STM8AF6226TBX [STMICROELECTRONICS]

8-BIT, FLASH, 16MHz, RISC MICROCONTROLLER, PQFP32, 7 X 7 MM, ROHS COMPLIANT, LQFP-32;
STM8AF6226TBX
型号: STM8AF6226TBX
厂家: ST    ST
描述:

8-BIT, FLASH, 16MHz, RISC MICROCONTROLLER, PQFP32, 7 X 7 MM, ROHS COMPLIANT, LQFP-32

文件: 总89页 (文件大小:1356K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM8AF6x26/4x/66/68  
Automotive 8-bit MCU, with up to 32 Kbytes Flash, data EEPROM,  
10-bit ADC, timers, LIN, SPI, I2C, 3 to 5.5 V  
Datasheet production data  
Features  
Core  
– Max f  
: 16 MHz  
LQFP48 7x7  
LQFP32 7x7  
CPU  
– Advanced STM8A core with Harvard  
architecture and 3-stage pipeline  
– Average 1.6 cycles/instruction resulting in  
VFQFPN32 5x5  
10 MIPS at 16 MHz f  
standard benchmark  
for industry  
CPU  
– Window and independent watchdog timers  
Memories  
Communication interfaces  
– Flash Program memory: 16 to 32 Kbytes  
Flash; data retention 20 years at 55 °C  
after 1 kcycle  
– LINUART  
– LIN 2.1 compliant, master/slave modes  
with automatic resynchronization  
– Data memory: 0.5 to 1 Kbyte true data  
EEPROM; endurance 300 kcycles  
– SPI interface up to 10 Mbit/s or f  
– I C interface up to 400 Kbit/s  
/2  
MASTER  
2
– RAM: 1 to 2 Kbytes  
Analog-to-digital converter (ADC)  
Clock management  
– 10-bit accuracy, 2LSB TUE accuracy, 2LSB  
TUE linearity ADC and up to 10 multiplexed  
channels with individual data buffer  
– Low-power crystal resonator oscillator with  
external clock input  
– Internal, user-trimmable 16 MHz RC and  
low-power 128 kHz RC oscillators  
– Clock security system with clock monitor  
– Analog watchdog, scan and continuous  
sampling mode  
I/Os  
Reset and supply management  
– Wait/auto-wakeup/Halt low-power modes  
with user definable clock gating  
– Up to 38 user pins including 10 HS I/Os  
– Highly robust I/O design, immune against  
current injection  
– Low consumption power-on and power-  
down reset  
Operating temperature up to 150 °C  
Qualification conforms to AEC-Q100 rev G  
Interrupt management  
(1)  
– Nested interrupt controller with 32 vectors  
– Up to 34 external interrupts on 5 vectors  
Table 1.  
Device summary  
Part numbers: STM8AF622x/4x STM8AF6266/68  
Timers  
STM8AF6268, STM8AF6248, STM8AF6266, STM8AF6246,  
STM8AF6226  
– Up to 2 general purpose 16-bit PWM timers  
with up to 3 CAPCOM channels each (IC,  
OC or PWM)  
– Advanced control timer: 16-bit, 4 CAPCOM  
channels, 3 complementary outputs, dead-  
time insertion and flexible synchronization  
(2)  
(2)  
Part numbers: STM8AF612x/4x STM8AF6166/68  
STM8AF6168, STM8AF6148, STM8AF6166, STM8AF6146,  
STM8AF6126  
1. In the order code, ‘F’ applies to devices with Flash program  
memory and data EEPROM while ‘H’ refers to devices with  
Flash program memory only. ‘F’ is replaced by ‘P’ for devices  
with FASTROM (see Tables 2 and 3, and Figure 47).  
– 8-bit AR basic timer with 8-bit prescaler  
– Auto-wakeup timer  
2. Not recommended for new design.  
July 2012  
Doc ID 14952 Rev 6  
1/89  
This is information on a product in full production.  
www.st.com  
1
 
 
 
 
 
 
Contents  
STM8AF61xx, STM8AF62xx  
Contents  
1
2
3
4
5
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Product line-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Product overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
5.1  
STM8A central processing unit (CPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
5.1.1  
5.1.2  
5.1.3  
Architecture and registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
5.2  
Single wire interface module (SWIM) and debug module (DM) . . . . . . . . 13  
5.2.1  
5.2.2  
SWIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Debug module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5.3  
5.4  
Interrupt controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Flash program and data EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5.4.1  
5.4.2  
5.4.3  
5.4.4  
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Write protection (WP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Protection of user boot code (UBC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Read-out protection (ROP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5.5  
Clock controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5.5.1  
5.5.2  
5.5.3  
5.5.4  
5.5.5  
5.5.6  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
16 MHz high-speed internal RC oscillator (HSI) . . . . . . . . . . . . . . . . . . 15  
128 kHz low-speed internal RC oscillator (LSI) . . . . . . . . . . . . . . . . . . . 16  
16 MHz high-speed external crystal oscillator (HSE) . . . . . . . . . . . . . . 16  
External clock input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Clock security system (CSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
5.6  
5.7  
Low-power operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
5.7.1  
5.7.2  
5.7.3  
Watchdog timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Auto-wakeup counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2/89  
Doc ID 14952 Rev 6  
STM8AF61xx, STM8AF62xx  
Contents  
5.7.4  
5.7.5  
Advanced control and general purpose timers . . . . . . . . . . . . . . . . . . . 18  
Basic timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
5.8  
5.9  
Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
5.9.1  
5.9.2  
5.9.3  
Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
2
Inter integrated circuit (I C) interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Universal asynchronous receiver/transmitter with LIN support  
(LINUART) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
5.10 Input/output specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
6
7
Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
6.1  
6.2  
Package pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Alternate function remapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Memory and register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
7.1  
7.2  
Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
8
Interrupt table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
9
10  
10.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
10.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
10.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
10.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
10.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
10.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
10.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
10.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
10.3.1 VCAP external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
10.3.2 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
10.3.3 External clock sources and timing characteristics . . . . . . . . . . . . . . . . . 54  
10.3.4 Internal clock sources and timing characteristics . . . . . . . . . . . . . . . . . 56  
10.3.5 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
10.3.6 I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Doc ID 14952 Rev 6  
3/89  
Contents  
STM8AF61xx, STM8AF62xx  
10.3.7 Reset pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
10.3.8 TIM 1, 2, 3, and 4 timer specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
10.3.9 SPI serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
2
10.3.10 I C interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
10.3.11 10-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
10.3.12 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
10.4 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
10.4.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
10.4.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . . . 74  
11  
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
11.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
12  
13  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
STM8 development tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
13.1 Emulation and in-circuit debugging tools . . . . . . . . . . . . . . . . . . . . . . . . . 82  
13.1.1 STice key features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
13.2 Software tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
13.2.1 STM8 toolset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
13.2.2 C and assembly toolchains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
13.3 Programming tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
14  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
4/89  
Doc ID 14952 Rev 6  
STM8AF61xx, STM8AF62xx  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
STM8AF62xx product line-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
STM8AF/H61xx product line-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers. . . . . . . . . . . . . . . 16  
Advanced control and general purpose timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
TIM4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
ADC naming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Communication peripheral naming correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Legend/abbreviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
STM8AF61xx/62xx (32 Kbytes) microcontroller pin description . . . . . . . . . . . . . . . . . . . . . 26  
Memory model for the devices covered in this datasheet. . . . . . . . . . . . . . . . . . . . . . . . . . 29  
I/O port hardware register map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
General hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
CPU/SWIM/debug module/interrupt controller registers. . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Temporary memory unprotection registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
STM8A interrupt table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Option byte description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Operating lifetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Operating conditions at power-up/power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Total current consumption in Run, Wait and Slow mode.  
General conditions for V apply, T = -40 to 150 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
DD  
A
Table 26.  
Total current consumption in Halt and Active-halt modes.  
General conditions for V apply, T = -40 to 55 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
DD  
A
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
Table 44.  
Table 45.  
Table 46.  
Oscillator current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Programming current consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Typical peripheral current consumption V = 5.0 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
DD  
HSE user external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Flash program memory/data EEPROM memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Flash program memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Data memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
TIM 1, 2, 3, and 4 electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
2
I C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
ADC accuracy for V  
= 5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
DDA  
EMS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
EMI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Doc ID 14952 Rev 6  
5/89  
List of tables  
STM8AF61xx, STM8AF62xx  
Table 47.  
Table 48.  
Table 49.  
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
VFQFPN 32-lead very thin fine pitch quad flat no-lead package  
mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
LQFP 48-pin low profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . 77  
LQFP 32-pin low profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . 79  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Table 50.  
Table 51.  
Table 52.  
6/89  
Doc ID 14952 Rev 6  
STM8AF61xx, STM8AF62xx  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
STM8A block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Flash memory organization of STM8A products. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
VFQFPN/LQFP 32-pin pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
LQFP 48-pin pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Register and memory map of STM8A products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
f
versus V  
CPUmax  
DD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
External capacitor C  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
EXT  
Figure 10. Typ. I  
Figure 11. Typ. I  
Figure 12. Typ. I  
Figure 13. Typ. I  
Figure 14. Typ. I  
Figure 15. Typ. I  
vs. V @f  
= 16 MHz, peripheral = on . . . . . . . . . . . . . . . . . . . . . . . 53  
DD(RUN)HSE  
DD(RUN)HSE  
DD(RUN)HSI  
DD(WFI)HSE  
DD(WFI)HSE  
DD  
CPU  
vs. f  
@ V = 5.0 V, peripheral = on . . . . . . . . . . . . . . . . . . . . . . . . 53  
CPU  
DD  
vs. V @ f  
= 16 MHz, peripheral = off . . . . . . . . . . . . . . . . . . . . . . . 54  
= 16 MHz, peripheral = on . . . . . . . . . . . . . . . . . . . . . . . 54  
DD  
CPU  
vs. V @ f  
DD  
CPU  
vs. f  
@ V = 5.0 V, peripheral = on . . . . . . . . . . . . . . . . . . . . . . . . . 54  
CPU  
DD  
vs. V @ f = 16 MHz, peripheral = off . . . . . . . . . . . . . . . . . . . . . . . 54  
DD(WFI)HSI  
DD  
CPU  
Figure 16. HSE external clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 17. HSE oscillator circuit diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 18. Typical HSI frequency vs V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
DD  
Figure 19. Typical LSI frequency vs V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
DD  
Figure 20. Typical V and V vs V @ four temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
IL  
IH  
DD  
Figure 21. Typical pull-up resistance R vs V @ four temperatures . . . . . . . . . . . . . . . . . . . . . . . 60  
PU  
DD  
Figure 22. Typical pull-up current I vs V @ four temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
pu  
DD  
Figure 23. Typ. V @ V = 3.3 V (standard ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
OL  
DD  
Figure 24. Typ. V @ V = 5.0 V (standard ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
OL  
DD  
Figure 25. Typ. V @ V = 3.3 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
OL  
DD  
Figure 26. Typ. V @ V = 5.0 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
OL  
DD  
Figure 27. Typ. V @ V = 3.3 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
OL  
DD  
Figure 28. Typ. V @ V = 5.0 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
OL  
DD  
Figure 29. Typ. V - V @ V = 3.3 V (standard ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
DD  
OH  
DD  
Figure 30. Typ. V - V @ V = 5.0 V (standard ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
DD  
OH  
DD  
Figure 31. Typ. V - V @ V = 3.3 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
DD  
OH  
DD  
Figure 32. Typ. V - V @ V = 5.0 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
DD  
OH  
DD  
Figure 33. Typical NRST V and V vs V @ four temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
IL  
IH  
DD  
Figure 34. Typical NRST pull-up resistance R vs V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
PU  
DD  
Figure 35. Typical NRST pull-up current I vs V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
pu  
DD  
Figure 36. Recommended reset pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Figure 37. SPI timing diagram where slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Figure 38. SPI timing diagram where slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Figure 39. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Figure 40. Typical application with ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Figure 41. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Figure 42. VFQFPN 32-lead very thin fine pitch quad flat no-lead package (5 x 5). . . . . . . . . . . . . . . 76  
Figure 43. LQFP 48-pin low profile quad flat package (7 x 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Figure 44. LQFP 48-pin recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Figure 45. LQFP 32-pin low profile quad flat package (7 x 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Figure 46. LQFP 32-pin recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
(1)  
Figure 47. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Doc ID 14952 Rev 6  
7/89  
Introduction  
STM8AF61xx, STM8AF62xx  
1
Introduction  
This datasheet refers to the STM8AF61xx (STM8AF612x, STM8AF614x, STM8AF6166,  
and STM8AF6168) and STM8AF62xx products with 16 to 32 Kbytes of Flash program  
memory.  
In the order code, the letter ‘F’ refers to product versions with data EEPROM and ‘H’ refers  
to product versions without data EEPROM. The identifiers ‘F’ and ‘H’ do not coexist in a  
given order code.  
The datasheet contains the description of family features, pinout, electrical characteristics,  
mechanical data and ordering information.  
For complete information on the STM8A microcontroller memory, registers and  
peripherals, please refer to STM8S and STM8A microcontroller families reference  
manual (RM0016).  
For information on programming, erasing and protection of the internal Flash memory  
please refer to the STM8 Flash programming manual (PM0051).  
For information on the debug and SWIM (single wire interface module) refer to the  
STM8 SWIM communication protocol and debug module user manual (UM0470).  
For information on the STM8 core, please refer to the STM8 CPU programming manual  
(PM0044).  
8/89  
Doc ID 14952 Rev 6  
 
STM8AF61xx, STM8AF62xx  
Description  
2
Description  
The STM8AF61xx and STM8AF62xx automotive 8-bit microcontrollers offer from 16 to 32  
Kbytes of Flash program memory and integrated true data EEPROM. They are referred to  
as medium density STM8A devices in the STM8S and STM8A microcontroller families  
reference manual (RM0016).  
All devices of the STM8A product line provide the following benefits: reduced system cost,  
performance and robustness, short development cycles, and product longevity.  
The system cost is reduced thanks to an integrated true data EEPROM for up to 300 k  
write/erase cycles and a high system integration level with internal clock oscillators,  
watchdog, and brown-out reset.  
Device performance is ensured by a clock frequency of up to 16 MHz CPU and enhanced  
characteristics which include robust I/O, independent watchdogs (with a separate clock  
source), and a clock security system.  
Short development cycles are guaranteed due to application scalability across a common  
family product architecture with compatible pinout, memory map and and modular  
peripherals. Full documentation is offered with a wide choice of development tools.  
Product longevity is ensured in the STM8A family thanks to their advanced core which is  
made in a state-of-the art technology for automotive applications with 3.3 V to 5 V operating  
supply.  
All STM8A and ST7 microcontrollers are supported by the same tools including  
STVD/STVP development environment, the STice emulator and a low-cost, third party in-  
circuit debugging tool.  
Doc ID 14952 Rev 6  
9/89  
 
Product line-up  
STM8AF61xx, STM8AF62xx  
3
Product line-up  
²
Table 2.  
STM8AF62xx product line-up  
Medium  
density  
Flash  
I/0  
wakeup  
pins  
RAM Data EE 10-bit  
Timers  
Serial  
interfaces  
Order code  
Package  
program (bytes) (bytes) A/D ch. (IC/OC/PWM)  
memory  
(bytes)  
STM8AF/P6268  
STM8AF/P6248  
32 K  
16 K  
2 K  
2 K  
1 K  
1x8-bit: TIM4  
3x16-bit: TIM1, LIN(UART),  
LQFP48  
(7x7)  
10  
38/35  
25/23  
25/23  
TIM2, TIM3  
(9/9/9)  
SPI, I²C  
0.5 K  
STM8AF/P6266  
STM8AF/P6246  
STM8AF/P6226  
STM8AF/P6266  
32 K  
16 K  
8 K  
2 K  
2 K  
2 K  
2 K  
1 K  
0.5 K  
384  
1x8-bit: TIM4  
3x16-bit: TIM1, LIN(UART),  
LQFP32  
(7x7)  
7
7
TIM2, TIM3  
(8/8/8)  
SPI, I²C  
32 K  
1 K  
1x8-bit: TIM4  
3x16-bit: TIM1, LIN(UART),  
VFQFPN32  
TIM2, TIM3  
(8/8/8)  
SPI, I²C  
STM8AF/P6246  
16 K  
2 K  
0.5 K  
²
(1)  
Table 3.  
STM8AF/H61xx product line-up  
Medium  
density  
Flash  
I/0  
wakeup  
pins  
RAM Data EE 10-bit  
Timers  
Serial  
Order code  
Package  
program (bytes) (bytes) A/D ch. (IC/OC/PWM) interfaces  
memory  
(bytes)  
STM8AF/H/P6168  
STM8AF/H/P6148  
32 K  
16 K  
2 K  
1 K  
1 K  
1x8-bit: TIM4  
3x16-bit: TIM1, LIN(UART),  
TIM2, TIM3  
(9/9/9)  
LQFP48  
(7x7)  
10  
7
38/35  
25/23  
SPI, I²C  
0.5 K  
STM8AF/H/P6166  
STM8AF/H/P6146  
STM8AF/H/P6126  
32 K  
16 K  
8 K  
2 K  
1 K  
512  
1 K  
0.5 K  
384  
1x8-bit: TIM4  
3x16-bit: TIM1, LIN(UART),  
TIM2, TIM3  
(8/8/8)  
LQFP32  
(7x7)  
SPI, I²C  
1. These devices are not recommended for new design.  
10/89  
Doc ID 14952 Rev 6  
 
 
 
 
 
STM8AF61xx, STM8AF62xx  
Block diagram  
4
Block diagram  
Figure 1.  
STM8A block diagram  
Reset block  
Reset  
XTAL 1 - 16 MHz  
RC int. 16 MHz  
Clock controller  
Detector  
Reset  
POR  
BOR  
RC int. 128 kHz  
Clock to peripherals and core  
Window WDG  
IWDG  
STM8A CORE  
Single wire  
debug interf.  
Up to 32 Kbytes  
program  
Debug/SWIM  
LINUART  
Flash  
Master/slave  
automatic  
resynchronization  
Up to 1 Kbytes  
data EEPROM  
400 Kbit/s  
2
Up to 2 Kbytes  
RAM  
I C  
Boot ROM  
10 Mbit/s  
SPI  
16-bit advanced control  
timer (TIM1)  
16 channels  
10-bit ADC  
Up to  
9 CAPCOM  
channels  
16-bit general purpose  
timers (TIM2, TIM3)  
8-bit basic timer  
(TIM4)  
AWU timer  
1. Legend:  
ADC: Analog-to-digital converter  
beCAN: Controller area network  
BOR: Brownout reset  
I²C: Inter-integrated circuit multimaster interface  
IWDG: Independent window watchdog  
LINUART: Local interconnect network universal asynchronous receiver transmitter  
POR: Power on reset  
SPI: Serial peripheral interface  
SWIM: Single wire interface module  
USART: Universal synchronous asynchronous receiver transmitter  
Window WDG: Window watchdog  
Doc ID 14952 Rev 6  
11/89  
 
 
Product overview  
STM8AF61xx, STM8AF62xx  
5
Product overview  
This section is intended to describe the family features that are actually implemented in the  
products covered by this datasheet.  
For more detailed information on each feature please refer to the STM8S and STM8A  
microcontroller families reference manual (RM0016).  
5.1  
STM8A central processing unit (CPU)  
The 8-bit STM8A core is a modern CISC core and has been designed for code efficiency  
and performance. It contains 21 internal registers (six directly addressable in each execution  
context), 20 addressing modes including indexed indirect and relative addressing and 80  
instructions.  
5.1.1  
Architecture and registers  
Harvard architecture  
3-stage pipeline  
32-bit wide program memory bus with single cycle fetching for most instructions  
X and Y 16-bit index registers, enabling indexed addressing modes with or without  
offset and read-modify-write type data manipulations  
8-bit accumulator  
24-bit program counter with 16-Mbyte linear memory space  
16-bit stack pointer with access to a 64 Kbyte stack  
8-bit condition code register with seven condition flags for the result of the last  
instruction.  
5.1.2  
5.1.3  
Addressing  
20 addressing modes  
Indexed indirect addressing mode for look-up tables located anywhere in the address  
space  
Stack pointer relative addressing mode for efficient implementation of local variables  
and parameter passing  
Instruction set  
80 instructions with 2-byte average instruction size  
Standard data movement and logic/arithmetic functions  
8-bit by 8-bit multiplication  
16-bit by 8-bit and 16-bit by 16-bit division  
Bit manipulation  
Data transfer between stack and accumulator (push/pop) with direct stack access  
Data transfer using the X and Y registers or direct memory-to-memory transfers  
12/89  
Doc ID 14952 Rev 6  
 
 
 
 
 
STM8AF61xx, STM8AF62xx  
Product overview  
5.2  
Single wire interface module (SWIM) and debug module (DM)  
5.2.1  
SWIM  
The single wire interface module, SWIM, together with an integrated debug module, permits  
non-intrusive, real-time in-circuit debugging and fast memory programming. The interface  
can be activated in all device operation modes and can be connected to a running device  
(hot plugging).The maximum data transmission speed is 145 bytes/ms.  
5.2.2  
Debug module  
The non-intrusive debugging module features a performance close to a full-flavored  
emulator. Besides memory and peripheral operation, CPU operation can also be monitored  
in real-time by means of shadow registers.  
R/W of RAM and peripheral registers in real-time  
R/W for all resources when the application is stopped  
Breakpoints on all program-memory instructions (software breakpoints), except the  
interrupt vector table  
Two advanced breakpoints and 23 predefined breakpoint configurations  
5.3  
5.4  
Interrupt controller  
Nested interrupts with three software priority levels  
21 interrupt vectors with hardware priority  
Five vectors for external interrupts (up to 34 depending on the package)  
Trap and reset interrupts  
Flash program and data EEPROM  
8 Kbytes to 32 Kbytes of medium density single voltage program Flash memory  
Up to 1 Kbytes true (not emulated) data EEPROM  
Read while write: writing in the data memory is possible while executing code in the  
Flash program memory  
The whole Flash program memory and data EEPROM are factory programmed with 0x00.  
5.4.1  
Architecture  
The memory is organized in blocks of 128 bytes each  
Read granularity: 1 word = 4 bytes  
Write/erase granularity: 1 word (4 bytes) or 1 block (128 bytes) in parallel  
Writing, erasing, word and block management is handled automatically by the memory  
interface.  
Doc ID 14952 Rev 6  
13/89  
 
 
 
 
 
 
Product overview  
STM8AF61xx, STM8AF62xx  
5.4.2  
Write protection (WP)  
Write protection in application mode is intended to avoid unintentional overwriting of the  
memory. The write protection can be removed temporarily by executing a specific sequence  
in the user software.  
5.4.3  
Protection of user boot code (UBC)  
If the user chooses to update the Flash program memory using a specific boot code to  
perform in application programming (IAP), this boot code needs to be protected against  
unwanted modification.  
In the STM8A a memory area of up to 32 Kbytes can be protected from overwriting at user  
option level. Other than the standard write protection, the UBC protection can exclusively be  
modified via the debug interface, the user software cannot modify the UBC protection status.  
The UBC memory area contains the reset and interrupt vectors and its size can be adjusted  
in increments of 512 bytes by programming the UBC and NUBC option bytes  
(see Section 9: Option bytes on page 41).  
Figure 2.  
Flash memory organization of STM8A products  
Programmable area  
maximum 32 Kbytes  
UBC area  
Remains write protected during IAP  
Flash  
program  
memory  
Flash program memory area  
Write access possible for IAP  
Data memory area (1 Kbytes)  
Option bytes  
Data  
EEPROM  
memory  
5.4.4  
Read-out protection (ROP)  
The STM8A provides a read-out protection of the code and data memory which can be  
activated by an option byte setting (see the ROP option byte in section 10).  
The read-out protection prevents reading and writing Flash program memory, data memory  
and option bytes via the debug module and SWIM interface. This protection is active in all  
device operation modes. Any attempt to remove the protection by overwriting the ROP  
option byte triggers a global erase of the program and data memory.  
The ROP circuit may provide a temporary access for debugging or failure analysis. The  
temporary read access is protected by a user defined, 8-byte keyword stored in the option  
byte area. This keyword must be entered via the SWIM interface to temporarily unlock the  
device.  
14/89  
Doc ID 14952 Rev 6  
 
 
 
 
STM8AF61xx, STM8AF62xx  
Product overview  
If desired, the temporary unlock mechanism can be permanently disabled by the user  
through OPT6/NOPT6 option bytes.  
5.5  
Clock controller  
The clock controller distributes the system clock coming from different oscillators to the core  
and the peripherals. It also manages clock gating for low-power modes and ensures clock  
robustness.  
5.5.1  
Features  
Clock sources:  
16 MHz high-speed internal RC oscillator (HSI)  
128 kHz low-speed internal RC (LSI)  
1-16 MHz high-speed external crystal (HSE)  
Up to 16 MHz high-speed user-external clock (HSE user-ext)  
Reset: After reset the microcontroller restarts by default with an internal 2-MHz clock  
(16 MHz/8). The clock source and speed can be changed by the application program  
as soon as the code execution starts.  
Safe clock switching: Clock sources can be changed safely on the fly in Run mode  
through a configuration register. The clock signal is not switched until the new clock  
source is ready. The design guarantees glitch-free switching.  
Clock management: To reduce power consumption, the clock controller can stop the  
clock to the core or individual peripherals.  
Wakeup: In case the device wakes up from low-power modes, the internal RC  
oscillator (16 MHz/8) is used for quick startup. After a stabilization time, the device  
switches to the clock source that was selected before Halt mode was entered.  
Clock security system (CSS): The CSS permits monitoring of external clock sources  
and automatic switching to the internal RC (16 MHz/8) in case of a clock failure.  
Configurable main clock output (CCO): This feature permits to outputs a clock signal  
for use by the application.  
5.5.2  
16 MHz high-speed internal RC oscillator (HSI)  
Default clock after reset 2 MHz (16 MHz/8)  
Fast wakeup time  
User trimming  
The register CLK_HSITRIMR with three trimming bits plus one additional bit for the sign  
permits frequency tuning by the application program. The adjustment range covers all  
possible frequency variations versus supply voltage and temperature. This trimming does  
not change the initial production setting.  
For reason of compatibility with other devices from the STM8A family, a special mode  
with only two trimming bits plus sign can be selected. This selection is controlled  
with the HSITRIM0 bit in the option byte registers OPT3 and NOPT3.  
Doc ID 14952 Rev 6  
15/89  
 
 
 
 
Product overview  
STM8AF61xx, STM8AF62xx  
5.5.3  
128 kHz low-speed internal RC oscillator (LSI)  
The frequency of this clock is 128 kHz and it is independent from the main clock. It drives  
the independent watchdog or the AWU wakeup timer.  
In systems which do not need independent clock sources for the watchdog counters, the  
128 kHz signal can be used as the system clock. This configuration has to be enabled by  
setting an option byte (OPT3/OPT3N, bit LSI_EN).  
5.5.4  
16 MHz high-speed external crystal oscillator (HSE)  
The external high-speed crystal oscillator can be selected to deliver the main clock in  
normal Run mode. It operates with quartz crystals and ceramic resonators.  
Frequency range: 1 MHz to 16 MHz  
Crystal oscillation mode: preferred fundamental  
I/Os: standard I/O pins multiplexed with OSCIN, OSCOUT  
5.5.5  
5.5.6  
External clock input  
An external clock signal can be applied to the OSCIN input pin of the crystal oscillator. The  
frequency range is 0 to 16 MHz.  
Clock security system (CSS)  
The clock security system protects against a system stall in case of an external crystal clock  
failure.  
In case of a clock failure an interrupt is generated and the high-speed internal clock (HSI) is  
automatically selected with a frequency of 2 MHz (16 MHz/8).  
Table 4.  
Bit  
Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers  
Peripheral  
clock  
Peripheral  
clock  
Peripheral  
clock  
Peripheral  
clock  
Bit  
Bit  
Bit  
PCKEN17  
PCKEN16  
PCKEN15  
PCKEN14  
TIM1  
TIM3  
TIM2  
TIM4  
PCKEN13 LINUART PCKEN27 Reserved PCKEN23  
PCKEN12 Reserved PCKEN26 Reserved PCKEN22  
ADC  
AWU  
PCKEN11  
PCKEN10  
SPI  
I2C  
PCKEN25 Reserved PCKEN21 Reserved  
PCKEN24 Reserved PCKEN20 Reserved  
16/89  
Doc ID 14952 Rev 6  
 
 
 
 
 
STM8AF61xx, STM8AF62xx  
Product overview  
5.6  
Low-power operating modes  
For efficient power management, the application can be put in one of four different low  
power modes. You can configure each mode to obtain the best compromise between lowest  
power consumption, fastest start-up time and available wakeup sources.  
Wait mode  
In this mode, the CPU is stopped but peripherals are kept running. The wakeup is  
performed by an internal or external interrupt or reset.  
Active-halt mode with regulator on  
In this mode, the CPU and peripheral clocks are stopped. An internal wakeup is  
generated at programmable intervals by the auto wake up unit (AWU). The main  
voltage regulator is kept powered on, so current consumption is higher than in Active-  
halt mode with regulator off, but the wakeup time is faster. Wakeup is triggered by the  
internal AWU interrupt, external interrupt or reset.  
Active-halt mode with regulator off  
This mode is the same as Active-halt with regulator on, except that the main voltage  
regulator is powered off, so the wake up time is slower.  
Halt mode  
CPU and peripheral clocks are stopped, the main voltage regulator is powered off.  
Wakeup is triggered by external event or reset.  
In all modes the CPU and peripherals remain permanently powered on, the system clock is  
applied only to selected modules. The RAM content is preserved and the brown-out reset  
circuit remains activated.  
5.7  
Timers  
5.7.1  
Watchdog timers  
The watchdog system is based on two independent timers providing maximum security to  
the applications. The watchdog timer activity is controlled by the application program or  
option bytes. Once the watchdog is activated, it cannot be disabled by the user program  
without going through reset.  
Window watchdog timer  
The window watchdog is used to detect the occurrence of a software fault, usually  
generated by external interferences or by unexpected logical conditions, which cause the  
application program to abandon its normal sequence.  
The window function can be used to trim the watchdog behavior to match the application  
timing perfectly. The application software must refresh the counter before time-out and  
during a limited time window. If the counter is refreshed outside this time window, a reset is  
issued.  
Doc ID 14952 Rev 6  
17/89  
 
 
 
Product overview  
STM8AF61xx, STM8AF62xx  
Independent watchdog timer  
The independent watchdog peripheral can be used to resolve malfunctions due to hardware  
or software failures.  
It is clocked by the 128 kHz LSI internal RC clock source, and thus stays active even in case  
of a CPU clock failure. If the hardware watchdog feature is enabled through the device  
option bits, the watchdog is automatically enabled at power-on, and generates a reset  
unless the key register is written by software before the counter reaches the end of count.  
5.7.2  
Auto-wakeup counter  
This counter is used to cyclically wakeup the device in Active-halt mode. It can be clocked by  
the internal 128 kHz internal low-frequency RC oscillator or external clock.  
LSI clock can be internally connected to TIM3 input capture channel 1 for calibration.  
5.7.3  
5.7.4  
Beeper  
This function generates a rectangular signal in the range of 1, 2 or 4 kHz which can be  
output on a pin. This is useful when audible sounds without interference need to be  
generated for use in the application.  
Advanced control and general purpose timers  
STM8A devices described in this datasheet, contain up to three 16-bit advanced control and  
general purpose timers providing nine CAPCOM channels in total. A CAPCOM channel can  
be used either as input compare, output compare or PWM channel. These timers are  
named TIM1, TIM2 and TIM3.  
Table 5.  
Timer  
Advanced control and general purpose timers  
Counter Counter Prescaler  
Inverted Repetition trigger External Break  
Channels  
width  
type  
factor  
outputs  
counter  
unit  
trigger  
input  
TIM1  
TIM2  
16-bit  
Up/down 1 to 65536  
4
3
3
Yes  
Yes  
Yes  
Yes  
2n  
16-bit  
16-bit  
Up  
None  
None  
No  
No  
No  
No  
No  
No  
No  
No  
n = 0 to 15  
2n  
TIM3  
Up  
2
n = 0 to 15  
18/89  
Doc ID 14952 Rev 6  
 
 
 
 
STM8AF61xx, STM8AF62xx  
Product overview  
TIM1: Advanced control timer  
This is a high-end timer designed for a wide range of control applications. With its  
complementary outputs, dead-time control and center-aligned PWM capability, the field of  
applications is extended to motor control, lighting and bridge driver.  
16-bit up, down and up/down AR (auto-reload) counter with 16-bit fractional prescaler.  
Four independent CAPCOM channels configurable as input capture, output compare,  
PWM generation (edge and center aligned mode) and single pulse mode output  
Trigger module which allows the interaction of TIM1 with other on-chip peripherals. In  
the present implementation it is possible to trigger the ADC upon a timer event.  
External trigger to change the timer behavior depending on external signals  
Break input to force the timer outputs into a defined state  
Three complementary outputs with adjustable dead time  
Interrupt sources: 4 x input capture/output compare, 1 x overflow/update, 1 x break  
TIM2 and TIM3: 16-bit general purpose timers  
16-bit auto-reload up-counter  
15-bit prescaler adjustable to fixed power of two ratios 1…32768  
Timers with three or two individually configurable CAPCOM channels  
Interrupt sources: 2 or 3 x input capture/output compare, 1 x overflow/update  
5.7.5  
Basic timer  
The typical usage of this timer (TIM4) is the generation of a clock tick.  
Table 6.  
Timer  
TIM4  
Counter Counter Prescaler  
width  
Inverted Repetition trigger External Break  
Channels  
type  
factor  
outputs  
counter  
unit  
trigger  
input  
2n  
TIM4  
8-bit  
Up  
0
None  
No  
No  
No  
No  
n = 0 to 7  
8-bit auto-reload, adjustable prescaler ratio to any power of two from 1 to 128  
Clock source: master clock  
Interrupt source: 1 x overflow/update  
Doc ID 14952 Rev 6  
19/89  
 
 
Product overview  
STM8AF61xx, STM8AF62xx  
5.8  
Analog-to-digital converter (ADC)  
The STM8A products described in this datasheet contain a 10-bit successive approximation  
ADC with up to 16 multiplexed input channels, depending on the package.  
The ADC name differs between the datasheet and the STM8A/S reference manual (see  
Table 7).  
Table 7.  
ADC naming  
Peripheral name in reference manual  
(RM0016)  
Peripheral name in datasheet  
ADC  
ADC1  
ADC features  
10-bit resolution  
Single and continuous conversion modes  
Programmable prescaler: f divided by 2 to 18  
MASTER  
Conversion trigger on timer events and external events  
Interrupt generation at end of conversion  
Selectable alignment of 10-bit data in 2 x 8 bit result register  
Shadow registers for data consistency  
ADC input range: V  
Analog watchdog  
V V  
IN DDA  
SSA  
Schmitt-trigger on analog inputs can be disabled to reduce power consumption  
Scan mode (single and continuous)  
Dedicated result register for each conversion channel  
Buffer mode for continuous conversion  
Note:  
An additional AIN12 analog input is not selectable in ADC scan mode or with analog  
watchdog. Values converted from AIN12 are stored only into the ADC_DRH/ADC_DRL  
registers.  
5.9  
Communication interfaces  
The following sections give a brief overview of the communication peripheral. Some  
peripheral names differ between the datasheet and the STM8A/S reference manual (see  
Table 8).  
Table 8.  
Communication peripheral naming correspondence  
Peripheral name in reference manual  
Peripheral name in datasheet  
(RM0016)  
LINUART  
UART2  
20/89  
Doc ID 14952 Rev 6  
 
 
 
 
 
STM8AF61xx, STM8AF62xx  
Product overview  
5.9.1  
Serial peripheral interface (SPI)  
The devices covered by this datasheet contain one SPI. The SPI is available on all the  
supported packages.  
Maximum speed: 10 Mbit/s or f  
/2 both for master and slave  
MASTER  
Full duplex synchronous transfers  
Simplex synchronous transfers on two lines with a possible bidirectional data line  
Master or slave operation - selectable by hardware or software  
CRC calculation  
1 byte Tx and Rx buffer  
Slave mode/master mode management by hardware or software for both master and  
slave  
Programmable clock polarity and phase  
Programmable data order with MSB-first or LSB-first shifting  
Dedicated transmission and reception flags with interrupt capability  
SPI bus busy status flag  
Hardware CRC feature for reliable communication:  
CRC value can be transmitted as last byte in Tx mode  
CRC error checking for last received byte  
2
5.9.2  
Inter integrated circuit (I C) interface  
2
The devices covered by this datasheet contain one I C interface. The interface is available  
on all the supported packages.  
2
I C master features:  
Clock generation  
Start and stop generation  
2
I C slave features:  
2
Programmable I C address detection  
Stop bit detection  
Generation and detection of 7-bit/10-bit addressing and general call  
Supports different communication speeds:  
Standard speed (up to 100 kHz),  
Fast speed (up to 400 kHz)  
Status flags:  
Transmitter/receiver mode flag  
End-of-byte transmission flag  
2
I C busy flag  
Error flags:  
Arbitration lost condition for master mode  
Acknowledgement failure after address/data transmission  
Detection of misplaced start or stop condition  
Overrun/underrun if clock stretching is disabled  
Doc ID 14952 Rev 6  
21/89  
 
 
Product overview  
STM8AF61xx, STM8AF62xx  
Interrupt:  
Successful address/data communication  
Error condition  
Wakeup from Halt  
Wakeup from Halt on address detection in slave mode  
5.9.3  
Universal asynchronous receiver/transmitter with LIN support  
(LINUART)  
The devices covered by this datasheet contain one LINUART interface. The interface is  
available on all the supported packages. The LINUART is an asynchronous serial  
communication interface which supports extensive LIN functions tailored for LIN slave  
applications. In LIN mode it is compliant to the LIN standards rev 1.2 to rev 2.1.  
Detailed feature list:  
LIN mode  
Master mode:  
LIN break and delimiter generation  
LIN break and delimiter detection with separate flag and interrupt source for read back  
checking.  
Slave mode:  
Autonomous header handling – one single interrupt per valid header  
Mute mode to filter responses  
Identifier parity error checking  
LIN automatic resynchronization, allowing operation with internal RC oscillator (HSI)  
clock source  
Break detection at any time, even during a byte reception  
Header errors detection:  
Delimiter too short  
Synch field error  
Deviation error (if automatic resynchronization is enabled)  
Framing error in synch field or identifier field  
Header time-out  
22/89  
Doc ID 14952 Rev 6  
 
STM8AF61xx, STM8AF62xx  
UART mode  
Product overview  
Full duplex, asynchronous communications - NRZ standard format (mark/space)  
High-precision baud rate generator  
A common programmable transmit and receive baud rates up to f  
/16  
MASTER  
Programmable data word length (8 or 9 bits) – 1 or 2 stop bits – parity control  
Separate enable bits for transmitter and receiver  
Error detection flags  
Reduced power consumption mode  
Multi-processor communication - enter mute mode if address match does not occur  
Wakeup from mute mode (by idle line detection or address mark detection)  
Two receiver wakeup modes:  
Address bit (MSB)  
Idle line  
5.10  
Input/output specifications  
The product features four different I/O types:  
Standard I/O 2 MHz  
Fast I/O up to 10 MHz  
High sink 8 mA, 2 MHz  
2
True open drain (I C interface)  
To decrease EMI (electromagnetic interference), high sink I/Os have a limited maximum  
slew rate. The rise and fall times are similar to those of standard I/Os.  
The analog inputs are equipped with a low leakage analog switch. Additionally, the schmitt-  
trigger input stage on the analog I/Os can be disabled in order to reduce the device standby  
consumption.  
STM8A I/Os are designed to withstand current injection. For a negative injection current of  
4 mA, the resulting leakage current in the adjacent input does not exceed 1 µA. Thanks to  
this feature, external protection diodes against current injection are no longer required.  
Doc ID 14952 Rev 6  
23/89  
 
Pinouts and pin description  
STM8AF61xx, STM8AF62xx  
6
Pinouts and pin description  
6.1  
Package pinouts  
Figure 3.  
VFQFPN/LQFP 32-pin pinout  
32 31 30 29 28 27 26 25  
24  
NRST  
OSCIN/PA1  
OSCOUT/PA2  
1
2
3
4
5
6
7
8
PC7/SPI_MISO  
PC6/SPI_MOSI  
PC5/SPI_SCK  
PC4 (HS)/TIM1_CH4  
PC3 (HS)/TIM1_CH3  
PC2 (HS)/TIM1_CH2  
PC1 (HS)/TIM1_CH1  
PE5/SPI_NSS  
23  
22  
21  
20  
19  
18  
17  
V
SS  
VCAP  
V
DD  
V
DDIO  
AIN12/PF4  
9 101112 13141516  
1. (HS) high sink capability.  
24/89  
Doc ID 14952 Rev 6  
 
 
 
STM8AF61xx, STM8AF62xx  
Figure 4. LQFP 48-pin pinout  
Pinouts and pin description  
48474645 44 43 42 41 40 39 38 37  
36  
NRST  
OSCIN/PA1  
OSCOUT/PA2  
PG1  
35 PG0  
34 PC7/SPI_MISO  
1
2
3
V
33  
32  
31  
30  
29  
28  
27  
26  
25  
4
5
6
7
8
9
10  
11  
PC6/SPI_MOSI  
SSIO_1  
V
V
SS  
DDIO_2  
VCAP  
V
SSIO_2  
V
PC5/SPI_SCK  
DD  
V
PC4 (HS)/TIM1_CH4  
PC3 (HS)/TIM1_CH3  
PC2 (HS)/TIM1_CH2  
PC1 (HS)/TIM1_CH1  
PE5/SPI_NSS  
DDIO_1  
TIM2_CH3/PA3  
PA4  
PA5  
PA6  
12  
24  
13141516171819 20212223  
2. (HS) high sink capability.  
Table 9.  
Legend/abbreviation  
Type  
I= input, O = output, S = power supply  
Level  
Input  
CM = CMOS (standard for all I/Os)  
HS = High sink (8 mA)  
Output  
Output speed  
O1 = Standard (up to 2 MHz)  
O2 = Fast (up to 10 MHz)  
O3 = Fast/slow programmability with slow as default state after reset  
O4 = Fast/slow programmability with fast as default state after reset  
Port and control  
configuration  
Input  
float = floating, wpu = weak pull-up  
Output  
T = true open drain, OD = open drain, PP = push pull  
Bold X (pin state after reset release).  
Reset state  
Unless otherwise specified, the pin state is the same during the reset phase (i.e.  
“under reset”) and after internal reset release (i.e. at reset state).  
Doc ID 14952 Rev 6  
25/89  
 
 
Pinouts and pin description  
STM8AF61xx, STM8AF62xx  
(1)(2)  
Table 10. STM8AF61xx/62xx (32 Kbytes) microcontroller pin description  
Pin  
Input  
Output  
number  
Alternate  
function after  
remap  
Default alternate  
function  
Pin name  
[option bit]  
1
2
3
4
5
6
7
8
-
1
2
3
-
NRST  
I/O  
I/O  
I/O  
S
-
X
X
-
X
X
X
-
-
-
-
-
-
-
-
-
-
-
-
-
O1  
O1  
-
-
X
X
-
-
Reset  
PA1/OSCIN(3)  
PA2/OSCOUT  
VSSIO_1  
X Port A1 Resonator/crystal in  
X Port A2 Resonator/crystal out  
X
-
-
-
-
-
-
I/O ground  
4
5
6
7
8
VSS  
S
-
-
-
-
-
Digital ground  
VCAP  
S
-
-
-
-
-
1.8 V regulator capacitor  
Digital power supply  
I/O power supply  
VDD  
S
-
-
-
-
-
VDDIO_1  
S
-
-
-
-
-
PF4/AIN12(4)(5)  
I/O  
X
X
O1  
X
X Port F4 Analog input 12  
TIM3_CH1  
[AFR1]  
9
-
PA3/TIM2_CH3  
I/O  
X
X
X
-
O1  
X
X Port A3 Timer 2 - channel 3  
10  
11  
12  
13  
-
-
PA4  
PA5  
PA6  
VDDA  
I/O  
I/O  
I/O  
S
X
X
X
-
X
X
X
-
X
X
X
-
-
-
-
-
-
-
-
O3  
O3  
O3  
-
X
X
X
-
X Port A4  
X Port A5  
X Port A6  
-
9
-
-
Analog power supply  
Analog ground  
14 10 VSSA  
S
-
-
-
-
-
15  
16  
-
-
PB7/AIN7  
PB6/AIN6  
I/O  
I/O  
X
X
X
X
X
X
O1  
O1  
X
X
X Port B7 Analog input 7  
X Port B6 Analog input 6  
I2C_SDA  
[AFR6]  
17 11 PB5/AIN5  
18 12 PB4/AIN4  
19 13 PB3/AIN3  
I/O  
I/O  
I/O  
X
X
X
X
X
X
X
X
X
-
-
-
O1  
O1  
O1  
X
X
X
X Port B5 Analog input 5  
X Port B4 Analog input 4  
X Port B3 Analog input 3  
I2C_SCL  
[AFR6]  
TIM1_ETR  
[AFR5]  
TIM1_  
NCC3  
[AFR5]  
20 14 PB2/AIN2  
21 15 PB1/AIN1  
22 16 PB0/AIN0  
I/O  
I/O  
I/O  
X
X
X
X
X
X
X
X
X
-
-
-
O1  
O1  
O1  
X
X
X
X Port B2 Analog input  
X Port B1 Analog input 1  
X Port B0 Analog input 0  
TIM1_  
NCC2  
[AFR5]  
TIM1_  
NCC1  
[AFR5]  
26/89  
Doc ID 14952 Rev 6  
 
STM8AF61xx, STM8AF62xx  
Pinouts and pin description  
(1)(2)  
Table 10. STM8AF61xx/62xx (32 Kbytes) microcontroller pin description  
Pin  
(continued)  
Input  
Output  
number  
Alternate  
Default alternate  
function  
function after  
remap  
Pin name  
[option bit]  
23  
24  
-
PE7/AIN8  
PE6/AIN9  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
S
X
X
X
X
X
X
X
X
-
X
X
X
X
X
X
X
X
-
-
-
-
O1  
O1  
O1  
X
X
X
X
X
X
X
X
-
X Port E7 Analog input 8  
X Port E7 Analog input 9  
X Port E5 SPI master/slave select —  
X
X
X
X
X
X
X
-
25 17 PE5/SPI_NSS  
26 18 PC1/TIM1_CH1  
27 19 PC2/TIM1_CH2  
28 20 PC3/TIM1_CH3  
29 21 PC4/TIM1_CH4  
30 22 PC5/SPI_SCK  
HS O3  
HS O3  
HS O3  
HS O3  
O3  
X Port C1 Timer 1 - channel 1  
X Port C2 Timer 1- channel 2  
X Port C3 Timer 1 - channel 3  
X Port C4 Timer 1 - channel 4  
X Port C5 SPI clock  
31  
32  
-
-
VSSIO_2  
VDDIO_2  
-
-
-
-
-
-
I/O ground  
S
-
-
-
-
I/O power supply  
SPI master out/  
slave in  
33 23 PC6/SPI_MOSI  
34 24 PC7/SPI_MISO  
I/O  
X
X
X
-
O3  
X
X Port C6  
I/O  
I/O  
I/O  
X
X
X
X
X
X
X
X
X
X
-
X
-
-
-
-
-
-
-
O3  
O1  
O1  
O1  
X
X
X
X
X Port C7 SPI master in/ slave out —  
35  
36  
37  
38  
39  
-
-
-
-
-
PG0  
PG1  
X Port G0  
X Port G1  
-
-
-
PE3/TIM1_BKIN I/O  
X
X
X
X Port E3 Timer 1 - break input  
PE2/I2C_SDA  
PE1/I2C_SCL  
I/O  
I/O  
O1 T(6)  
O1 T(6)  
-
-
Port E2 I2C data  
Port E1 I2C clock  
-
Configurable clock  
output  
40  
-
PE0/CLK_CCO  
I/O  
X
X
X
-
O3  
X
X Port E0  
TIM1_BKIN  
[AFR3]/  
CLK_CCO  
[AFR2]  
41 25 PD0/TIM3_CH2  
I/O  
X
X
X
HS O3  
X
X Port D0 Timer 3 - channel 2  
42 26 PD1/SWIM(7)  
I/O  
I/O  
X
X
X
X
HS O4  
HS O3  
X
X
X Port D1 SWIM data interface  
X Port D2 Timer 3 - channel 1  
TIM2_CH3  
[AFR1]  
43 27 PD2/TIM3_CH1  
X
X
ADC_ETR  
[AFR0]  
44 28 PD3/TIM2_CH2  
I/O  
I/O  
I/O  
X
X
X
X
X
X
X
X
X
HS O3  
HS O3  
X
X
X
X Port D3 Timer 2 - channel 2  
X Port D4 Timer 2 - channel 1  
PD4/TIM2_CH1/  
BEEP output  
[AFR7]  
45 29  
BEEP  
PD5/  
46 30  
-
O1  
X Port D5 LINUART data transmit —  
LINUART_TX  
Doc ID 14952 Rev 6  
27/89  
Pinouts and pin description  
STM8AF61xx, STM8AF62xx  
(1)(2)  
Table 10. STM8AF61xx/62xx (32 Kbytes) microcontroller pin description  
Pin  
(continued)  
Input  
Output  
number  
Alternate  
Default alternate  
function  
function after  
remap  
Pin name  
[option bit]  
LINUART  
X Port D6 data  
PD6/  
LINUART_RX  
47 31  
I/O  
I/O  
X
X
X
X
X
X
-
-
O1  
O1  
X
X
receive  
48 32 PD7/TLI(8)  
X Port D7 Top level interrupt  
1. Refer to Table 9 for the definition of the abbreviations.  
2. Reset state is shown in bold.  
3. In Halt/Active-halt mode this pad behaves in the following way:  
- the input/output path is disabled  
- if the HSE clock is used for wakeup, the internal weak pull up is disabled  
- if the HSE clock is off, internal weak pull up setting from corresponding OR bit is used  
By managing the OR bit correctly, it must be ensured that the pad is not left floating during Halt/Active-halt.  
4. On this pin, a pull-up resistor as specified in Table 37. I/O static characteristics is enabled during the reset phase of the  
product.  
5. AIN12 is not selectable in ADC scan mode or with analog watchdog.  
6. In the open-drain output column, ‘T’ defines a true open-drain I/O (P-buffer, week pull-up, and protection diode to VDD are  
not implemented)  
7. The PD1 pin is in input pull-up during the reset phase and after reset release.  
8. If this pin is configured as interrupt pin, it will trigger the TLI.  
6.2  
Alternate function remapping  
As shown in the rightmost column of Table 10, some alternate functions can be remapped at  
different I/O ports by programming one of eight AFR (alternate function remap) option bits.  
Refer to Section 9: Option bytes on page 41. When the remapping option is active, the  
default alternate function is no longer available.  
To use an alternate function, the corresponding peripheral must be enabled in the peripheral  
registers.  
Alternate function remapping does not effect GPIO capabilities of the I/O ports (see the  
GPIO section of the STM8S and STM8A microcontroller families reference manual,  
RM0016).  
28/89  
Doc ID 14952 Rev 6  
 
 
 
STM8AF61xx, STM8AF62xx  
Memory and register map  
7
Memory and register map  
7.1  
Memory map  
Figure 5.  
Register and memory map of STM8A products  
00 0000  
Up to 2 Kbytes RAM  
stack  
Reserved  
RAM end  
00 4000  
Up to 1 Kbyte data EEPROM  
00 4400  
Reserved  
Option bytes  
Reserved  
00 4800  
00 4900  
00 5000  
HW registers  
Reserved  
00 581D  
00 6000  
00 6800  
00 7F00  
00 8000  
00 8080  
2 Kbytes of Boot ROM  
CPU/SWIM/Debug/ITC registers  
IT vectors  
Up to 32 Kbytes of  
Flash program memory  
Flash Program memory end  
Table 11. Memory model for the devices covered in this datasheet  
Flash program  
Flash program  
memory size  
RAM end  
address  
Stack roll-over  
address  
memory end  
address  
RAM size  
32K  
16K  
8K  
0x00 0FFFF  
0x00 0BFFF  
0x00 09FFF  
2K  
0x00 07FF  
0x00 0600  
Doc ID 14952 Rev 6  
29/89  
 
 
 
 
Memory and register map  
STM8AF61xx, STM8AF62xx  
7.2  
Register map  
In this section the memory and register map of the devices covered by this datasheet is  
described. For a detailed description of the functionality of the registers, refer to the  
reference manual RM0016.  
Table 12. I/O port hardware register map  
Reset  
Address  
Block  
Register label  
Register name  
status  
0x00 5000  
0x00 5001  
0x00 5002  
0x00 5003  
0x00 5004  
0x00 5005  
0x00 5006  
0x00 5007  
0x00 5008  
0x00 5009  
0x00 500A  
0x00 500B  
0x00 500C  
0x00 500D  
0x00 500E  
0x00 500F  
0x00 5010  
0x00 5011  
0x00 5012  
0x00 5013  
0x00 5014  
0x00 5015  
0x00 5016  
0x00 5017  
0x00 5018  
0x00 5019  
0x00 501A  
0x00 501B  
0x00 501C  
0x00 501D  
PA_ODR  
PA_IDR  
Port A data output latch register  
Port A input pin value register  
Port A data direction register  
Port A control register 1  
0x00  
0xXX(1)  
0x00  
Port A  
PA_DDR  
PA_CR1  
PA_CR2  
PB_ODR  
PB_IDR  
PB_DDR  
PB_CR1  
PB_CR2  
PC_ODR  
PB_IDR  
PC_DDR  
PC_CR1  
PC_CR2  
PD_ODR  
PD_IDR  
PD_DDR  
PD_CR1  
PD_CR2  
PE_ODR  
PE_IDR  
PE_DDR  
PE_CR1  
PE_CR2  
PF_ODR  
PF_IDR  
PF_DDR  
PF_CR1  
PF_CR2  
0x00  
Port A control register 2  
0x00  
Port B data output latch register  
Port B input pin value register  
Port B data direction register  
Port B control register 1  
0x00  
0xXX(1)  
Port B  
Port C  
Port D  
Port E  
Port F  
0x00  
0x00  
Port B control register 2  
0x00  
Port C data output latch register  
Port C input pin value register  
Port C data direction register  
Port C control register 1  
0x00  
0xXX(1)  
0x00  
0x00  
Port C control register 2  
0x00  
Port D data output latch register  
Port D input pin value register  
Port D data direction register  
Port D control register 1  
0x00  
0xXX(1)  
0x00  
0x02  
Port D control register 2  
0x00  
Port E data output latch register  
Port E input pin value register  
Port E data direction register  
Port E control register 1  
0x00  
0xXX(1)  
0x00  
0x00  
Port E control register 2  
0x00  
Port F data output latch register  
Port F input pin value register  
Port F data direction register  
Port F control register 1  
0x00  
0xXX(1)  
0x00  
0x00  
Port F control register 2  
0x00  
30/89  
Doc ID 14952 Rev 6  
 
 
STM8AF61xx, STM8AF62xx  
Table 12. I/O port hardware register map (continued)  
Memory and register map  
Reset  
Address  
Block  
Register label  
Register name  
status  
0x00 501E  
0x00 501F  
0x00 5020  
0x00 5021  
0x00 5022  
PG_ODR  
PG_IDR  
PG_DDR  
PG_CR1  
PG_CR2  
Port G data output latch register  
Port G input pin value register  
Port G data direction register  
Port G control register 1  
0x00  
0xXX(1)  
0x00  
Port G  
0x00  
Port G control register 2  
0x00  
1. Depends on the external circuitry.  
Table 13. General hardware register map  
Reset  
status  
Address  
Block  
Register label  
Register name  
0x00 505A  
0x00 505B  
0x00 505C  
0x00 505D  
FLASH_CR1  
FLASH_CR2  
Flash control register 1  
Flash control register 2  
0x00  
0x00  
0xFF  
0x00  
FLASH_NCR2 Flash complementary control register 2  
FLASH_FPR  
Flash protection register  
Flash  
Flash complementary protection  
register  
0x00 505E  
0x00 505F  
FLASH_NFPR  
0xFF  
0x40  
Flash in-application programming  
status register  
FLASH_IAPSR  
0x00 5060 to  
0x00 5061  
Reserved area (2 bytes)  
Flash Program memory unprotection  
register  
0x00 5062  
Flash  
Flash  
FLASH_PUKR  
FLASH_DUKR  
0x00  
0x00  
0x00 5063  
0x00 5064  
Reserved area (1 byte)  
Data EEPROM unprotection register  
0x00 5065 to  
0x00 509F  
Reserved area (59 bytes)  
0x00 50A0  
0x00 50A1  
EXTI_CR1  
EXTI_CR2  
External interrupt control register 1  
External interrupt control register 2  
0x00  
0x00  
ITC  
RST  
CLK  
0x00 50A2 to  
0x00 50B2  
Reserved area (17 bytes)  
Reset status register  
0x00 50B3  
RST_SR  
0xXX(1)  
0x00 50B4 to  
0x00 50BF  
Reserved area (12 bytes)  
0x00 50C0  
0x00 50C1  
0x00 50C2  
CLK_ICKR  
CLK_ECKR  
Internal clock control register  
External clock control register  
Reserved area (1 byte)  
0x01  
0x00  
Doc ID 14952 Rev 6  
31/89  
 
 
Memory and register map  
Table 13. General hardware register map (continued)  
STM8AF61xx, STM8AF62xx  
Reset  
Address  
Block  
Register label  
Register name  
status  
0x00 50C3  
0x00 50C4  
0x00 50C5  
0x00 50C6  
0x00 50C7  
0x00 50C8  
0x00 50C9  
0x00 50CA  
0x00 50CB  
0x00 50CC  
CLK_CMSR  
CLK_SWR  
Clock master status register  
Clock master switch register  
Clock switch control register  
Clock divider register  
0xE1  
0xE1  
0xXX  
0x18  
0xFF  
0x00  
0x00  
0xFF  
CLK_SWCR  
CLK_CKDIVR  
CLK_PCKENR1  
CLK_CSSR  
CLK  
Peripheral clock gating register 1  
Clock security system register  
Configurable clock control register  
Peripheral clock gating register 2  
Reserved area (1 byte)  
CLK_CCOR  
CLK_PCKENR2  
CLK_HSITRIMR HSI clock calibration trimming register  
0x00  
CLK  
0bXXXX  
XXX0  
0x00 50CD  
CLK_SWIMCCR  
SWIM clock control register  
0x00 50CE  
to 0x0050D0  
Reserved area (3 bytes)  
0x00 50D1  
0x00 50D2  
WWDG_CR  
WWDG_WR  
WWDG control register  
WWDR window register  
0x7F  
0x7F  
WWDG  
0x0050D3to  
0x00 50DF  
Reserved area (13 bytes)  
0x00 50E0  
0x00 50E1  
0x00 50E2  
IWDG_KR  
IWDG_PR  
IWDG_RLR  
IWDG key register  
IWDG prescaler register  
IWDG reload register  
0xXX(2)  
0x00  
IWDG  
0xFF  
0x00 50E3 to  
0x00 50EF  
Reserved area (13 bytes)  
0x00 50F0  
0x00 50F1  
AWU_CSR1  
AWU_APR  
AWU control/status register 1  
0x00  
0x3F  
AWU asynchronous prescaler buffer  
register  
AWU  
0x00 50F2  
0x00 50F3  
AWU_TBR  
AWU timebase selection register  
BEEP control/status register  
0x00  
0x1F  
BEEP  
BEEP_CSR  
0x00 50F4 to  
0x00 50FF  
Reserved area (12 bytes)  
32/89  
Doc ID 14952 Rev 6  
STM8AF61xx, STM8AF62xx  
Table 13. General hardware register map (continued)  
Memory and register map  
Reset  
Address  
Block  
Register label  
Register name  
status  
0x00 5200  
0x00 5201  
0x00 5202  
0x00 5203  
0x00 5204  
0x00 5205  
0x00 5206  
0x00 5207  
SPI_CR1  
SPI_CR2  
SPI control register 1  
SPI control register 2  
SPI interrupt control register  
SPI status register  
0x00  
0x00  
0x00  
0x02  
0x00  
0x07  
0xFF  
0xFF  
SPI_ICR  
SPI_SR  
SPI  
SPI_DR  
SPI data register  
SPI_CRCPR  
SPI_RXCRCR  
SPI_TXCRCR  
SPI CRC polynomial register  
SPI Rx CRC register  
SPI Tx CRC register  
0x00 5208 to  
0x00 520F  
Reserved area (8 bytes)  
0x00 5210  
0x00 5211  
0x00 5212  
0x00 5213  
0x00 5214  
0x00 5215  
0x00 5216  
0x00 5217  
0x00 5218  
0x00 5219  
0x00 521A  
0x00 521B  
0x00 521C  
0x00 521D  
I2C_CR1  
I2C_CR2  
I2C control register 1  
I2C control register 2  
0x00  
0x00  
0x00  
0x00  
0x00  
I2C_FREQR  
I2C_OARL  
I2C_OARH  
I2C frequency register  
I2C own address register low  
I2C own address register high  
Reserved area (1 byte)  
I2C data register  
I2C_DR  
I2C_SR1  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x02  
I2C  
I2C status register 1  
I2C_SR2  
I2C status register 2  
I2C_SR3  
I2C status register 3  
I2C_ITR  
I2C interrupt control register  
I2C clock control register low  
I2C clock control register high  
I2C TRISE register  
I2C_CCRL  
I2C_CCRH  
I2C_TRISER  
0x00 521E to  
0x00 523F  
Reserved area (24 bytes)  
Doc ID 14952 Rev 6  
33/89  
Memory and register map  
Table 13. General hardware register map (continued)  
STM8AF61xx, STM8AF62xx  
Reset  
Address  
Block  
Register label  
Register name  
status  
0x00 5240  
0x00 5241  
0x00 5242  
0x00 5243  
0x00 5244  
0x00 5245  
0x00 5246  
0x00 5247  
0x00 5248  
0x00 5249  
UART2_SR  
UART2_DR  
LINUART status register  
LINUART data register  
0xC0  
0xXX  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
UART2_BRR1  
UART2_BRR2  
UART2_CR1  
UART2_CR2  
UART2_CR3  
UART2_CR4  
LINUART baud rate register 1  
LINUART baud rate register 2  
LINUART control register 1  
LINUART control register 2  
LINUART control register 3  
LINUART control register 4  
Reserved  
LINUART  
UART2_CR6  
LINUART control register 6  
0x00  
0x00 524A to  
0x00 524F  
Reserved area (6 bytes)  
0x00 5250  
0x00 5251  
0x00 5252  
0x00 5253  
0x00 5254  
0x00 5255  
0x00 5256  
0x00 5257  
0x00 5258  
0x00 5259  
0x00 525A  
0x00 525B  
TIM1_CR1  
TIM1_CR2  
TIM1_SMCR  
TIM1_ETR  
TIM1_IER  
TIM1 control register 1  
TIM1 control register 2  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
TIM1 slave mode control register  
TIM1 external trigger register  
TIM1 Interrupt enable register  
TIM1 status register 1  
TIM1_SR1  
TIM1_SR2  
TIM1_EGR  
TIM1 status register 2  
TIM1 event generation register  
TIM1_CCMR1 TIM1 capture/compare mode register 1  
TIM1_CCMR2 TIM1 capture/compare mode register 2  
TIM1_CCMR3 TIM1 capture/compare mode register 3  
TIM1_CCMR4 TIM1 capture/compare mode register 4  
TIM1  
TIM1 capture/compare enable register  
0x00 525C  
0x00 525D  
TIM1_CCER1  
1
0x00  
0x00  
TIM1 capture/compare enable register  
TIM1_CCER2  
2
0x00 525E  
0x00 525F  
0x00 5260  
0x00 5261  
0x00 5262  
0x00 5263  
0x00 5264  
TIM1_CNTRH  
TIM1_CNTRL  
TIM1_PSCRH  
TIM1_PSCRL  
TIM1_ARRH  
TIM1_ARRL  
TIM1_RCR  
TIM1 counter high  
TIM1 counter low  
0x00  
0x00  
0x00  
0x00  
0xFF  
0xFF  
0x00  
TIM1 prescaler register high  
TIM1 prescaler register low  
TIM1 auto-reload register high  
TIM1 auto-reload register low  
TIM1 repetition counter register  
34/89  
Doc ID 14952 Rev 6  
STM8AF61xx, STM8AF62xx  
Table 13. General hardware register map (continued)  
Memory and register map  
Reset  
Address  
Block  
Register label  
Register name  
status  
0x00 5265  
0x00 5266  
0x00 5267  
0x00 5268  
0x00 5269  
0x00 526A  
0x00 526B  
0x00 526C  
0x00 526D  
0x00 526E  
0x00 526F  
TIM1_CCR1H  
TIM1_CCR1L  
TIM1_CCR2H  
TIM1_CCR2L  
TIM1_CCR3H  
TIM1_CCR3L  
TIM1_CCR4H  
TIM1_CCR4L  
TIM1_BKR  
TIM1 capture/compare register 1 high  
TIM1 capture/compare register 1 low  
TIM1 capture/compare register 2 high  
TIM1 capture/compare register 2 low  
TIM1 capture/compare register 3 high  
TIM1 capture/compare register 3 low  
TIM1 capture/compare register 4 high  
TIM1 capture/compare register 4 low  
TIM1 break register  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
TIM1  
TIM1_DTR  
TIM1 dead-time register  
TIM1_OISR  
TIM1 output idle state register  
0x00 5270 to  
0x00 52FF  
Reserved area (147 bytes)  
TIM2 control register 1  
0x00 5300  
0x00 5301  
0x00 5302  
0x00 5303  
0x00 5304  
0x00 5305  
0x00 5306  
0x00 5307  
TIM2_CR1  
TIM2_IER  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
TIM2 interrupt enable register  
TIM2 status register 1  
TIM2_SR1  
TIM2_SR2  
TIM2 status register 2  
TIM2_EGR  
TIM2_CCMR1  
TIM2_CCMR2  
TIM2_CCMR3  
TIM2 event generation register  
TIM2 capture/compare mode register 1  
TIM2 capture/compare mode register 2  
TIM2 capture/compare mode register 3  
TIM2 capture/compare enable register  
1
0x00 5308  
0x00 5309  
TIM2_CCER1  
TIM2_CCER2  
0x00  
0x00  
TIM2 capture/compare enable register  
2
TIM2  
0x00 530A  
0x00 530B  
00 530C0x  
0x00 530D  
0x00 530E  
0x00 530F  
0x00 5310  
0x00 5311  
0x00 5312  
0x00 5313  
TIM2_CNTRH  
TIM2_CNTRL  
TIM2_PSCR  
TIM2_ARRH  
TIM2_ARRL  
TIM2_CCR1H  
TIM2_CCR1L  
TIM2_CCR2H  
TIM2_CCR2L  
TIM2_CCR3H  
TIM2 counter high  
0x00  
0x00  
0x00  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
TIM2 counter low  
TIM2 prescaler register  
TIM2 auto-reload register high  
TIM2 auto-reload register low  
TIM2 capture/compare register 1 high  
TIM2 capture/compare register 1 low  
TIM2 capture/compare reg. 2 high  
TIM2 capture/compare register 2 low  
TIM2 capture/compare register 3 high  
Doc ID 14952 Rev 6  
35/89  
Memory and register map  
Table 13. General hardware register map (continued)  
STM8AF61xx, STM8AF62xx  
Reset  
Address  
Block  
Register label  
Register name  
status  
0x00 5314  
TIM2  
TIM2_CCR3L  
TIM2 capture/compare register 3 low  
Reserved area (11 bytes)  
0x00  
0x00 5315 to  
0x00 531F  
0x00 5320  
0x00 5321  
0x00 5322  
0x00 5323  
0x00 5324  
0x00 5325  
0x00 5326  
TIM3_CR1  
TIM3_IER  
TIM3_SR1  
TIM3_SR2  
TIM3_EGR  
TIM3 control register 1  
TIM3 interrupt enable register  
TIM3 status register 1  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
TIM3 status register 2  
TIM3 event generation register  
TIM3_CCMR1 TIM3 capture/compare mode register 1  
TIM3_CCMR2 TIM3 capture/compare mode register 2  
TIM3 capture/compare enable register  
0x00 5327  
TIM3_CCER1  
1
0x00  
TIM3  
0x00 5328  
0x00 5329  
0x00 532A  
0x00 532B  
0x00 532C  
0x00 532D  
0x00 532E  
0x00 532F  
0x00 5330  
TIM3_CNTRH  
TIM3_CNTRL  
TIM3_PSCR  
TIM3_ARRH  
TIM3_ARRL  
TIM3_CCR1H  
TIM3_CCR1L  
TIM3_CCR2H  
TIM3_CCR2L  
TIM3 counter high  
0x00  
0x00  
0x00  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
TIM3 counter low  
TIM3 prescaler register  
TIM3 auto-reload register high  
TIM3 auto-reload register low  
TIM3 capture/compare register 1 high  
TIM3 capture/compare register 1 low  
TIM3 capture/compare register 2 high  
TIM3 capture/compare register 2 low  
0x00 5331 to  
0x00 533F  
Reserved area (15 bytes)  
0x00 5340  
0x00 5341  
0x00 5342  
0x00 5343  
0x00 5344  
0x00 5345  
0x00 5346  
TIM4_CR1  
TIM4_IER  
TIM4 control register 1  
TIM4 interrupt enable register  
TIM4 status register  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0xFF  
TIM4_SR  
TIM4  
TIM4_EGR  
TIM4_CNTR  
TIM4_PSCR  
TIM4_ARR  
TIM4 event generation register  
TIM4 counter  
TIM4 prescaler register  
TIM4 auto-reload register  
0x00 5347 to  
0x00 53DF  
Reserved area (185 bytes)  
36/89  
Doc ID 14952 Rev 6  
STM8AF61xx, STM8AF62xx  
Table 13. General hardware register map (continued)  
Memory and register map  
Reset  
Address  
Block  
Register label  
Register name  
status  
0x00 53E0  
0x00 53E1  
0x00 53E2  
0x00 53E3  
0x00 53E4  
0x00 53E5  
0x00 53E6  
0x00 53E7  
0x00 53E8  
0x00 53E9  
0x00 53EA  
0x00 53EB  
0x00 53EC  
0x00 53ED  
0x00 53EE  
0x00 53EF  
0x00 53F0  
0x00 53F1  
0x00 53F2  
0x00 53F3  
ADC _DB0RH  
ADC _DB0RL  
ADC _DB1RH  
ADC _DB1RL  
ADC _DB2RH  
ADC _DB2RL  
ADC _DB3RH  
ADC _DB3RL  
ADC _DB4RH  
ADC _DB4RL  
ADC _DB5RH  
ADC _DB5RL  
ADC _DB6RH  
ADC _DB6RL  
ADC _DB7RH  
ADC _DB7RL  
ADC _DB8RH  
ADC _DB8RL  
ADC _DB9RH  
ADC _DB9RL  
ADC data buffer register 0 high  
ADC data buffer register 0 low  
ADC data buffer register 1 high  
ADC data buffer register 1 low  
ADC data buffer register 2 high  
ADC data buffer register 2 low  
ADC data buffer register 3 high  
ADC data buffer register 3 low  
ADC data buffer register 4 high  
ADC data buffer register 4 low  
ADC data buffer register 5 high  
ADC data buffer register 5 low  
ADC data buffer register 6 high  
ADC data buffer register 6 low  
ADC data buffer register 7 high  
ADC data buffer register 7 low  
ADC data buffer register 8 high  
ADC data buffer register 8 low  
ADC data buffer register 9 high  
ADC data buffer register 9 low  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
ADC  
0x00 53F4 to  
0x00 53FF  
Reserved area (12 bytes)  
0x00 5400  
0x00 5401  
0x00 5402  
0x00 5403  
0x00 5404  
0x00 5405  
ADC _CSR  
ADC_CR1  
ADC_CR2  
ADC_CR3  
ADC_DRH  
ADC_DRL  
ADC control/status register  
ADC configuration register 1  
ADC configuration register 2  
ADC configuration register 3  
ADC data register high  
0x00  
0x00  
0x00  
0x00  
0xXX  
0xXX  
ADC data register low  
ADC  
ADC Schmitt trigger disable register  
high  
0x00 5406  
0x00 5407  
ADC_TDRH  
ADC_TDRL  
0x00  
0x00  
ADC Schmitt trigger disable register  
low  
0x00 5408  
0x00 5409  
0x00 540A  
ADC _HTRH  
ADC_HTRL  
ADC _LTRH  
ADC high threshold register high  
ADC high threshold register low  
ADC low threshold register high  
0xFF  
0x03  
0x00  
Doc ID 14952 Rev 6  
37/89  
Memory and register map  
Table 13. General hardware register map (continued)  
STM8AF61xx, STM8AF62xx  
Reset  
Address  
Block  
Register label  
Register name  
status  
0x00 540B  
0x00 540C  
0x00 540D  
0x00 540E  
0x00 540F  
ADC_LTRL  
ADC _AWSRH  
ADC_AWSRL  
ADC _AWCRH  
ADC _AWCRH  
ADC low threshold register low  
ADC watchdog status register high  
ADC watchdog status register low  
ADC watchdog control register high  
ADC watchdog control register low  
0x00  
0x00  
0x00  
0x00  
0x00  
ADC  
0x00 5410 to  
0x00 541F  
Reserved area (16 bytes)  
1. Depends on the previous reset source.  
2. Write only register.  
Table 14. CPU/SWIM/debug module/interrupt controller registers  
Reset  
status  
Address  
Block  
Register label  
Register name  
0x00 7F00  
0x00 7F01  
0x00 7F02  
0x00 7F03  
0x00 7F04  
0x00 7F05  
0x00 7F06  
0x00 7F07  
0x00 7F08  
0x00 7F09  
0x00 7F0A  
A
Accumulator  
Program counter extended  
Program counter high  
Program counter low  
X index register high  
X index register low  
Y index register high  
Y index register low  
Stack pointer high  
0x00  
0x00  
0x80  
0x00  
0x00  
0x00  
0x00  
0x00  
0x17(2)  
0xFF  
0x28  
PCE  
PCH  
PCL  
XH  
CPU(1)  
XL  
YH  
YL  
SPH  
SPL  
CC  
Stack pointer low  
Condition code register  
0x00 7F0B to  
0x00 7F5F  
Reserved area (85 bytes)  
0x00 7F60  
0x00 7F70  
0x00 7F71  
0x00 7F72  
0x00 7F73  
0x00 7F74  
0x00 7F75  
CPU  
ITC  
CFG_GCR  
ITC_SPR1  
ITC_SPR2  
ITC_SPR3  
ITC_SPR4  
ITC_SPR5  
ITC_SPR6  
Global configuration register  
Interrupt software priority register 1  
Interrupt software priority register 2  
Interrupt software priority register 3  
Interrupt software priority register 4  
Interrupt software priority register 5  
Interrupt software priority register 6  
0x00  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0x00 7F76 to  
0x00 7F79  
Reserved area (4 bytes)  
0x00 7F80  
SWIM  
SWIM_CSR  
SWIM control status register  
0x00  
38/89  
Doc ID 14952 Rev 6  
 
STM8AF61xx, STM8AF62xx  
Memory and register map  
Table 14. CPU/SWIM/debug module/interrupt controller registers (continued)  
Reset  
status  
Address  
Block  
Register label  
Register name  
0x00 7F81 to  
0x00 7F8F  
Reserved area (15 bytes)  
0x00 7F90  
0x00 7F91  
0x00 7F92  
0x00 7F93  
0x00 7F94  
0x00 7F95  
0x00 7F96  
0x00 7F97  
0x00 7F98  
0x00 7F99  
0x00 7F9A  
DM_BK1RE  
DM_BK1RH  
DM_BK1RL  
DM_BK2RE  
DM_BK2RH  
DM_BK2RL  
DM_CR1  
DM breakpoint 1 register extended byte  
DM breakpoint 1 register high byte  
DM breakpoint 1 register low byte  
DM breakpoint 2 register extended byte  
DM breakpoint 2 register high byte  
DM breakpoint 2 register low byte  
DM debug module control register 1  
DM debug module control register 2  
DM debug module control/status register 1  
DM debug module control/status register 2  
DM enable function register  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x10  
0x00  
0xFF  
DM  
DM_CR2  
DM_CSR1  
DM_CSR2  
DM_ENFCTR  
0x00 7F9B to  
0x00 7F9F  
Reserved area (5 bytes)  
1. Accessible by debug module only  
2. Product dependent value, see Figure 5: Register and memory map of STM8A products.  
Table 15. Temporary memory unprotection registers  
Reset  
status  
Address  
Block  
Register label  
Register name  
0x00 5800  
0x00 5801  
0x00 5802  
0x00 5803  
0x00 5804  
0x00 5805  
0x00 5806  
0x00 5807  
TMU_K1  
TMU_K2  
TMU_K3  
TMU_K4  
TMU_K5  
TMU_K6  
TMU_K7  
TMU_K8  
Temporary memory unprotection key register 1  
Temporary memory unprotection key register 2  
Temporary memory unprotection key register 3  
Temporary memory unprotection key register 4  
Temporary memory unprotection key register 5  
Temporary memory unprotection key register 6  
Temporary memory unprotection key register 7  
Temporary memory unprotection key register 8  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
TMU  
Temporary memory unprotection control and status  
register  
0x00 5808  
TMU_CSR  
0x00  
Doc ID 14952 Rev 6  
39/89  
 
Interrupt table  
STM8AF61xx, STM8AF62xx  
8
Interrupt table  
Table 16. STM8A interrupt table  
Source  
Interruptvector Wakeup  
Priority  
Description  
Comments  
block  
address  
from Halt  
0
Reset  
Reset  
0x00 6000  
0x00 8004  
0x00 8008  
0x00 800C  
Yes  
Reset vector in ROM  
TRAP  
TLI  
SW interrupt  
External top level interrupt  
Auto-wakeup from Halt  
1
AWU  
Yes  
Clock  
controller  
2
Main clock controller  
0x00 8010  
3
4
MISC  
Ext interrupt E0  
Ext interrupt E1  
Ext interrupt E2  
Ext interrupt E3  
Ext interrupt E4  
0x00 8014  
0x00 8018  
0x00 801C  
0x00 8020  
0x00 8024  
Yes  
Yes  
Yes  
Yes  
Yes  
Port A interrupts  
Port B interrupts  
Port C interrupts  
Port D interrupts  
Port E interrupts  
MISC  
5
MISC  
6
MISC  
7
MISC  
8
Reserved(1)  
Reserved(1)  
SPI  
9
10  
End of transfer  
0x00 8030  
Yes  
Update/overflow/  
trigger/break  
11  
Timer 1  
0x00 8034  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
Timer 1  
Timer 2  
Timer 2  
Timer 3  
Timer 3  
Reserved(1)  
Reserved(1)  
I2C  
Capture/compare  
Update/overflow  
Capture/compare  
Update/overflow  
Capture/compare  
0x00 8038  
0x00 803C  
0x00 8040  
0x00 8044  
0x00 8048  
Yes  
I2C interrupts  
Tx complete/error  
Receive data full reg.  
End of conversion  
Update/overflow  
0x00 8054  
0x00 8058  
0x00 805C  
0x00 8060  
0x00 8064  
LINUART  
LINUART  
ADC  
Timer 4  
End of Programming/  
24  
EEPROM  
0x00 8068  
Write in not allowed area  
1. All reserved and unused interrupts must be initialized with ‘IRET’ for robust programming.  
40/89  
Doc ID 14952 Rev 6  
 
 
 
STM8AF61xx, STM8AF62xx  
Option bytes  
9
Option bytes  
Option bytes contain configurations for device hardware features as well as the memory  
protection of the device. They are stored in a dedicated block of the memory. Each option  
byte has to be stored twice, for redundancy, in a regular form (OPTx) and a complemented  
one (NOPTx), except for the ROP (read-out protection) option byte and option bytes 8 to 16.  
Option bytes can be modified in ICP mode (via SWIM) by accessing the EEPROM address  
shown in Table 17: Option bytes below.  
Option bytes can also be modified ‘on the fly’ by the application in IAP mode, except the  
ROP and UBC options that can only be toggled in ICP mode (via SWIM).  
Refer to the STM8 Flash programming manual (PM0051) and STM8 SWIM communication  
protocol and debug module user manual (UM0470) for information on SWIM programming  
procedures.  
Table 17. Option bytes  
Option bits  
Factory  
default  
setting  
Option  
name  
Option  
byte no.  
Addr.  
7
6
5
4
3
2
1
0
Read-out  
protection OPT0  
(ROP)  
0x00  
4800  
ROP[7:0]  
0x00  
0x00  
4801  
OPT1  
Reserved  
Reserved  
UBC[5:0]  
NUBC[5:0]  
0x00  
0xFF  
0x00  
0xFF  
0x00  
0xFF  
0x00  
0xFF  
0x00  
0xFF  
User boot  
code  
(UBC)  
0x00  
4802  
NOPT1  
0x00  
4803  
Alternate  
function  
remapping  
(AFR)  
OPT2  
NOPT2  
OPT3  
AFR7 AFR6 AFR5  
NAFR NAFR NAFR  
AFR4  
AFR3  
AFR2  
AFR1  
AFR0  
0x00  
4804  
NAFR  
4
NAFR  
3
NAFR  
2
NAFR NAFR  
1
7
6
5
0
0x00  
4805  
16MHZ  
TRIM0  
LSI  
_EN  
IWDG WWDG WWDG  
_HW _HW _HALT  
Reserved  
Watchdog  
option  
0x00  
4806  
N16MHZ NLSI  
NIWDG NWWD NWWG  
_HW G_HW _HALT  
NOPT3  
OPT4  
Reserved  
TRIM0  
_EN  
0x00  
4807  
EXT  
CLK  
CKAWU PRS  
SEL C1  
PRS  
C0  
Reserved  
Reserved  
Clock  
option  
0x00  
4808  
NEXT NCKAW NPR  
CLK USEL SC1  
NPR  
SC0  
NOPT4  
OPT5  
0x00  
4809  
HSECNT[7:0]  
HSE clock  
startup  
0x00  
480A  
NOPT5  
NHSECNT[7:0]  
Doc ID 14952 Rev 6  
41/89  
 
 
Option bytes  
STM8AF61xx, STM8AF62xx  
Table 17. Option bytes (continued)  
Option bits  
Factory  
default  
setting  
Option  
name  
Option  
byte no.  
Addr.  
7
6
5
4
3
2
1
0
0x00  
480B  
OPT6  
NOPT6  
OPT7  
TMU[3:0]  
0x00  
TMU  
0x00  
480C  
NTMU[3:0]  
0xFF  
0x00  
0xFF  
0x00  
480D  
WAIT  
STATE  
Reserved  
Flash wait  
states  
0x00  
480E  
NWAIT  
STATE  
NOPT7  
Reserved  
0x00  
480F  
Reserved  
0x00  
4810  
OPT8  
OPT9  
TMU_KEY 1 [7:0]  
TMU_KEY 2 [7:0]  
TMU_KEY 3 [7:0]  
TMU_KEY 4 [7:0]  
TMU_KEY 5 [7:0]  
TMU_KEY 6 [7:0]  
TMU_KEY 7 [7:0]  
TMU_KEY 8 [7:0]  
TMU_MAXATT [7:0]  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0xC7  
0x00  
4811  
0x00  
4812  
OPT10  
OPT11  
OPT12  
OPT13  
OPT14  
OPT15  
OPT16  
0x00  
4813  
0x00  
4814  
TMU  
0x00  
4815  
0x00  
4816  
0x00  
4817  
0x00  
4818  
0x00  
4819  
to  
Reserved  
487D  
0x00  
487E  
OPT17  
BL [7:0]  
0x00  
0xFF  
Boot-  
loader(1)  
0x00  
487F  
NOPT17  
NBL[7:0]  
1. This option consists of two bytes that must have a complementary value in order to be valid. If the option is invalid, it has no  
effect on EMC reset.  
42/89  
Doc ID 14952 Rev 6  
 
STM8AF61xx, STM8AF62xx  
Option bytes  
Table 18. Option byte description  
Option byte no.  
Description  
ROP[7:0]: Memory readout protection (ROP)  
0xAA: Enable readout protection (write access via SWIM protocol)  
Note: Refer to the STM8S and STM8A microcontroller families reference  
manual (RM0016) section on Flash/EEPROM memory readout  
protection for details.  
OPT0  
UBC[5:0]: User boot code area  
0x00: No UBC, no write-protection  
0x01: Page 0 to 1 defined as UBC, memory write-protected  
0x02: Page 0 to 3 defined as UBC, memory write-protected  
0x03 to 0x3F: Pages 4 to 63 defined as UBC, memory write-protected  
Note: Refer to the STM8S and STM8A microcontroller families reference  
manual (RM0016) section on Flash/EEPROM write protection for more  
details.  
OPT1  
AFR7: Alternate function remapping option 7  
0: Port D4 alternate function = TIM2_CH1  
1: Port D4 alternate function = BEEP  
AFR6: Alternate function remapping option 6  
0: Port B5 alternate function = AIN5, port B4 alternate function = AIN4  
1: Port B5 alternate function = I2C_SDA, port B4 alternate function =  
I2C_SCL.  
AFR5: Alternate function remapping option 5  
0: Port B3 alternate function = AIN3, port B2 alternate function = AIN2,  
port B1 alternate function = AIN1, port B0 alternate function = AIN0.  
1: Port B3 alternate function = TIM1_ETR, port B2 alternate function =  
TIM1_CH3N, port B1 alternate function = TIM1_CH2N, port B0 alternate  
function = TIM1_CH1N.  
AFR4: Alternate function remapping option 4  
Reserved, bit must be kept at "0"  
OPT2  
AFR3: Alternate function remapping option 3  
0: Port D0 alternate function = TIM3_CH2  
1: Port D0 alternate function = TIM1_BKIN  
AFR2: Alternate function remapping option 2  
0: Port D0 alternate function = TIM3_CH2  
1: Port D0 alternate function = CLK_CCO  
Note: AFR2 option has priority over AFR3 if both are activated  
AFR1: Alternate function remapping option 1  
0: Port A3 alternate function = TIM2_CH3, port D2 alternate function  
TIM3_CH1.  
1: Port A3 alternate function = TIM3_CH1, port D2 alternate function  
TIM2_CH3.  
AFR0: Alternate function remapping option 0  
0: Port D3 alternate function = TIM2_CH2  
1: Port D3 alternate function = ADC_ETR  
Doc ID 14952 Rev 6  
43/89  
 
Option bytes  
Table 18. Option byte description (continued)  
STM8AF61xx, STM8AF62xx  
Option byte no.  
Description  
HSITRIM: Trimming option for 16 MHz internal RC oscillator  
0: 3-bit on-the-fly trimming (compatible with devices based on the 128K  
silicon)  
1: 4-bit on-the-fly trimming  
LSI_EN: Low speed internal clock enable  
0: LSI clock is not available as CPU clock source  
1: LSI clock is available as CPU clock source  
IWDG_HW: Independent watchdog  
OPT3  
0: IWDG independent watchdog activated by software  
1: IWDG independent watchdog activated by hardware  
WWDG_HW: Window watchdog activation  
0: WWDG window watchdog activated by software  
1: WWDG window watchdog activated by hardware  
WWDG_HALT: Window watchdog reset on Halt  
0: No reset generated on Halt if WWDG active  
1: Reset generated on Halt if WWDG active  
EXTCLK: External clock selection  
0: External crystal connected to OSCIN/OSCOUT  
1: External clock signal on OSCIN  
CKAWUSEL: Auto-wakeup unit/clock  
0: LSI clock source selected for AWU  
1: HSE clock with prescaler selected as clock source for AWU  
OPT4  
PRSC[1:0]: AWU clock prescaler  
00: Reserved  
01: 16 MHz to 128 kHz prescaler  
10: 8 MHz to 128 kHz prescaler  
11: 4 MHz to 128 kHz prescaler  
HSECNT[7:0]: HSE crystal oscillator stabilization time  
This configures the stabilization time to 0.5, 8, 128, and 2048 HSE  
cycles with corresponding option byte values of 0xE1, 0xD2, 0xB4, and  
0x00.  
OPT5  
OPT6  
TMU[3:0]: Enable temporary memory unprotection  
0101: TMU disabled (permanent ROP).  
Any other value: TMU enabled.  
OPT7  
OPT8  
Reserved  
TMU_KEY 1 [7:0]: Temporary unprotection key 0  
Temporary unprotection key: Must be different from 0x00 or 0xFF  
TMU_KEY 2 [7:0]: Temporary unprotection key 1  
OPT9  
OPT10  
OPT11  
Temporary unprotection key: Must be different from 0x00 or 0xFF  
TMU_KEY 3 [7:0]: Temporary unprotection key 2  
Temporary unprotection key: Must be different from 0x00 or 0xFF  
TMU_KEY 4 [7:0]: Temporary unprotection key 3  
Temporary unprotection key: Must be different from 0x00 or 0xFF  
44/89  
Doc ID 14952 Rev 6  
STM8AF61xx, STM8AF62xx  
Table 18. Option byte description (continued)  
Option bytes  
Option byte no.  
Description  
TMU_KEY 5 [7:0]: Temporary unprotection key 4  
OPT12  
Temporary unprotection key: Must be different from 0x00 or 0xFF  
TMU_KEY 6 [7:0]: Temporary unprotection key 5  
OPT13  
OPT14  
OPT15  
Temporary unprotection key: Must be different from 0x00 or 0xFF  
TMU_KEY 7 [7:0]: Temporary unprotection key 6  
Temporary unprotection key: Must be different from 0x00 or 0xFF  
TMU_KEY 8 [7:0]: Temporary unprotection key 7  
Temporary unprotection key: Must be different from 0x00 or 0xFF  
TMU_MAXATT [7:0]: TMU access failure counter  
TMU_MAXATT can be initialized with the desired value only if TMU is  
disabled (TMU[3:0]=0101 in OPT6 option byte).  
OPT16  
OPT17  
When TMU is enabled, any attempt to temporary remove the readout  
protection by using wrong key values increments the counter.  
When the option byte value reaches 0x08, the Flash memory and data  
EEPROM are erased.  
BL [7:0]: Bootloader enable  
If this option byte is set to 0x55 (complementary value 0xAA) the  
bootloader program is activated also in case of a programmed code  
memory  
(for more details, see the bootloader user manual, UM0560).  
Doc ID 14952 Rev 6  
45/89  
Electrical characteristics  
STM8AF61xx, STM8AF62xx  
10  
Electrical characteristics  
10.1  
Parameter conditions  
Unless otherwise specified, all voltages are referred to V  
.
SS  
10.1.1  
Minimum and maximum values  
Unless otherwise specified the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100 % of the devices with an ambient temperature at T = -40 °C, T = 25 °C, and T =  
A
A
A
T
(given by the selected temperature range).  
Amax  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production.  
10.1.2  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = 5.0 V. They are  
A
DD  
given only as design guidelines and are not tested.  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range.  
10.1.3  
10.1.4  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 6.  
Figure 6.  
Pin loading conditions  
STM8A pin  
50 pF  
46/89  
Doc ID 14952 Rev 6  
 
 
 
 
 
 
 
STM8AF61xx, STM8AF62xx  
Electrical characteristics  
10.1.5  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 7.  
Figure 7. Pin input voltage  
STM8A pin  
V
IN  
10.2  
Absolute maximum ratings  
Stresses above those listed as ‘absolute maximum ratings’ may cause permanent damage  
to the device. This is a stress rating only and functional operation of the device under these  
conditions is not implied. Exposure to maximum rating conditions for extended periods may  
affect device reliability.  
Table 19. Voltage characteristics  
Symbol  
Ratings  
Min  
Max  
6.5  
Unit  
(1)  
V
DDx - VSS Supply voltage (including VDDA and VDDIO  
)
-0.3  
V
Input voltage on true open drain pins (PE1, PE2)(2)  
6.5  
VSS - 0.3  
VIN  
V
Input voltage on any other pin(2)  
VSS - 0.3  
VDD + 0.3  
|VDDx - VDD  
|
Variations between different power pins  
Variations between all the different ground pins  
-
-
50  
50  
mV  
|VSSx - VSS  
|
see Absolute maximum ratings  
(electrical sensitivity) on  
page 72  
VESD  
Electrostatic discharge voltage  
1. All power (VDD, VDDIO, VDDA) and ground (VSS, VSSIO, VSSA) pins must always be connected to the  
external power supply  
2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum  
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive  
injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS. For true open-drain  
pads, there is no positive injection current, and the corresponding VIN maximum must always be respected  
Doc ID 14952 Rev 6  
47/89  
 
 
 
 
 
 
Electrical characteristics  
STM8AF61xx, STM8AF62xx  
Table 20. Current characteristics  
Symbol  
IVDDIO  
IVSSIO  
Ratings  
Max.  
Unit  
Total current into VDDIO power lines (source)(1)(2)(3)  
Total current out of VSS IO ground lines (sink)(1)(2)(3)  
Output current sunk by any I/O and control pin  
Output current source by any I/Os and control pin  
Injected current on any pin  
100  
100  
20  
IIO  
mA  
-20  
10  
(4)  
IINJ(PIN)  
IINJ(TOT)  
Sum of injected currents  
50  
1. All power (VDD, VDDIO, VDDA) and ground (VSS, VSSIO, VSSA) pins must always be connected to the  
external supply.  
2. The total limit applies to the sum of operation and injected currents.  
3. VDDIO includes the sum of the positive injection currents. VSSIO includes the sum of the negative injection  
currents.  
4. This condition is implicitly insured if VIN maximum is respected. If VIN maximum cannot be respected, the  
injection current must be limited externally to the IINJ(PIN) value. A positive injection is induced by VIN > VDD  
while a negative injection is induced by VIN < VSS. For true open-drain pads, there is no positive injection  
current allowed and the corresponding VIN maximum must always be respected.  
Table 21. Thermal characteristics  
Symbol  
Ratings  
Value  
Unit  
TSTG  
TJ  
Storage temperature range  
65 to 150  
°C  
Maximum junction temperature  
160  
(1)  
Table 22. Operating lifetime  
Symbol  
Ratings  
Value  
Unit  
40 to 125 °C  
40 to 150 °C  
Grade 1  
Grade 0  
OLF  
Conforming to AEC-Q100 rev G  
1. For detailed mission profile analysis, please contact your local ST Sales Office.  
48/89  
Doc ID 14952 Rev 6  
 
 
 
 
STM8AF61xx, STM8AF62xx  
Electrical characteristics  
10.3  
Operating conditions  
Table 23. General operating conditions  
Symbol  
fCPU  
Parameter  
Conditions  
Min  
Max  
Unit  
Internal CPU clock frequency  
Standard operating voltage  
TA = -40 °C to 150 °C  
-
0
16  
MHz  
V
VDD/VDDIO  
3.0  
5.5  
CEXT: capacitance of external  
capacitor  
470  
3300  
nF  
(1)  
VCAP  
ESR of external capacitor  
ESL of external capacitor  
-
-
-
-
-
0.3  
15  
Ω
at 1 MHz(2)  
nH  
LQFP32  
VFQFPN32  
LQFP48  
Suffix A  
85  
Power dissipation (all  
temperature ranges)  
PD  
200  
88  
mW  
85  
Suffix B  
105  
125  
150  
90  
TA  
Ambient temperature  
Suffix C  
Suffix D(3)  
-40  
°C  
Suffix A  
Suffix B  
110  
130  
155  
TJ  
Junction temperature range  
Suffix C  
Suffix D(3)  
1. Care should be taken when selecting the capacitor, due to its tolerance, as well as the parameter  
dependency on temperature, DC bias and frequency in addition to other factors. The parameter maximum  
value must be respected for the full application range.  
2. This frequency of 1 MHz as a condition for VCAP parameters is given by design of internal regulator.  
3. Available on STM8AF62xx devices only.  
Doc ID 14952 Rev 6  
49/89  
 
 
 
Electrical characteristics  
Figure 8.  
STM8AF61xx, STM8AF62xx  
f
versus V  
CPUmax  
DD  
fCPU [MHz]  
24  
Functionality  
not guaranteed  
in this area  
16  
12  
8
Functionality guaranteed  
@ TA -40 to 150 °C  
4
0
3.0  
4.0  
5.0  
5.5  
Supply voltage [V]  
1. This figure is valid only for STM8AF62xx devices.  
Table 24. Operating conditions at power-up/power-down  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Typ  
2(1)  
VDD rise time rate  
-
-
tVDD  
µs/V  
2(1)  
VDD fall time rate  
-
-
-
Reset release delay  
Reset generation delay  
VDD rising  
-
-
3
3
ms  
µs  
tTEMP  
V
DD falling  
-
Power-on reset  
threshold(2)  
VIT+  
-
2.65  
2.58  
-
2.8  
2.95  
2.88  
-
V
Brown-out reset  
threshold  
VIT-  
-
-
2.73  
70(1)  
Brown-out reset  
hysteresis  
VHYS(BOR)  
mV  
1. Guaranteed by design, not tested in production  
2. If VDD is below 3 V, the code execution is guaranteed above the VIT- and VIT+ thresholds. RAM content is  
kept. The EEPROM programming sequence must not be initiated.  
50/89  
Doc ID 14952 Rev 6  
 
 
 
STM8AF61xx, STM8AF62xx  
Electrical characteristics  
10.3.1  
VCAP external capacitor  
Stabilization for the main regulator is achieved connecting an external capacitor C  
to the  
EXT  
V
pin. C  
is specified in Table 23. Care should be taken to limit the series inductance  
CAP  
EXT  
to less than 15 nH.  
Figure 9. External capacitor C  
EXT  
ESR  
C
ESL  
Rleak  
1. Legend: ESR is the equivalent series resistance and ESL is the equivalent inductance.  
10.3.2  
Supply current characteristics  
The current consumption is measured as described in Figure 6 on page 46 and Figure 7 on  
page 47.  
If not explicitly stated, general conditions of temperature and voltage apply.  
Table 25. Total current consumption in Run, Wait and Slow mode.  
General conditions for V apply, T = 40 to 150 °C  
DD  
A
Symbol  
Parameter  
Conditions  
Typ  
7.4  
4.0  
Max  
14  
Unit  
fCPU = 16 MHz  
fCPU = 8 MHz  
All peripherals  
clocked, code  
7.4(2)  
Supply  
current in  
Run mode  
executed from Flash  
program memory,  
HSE external clock  
(without resonator)  
(1)  
IDD(RUN)  
4.1(2)  
2.5  
fCPU = 4 MHz  
fCPU = 2 MHz  
fCPU = 16 MHz  
fCPU = 8 MHz  
2.4  
1.5  
3.7  
2.2  
5.0  
All peripherals  
clocked, code  
3.0(2)  
Supply  
current in  
Run mode  
executed from RAM  
and EEPROM, HSE  
external clock  
(1)  
IDD(RUN)  
2.0(2)  
1.5  
fCPU = 4 MHz  
fCPU = 2 MHz  
fCPU = 16 MHz  
fCPU = 8 MHz  
1.4  
1.0  
(without resonator)  
mA  
1.65  
1.15  
2.5  
1.9(2)  
Supply  
current in  
Wait mode  
CPU stopped, all  
peripherals off, HSE  
external clock  
(1)  
IDD(WFI)  
1.6(2)  
1.5  
fCPU = 4 MHz  
fCPU = 2 MHz  
0.90  
0.80  
Ext. clock 16 MHz  
fCPU = 125 kHz  
fCPU scaled down,  
all peripherals off,  
code executed from  
RAM  
1.50  
1.50  
1.95  
Supply  
current in  
Slow mode  
(1)  
IDD(SLOW)  
LSI internal RC  
fCPU = 128 kHz  
1.80(2)  
1. The current due to I/O utilization is not taken into account in these values.  
2. Values not tested in production. Design guidelines only.  
Doc ID 14952 Rev 6  
51/89  
 
 
 
 
 
 
Electrical characteristics  
STM8AF61xx, STM8AF62xx  
Table 26. Total current consumption in Halt and Active-halt modes.  
General conditions for V apply, T = 40 to 55 °C  
DD  
A
Conditions  
Main  
Clock source and  
Symbol  
Parameter  
Typ  
Max  
Unit  
voltage  
regulator  
(MVR)(1)  
Flash  
specific  
temperature  
condition  
mode(2)  
35(3)  
25  
Clocks stopped  
5
5
Power-  
down  
IDD(H)  
Supply current in Halt mode  
Off  
On  
Off  
Clocks stopped,  
TA = 25 °C  
Ext. clock 16 MHz  
fMASTER = 125 kHz  
900(3)  
770  
Supply current in Active-halt  
mode with regulator on  
Power-  
down  
µA  
230(3)  
42(3)  
LSI clock 128 kHz  
LSI clock 128 kHz  
150  
25  
IDD(AH)  
Supply current in Active-halt  
mode with regulator off  
Power-  
down  
LSI clock 128 kHz,  
TA = 25 °C  
25  
10  
50  
30  
Wakeup time from Active-  
halt mode with regulator on  
30(3)  
80(3)  
On  
Off  
Operating  
mode  
tWU(AH)  
TA = -40 to 150 °C  
µs  
Wakeup time from Active-  
halt mode with regulator off  
1. Configured by the REGAH bit in the CLK_ICKR register.  
2. Configured by the AHALT bit in the FLASH_CR1 register.  
3. Data based on characterization results. Not tested in production.  
Current consumption for on-chip peripherals  
Table 27. Oscillator current consumption  
Max(1)  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
Quartz or  
fOSC = 24 MHz  
fOSC = 16 MHz  
1
2.0(3)  
-
ceramic  
resonator,  
CL = 33 pF  
VDD = 5 V  
HSE oscillator current  
consumption(2)  
0.6  
IDD(OSC)  
f
OSC = 8 MHz  
0.57  
-
mA  
Quartz or  
ceramic  
resonator,  
CL = 33 pF  
VDD = 3.3 V  
f
OSC = 24 MHz  
0.5  
1.0(3)  
-
HSE oscillator current  
consumption(2)  
fOSC = 16 MHz  
fOSC = 8 MHz  
0.25  
IDD(OSC)  
0.18  
-
1. During startup, the oscillator current consumption may reach 6 mA.  
2. The supply current of the oscillator can be further optimized by selecting a high quality resonator with small  
Rm value. Refer to crystal manufacturer for more details  
3. Informative data.  
52/89  
Doc ID 14952 Rev 6  
 
 
 
 
 
 
STM8AF61xx, STM8AF62xx  
Electrical characteristics  
Table 28. Programming current consumption  
Symbol  
Parameter  
Conditions  
Typ  
Max  
Unit  
VDD = 5 V, -40 °C to 150 °C,  
erasing and programming data  
or Flash program memory  
IDD(PROG) Programming current  
1.0  
1.7  
mA  
(1)  
Table 29. Typical peripheral current consumption V = 5.0 V  
DD  
Typ. f  
=
Typ. f  
=
master  
master  
Symbol  
Parameter  
Unit  
2 MHz  
16 MHz  
IDD(TIM1)  
TIM1 supply current(2)  
TIM2 supply current (2)  
TIM3 supply current(2)  
TIM4 supply current(2)  
LINUART supply current(2)  
SPI supply current(2)  
I2C supply current(2)  
0.03  
0.02  
0.01  
0.004  
0.03  
0.01  
0.02  
0.003  
0.22  
0.23  
0.12  
0.1  
IDD(TIM2)  
IDD(TIM3)  
IDD(TIM4)  
IDD(LINUART)  
IDD(SPI)  
0.03  
0.11  
0.04  
0.06  
0.02  
1
mA  
IDD(I C)  
2
IDD(AWU)  
AWU supply current(2)  
IDD(TOT_DIG)  
All digital peripherals on  
ADC supply current when  
converting(3)  
IDD(ADC)  
0.93  
0.95  
1. Typical values not tested in production. Since the peripherals are powered by an internally regulated,  
constant digital supply voltage, the values are similar in the full supply voltage range.  
2. Data based on a differential IDD measurement between no peripheral clocked and a single active  
peripheral. This measurement does not include the pad toggling consumption.  
3. Data based on a differential IDD measurement between reset configuration and continuous A/D  
conversions.  
Current consumption curves  
Figure 10 to Figure 15 show typical current consumption measured with code executing in  
RAM.  
Figure 10. Typ. I  
vs. V  
Figure 11. Typ. I  
vs. f  
DD(RUN)HSE  
DD  
DD(RUN)HSE CPU  
@f  
= 16 MHz, peripheral = on  
@ V = 5.0 V, peripheral = on  
CPU  
DD  
10  
10  
25°C  
85°C  
12 5°C  
25°C  
85°C  
12 5°C  
9
8
9
8
7
7
6
6
5
5
4
3
4
3
2
1
2
1
0
0
2.5  
3
3.5  
4
4.5  
5
5.5  
6
0
5
10  
15  
20  
25  
30  
VDD [V]  
fcpu [MHz]  
Doc ID 14952 Rev 6  
53/89  
 
 
 
 
 
Electrical characteristics  
STM8AF61xx, STM8AF62xx  
Figure 12. Typ. I  
vs. V  
Figure 13. Typ. I  
vs. V  
DD(RUN)HSI  
DD  
DD(WFI)HSE DD  
@ f  
= 16 MHz, peripheral = off  
@ f  
= 16 MHz, peripheral = on  
CPU  
CPU  
6
5
4
3
2
1
0
4
3
2
1
0
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
2.5  
3.5  
4.5  
5.5  
6.5  
2.5  
3.5  
4.5  
5.5  
6.5  
VDD [V]  
VDD [V]  
Figure 14. Typ. I  
vs. f  
Figure 15. Typ. I  
vs. V  
DD(WFI)HSE  
CPU  
DD(WFI)HSI DD  
@ V = 5.0 V, peripheral = on  
@ f  
= 16 MHz, peripheral = off  
DD  
CPU  
2.5  
2
6
5
4
1.5  
3
2
1
0
1
0.5  
0
25°C  
85°C  
12 5°C  
25°C  
85°C  
12 5°C  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
0
5
10  
15  
20  
25  
30  
VDD [V]  
fcpu [MHz]  
10.3.3  
External clock sources and timing characteristics  
HSE user external clock  
Subject to general operating conditions for V and T .  
DD  
A
Table 30. HSE user external clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
User external clock source  
frequency  
TA is -40 to  
150 °C  
fHSE_ext  
VHSEdHL  
VHSEH  
0(1)  
-
-
-
16  
-
MHz  
Comparator hysteresis  
-
-
0.1 x VDD  
0.7 x VDD  
OSCIN input pin high level  
voltage  
VDD  
V
OSCIN input pin low level  
voltage  
VHSEL  
-
VSS  
-1  
-
-
0.3 x VDD  
+1  
OSCIN input leakage  
current  
ILEAK_HSE  
VSS < VIN < VDD  
µA  
1. In CSS is used, the external clock must have a frequency above 500 kHz.  
54/89  
Doc ID 14952 Rev 6  
 
 
 
 
 
 
STM8AF61xx, STM8AF62xx  
Figure 16. HSE external clock source  
Electrical characteristics  
V
V
HSEH  
HSEL  
f
HSE  
External clock  
source  
OSCIN  
STM8A  
HSE crystal/ceramic resonator oscillator  
The HSE clock can be supplied using a crystal/ceramic resonator oscillator of up to 16 MHz.  
All the information given in this paragraph is based on characterization results with specified  
typical external components. In the application, the resonator and the load capacitors have  
to be placed as close as possible to the oscillator pins in order to minimize output distortion  
and startup stabilization time. Refer to the crystal resonator manufacturer for more details  
(frequency, package, accuracy...).  
Table 31. HSE oscillator characteristics  
Symbol Parameter  
RF Feedback resistor  
L1/CL2  
gm  
Conditions  
Min  
Typ  
Max  
Unit  
-
-
-
-
-
220  
-
20  
-
kΩ  
pF  
(1)  
C
Recommended load capacitance  
Oscillator transconductance  
-
-
5
mA/V  
VDD is  
stabilized  
(2)  
tSU(HSE)  
Startup time  
-
2.8  
-
ms  
1. The oscillator needs two load capacitors, CL1 and CL2, to act as load for the crystal. The total load capacitance (Cload) is  
(CL1 * CL2)/(CL1 + CL2). If CL1 = CL2, Cload = CL1 / 2. Some oscillators have built-in load capacitors, CL1 and CL2  
.
2. This value is the startup time, measured from the moment it is enabled (by software) until a stabilized 16 MHz oscillation is  
reached. It can vary with the crystal type that is used.  
Figure 17. HSE oscillator circuit diagram  
f
to core  
HSE  
R
m
R
F
C
O
L
m
C
L1  
OSCIN  
C
m
g
m
Resonator  
Current control  
Resonator  
STM8A  
OSCOUT  
C
L2  
Doc ID 14952 Rev 6  
55/89  
 
 
 
Electrical characteristics  
STM8AF61xx, STM8AF62xx  
HSE oscillator critical gm formula  
The crystal characteristics have to be checked with the following formula:  
g
m » gmcrit  
where g  
can be calculated with the crystal parameters as follows:  
mcrit  
f
gmcrit = (2 × Π × HSE)2 × Rm(2Co + C)2  
R : Notional resistance (see crystal specification)  
m
L : Notional inductance (see crystal specification)  
m
C : Notional capacitance (see crystal specification)  
m
Co: Shunt capacitance (see crystal specification)  
C
= C = C: Grounded external capacitance  
L1  
L2  
10.3.4  
Internal clock sources and timing characteristics  
Subject to general operating conditions for V and T .  
DD  
A
High speed internal RC oscillator (HSI)  
Table 32. HSI oscillator characteristics  
Symbol  
Parameter  
Frequency  
Conditions  
Min  
Typ  
Max  
Unit  
fHSI  
-
16  
-
-
MHz  
Trimmed by the application  
for any VDD and TA  
conditions  
-1(1)  
1(1)  
HSI oscillator user  
trimming accuracy  
-0.5(1)  
-
0.5(1)  
ACCHS  
%
HSI oscillator accuracy  
(factory calibrated)  
VDD = 3.0 V VDD 5.5 V,  
-40 °C TA 150 °C  
-5  
-
-
-
5
tsu(HSI) HSI oscillator wakeup time  
2(2)  
µs  
1. Depending on option byte setting (OPT3 and NOPT3)  
2. Guaranteed by characterization, not tested in production  
56/89  
Doc ID 14952 Rev 6  
 
 
 
STM8AF61xx, STM8AF62xx  
Figure 18. Typical HSI frequency vs V  
Electrical characteristics  
DD  
3%  
2%  
-40°C  
25°C  
85°C  
125°C  
1%  
0%  
-1%  
-2%  
-3%  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VDD [V]  
Low speed internal RC oscillator (LSI)  
Subject to general operating conditions for V and T .  
DD  
A
Table 33. LSI oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fLSI  
Frequency  
LSI oscillator wakeup time  
-
-
112  
-
128  
-
144  
7(1)  
kHz  
µs  
tsu(LSI)  
1. Data based on characterization results, not tested in production.  
Figure 19. Typical LSI frequency vs V  
DD  
3%  
2%  
1%  
25°C  
0%  
-1%  
-2%  
-3%  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VDD [V]  
Doc ID 14952 Rev 6  
57/89  
 
 
 
Electrical characteristics  
STM8AF61xx, STM8AF62xx  
10.3.5  
Memory characteristics  
Flash program memory/data EEPROM memory  
General conditions: TA = -40 to 150 °C.  
Table 34. Flash program memory/data EEPROM memory  
Symbol  
Parameter  
Conditions  
Min Typ Max  
Unit  
Operating voltage  
(all modes, execution/write/erase)  
fCPU is 0 to 16 MHz  
with 0 ws  
VDD  
3.0  
2.6  
-
-
5.5  
5.5  
V
Operating voltage  
(code execution)  
fCPU is 0 to 16 MHz  
with 0 ws  
VDD  
Standard programming time  
(including erase) for byte/word/block  
(1 byte/4 bytes/128 bytes)  
-
-
6
6.6  
tprog  
ms  
ms  
Fast programming time for 1 block  
(128 bytes)  
-
-
-
-
3
3
3.3  
3.3  
terase  
Erase time for 1 block (128 bytes)  
Table 35. Flash program memory  
Symbol  
Parameter  
Condition  
Min  
Max  
Unit  
TWE  
Temperature for writing and erasing  
-
-40  
150  
°C  
Flash program memory endurance  
(erase/write cycles)(1)  
NWE  
TA = 25 °C  
1000  
-
cycles  
TA = 25 °C  
TA = 55 °C  
40  
20  
-
-
tRET  
Data retention time  
years  
1. The physical granularity of the memory is four bytes, so cycling is performed on four bytes even when a  
write/erase operation addresses a single byte.  
Table 36. Data memory  
Symbol  
Parameter  
Condition  
Min  
Max  
Unit  
TWE  
Temperature for writing and erasing  
-40  
150  
°C  
Data memory endurance(1)  
(erase/write cycles)  
TA = 25 °C  
TA = -40°C to 125 °C  
TA = 25 °C  
300 k  
-
-
-
-
NWE  
cycles  
years  
100 k(2)  
40(2)(3)  
20(2)(3)  
tRET  
Data retention time  
TA = 55 °C  
1. The physical granularity of the memory is four bytes, so cycling is performed on four bytes even when a  
write/erase operation addresses a single byte.  
2. More information on the relationship between data retention time and number of write/erase cycles is  
available in a separate technical document.  
3. Retention time for 256B of data memory after up to 1000 cycles at 125 °C.  
58/89  
Doc ID 14952 Rev 6  
 
 
 
 
 
 
STM8AF61xx, STM8AF62xx  
Electrical characteristics  
10.3.6  
I/O port pin characteristics  
General characteristics  
Subject to general operating conditions for VDD and TA unless otherwise specified. All  
unused pins must be kept at a fixed voltage, using the output mode of the I/O for example or  
an external pull-up or pull-down resistor.  
Table 37. I/O static characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VIL  
VIH  
Input low level voltage  
Input high level voltage  
-0.3 V  
0.3 x VDD  
0.7 x VDD  
VDD + 0.3 V  
0.1 x  
VDD  
Vhys  
Hysteresis(1)  
-
-
-
-
Standard I/0, VDD = 5 V,  
I = 3 mA  
V
DD - 0.5 V  
-
-
VOH  
Output high level voltage  
Standard I/0, VDD = 3 V,  
I = 1.5 mA  
V
DD - 0.4 V  
High sink and true open  
drain I/0, VDD = 5 V  
I = 8 mA  
-
-
-
-
0.5  
0.6  
VOL  
Output low level voltage  
Pull-up resistor  
Standard I/0, VDD = 5 V  
I = 3 mA  
V
Standard I/0, VDD = 3 V  
I = 1.5 mA  
-
35  
-
-
50  
-
0.4  
65  
Rpu  
VDD = 5 V, VIN = VSS  
kΩ  
Fast I/Os  
Load = 50 pF  
35(2)  
Standard and high sink I/Os  
Load = 50 pF  
-
-
125(2)  
20(2)  
50(2)  
1
Rise and fall time  
(10% - 90%)  
tR, tF  
ns  
Fast I/Os  
Load = 20 pF  
Standard and high sink I/Os  
Load = 20 pF  
Digital input pad leakage  
current  
Ilkg  
VSS VIN VDD  
-
-
-
-
-
-
-
-
-
-
µA  
nA  
VSS VIN VDD  
-40 °C < TA < 125 °C  
250  
500  
1(3)  
60  
Analog input pad leakage  
current  
Ilkg ana  
VSS VIN VDD  
-40 °C < TA < 150 °C  
Leakage current in  
adjacent I/O(3)  
Ilkg(inj)  
IDDIO  
Injection current 4 mA  
µA  
Total current on either  
Including injection currents  
mA  
VDDIO or VSSIO  
1. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested in production.  
Doc ID 14952 Rev 6  
59/89  
 
 
Electrical characteristics  
STM8AF61xx, STM8AF62xx  
2. Guaranteed by design.  
3. Data based on characterization results, not tested in production.  
Figure 20. Typical V and V vs V @ four temperatures  
IL  
IH  
DD  
6
5
4
3
2
1
0
-40°C  
25°C  
85°C  
125°C  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VDD [V]  
Figure 21. Typical pull-up resistance R vs V @ four temperatures  
PU  
DD  
60  
55  
50  
45  
40  
35  
30  
-40°C  
25°C  
85°C  
125°C  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VDD [V]  
60/89  
Doc ID 14952 Rev 6  
 
 
 
STM8AF61xx, STM8AF62xx  
Electrical characteristics  
Figure 22. Typical pull-up current I vs V @ four temperatures  
pu  
DD  
140  
120  
100  
80  
-40°C  
25°C  
85°C  
125°C  
60  
40  
20  
0
0
1
2
3
4
5
6
VDD [V]  
Note: The pull-up is a pure resistor (slope goes through 0).  
Typical output level curves  
Figure 23 to Figure 32 show typical output level curves measured with output on a single  
pin.  
Figure 23. Typ. V @ V = 3.3 V (standard  
Figure 24. Typ. V @ V = 5.0 V (standard  
OL DD  
OL  
DD  
ports)  
ports)  
-40°C  
25°C  
85°C  
125°C  
-40°C  
25°C  
85°C  
125°C  
1.5  
1.25  
1
1.5  
1.25  
1
0.75  
0.5  
0.25  
0
0.75  
0.5  
0.25  
0
0
1
2
3
4
5
6
7
0
2
4
6
8
10  
12  
I
OL [mA]  
IOL [mA]  
Figure 25. Typ. V @ V = 3.3 V (true open Figure 26. Typ. V @ V = 5.0 V (true open  
OL  
DD  
OL  
DD  
drain ports)  
drain ports)  
-40°C  
25°C  
85°C  
125°C  
-40°C  
25°C  
85°C  
125°C  
2
1.75  
1.5  
1.25  
1
2
1.75  
1.5  
1.25  
1
0.75  
0.5  
0.25  
0
0.75  
0.5  
0.25  
0
0
2
4
6
8
10  
12  
14  
0
5
10  
15  
20  
25  
IOL [mA]  
IOL [mA]  
Doc ID 14952 Rev 6  
61/89  
 
 
 
 
 
Electrical characteristics  
STM8AF61xx, STM8AF62xx  
Figure 27. Typ. V @ V = 3.3 V (high sink  
Figure 28. Typ. V @ V = 5.0 V (high sink  
OL DD  
OL  
DD  
ports)  
ports)  
-40°C  
25°C  
85°C  
125°C  
-40°C  
25°C  
85°C  
125°C  
1.5  
1.25  
1
1.5  
1.25  
1
0.75  
0.5  
0.25  
0
0.75  
0.5  
0.25  
0
0
2
4
6
8
10  
12  
14  
0
5
10  
15  
20  
25  
IOL [mA]  
IOL [mA]  
Figure 29. Typ. V  
V
@ V = 3.3 V  
Figure 30. Typ. V  
V
@ V = 5.0 V  
DD - OH  
DD  
DD - OH DD  
(standard ports)  
(standard ports)  
-40°C  
25°C  
85°C  
125°C  
-40°C  
25°C  
85°C  
125°C  
2
1.75  
1.5  
1.25  
1
2
1.75  
1.5  
1.25  
1
0.75  
0.5  
0.25  
0
0.75  
0.5  
0.25  
0
0
1
2
3
4
5
6
7
0
2
4
6
8
10  
12  
IOH [mA]  
IOH [mA]  
Figure 31. Typ. V  
V
@ V = 3.3 V (high Figure 32. Typ. V  
V
@ V = 5.0 V (high  
DD - OH  
DD  
DD - OH DD  
sink ports)  
sink ports)  
-40°C  
25°C  
85°C  
125°C  
-40°C  
25°C  
85°C  
125°C  
2
1.75  
1.5  
1.25  
1
2
1.75  
1.5  
1.25  
1
0.75  
0.5  
0.25  
0
0.75  
0.5  
0.25  
0
0
2
4
6
8
10  
12  
14  
0
5
10  
15  
20  
25  
IOH [mA]  
IOH [mA]  
62/89  
Doc ID 14952 Rev 6  
 
 
 
 
 
 
STM8AF61xx, STM8AF62xx  
Electrical characteristics  
10.3.7  
Reset pin characteristics  
Subject to general operating conditions for VDD and TA unless otherwise specified.  
Table 38. NRST pin characteristics  
Symbol  
Parameter  
Conditions  
Min  
VSS  
Typ  
Max  
0.3 x VDD  
VDD  
Unit  
VIL(NRST)  
NRST input low level voltage(1)  
NRST input high level voltage(1)  
-
-
-
0.7 x VDD  
VIH(NRST)  
VOL(NRST)  
RPU(NRST)  
tIFP  
-
-
NRST output low level voltage(1) IOL= 3 mA  
-
0.6  
60  
V
NRST pull-up resistor  
-
-
30  
85  
40  
-
kΩ  
ns  
NRST input filtered pulse(1)  
315  
NRST Input not filtered pulse  
duration(2)  
tIFP(NRST)  
500  
ns  
1. Data based on characterization results, not tested in production.  
2. Data guaranteed by design, not tested in production.  
Figure 33. Typical NRST V and V vs V @ four temperatures  
IL  
IH  
DD  
-40°C  
6
5
4
3
2
1
0
25°C  
85°C  
125°C  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VDD [V]  
Doc ID 14952 Rev 6  
63/89  
 
 
 
 
Electrical characteristics  
Figure 34. Typical NRST pull-up resistance R vs V  
STM8AF61xx, STM8AF62xx  
PU  
DD  
-40°C  
25°C  
85°C  
125°C  
60  
55  
50  
45  
40  
35  
30  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VDD [V]  
Figure 35. Typical NRST pull-up current I vs V  
pu  
DD  
140  
120  
100  
80  
60  
-40°C  
25°C  
85°C  
125°C  
40  
20  
0
0
1
2
3
4
5
6
VDD [V]  
The reset network shown in Figure 36 protects the device against parasitic resets. The user  
must ensure that the level on the NRST pin can go below VIL(NRST) max (see Table 38:  
NRST pin characteristics), otherwise the reset is not taken into account internally.  
Figure 36. Recommended reset pin protection  
STM8A  
V
DD  
RPU  
External  
reset  
circuit  
NRST  
Internal reset  
Filter  
(optional)  
0.1µF  
64/89  
Doc ID 14952 Rev 6  
 
 
 
STM8AF61xx, STM8AF62xx  
Electrical characteristics  
10.3.8  
TIM 1, 2, 3, and 4 timer specifications  
Subject to general operating conditions for VDD, fMASTER, and TA unless otherwise specified.  
Table 39. TIM 1, 2, 3, and 4 electrical specifications  
Symbol  
fEXT  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Timer external clock frequency(1)  
-
-
-
16  
MHz  
1. Not tested in production. On 64 Kbyte devices, the frequency is limited to 16 MHz.  
SPI serial peripheral interface  
10.3.9  
Unless otherwise specified, the parameters given in Table 40 are derived from tests  
performed under ambient temperature, fMASTER frequency and VDD supply voltage  
conditions. tMASTER = 1/fMASTER  
.
Refer to I/O port characteristics for more details on the input/output alternate function  
characteristics (NSS, SCK, MOSI, MISO).  
Table 40. SPI characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Master mode  
Slave mode  
0
0
0
10  
fSCK  
1/tc(SCK)  
SPI clock frequency  
VDD < 4.5 V  
VDD = 4.5 V to 5.5 V  
6(1)  
8(1)  
MHz  
tr(SCK  
tf(SCK)  
)
SPI clock rise and fall time Capacitive load: C = 30 pF  
-
25(2)  
(3)  
tsu(NSS)  
NSS setup time  
NSS hold time  
Slave mode  
Slave mode  
4 * tMASTER  
70  
-
-
(3)  
th(NSS)  
(3)  
tw(SCKH)  
tw(SCKL)  
SCK high and low time  
Data input setup time  
Master mode  
tSCK/2 - 15 tSCK/2 + 15  
(3)  
(3)  
Master mode  
Slave mode  
Master mode  
Slave mode  
Slave mode  
Slave mode  
5
5
-
tsu(MI)  
tsu(SI)  
(3)  
-
(3)  
7
-
th(MI)  
th(SI)  
ns  
Data input hold time  
(3)  
10  
-
-
(3)(4)  
ta(SO)  
Data output access time  
Data output disable time  
3* tMASTER  
(3)(5)  
tdis(SO)  
25  
-
VDD < 4.5 V  
75  
53  
30  
-
Slave mode  
(after enable edge)  
(3)  
(3)  
tv(SO)  
Data output valid time  
Data output valid time  
Data output hold time  
VDD = 4.5 V to 5.5 V  
-
tv(MO)  
Master mode (after enable edge)  
Slave mode (after enable edge)  
Master mode (after enable edge)  
-
(3)  
th(SO)  
31  
12  
(3)  
th(MO)  
-
1. fSCK < fMASTER/2.  
2. The pad has to be configured accordingly (fast mode).  
3. Values based on design simulation and/or characterization results, and not tested in production.  
Doc ID 14952 Rev 6  
65/89  
 
 
 
 
 
 
Electrical characteristics  
STM8AF61xx, STM8AF62xx  
4. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.  
5. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z.  
Figure 37. SPI timing diagram where slave mode and CPHA = 0  
NSS input  
t
t
t
h(NSS)  
SU(NSS)  
c(SCK)  
CPHA=0  
CPOL=0  
t
t
w(SCKH)  
w(SCKL)  
CPHA=0  
CPOL=1  
t
t
t
t
t
dis(SO)  
v(SO)  
r(SCK)  
f(SCK)  
h(SO)  
t
a(SO)  
MISO  
OUT PUT  
MSB O UT  
BI T6 OUT  
BIT1 IN  
LSB OUT  
t
su(SI)  
MOSI  
M SB IN  
LSB IN  
INPUT  
t
h(SI)  
ai14134  
1. Measurement points are at CMOS levels: 0.3 VDD and 0.7 VDD  
.
Figure 38. SPI timing diagram where slave mode and CPHA = 1  
NSS input  
t
t
t
SU(NSS)  
t
c(SCK)  
h(NSS)  
CPHA=1  
CPOL=0  
w(SCKH)  
CPHA=1  
CPOL=1  
t
w(SCKL)  
t
t
r(SCK)  
f(SCK)  
t
t
t
v(SO)  
h(SO)  
dis(SO)  
t
a(SO)  
MISO  
OUT PUT  
MSB O UT  
BI T6 OUT  
LSB OUT  
t
t
su(SI)  
h(SI)  
MOSI  
M SB IN  
BIT1 IN  
LSB IN  
INPUT  
ai14135  
1. Measurement points are at CMOS levels: 0.3 VDD and 0.7 VDD  
.
66/89  
Doc ID 14952 Rev 6  
 
 
STM8AF61xx, STM8AF62xx  
Electrical characteristics  
Figure 39. SPI timing diagram - master mode  
(IGH  
.33 INPUT  
T
Cꢆ3#+ꢇ  
#0(!ꢅ  
#0/,ꢄꢅ  
#0(!ꢅ  
#0/,ꢄꢀ  
#0(!ꢀ  
#0/,ꢄꢅ  
#0(!ꢀ  
#0/,ꢄꢀ  
T
T
T
T
Wꢆ3#+(ꢇ  
Wꢆ3#+,ꢇ  
Rꢆ3#+ꢇ  
Fꢆ3#+ꢇ  
T
SUꢆ-)ꢇ  
-)3/  
).054  
-3").  
")4ꢃ ).  
,3" ).  
T
Hꢆ-)ꢇ  
-/3)  
- 3" /54  
")4ꢀ /54  
,3" /54  
/5454  
T
T
Vꢆ-/ꢇ  
Hꢆ-/ꢇ  
AIꢀꢁꢀꢂꢃ  
1. Measurement points are at CMOS levels: 0.3 VDD and 0.7 VDD  
.
Doc ID 14952 Rev 6  
67/89  
 
Electrical characteristics  
STM8AF61xx, STM8AF62xx  
2
10.3.10 I C interface characteristics  
2
Table 41. I C characteristics  
Standard mode I2C Fast mode I2C(1)  
Unit  
Symbol  
Parameter  
Min(2)  
Max(2)  
Min(2) Max(2)  
tw(SCLL)  
tw(SCLH)  
tsu(SDA)  
th(SDA)  
SCL clock low time  
4.7  
4.0  
-
-
-
-
1.3  
0.6  
-
-
-
µs  
ns  
µs  
SCL clock high time  
SDA setup time  
250  
100  
0(3)  
0(4)  
900(3)  
SDA data hold time  
tr(SDA)  
tr(SCL)  
SDA and SCL rise time  
(VDD = 3 to 5.5 V)  
-
1000  
300  
-
300  
tf(SDA)  
tf(SCL)  
SDA and SCL fall time  
(VDD = 3 to 5.5 V)  
-
-
300  
th(STA)  
START condition hold time  
4.0  
4.7  
4.0  
-
-
-
0.6  
0.6  
0.6  
-
-
-
tsu(STA)  
tsu(STO)  
Repeated START condition setup time  
STOP condition setup time  
µs  
µs  
pF  
STOP to START condition time  
(bus free)  
tw(STO:STA)  
Cb  
4.7  
-
1.3  
-
-
Capacitive load for each bus line  
-
400  
400  
1. fMASTER, must be at least 8 MHz to achieve max fast I2C speed (400 kHz)  
Data based on standard I2C protocol requirement, not tested in production  
2.  
The maximum hold time of the start condition has only to be met if the interface does not stretch the low  
time  
3.  
4.  
The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the  
undefined region of the falling edge of SCL  
68/89  
Doc ID 14952 Rev 6  
 
 
 
 
STM8AF61xx, STM8AF62xx  
Electrical characteristics  
10.3.11 10-bit ADC characteristics  
Subject to general operating conditions for VDDA, fMASTER, and TA unless otherwise  
specified.  
Table 42. ADC characteristics  
Symbol  
fADC  
Parameter  
ADC clock frequency  
Analog supply  
Conditions  
Min  
111 kHz  
3
Max  
Unit  
Typ  
-
-
-
-
-
-
4 MHz kHz/MHz  
VDDA  
5.5  
VDDA  
VREF+  
VREF-  
Positive reference voltage  
Negative reference voltage  
2.75  
-
-
VSSA  
VSSA  
-
-
0.5  
V
VDDA  
Conversion voltage range(1)  
Devices with  
external VREF+  
VREF- pins  
VAIN  
VREF-  
VREF+  
/
-
Csamp  
Internal sample and hold capacitor  
Sampling time  
-
-
-
-
-
-
-
-
1.5  
0.75  
7
3
-
pF  
µs  
f
f
f
ADC = 2 MHz  
ADC = 4 MHz  
ADC = 2 MHz  
(1)  
tS  
(3 x 1/fADC  
)
-
-
tSTAB  
Wakeup time from standby  
fADC = 4 MHz  
fADC = 2 MHz  
3.5  
7
-
Total conversion time including  
sampling time  
-
tCONV  
fADC = 4 MHz  
-
-
-
3.5  
-
-
(14 x 1/fADC  
)
Rswitch  
Equivalent switch resistance  
30  
kΩ  
1. During the sample time, the sampling capacitance, Csamp (3 pF typ), can be charged/discharged by the  
external source. The internal resistance of the analog source must allow the capacitance to reach its final  
voltage level within tS. After the end of the sample time tS, changes of the analog input voltage have no  
effect on the conversion result.  
Figure 40. Typical application with ADC  
V
DD  
STM8A  
V
0.6V  
T
Rswitch  
R
AIN  
AINx  
10-bit A/D  
conversion  
V
AIN  
T
s
C
V
T
0.6V  
AIN  
I
C
L
samp  
1. Legend: RAIN = external resistance, CAIN = capacitors, Csamp = internal sample and hold capacitor.  
Doc ID 14952 Rev 6  
69/89  
 
 
 
 
Electrical characteristics  
STM8AF61xx, STM8AF62xx  
Table 43. ADC accuracy for V  
= 5 V  
DDA  
Max(1)  
Symbol  
|ET|  
Parameter  
Conditions  
Typ  
Unit  
Total unadjusted error(2)  
Offset error(2)  
1.4  
0.8  
0.1  
0.9  
0.7  
3(3)  
3
|EO|  
|EG|  
|ED|  
|EL|  
|ET|  
Gain error(2)  
2
fADC = 2 MHz  
Differential linearity error(2)  
Integral linearity error(2)  
Total unadjusted error(2)  
1
1.5  
LSB  
1.9(4)  
1.3(4)  
0.6(4)  
1.5(4)  
1.2(4)  
4(4)  
4(4)  
|EO|  
|EG|  
|ED|  
|EL|  
Offset error(2)  
Gain error(2)  
3(4)  
fADC = 4 MHz  
Differential linearity error(2)  
Integral linearity error(2)  
2(4)  
1.5(4)  
1. Max value is based on characterization, not tested in production.  
2. ADC accuracy vs. injection current: Any positive or negative injection current within the limits specified for  
IINJ(PIN) and ΣIINJ(PIN) in Section 10.3.6 does not affect the ADC accuracy.  
3. TUE 2LSB can be reached on specific salestypes on the whole temperature range.  
4. Target values.  
Figure 41. ADC accuracy characteristics  
E
G
1023  
1022  
1021  
V
V  
DDA  
SSA  
1LSB  
= ----------------------------------------  
IDEAL  
1024  
(2)  
E
T
(3)  
7
6
5
4
3
2
1
(1)  
E
O
E
L
E
D
1 LSB  
IDEAL  
7
0
V
1
2
3
4
5
6
1021102210231024  
V
DDA  
SSA  
1. Example of an actual transfer curve  
2. The ideal transfer curve  
3. End point correlation line  
ET = Total unadjusted error: Maximum deviation between the actual and the ideal transfer curves.  
E
E
E
O = Offset error: Deviation between the first actual transition and the first ideal one.  
G = Gain error: Deviation between the last ideal transition and the last actual one.  
D = Differential linearity error: Maximum deviation between actual steps and the ideal one.  
EL = Integral linearity error: Maximum deviation between any actual transition and the end point correlation  
line.  
70/89  
Doc ID 14952 Rev 6  
 
 
 
 
STM8AF61xx, STM8AF62xx  
Electrical characteristics  
10.3.12 EMC characteristics  
Susceptibility tests are performed on a sample basis during product characterization.  
Functional EMS (electromagnetic susceptibility)  
While executing a simple application (toggling 2 LEDs through I/O ports), the product is  
stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).  
ESD: Electrostatic discharge (positive and negative) is applied on all pins of the device  
until a functional disturbance occurs. This test conforms with the IEC 1000-4-2  
standard.  
FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS  
through a 100 pF capacitor, until a functional disturbance occurs. This test conforms  
with the IEC 1000-4-4 standard.  
A device reset allows normal operations to be resumed. The test results are given in the  
table below based on the EMS levels and classes defined in application note AN1709.  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
Software recommendations  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical data corruption (control registers...)  
Prequalification trials  
Most of the common failures (unexpected reset and program counter corruption) can be  
recovered by applying a low state on the NRST pin or the oscillator pins for 1 second.  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring (see application note AN1015).  
Table 44. EMS data  
Symbol  
Parameter  
Conditions  
Level/class  
VDD = 3.3 V, TA= 25 °C,  
fMASTER = 16 MHz (HSI clock),  
Conforms to IEC 1000-4-2  
Voltage limits to be applied on any I/O pin to  
induce a functional disturbance  
VFESD  
3B  
VDD= 3.3 V, TA= 25 °C,  
fMASTER = 16 MHz (HSI clock),  
Conforms to IEC 1000-4-4  
Fast transient voltage burst limits to be  
applied through 100 pF on VDD and VSS  
pins to induce a functional disturbance  
VEFTB  
4A  
Doc ID 14952 Rev 6  
71/89  
 
 
Electrical characteristics  
STM8AF61xx, STM8AF62xx  
Electromagnetic interference (EMI)  
Emission tests conform to the SAE J 1752/3 standard for test software, board layout and pin  
loading.  
Table 45. EMI data  
Conditions  
(1)  
Max fCPU  
Symbol  
Parameter  
Unit  
Monitored  
frequency band  
General conditions  
8
16  
MHz  
MHz  
0.1 MHz to 30 MHz  
30 MHz to 130 MHz  
130 MHz to 1 GHz  
15  
18  
-1  
2
17  
22  
3
VDD = 5 V,  
TA = 25 °C,  
Peak level  
SEMI  
LQFP80 package  
conforming to SAE J  
1752/3  
dBµV  
SAE EMI level  
2.5  
1. Data based on characterization results, not tested in production.  
Absolute maximum ratings (electrical sensitivity)  
Based on two different tests (ESD and LU) using specific measurement methods, the  
product is stressed to determine its performance in terms of electrical sensitivity. For more  
details, refer to the application note AN1181.  
Electrostatic discharge (ESD)  
Electrostatic discharges (3 positive then 3 negative pulses separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This test  
conforms to the JESD22-A114A/A115A standard. For more details, refer to the application  
note AN1181.  
Table 46. ESD absolute maximum ratings  
Maximum  
Symbol  
Ratings  
Conditions  
Class  
Unit  
value(1)  
Electrostatic discharge voltage  
(Human body model)  
TA = 25°C, conforming to  
VESD(HBM)  
VESD(CDM)  
VESD(MM)  
3A  
3
4000  
JESD22-A114  
Electrostatic discharge voltage  
(Charge device model)  
TA= 25°C, conforming to  
500  
200  
V
JESD22-C101  
Electrostatic discharge voltage  
(Machine model)  
TA= 25°C, conforming to  
B
JESD22-A115  
1. Data based on characterization results, not tested in production  
72/89  
Doc ID 14952 Rev 6  
 
 
STM8AF61xx, STM8AF62xx  
Static latch-up  
Electrical characteristics  
Two complementary static tests are required on 10 parts to assess the latch-up  
performance.  
A supply overvoltage (applied to each power supply pin) and  
A current injection (applied to each input, output and configurable I/O pin) are  
performed on each sample.  
This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the  
application note AN1181.  
Table 47. Electrical sensitivities  
Class(1)  
Symbol  
Parameter  
Conditions  
TA = 25 °C  
TA = 85 °C  
LU  
Static latch-up class  
A
TA = 125 °C  
TA = 150 °C(2)  
1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the  
JEDEC specifications, that means when a device belongs to class A it exceeds the JEDEC standard. B  
class strictly covers all the JEDEC criteria (international standard).  
2. Available on STM8AF62xx devices only.  
10.4  
Thermal characteristics  
In case the maximum chip junction temperature (TJmax) specified in Table 23: General  
operating conditions on page 49 is exceeded, the functionality of the device cannot be  
guaranteed.  
TJmax, in degrees Celsius, may be calculated using the following equation:  
TJmax = TAmax + (PDmax x Θ )  
JA  
Where:  
TAmax is the maximum ambient temperature in °C  
JA is the package junction-to-ambient thermal resistance in ° C/W  
Θ
PDmax is the sum of PINTmax and PI/Omax (PDmax = PINTmax + PI/Omax  
)
PINTmax is the product of IDD and VDD, expressed in Watts. This is the maximum  
chip internal power.  
PI/Omax represents the maximum power dissipation on output pins  
Where:  
PI/Omax = Σ (VOL*IOL) + Σ((VDD-VOH)*IOH),  
taking into account the actual VOL/IOL and VOH/IOH of the I/Os at low and high level  
in the application.  
Doc ID 14952 Rev 6  
73/89  
 
 
Electrical characteristics  
STM8AF61xx, STM8AF62xx  
(1)  
Table 48. Thermal characteristics  
Symbol  
Parameter  
Value  
Unit  
Thermal resistance junction-ambient  
LQFP 48 - 7 x 7 mm  
Θ
57  
°C/W  
JA  
Thermal resistance junction-ambient  
LQFP 32 - 7 x 7 mm  
Θ
59  
25  
°C/W  
°C/W  
JA  
Thermal resistance junction-ambient  
VFQFPN32  
Θ
JA  
1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection  
environment.  
10.4.1  
10.4.2  
Reference document  
JESD51-2 integrated circuits thermal test method environment conditions - natural  
convection (still air). Available from www.jedec.org.  
Selecting the product temperature range  
When ordering the microcontroller, the temperature range is specified in the order code (see  
Section 12: Ordering information).  
The following example shows how to calculate the temperature range needed for a given  
application.  
Assuming the following application conditions:  
Maximum ambient temperature TAmax= 82 °C (measured according to JESD51-2),  
IDDmax = 14 mA, VDD = 5 V, maximum 20 I/Os used at the same time in output at low  
level with IOL = 8 mA, VOL= 0.4 V  
PINTmax = 14 mA x 5 V= 70 mW  
PIOmax = 20 x 8 mA x 0.4 V = 64 mW  
This gives: PINTmax = 70 mW and PIOmax 64 mW:  
Dmax = 70 mW + 64 mW  
P
Thus: PDmax = 134 mW.  
Using the values obtained in Table 48: Thermal characteristics on page 74 TJmax is  
calculated as follows:  
For LQFP64 46 °C/W  
T
Jmax = 82 °C + (46 °C/W x 134 mW) = 82 °C + 6 °C = 88 °C  
This is within the range of the suffix B version parts (-40 < TJ < 105 °C).  
Parts must be ordered at least with the temperature range suffix B.  
74/89  
Doc ID 14952 Rev 6  
 
 
 
STM8AF61xx, STM8AF62xx  
Package characteristics  
11  
Package characteristics  
In order to meet environmental requirements, ST offers these devices in different grades of  
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®  
specifications, grade definitions and product status are available at: www.st.com.  
ECOPACK® is an ST trademark.  
Doc ID 14952 Rev 6  
75/89  
 
Package characteristics  
STM8AF61xx, STM8AF62xx  
11.1  
Package mechanical data  
Figure 42. VFQFPN 32-lead very thin fine pitch quad flat no-lead package (5 x 5)  
Seating plane  
C
ddd  
C
A
A1  
A3  
D
e
16  
9
17  
8
b
E
E2  
24  
1
L
32  
Pin # 1 ID  
R = 0.30  
D2  
L
Bottom view  
42_ME  
Table 49. VFQFPN 32-lead very thin fine pitch quad flat no-lead package  
mechanical data  
mm  
Typ  
inches(1)  
Dim.  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A3  
b
0.800  
0.000  
0.900  
0.020  
0.200  
0.250  
5.000  
3.450  
5.000  
3.450  
0.500  
0.400  
1.000  
0.050  
0.0315  
0.000  
0.0354  
0.0008  
0.0079  
0.0098  
0.1969  
0.1358  
0.1969  
0.1358  
0.0197  
0.0157  
0.0394  
0.0020  
0.180  
4.850  
3.400  
4.850  
3.400  
0.300  
5.150  
3.500  
5.150  
3.500  
0.0071  
0.1909  
0.1339  
0.1909  
0.1339  
0.0118  
0.2028  
0.1378  
0.2028  
0.1378  
D
D2  
E
E2  
e
L
0.300  
0.500  
0.080  
0.0118  
0.0197  
0.0031  
ddd  
1. Values in inches are converted from mm and rounded to 4 decimal digits  
76/89  
Doc ID 14952 Rev 6  
 
 
 
STM8AF61xx, STM8AF62xx  
Package characteristics  
Figure 43. LQFP 48-pin low profile quad flat package (7 x 7)  
D
ccc  
C
D1  
D3  
A
A2  
25  
36  
24  
37  
L1  
b
E3  
E1 E  
48  
L
13  
A1  
K
Pin 1  
identification  
1
12  
c
5B_ME  
Table 50. LQFP 48-pin low profile quad flat package mechanical data  
mm  
Typ  
inches(1)  
Dim.  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
0.050  
1.350  
0.170  
0.090  
8.800  
6.800  
1.600  
0.150  
1.450  
0.270  
0.200  
9.200  
7.200  
0.0020  
0.0531  
0.0067  
0.0035  
0.3465  
0.2677  
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.3622  
0.2835  
1.400  
0.220  
0.0551  
0.0087  
c
D
9.000  
7.000  
5.500  
9.000  
7.000  
5.500  
0.500  
3.5°  
0.3543  
0.2756  
0.2165  
0.3543  
0.2756  
0.2165  
0.0197  
3.5°  
D1  
D3  
E
8.800  
6.800  
9.200  
7.200  
0.3465  
0.2677  
0.3622  
0.2835  
E1  
E3  
e
θ
0°  
7°  
0°  
7°  
L
0.450  
0.600  
1.000  
0.750  
0.0177  
0.0236  
0.0394  
0.0295  
L1  
ccc  
0.080  
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits  
Doc ID 14952 Rev 6  
77/89  
 
 
Package characteristics  
Figure 44. LQFP 48-pin recommended footprint  
STM8AF61xx, STM8AF62xx  
ꢅꢉꢋꢅ  
ꢀꢉꢍꢅ  
ꢅꢉꢂꢅ  
ꢂꢃ  
ꢍꢋ  
ꢂꢊ  
ꢍꢁ  
ꢅꢉꢍꢅ  
ꢊꢉꢂꢅ  
ꢈꢉꢊꢅ ꢋꢉꢌꢅ  
ꢊꢉꢂꢅ  
ꢁꢌ  
ꢀꢂ  
ꢀꢍ  
ꢀꢉꢍꢅ  
ꢋꢉꢌꢅ  
ꢈꢉꢊꢅ  
ꢋ"?&0  
1. Drawing is not to scale. Dimensions are in millimeters.  
78/89  
Doc ID 14952 Rev 6  
 
STM8AF61xx, STM8AF62xx  
Figure 45. LQFP 32-pin low profile quad flat package (7 x 7)  
Package characteristics  
ccc  
C
D
D1  
D3  
A
A2  
24  
17  
16  
25  
32  
L1  
b
E3  
E1 E  
9
L
Pin 1  
identification  
A1  
K
1
8
c
5V_ME  
Table 51. LQFP 32-pin low profile quad flat package mechanical data  
mm  
Typ  
inches(1)  
Dim.  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
0.050  
1.350  
0.300  
0.090  
8.800  
6.800  
1.600  
0.150  
1.450  
0.450  
0.200  
9.200  
7.200  
0.0020  
0.0531  
0.0118  
0.0035  
0.3465  
0.2677  
0.0630  
0.0059  
0.0571  
0.0177  
0.0079  
0.3622  
0.2835  
1.400  
0.370  
0.0551  
0.0146  
c
D
9.000  
7.000  
5.600  
9.000  
7.000  
5.600  
0.800  
3.5°  
0.3543  
0.2756  
0.2205  
0.3543  
0.2756  
0.2205  
0.0315  
3.5°  
D1  
D3  
E
8.800  
6.800  
9.200  
7.200  
0.3465  
0.2677  
0.3622  
0.2835  
E1  
E3  
e
θ
0°  
7°  
0°  
7°  
L
0.450  
0.600  
1.000  
0.750  
0.0177  
0.0236  
0.0394  
0.0295  
L1  
ccc  
0.100  
0.0039  
1. Values in inches are converted from mm and rounded to 4 decimal digits  
Doc ID 14952 Rev 6  
79/89  
 
 
Package characteristics  
Figure 46. LQFP 32-pin recommended footprint  
STM8AF61xx, STM8AF62xx  
ꢈꢉꢁꢅ  
ꢊꢉꢊꢅ  
ꢅꢉꢋꢁ  
ꢈꢉꢁꢅ  
ꢅꢉꢌꢅ  
ꢋ6?&0  
1. Drawing is not to scale. Dimensions are in millimeters.  
80/89  
Doc ID 14952 Rev 6  
 
STM8AF61xx, STM8AF62xx  
Ordering information  
12  
Ordering information  
(1)  
Figure 47. Ordering information scheme  
xxx(2)  
Y
Example:  
STM8A  
F
62  
6
8
T
D
Product class  
8-bit automotive microcontroller  
Program memory type  
F = Flash + EEPROM  
P= FASTROM  
H = Flash no EEPROM(3)  
Device family  
61 = Silicon rev Y, LIN only(3)  
62 = Silicon rev X and rev W, LIN only  
Program memory size  
2 = 8 Kbytes  
4 = 16 Kbytes  
6 = 32 Kbytes  
Pin count  
6 = 32 pins  
8 = 48 pins  
Package type  
T = LQFP  
U = VFQFPN  
Temperature range  
A = -40 to 85 °C  
B = -40 to 105 °C(3)  
C = -40 to 125 °C  
D = -40 to 150 °C(4)  
Packing  
Y = Tray  
U = Tube  
X = Tape and reel compliant with EIA 481-C  
1. For a list of available options (e.g. memory size, package) and orderable part numbers or for further  
information on any aspect of this device, please go to www.st.com or contact the ST Sales Office nearest  
to you.  
2. Customer specific FASTROM code or custom device configuration. This field shows ‘SSS’ if the device  
contains a super set silicon, usually equipped with bigger memory and more I/Os. This silicon is supposed  
to be replaced later by the target silicon.  
3. Not recommended for new design.  
4. Available on STM8AF62xx devices.  
Doc ID 14952 Rev 6  
81/89  
 
 
 
 
 
STM8 development tools  
STM8AF61xx, STM8AF62xx  
13  
STM8 development tools  
Development tools for the STM8A microcontrollers include the  
STice emulation system offering tracing and code profiling  
STVD high-level language debugger including assembler and visual development  
environment - seamless integration of third party C compilers.  
STVP Flash programming software  
In addition, the STM8A comes with starter kits, evaluation boards and low-cost in-circuit  
debugging/programming tools.  
13.1  
Emulation and in-circuit debugging tools  
The STM8 tool line includes the STice emulation system offering a complete range of  
emulation and in-circuit debugging features on a platform that is designed for versatility and  
cost-effectiveness. In addition, STM8A application development is supported by a low-cost  
in-circuit debugger/programmer.  
The STice is the fourth generation of full-featured emulators from STMicroelectronics. It  
offers new advanced debugging capabilities including tracing, profiling and code coverage  
analysis to help detect execution bottlenecks and dead code.  
In addition, STice offers in-circuit debugging and programming of STM8A microcontrollers  
via the STM8 single wire interface module (SWIM), which allows non-intrusive debugging of  
an application while it runs on the target microcontroller.  
For improved cost effectiveness, STice is based on a modular design that allows you to  
order exactly what you need to meet your development requirements and to adapt your  
emulation system to support existing and future ST microcontrollers.  
13.1.1  
STice key features  
Program and data trace recording up to 128 K records  
Advanced breakpoints with up to 4 levels of conditions  
Data breakpoints  
Real-time read/write of all device resources during emulation  
Occurrence and time profiling and code coverage analysis (new features)  
In-circuit debugging/programming via SWIM protocol  
8-bit probe analyzer  
1 input and 2 output triggers  
USB 2.0 high speed interface to host PC  
Power supply follower managing application voltages between 1.62 to 5.5 V  
Modularity that allows you to specify the components you need to meet your  
development requirements and adapt to future requirements.  
Supported by free software tools that include integrated development environment  
(IDE), programming software interface and assembler for STM8.  
82/89  
Doc ID 14952 Rev 6  
 
 
 
STM8AF61xx, STM8AF62xx  
STM8 development tools  
13.2  
Software tools  
STM8 development tools are supported by a complete, free software package from  
STMicroelectronics that includes ST visual develop (STVD) IDE and the ST visual  
programmer (STVP) software interface. STVD provides seamless integration of the Cosmic  
and Raisonance C compilers for STM8.  
13.2.1  
STM8 toolset  
The STM8 toolset with STVD integrated development environment and STVP programming  
software is available for free download at www.st.com. This package includes:  
ST visual develop  
Full-featured integrated development environment from STMicroelectronics, featuring:  
Seamless integration of C and ASM toolsets  
Full-featured debugger  
Project management  
Syntax highlighting editor  
Integrated programming interface  
Support of advanced emulation features for STice such as code profiling and coverage  
ST visual programmer (STVP)  
Easy-to-use, unlimited graphical interface allowing read, write and verification of the STM8A  
microcontroller’s Flash memory. STVP also offers project mode for saving programming  
configurations and automating programming sequences.  
13.2.2  
C and assembly toolchains  
Control of C and assembly toolchains is seamlessly integrated into the STVD integrated  
development environment, making it possible to configure and control the building of your  
application directly from an easy-to-use graphical interface.  
Available toolchains include:  
C compiler for STM8  
All compilers are available in free version with a limited code size depending on the  
compiler. For more information, refer to www.cosmic-software.com, www.raisonance.com,  
and www.iar.com.  
STM8 assembler linker  
Free assembly toolchain included in the STM8 toolset, which allows you to assemble and  
link your application source code.  
Doc ID 14952 Rev 6  
83/89  
 
 
 
STM8 development tools  
STM8AF61xx, STM8AF62xx  
13.3  
Programming tools  
During the development cycle, STice provides in-circuit programming of the STM8A Flash  
microcontroller on your application board via the SWIM protocol. Additional tools are to  
include a low-cost in-circuit programmer as well as ST socket boards, which provide  
dedicated programming platforms with sockets for programming your STM8A.  
For production environments, programmers will include a complete range of gang and  
automated programming solutions from third-party tool developers already supplying  
programmers for the STM8 family.  
84/89  
Doc ID 14952 Rev 6  
 
STM8AF61xx, STM8AF62xx  
Revision history  
14  
Revision history  
Table 52. Document revision history  
Date  
Revision  
Changes  
22-Aug-2008  
1
Initial release  
Document revised as the following:  
Updated Features on page 1;  
Updated Table 1: Device summary;  
Updated Section 3: Product line-up;  
Changed Section 5: Product overview;  
Updated Section 6: Pinouts and pin description;  
Changed Section 7.2: Register map;  
Updated Section 8: Interrupt table;  
10-Aug-2009  
2
Updated Section 9: Option bytes;  
Updated Section 10: Electrical characteristics;  
Updated Section 11: Package characteristics;  
Updated Section 12: Ordering information;  
Added Section 13: STM8 development tools.  
Adapted Table 10: STM8AF61xx/62xx (32 Kbytes) microcontroller  
pin description.  
22-Oct-2009  
3
Added Section 13.4.5: LIN header error when automatic  
resynchronization is enabled.  
Updated title on cover page.  
Added VFQFPN32 5x 5 mm package.  
Added STM8AF62xx devices, and modified cover page header to  
clarify the part numbers covered by the datasheets. Updated Note 1  
below Table 1: Device summary.  
Updated D temperature range to -40 to 150°C.  
Content of Section 5: Product overview reorganized.  
Renamed Section 7 Memory and register map, and content merged  
with Register map section.  
Renamed BL_EN and NBL_EN, BL and NBL, respectively, in  
Table 17: Option bytes.  
Added Table 22: Operating lifetime.  
08-Jul-2010  
4
Added CEXT and PD (power dissipation) in Table 23: General  
operating conditions, and Section 10.3.1: VCAP external capacitor.  
Suffix D maximum junction temperature (TJ) updated in Table 23:  
General operating conditions.  
Update tVDD in Table 24: Operating conditions at power-up/power-  
down.  
Moved Table 29: Typical peripheral current consumption VDD = 5.0 V  
to Section : Current consumption for on-chip peripherals and  
removed IDD(CAN)  
.
Updated Section 12: Ordering information for the devices supported  
by the datasheet.  
Updated Section 13: STM8 development tools.  
Doc ID 14952 Rev 6  
85/89  
 
 
Revision history  
Table 52. Document revision history (continued)  
STM8AF61xx, STM8AF62xx  
Date  
Revision  
Changes  
Modified references to reference manual, and Flash programming  
manual in the whole document.  
Added reference to AEC Q100 standard on cover page.  
Renamed timer types as follows:  
– Auto-reload timer to general purpose timer  
– Multipurpose timer to advanced control timer  
– System timer to basic timer  
Introduced concept of medium density Flash program memory.  
Updated timer names in Figure 1: STM8A block diagram.  
Added TMU brief description in Section 5.4: Flash program and data  
EEPROM, and updated TMU_MAXATT description in Table 18:  
Option byte description.  
Updated clock sources in clock controller features (Section 5.5.1).  
Changed 16MHZTRIM0 to HSITRIM bit in Section : User trimming.  
Added Table 4: Peripheral clock gating bits in Section 5.5.6.  
Updated Section 5.6: Low-power operating modes.  
Added calibration using TIM3 in Section 5.7.2: Auto-wakeup counter.  
Added Table 7: ADC naming and Table 8: Communication peripheral  
naming correspondence.  
31-Jan-2011  
5
Added Note 1 related AIN12 pin in Section 5.8: Analog-to-digital  
converter (ADC)and Table 10: STM8AF61xx/62xx (32 Kbytes)  
microcontroller pin description.  
Updated SPI data rate to 10 Mbit/s or fMASTER/2 in Section 5.9.1:  
Serial peripheral interface (SPI).  
Added reset state in Table 9: Legend/abbreviation.  
Table 10: STM8AF61xx/62xx (32 Kbytes) microcontroller pin  
description: added Note 7 related to PD1/SWIM, modified Note 6,  
corrected wpu input for PE1 and PE2, and renamed TIMn_CCx and  
TIMn_NCCx to TIMn_CHx and TIMn_CHxN, respectively.  
Section 7.2: Register map:  
Replaced tables describing register maps and reset values for non-  
volatile memory, global configuration, reset status, clock controller,  
interrupt controller, timers, communication interfaces, and ADC, by  
Table 13: General hardware register map.  
Added Note 1 for Px_IDR registers in Table 12: I/O port hardware  
register map. Updated register reset values for Px_IDR registers.  
Added SWIM and debug module register map.  
86/89  
Doc ID 14952 Rev 6  
STM8AF61xx, STM8AF62xx  
Table 52. Document revision history (continued)  
Revision history  
Date  
Revision  
Changes  
Renamed Fast Active Halt mode to Active-halt mode with regulator  
on, and Slow Active Halt mode to Active-halt mode with regulator off.  
Updated Table 26: Total current consumption in Halt and Active-halt  
modes. General conditions for VDD apply, TA = -40 to 55 °C, in  
particular IDD(FAH) and IDD(SAH) renamed IDD(AH); tWU(FAH) and  
tWU(SAH) renamed tWU(AH), and temperature condition added.  
Removed IDD(USART) from Table 29: Typical peripheral current  
consumption VDD = 5.0 V.  
Updated general conditions in Section 10.3.5: Memory  
characteristics. Modified TWE maximum value in Table 35: Flash  
program memory and Table 36: Data memory.  
5
31-Jan-2011  
(continued)  
Update Ilkg ana maximum value for TA ranging from 40 to 150 °C in  
Table 37: I/O static characteristics.  
Added tIFP(NRST) and renamed VF(NRST) IFP in Table 38: NRST pin  
t
characteristics. Added recommendations concerning NRST pin level  
above Figure 36: Recommended reset pin protection, and updated  
external capacitor value.  
Added Raisonance compiler in Section 13.2: Software tools.  
Moved know limitations to separate errata sheet.  
Updated wildcards of document part numbers.  
Table 1: Device summary: updated footnote 1 and added footnote 2  
to all STM8AF61xx part numbers.  
Section 1: Introduction: small text change in first paragraph.  
Table 2: STM8AF62xx product line-up: added “P” version for all order  
codes; updated RAM.  
Table 3: STM8AF/H61xx product line-up: added “P” version for all  
order codes.  
Figure 1: STM8A block diagram: updated POR, BOR and WDG;  
updated LINUART input; added legend.  
Section 5.4: Flash program and data EEPROM: removed  
nonrelevant bullet points and added a sentence about the factory  
programme.  
Table 4: Peripheral clock gating bit assignments in CLK_PCKENR1/2  
registers: updated  
18-Jul-2012  
6
ADC features: updated ADC input range.  
Table 11: Memory model for the devices covered in this datasheet:  
updated 16 Kbyte and 8 Kbyte information.  
Table 17: Option bytes: updated factory default setting for NOPT17;  
added footnote 1.  
Section 10.1.1: Minimum and maximum values: TA = -40 °C (not  
40 °C).  
Table 23: General operating conditions: updated VCAP  
.
Table 25: Total current consumption in Run, Wait and Slow mode.  
General conditions for VDD apply, TA = -40 to 150 °C: updated  
conditions for IDD(RUN)  
.
Table 37: I/O static characteristics: added new condition and new  
max values for rise and fall time; updated footnote 2.  
Doc ID 14952 Rev 6  
87/89  
Revision history  
Table 52. Document revision history (continued)  
STM8AF61xx, STM8AF62xx  
Date  
Revision  
Changes  
Section 10.3.7: Reset pin characteristics: updated text below  
Figure 35: Typical NRST pull-up current Ipu vs VDD.  
Figure 36: Recommended reset pin protection: updated unit of  
capacitor.  
Table 40: SPI characteristics: updated SCK high and low time  
conditions and values.  
Figure 39: SPI timing diagram - master mode: replaced ‘SCK input’  
signals with ‘SCK output’ signals.  
Updated Table 49: VFQFPN 32-lead very thin fine pitch quad flat no-  
lead package mechanical data, Table 50: LQFP 48-pin low profile  
(continued) quad flat package mechanical data, and Table 51: LQFP 32-pin low  
profile quad flat package mechanical data.  
6
18-Jul-2012  
Replaced Figure 43: LQFP 48-pin low profile quad flat package (7 x  
7) and Figure 45: LQFP 32-pin low profile quad flat package (7 x 7).  
Added Figure 44: LQFP 48-pin recommended footprint and  
Figure 46: LQFP 32-pin recommended footprint.  
Figure 47: Ordering information scheme(1): added footnote 1, added  
“xxx” and footnote 2, updated example and device family; added  
FASTROM.  
Section 13.2.2: C and assembly toolchains: added www.iar.com  
88/89  
Doc ID 14952 Rev 6  
STM8AF61xx, STM8AF62xx  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2012 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
Doc ID 14952 Rev 6  
89/89  

相关型号:

STM8AF6226TCX

8-BIT, FLASH, 16MHz, RISC MICROCONTROLLER, PQFP32, 7 X 7 MM, ROHS COMPLIANT, LQFP-32
STMICROELECTR

STM8AF6246

Automotive 8-bit MCU, with up to 32 Kbytes Flash, data EEPROM, 10-bit ADC, timers, LIN, SPI, I2C, 3 to 5.5 V
STMICROELECTR

STM8AF6246TBX

8-BIT, FLASH, 16MHz, RISC MICROCONTROLLER, PQFP32, 7 X 7 MM, ROHS COMPLIANT, LQFP-32
STMICROELECTR

STM8AF6246UBX

8-BIT, FLASH, 16MHz, RISC MICROCONTROLLER, QCC32, 5 X 5 MM, ROHS COMPLIANT, VFQFPN-32
STMICROELECTR

STM8AF6246UBY

8-BIT, FLASH, 16MHz, RISC MICROCONTROLLER, QCC32, 5 X 5 MM, ROHS COMPLIANT, VFQFPN-32
STMICROELECTR

STM8AF6246UCU

8-BIT, FLASH, 16MHz, RISC MICROCONTROLLER, QCC32, 5 X 5 MM, ROHS COMPLIANT, VFQFPN-32
STMICROELECTR

STM8AF6248

Automotive 8-bit MCU, with up to 32 Kbytes Flash, data EEPROM, 10-bit ADC, timers, LIN, SPI, I2C, 3 to 5.5 V
STMICROELECTR

STM8AF6248TAX

8-BIT, FLASH, 16MHz, RISC MICROCONTROLLER, PQFP48, 7 X 7 MM, ROHS COMPLIANT, LQFP-48
STMICROELECTR

STM8AF6248TBX

8-BIT, FLASH, 16MHz, RISC MICROCONTROLLER, PQFP48, 7 X 7 MM, ROHS COMPLIANT, LQFP-48
STMICROELECTR

STM8AF6248TCU

8-BIT, FLASH, 16MHz, RISC MICROCONTROLLER, PQFP48, 7 X 7 MM, ROHS COMPLIANT, LQFP-48
STMICROELECTR

STM8AF6248TCX

Automotive 8-bit MCU with 16 Kbytes Flash, LIN, 16 MHz CPU, integrated EEPROM
STMICROELECTR

STM8AF6266

Automotive 8-bit MCU, with up to 32 Kbytes Flash, data EEPROM, 10-bit ADC, timers, LIN, SPI, I2C, 3 to 5.5 V
STMICROELECTR