manual (RM0016).  
For information on programming, erasing and protection of the internal Flash memory  
please refer to the STM8 Flash programming manual (PM0051).  
For information on the debug and SWIM (single wire interface module) refer to the  
STM8 SWIM communication protocol and debug module user manual (UM0470).  
For information on the STM8 core, please refer to the STM8 CPU programming manual  
(PM0044).  
DocID025118 Rev 5  
9/106  
103  
 
Description  
STM8AF6213/23/23A/26  
2
Description  
The STM8AF6213, STM8AF6223, STM8AF6223A and STM8AF6226 automotive 8-bit  
microcontrollers offer 4 to 8 Kbyte of Flash program memory, plus integrated true data  
EEPROM. The STM8S series and STM8AF series 8-bit microcontrollers reference manual  
(RM0016) refers to devices in this family as low-density. They provide the following benefits:  
performance, robustness and reduced system cost.  
Device performance and robustness are ensured by advanced core and peripherals made  
in a state-of-the-art technology, a 16 MHz clock frequency, robust I/Os, independent  
watchdogs with separate clock source, and a clock security system.  
The system cost is reduced thanks to an integrated true data EEPROM for up to   
300 kwrite/erase cycles and a high system integration level with internal clock oscillators,  
watchdog, and brown-out reset.  
Full documentation is offered as well as a wide choice of development tools.  
²
Table 1. STM8AF6213/23/23A/26 features  
Device  
STM8AF6226  
STM8AF6223 STM8AF6223A STM8AF6213  
Pin count  
32  
20  
28 including 21  
high-sink I/Os  
Max. number of GPIOs  
16 including 12 high-sink I/Os  
16  
Ext. interrupt pins  
28  
6
Timer CAPCOM channels  
7
1
6
2
7
7
1
Timer complementary  
outputs  
3
7
A/D converter channels  
5
5
Low-density Flash program  
memory (byte)  
8 K  
4 K  
Data EEPROM (byte)  
RAM (byte)  
640(1)  
1 K  
Multipurpose timer (TIM1), SPI, I2C, LINUART, window WDG,  
independent WDG, ADC, PWM timer (TIM5), 8-bit timer (TIM6)  
Peripheral set  
1. No read-while-write (RWW) capability  
10/106  
DocID025118 Rev 5  
 
 
STM8AF6213/23/23A/26  
Block diagram  
3
Block diagram  
Figure 1. STM8AF6213/23/23A/26 block diagram  
5HVHWꢀEORFN  
5HVHW  
;7$/ꢀꢁꢂꢀꢁꢃꢀ0+]  
5&ꢀLQWꢄꢀꢁꢃꢀ0+]  
5&ꢀLQWꢄꢀꢁꢅꢆꢀN+]  
&ORFNꢀFRQWUROOHU  
'HWHFWRU  
5HVHW  
325  
%25  
&ORFNꢀWRꢀSHULSKHUDOVꢀDQGꢀFRUH  
:LQGRZꢀ:'*  
670ꢆꢀFRUH  
,QGHSHQGHQWꢀ:'*  
6LQJOHꢀZLUH  
'HEXJꢇ6:,0  
8SꢀWRꢀꢆꢀ.E\WH  
SURJUDPꢀ)ODVK  
GHEXJꢀLQWHUIDFH  
ꢃꢊꢋꢀE\WH  
GDWDꢀ((3520  
ꢁꢀ.E\WHꢀ5$0  
ꢊꢋꢋꢀ.ELWꢇV  
ꢆꢀ0ELWꢇV  
,ꢅ&  
63,  
8SꢀWRꢀ  
ꢊꢀ&$3&20  
FKDQQHOVꢀꢏꢀ  
ꢍꢀFRPSOHPHQWDU\ꢀ  
RXWSXWV  
ꢁꢃꢂELWꢀDGYDQFHGꢀFRQWURO  
WLPHUꢀꢈ7,0ꢁꢉ  
/,1  
63,ꢀHPXOꢄ  
/,18$57  
8SꢀWR  
ꢍꢀ&$3&20  
FKDQQHOV  
ꢁꢃꢂELWꢀJHQHUDOꢀSXUSRVH  
WLPHUVꢀꢈ7,0ꢌꢉ  
8SꢀWRꢀꢎꢀFKDQQHOV  
ꢁꢇꢅꢇꢊꢀN+]ꢀEHHS  
$'&ꢁ  
ꢆꢂELWꢀEDVLFꢀWLPHU  
ꢈ7,0ꢃꢉ  
%HHSHU  
$:8ꢀWLPHU  
06ꢍꢆꢍꢊꢍ9ꢁ  
DocID025118 Rev 5  
11/106  
103  
 
 
Block diagram  
STM8AF6213/23/23A/26  
1. Legend:  
ADC: Analog-to-digital converter  
beCAN: Controller area network  
BOR: Brownout reset  
I²C: Inter-integrated circuit multimaster interface  
IWDG: Independent window watchdog  
LINUART: Local interconnect network universal asynchronous receiver transmitter  
POR: Power on reset  
SPI: Serial peripheral interface  
SWIM: Single wire interface module  
USART: Universal synchronous asynchronous receiver transmitter  
Window WDG: Window watchdog  
12/106  
DocID025118 Rev 5  
STM8AF6213/23/23A/26  
Product overview  
4
Product overview  
The following section intends to give an overview of the basic features of the products  
covered by this datasheet.  
For more detailed information on each feature please refer to STM8S series and STM8AF  
series 8-bit microcontrollers reference manual (RM0016).  
4.1  
Central processing unit (CPU)  
The 8-bit STM8 core is designed for code efficiency and performance.  
It contains 6 internal registers which are directly addressable in each execution context, 20  
addressing modes including indexed indirect and relative addressing and 80 instructions.  
4.1.1  
Architecture and registers  
Harvard architecture  
3-stage pipeline  
32-bit wide program memory bus - single cycle fetching for most instructions  
X and Y 16-bit index registers, enabling indexed addressing modes with or without  
offset and read-modify-write type data manipulations  
8-bit accumulator  
24-bit program counter - 16-Mbyte linear memory space  
16-bit stack pointer - access to a 64 Kbyte level stack  
8-bit condition code register - 7 condition flags for the result of the last instruction.  
4.1.2  
4.1.3  
Addressing  
20 addressing modes  
Indexed indirect addressing mode for look-up tables located anywhere in the address  
space  
Stack pointer relative addressing mode for local variables and parameter passing  
Instruction set  
80 instructions with 2-byte average instruction size  
Standard data movement and logic/arithmetic functions  
8-bit by 8-bit multiplication  
16-bit by 8-bit and 16-bit by 16-bit division  
Bit manipulation  
Data transfer between stack and accumulator (push/pop) with direct stack access  
Data transfer using the X and Y registers or direct memory-to-memory transfers  
DocID025118 Rev 5  
13/106  
103  
 
 
 
 
 
Product overview  
STM8AF6213/23/23A/26  
4.2  
Single wire interface module (SWIM) and debug module (DM)  
The single wire interface module together with an integrated debug module permit non-  
intrusive, real-time in-circuit debugging and fast memory programming.  
4.2.1  
SWIM  
Single wire interface module for direct access to the debug mode and memory  
programming. The interface can be activated in all device operation modes.The maximum  
data transmission speed is 145 byte/ms.  
4.2.2  
Debug module  
The non-intrusive debugging module features a performance close to a full-featured  
emulator. Besides memory and peripheral operation, CPU operation can also be monitored  
in real-time by means of shadow registers.  
R/W to RAM and peripheral registers in real-time  
R/W access to all resources by stalling the CPU  
Breakpoints on all program-memory instructions (software breakpoints)  
Two advanced breakpoints, 23 predefined breakpoint configurations  
4.3  
Interrupt controller  
Nested interrupts with three software priority levels  
32 interrupt vectors with hardware priority  
Up to 28 external interrupts on 7 vectors including TLI  
Trap and reset interrupts  
4.4  
Flash program and data EEPROM memory  
Up to 8 Kbyte of Flash program single voltage Flash memory  
640 byte true data EEPROM  
User option byte area  
4.4.1  
Write protection (WP)  
Write protection of Flash program memory and data EEPROM is provided to avoid  
unintentional overwriting of memory that could result from a user software malfunction.  
There are two levels of write protection. The first level is known as MASS (memory access  
security system). MASS is always enabled and protects the main Flash program memory,  
data EEPROM and option byte.  
To perform in-application programming (IAP), this write protection can be removed by  
writing a MASS key sequence in a control register. This allows the application to write to  
data EEPROM, modify the contents of main program memory or the device option byte.  
A second level of write protection, can be enabled to further protect a specific area of  
memory known as UBC (user boot code). Refer to the figure below.  
14/106  
DocID025118 Rev 5  
 
 
 
 
 
 
                                 
STM8AF6213/23/23A/26  
Product overview  
The size of the UBC is programmable through the UBC option byte, in increments of 1 page  
(64-byte block) by programming the UBC option byte in ICP mode.  
This divides the program memory into two areas:  
Main program memory: up to 8 Kbyte minus UBC  
User-specific boot code (UBC): configurable up to 8 Kbyte  
The UBC area remains write-protected during in-application programming. This means that  
the MASS keys do not unlock the UBC area. It protects the memory used to store the boot  
program, specific code libraries, reset and interrupt vectors, the reset routine and usually  
the IAP and communication routines.  
Figure 2. Flash memory organization  
'DWDꢀPHPRU\ꢀDUHDꢀꢈꢀꢃꢊꢋꢀE\WHꢉ  
'DWD  
((3520  
PHPRU\  
2SWLRQꢀE\WHV  
3URJUDPPDEOHꢀDUHD  
ꢈIURPꢀꢃꢊꢀE\WHꢀꢈꢁꢀSDJHꢉ  
WRꢀXSꢀWRꢀꢆꢀ.E\WH  
ꢈLQꢀꢁꢀSDJHꢀVWHSVꢉ  
8%&ꢀDUHD  
5HPDLQVꢀZULWHꢀSURWHFWHGꢀGXULQJꢀ,$3  
/RZꢂGHQVLW\  
)ODVKꢀSURJUDP  
PHPRU\  
ꢈXSꢀWRꢀꢆ.E\WHꢉ  
)ODVKꢀSURJUDPꢀPHPRU\ꢀDUHD  
:ULWHꢀDFFHVVꢀSRVVLEOHꢀIRUꢀ,$3  
06ꢍꢆꢍꢊꢊ9ꢁ  
4.4.2  
Read-out protection (ROP)  
The read-out protection blocks reading and writing the Flash program memory and data  
EEPROM memory in ICP mode (and debug mode). Once the read-out protection is  
activated, any attempt to toggle its status triggers a global erase of the program and data  
memory. Even if no protection can be considered as totally unbreakable, the feature  
provides a very high level of protection for a general purpose microcontroller.  
DocID025118 Rev 5  
15/106  
103  
 
 
Product overview  
STM8AF6213/23/23A/26  
4.5  
Clock controller  
The clock controller distributes the system clock (f  
) coming from different oscillators  
MASTER  
to the core and the peripherals. It also manages clock gating for low-power modes and  
ensures clock robustness.  
4.5.1  
Features  
Clock prescaler: to get the best compromise between speed and current consumption  
the clock frequency to the CPU and peripherals can be adjusted by a programmable  
prescaler.  
Safe clock switching: Clock sources can be changed safely on the fly in Run mode  
through a configuration register. The clock signal is not switched until the new clock  
source is ready. The design guarantees glitch-free switching.  
Clock management: To reduce power consumption, the clock controller can stop the  
clock to the core, individual peripherals or memory.  
Master clock sources: four different clock sources can be used to drive the master  
clock:  
1-16 MHz high-speed external crystal (HSE)  
Up to 16 MHz high-speed user-external clock (HSE user-ext)  
16 MHz high-speed internal RC oscillator (HSI)  
128 kHz low-speed internal RC (LSI)  
Startup clock: after reset, the microcontroller restarts by default with an internal 2 MHz  
clock (HSI/8). The prescaler ratio and clock source can be changed by the application  
program as soon as the code execution starts.  
Clock security system (CSS): this feature can be enabled by software. If an HSE  
clock failure occurs, the internal RC (16 MHz/8) is automatically selected by the CSS  
and an interrupt can optionally be generated.  
Configurable main clock output (CCO): This outputs an external clock for use by the  
application.  
Table 2. Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers  
Periphera  
l clock  
Peripheral  
clock  
Peripheral  
clock  
Peripheral  
clock  
Bit  
Bit  
Bit  
Bit  
PCKEN17  
PCKEN16  
TIM1  
TIM5  
PCKEN13 LINUART PCKEN27 Reserved PCKEN23  
PCKEN12 Reserved PCKEN26 Reserved PCKEN22  
ADC  
AWU  
PCKEN15 Reserved PCKEN11  
PCKEN14 TIM6 PCKEN10  
SPI  
I2C  
PCKEN25 Reserved PCKEN21 Reserved  
PCKEN24 Reserved PCKEN20 Reserved  
16/106  
DocID025118 Rev 5  
 
 
 
STM8AF6213/23/23A/26  
Product overview  
4.6  
Power management  
For efficient power management, the application can be put in one of four different low-  
power modes. Users can configure each mode to obtain the best compromise between  
lowest power consumption, fastest start-up time and available wakeup sources.  
Wait mode: in this mode, the CPU is stopped but peripherals are kept running. The  
wakeup is performed by an internal or external interrupt or reset.  
Active-halt mode with regulator on: in this mode, the CPU and peripheral clocks are  
stopped. An internal wakeup is generated at programmable intervals by the auto wake  
up unit (AWU). The main voltage regulator is kept powered on, so current consumption  
is higher than in Active-halt mode with regulator off, but the wakeup time is faster.  
Wakeup is triggered by the internal AWU interrupt, external interrupt or reset.  
Active-halt mode with regulator off: this mode is the same as Active-halt with  
regulator on, except that the main voltage regulator is powered off, so the wake up time  
is slower.  
Halt mode: in this mode the microcontroller uses the least power. The CPU and  
peripheral clocks are stopped, the main voltage regulator is powered off. Wakeup is  
triggered by external event or reset.  
4.7  
Watchdog timers  
The watchdog system is based on two independent timers providing maximum security to  
the applications.  
Activation of the watchdog timers is controlled by option bytes or by software. Once  
activated, the watchdogs cannot be disabled by the user program without performing a  
reset.  
Window watchdog timer  
The window watchdog is used to detect the occurrence of a software fault, usually  
generated by external interferences or by unexpected logical conditions, which cause the  
application program to abandon its normal sequence.  
The window function can be used to trim the watchdog behavior to match the application  
timing perfectly. The application software must refresh the counter before time-out and  
during a limited time window.  
A reset is generated in two situations:  
1. Timeout: at 16 MHz CPU clock the time-out period can be adjusted between 75 µs up  
to 64 ms.  
2. Refresh out of window: the downcounter is refreshed before its value is lower than the  
one stored in the window register.  
DocID025118 Rev 5  
17/106  
103  
 
 
Product overview  
STM8AF6213/23/23A/26  
Independent watchdog timer  
The independent watchdog peripheral can be used to resolve processor malfunctions due to  
hardware or software failures.  
It is clocked by the 128 kHz LSI internal RC clock source, and thus stays active even in case  
of a CPU clock failure.  
The IWDG time base spans from 60 µs to 1 s  
4.8  
4.9  
Auto wakeup counter  
Used for auto wakeup from active halt mode  
Clock source: Internal 128 kHz internal low frequency RC oscillator or external clock  
LSI clock can be internally connected to TIM1 input capture channel 1 for calibration  
Beeper  
The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in  
the range of 1, 2 or 4 kHz.  
The beeper output port is only available through the alternate function remap option bit  
AFR7.  
4.10  
TIM1 - 16-bit advanced control timer  
This is a high-end timer designed for a wide range of control applications. With its  
complementary outputs, dead-time control and center-aligned PWM capability, the field of  
applications is extended to motor control, lighting and half-bridge driver.  
16-bit up, down and up/down auto-reload counter with 16-bit fractional prescaler.  
Four independent capture/compare channels (CAPCOM) configurable as input  
capture, output compare, PWM generation (edge and center aligned mode) and single  
pulse mode output.  
Synchronization module to control the timer with external signals or to synchronise with  
TIM5 or TIM6  
Break input to force the timer outputs into a defined state  
Three complementary outputs with adjustable dead time  
Encoder mode  
Interrupt sources: 3 x input capture/output compare, 1 x overflow/update, 1 x break  
18/106  
DocID025118 Rev 5  
 
 
 
STM8AF6213/23/23A/26  
Product overview  
4.11  
TIM5 - 16-bit general purpose timer  
16-bit autoreload (AR) up-counter  
15-bit prescaler adjustable to fixed power of 2 ratios 1…32768  
3 individually configurable capture/compare channels  
PWM mode  
Interrupt sources: 3 x input capture/output compare, 1 x overflow/update  
Synchronization module to control the timer with external signals or to synchronize with  
TIM1 or TIM6  
4.12  
TIM6 - 8-bit basic timer  
8-bit autoreload, adjustable prescaler ratio to any power of 2 from 1 to 128  
Clock source: CPU clock  
Interrupt source: 1 x overflow/update  
Synchronization module to control the timer with external signals or to synchronize with  
TIM1 or TIM5.  
Table 3. TIM timer features  
Timer  
Counter  
size (bits)  
Counting  
mode  
CAPCOM Complemen  
channels tary outputs  
synchroniz  
ation/  
Timer  
Prescaler  
Ext. trigger  
chaining  
Any integer  
from 1 to  
65536  
TIM1  
TIM5  
TIM6  
16  
16  
8
Up/down  
Up  
4
3
0
3
0
0
Yes  
No  
No  
Any power  
of 2 from 1  
to 32768  
Yes  
Any power  
of 2 from 1  
to 128  
Up  
DocID025118 Rev 5  
19/106  
103  
 
 
 
Product overview  
STM8AF6213/23/23A/26  
4.13  
Analog-to-digital converter (ADC1)  
The STM8AF6213, STM8AF6223, STM8AF6223A and STM8AF6226 products contain a  
10-bit successive approximation A/D converter (ADC1) with up to 7 external and 1 internal  
multiplexed input channels and the following main features:  
Input voltage range: 0 to V  
Input voltage range: 0 to V  
DD  
DDA  
Conversion time: 14 clock cycles  
Single and continuous and buffered continuous conversion modes  
Buffer size (n x 10 bits) where n = number of input channels  
Scan mode for single and continuous conversion of a sequence of channels  
Analog watchdog capability with programmable upper and lower thresholds  
Internal reference voltage on channel AIN7  
Analog watchdog interrupt  
External trigger input  
Trigger from TIM1 TRGO  
End of conversion (EOC) interrupt  
Note:  
Additional AIN12 analog input is not selectable in ADC scan mode or with analog watchdog.  
Values converted from AIN12 are stored only into the ADC_DRH/ADC_DRL registers.  
Internal bandgap reference voltage  
Channel AIN7 is internally connected to the internal bandgap reference voltage. The internal  
bandgap reference is constant and can be used, for example, to monitor V . It is  
DD  
independent of variations in V and ambient temperature T .  
DD  
A
4.14  
Communication interfaces  
The following communication interfaces are implemented:  
LINUART: Full feature UART, synchronous mode, SPI master mode, Smartcard mode,  
IrDA mode, single wire mode, LIN2.2 capability  
SPI: full and half-duplex, 8 Mbit/s  
I²C: up to 400 Kbit/s  
Some peripheral names differ between the datasheet and STM8S series and STM8AF  
series 8-bit microcontrollers reference manual, RM0016 (see Table 4).  
Table 4. Communication peripheral naming correspondence  
Peripheral name in reference manual  
Peripheral name in datasheet  
(RM0016)  
LINUART  
UART4  
20/106  
DocID025118 Rev 5  
 
 
 
STM8AF6213/23/23A/26  
Product overview  
4.14.1  
LINUART  
Main features  
1 Mbit/s full duplex SCI  
SPI emulation  
High precision baud rate generator  
Smartcard emulation  
IrDA SIR encoder decoder  
LIN mode  
Single wire half duplex mode  
LIN mode  
Master mode:  
LIN break and delimiter generation  
LIN break and delimiter detection with separate flag and interrupt source for read back  
checking.  
Slave mode:  
Autonomous header handling – one single interrupt per valid header  
Mute mode to filter responses  
Identifier parity error checking  
LIN automatic resynchronization, allowing operation with internal RC oscillator (HSI)  
clock source  
Break detection at any time, even during a byte reception  
Header errors detection:  
Delimiter too short  
Synch field error  
Deviation error (if automatic resynchronization is enabled)  
Framing error in synch field or identifier field  
Header time-out  
DocID025118 Rev 5  
21/106  
103  
 
Product overview  
STM8AF6213/23/23A/26  
Asynchronous communication (UART mode)  
Full duplex communication - NRZ standard format (mark/space)  
Programmable transmit and receive baud rates up to 1 Mbit/s (f  
following any standard baud rate regardless of the input frequency  
Separate enable bits for transmitter and receiver  
Two receiver wakeup modes:  
/16) and capable of  
CPU  
Address bit (MSB)  
Idle line (interrupt)  
Transmission error detection with interrupt generation  
Parity control  
Synchronous communication  
Full duplex synchronous transfers  
SPI master operation  
8-bit data communication  
Maximum speed: 1 Mbit/s at 16 MHz (f  
/16)  
CPU  
4.14.2  
Serial peripheral interface (SPI)  
Maximum speed: 8 Mbit/s (f  
/2) both for master and slave  
MASTER  
Full duplex synchronous transfers  
Simplex synchronous transfers on two lines with a possible bidirectional data line  
Master or slave operation - selectable by hardware or software  
CRC calculation  
1 byte Tx and Rx buffer  
Slave /master selection input pin  
2
4.14.3  
Inter integrated circuit (I C) interface  
2
I C master features:  
Clock generation  
Start and stop generation  
2
I C slave features:  
2
Programmable I C address detection  
Stop bit detection  
Generation and detection of 7-bit/10-bit addressing and general call  
Supports different communication speeds:  
Standard speed (up to 100 kHz),  
Fast speed (up to 400 kHz)  
22/106  
DocID025118 Rev 5  
 
 
STM8AF6213/23/23A/26  
Pinout and pin description  
5
Pinout and pin description  
The following table presents the meaning of the abbreviations in use in the pin description  
tables in this section.  
Table 5. Legend/abbreviations for pinout tables  
Type  
I= input, O = output, S = power supply  
Level  
Input  
CM = CMOS (standard for all I/Os)  
HS = High sink  
Output  
Output speed  
O1 = Slow (up to 2 MHz)  
O2 = Fast (up to 10 MHz)  
O3 = Fast/slow programmability with slow as default state after reset   
O4 = Fast/slow programmability with fast as default state after reset  
Port and control  
configuration  
Input  
float = floating, wpu = weak pull-up  
Output  
T = true open drain, OD = open drain, PP = push pull  
Bold X (pin state after internal reset release).  
Reset state  
Unless otherwise specified, the pin state is the same during the reset phase and  
after the internal reset release.  
5.1  
TSSOP20 pinouts and pin descriptions  
Figure 3. STM8AF6213/STM8AF6223 TSSOP20 pinout  
>/,18$57B&.@ꢀ7,0ꢌB&+ꢁꢇ%((3ꢇꢈ+6ꢉꢀ3'ꢊ  
$,1ꢌꢇ/,18$57B7;ꢇꢈ+6ꢉꢀ3'ꢌ  
3'ꢍꢀꢈ+6ꢉꢇ$,1ꢊꢇ7,0ꢌB&+ꢅꢇ$'&B(75  
3'ꢅꢀꢈ+6ꢉꢇ$,1ꢍꢀ>7,0ꢌB&+ꢍ@  
ꢁꢋ  
ꢅꢋ  
ꢁꢐ  
ꢁꢆ  
ꢁꢎ  
ꢁꢃ  
ꢁꢌ  
ꢁꢊ  
ꢁꢍ  
ꢁꢅ  
ꢁꢁ  
3'ꢁꢀꢈ+6ꢉꢇ6:,0  
$,1ꢃꢇ/,18$57B5;ꢇꢈ+6ꢉꢀ3'ꢃ  
3&ꢎꢀꢈ+6ꢉꢇ63,B0,62ꢀ>7,0ꢁB&+ꢅ@  
3&ꢃꢀꢈ+6ꢉꢇ63,B026,ꢀ>7,0ꢁB&+ꢁ@  
3&ꢌꢀꢈ+6ꢉꢇ63,B6&.ꢀ>7,0ꢌB&+ꢁ@  
3&ꢊꢀꢈ+6ꢉꢇ7,0ꢁB&+ꢊꢇ&/.B&&2ꢇ$,1ꢅꢀ>7,0ꢁB&+ꢅ1@  
3&ꢍꢀꢈ+6ꢉꢇ7,0ꢁB&+ꢍꢀ>7/,@>7,0ꢁB&+ꢁ1@  
3%ꢊꢀꢈ7ꢉꢇ,ꢅ&B6&/ꢀ>$'&B(75@  
1567  
26&,1ꢇ3$ꢁ  
26&287ꢇ3$ꢅ  
966  
9&$3  
9''  
>63,B166@ꢀ7,0ꢌB&+ꢍꢇꢈ+6ꢉꢀ3$ꢍ  
3%ꢌꢀꢈ7ꢉꢇ,ꢅ&B6'$ꢀ>7,0ꢁB%.,1@  
06ꢍꢆꢍꢊꢌ9ꢁ  
1. (HS) high sink capability.  
2. (T) true open drain (P-buffer and protection diode to VDD not implemented).  
3. [ ] alternate function remapping option (if the same alternate function is shown twice, it indicates an  
exclusive choice not a duplication of the function).  
DocID025118 Rev 5  
23/106  
103  
 
 
 
 
Pinout and pin description  
STM8AF6213/23/23A/26  
Figure 4. STM8AF6223A TSSOP20 pinout  
>/,18$57B&.@ꢀ7,0ꢌB&+ꢁꢇ%((3ꢇꢈ+6ꢉꢀ3'ꢊ  
3'ꢍꢀꢈ+6ꢉꢇ$,1ꢊꢇ7,0ꢌB&+ꢅꢇ$'&B(75  
ꢁꢋ  
ꢅꢋ  
ꢁꢐ  
ꢁꢆ  
ꢁꢎ  
ꢁꢃ  
ꢁꢌ  
ꢁꢊ  
ꢁꢍ  
ꢁꢅ  
ꢁꢁ  
$,1ꢌꢇ/,18$57B7;ꢇꢈ+6ꢉꢀ3'ꢌ  
3'ꢅꢀꢈ+6ꢉꢇ$,1ꢍꢀ>7,0ꢌB&+ꢍ@  
3'ꢁꢀꢈ+6ꢉꢇ6:,0  
$,1ꢃꢇ/,18$57B5;ꢇꢈ+6ꢉꢀ3'ꢃ  
3&ꢎꢀꢈ+6ꢉꢇ63,B0,62ꢀ>7,0ꢁB&+ꢅ@  
3&ꢃꢀꢈ+6ꢉꢇ63,B026,ꢀ>7,0ꢁB&+ꢁ@  
3&ꢌꢀꢈ+6ꢉꢇ63,B6&.ꢀ>7,0ꢌB&+ꢁ@  
3&ꢊꢀꢈ+6ꢉꢇ7,0ꢁB&+ꢊꢇ&/.B&&2ꢇ$,1ꢅꢀ>7,0ꢁB&+ꢅ1@  
3%ꢋꢀꢈ+6ꢉꢇ7,0ꢁB&+ꢁ1ꢇ$,1ꢋ  
1567  
26&,1ꢇ3$ꢁ  
26&287ꢇ3$ꢅ  
966  
9&$3  
9''  
3%ꢁꢀꢈ+6ꢉꢇ7,0ꢁB&+ꢅ1ꢇ$,1ꢁ  
>7,0ꢌB%.,1@ꢀ,ꢅ&B6'$ꢇꢈ7ꢉꢀ3%ꢌ  
3%ꢊꢀꢈ7ꢉꢇ,ꢅ&B6&/ꢀ>$'&B(75@  
06ꢍꢆꢍꢊꢃ9ꢁ  
1. (HS) high sink capability.  
2. (T) true open drain (P-buffer and protection diode to VDD not implemented).  
3. [ ] alternate function remapping option (if the same alternate function is shown twice, it indicates an  
exclusive choice not a duplication of the function).  
Table 6. STM8AF6213/STM8AF6223 TSSOP20 pin description  
Input  
Output  
Alternate  
function  
afterremap  
[option bit]  
Main  
function  
(afterreset)  
Default  
alternate  
function  
Pin name  
Type  
Timer 5 -  
channel  
1/BEEP  
output  
PD4/ TIM5_CH1/  
BEEP  
[LINUART_CK]  
LINUART  
clock  
[AFR2]  
1
2
3
I/O  
I/O  
I/O  
X
X
X
X
X
X
X
X
X
HS O3  
X
X
X
X
X
X
Port D4  
Port D5  
Port D6  
Analog  
input 5/  
LINUART  
data  
PD5/ AIN5/  
LINUART_TX  
HS O3  
HS O3  
-
-
transmit  
Analog  
input 6/  
LINUART  
datareceive  
PD6/ AIN6/  
LINUART_RX  
4
5
NRST  
I/O  
I/O  
-
X
-
-
-
-
-
-
Reset  
Resonator/  
crystal in  
PA1/ OSCIN(2)  
X
X
X
O1  
X
X
Port A1  
Port A2  
-
-
Resonator/  
crystal out  
6
PA2/ OSCOUT  
I/O  
X
X
X
O1  
X
X
7
8
9
VSS  
VCAP  
VDD  
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Digital ground  
1.8 V regulator capacitor  
Digital power supply  
24/106  
DocID025118 Rev 5  
 
 
STM8AF6213/23/23A/26  
Pinout and pin description  
Table 6. STM8AF6213/STM8AF6223 TSSOP20 pin description (continued)  
Input  
Output  
Alternate  
Default  
Main  
function  
(afterreset)  
function  
Pin name  
Type  
alternate  
function  
afterremap  
[option bit]  
SPI master/  
slave select  
[AFR1]  
PA3/ TIM5_CH3  
[SPI_NSS]  
Timer 5  
channel 3  
10  
I/O  
I/O  
X
X
X
-
X
X
HS O3  
X
X
-
Port A3  
Port B5  
Timer 1 -  
break input  
[AFR4]  
PB5/ I2C_SDA  
11  
-
-
O1 T(3)  
I2C data  
I2C clock  
[TIM1_BKIN]  
ADC  
external  
trigger  
PB4/ I2C_SCL  
[ADC_ETR]  
12  
I/O  
I/O  
X
X
-
X
X
O1 T(3)  
-
Port B4  
Port C3  
[AFR4]  
Top level  
interrupt  
[AFR3]  
Timer 1  
inverted  
channel 1  
[AFR7]  
PC3/  
13 TIM1_CH3/[TLI]/[  
TIM1_CH1N]  
Timer 1 -  
channel 3  
X
HS O3  
X
X
X
Analog  
input 2  
[AFR2]Time  
r 1 inverted  
channel 2  
[AFR7]  
Timer 1 -  
channel 4  
/configurabl  
e clock  
PC4/ TIM1_CH4/  
14 CLK_CCO/AIN2/[  
TIM1_CH2N]  
I/O  
X
X
X
HS O3  
X
Port C4  
output  
Timer 5  
channel 1  
[AFR0]  
PC5/SPI_SCK  
[TIM5_CH1]  
15  
I/O  
I/O  
X
X
X
X
X
X
HS O3  
HS O3  
X
X
X
X
Port C5  
Port C6  
SPI clock  
Timer 1  
channel 1  
[AFR0]  
PC6/ SPI_MOSI  
[TIM1_CH1]  
PI master  
out/slave in  
16  
Timer 1  
channel  
2[AFR0]  
PC7/ SPI_MISO  
[TIM1_CH2]  
SPI master  
in/ slave out  
17  
I/O  
I/O  
X
X
X
X
X
X
HS O3  
HS O4  
X
X
X
X
Port C7  
Port D1  
SWIM data  
interface  
18  
PD1/ SWIM(4)  
-
DocID025118 Rev 5  
25/106  
103  
Pinout and pin description  
STM8AF6213/23/23A/26  
Table 6. STM8AF6213/STM8AF6223 TSSOP20 pin description (continued)  
Input  
Output  
Alternate  
Default  
Main  
function  
(afterreset)  
function  
Pin name  
Type  
alternate  
afterremap  
function  
[option bit]  
Analog  
input 3  
PD2/AIN3  
[TIM5_CH3]  
[AFR2]  
Timer 52 -  
channel 3  
[AFR1]  
19  
20  
I/O  
I/O  
X
X
X
X
X
X
HS O3  
X
X
X
X
Port D2  
Port D3  
-
Analog  
input 4  
Timer 52 -  
channel  
2/ADC  
external  
trigger  
PD3/ AIN4/  
TIM5_CH2/  
ADC_ETR  
HS O3  
-
1. I/O pins used simultaneously for high current source/sink must be uniformly spaced around the package. In addition, the  
total driven current must respect the absolute maximum ratings ( see Section: Absolute maximum ratings).  
2. When the MCU is in Halt/Active-halt mode, PA1 is automatically configured in input weak pull-up and cannot be used for  
waking up the device. In this mode, the output state of PA1 is not driven. It is recommended to use PA1 only in input mode  
if Halt/Active-halt is used in the application.  
3. In the open-drain output column, ‘T’ defines a true open-drain I/O (P-buffer, weak pull-up, and protection diode to VDD are  
not implemented)  
4. The PD1 pin is in input pull-up during the reset phase and after internal reset release.  
Table 7. STM8AF6223A TSSOP20 pin description  
Input  
Output  
Alternate  
function  
afterremap  
[option bit]  
Main  
function  
(afterreset)  
Default  
alternate  
function  
Pin name  
Type  
Timer 5 -  
channel  
1/BEEP  
output  
PD4/ TIM5_CH1/  
BEEP/SPI_NSS  
[LINUART_CK]  
LINUART  
clock  
[AFR2]  
1
2
I/O  
I/O  
X
X
X
X
X
X
HS O3  
X
X
X
X
Port D4  
Port D5  
Analog  
input 5/  
LINUART  
data  
PD5/ AIN5/  
LINUART_TX  
HS O3  
-
transmit  
26/106  
DocID025118 Rev 5  
 
STM8AF6213/23/23A/26  
Pinout and pin description  
Table 7. STM8AF6223A TSSOP20 pin description (continued)  
Input  
Output  
Alternate  
Main  
function  
(afterreset)  
Default  
alternate  
function  
function  
afterremap  
[option bit]  
Pin name  
Type  
Analog  
input 6/  
LINUART  
datareceive  
PD6/ AIN6/  
LINUART_RX  
3
I/O  
X
X
X
HS O3  
X
X
Port D6  
-
4
5
NRST  
I/O  
I/O  
-
X
-
-
-
-
-
-
Reset  
-
-
Resonator/  
crystal in  
PA1/ OSCIN(2)  
X
X
X
O1  
X
X
Port A1  
Port A2  
Resonator/  
crystal out  
6
PA2/ OSCOUT  
I/O  
X
X
X
-
O1  
X
X
-
7
8
9
VSS  
VCAP  
VDD  
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Digital ground  
-
-
-
1.8 V regulator capacitor  
Digital power supply  
Timer 1 -  
break input  
[AFR4]  
PB5/ I2C_SDA  
[TIM1_BKIN]  
10  
11  
I/O  
I/O  
X
X
X
-
X
X
-
O1 T(3)  
X
-
Port A5  
Port B4  
I2C data  
I2C clock  
ADC  
external  
trigger  
PB4/ I2C_SCL  
[ADC_ETR]  
-
O1 T(3)  
[AFR4]  
Timer 1 -  
inverted  
channel  
2/Analog  
input 1  
PB1/  
TIM1_CH2N/  
AIN1  
12  
13  
I/O  
I/O  
X
X
X
X
X
X
HS O3  
X
X
X
X
Port B1  
Port B0  
-
-
Timer 1 -  
inverted  
channel  
1/Analog  
input 0  
PB0/  
TIM1_CH1N/AIN0  
HS O3  
Timer 1 -  
channel 4  
Analog  
input 2  
PC4/ TIM1_CH4/  
14 CLK_CCO/AIN2/[  
TIM1_CH2]  
I/O  
I/O  
X
X
X
X
X
X
HS O3  
HS O3  
X
X
X
X
Port C4  
Port C5  
/configurabl [AFR2]Time  
e clock  
output  
r 1 channel  
2 [AFR7]  
Timer 5  
channel 1  
[AFR0]  
PC5/SPI_SCK  
15  
SPI clock  
[TIM5_CH1]  
DocID025118 Rev 5  
27/106  
103  
Pinout and pin description  
STM8AF6213/23/23A/26  
Table 7. STM8AF6223A TSSOP20 pin description (continued)  
Input  
Output  
Alternate  
Default  
Main  
function  
(afterreset)  
function  
Pin name  
Type  
alternate  
afterremap  
function  
[option bit]  
Timer 1  
PI master  
PC6/ SPI_MOSI  
[TIM1_CH1]  
16  
I/O  
X
X
X
HS O3  
X
X
Port C6  
channel 1  
out/slave in  
[AFR0]  
Timer 1  
SPI master  
PC7/ SPI_MISO  
[TIM1_CH2]  
17  
18  
I/O  
I/O  
X
X
X
X
X
X
HS O3  
HS O4  
X
X
X
X
Port C7  
Port D1  
channel  
in/ slave out  
2[AFR0]  
SWIM data  
-
PD1/ SWIM(4)  
interface  
Analog  
input 3  
PD2/AIN3/  
TLI[TIM5_CH3]  
[AFR2]  
Timer 5 -  
channel 3  
[AFR1]  
19  
20  
I/O  
I/O  
X
X
X
X
X
X
HS O3  
X
X
X
X
Port D2  
Port D3  
-
Analog  
input 4  
Timer 52 -  
channel  
2/ADC  
external  
trigger  
PD3/ AIN4/  
TIM5_CH2/  
ADC_ETR  
HS O3  
-
1. I/O pins used simultaneously for high current source/sink must be uniformly spaced around the package. In addition, the  
total driven current must respect the absolute maximum ratings ( see Section: Absolute maximum ratings).  
2. When the MCU is in Halt/Active-halt mode, PA1 is automatically configured in input weak pull-up and cannot be used for  
waking up the device. In this mode, the output state of PA1 is not driven. It is recommended to use PA1 only in input mode if  
Halt/Active-halt is used in the application.  
3. In the open-drain output column, ‘T’ defines a true open-drain I/O (P-buffer, weak pull-up, and protection diode to VDD are  
not implemented).  
4. The PD1 pin is in input pull-up during the reset phase and after internal reset release.  
28/106  
DocID025118 Rev 5  
STM8AF6213/23/23A/26  
Pinout and pin description  
5.2  
LQFP32 pinout and pin description  
Figure 5. STM8AF6226 LQFP32 pinout  
 
ꢅꢊ  
1567  
26&,1ꢇ3$ꢁ  
26&287ꢇ3$ꢅ  
966  
3&ꢎꢀꢈ+6ꢉꢇ63,B0,62ꢀ>7,0ꢁB&+ꢅ@  
ꢅꢍ  
ꢅꢅ  
ꢅꢁ  
ꢅꢋ  
ꢁꢐ  
ꢁꢆ  
ꢁꢎ  
3&ꢃꢀꢈ+6ꢉꢇ63,B026,ꢀ>7,0ꢁB&+ꢁ@  
3&ꢌꢀꢈ+6ꢉꢇ63,B6&.ꢀ>7,0ꢌB&+ꢁ@  
3&ꢊꢈ+6ꢉ7,0ꢁB&+ꢊꢇ&/.B&&2ꢀ>$,1ꢅ@ꢀ>7,0ꢁB&+ꢅ1@ꢀ  
3&ꢍꢈ+6ꢉꢇ7,0ꢁB&+ꢍꢀ>7/,@ꢀ>7,0ꢁB&+ꢁ1@ꢀ  
3&ꢅꢈ+6ꢉꢇ7,0ꢁB&+ꢅꢀ>7,0ꢁB&+ꢍ1@ꢀ  
3&ꢁꢈ+6ꢉꢇ7,0ꢁB&+ꢁꢇ/,18$57B&.>7,0ꢀ B&+ꢅ1@ꢀ  
3(ꢌꢇ63,B166ꢀ>7,0ꢁB&+ꢁ1@  
9&$3  
9''  
>/,18$57B7;@>63,B166@ꢀ7,0ꢌB&+ꢍꢇꢈ+6ꢉꢀ3$ꢍ  
>/,18$57B5;@ꢀ3)ꢊ  
 ꢌꢁꢃ  
06ꢍꢆꢍꢊꢎ9ꢁ  
1. (HS) high sink capability.  
2. (T) true open drain (P-buffer and protection diode to VDD not implemented).  
3. [ ] alternate function remapping option (if the same alternate function is shown twice, it indicates an  
exclusive choice not a duplication of the function).  
Table 8. STM8AF6226 LQFP32 pin description  
Input  
Output  
Alternate  
function  
after remap  
[option bit]  
Main  
function  
(after reset)  
Default  
alternate  
function  
Pin name  
Type  
1
2
NRST  
I/O  
I/O  
-
X
-
-
-
-
-
-
Reset  
-
-
Resonator/  
crystal in  
PA1/ OSCIN(2)  
X
X
X
O1  
X
X
Port A1  
Port A2  
Resonator/  
crystal out  
3
PA2/ OSCOUT  
I/O  
X
X
X
-
O1  
X
X
-
DocID025118 Rev 5  
29/106  
103  
 
 
 
Pinout and pin description  
STM8AF6213/23/23A/26  
Table 8. STM8AF6226 LQFP32 pin description (continued)  
Input  
Output  
Alternate  
Default  
Main  
function  
(after reset)  
function  
Pin name  
Type  
alternate  
after remap  
function  
[option bit]  
4
5
6
VSS  
VCAP  
VDD  
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Digital ground  
-
-
-
1.8 V regulator capacitor  
Digital power supply  
SPI master/  
slave select  
[AFR1]/  
LINUART  
data transmit  
[AFR1:0]  
PA3/  
TIM5_CH3  
[SPI_NSS]  
[LINUART_TX]  
Timer 52  
Port A3  
7
8
I/O  
X
X
X
HS O3  
X
X
channel 3  
LINUART  
PF4  
[LINUART_RX]  
I/O  
X
X
-
-
O1  
O1  
O1  
X
X
Port F4  
data receive  
[AFR1:0]  
-
9
PB7  
PB6  
I/O  
I/O  
X
X
X
X
X
X
-
-
X
X
X
X
Port B7  
Port B6  
-
-
-
-
10  
Timer 1 -  
break input  
[AFR4]  
PB5/ I2C_SDA  
[TIM1_BKIN]  
11  
12  
I/O  
I/O  
X
X
-
-
X
X
-
-
O1 T(3)  
-
-
Port B5  
Port B4  
I2C data  
I2C clock  
ADC  
external  
trigger  
PB4/ I2C_SCL  
[ADC_ETR]  
O1 T(3)  
[AFR4]  
Analog input  
3/ Timer 1  
external  
PB3/  
AIN3/TIM1_ET  
R
13  
14  
15  
16  
I/O  
I/O  
I/O  
I/O  
X
X
X
X
X
X
X
X
X
X
X
X
HS O3  
HS O3  
HS O3  
HS O3  
X
X
X
X
X
X
X
X
Port B3  
Port B2  
Port B1  
Port B0  
-
-
-
-
trigger  
Analog input  
2/ Timer 1 -  
inverted  
PB2/ AIN2/  
TIM1_CH3N  
channel 3  
Analog input  
1/ Timer 1 -  
inverted  
PB1/ AIN1/  
TIM1_CH2N  
channel 2  
Analog input  
0/ Timer 1 -  
inverted  
PB0/ AIN0/  
TIM1_CH1N  
channel 1  
30/106  
DocID025118 Rev 5  
STM8AF6213/23/23A/26  
Pinout and pin description  
Table 8. STM8AF6226 LQFP32 pin description (continued)  
Input  
Output  
Alternate  
Default  
Main  
function  
(after reset)  
function  
Pin name  
Type  
alternate  
after remap  
function  
[option bit]  
Timer 1 -  
PE5/ SPI_NSS  
17  
SPI master/  
slave select  
inverted  
channel 1  
[AFR1:0]  
I/O  
I/O  
I/O  
X
X
X
X
X
X
X
X
X
HS O3  
X
X
X
X
X
X
Port E5  
Port C1  
Port C2  
[TIM1_CH1N]  
PC1/  
Timer 1 -  
channel 1  
LINUART  
clock  
Timer 1 -  
inverted  
channel 2  
[AFR1:0]  
TIM1_CH1/  
LINUART_CK  
18  
HS O3  
HS O3  
[TIM1_CH2N]  
Timer 1 -  
inverted  
channel 3  
[AFR1:0]  
PC2/  
Timer 1 -  
channel 2  
19  
TIM1_CH2  
[TIM1_CH3N]  
Top level  
interrupt  
[AFR3]Timer  
1 inverted  
channel 1  
[AFR7]  
PC3/  
Timer 1 -  
channel 3  
20 TIM1_CH3/[TLI]  
[TIM1_CH1N]  
I/O  
I/O  
X
X
X
X
X
X
HS O3  
X
X
X
X
Port C3  
Port C4  
Analog input  
2
[AFR2]Timer  
1 inverted  
channel 2  
[AFR7]  
PC4/  
TIM1_CH4/  
CLK_CCO/[AIN  
2][TIM1_CH2N]  
Timer 1 -  
channel 4  
/configurable  
clock output  
21  
HS O3  
Timer 5  
channel 1  
[AFR0]  
PC5/SPI_SCK  
22  
I/O  
I/O  
I/O  
X
X
X
X
X
X
X
X
X
HS O3  
HS O3  
HS O3  
X
X
X
X
X
X
Port C5  
Port C6  
Port C7  
SPI clock  
[TIM5_CH1]  
PC6/  
Timer 1  
channel 1  
[AFR0]  
PI master  
out/slave in  
23  
24  
SPI_MOSI  
[TIM1_CH1]  
PC7/  
SPI_MISO  
[TIM1_CH2]  
Timer 1  
channel  
2[AFR0]  
SPI master  
in/ slave out  
PD0/  
TIM1_BKIN  
[CLK_CCO]  
Configurable  
clock output  
[AFR5]  
Timer 1 -  
break input  
25  
26  
I/O  
I/O  
X
X
X
X
HS O3  
HS O4  
X
X
X
X
Port D0  
Port D1  
SWIM data  
interface  
PD1/ SWIM(4)  
X
X
-
DocID025118 Rev 5  
31/106  
103  
Pinout and pin description  
STM8AF6213/23/23A/26  
Table 8. STM8AF6226 LQFP32 pin description (continued)  
Input  
Output  
Alternate  
Default  
Main  
function  
(after reset)  
function  
Pin name  
Type  
alternate  
after remap  
function  
[option bit]  
Analog input  
3 [AFR2]  
Timer 52 -  
channel 3  
[AFR1]  
PD2/[AIN3]  
[TIM5_CH3]  
27  
I/O  
X
X
X
HS O3  
X
X
Port D2  
-
Analog input  
4 Timer 52 -  
channel  
2/ADC  
external  
PD3/ AIN4/  
TIM5_CH2/  
ADC_ETR  
28  
29  
I/O  
I/O  
X
X
X
X
X
X
HS O3  
HS O3  
X
X
X
X
Port D3  
Port D4  
-
trigger  
PD4/  
TIM5_CH1/  
BEEP  
Timer 5 -  
channel  
1/BEEP  
output  
LINUART  
clock [AFR2]  
[LINUART_CK]  
Analog input  
5/ LINUART  
data transmit  
PD5/ AIN5/  
LINUART_TX  
30  
31  
32  
I/O  
I/O  
I/O  
X
X
X
X
X
X
X
X
X
HS O3  
HS O3  
HS O3  
X
X
X
X
X
X
Port D5  
Port D6  
Port D7  
-
-
Analog input  
6/ LINUART  
data receive  
PD6/ AIN6/  
LINUART_RX  
Timer 1 -  
channel 4  
[AFR6]  
PD7/ TLI  
[TIM1_CH4]  
Top level  
interrupt  
1. I/O pins used simultaneously for high current source/sink must be uniformly spaced around the package. In addition, the  
total driven current must respect the absolute maximum ratings (see Section: Absolute maximum ratings).  
2. When the MCU is in Halt/Active-halt mode, PA1 is automatically configured in input weak pull-up and cannot be used for  
waking up the device. In this mode, the output state of PA1 is not driven. It is recommended to use PA1 only in input mode  
if Halt/Active-halt is used in the application.  
3. In the open-drain output column, ‘T’ defines a true open-drain I/O (P-buffer, weak pull-up, and protection diode to VDD are  
not implemented).  
4. The PD1 pin is in input pull-up during the reset phase and after internal reset release.  
32/106  
DocID025118 Rev 5  
STM8AF6213/23/23A/26  
Pinout and pin description  
5.3  
Alternate function remapping  
As shown in the rightmost column of Table 6, Table 7 and Table 8 some alternate functions  
can be remapped at different I/O ports by programming one of eight AFR (alternate function  
remap) option bits. Refer to Section 8: Option bytes on page 47. When the remapping  
option is active, the default alternate function is no longer available.  
To use an alternate function, the corresponding peripheral must be enabled in the peripheral  
registers.  
Alternate function remapping does not effect GPIO capabilities of the I/O ports (see the  
GPIO section of STM8S series and STM8AF series 8-bit microcontrollers reference manual,  
RM0016).  
DocID025118 Rev 5  
33/106  
103  
 
Memory and register map  
STM8AF6213/23/23A/26  
6
Memory and register map  
6.1  
Memory map  
Figure 6. Memory map  
ꢋ[ꢋꢋꢀꢋꢋꢋꢋ  
5$0  
ꢈꢁꢀ.E\WHꢉ  
ꢀꢌꢁꢍꢀE\WHꢀVWDFN  
5HVHUYHG  
ꢋ[ꢋꢋꢀꢋꢍ))ꢀ  
ꢋ[ꢋꢋꢀꢋꢆꢋꢋ  
ꢋ[ꢋꢋꢀꢍ)))  
ꢋ[ꢋꢋꢀꢊꢋꢋꢋ  
ꢃꢊꢋꢀE\WHꢀGDWDꢀ((3520  
5HVHUYHG  
ꢋ[ꢋꢋꢀꢊꢅꢎ)  
ꢋ[ꢋꢋꢀꢊꢅꢆꢋ  
ꢋ[ꢋꢋꢀꢊꢎ))  
ꢋ[ꢋꢋꢀꢊꢆꢋꢋ  
ꢋ[ꢋꢋꢀꢊꢆꢋ$  
ꢋ[ꢋꢋꢀꢊꢆꢋ%  
ꢋ[ꢋꢋꢀꢊꢆꢃꢊ  
ꢋ[ꢋꢋꢀꢊꢆꢃꢌ  
2SWLRQꢀE\WHV  
5HVHUYHG  
8QLTXHꢀ,'  
ꢋ[ꢋꢋꢀꢊꢆꢎꢋ  
ꢋ[ꢋꢋꢀꢊꢆꢎꢁ  
5HVHUYHG  
ꢋ[ꢋꢋꢀꢊ)))  
ꢋ[ꢋꢋꢀꢌꢋꢋꢋ  
*3,2ꢀDQGꢀSHULSKHUDOꢀUHJLVWHUV  
ꢋ[ꢋꢋꢀꢌꢎ))  
ꢋ[ꢋꢋꢀꢌꢆꢋꢋ  
5HVHUYHG  
ꢋ[ꢋꢋꢀꢎ())  
ꢋ[ꢋꢋꢀꢎ)ꢋꢋ  
&38ꢇ6:,0ꢇGHEXJꢇ,7&  
UHJLVWHUV  
ꢋ[ꢋꢋꢀꢎ)))  
ꢋ[ꢋꢋꢀꢆꢋꢋꢋ  
ꢍꢅꢀLQWHUUXSWꢀYHFWRUV  
ꢋ[ꢋꢋꢀꢆꢋꢎ)  
ꢋ[ꢋꢋꢀꢆꢋꢆꢋ  
)ODVKꢀSURJUDPꢀPHPRU\  
ꢈꢆꢀ.E\WHꢉ  
ꢋ[ꢋꢋꢀꢐ)))  
ꢋ[ꢋꢋꢀ$ꢋꢋꢋ  
5HVHUYHG  
ꢋ[ꢋꢅꢀꢎ)))  
06ꢍꢆꢍꢊꢆ9ꢁ  
34/106  
DocID025118 Rev 5  
 
 
 
STM8AF6213/23/23A/26  
Memory and register map  
Table 9. Memory model for the devices covered in this datasheet  
Flash program  
memory end  
address  
Flash program  
memory size  
RAM end  
address  
Stack roll-over  
address  
RAM size  
8 K  
4 K  
0x00 9FFF  
0x00 8FFF  
1 K  
0x00 03FF  
0x00 0200  
6.2  
Register map  
6.2.1  
I/O port hardware register map  
Table 10. I/O port hardware register map  
Reset  
status  
Address  
Block  
Register label  
Register name  
0x00 5000  
0x00 5001  
0x00 5002  
0x00 5003  
0x00 5004  
0x00 5005  
0x00 5006  
0x00 5007  
0x00 5008  
0x00 5009  
0x00 500A  
0x00 500B  
0x00 500C  
0x00 500D  
0x00 500E  
0x00 500F  
0x00 5010  
0x00 5011  
0x00 5012  
0x00 5013  
PA_ODR  
PA_IDR  
Port A data output latch register  
Port A input pin value register  
Port A data direction register  
Port A control register 1  
0x00  
0xXX(1)  
0x00  
Port A  
PA_DDR  
PA_CR1  
PA_CR2  
PB_ODR  
PB_IDR  
PB_DDR  
PB_CR1  
PB_CR2  
PC_ODR  
PB_IDR  
PC_DDR  
PC_CR1  
PC_CR2  
PD_ODR  
PD_IDR  
PD_DDR  
PD_CR1  
PD_CR2  
0x00  
Port A control register 2  
0x00  
Port B data output latch register  
Port B input pin value register  
Port B data direction register  
Port B control register 1  
0x00  
0xXX(1)  
Port B  
Port C  
Port D  
0x00  
0x00  
Port B control register 2  
0x00  
Port C data output latch register  
Port C input pin value register  
Port C data direction register  
Port C control register 1  
0x00  
0xXX(1)  
0x00  
0x00  
Port C control register 2  
0x00  
Port D data output latch register  
Port D input pin value register  
Port D data direction register  
Port D control register 1  
0x00  
0xXX(1)  
0x00  
0x02  
Port D control register 2  
0x00  
DocID025118 Rev 5  
35/106  
103  
 
 
 
 
Memory and register map  
Address  
STM8AF6213/23/23A/26  
Table 10. I/O port hardware register map (continued)  
Reset  
status  
Block  
Register label  
Register name  
0x00 5014  
0x00 5015  
0x00 5016  
0x00 5017  
0x00 5018  
0x00 5019  
0x00 501A  
0x00 501B  
0x00 501C  
0x00 501D  
PE_ODR  
PE_IDR  
PE_DDR  
PE_CR1  
PE_CR2  
PF_ODR  
PF_IDR  
PF_DDR  
PF_CR1  
PF_CR2  
Port E data output latch register  
Port E input pin value register  
Port E data direction register  
Port E control register 1  
0x00  
0xXX(1)  
0x00  
Port E  
0x00  
Port E control register 2  
0x00  
Port F data output latch register  
Port F input pin value register  
Port F data direction register  
Port F control register 1  
0x00  
0xXX(1)  
Port F  
0x00  
0x00  
Port F control register 2  
0x00  
1. Depends on the external circuitry.  
Table 11. General hardware register map  
Reset  
status  
Address  
Block  
Register label  
Register name  
0x00 501E to  
0x00 5069  
Reserved area (60 byte)  
0x00 505A  
0x00 505B  
0x00 505C  
0x00 505D  
0x00 505E  
FLASH_CR1  
FLASH_CR2  
FLASH_NCR2  
FLASH_FPR  
Flash control register 1  
Flash control register 2  
0x00  
0x00  
0xFF  
0x00  
0xFF  
Flash complementary control register 2  
Flash protection register  
Flash  
FLASH_NFPR Flash complementary protection register  
Flash in-application programming status  
FLASH_IAPSR  
0x00 505F  
0x40  
register  
0x00 5060 to  
0x00 5061  
Reserved area (2 byte)  
Flash Program memory unprotection  
FLASH_PUKR  
0x00 5062  
Flash  
Flash  
0x00  
0x00  
register  
0x00 5063  
0x00 5064  
Reserved area (1 byte)  
FLASH_DUKR  
Data EEPROM unprotection register  
Reserved area (59 byte)  
0x00 5065 to  
0x00 509F  
0x00 50A0  
0x00 50A1  
EXTI_CR1  
EXTI_CR2  
External interrupt control register 1  
External interrupt control register 2  
0x00  
0x00  
ITC  
0x00 50A2 to  
0x00 50B2  
Reserved area (17 byte)  
36/106  
DocID025118 Rev 5  
 
 
STM8AF6213/23/23A/26  
Memory and register map  
Table 11. General hardware register map (continued)  
Reset  
status  
Address  
Block  
Register label  
Register name  
0x00 50B3  
RST  
RST_SR  
Reset status register  
0xXX(1)  
0x00 50B4 to  
0x00 50BF  
Reserved area (12 byte)  
0x00 50C0  
0x00 50C1  
0x00 50C2  
0x00 50C3  
0x00 50C4  
0x00 50C5  
0x00 50C6  
0x00 50C7  
0x00 50C8  
0x00 50C9  
0x00 50CA  
0x00 50CB  
0x00 50CC  
CLK_ICKR  
CLK_ECKR  
Internal clock control register  
External clock control register  
0x01  
0x00  
CLK  
Reserved area (1 byte)  
CLK_CMSR  
CLK_SWR  
Clock master status register  
Clock master switch register  
Clock switch control register  
Clock divider register  
0xE1  
0xE1  
0xXX  
0x18  
0xFF  
0x00  
0x00  
0xFF  
CLK_SWCR  
CLK_CKDIVR  
CLK_PCKENR1  
CLK_CSSR  
CLK  
Peripheral clock gating register 1  
Clock security system register  
Configurable clock control register  
Peripheral clock gating register 2  
Reserved area (1 byte)  
CLK_CCOR  
CLK_PCKENR2  
CLK_HSITRIMR  
CLK_SWIMCCR  
HSI clock calibration trimming register  
0x00  
CLK  
0bXXXX  
XXX0  
0x00 50CD  
SWIM clock control register  
Reserved area (3 byte)  
0x00 50CE  
to 0x00 50D0  
0x00 50D1  
0x00 50D2  
WWDG_CR  
WWDG_WR  
WWDG control register  
WWDR window register  
0x7F  
0x7F  
WWDG  
0x00 50D3 to  
0x00 50DF  
Reserved area (13 byte)  
IWDG key register  
0x00 50E0  
0x00 50E1  
0x00 50E2  
IWDG_KR  
IWDG_PR  
IWDG_RLR  
0xXX(2)  
0x00  
IWDG  
IWDG prescaler register  
IWDG reload register  
0xFF  
0x00 50E3 to  
0x00 50EF  
Reserved area (13 byte)  
0x00 50F0  
0x00 50F1  
AWU_CSR1  
AWU_APR  
AWU control/status register 1  
0x00  
0x3F  
AWU asynchronous prescaler buffer  
register  
AWU  
0x00 50F2  
0x00 50F3  
AWU_TBR  
BEEP_CSR  
AWU timebase selection register  
BEEP control/status register  
0x00  
0x1F  
BEEP  
0x00 50F4 to  
0x00 50FF  
Reserved area (12 byte)  
DocID025118 Rev 5  
37/106  
103  
Memory and register map  
Address  
STM8AF6213/23/23A/26  
Table 11. General hardware register map (continued)  
Reset  
status  
Block  
Register label  
Register name  
0x00 5200  
0x00 5201  
0x00 5202  
0x00 5203  
0x00 5204  
0x00 5205  
0x00 5206  
0x00 5207  
SPI_CR1  
SPI_CR2  
SPI control register 1  
SPI control register 2  
SPI interrupt control register  
SPI status register  
0x00  
0x00  
0x00  
0x02  
0x00  
0x07  
0xFF  
0xFF  
SPI_ICR  
SPI_SR  
SPI  
SPI_DR  
SPI data register  
SPI_CRCPR  
SPI_RXCRCR  
SPI_TXCRCR  
SPI CRC polynomial register  
SPI Rx CRC register  
SPI Tx CRC register  
0x00 5208 to  
0x00 520F  
Reserved area (8 byte)  
0x00 5210  
0x00 5211  
0x00 5212  
0x00 5213  
0x00 5214  
0x00 5215  
0x00 5216  
0x00 5217  
0x00 5218  
0x00 5219  
0x00 521A  
0x00 521B  
0x00 521C  
0x00 521D  
0x00 521E  
I2C_CR1  
I2C_CR2  
I2C control register 1  
I2C control register 2  
0x00  
0x00  
0x00  
0x00  
0x00  
I2C_FREQR  
I2C_OARL  
I2C_OARH  
I2C frequency register  
I2C own address register low  
I2C own address register high  
Reserved area (1 byte)  
I2C data register  
I2C_DR  
I2C_SR1  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x02  
0x00  
I2C  
I2C status register 1  
I2C_SR2  
I2C status register 2  
I2C_SR3  
I2C status register 3  
I2C_ITR  
I2C interrupt control register  
I2C clock control register low  
I2C clock control register high  
I2C TRISE register  
I2C_CCRL  
I2C_CCRH  
I2C_TRISER  
I2C_PECR  
I2C packet error checking register  
0x00 521F to  
0x00 522F  
Reserved area (17 byte)  
38/106  
DocID025118 Rev 5  
STM8AF6213/23/23A/26  
Address  
Memory and register map  
Table 11. General hardware register map (continued)  
Reset  
status  
Block  
Register label  
Register name  
0x00 5230  
0x00 5231  
0x00 5232  
0x00 5233  
0x00 5234  
0x00 5235  
0x00 5236  
0x00 5237  
0x00 5238  
0x00 5239  
0x00 523A  
0x00 523B  
UART4_SR  
UART4_DR  
LINUART status register  
LINUART data register  
0xC0  
0xXX  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
UART4_BRR1  
UART4_BRR2  
UART4_CR1  
UART4_CR2  
UART4_CR3  
UART4_CR4  
LINUART baud rate register 1  
LINUART baud rate register 2  
LINUART control register 1  
LINUART control register 2  
LINUART control register 3  
LINUART control register 4  
Reserved  
LINUART  
UART4_CR6  
UART4_GTR  
UART4_PSCR  
LINUART control register 6  
LINUART guard time register  
LINUART prescaler  
0x00  
0x00  
0x00  
0x00 523C to  
0x00 523F  
Reserved area (20 byte)  
DocID025118 Rev 5  
39/106  
103  
Memory and register map  
Address  
STM8AF6213/23/23A/26  
Table 11. General hardware register map (continued)  
Reset  
status  
Block  
Register label  
Register name  
0x00 5250  
0x00 5251  
0x00 5252  
0x00 5253  
0x00 5254  
0x00 5255  
0x00 5256  
0x00 5257  
0x00 5258  
0x00 5259  
0x00 525A  
0x00 525B  
0x00 525C  
0x00 525D  
0x00 525E  
0x00 525F  
0x00 5260  
0x00 5261  
0x00 5262  
0x00 5263  
0x00 5264  
0x00 5265  
0x00 5266  
0x00 5267  
0x00 5268  
0x00 5269  
0x00 526A  
0x00 526B  
0x00 526C  
0x00 526D  
0x00 526E  
0x00 526F  
TIM1_CR1  
TIM1_CR2  
TIM1 control register 1  
TIM1 control register 2  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
TIM1_SMCR  
TIM1_ETR  
TIM1 slave mode control register  
TIM1 external trigger register  
TIM1 Interrupt enable register  
TIM1 status register 1  
TIM1_IER  
TIM1_SR1  
TIM1_SR2  
TIM1 status register 2  
TIM1_EGR  
TIM1 event generation register  
TIM1 capture/compare mode register 1  
TIM1 capture/compare mode register 2  
TIM1 capture/compare mode register 3  
TIM1 capture/compare mode register 4  
TIM1 capture/compare enable register 1  
TIM1 capture/compare enable register 2  
TIM1 counter high  
TIM1_CCMR1  
TIM1_CCMR2  
TIM1_CCMR3  
TIM1_CCMR4  
TIM1_CCER1  
TIM1_CCER2  
TIM1_CNTRH  
TIM1_CNTRL  
TIM1_PSCRH  
TIM1_PSCRL  
TIM1_ARRH  
TIM1_ARRL  
TIM1_RCR  
TIM1 counter low  
TIM1  
TIM1 prescaler register high  
TIM1 prescaler register low  
TIM1 auto-reload register high  
TIM1 auto-reload register low  
TIM1 repetition counter register  
TIM1 capture/compare register 1 high  
TIM1 capture/compare register 1 low  
TIM1 capture/compare register 2 high  
TIM1 capture/compare register 2 low  
TIM1 capture/compare register 3 high  
TIM1 capture/compare register 3 low  
TIM1 capture/compare register 4 high  
TIM1 capture/compare register 4 low  
TIM1 break register  
TIM1_CCR1H  
TIM1_CCR1L  
TIM1_CCR2H  
TIM1_CCR2L  
TIM1_CCR3H  
TIM1_CCR3L  
TIM1_CCR4H  
TIM1_CCR4L  
TIM1_BKR  
TIM1_DTR  
TIM1 dead-time register  
TIM1_OISR  
TIM1 output idle state register  
0x00 5270 to  
0x00 52FF  
Reserved area (147 byte)  
40/106  
DocID025118 Rev 5  
STM8AF6213/23/23A/26  
Address  
Memory and register map  
Table 11. General hardware register map (continued)  
Reset  
status  
Block  
Register label  
Register name  
0x00 5300  
0x00 5301  
0x00 5302  
0x00 5303  
0x00 5304  
0x00 5305  
0x00 5306  
0x00 5307  
0x00 5308  
0x00 5309  
0x00 530A  
0x00 530B  
00 530C0x  
0x00 530D  
0x00 530E  
0x00 530F  
0x00 5310  
0x00 5311  
0x00 5312  
0x00 5313  
0x00 5314  
0x00 5315  
0x00 5316  
TIM5_CR1  
TIM5_CR2  
TIM5 control register 1  
TIM5 control register 2  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
TIM5_SMCR  
TIM5_IER  
TIM5 slave mode control register  
TIM5 interrupt enable register  
TIM5 status register 1  
TIM5_SR1  
TIM5_SR2  
TIM5 status register 2  
TIM5_EGR  
TIM5 event generation register  
TIM5 capture/compare mode register 1  
TIM5 capture/compare mode register 2  
TIM5 capture/compare mode register 3  
TIM5 capture/compare enable register 1  
TIM5 capture/compare enable register 2  
TIM5 counter high  
TIM5_CCMR1  
TIM5_CCMR2  
TIM5_CCMR3  
TIM5_CCER1  
TIM5_CCER2  
TIM5_CNTRH  
TIM5_CNTRL  
TIM5_PSCR  
TIM5_ARRH  
TIM5_ARRL  
TIM5_CCR1H  
TIM5_CCR1L  
TIM5_CCR2H  
TIM5_CCR2L  
TIM5_CCR3H  
TIM5_CCR3L  
TIM5  
TIM5 counter low  
TIM5 prescaler register  
TIM5 auto-reload register high  
TIM5 auto-reload register low  
TIM5 capture/compare register 1 high  
TIM5 capture/compare register 1 low  
TIM5 capture/compare reg. 2 high  
TIM5 capture/compare register 2 low  
TIM5 capture/compare register 3 high  
TIM5 capture/compare register 3 low  
0x00 5317 to  
0x00 533F  
Reserved area (43 byte)  
0x00 5340  
0x00 5341  
0x00 5342  
0x00 5343  
0x00 5344  
0x00 5345  
0x00 5346  
0x00 5347  
0x00 5348  
TIM6_CR1  
TIM6_CR2  
TIM6_SMCR  
TIM6_IER  
TIM6 control register 1  
TIM6 control register 2  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0xFF  
TIM6 slave mode control register  
TIM6 interrupt enable register  
TIM6 status register  
TIM6  
TIM6_SR  
TIM6_EGR  
TIM6_CNTR  
TIM6_PSCR  
TIM6_ARR  
TIM6 event generation register  
TIM6 counter  
TIM6 prescaler register  
TIM6 auto-reload register  
DocID025118 Rev 5  
41/106  
103  
Memory and register map  
Address  
STM8AF6213/23/23A/26  
Table 11. General hardware register map (continued)  
Reset  
status  
Block  
Register label  
Register name  
0x00 5349 to  
0x00 53DF  
Reserved area (153 byte)  
ADC data buffer registers  
Reserved area (12 byte)  
0x00 53E0 to  
0x00 53F3  
ADC1  
ADC _DBxR  
0x00  
0x00 53F4 to  
0x00 53FF  
0x00 5400  
0x00 5401  
0x00 5402  
0x00 5403  
0x00 5404  
0x00 5405  
0x00 5406  
0x00 5407  
0x00 5408  
0x00 5409  
0x00 540A  
0x00 540B  
0x00 540C  
0x00 540D  
0x00 540E  
0x00 540F  
ADC _CSR  
ADC_CR1  
ADC control/status register  
ADC configuration register 1  
0x00  
0x00  
0x00  
0x00  
0xXX  
0xXX  
0x00  
0x00  
0xFF  
0x03  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
ADC_CR2  
ADC configuration register 2  
ADC_CR3  
ADC configuration register 3  
ADC_DRH  
ADC data register high  
ADC_DRL  
ADC data register low  
ADC_TDRH  
ADC_TDRL  
ADC _HTRH  
ADC_HTRL  
ADC _LTRH  
ADC_LTRL  
ADC _AWSRH  
ADC_AWSRL  
ADC _AWCRH  
ADC _AWCRL  
ADC Schmitt trigger disable register high  
ADC Schmitt trigger disable register low  
ADC high threshold register high  
ADC high threshold register low  
ADC low threshold register high  
ADC low threshold register low  
ADC watchdog status register high  
ADC watchdog status register low  
ADC watchdog control register high  
ADC watchdog control register low  
ADC1  
0x00 5410 to  
0x00 57FF  
Reserved area (1008 byte)  
1. Depends on the previous reset source.  
2. Write only register.  
42/106  
DocID025118 Rev 5  
STM8AF6213/23/23A/26  
Memory and register map  
6.2.2  
CPU/SWIM/debug module/interrupt controller registers  
Table 12. CPU/SWIM/debug module/interrupt controller registers  
Reset  
status  
Address  
Block  
Register label  
Register name  
0x00 7F00  
0x00 7F01  
0x00 7F02  
0x00 7F03  
0x00 7F04  
0x00 7F05  
0x00 7F06  
0x00 7F07  
0x00 7F08  
0x00 7F09  
0x00 7F0A  
A
Accumulator  
Program counter extended  
Program counter high  
Program counter low  
X index register high  
X index register low  
Y index register high  
Y index register low  
Stack pointer high  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x03  
0xFF  
0x28  
PCE  
PCH  
PCL  
XH  
CPU(1)  
XL  
YH  
YL  
SPH  
SPL  
CCR  
Stack pointer low  
Condition code register  
0x00 7F0B to  
0x00 7F5F  
Reserved area (85 byte)  
0x00 7F60  
0x00 7F70  
0x00 7F71  
0x00 7F72  
0x00 7F73  
0x00 7F74  
0x00 7F75  
0x00 7F76  
0x00 7F77  
CPU  
ITC  
CFG_GCR  
ITC_SPR1  
ITC_SPR2  
ITC_SPR3  
ITC_SPR4  
ITC_SPR5  
ITC_SPR6  
ITC_SPR7  
ITC_SPR8  
Global configuration register  
Interrupt software priority register 1  
Interrupt software priority register 2  
Interrupt software priority register 3  
Interrupt software priority register 4  
Interrupt software priority register 5  
Interrupt software priority register 6  
Interrupt software priority register 7  
Interrupt software priority register 8  
0x00  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0x00 7F78 to  
0x00 7F79  
Reserved area (2 byte)  
SWIM control status register  
Reserved area (15 byte)  
0x00 7F80  
SWIM  
SWIM_CSR  
0x00  
0x00 7F81 to  
0x00 7F8F  
DocID025118 Rev 5  
43/106  
103  
 
 
Memory and register map  
STM8AF6213/23/23A/26  
Table 12. CPU/SWIM/debug module/interrupt controller registers (continued)  
Reset  
status  
Address  
Block  
Register label  
Register name  
0x00 7F90  
0x00 7F91  
0x00 7F92  
0x00 7F93  
0x00 7F94  
0x00 7F95  
0x00 7F96  
0x00 7F97  
0x00 7F98  
0x00 7F99  
0x00 7F9A  
DM_BK1RE  
DM_BK1RH  
DM_BK1RL  
DM_BK2RE  
DM_BK2RH  
DM_BK2RL  
DM_CR1  
DM breakpoint 1 register extended byte  
DM breakpoint 1 register high byte  
DM breakpoint 1 register low byte  
DM breakpoint 2 register extended byte  
DM breakpoint 2 register high byte  
DM breakpoint 2 register low byte  
DM debug module control register 1  
DM debug module control register 2  
DM debug module control/status register 1  
DM debug module control/status register 2  
DM enable function register  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x10  
0x00  
0xFF  
DM  
DM_CR2  
DM_CSR1  
DM_CSR2  
DM_ENFCTR  
0x00 7F9B to  
0x00 7F9F  
Reserved area (5 byte)  
1. Accessible by debug module only  
44/106  
DocID025118 Rev 5  
STM8AF6213/23/23A/26  
Interrupt vector mapping  
7
Interrupt vector mapping  
Table 13. Interrupt mapping  
Wakeup from  
active-halt  
mode  
Source  
block  
Wakeup from  
Description  
Interruptvector  
address  
Priority  
halt mode  
0
Reset  
Reset  
Yes  
Yes  
0x00 8000  
0x00 8004  
0x00 8008  
0x00 800C  
TRAP  
TLI  
Software interrupt  
-
-
-
-
-
External top level interrupt  
Auto-wakeup from Halt  
1
AWU  
Yes  
Clock  
controller  
2
Clock controller  
-
-
0x00 8010  
3
4
EXTI0  
EXTI1  
EXTI2  
EXTI3  
EXTI4  
EXTI5  
Reserved  
SPI  
Port A external interrupts  
Port B external interrupts  
Port C external interrupts  
Port D external interrupts  
Port E external interrupts  
Port F  
Yes(1)  
Yes  
Yes  
Yes  
Yes  
-
Yes(1)  
Yes  
Yes  
Yes  
Yes  
-
0x00 8014  
0x00 8018  
0x00 801C  
0x00 8020  
0x00 8024  
0x00 8028  
0x00 802C  
0x00 8030  
5
6
7
8
9
-
-
-
10  
End of transfer  
Yes  
Yes  
TIM1 update/overflow/  
underflow/trigger/break  
11  
12  
13  
TIM1  
TIM1  
TIM5  
-
-
-
-
-
-
0x00 8034  
0x00 8038  
0x00 803C  
TIM1 capture/compare  
TIM5  
update/overflow/trigger  
14  
15  
16  
17  
TIM5  
TIM5 capture/compare  
-
-
-
-
-
-
-
-
0x00 8040  
0x00 8044  
0x00 8048  
0x00 804C  
Reserved  
Reserved  
LINUART  
-
-
Tx complete  
Receive register DATA  
FULL  
18  
LINUART  
-
-
0x00 8050  
19  
20  
21  
I2C  
I2C interrupts  
Yes  
Yes  
0x00 8054  
0x00 8058  
0x00 805C  
Reserved  
Reserved  
-
-
-
-
-
-
ADC1 end of  
22  
ADC1  
conversion/analog  
watchdog interrupt  
-
-
0x00 8060  
DocID025118 Rev 5  
45/106  
103  
 
 
Interrupt vector mapping  
STM8AF6213/23/23A/26  
Table 13. Interrupt mapping (continued)  
Wakeup from  
Wakeup from  
active-halt  
Source  
block  
Interruptvector  
address  
Priority  
Description  
halt mode  
mode  
TIM6  
23  
24  
TIM6  
Flash  
-
-
-
-
0x00 8064  
0x00 8068  
update/overflow/trigger  
EOP/WR_PG_DIS  
1. Except PA1.  
46/106  
DocID025118 Rev 5  
STM8AF6213/23/23A/26  
Option bytes  
8
Option bytes  
Option bytes contain configurations for device hardware features as well as the memory  
protection of the device. Except for the ROP (read-out protection) byte, each option byte has  
to be stored twice, in a regular form (OPTx) and a complemented one (NOPTx) for  
redundancy.  
Option bytes can be modified in ICP mode (via SWIM) by accessing the EEPROM address  
shown in Table 14: Option bytes below.  
Option bytes can also be modified ‘on the fly’ by the application in IAP mode, except the  
ROP and UBC options that can only be modified in ICP mode (via SWIM).  
Refer to the STM8 Flash programming manual (PM0051) and STM8 SWIM communication  
protocol and debug module user manual (UM0470) for information on SWIM programming  
procedures.  
Table 14. Option bytes  
Option bits  
Factory  
default  
setting  
Option  
name  
Option  
byte no.  
Addr.  
7
6
5
4
3
2
1
0
Read-out  
protection  
(ROP)  
0x00  
4800  
OPT0  
ROP[7:0]  
0x00  
0x00  
4801  
OPT1  
NOPT1  
OPT2  
UBC[7:0]  
0x00  
0xFF  
0x00  
0xFF  
0x00  
0xFF  
0x00  
0xFF  
0x00  
0xFF  
User boot  
code (UBC)  
0x00  
4802  
NUBC[7:0]  
0x00  
4803  
Alternate  
function  
remapping  
(AFR)  
AFR7  
AFR6  
AFR5  
AFR4  
AFR3  
AFR2  
AFR1  
AFR0  
0x00  
4804  
NOPT2  
OPT3  
NAFR7  
NAFR6  
NAFR 5  
NAFR 4  
NAFR 3  
NAFR 2  
NAFR 1  
NAFR 0  
0x00  
4805  
HSI  
TRIM  
LSI  
_EN  
IWDG  
_HW  
WWDG  
_HW  
WWDG  
_HALT  
Reserved  
Reserved  
Miscell.  
option  
0x00  
4806  
NHSI  
TRIM  
NLSI  
_EN  
NIWDG  
_HW  
NWWDG  
_HW  
NWWG  
_HALT  
NOPT3  
OPT4  
0x00  
4807  
EXT  
CLK  
CKAWU  
SEL  
PRS  
C1  
PRS  
C0  
Reserved  
Clock option  
0x00  
4808  
NEXT  
CLK  
NCKAWU  
SEL  
NPRS  
C1  
NPRS  
C0  
NOPT4  
OPT5  
Reserved  
0x00  
4809  
HSECNT[7:0]  
HSE clock  
startup  
0x00  
480A  
NOPT5  
NHSECNT[7:0]  
DocID025118 Rev 5  
47/106  
103  
 
 
Option bytes  
STM8AF6213/23/23A/26  
8.1  
Option byte description  
Table 15. Option byte description  
Description  
Option byte no.  
ROP[7:0]: Memory readout protection (ROP)  
0xAA: Enable readout protection (write access via SWIM protocol)   
Note: Refer to STM8S series and STM8AF series 8-bit microcontrollers  
reference manual (RM0016) section on Flash/EEPROM memory  
readout protection for details.  
OPT0  
UBC[7:0]: User boot code area  
0x00: No UBC, no write-protection  
0x01: Page 0 defined as UBC, memory write-protected  
0x02: Page 0 to 1 defined as UBC, memory write-protected  
Pages 0 and 1 contain the interrupt vectors.  
...  
0x7F: Pages 0 to 126 defined as UBC, memory write-protected  
Other values: Page 0 to 127 defined as UBC, memory write-protected.  
OPT1  
Note: Refer to STM8S series and STM8AF series 8-bit microcontrollers  
reference manual (RM0016) section on Flash/EEPROM write protection  
for more details.  
AFR[7:0]  
OPT2  
Refer to the following sections for the alternate function remapping  
descriptions of bits [7:2] and [1:0] respectively.  
HSITRIM: high-speed internal clock trimming register size  
0: 3-bit trimming supported in CLK_HSITRIMR register  
1: 4-bit trimming supported in CLK_HSITRIMR register  
LSI_EN: low-speed internal clock enable  
0: LSI clock is not available as CPU clock source  
1: LSI clock is available as CPU clock source  
IWDG_HW: Independent watchdog  
OPT3  
0: IWDG independent watchdog activated by software  
1: IWDG independent watchdog activated by hardware  
WWDG_HW: Window watchdog activation  
0: WWDG window watchdog activated by software  
1: WWDG window watchdog activated by hardware  
WWDG_HALT: Window watchdog reset on Halt  
0: No reset generated on Halt if WWDG active  
1: Reset generated on Halt if WWDG active  
48/106  
DocID025118 Rev 5  
 
 
STM8AF6213/23/23A/26  
Option bytes  
Table 15. Option byte description (continued)  
Description  
Option byte no.  
EXTCLK: External clock selection  
0: External crystal connected to OSCIN/OSCOUT  
1: External clock signal on OSCIN  
CKAWUSEL: Auto-wakeup unit/clock  
0: LSI clock source selected for AWU  
1: HSE clock with prescaler selected as clock source for AWU  
OPT4  
PRSC[1:0]: AWU clock prescaler  
0x: 16 MHz to 128 kHz prescaler  
10: 8 MHz to 128 kHz prescaler  
11: 4 MHz to 128 kHz prescaler  
HSECNT[7:0]: HSE crystal oscillator stabilization time  
0x00: 2048 HSE cycles  
OPT5  
0xB4: 128 HSE cycles  
0xD2: 8 HSE cycles  
0xE1: 0.5 HSE cycles  
8.2  
STM8AF6213/23/23A/26 alternate function remapping bits  
Table 16. STM8AF6226 alternate function remapping bits [7:2] for 32-pin packages  
Option byte number  
Description(1)  
AFR7: Alternate function remapping option 7  
0: AFR7 remapping option inactive: default alternate function (2)  
1: Port C3 alternate function = = TIM1_CH1N;   
port C4 alternate function = TIM1_CH2N  
AFR6: Alternate function remapping option 6  
0: AFR6 remapping option inactive: default alternate function (2)  
1: Port D7 alternate function = TIM1_CH4.  
AFR5: Alternate function remapping option 5  
0: AFR5 remapping option inactive: default alternate function (2).  
1: Port D0 alternate function = CLK_CCO.  
OPT2  
AFR4: Alternate function remapping option 4  
0: AFR4 remapping option inactive: default alternate function (2).  
1: Port B4 alternate function = ADC_ETR; port B5 alternate function =  
TIM1_BKIN.  
AFR3: Alternate function remapping option 3  
0: AFR3 remapping option inactive: default alternate function (2)  
1: Port C3 alternate function = TLI  
AFR2: Alternate function remapping option 2  
0: AFR2 remapping option inactive: default alternate function (2)  
1: Port C4 alternate function = AIN2; port D2 alternate function = AIN3;  
port D4 alternate function = LINUART_CK  
1. Do not use more than one remapping option in the same port.  
2. Refer to the pin description.  
DocID025118 Rev 5  
49/106  
103  
 
 
 
Option bytes  
STM8AF6213/23/23A/26  
Table 17. STM8AF6213 and STM8AF6223 alternate function remapping bits [7:2]  
for 20-pin packages  
Option byte number  
Description(1)  
AFR7: Alternate function remapping option 7  
0: AFR7 remapping option inactive: default alternate function (2)  
1: Port C3 alternate function = = TIM1_CH1N;   
port C4 alternate function = TIM1_CH2N  
AFR6: Alternate function remapping option 6  
Reserved  
AFR5: Alternate function remapping option 5  
Reserved  
AFR4: Alternate function remapping option 4  
OPT2  
0: AFR4 remapping option inactive: default alternate function (2).  
1: Port B4 alternate function = ADC_ETR; port B5 alternate function =  
TIM1_BKIN.  
AFR3: Alternate function remapping option 3  
0: AFR3 remapping option inactive: default alternate function (2)  
1: Port C3 alternate function = TLI  
AFR2: Alternate function remapping option 2  
0: AFR2 remapping option inactive: default alternate function (2)  
1: Port D4 alternate function = LINUART_CK  
1. Do not use more than one remapping option in the same port.  
2. Refer to the pin description.  
Table 18. STM8AF6223A alternate function remapping bits [7:2] for 20-pin packages  
Option byte number  
Description(1)  
AFR7: Alternate function remapping option 7  
0: AFR7 remapping option inactive: default alternate function (2)  
1: Port C4 alternate function = TIM1_CH2N  
AFR6: Alternate function remapping option 6  
Reserved  
AFR5: Alternate function remapping option 5  
Reserved  
AFR4: Alternate function remapping option 4  
OPT2  
0: AFR4 remapping option inactive: default alternate function (2).  
1: Port B4 alternate function = ADC_ETR; port B5 alternate function =  
TIM1_BKIN.  
AFR3: Alternate function remapping option 3  
Reserved.  
AFR2: Alternate function remapping option 2  
0: AFR2 remapping option inactive: default alternate function (2)  
1: Port D4 alternate function = LINUART_CK  
1. Do not use more than one remapping option in the same port.  
2. Refer to the pin description.  
50/106  
DocID025118 Rev 5  
 
 
STM8AF6213/23/23A/26  
Option bytes  
Table 19. STM8AF6226 alternate function remapping bits [1:0] for 32-pin packages  
Alternate function  
AFR1 option bit value AFR0 option bit value  
I/O port  
mapping  
AFR1 and AFR0 remapping options inactive:  
Default alternate functions(1)  
0
0
0
1
PC5  
PC6  
PC7  
PA3  
PD2  
PD2  
PC5  
PC6  
PC7  
PC2  
PC1  
PE5  
PA3  
PF4  
TIM5_CH1  
TIM1_CH1  
TIM1_CH2  
SPI_NSS  
1
0
TIM5_CH3  
TIM5_CH3  
TIM5_CH1  
TIM1_CH1  
TIM1_CH2  
TIM1_CH3N  
TIM1_CH2N  
TIM1_CH1N  
LINUART_TX  
LINUART_RX  
1(2)  
1(2)  
1. Refer to the pin descriptions.  
2. If both AFR1 and AFR0 option bits are set, the SPI hardware NSS management feature is no more  
available. If this remapping option is selected and the SPI is enabled, the SSM bit must be configured in the  
SPI_CR2 register to select software NSS management.  
Table 20. STM8AF6213/STM8AF6223 alternate function remapping bits [1:0]  
for 20-pin packages  
Alternate function  
AFR1 option bit value AFR0 option bit value  
I/O port  
mapping  
AFR1 and AFR0 remapping options inactive:  
Default alternate functions(1)  
0
0
0
1
PC5  
PC6  
PC7  
PA3  
PD2  
TIM5_CH1  
TIM1_CH1  
TIM1_CH2  
SPI_NSS  
1
0
TIM5_CH3  
DocID025118 Rev 5  
51/106  
103  
 
 
 
Option bytes  
STM8AF6213/23/23A/26  
Table 20. STM8AF6213/STM8AF6223 alternate function remapping bits [1:0]  
for 20-pin packages (continued)  
Alternate function  
AFR1 option bit value AFR0 option bit value  
I/O port  
mapping  
PD2  
PC5  
PC6  
PC7  
PC2  
PC1  
PE5  
PA3  
PF4  
TIM5_CH3  
TIM5_CH1  
TIM1_CH1  
TIM1_CH2  
Not available  
Not available  
Not available  
SPI_NSS  
1
1
Not available  
1. Refer to the pin descriptions.  
Table 21. STM8AF6223A alternate function remapping bits [1:0] for 20-pin packages  
Alternate function  
AFR1 option bit value AFR0 option bit value  
I/O port  
mapping  
AFR1 and AFR0 remapping options inactive:  
Default alternate functions(1)  
0
0
0
1
PC5  
PC6  
PC7  
PA3  
PD2  
PD2  
PC5  
PC6  
PC7  
PC2  
PC1  
PE5  
PA3  
PF4  
TIM5_CH1  
TIM1_CH1  
TIM1_CH2  
Not available  
TIM5_CH3  
TIM5_CH3  
TIM5_CH1  
TIM1_CH1  
TIM1_CH2  
Not available  
Not available  
Not available  
Not available  
Not available  
1
0
1(2)  
1(2)  
1. Refer to the pin descriptions.  
2. If both AFR1 and AFR0 option bits are set, the SPI hardware NSS management feature is no more  
available. If this remapping option is selected and the SPI is enabled, the SSM bit must be configured in the  
SPI_CR2 register to select software NSS management.  
52/106  
DocID025118 Rev 5  
 
 
STM8AF6213/23/23A/26  
Electrical characteristics  
9
Electrical characteristics  
9.1  
Parameter conditions  
Unless otherwise specified, all voltages are referred to V  
.
SS  
9.1.1  
Minimum and maximum values  
Unless otherwise specified the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T = -40 °C, T = 25 °C, and   
A
A
T = T  
(given by the selected temperature range).  
A
Amax  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production.  
9.1.2  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = 5.0 V. They are  
A
DD  
given only as design guidelines and are not tested.  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range.  
9.1.3  
9.1.4  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 7.  
Figure 7. Pin loading conditions  
670ꢆ$ꢀ3,1  
ꢌꢋꢀS)  
06Yꢍꢎꢎꢐꢃ9ꢁ  
DocID025118 Rev 5  
53/106  
103  
 
 
 
 
 
 
 
Electrical characteristics  
STM8AF6213/23/23A/26  
9.1.5  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 8.  
Figure 8. Pin input voltage  
670ꢆ$ꢀ3,1  
9,1  
06Yꢍꢎꢎꢐꢎ9ꢁ  
9.2  
Absolute maximum ratings  
Stresses above those listed as ‘absolute maximum ratings’ may cause permanent damage  
to the device. This is a stress rating only and functional operation of the device under these  
conditions is not implied. Exposure to maximum rating conditions for extended periods may  
affect device reliability.  
Table 22. Voltage characteristics  
Symbol  
Ratings  
Min  
Max  
6.5  
Unit  
(1)  
V
DDx - VSS  
Supply voltage (including VDDA and VDDIO  
Input voltage on true open drain pins (2)  
Input voltage on any other pin(2)  
)
-0.3  
V
VSS - 0.3  
6.5  
VIN  
V
VSS - 0.3 VDD + 0.3  
|VDDx - VDD  
|
Variations between different power pins  
-
-
50  
50  
mV  
|VSSx - VSS  
|
Variations between all the different ground pins  
see Absolute maximum ratings  
(electrical sensitivity) on  
page 90  
VESD  
Electrostatic discharge voltage  
1. All power (VDD) and ground (VSS) pins must always be connected to the external power supply  
2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum  
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive  
injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS. For true open-drain  
pads, there is no positive injection current, and the corresponding VIN maximum must always be respected  
54/106  
DocID025118 Rev 5  
 
 
 
 
STM8AF6213/23/23A/26  
Symbol  
Electrical characteristics  
Table 23. Current characteristics  
Ratings  
Max.(1)  
Unit  
IVDD  
IVSS  
Total current into VDD power lines (source)(2)  
Total current out of VSS ground lines (sink)(2)  
Output current sunk by any I/O and control pin  
Output current source by any I/Os and control pin  
Injected current on RST pin  
100  
80  
20  
IIO  
-20  
mA  
±4  
(3) (4)  
IINJ(PIN)  
Injected current on OSCIN pin  
±4  
±4  
Injected current on any other pin(5)  
(3)  
IINJ(TOT)  
Total injected current (sum of all I/O and control pins)(5)  
±20  
1. Data based on characterization results, not tested in production.  
2. All power (VDD, VDDIO, VDDA) and ground (VSS, VSSIO, VSSA) pins must always be connected to the  
external supply.  
3. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum  
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive  
injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. For true open-drain pads,  
there is no positive injection current, and the corresponding VIN maximum must always be respected.  
4. ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins  
should be avoided as this significantly reduces the accuracy of the conversion being performed on another  
analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may  
potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and  
IINJ(PIN) in the I/O port pin characteristics section does not affect the ADC accuracy  
5. When several inputs are submitted to a current injection, the maximum IINJ(PIN) is the absolute sum of  
the positive and negative injected currents (instantaneous values). These results are based on  
characterization with IINJ(PIN) maximum current injection on four I/O port pins of the device.  
Table 24. Thermal characteristics  
Symbol  
Ratings  
Value  
Unit  
TSTG  
TJ  
Storage temperature range  
-65 to 150  
150  
°C  
Maximum junction temperature  
Table 25. Operating lifetime (OLF)  
Symbol  
Ratings  
Value  
Unit  
OLF  
Conforming to AEC-Q100  
-40 to 150  
°C  
DocID025118 Rev 5  
55/106  
103  
 
 
 
 
 
 
Electrical characteristics  
STM8AF6213/23/23A/26  
9.3  
Operating conditions  
Table 26. General operating conditions  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
fCPU  
VDD  
Internal CPU clock frequency  
Standard operating voltage  
-
-
0
16  
MHz  
V
3.0  
5.5  
CEXT: capacitance of external  
capacitor  
-
470  
3300  
nF  
(1)  
VCAP  
ESR of external capacitor  
ESL of external capacitor  
-
-
-
0.3  
15  
45  
Ω
at 1 MHz(2)  
TSSOP20  
LQFP32  
nH  
Power dissipation at   
TA = 85 °C for suffix A version,  
TA = 125 °C for suffix C version,  
TA = 150 °C for suffix D version  
(3)  
PD  
mW  
-
83  
Ambient temperature for suffix A  
version  
-40  
-40  
-40  
85  
Ambient temperature for suffix C  
version  
Maximum power  
dissipation  
TA  
125  
150  
Ambient temperature for suffix D  
version  
°C  
Suffix A  
Suffix C  
Suffix D  
-40  
-40  
-40  
90  
TJ  
Junction temperature range  
130  
155  
1. Care should be taken when selecting the capacitor, due to its tolerance, as well as the parameter  
dependency on temperature, DC bias and frequency in addition to other factors. The parameter maximum  
value must be respected for the full application range.  
2. This frequency of 1 MHz as a condition for VCAP parameters is given by design of internal regulator.  
3. See Section 10.3: Thermal characteristics.  
56/106  
DocID025118 Rev 5  
 
 
 
STM8AF6213/23/23A/26  
Electrical characteristics  
Figure 9. f  
versus V  
DD  
CPUmax  
I&38ꢀꢈ0+]ꢉ  
ꢅꢊ  
)XQFWLRQDOLW\ꢀ  
QRWꢀ  
JXDUDQWHHGꢀLQꢀ  
WKLVꢀDUHD  
ϭϲ  
ϭϮ  
ϴ
)XQFWLRQDOLW\ꢀJXDUDQWHHG  
#7$ꢀꢂꢊꢋꢀWRꢀꢁꢌꢋꢀƒ&ꢀꢀ  
ϰ
Ϭ
ꢊꢄꢋ  
6XSSO\ꢀYROWDJHꢀꢈ9ꢉ  
ꢍꢄꢋ  
ꢌꢄꢋ  
ꢌꢄꢌ  
06Yꢍꢎꢎꢐꢆ9ꢁ  
Table 27. Operating conditions at power-up/power-down  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Typ  
2(1)  
VDD rise time rate  
VDD fall time rate(2)  
Reset release delay  
-
-
-
-
tVDD  
µs/V  
ms  
2(1)  
-
-
tTEMP  
VIT+  
VDD rising  
1.7  
Power-on reset  
threshold(3)  
2.6(1)  
2.5  
-
-
-
-
2.7  
2.85  
V
Brown-out reset  
threshold  
2.8(1)  
-
VIT-  
2.65  
70(1)  
Brown-out reset  
hysteresis  
VHYS(BOR)  
mV  
1. Guaranteed by design, not tested in production  
2. Reset is always generated after a tTEMP delay. The application must ensure that VDD is still above the  
minimum operating voltage (VDD min) when the tTEMP delay has elapsed.  
3. There is inrush current into VDD present after device power on to charge CEXT capacitor. This inrush energy  
depends from CEXT capacitor value. For example, a CEXT of 1μF requires Q=1 μF x 1.8V = 1.8 μC.  
DocID025118 Rev 5  
57/106  
103  
 
 
 
Electrical characteristics  
STM8AF6213/23/23A/26  
9.3.1  
VCAP external capacitor  
Stabilization for the main regulator is achieved connecting an external capacitor C  
to the  
EXT  
V
pin. C  
is specified in Table 26. Care should be taken to limit the series inductance  
CAP  
EXT  
to less than 15 nH.  
Figure 10. External capacitor C  
EXT  
(6/  
&
(65  
5/HDN  
06Yꢍꢃꢊꢆꢆ9ꢁ  
1. Legend: ESR is the equivalent series resistance and ESL is the equivalent inductance.  
9.3.2  
Supply current characteristics  
The current consumption is measured as described in Section 4.3: Interrupt controller.  
Total current consumption in run mode  
The MCU is placed under the following conditions:  
All I/O pins in input mode with a static value at V or V (no load)  
DD SS  
All peripherals are disabled (clock stopped by peripheral clock gating registers) except  
if explicitly mentioned.  
Subject to general operating conditions for V and T .  
DD  
A
Unless otherwise specified, data are based on characterization results, and not tested in  
production.  
Table 28. Total current consumption with code execution in run mode at V = 5 V  
DD  
Symbol  
Parameter  
Conditions  
HSE crystal osc. (16 MHz)  
Typ  
Max  
Unit  
2.3  
2
-
fCPU = fMASTER = 16 MHz  
HSE user ext. clock (16 MHz)  
HSI RC osc. (16 MHz)  
2.35  
2(1)  
-
1.7  
0.86  
0.7  
Supply current  
in run mode,  
code executed  
from RAM  
HSE user ext. clock (16 MHz)  
HSI RC osc. (16 MHz)  
IDD(RUN)  
mA  
fCPU = fMASTER/128= 125 kHz  
0.87  
fCPU = fMASTER/128=  
15.625 kHz  
HSI RC osc. (16 MHz/8)  
LSI RC osc. (128 kHz)  
0.46  
0.41  
0.58  
0.55  
fCPU = fMASTER = 28 kHz  
58/106  
DocID025118 Rev 5  
 
 
 
 
STM8AF6213/23/23A/26  
Electrical characteristics  
Table 28. Total current consumption with code execution in run mode at V = 5 V (continued)  
DD  
Symbol  
Parameter  
Conditions  
HSE crystal osc. (16 MHz)  
Typ  
Max  
Unit  
4.5  
4.3  
-
Supply current  
in run mode,  
code executed  
from Flash  
fCPU = fMASTER = 16 MHz  
HSE user ext. clock (16 MHz)  
HSI RC osc. (16 MHz)  
4.75  
4.5(1)  
2(1)  
3.7  
fCPU = fMASTER = 2 MHz  
HSI RC osc. (16 MHz/8)(2)  
0.84  
0.72  
IDD(RUN)  
mA  
Supply current  
in run mode,  
code executed  
from Flash  
fCPU = fMASTER/128 = 125 kHz HSI RC osc. (16 MHz)  
0.9  
fCPU = fMASTER/128 =  
HSI RC osc. (16 MHz/8)  
15.625 kHz  
0.46  
0.42  
0.58  
0.57  
f
CPU = fMASTER = 128 kHz  
LSI RC osc. (128 kHz)  
1. Tested in production.  
2. Default clock configuration measured with all peripherals off.  
Table 29. Total current consumption with code execution in run mode at V = 3.3 V  
DD  
Symbol  
Parameter  
Conditions  
HSE crystal osc. (16 MHz)  
Typ Max(1) Unit  
1.8  
2
-
2.3  
2
fCPU = fMASTER =16 MHz  
HSE user ext. clock (16 MHz)  
HSI RC osc. (16 MHz)  
1.5  
0.81  
0.7  
Supply current  
in run mode,  
code executed  
from RAM  
HSE user ext. clock (16 MHz)  
HSI RC osc. (16 MHz)  
-
fCPU = fMASTER/128 = 125 kHz  
0.87  
fCPU = fMASTER/ 128 =  
15.625 kHz  
HSI RC osc. (16 MHz/8)  
0.46  
0.58  
fCPU = fMASTER =128 kHz  
fCPU = fMASTER = 16 MHz  
fCPU = fMASTER =2 MHz  
LSI RC osc. (128 kHz)  
0.41  
4
0.55  
-
IDD(RUN)  
mA  
HSE crystal osc. (16 MHz)  
HSE user ext. clock (16 MHz)  
HSI RC osc. (16 MHz)  
3.9  
4.7  
4.5  
1.05  
0.9  
3.7  
Supply current  
in run mode,  
code executed  
from Flash  
HSI RC osc. (16 MHz/8)(2)  
0.84  
0.72  
f
CPU = fMASTER/ 128 = 125 kHz HSI RC osc. (16 MHz)  
fCPU = fMASTER/128 =  
15.625 kHz  
HSI RC osc. (16 MHz/8)  
LSI RC osc. (128 kHz)  
0.46  
0.42  
0.58  
0.57  
f
CPU = fMASTER =128 kHz  
1. Data based on characterization results, not tested in production.  
2. Default clock configuration measured with all peripherals off.  
DocID025118 Rev 5  
59/106  
103  
 
 
Electrical characteristics  
STM8AF6213/23/23A/26  
Total current consumption in wait mode  
Unless otherwise specified, data based are on characterization results, and not tested in  
production.  
Table 30. Total current consumption in wait mode at V = 5 V  
DD  
Symbol  
Parameter  
Conditions  
HSE crystal osc. (16 MHz)  
Typ  
Max  
Unit  
1.6  
1.1  
-
fCPU = fMASTER = 16 MHz  
HSE user ext. clock (16 MHz)  
HSI RC osc. (16 MHz)  
1.3  
0.89  
0.7  
1.5(1)  
Supply current  
in wait mode  
IDD(WFI)  
mA  
fCPU = fMASTER/128 = 125 kHz HSI RC osc. (16 MHz)  
0.88  
fCPU = fMASTER/128 =  
HSI RC osc. (16 MHz/8)(2)  
15.625 kHz  
0.45  
0.4  
0.57  
0.54  
fCPU = fMASTER = 128 kHz  
LSI RC osc. (128 kHz)  
1. Tested in production.  
2. Default clock configuration measured with all peripherals off.  
Table 31. Total current consumption in wait mode at V = 3.3 V  
DD  
Symbol  
Parameter  
Conditions  
HSE crystal osc. (16 MHz)  
Typ Max(1) Unit  
1.1  
1.1  
-
fCPU = fMASTER = 16 MHz  
HSE user ext. clock (16 MHz)  
HSI RC osc. (16 MHz)  
1.3  
1.1  
0.88  
0.89  
0.7  
Supply current  
in wait mode  
IDD(WFI)  
mA  
f
CPU = fMASTER/128 = 125 kHz HSI RC osc. (16 MHz)  
fCPU = fMASTER/128 =  
15.625 kHz  
HSI RC osc. (16 MHz/8)(2)  
LSI RC osc. (128 kHz)  
0.45  
0.4  
0.57  
0.54  
fCPU = fMASTER = 128 kHz  
1. Data based on characterization results, not tested in production.  
2. Default clock configuration measured with all peripherals off.  
60/106  
DocID025118 Rev 5  
 
 
STM8AF6213/23/23A/26  
Electrical characteristics  
Total current consumption in active halt mode  
Table 32. Total current consumption in active halt mode at V = 5 V  
DD  
Conditions  
Max  
at  
85°C 125°C  
Max  
at  
Main  
Maxat  
150°C  
Symbol  
Parameter  
Typ  
Unit  
voltage  
regulator  
(MVR)(1)  
Flash  
Clock source  
mode(2)  
HSE crystal  
osc. (16 MHz)  
1030  
200  
970  
150  
66  
-
-
-
Operating  
mode  
LSI RC osc.  
(128 kHz)  
260  
-
300  
-
-
On  
HSE crystal  
osc. (16 MHz)  
-
Supply current in  
active halt mode  
Power-down  
mode  
IDD(AH)  
µA  
LSI RC osc.  
(128 kHz)  
200  
85  
20  
230  
140  
40  
-
200  
-
Operating  
mode  
LSI RC osc.  
(128 kHz)  
Off  
Power-down LSI RC osc.  
mode (128 kHz)  
10  
1. Configured by the REGAH bit in the CLK_ICKR register.  
2. Configured by the AHALT bit in the FLASH_CR1 register.  
Table 33. Total current consumption in active halt mode at V = 3.3 V  
DD  
Conditions  
Main  
Max at  
Max at  
125°C  
voltage  
regulato  
r
Symbol  
Parameter  
Typ  
Unit  
85°C(1)  
Flash  
Clock source  
mode(3)  
(MVR)(2)  
HSE crystal  
osc. (16 MHz)  
550  
200  
970  
150  
66  
-
-
Operating  
mode  
LSI RC osc.  
(128 kHz)  
260  
-
290  
-
On  
HSE crystal  
osc. (16 MHz)  
Supply current in  
active halt mode  
Power-  
down mode  
IDD(AH)  
µA  
LSI RC osc.  
(128 kHz)  
200  
80  
18  
230  
105  
35  
Operating  
mode  
LSI RC osc.  
(128 kHz)  
Off  
Power-  
LSI RC osc.  
down mode (128 kHz)  
10  
1. Data based on characterization results, not tested in production  
2. Configured by the REGAH bit in the CLK_ICKR register.  
DocID025118 Rev 5  
61/106  
103  
 
 
Electrical characteristics  
STM8AF6213/23/23A/26  
3. Configured by the AHALT bit in the FLASH_CR1 register.  
Total current consumption in halt mode  
Table 34. Total current consumption in halt mode at V = 5 V  
DD  
Max at  
85°C  
Max at  
125°C  
Max at  
150°C  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
Flash in operating mode,  
HSI clock after wakeup  
63  
75  
105  
-
Supply current in halt  
mode  
IDD(H)  
µA  
Flash in power-down mode,  
HSI clock after wakeup  
6.0  
20(1)  
55(1)  
80(1)  
1. Tested in production.  
Table 35. Total current consumption in halt mode at V = 3.3 V  
DD  
Max at  
Max at  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
85°C(1)  
125°C(1)  
Flash in operating mode,  
HSI clock after wakeup  
60  
75  
100  
Supply current in halt  
mode  
IDD(H)  
µA  
Flash in power-down mode,  
HSI clock after wakeup  
4.5  
17  
30  
1. Data based on characterization results, not tested in production.  
Low-power mode wakeup times  
Table 36. Wakeup times  
Conditions  
Symbol  
Parameter  
Typ  
Max(1)  
See (3)  
-
Unit  
Wakeup time  
0 to 16 MHz  
-
tWU(WFI) from wait mode  
to run mode(2)  
fCPU= fMASTER= 16 MHz  
0.56  
1(6)  
3(6)  
2(6)  
MVR voltage  
regulator on(4)  
Wakeup time  
tWU(AH) active halt mode  
to run mode(2)  
Flash in  
-
-
-
-
HSI (after  
wakeup)  
operating  
µs  
48(6)  
50(6)  
52  
mode(5)  
MVR voltage  
regulator off  
Wakeup time  
tWU(H) from halt mode to  
run mode(2)  
Flash in operating mode(5)  
Flash in power-down mode(5)  
54  
-
1. Data guaranteed by design, not tested in production.  
2. Measured from interrupt event to interrupt vector fetch.  
3. tWU(WFI) = 2 x 1/fMASTER+ 67 x 1/fCPU  
.
4. Configured by the REGAH bit in the CLK_ICKR register.  
5. Configured by the AHALT bit in the FLASH_CR1 register.  
6. Plus 1 LSI clock depending on synchronization.  
62/106  
DocID025118 Rev 5  
 
 
 
 
 
 
 
STM8AF6213/23/23A/26  
Electrical characteristics  
Total current consumption and timing in forced reset state  
Table 37. Total current consumption and timing in forced reset state  
Symbol  
Parameter  
Conditions  
Typ  
Max(1)  
Unit  
VDD= 5 V  
400  
300  
-
-
IDD(R)  
Supply current in reset state(2)  
µA  
VDD= 3.3 V  
Reset pin release to vector  
fetch  
tRESETBL  
-
-
150  
µs  
1. Data guaranteed by design, not tested in production.  
2. Characterized with all I/Os tied to VSS  
.
Current consumption for on-chip peripherals  
Subject to general operating conditions for V and T .  
DD  
A
HSI internal RC/f  
= f  
= 16 MHz, V = 5 V  
CPU  
MASTER DD  
Table 38. Peripheral current consumption  
Parameter  
Symbol  
Typ  
210  
130  
50  
Unit  
IDD(TIM1) TIM1 supply current(1)  
TIM5 supply current(1)  
TIM6 supply current(1)  
IDD(TIM5)  
IDD(TIM6)  
IDD(UART1) LINUART supply current(2)  
120  
45  
µA  
SPI supply current(2)  
I2C supply current(2)  
ADC1 supply current(3)  
IDD(SPI)  
IDD(I2C)  
65  
IDD(ADC1)  
1000  
1. Data based on a differential IDD measurement between reset configuration and timer counter running at  
16 MHz. No IC/OC programmed (no I/O pads toggling). Not tested in production.  
2. Data based on a differential IDD measurement between the on-chip peripheral when kept under reset and  
not clocked and the on-chip peripheral when clocked and not kept under reset. No I/O pads toggling. Not  
tested in production.  
3. Data based on a differential IDD measurement between reset configuration and continuous A/D  
conversions. Not tested in production.  
DocID025118 Rev 5  
63/106  
103  
 
 
 
Electrical characteristics  
STM8AF6213/23/23A/26  
Current consumption curves  
The following figures show typical current consumption measured with code executing in  
RAM.  
Figure 11. Typ I  
vs. V HSE user external clock, f  
= 16 MHz  
CPU  
DD(RUN)  
DD  
Figure 12. Typ I  
vs. f  
HSE user external clock, V = 5 V  
CPU DD  
DD(RUN)  
64/106  
DocID025118 Rev 5  
 
 
STM8AF6213/23/23A/26  
Electrical characteristics  
Figure 13. Typ I  
vs. V HSEI RC osc., f  
= 16 MHz  
DD(RUN)  
DD  
CPU  
Figure 14. Typ I  
vs. V HSE user external clock, f  
= 16 MHz  
DD(WFI)  
DD  
CPU  
DocID025118 Rev 5  
65/106  
103  
 
 
Electrical characteristics  
STM8AF6213/23/23A/26  
Figure 15. Typ I  
vs. f  
HSE user external clock, V = 5 V  
CPU DD  
DD(WFI)  
Figure 16. Typ I  
vs. V HSI RC osc., f = 16 MHz  
CPU  
DD(WFI)  
DD  
66/106  
DocID025118 Rev 5  
 
 
STM8AF6213/23/23A/26  
Electrical characteristics  
9.3.3  
External clock sources and timing characteristics  
HSE user external clock  
Subject to general operating conditions for V and T .  
DD  
A
Table 39. HSE user external clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
User external clock source  
frequency  
fHSE_ext  
-
0
-
16  
MHz  
OSCIN input pin high level  
voltage  
(1)  
VHSEH  
-
0.7 x VDD  
VSS  
-
-
-
VDD + 0.3 V  
0.3 x VDD  
+1  
V
OSCIN input pin low level  
voltage  
(1)  
VHSEL  
-
OSCIN input leakage  
current  
ILEAK_HSE  
VSS < VIN < VDD  
-1  
µA  
1. Data based on characterization results, not tested in production.  
Figure 17. HSE external clock source  
9
9
+6(+  
+6(/  
I
+6(  
([WHUQDOꢀFORFN  
VRXUFH  
26&,1  
670ꢆ  
06ꢍꢃꢊꢆꢐ9ꢁ  
DocID025118 Rev 5  
67/106  
103  
 
 
 
 
Electrical characteristics  
STM8AF6213/23/23A/26  
HSE crystal/ceramic resonator oscillator  
The HSE clock can be supplied with a 1 to 16 MHz crystal/ceramic resonator oscillator. All  
the information given in this paragraph is based on characterization results with specified  
typical external components. In the application, the resonator and the load capacitors have  
to be placed as close as possible to the oscillator pins in order to minimize output distortion  
and startup stabilization time. Refer to the crystal resonator manufacturer for more details  
(frequency, package, accuracy...).  
Table 40. HSE oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
External high-speed oscillator  
frequency  
fHSE  
RF  
-
-
-
1
-
-
220  
-
16  
-
MHz  
k  
Feedback resistor  
Recommended load  
capacitance(2)  
C(1)  
-
20  
pF  
6 (startup)  
1.6 (stabilized)(3)  
C = 20 pF,  
fOSC = 16 MHz  
-
-
HSE oscillator power  
consumption  
IDD(HSE)  
mA  
6 (startup)  
C = 10 pF,  
fOSC = 16 MHz  
-
5
-
-
-
1.2 (stabilized)(3)  
gm  
Oscillator transconductance  
Startup time  
-
-
-
mA/V  
ms  
VDD is  
stabilized  
(4)  
tSU(HSE)  
1
1. C is approximately equivalent to 2 x crystal CLOAD  
.
2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with small Rm value.  
Refer to the crystal manufacturer for more details.  
3. Data based on characterization results, not tested in production.  
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) until a stabilized 16 MHz oscillation is  
reached. The value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.  
Figure 18. HSE oscillator circuit diagram  
5
P
I+6(ꢀWRꢀꢀFRUH  
&
2
5)  
/
P
P
&
&
/ꢁ  
&
26&,1  
J
P
5HVRQDWRU  
&XUUHQWꢀFRQWURO  
5HVRQDWRU  
26&287  
/ꢅ  
670ꢆ  
06Yꢍꢎꢎꢐꢐ9ꢁ  
68/106  
DocID025118 Rev 5  
 
 
 
STM8AF6213/23/23A/26  
Electrical characteristics  
HSE oscillator critical gm formula  
The crystal characteristics have to be checked with the following formula:  
g
m » gmcrit  
where g  
can be calculated with the crystal parameters as follows:  
mcrit  
gmcrit = 2    fHSE2 Rm2Co + C2  
R : Notional resistance (see crystal specification)  
m
L : Notional inductance (see crystal specification)  
m
C : Notional capacitance (see crystal specification)  
m
Co: Shunt capacitance (see crystal specification)  
C
= C = C: Grounded external capacitance  
L1  
L2  
9.3.4  
Internal clock sources and timing characteristics  
Subject to general operating conditions for V and T .  
DD  
A
High speed internal RC oscillator (HSI)  
Table 41. HSI oscillator characteristics  
Symbol  
Parameter  
Frequency  
Conditions  
Min  
Typ  
Max  
Unit  
fHSI  
-
-
16  
-
-
MHz  
Trimmed by the application  
for any VDD and TA  
conditions  
-1(1)  
1(1)  
HSI oscillator user  
trimming accuracy  
-0.5(1)  
-
-
0.5(1)  
ACCHS  
3.0 V VDD 5.5 V,  
-40 °C TA 150 °C  
%
-5  
5
HSI oscillator accuracy  
(factory calibrated)  
3.0 V VDD 5.5 V,  
-40 °C TA 125 °C  
-3(2)  
-
-
3(2)  
2(3)  
HSI oscillator wakeup  
time  
tsu(HSI)  
-
-
-
-
µs  
HSI oscillator power  
consumption  
IDD(HSI)  
170  
250(4)  
µA  
1. Depending on option byte setting (OPT3 and NOPT3)  
2. These values are guaranteed for STM8AF62xxIxx order codes only.  
3. Guaranteed by characterization, not tested in production  
4. Data based on characterization results, not tested in production.  
DocID025118 Rev 5  
69/106  
103  
 
 
 
 
Electrical characteristics  
STM8AF6213/23/23A/26  
Low speed internal RC oscillator (LSI)  
Subject to general operating conditions for V and T .  
DD  
A
Table 42. LSI oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fLSI  
Frequency  
-
-
-
110(1)  
128  
150(1)  
kHz  
µs  
tsu(LSI) LSI oscillator wakeup time  
IDD(LSI) LSI oscillator power consumption  
1. Tested in production.  
-
-
-
7
-
5
µA  
9.3.5  
Memory characteristics  
RAM and hardware registers  
Table 43. RAM and hardware registers  
Symbol  
Parameter  
Data retention mode(1)  
Conditions  
Min  
Unit  
(2)  
VRM  
Halt mode (or reset)  
VIT-max  
V
1. Minimum supply voltage without losing the data stored in RAM (in halt mode or under reset) or in hardware  
registers (only in halt mode). Guaranteed by design, not tested in production.  
2. Refer to the operating conditions for the value of VIT-max  
Flash program memory/data EEPROM memory  
General conditions: T = -40 to 150 °C.  
A
Table 44. Flash program memory/data EEPROM memory  
Symbol  
Parameter  
Conditions  
Min Typ Max  
Unit  
Operating voltage   
(all modes, execution/write/erase)  
3.0  
2.6  
-
-
5.5  
5.5  
f
CPU is 0 to 16 MHz  
VDD  
V
with 0 ws  
Operating voltage   
(code execution)  
Standard programming time (including  
erase) for byte/word/block   
(1 byte/4 byte/64 byte)  
-
-
6.0  
6.6  
tprog  
ms  
Fast programming time for 1 block  
(64 byte)  
-
-
-
-
3.0  
3.0  
3.3  
3.3  
tERASE Erase time for 1 block (64 byte)  
70/106  
DocID025118 Rev 5  
 
 
 
 
 
STM8AF6213/23/23A/26  
Electrical characteristics  
Table 45. Flash program memory  
Symbol  
Parameter  
Condition  
Min  
Max  
Unit  
TWE  
Temperature for writing and erasing  
-
-40  
150  
°C  
Flash program memory endurance  
(erase/write cycles)(1)  
NWE  
TA = 25 °C  
1000  
-
cycles  
years  
TA = 25 °C  
TA = 55 °C  
40  
20  
-
-
tRET  
Data retention time  
1. The physical granularity of the memory is 4 byte, so cycling is performed on 4 byte even when a  
write/erase operation addresses a single byte.  
Table 46. Data memory  
Symbol  
Parameter  
Condition  
Min  
Max  
Unit  
TWE  
Temperature for writing and erasing  
-
-40  
150  
°C  
Data memory endurance(1)   
(erase/write cycles)  
TA = 25 °C  
300 k  
-
-
-
-
NWE  
cycles  
years  
TA = -40°C to 125 °C 100 k(2)  
TA = 25 °C  
TA = 55 °C  
40(3)  
tRET  
Data retention time  
20(2)(3)  
1. The physical granularity of the memory is 4 byte, so cycling is performed on 4 byte even when a  
write/erase operation addresses a single byte.  
2. More information on the relationship between data retention time and number of write/erase cycles is  
available in a separate technical document.  
3. Retention time for 256B of data memory after up to 1000 cycles at 125 °C.  
DocID025118 Rev 5  
71/106  
103  
 
 
Electrical characteristics  
STM8AF6213/23/23A/26  
9.3.6  
I/O port pin characteristics  
General characteristics  
Subject to general operating conditions for V and T unless otherwise specified. All  
DD  
A
unused pins must be kept at a fixed voltage, using the output mode of the I/O for example or  
an external pull-up or pull-down resistor.  
Table 47. I/O static characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VIL  
VIH  
Input low level voltage  
Input high level voltage  
Hysteresis(1)  
-0.3 V  
-
-
0.3 x VDD  
V
-
0.7 x VDD  
VDD + 0.3 V  
Vhys  
Rpu  
-
700  
55  
-
mV  
Pull-up resistor  
VDD = 5 V, VIN = VSS  
35  
80  
k  
Fast I/Os  
Load = 50 pF  
-
-
-
-
35(2)  
125(2)  
20(2)  
Standard and high sink I/Os  
Load = 50 pF  
Rise and fall time  
(10% - 90%)  
tR, tF  
ns  
Fast I/Os  
Load = 20 pF  
Standard and high sink I/Os  
Load = 20 pF  
50(2)  
Digital input pad leakage  
current  
Ilkg  
VSS VIN VDD  
-
-
-
-
-
-
-
-
±1(3)  
µA  
nA  
µA  
VSS VIN VDD  
-40 °C < TA < 125 °C  
±250(3)  
±500(3)  
±1(3)  
Analog input pad leakage  
current  
Ilkg ana  
VSS VIN VDD  
-40 °C < TA < 150 °C  
Leakage current in  
adjacent I/O(2)  
Ilkg(inj)  
Injection current ±4 mA  
1. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested in production.  
2. Data based on characterization results, not tested in production.  
3. Guaranteed by design.  
72/106  
DocID025118 Rev 5  
 
 
STM8AF6213/23/23A/26  
Electrical characteristics  
Figure 19. Typical V and V vs V @ 4 temperatures  
IL  
IH  
DD  
Figure 20. Typical pull-up resistance R vs V @ 4 temperatures  
PU  
DD  
DocID025118 Rev 5  
73/106  
103  
 
 
Electrical characteristics  
STM8AF6213/23/23A/26  
Figure 21. Typical pull-up current I vs V @ 4 temperatures  
pu  
DD  
Table 48. Output driving current (standard ports)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Output low level with 8  
pins sunk  
IIO= 10 mA,   
VDD = 5 V  
-
2.0  
VOL  
Output low level with 4  
pins sunk  
IIO = 4 mA,  
VDD = 3.3 V  
-
1.0(1)  
V
Output high level with 8 IIO = 10 mA,  
2.8  
-
-
pins sourced  
VDD = 5 V  
VOH  
Output high level with 4  
pins sourced  
IIO = 4 mA,   
VDD = 3.3 V  
2.1(1)  
1. Data based on characterization results, not tested in production.  
Table 49. Output driving current (true open drain ports)  
Symbol  
Parameter  
Conditions  
Max  
Unit  
IIO= 10 mA, VDD = 5 V  
IIO = 10 mA, VDD = 3.3 V  
IIO = 20 mA, VDD = 5 V  
1.0  
VOL  
Output low level with 2 pins sunk  
1.5(1)  
2.0(1)  
V
1. Data based on characterization results, not tested in production.  
74/106  
DocID025118 Rev 5  
 
 
 
 
 
STM8AF6213/23/23A/26  
Electrical characteristics  
Table 50. Output driving current (high sink ports)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Output low level with 8  
pins sunk  
IIO= 10 mA, VDD = 5 V  
-
-
0.8  
VOL  
IIO = 10 mA, VDD = 3.3 V  
IIO = 20 mA, VDD = 5 V  
1.0(1)  
1.5(1)  
Output low level with 4  
pins sunk  
V
Output high level with  
8 pins sourced  
I
IO = 10 mA, VDD = 5 V  
4.0  
-
VOH  
IIO = 10 mA, VDD = 3.3 V  
IIO = 20 mA, VDD = 5 V  
2.1(1)  
3.3(1)  
-
-
Output high level with  
4 pins sourced  
1. Data based on characterization results, not tested in production.  
Figure 22. Typ. V @ V = 5 V (standard ports)  
OL  
DD  
Figure 23. Typ. V @ V = 3.3 V (standard ports)  
OL  
DD  
DocID025118 Rev 5  
75/106  
103  
 
 
 
 
Electrical characteristics  
STM8AF6213/23/23A/26  
Figure 24. Typ. V @ V = 5 V (true open drain ports)  
OL  
DD  
Figure 25. Typ. V @ V = 3.3 V (true open drain ports)  
OL  
DD  
Figure 26. Typ. V @ V = 5 V (high sink ports)  
OL  
DD  
76/106  
DocID025118 Rev 5  
 
 
 
STM8AF6213/23/23A/26  
Electrical characteristics  
Figure 27. Typ. V @ V = 3.3 V (high sink ports)  
OL  
DD  
Figure 28. Typ. V - V @ V = 5 V (standard ports)  
DD  
OH  
DD  
Figure 29. Typ. V - V @ V = 3.3 V (standard ports)  
DD  
OH  
DD  
DocID025118 Rev 5  
77/106  
103  
 
 
 
Electrical characteristics  
STM8AF6213/23/23A/26  
Figure 30. Typ. V - V @ V = 5 V (high sink ports)  
DD  
OH  
DD  
Figure 31. Typ. V - V @ V = 3.3 V (high sink ports)  
DD  
OH  
DD  
78/106  
DocID025118 Rev 5  
 
 
STM8AF6213/23/23A/26  
Electrical characteristics  
9.3.7  
Reset pin characteristics  
Subject to general operating conditions for V and T unless otherwise specified.  
DD  
A
Table 51. NRST pin characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VIL(NRST) NRST input low level voltage(1)  
-
-0.3  
-
0.3 x VDD  
VDD + 0.3  
VIH(NRST) NRST input high level voltage(1) IOL= 2 mA  
-
-
0.7 x VDD  
V
VOL(NRST) NRST output low level voltage(1)  
RPU(NRST) NRST pull-up resistor(2)  
-
-
-
-
30  
-
0.5  
80  
75  
55  
-
k  
ns  
µs  
tIFP(NRST) NRST input filtered pulse(3)  
NRST Input not filtered pulse  
tINFP(NRST)  
duration(3)  
-
-
500  
20  
-
-
-
-
tOP(NRST) NRST output pulse(3)  
1. Data based on characterization results, not tested in production.  
2. The RPU pull-up equivalent resistor is based on a resistive transistor.  
3. Data guaranteed by design, not tested in production.  
Figure 32. Typical NRST V and V vs V @ 4 temperatures  
IL  
IH  
DD  
DocID025118 Rev 5  
79/106  
103  
 
 
 
 
Electrical characteristics  
STM8AF6213/23/23A/26  
Figure 33. Typical NRST pull-up resistance vs V @ 4 temperatures  
DD  
Figure 34. Typical NRST pull-up current vs V @ 4 temperatures  
DD  
The reset network shown in Figure 35 protects the device against parasitic resets. The user  
must ensure that the level on the NRST pin can go below V  
max (see Table 51:  
IL(NRST)  
NRST pin characteristics), otherwise the reset is not taken into account internally.  
For power consumption sensitive applications, the external reset capacitor value can be  
reduced to limit the charge/discharge current. If NRST signal is used to reset external  
circuitry, attention must be taken to the charge/discharge time of the external capacitor to  
fulfill the external devices reset timing conditions. Minimum recommended capacity is  
100 nF.  
80/106  
DocID025118 Rev 5  
 
 
STM8AF6213/23/23A/26  
Electrical characteristics  
Figure 35. Recommended reset pin protection  
670ꢆ$  
9''  
538  
([WHUQDOꢀ  
UHVHWꢀFLUFXLWꢀ  
ꢈRSWLRQDOꢉ  
,QWHUQDOꢀUHVHW  
1567  
)LOWHU  
ꢋꢄꢁꢀȝ)  
06Yꢍꢆꢍꢎꢁ9ꢁ  
SPI serial peripheral interface  
9.3.8  
Unless otherwise specified, the parameters given in Table 52 are derived from tests  
performed under ambient temperature, f frequency and V supply voltage  
MASTER  
DD  
conditions. t  
= 1/f  
.
MASTER  
MASTER  
Refer to I/O port characteristics for more details on the input/output alternate function  
characteristics (NSS, SCK, MOSI, MISO).  
Table 52. SPI characteristics  
Symbol  
Parameter  
Conditions(1)  
Min  
Max  
Unit  
Master mode  
0
0
8
6
fSCK  
1/tc(SCK)  
SPI clock frequency  
MHz  
Slave mode  
tr(SCK  
tf(SCK)  
)
Capacitive load:   
C = 30 pF  
SPI clock rise and fall time  
-
25  
(2)  
tsu(NSS)  
NSS setup time  
NSS hold time  
Slave mode  
Slave mode  
4 * tMASTER  
70  
-
-
(2)  
th(NSS)  
(2)  
tw(SCKH)  
tw(SCKL)  
SCK high and low time  
Data input setup time  
Master mode  
tSCK/2 - 15 tSCK/2 + 15  
(2)  
(2)  
Master mode  
Slave mode  
Master mode  
Slave mode  
Slave mode  
Slave mode  
5
5
-
tsu(MI)  
tsu(SI)  
(2)  
-
ns  
(2)  
7
-
th(MI)  
th(SI)  
Data input hold time  
(2)  
10  
-
-
(2)(3)  
ta(SO)  
Data output access time  
Data output disable time  
3* tMASTER  
-
(2)(4)  
tdis(SO)  
25  
Slave mode  
(after enable edge)  
(2)  
(2)  
tv(SO)  
Data output valid time  
Data output valid time  
-
-
65  
36  
Master mode   
(after enable edge)  
tv(MO)  
DocID025118 Rev 5  
81/106  
103  
 
 
 
Electrical characteristics  
Symbol  
STM8AF6213/23/23A/26  
Table 52. SPI characteristics (continued)  
Parameter Min  
Conditions(1)  
Slave mode   
Max  
Unit  
(2)  
th(SO)  
27  
-
(after enable edge)  
Data output hold time  
ns  
Master mode   
(after enable edge)  
(2)  
th(MO)  
11  
-
1. Parameters are given by selecting 10 MHz I/O output frequency.  
2. Values based on design simulation and/or characterization results, and not tested in production.  
3. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate  
the data.  
4. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put  
the data in Hi-Z.  
Figure 36. SPI timing diagram - slave mode and CPHA = 0  
166ꢀLQSXW  
W68ꢈ166ꢉ  
WKꢈ166ꢉ  
WFꢈ6&.ꢉ  
&3+$ ꢋ  
&32/ ꢋ  
WZꢈ6&.+ꢉ  
WZꢈ6&./ꢉ  
&3+$ ꢋ  
&32/ ꢁ  
WUꢈ6&.ꢉ  
W9ꢈ62ꢉ  
WKꢈ62ꢉ  
WGLVꢈ62ꢉ  
WIꢈ6&.ꢉ  
WDꢈ62ꢉ  
0,62  
287387  
06%ꢀ287  
%,7ꢃꢀ287  
/6%ꢀ287  
WVXꢈ6,ꢉ  
026,  
,1387  
06%ꢀ,1  
%,7ꢁꢀ,1  
/6%ꢀ,1  
WKꢈ6,ꢉ  
DLꢁꢊꢁꢍꢊF  
1. Measurement points are made at CMOS levels: 0.3 VDD and 0.7 VDD  
.
82/106  
DocID025118 Rev 5  
 
STM8AF6213/23/23A/26  
Electrical characteristics  
Figure 37. SPI timing diagram - slave mode and CPHA = 1  
166ꢀLQSXW  
W68ꢈ166ꢉ  
WKꢈ166ꢉ  
WFꢈ6&.ꢉ  
&3+$ ꢁ  
&32/ ꢋ  
&3+$ ꢁ  
&32/ ꢁ  
WZꢈ6&.+ꢉ  
WZꢈ6&./ꢉ  
WUꢈ6&.ꢉ  
WGLVꢈ62ꢉ  
WKꢈ62ꢉ  
WYꢈ62ꢉ  
WDꢈ62ꢉ  
WIꢈ6&.ꢉ  
0,62  
06%ꢀ287  
06%ꢀ,1  
%,7ꢃꢀ287  
/6%ꢀ287  
287387  
WKꢈ6,ꢉ  
WVXꢈ6,ꢉ  
026,  
,1387  
/6%ꢀ,1  
%,7ꢀꢁꢀ,1  
DLꢁꢊꢁꢍꢌE  
1. Measurement points are at CMOS levels: 0.3 VDD and 0.7 VDD  
.
(1)  
Figure 38. SPI timing diagram - master mode  
+LJK  
166ꢀLQSXW  
W
Fꢈ6&.ꢉ  
&3+$   
&32/ ꢋ  
&3+$   
&32/ ꢁ  
&3+$   
&32/ ꢋ  
&3+$   
&32/ ꢁ  
W
W
W
W
Zꢈ6&.+ꢉ  
Zꢈ6&./ꢉ  
Uꢈ6&.ꢉ  
Iꢈ6&.ꢉ  
W
VXꢈ0,ꢉ  
0,62  
,1387  
%,7ꢃꢀ,1  
/6%ꢀ,1  
06%ꢀ,1  
W
Kꢈ0,ꢉ  
026,  
287387  
%,7ꢁꢀ287  
/6%ꢀ287  
06%ꢀ287  
W
W
Kꢈ02ꢉ  
Yꢈ02ꢉ  
DLꢁꢊꢁꢍꢃF  
1. Measurement points are at CMOS levels: 0.3 VDD and 0.7 VDD  
.
DocID025118 Rev 5  
83/106  
103  
 
 
 
Electrical characteristics  
2
STM8AF6213/23/23A/26  
9.3.9  
I C interface characteristics  
2
Table 53. I C characteristics  
Standard mode I2C Fast mode I2C(1)  
Symbol  
Parameter  
Unit  
Min(2)  
Max(2)  
Min(2) Max(2)  
tw(SCLL) SCL clock low time  
tw(SCLH) SCL clock high time  
tsu(SDA) SDA setup time  
4.7  
4.0  
-
1.3  
0.6  
-
-
-
µs  
-
-
250  
100  
0(3)  
0(4)  
900(3)  
th(SDA)  
SDA data hold time  
3450  
tr(SDA)  
tr(SCL)  
ns  
µs  
SDA and SCL rise time  
-
1000  
300  
-
300  
tf(SDA)  
tf(SCL)  
SDA and SCL fall time  
-
-
300  
th(STA)  
START condition hold time  
4.0  
4.7  
4.0  
-
-
-
0.6  
0.6  
0.6  
-
-
-
tsu(STA) Repeated START condition setup time  
tsu(STO) STOP condition setup time  
STOP to START condition time   
tw(STO:STA)  
(bus free)  
4.7  
-
1.3  
-
Pulse width of spikes suppressed by  
the input filter  
tSP  
0
-
50(5)  
400  
0
-
50  
ns  
Cb  
Capacitive load for each bus line  
400  
pF  
1. fMASTER, must be at least 8 MHz to achieve max fast I2C speed (400 kHz)  
Data based on standard I2C protocol requirement, not tested in production  
2.  
The maximum hold time of the start condition has only to be met if the interface does not stretch the low  
time  
3.  
4.  
The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the  
undefined region of the falling edge of SCL  
5. The minimum width of the spikes filtered by the analog filter is above tSP(max)  
84/106  
DocID025118 Rev 5  
 
 
STM8AF6213/23/23A/26  
Electrical characteristics  
Figure 39. Typical application with I2C bus and timing diagram  
9
9
''  
''  
ꢊꢄꢎꢀNŸ  
670ꢆ  
ꢊꢄꢎꢀNŸ  
ꢁꢋꢋꢀŸ  
ꢁꢋꢋꢀŸ  
6'$  
6&/  
,ð&ꢀEXV  
67$57ꢀ5(3($7('  
67$57  
67$57  
W
VXꢈ67$  
6'$  
W
Uꢈ6'$ꢉ  
W
W
Iꢈ6'$ꢉ  
VXꢈ6'$ꢉ  
W
VXꢈ67$ꢑ672ꢉ  
6723  
W
W
W
Zꢈ6&//ꢉ  
Kꢈ6'$ꢉ  
Kꢈ67$  
6&/  
W
W
W
VXꢈ672ꢉ  
Uꢈ6&/ꢉ  
W
Iꢈ6&/ꢉ  
Zꢈ6&/+ꢉ  
DLꢁꢎꢊꢐꢋ9ꢅ  
1. Measurement points are made at CMOS levels: 0.3 x VDD and 0.7 x VDD  
.
DocID025118 Rev 5  
85/106  
103  
 
Electrical characteristics  
STM8AF6213/23/23A/26  
9.3.10  
10-bit ADC characteristics  
Subject to general operating conditions for V , f  
, and T unless otherwise  
A
DD MASTER  
specified.  
Table 54. ADC characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
4
Unit  
Typ  
V
DD = 3 to 5.5 V  
1
1
-
-
fADC  
ADC clock frequency  
MHz  
VDD = 4.5 to 5.5 V  
-
6
Conversion voltage  
range(1)  
VSS  
VDD  
VAIN  
VBGREF  
CADC  
-
1.22  
3
V
V
Internal bandgap  
reference voltage  
1.19(2)  
-
1.25(2)  
-
V
DD = 3 to 5.5 V  
Internal sample and hold  
capacitor  
-
pF  
fADC = 4MHz  
-
-
-
0.75  
0.5  
7
-
-
-
(1)  
tS  
Minimum sampling time  
fADC = 6 MHz  
-
µs  
tSTAB Wakeup time from standby  
f
ADC = 4 Hz  
3.5  
2.33  
14  
Minimum total conversion  
tCONV time including sampling  
time, 10-bit resolution  
µs  
fADC = 6 MHz  
-
1/fADC  
1. During the sample time the input capacitance CAIN (3 pF max) can be charged/discharged by the external  
source. The internal resistance of the analog source must allow the capacitance to reach its final voltage  
level within tS. After the end of the sample time tS, changes of the analog input voltage have no effect on  
the conversion result. Values for the sample clock tS depend on programming.  
2. Tested in production.  
86/106  
DocID025118 Rev 5  
 
 
 
 
STM8AF6213/23/23A/26  
Electrical characteristics  
Table 55. ADC accuracy with RAIN < 10 k, V = 5 V  
DD  
Max(1)  
3.5  
4
Symbol  
Parameter  
Conditions  
Typ  
Unit  
fADC = 2 MHz  
fADC = 4 MHz  
fADC = 6 MHz  
fADC = 2 MHz  
1.6  
2.2  
2.4  
1.1  
1.5  
1.8  
1.5  
2.1  
2.2  
0.7  
0.7  
0.7  
0.6  
0.8  
0.8  
|ET|  
Total unadjusted error(2)  
4.5  
2.5  
3
Offset error(2)  
f
f
ADC = 4 MHz  
ADC = 6 MHz  
|EO|  
|EG|  
|ED|  
|EL|  
3
fADC = 2 MHz  
ADC = 4 MHz  
3
Gain error(2)  
3
LSB  
f
fADC = 6 MHz  
fADC = 2 MHz  
4
1.5  
1.5  
1.5  
1.5  
2
Differential linearity error(2)  
Integral linearity error(2)  
f
f
ADC = 4 MHz  
ADC = 6 MHz  
fADC = 2 MHz  
ADC = 4 MHz  
fADC = 6 MHz  
f
2
1. Max value is based on characterization, not tested in production.  
2. ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins  
should be avoided as this significantly reduces the accuracy of the conversion being performed on another  
analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may  
potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and  
IINJ(PIN) in the I/O port pin characteristics section does not affect the ADC accuracy.  
Table 56. ADC accuracy with RAIN < 10 k, V = 3.3 V  
DD  
Max(1)  
3.5  
4
Symbol  
Parameter  
Conditions  
Typ  
Unit  
f
f
f
f
ADC = 2 MHz  
ADC = 4 MHz  
ADC = 2 MHz  
ADC = 4 MHz  
1.6  
1.9  
1
|ET|  
Total unadjusted error  
2.5  
2.5  
3
|EO|  
|EG|  
|ED|  
|EL|  
Offset error  
1.5  
1.3  
2
fADC = 2 MHz  
Gain error  
LSB  
f
f
f
f
f
ADC = 4 MHz  
ADC = 2 MHz  
ADC = 4 MHz  
ADC = 2 MHz  
ADC = 4 MHz  
3
0.7  
0.7  
0.6  
0.8  
1
Differential linearity error  
Integral linearity error  
1.5  
1.5  
2
1. Max value is based on characterization, not tested in production.  
DocID025118 Rev 5  
87/106  
103  
 
 
Electrical characteristics  
STM8AF6213/23/23A/26  
Figure 40. ADC accuracy characteristics  
E
G
1023  
1022  
1021  
V
V  
DDA  
SSA  
1LSB  
= ----------------------------------------  
IDEAL  
1024  
(2)  
E
T
(3)  
7
6
5
4
3
2
1
(1)  
E
O
E
L
E
D
1 LSB  
IDEAL  
7
0
V
1
2
3
4
5
6
1021102210231024  
V
DDA  
SSA  
1. Example of an actual transfer curve  
2. The ideal transfer curve  
3. End point correlation line  
ET = Total unadjusted error: Maximum deviation between the actual and the ideal transfer curves.  
E
O = Offset error: Deviation between the first actual transition and the first ideal one.  
EG = Gain error: Deviation between the last ideal transition and the last actual one.  
ED = Differential linearity error: Maximum deviation between actual steps and the ideal one.  
EL = Integral linearity error: Maximum deviation between any actual transition and the end point correlation  
line.  
Figure 41. Typical application with ADC  
9''  
^dDϴꢀ  
97  
ꢋꢄꢃꢀ9  
9$,1  
5$,1  
ꢀ/Edž  
ꢁꢋꢂELWꢀ$ꢇ'  
FRQYHUVLRQ  
97  
ꢋꢄꢃꢀ9  
&
&
$,1  
, “ꢀꢁꢀ—$  
/ꢀꢀꢀ  
$'&  
06Yꢍꢆꢍꢎꢅ9ꢁ  
1. Legend: RAIN = external resistance, CAIN = capacitors, Csamp = internal sample and hold capacitor.  
88/106  
DocID025118 Rev 5  
 
 
STM8AF6213/23/23A/26  
Electrical characteristics  
9.3.11  
EMC characteristics  
Susceptibility tests are performed on a sample basis during product characterization.  
Functional EMS (electromagnetic susceptibility)  
While executing a simple application (toggling 2 LEDs through I/O ports), the product is  
stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).  
FESD: Functional electrostatic discharge (positive and negative) is applied on all pins  
of the device until a functional disturbance occurs. This test conforms with the IEC  
61000-4-2 standard.  
FTB: A burst of fast transient voltage (positive and negative) is applied to V and V  
through a 100 pF capacitor, until a functional disturbance occurs. This test conforms  
DD  
SS  
with the IEC 61000-4-4 standard.  
A device reset allows normal operations to be resumed. The test results are given in the  
table below based on the EMS levels and classes defined in application note AN1709.  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
Prequalification trials  
Most of the common failures (unexpected reset and program counter corruption) can be  
recovered by applying a low state on the NRST pin or the oscillator pins for 1 second.  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring (see the application note reference AN1015).  
Table 57. EMS data  
Symbol  
Parameter  
Conditions  
Level/class  
VDD 3.3 V, TA25 °C,   
fMASTER 16 MHz (HSI clock),  
Conforms to IEC 61000-4-2  
Voltage limits to be applied on any I/O pin  
to induce a functional disturbance  
2/B(1)  
VFESD  
VDD3.3 V, TA25 °C,   
Fast transient voltage burst limits to be  
VEFTB applied through 100 pF on VDD and VSS  
pins to induce a functional disturbance  
fMASTER 16 MHz (HSI clock),  
Conforms to IEC 61000-4-4  
4/A  
1. Data obtained with HSI clock configuration, after applying hardware recommendations described in  
AN2860 (EMC guidelines for STM8S microcontrollers).  
DocID025118 Rev 5  
89/106  
103  
 
 
Electrical characteristics  
STM8AF6213/23/23A/26  
Electromagnetic interference (EMI)  
Based on a simple application running on the product (toggling 2 LEDs through the I/O  
ports), the product is monitored in terms of emission. This emission test is in line with the  
norm IEC 61967-2 which specifies the board and the loading of each pin.  
Table 58. EMI data  
Conditions  
(1)  
Max fHSE/fCPU  
Symbol  
Parameter  
Unit  
Monitored  
frequency band  
General conditions  
16 MHz/ 16 MHz/  
8 MHz 16 MHz  
0.1 MHz to 30 MHz  
30 MHz to 130 MHz  
130 MHz to 1 GHz  
5
4
5
5
VDD 5 V,   
TA 25 °C,   
LQFP32 package  
conforming to   
IEC 61967-2  
Peak level  
EMI level  
dBµV  
level  
SEMI  
5
5
2.5  
2.5  
1. Data based on characterization results, not tested in production.  
Absolute maximum ratings (electrical sensitivity)  
Based on three different tests (ESD, DLU and LU) using specific measurement methods,  
the product is stressed to determine its performance in terms of electrical sensitivity. For  
more details, refer to the application note AN1181.  
Electrostatic discharge (ESD)  
Electrostatic discharges (one positive then one negative pulses separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts*(n+1) supply pin). One model  
can be simulated: Human body model. This test conforms to the JESD22-A114A/A115A  
standard. For more details, refer to the application note AN1181.  
Table 59. ESD absolute maximum ratings  
Maximum  
Symbol  
Ratings  
Conditions  
Class  
Unit  
value(1)  
Electrostatic discharge voltageTA 25°C, conforming to  
VESD(HBM)  
VESD(CDM)  
VESD(MM)  
3A  
3
4000  
(Human body model)  
JESD22-A114  
Electrostatic discharge voltage  
(Charge device model)  
TA25°C, conforming to  
500  
200  
V
JESD22-C101  
Electrostatic discharge voltage  
(Machine model)  
TA25°C, conforming to  
B
JESD22-A115  
1. Data based on characterization results, not tested in production  
90/106  
DocID025118 Rev 5  
 
 
 
STM8AF6213/23/23A/26  
Electrical characteristics  
Static latch-up  
Two complementary static tests are required on six parts to assess the latch-up  
performance:  
A supply overvoltage (applied to each power supply pin),  
A current injection (applied to each input, output and configurable I/O pin) are  
performed on each sample.  
This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the  
application note AN1181.  
Table 60. Electrical sensitivities  
Class(1)  
Symbol  
Parameter  
Conditions  
TA 25 °C  
TA 85 °C  
TA 125 °C  
TA 150 °C  
LU  
Static latch-up class  
A
1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the  
JEDEC specifications, that means when a device belongs to class A it exceeds the JEDEC standard. B  
class strictly covers all the JEDEC criteria (international standard).  
DocID025118 Rev 5  
91/106  
103  
 
Package information  
STM8AF6213/23/23A/26  
10  
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
10.1  
LQFP32 package information  
Figure 42. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline  
3%!4).'  
0,!.%  
#
ꢉꢊꢆꢈ MM  
'!5'% 0,!.%  
CCC  
#
+
$
$ꢀ  
$ꢁ  
,
,ꢀ  
ꢆꢇ  
ꢀꢅ  
ꢀꢄ  
ꢆꢈ  
ꢁꢆ  
0). ꢀ  
)$%.4)&)#!4)/.  
E
ꢀ7@.&@7ꢁ  
1. Drawing is not to scale.  
92/106  
DocID025118 Rev 5  
 
 
 
 
STM8AF6213/23/23A/26  
Package information  
Table 61. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package  
mechanical data  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
-
0.050  
1.350  
0.300  
0.090  
8.800  
6.800  
-
-
1.600  
0.150  
1.450  
0.450  
0.200  
9.200  
7.200  
-
-
0.0020  
0.0531  
0.0118  
0.0035  
0.3465  
0.2677  
-
-
0.0630  
0.0059  
0.0571  
0.0177  
0.0079  
0.3622  
0.2835  
-
-
-
1.400  
0.370  
-
0.0551  
0.0146  
-
c
D
9.000  
7.000  
5.600  
9.000  
7.000  
5.600  
0.800  
0.600  
1.000  
3.5°  
0.3543  
0.2756  
0.2205  
0.3543  
0.2756  
0.2205  
0.0315  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
8.800  
6.800  
-
9.200  
7.200  
-
0.3465  
0.2677  
-
0.3622  
0.2835  
-
E1  
E3  
e
-
-
-
-
L
0.450  
-
0.750  
-
0.0177  
-
0.0295  
-
L1  
k
0°  
7°  
0°  
7°  
ccc  
-
-
0.100  
-
-
0.0039  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
DocID025118 Rev 5  
93/106  
103  
 
Package information  
STM8AF6213/23/23A/26  
Figure 43. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package  
recommended footprint  
ꢉꢊꢂꢉ  
ꢀꢊꢆꢉ  
ꢁꢇ  
ꢂꢆ  
ꢁꢀ  
ꢂꢅ  
ꢉꢊꢈꢉ  
ꢋꢄꢍꢋ  
ꢅꢊꢁꢉ  
ꢄꢊꢀꢉ  
ꢃꢊꢅꢉ  
ꢅꢊꢁꢉ  
ꢈꢁ  
ꢀꢊꢆꢉ  
ꢄꢊꢀꢉ  
ꢃꢊꢅꢉ  
ꢈ6?&0?6ꢆ  
1. Dimensions are expressed in millimeters.  
Device marking  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Figure 44. LQFP32 marking example (package top view)  
3URGXFWꢀ  
LGHQWLILFDWLRQ ꢈꢁꢉ  
999999  
999999  
'DWHꢀFRGH  
6WDQGDUGꢀ67ꢀORJR  
:
88  
5HYLVLRQꢀFRGH  
3LQꢀꢁꢀLGHQWLILHU  
06ꢍꢎꢎꢆꢐ9ꢁ  
94/106  
DocID025118 Rev 5  
 
 
 
STM8AF6213/23/23A/26  
Package information  
10.2  
TSSOP20 package information  
Figure 45.TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,  
package outline  
$
ꢆꢉ  
ꢀꢀ  
ꢀꢉ  
C
%ꢀ  
%
3%!4).'  
0,!.%  
ꢉꢊꢆꢈ MM  
'!'% 0,!.%  
#
0). ꢀ  
)$%.4)&)#!4)/.  
K
AAA  
#
!ꢀ  
,
!
!ꢆ  
,ꢀ  
B
E
9!?-%?6ꢁ  
1. Drawing is not to scale.  
Table 62. TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,  
package mechanical data  
millimeters  
Typ.  
inches(1)  
Symbol  
Min.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
A2  
b
-
-
1.200  
0.150  
1.050  
0.300  
0.200  
6.600  
6.600  
4.500  
-
-
-
0.0472  
0.0059  
0.0413  
0.0118  
0.0079  
0.2598  
0.2598  
0.1772  
-
0.050  
0.800  
0.190  
0.090  
6.400  
6.200  
4.300  
-
-
0.0020  
0.0315  
0.0075  
0.0035  
0.2520  
0.2441  
0.1693  
-
-
1.000  
-
0.0394  
-
c
-
-
D(2)  
6.500  
6.400  
4.400  
0.650  
0.600  
1.000  
0.2559  
0.2520  
0.1732  
0.0256  
0.0236  
0.0394  
E
E1(3)  
e
L
0.450  
-
0.750  
-
0.0177  
-
0.0295  
-
L1  
DocID025118 Rev 5  
95/106  
103  
 
 
 
Package information  
STM8AF6213/23/23A/26  
Table 62. TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,  
package mechanical data (continued)  
millimeters  
Typ.  
inches(1)  
Symbol  
Min.  
Max.  
Min.  
Typ.  
Max.  
k
0°  
-
-
-
8°  
0°  
-
-
-
8°  
aaa  
0.100  
0.0039  
1. Values in inches are converted from mm and rounded to four decimal digits.  
2. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs  
shall not exceed 0.15mm per side.  
3. Dimension “E1” does not include interlead flash or protrusions. Interlead flash or protrusions shall not  
exceed 0.25mm per side.  
Figure 46. TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,  
package footprint  
ꢋꢄꢅꢌ  
ꢃꢄꢅꢌ  
ꢅꢋ  
ꢁꢁ  
ꢁꢄꢍꢌ  
ꢋꢄꢅꢌ  
ꢎꢄꢁꢋ ꢊꢄꢊꢋ  
ꢁꢄꢍꢌ  
ꢁꢋ  
ꢋꢄꢊꢋ  
ꢋꢄꢃꢌ  
9!?&0?6ꢀ  
1. Dimensions are expressed in millimeters.  
96/106  
DocID025118 Rev 5  
 
STM8AF6213/23/23A/26  
Package information  
Device marking  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Figure 47. TSSOP20 marking example (package top view)  
6WDQGDUGꢀ67ꢀORJR  
3URGXFWꢀ  
LGHQWLILFDWLRQꢈꢁꢉ  
999999999  
'DWHꢀFRGH  
5HYLVLRQꢀFRGH  
3LQꢀꢁꢀLGHQWLILHU  
:
88  
06ꢍꢆꢍꢎꢍ9ꢁ  
DocID025118 Rev 5  
97/106  
103  
 
 
Package information  
STM8AF6213/23/23A/26  
10.3  
Thermal characteristics  
The maximum chip junction temperature (T  
) must never exceed the values given in  
Jmax  
Table 26: General operating conditions.  
T
, in degrees Celsius, may be calculated using the following equation:  
Jmax  
T
= T  
+ (P  
x )  
Dmax JA  
Jmax  
Amax  
Where:  
T
is the maximum ambient temperature in C  
Amax  
is the package junction-to-ambient thermal resistance in C/W  
JA  
P
is the sum of P  
and P  
(P  
= P  
+ P  
)
I/Omax  
Dmax  
INTmax  
I/Omax  
Dmax  
INTmax  
P
is the product of I and V , expressed in Watts. This is the maximum  
INTmax  
DD  
DD  
chip internal power.  
P
represents the maximum power dissipation on output pins  
I/Omax  
Where:  
P
= (V *I ) + ((V -V )*I ),   
I/Omax  
OL OL  
DD OH OH  
taking into account the actual V /I and V /I of the I/Os at low and high level  
OL OL  
OH OH  
in the application.  
(1)  
Table 63. Thermal characteristics  
Parameter  
Symbol  
Value  
Unit  
Thermal resistance junction-ambient  
TSSOP20 - 4 x 4 mm  
110  
°C/W  
JA  
Thermal resistance junction-ambient  
60  
°C/W  
LQFP 32 - 7 x 7 mm  
1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection  
environment.  
10.3.1  
10.3.2  
Reference document  
JESD51-2 integrated circuits thermal test method environment conditions - natural  
convection (still air). Available from www.jedec.org.  
Selecting the product temperature range  
When ordering the microcontroller, the temperature range is specified in the order code (see  
Section 11: Ordering information).  
The following example shows how to calculate the temperature range needed for a given  
application.  
98/106  
DocID025118 Rev 5  
 
 
 
 
 
STM8AF6213/23/23A/26  
Package information  
Assuming the following application conditions:  
Maximum ambient temperature T = 75 °C (measured according to JESD51-2),  
Amax  
I
= 8 mA, V = 5 V  
DDmax  
DD  
Maximum 20 I/Os used at the same time in output at low level with:   
= 8 mA, V = 0.4 V  
I
OL  
OL  
P
P
= 8 mA x 5 V= 400 mW  
INTmax  
= 20 x 8 mA x 0.4 V = 64 mW  
IOmax  
This gives: P  
= 400 mW and P  
64 mW:  
IOmax  
INTmax  
P
= 400 mW + 64 mW  
Dmax  
Thus: P  
= 464 mW.  
Dmax  
Using the values obtained in Table 63: Thermal characteristics on page 98 T  
is  
Jmax  
calculated as follows:  
For LQFP32 60 °C/W  
T
= 75 °C + (60 °C/W x464 mW) = 75 °C + 27.8 °C = 102.8 °C  
Jmax  
This is within the range of the suffix C version parts (-40 < T < 125 °C).  
J
Parts must be ordered at least with the temperature range suffix C.  
DocID025118 Rev 5  
99/106  
103  
Ordering information  
STM8AF6213/23/23A/26  
11  
Ordering information  
(1) (2)  
Figure 48. STM8AF6213/23/23A/26 ordering information scheme  
Example:  
STM8A  
F
62  
2
3
I
P
C
A
U
Product class  
8-bit automotive microcontroller  
Program memory type  
F = Flash + EEPROM  
Device family  
62 = LIN only  
Program memory size  
1 = 4 Kbyte  
2 = 8 Kbyte  
Pin count  
3 = 20 pins  
6 = 32 pins  
HSI accuracy  
Blank = ± 5%  
I = ± 3%  
Package type  
T = LQFP  
P = TSSOP  
Temperature range  
A = -40 to 85 °C  
C = -40 to 125 °C  
D = -40 to 150 °C  
Number of ADC analog inputs  
Blank = 5 analog inputs  
A = 7 analog inputs  
Packing  
Y = Tray  
U = Tube  
X = Tape and reel compliant with EIA 481-C  
1. For a list of available options (e.g. memory size, package) and orderable part numbers or for further  
information on any aspect of this device, please go to www.st.com or contact the nearest ST Sales Office.  
2. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
Samples to run qualification activity.  
100/106  
DocID025118 Rev 5  
 
 
 
STM8AF6213/23/23A/26  
STM8 development tools  
12  
STM8 development tools  
Development tools for the STM8 microcontrollers include the full-featured STice emulation  
system supported by a complete software tool package including C compiler, assembler and  
integrated development environment with high-level language debugger. In addition, the  
STM8 is to be supported by a complete range of tools including starter kits, evaluation  
boards and a low-cost in-circuit debugger/programmer.  
12.1  
Emulation and in-circuit debugging tools  
The STice emulation system offers a complete range of emulation and in-circuit debugging  
features on a platform that is designed for versatility and cost-effectiveness. In addition, the  
STM8 application development is supported by a low-cost in-circuit debugger/programmer.  
The STice is the fourth generation of full-featured emulators from STMicroelectronics. It  
offers new advanced debugging capabilities including coverage to help detect and eliminate  
bottlenecks in application execution and dead code when fine tuning an application.  
In addition, STice offers in-circuit debugging and programming of STM8A microcontrollers  
via the STM8 single wire interface module (SWIM), which allows non-intrusive debugging of  
an application while it runs on the target microcontroller.  
For improved cost effectiveness, STice is based on a modular design that allows you to  
order exactly what you need to meet your development requirements and to adapt your  
emulation system to support existing and future ST microcontrollers.  
12.1.1  
STice key features  
Occurrence and time profiling and code coverage analysis (new features)  
Advanced breakpoints with up to 4 levels of conditions  
Data breakpoints  
Program and data trace recording up to 128 KB records  
Read/write on-the-fly of memory during emulation  
In-circuit debugging/programming via SWIM protocol  
8-bit probe analyzer  
1 input and 2 output triggers  
Power supply follower managing application voltages between 1.62 to 5.5 V  
Modularity that allows you to specify the components you need to meet your  
development requirements and adapt to future requirements.  
Supported by free software tools that include integrated development environment  
(IDE), programming software interface and assembler for STM8.  
DocID025118 Rev 5  
101/106  
103  
 
 
 
STM8 development tools  
STM8AF6213/23/23A/26  
12.2  
Software tools  
STM8 development tools are supported by a complete, free software package from   
STMicroelectronics that includes ST visual develop (STVD) IDE and the ST visual   
programmer (STVP) software interface. STVD provides seamless integration of the Cosmic  
and Raisonance C compilers for STM8.  
12.2.1  
STM8 toolset  
The STM8 toolset with STVD integrated development environment and STVP programming  
software is available for free download at www.st.com. This package includes:  
ST visual develop  
Full-featured integrated development environment from STMicroelectronics, featuring:  
Seamless integration of C and ASM toolsets  
Full-featured debugger  
Project management  
Syntax highlighting editor  
Integrated programming interface  
Support of advanced emulation features for STice such as code profiling and coverage  
ST visual programmer (STVP)  
Easy-to-use, unlimited graphical interface allowing read, write and verify of your STM8  
microcontroller Flash program memory, data EEPROM and option bytes. STVP also offers  
project mode for saving programming configurations and automating programming  
sequences.  
12.2.2  
C and assembly toolchains  
Control of C and assembly toolchains is seamlessly integrated into the STVD integrated  
development environment, making it possible to configure and control the building of the  
application directly from an easy-to-use graphical interface.  
Available toolchains include:  
Cosmic C compiler for STM8  
All compilers are available in free version with a limited code size depending on the  
compiler. For more information, refer to www.cosmic-software.com, www.raisonance.com,  
and www.iar.com.  
STM8 assembler linker  
Free assembly toolchain included in the STM8 toolset, which allows the users to assemble  
and link your application source code.  
102/106  
DocID025118 Rev 5  
 
 
 
STM8AF6213/23/23A/26  
STM8 development tools  
12.3  
Programming tools  
During the development cycle, STice provides in-circuit programming of the STM8 Flash  
microcontroller on the user application board via the SWIM protocol. Additional tools include  
a low-cost in-circuit programmer as well as ST socket boards, which provide dedicated  
programming platforms with sockets for programming the STM8.  
For production environments, programmers will include a complete range of gang and  
automated programming solutions from third-party tool developers already supplying  
programmers for the STM8 family.  
DocID025118 Rev 5  
103/106  
103  
 
Revision history  
STM8AF6213/23/23A/26  
13  
Revision history  
Table 64. Document revision history  
Date  
Revision  
Changes  
11-Oct-2013  
1
Initial release.  
Changed the document status to Production data.  
Updated Figure: STM8AF6223PxAx TSSOP20 pinout to  
add SPI_NSS to PD4, TLI to PD2, and change remap  
function on PB5 from TIM5_BKIn to TIM1_BKIN.  
Updated Table: STM8AF6223PxAx TSSOP20 pin  
description to add SPI_NSS to PD4 and TLI to PD2.  
Updated Table: STM8AF6223 TSSOP20 pin description  
and Table: LQFP32 pin description.  
Updated AFR2 definition in Table: STM8AF6223PxAx  
alternate function remapping bits [7:2] for 20-pin  
packages.  
Removed the remapping option on PA3 for AFR[1:0]=10  
in Table: STM8AF6223PxAx alternate function  
remapping bits [1:0] for 20-pin packages.  
16-Dec-2013  
2
Added note and removed remapping option on PA3 for  
AFR[1:0]=11 in Table: STM8AF6223 alternate function  
remapping bits [1:0] for 20-pin packages. Updated AFR2  
definition in STM8AF6223 alternate function remapping  
bits [7:2] for 20-pin packages.  
Added the note below Table: STM8AF6226T alternate  
function remapping bits [1:0] for 32-pin packages.  
Updated Table: I2C characteristics to modify th(SDA) and  
add tSP  
.
Updated Section: C assembly toolchains.  
Replaced STM8AF6226T by STM8AF6226 part number.  
Added STM8AF6223A part number to cover  
STM8AF6223PxAx order codes.  
Removed LINUART alternate function for PA3 in Table:  
STM8AF6223PxAx TSSOP20 pin description.  
Removed note 3 for IDD(AH) in Table: Total current  
consumption in active halt mode at VDD = 5 V.  
Updated the remapping option on PA3 for AFR[1:0]=11  
in Table: STM8AF6223 alternate function remapping bits  
[1:0] for 20-pin packages.  
03-Apr-2014  
3
Updated notes related to tRET minimum value in Table:  
Data memory.  
Updated Table: ESD absolute maximum ratings.  
Added notes related to protrusions and gate burrs for D  
and E1 dimensions in Table: 20-pin, 4.40 mm body, 0.65  
mm pitch mechanical data.  
104/106  
DocID025118 Rev 5  
 
 
STM8AF6213/23/23A/26  
Date  
Revision history  
Table 64. Document revision history (continued)  
Revision  
Changes  
Extended the applicability to STM8AF6213 devices.  
Updated the program memory feature, the power  
management, and the clock management features on  
the cover page.  
10-Jul-2014  
4
Added the table in Section: Memory map.  
Updated the Figure: fCPUmax versus VDD in Section:  
Operating conditions.  
Updated Section: Ordering information.  
Added:  
– the footnote about the inrush current below Table 27:  
Operating conditions at power-up/power-down,  
Figure 44: LQFP32 marking example (package top  
view),  
Figure 47: TSSOP20 marking example (package top  
view).  
Updated  
– LIN standard version,  
– the register label for LINUART block in Table 11:  
General hardware register map,  
26-Jun-2015  
5
– the power dissipation in Table 26: General operating  
conditions,  
Table 41: HSI oscillator characteristics for HSI  
oscillator accuracy,  
– the standard for EMI in Electromagnetic interference  
(EMI),  
Figure 48: STM8AF6213/23/23A/26 ordering  
information scheme(1) (2) to add HSI accuracy.  
Moved Section 10.3: Thermal characteristics to  
Section 10: Package information.  
DocID025118 Rev 5  
105/106  
105  
STM8AF6213/23/23A/26  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and  
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on  
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order  
acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or  
the design of Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2015 STMicroelectronics – All rights reserved  
106/106  
DocID025118 Rev 5  

相关型号:

STM8AF6223A

Automotive 8-bit MCU, with up to 8 Kbyte Flash, data EEPROM, 10-bit ADC, timers, LIN, SPI, IC, 3 to 5.5 V
STMICROELECTR

STM8AF6226

Automotive 8-bit MCU, with up to 32 Kbytes Flash, data EEPROM, 10-bit ADC, timers, LIN, SPI, I2C, 3 to 5.5 V
STMICROELECTR

STM8AF6226TAX

8-BIT, FLASH, 16MHz, RISC MICROCONTROLLER, PQFP32, 7 X 7 MM, ROHS COMPLIANT, LQFP-32
STMICROELECTR

STM8AF6226TBX

8-BIT, FLASH, 16MHz, RISC MICROCONTROLLER, PQFP32, 7 X 7 MM, ROHS COMPLIANT, LQFP-32
STMICROELECTR

STM8AF6226TCX

8-BIT, FLASH, 16MHz, RISC MICROCONTROLLER, PQFP32, 7 X 7 MM, ROHS COMPLIANT, LQFP-32
STMICROELECTR

STM8AF6246

Automotive 8-bit MCU, with up to 32 Kbytes Flash, data EEPROM, 10-bit ADC, timers, LIN, SPI, I2C, 3 to 5.5 V
STMICROELECTR

STM8AF6246TBX

8-BIT, FLASH, 16MHz, RISC MICROCONTROLLER, PQFP32, 7 X 7 MM, ROHS COMPLIANT, LQFP-32
STMICROELECTR

STM8AF6246UBX

8-BIT, FLASH, 16MHz, RISC MICROCONTROLLER, QCC32, 5 X 5 MM, ROHS COMPLIANT, VFQFPN-32
STMICROELECTR

STM8AF6246UBY

8-BIT, FLASH, 16MHz, RISC MICROCONTROLLER, QCC32, 5 X 5 MM, ROHS COMPLIANT, VFQFPN-32
STMICROELECTR

STM8AF6246UCU

8-BIT, FLASH, 16MHz, RISC MICROCONTROLLER, QCC32, 5 X 5 MM, ROHS COMPLIANT, VFQFPN-32
STMICROELECTR

STM8AF6248

Automotive 8-bit MCU, with up to 32 Kbytes Flash, data EEPROM, 10-bit ADC, timers, LIN, SPI, I2C, 3 to 5.5 V
STMICROELECTR

STM8AF6248TAX

8-BIT, FLASH, 16MHz, RISC MICROCONTROLLER, PQFP48, 7 X 7 MM, ROHS COMPLIANT, LQFP-48
STMICROELECTR