STM8L152R6T3STM8L152R6T3 [STMICROELECTRONICS]

8-BIT, FLASH, 16MHz, RISC MICROCONTROLLER, PQFP64, 10 X 10 MM, ROHS COMPLIANT, LQFP-64;
STM8L152R6T3STM8L152R6T3
型号: STM8L152R6T3STM8L152R6T3
厂家: ST    ST
描述:

8-BIT, FLASH, 16MHz, RISC MICROCONTROLLER, PQFP64, 10 X 10 MM, ROHS COMPLIANT, LQFP-64

文件: 总122页 (文件大小:1190K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM8L151M8/R8/C8 STM8L151R6  
STM8L152M8/R8/C8 STM8L152R6  
8-bit ultralow power MCU, up to 64 KB Flash, up to 2KB data EEPROM  
RTC, LCD, timers, USARTs, I2C, SPIs, ADC, DAC, comparators  
Preliminary data  
Features  
Operating conditions  
– Operating power supply: 1.65 to 3.6 V  
UFQFPN48  
(without BOR), 1.8 to 3.6 V (with BOR)  
LQFP80  
LQFP64  
LQFP48  
Temperature range: 40 to 85 or 125 °C  
Low power features  
DMA  
– 4 channels supporting ADC, DACs, SPIs,  
2
– 5 low power modes: Wait, Low power run,  
Low power wait, Active-halt with RTC, Halt  
I C, USARTs, timers  
– 1 channel for memory-to-memory  
– Ultralow leakage per I/0: 50 nA  
– Fast wakeup from Halt: 5 µs  
2x12-bit DAC (dual mode) with output buffer  
12-bit ADC up to 1 Msps/28 channels  
Advanced STM8 core  
Temp. sensor and internal ref. voltage  
– Harvard architecture and 3-stage pipeline  
– Max freq: 16 MHz, 16 CISC MIPS peak  
– Up to 40 external interrupt sources  
2 ultralow power comparators  
– 1 with fixed threshold and 1 rail to rail  
– Wakeup capability  
Reset and supply management  
Timers  
– Low power, ultrasafe BOR reset with 5  
selectable thresholds  
– Ultralow power POR/PDR  
– Three 16-bit timers with 2 channels (IC,  
OC, PWM), quadrature encoder  
– One 16-bit advanced control timer with 3  
channels, supporting motor control  
– Programmable voltage detector (PVD)  
Clock management  
– One 8-bit timer with 7-bit prescaler  
– 1 Window and 1 independent watchdog  
– Beeper timer with 1, 2 or 4 kHz frequencies  
– 32 kHz and 1-16 MHz crystal oscillators  
– Internal 16 MHz factory-trimmed RC  
– Internal 38 kHz low consumption RC  
– Clock security system  
Communication interfaces  
Two synchronous serial interface (SPI)  
Low power RTC  
2
– Fast I C 400 kHz SMBus and PMBus  
– Three USARTs (ISO 7816 interface + IrDA)  
– BCD calendar with alarm interrupt  
– Digital calibration with +/- 0.5ppm accuracy  
– LSE security system  
Up to 67 I/Os, all mappable on interrupt vectors  
Up to 16 capacitive sensing channels with free  
– Auto-wakeup from Halt w/ periodic interrupt  
– Advanced anti-tamper detection  
firmware  
Development support  
LCD: 8x40 or 4x44 w/ step-up converter  
– Fast on-chip programming and non-  
intrusive debugging with SWIM  
– Bootloader using USART  
Memories  
– Up to 64 KB of Flash program memory plus  
up to 2 KB of data EEPROM with ECC and  
RWW  
96-bit unique ID  
– Flexible write/read protection modes  
– Up to 4 KB of RAM  
September 2010  
Doc ID 17943 Rev 1  
1/122  
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to  
change without notice.  
www.st.com  
1
Contents  
STM8L15xx8, STM8L15xR6  
Contents  
1
2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1  
2.2  
2.3  
STM8L Ultralow power 8-bit family benefits . . . . . . . . . . . . . . . . . . . . . . . . 9  
Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Ultralow power continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
3
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
3.1  
3.2  
Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Central processing unit STM8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3.2.1  
3.2.2  
Advanced STM8 Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Interrupt controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.3  
Reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.3.1  
3.3.2  
3.3.3  
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Low power real-time clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
LCD (Liquid crystal display) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Analog-to-digital converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
3.10 Digital-to-analog converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
3.11 Ultralow power comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.12 System configuration controller and routing interface . . . . . . . . . . . . . . . 19  
3.13 Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.13.1 16-bit advanced control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.13.2 16-bit general purpose timers (TIM2, TIM3, TIM5) . . . . . . . . . . . . . . . . 20  
3.13.3 8-bit basic timer (TIM4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.14 Watchdog timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.14.1 Window watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.14.2 Independent watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
2/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Contents  
3.15 Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.16 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.16.1 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
2
3.16.2 I C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.16.3 USART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.17 Infrared (IR) interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
3.18 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
4
5
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Memory and register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
5.1  
5.2  
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
6
7
8
9
Interrupt vector mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Unique ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
9.1  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
9.1.1  
9.1.2  
9.1.3  
9.1.4  
9.1.5  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
9.2  
9.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
9.3.1  
9.3.2  
9.3.3  
9.3.4  
9.3.5  
9.3.6  
9.3.7  
9.3.8  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Power-up / power-down operating conditions . . . . . . . . . . . . . . . . . . . . 71  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Clock and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
LCD controller (STM8L152xx only) . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Doc ID 17943 Rev 1  
3/122  
Contents  
STM8L15xx8, STM8L15xR6  
9.3.9  
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
9.3.10 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
9.3.11 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
9.3.12 12-bit DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
9.3.13 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
9.4  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
10  
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
10.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
11  
12  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
4/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
List of tables  
List of tables  
Table 1.  
High density and medium+ density STM8L15xx low power device features and  
peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Legend/abbreviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
High density and medium+ density STM8L15x pin description . . . . . . . . . . . . . . . . . . . . . 26  
Flash and RAM boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Factory conversion regiserst. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
I/O port hardware register map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
General hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
CPU/SWIM/debug module/interrupt controller registers. . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Interrupt mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Option byte addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Option byte description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Unique ID registers (96 bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Total current consumption in Run mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Total current consumption in Wait mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Total current consumption and timing in Low power run mode at VDD = 1.65 V to  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Total current consumption in Low power wait mode at VDD = 1.65 V to 3.6 V . . . . . . . . . 78  
Total current consumption and timing in Active-halt mode  
Table 22.  
Table 23.  
at VDD = 1.65 V to 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal. . 81  
Total current consumption and timing in Halt mode at VDD = 2 V . . . . . . . . . . . . . . . . . . . 81  
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Current consumption under external reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
HSE external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
LSE external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
LSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Flash program and data EEPROM memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Output driving current (standard ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Output driving current (true open drain ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Output driving current (PA0 with high sink LED driver capability). . . . . . . . . . . . . . . . . . . . 93  
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
SPI1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
I2C characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
LCD characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Reference voltage characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
Table 44.  
Table 45.  
Doc ID 17943 Rev 1  
5/122  
List of tables  
STM8L15xx8, STM8L15xR6  
Table 46.  
Table 47.  
Table 48.  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
Table 54.  
Table 55.  
Table 56.  
Table 57.  
Table 58.  
Table 59.  
Table 60.  
Table 61.  
Table 62.  
Table 63.  
Comparator 1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Comparator 2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
DAC accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
DAC output on PB4-PB5-PB6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
ADC1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
ADC1 accuracy with VDDA = 3.3 V to 2.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
ADC1 accuracy with VDDA = 2.4 V to 3.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
ADC1 accuracy with VDDA = VREF+ = 1.8 V to 2.4 V. . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
EMS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
EMI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
80-pin low profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
LQFP64 – 10 x 10 mm, 64-pin low-profile quad flat package mechanical data . . . . . . . . 117  
LQFP48 – 7 x 7 mm, 48-pin low-profile quad flat package mechanical data . . . . . . . . . . 118  
UFQFPN48 – ultra thin fine pitch quad flat pack no-lead 7 × 7 mm, 0.5 mm  
pitch package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Table 64.  
6/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
High density and medium+ density STM8L15xx device block diagram . . . . . . . . . . . . . . 12  
Clock tree diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
STM8L151M8 80-pin package pinout (without LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
STM8L152M8 80-pin package pinout (with LCD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
STM8L151R8 and STM8L151R6 64-pin pinout (without LCD). . . . . . . . . . . . . . . . . . . . . . 24  
STM8L152R8 and STM8L152R6 64-pin pinout (with LCD) . . . . . . . . . . . . . . . . . . . . . . . . 24  
STM8L151C8 48-pin pinout (without LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
STM8L152C8 48-pin pinout (with LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 10. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Figure 11. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Figure 12. Power supply thresholds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Figure 13. HSE oscillator circuit diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Figure 14. LSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Figure 15. Typical HSI frequency vs V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
DD  
Figure 16. Typical LSI frequency vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Figure 17. Typical VIL and VIH vs VDD (standard I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Figure 18. Typical VIL and VIH vs VDD (true open drain I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Figure 19. Typical pull-up resistance R vs V with VIN=VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
PU  
DD  
Figure 20. Typical pull-up current I vs V with VIN=VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
pu  
DD  
Figure 21. Typ. VOL @ VDD = 3.0 V (standard ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Figure 22. Typ. VOL @ VDD = 1.8 V (standard ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Figure 23. Typ. VOL @ VDD = 3.0 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Figure 24. Typ. VOL @ VDD = 1.8 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Figure 25. Typ. VDD - VOH @ VDD = 3.0 V (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Figure 26. Typ. VDD - VOH @ VDD = 1.8 V (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Figure 27. Typical NRST pull-up resistance R vs V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
PU  
DD  
Figure 28. Typical NRST pull-up current I vs V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
pu  
DD  
Figure 29. Recommended NRST pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Figure 30. SPI1 timing diagram - slave mode and CPHA=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
(1)  
Figure 31. SPI1 timing diagram - slave mode and CPHA=1  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
(1)  
Figure 32. SPI1 timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Figure 33. Typical application with I2C bus and timing diagram 1) . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Figure 34. ADC1 accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Figure 35. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Figure 36. Power supply and reference decoupling (V  
not connected to V  
). . . . . . . . . . . . . 111  
REF+  
DDA  
Figure 37. Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . 111  
Figure 38. 80-pin low profile quad flat package (14 x 14 mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Figure 39. LQFP64 – 10 x 10 mm, 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . 117  
(1)  
Figure 40. Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Figure 41. LQFP48 – 7 x 7 mm, 48-pin low-profile quad flat  
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
(1)  
Figure 42. Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Figure 43. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
(1)  
Figure 44. Recommended footprint (dimensions in mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Doc ID 17943 Rev 1  
7/122  
Introduction  
STM8L15xx8, STM8L15xR6  
1
Introduction  
This document describes the features, pinout, mechanical data and ordering information for:  
High density STM8L15xx devices: STM8L151x8 and STM8L152x8 microcontrollers with a  
Flash memory density of 64 Kbytes.  
Medium+ density STM8L15xx devices: STM8L151R6 and STM8L152R6 microcontrollers  
with Flash memory density of 32 Kbytes.  
For further details on the STMicroelectronics Ultralow power family please refer to  
Section 2.3: Ultralow power continuum on page 11.  
For detailed information on device operation and registers, refer to the reference manual  
(RM0031).  
For information on to the Flash program memory and data EEPROM, refer to the  
programming manual (PM0054).  
For information on the debug module and SWIM (single wire interface module), refer to the  
STM8 SWIM communication protocol and debug module user manual (UM0470).  
For information on the STM8 core, refer to the STM8 CPU programming manual (PM0044).  
2
Description  
The high density and medium+ density STM8L15xx Ultralow power devices feature an  
enhanced STM8 CPU core providing increased processing power (up to 16 MIPS at  
16 MHz) while maintaining the advantages of a CISC architecture with improved code  
density, a 24-bit linear addressing space and an optimized architecture for low power  
operations.  
The family includes an integrated debug module with a hardware interface (SWIM) which  
allows non-intrusive in-application debugging and ultrafast Flash programming.  
All high density and medium+ density STM8L15xx microcontrollers feature embedded data  
EEPROM and low power low-voltage single-supply program Flash memory.  
The devices incorporate an extensive range of enhanced I/Os and peripherals, a 12-bit  
ADC, two DACs, two comparators, a real-time clock, four 16-bit timers, one 8-bit timer, as  
2
well as standard communication interfaces such as two SPIs, an I C interface, and three  
USARTs. A 8x40 or 4x44-segment LCD is available on the STM8L152x8 devices. The  
modular design of the peripheral set allows the same peripherals to be found in different ST  
microcontroller families including 32-bit families. This makes any transition to a different  
family very easy, and simplified even more by the use of a common set of development  
tools.  
8/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Description  
2.1  
STM8L Ultralow power 8-bit family benefits  
High density and medium+ density STM8L15xxdevicesare part of the STM8L Ultralow  
power family providing the following benefits:  
Integrated system  
Up to 64 Kbytes of high-density embedded Flash program memory  
Up to 2 Kbytes of data EEPROM  
Up to 4 Kbytes of RAM  
Internal high-speed and low-power low speed RC.  
Embedded reset  
Ultralow power consumption  
1 µA in Active-halt mode  
Clock gated system and optimized power management  
Capability to execute from RAM for Low power wait mode and Low power run  
mode  
Advanced features  
Up to 16 MIPS at 16 MHz CPU clock frequency  
Direct memory access (DMA) for memory-to-memory or peripheral-to-memory  
access.  
Short development cycles  
Application scalability across a common family product architecture with  
compatible pinout, memory map and modular peripherals.  
Wide choice of development tools  
STM8L Ultralow power microcontrollers can operate either from 1.8 to 3.6 V (down to 1.65 V  
at power-down) or from 1.65 to 3.6 V. They are available in the 40 to +85 °C and 40 to  
+125 °C temperature ranges.  
These features make the STM8L Ultralow power microcontroller families suitable for a wide  
range of applications:  
Medical and handheld equipment  
Application control and user interface  
PC peripherals, gaming, GPS and sport equipment  
Alarm systems, wired and wireless sensors  
Metering  
The devices are offered in four different packages from 48 to 80 pins. Different sets of  
peripherals are included depending on the device. Refer to Section 3 for an overview of the  
complete range of peripherals proposed in this family.  
All STM8L Ultralow power products are based on the same architecture with the same  
memory mapping and a coherent pinout.  
Figure 1 shows the block diagram of the High density and medium+ density STM8L15xx  
families.  
Doc ID 17943 Rev 1  
9/122  
Description  
STM8L15xx8, STM8L15xR6  
2.2  
Device overview  
Table 1.  
High density and medium+ density STM8L15xx low power device features and  
peripheral counts  
Features  
STM8L15xC8  
STM8L15xR8  
STM8L15xM8  
STM8L15xR6  
Flash (Kbytes)  
Data EEPROM (Kbytes)  
RAM (Kbytes)  
LCD  
64  
64  
64  
32  
2
1
4
4
4
2
8x28 or 4x32(1)  
8x36 or 4x40(1)  
8x40 or 4x44(1)  
8x36 or 4x40(1)  
1
1
1
1
Basic  
(8-bit)  
(8-bit)  
(8-bit)  
(8-bit)  
3
3
3
3
Timers  
General purpose  
(16-bit)  
(16-bit)  
(16-bit)  
(16-bit)  
1
1
1
1
Advanced control  
(16-bit)  
(16-bit)  
(16-bit)  
(16-bit)  
SPI  
2
1
2
1
2
1
2
1
Communicatio  
n interfaces  
I2C  
USART  
3
3
3
3
GPIOs  
41(2)  
54(2)  
68(2)  
54(2)  
12-bit synchronized ADC  
(number of channels)  
1
(25)  
1
(28)  
1
(28)  
1
(28)  
12-Bit DAC  
2
2
2
2
2
2
2
2
Number of channels  
Comparators (COMP1/COMP2)  
Others  
2
2
2
2
RTC, window watchdog, independent watchdog,  
16-MHz and 38-kHz internal RC, 1- to 16-MHz and 32-kHz external oscillator  
CPU frequency  
16 MHz  
1.8 to 3.6 V (down to 1.65 V at power-down) with BOR  
1.65 to 3.6 V without BOR  
Operating voltage  
Operating temperature  
Packages  
40 to +85 °C / 40 to +125 °C  
UFQFPN48  
LQFP64  
LQFP80  
LQFP64  
LQFP48  
1. STM8L152xx versions only.  
2. The number of GPIOs given in this table includes the NRST/PA1 pin but the application can use the NRST/PA1 pin as  
general purpose output only (PA1).  
10/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Description  
2.3  
Ultralow power continuum  
The Ultralow power STM8L151xx and STM8L152xx are fully pin-to-pin, software and feature  
compatible. Besides the full compatibility within the family, the devices are part of  
STMicroelectronics microcontrollers UltraLow power strategy which also includes  
STM8L101xx and STM32L15xxx. The STM8L and STM32L families allow a continuum of  
performance, peripherals, system architecture, and features.  
They are all based on STMicroelectronics 0.13 µm Ultralow leakage process.  
Note:  
1
2
The STM8L151xx and STM8L152xx are pin-to-pin compatible with STM8L101xx devices.  
The STM32L family is pin-to-pin compatible with the general purpose STM32F family.  
Please refer to STM32L15xx documentation for more information on these devices.  
Performance  
All families incorporate highly energy-efficient cores with both Harvard architecture and  
pipelined execution: advanced STM8 core for STM8L families and ARM Cortex™-M3 core  
for STM32L family. In addition specific care for the design architecture has been taken to  
optimize the mA/DMIPS and mA/MHz ratios.  
This allows the Ultralow power performance to range from 5 up to 33.3 DMIPs.  
Shared peripherals  
STM8L151xx/152xx and STM32L15xx share identical peripherals which ensure a very easy  
migration from one family to another:  
Analog peripherals: ADC1, DAC1/DAC2, and comparators COMP1/COMP2  
Digital peripherals: RTC and some communication interfaces  
Common system strategy  
To offer flexibility and optimize performance, the STM8L15xx and STM32L15xx devices use  
a common architecture:  
Same power supply range from 1.65 to 3.6 V. For STM8L101xx and medium density  
STM8L15xx, the power supply must be above 1.8 V at power-on, and go below 1.65 V  
at power-down.  
Architecture optimized to reach ultralow consumption both in low power modes and  
Run mode  
Fast startup strategy from low power modes  
Flexible system clock  
Ultrasafe reset: same reset strategy for both STM8L15xx and STM32L15xx including  
power-on reset, power-down reset, brownout reset and programmable voltage detector.  
Features  
ST UtraLow power continuum also lies in feature compatibility:  
More than 10 packages with pin count from 20 to 100 pins and size down to 3 x 3 mm  
Memory density ranging from 4 to 128 Kbytes  
Doc ID 17943 Rev 1  
11/122  
Functional overview  
STM8L15xx8, STM8L15xR6  
3
Functional overview  
Figure 1.  
High density and medium+ density STM8L15xx device block diagram  
/3#?).ꢄ  
/3#?/54  
 6  
$$  
ꢀꢇꢀꢅ -(Z OSCILLATOR  
ꢀꢅ -(Z INTERNAL 2#  
ꢉꢂ K(Z OSCILLATOR  
6
6
6
ꢌꢀꢋꢅꢍ 6  
$$  
0OWER  
$$ꢀꢃ  
#LOCK  
CONTROLLER  
AND #33  
TO ꢉꢋꢅ 6  
33  
6/,4ꢋ 2%'ꢋ  
/3#ꢉꢂ?).ꢄ  
/3#ꢉꢂ?/54  
#LOCKS  
TO CORE AND  
PERIPHERALS  
ꢉꢃ K(Z INTERNAL 2#  
.234  
2%3%4  
0/2ꢎ0$2  
"/2  
)NTERRUPT CONTROLLER  
34-ꢃ #ORE  
$EBUG MODULE  
ꢈ37)-ꢊ  
37)-  
06$?).  
06$  
 CHANNELS  
 CHANNELS  
ꢀꢅꢇBIT 4IMER   
ꢀꢅꢇBIT 4IMER   
UP TO  
ꢅꢆꢇ+BYTE  
0ROGRAM MEMORY  
ꢀꢅꢇBIT 4IMER   
ꢃꢇBIT 4IMER   
 CHANNELS  
UP TO ꢂꢇ+BYTE  
$ATA %%02/-  
 CHANNELS  
)2?4)-  
ꢀꢅꢇBIT 4IMER   
)NFRARED INTERFACE  
UP TO  
ꢆꢇ+BYTE 2!-  
$-!ꢀ ꢈꢆ CHANNELSꢊ  
0!;ꢁꢏꢐ=  
3#,ꢄ 3$!ꢄ  
3-"  
0ORT !  
0ORT "  
)£#ꢀ  
30)ꢀ  
30)ꢂ  
0";ꢁꢏꢐ=  
0#;ꢁꢏꢐ=  
0$;ꢁꢏꢐ=  
30)ꢀ?-/3)ꢄ 30)ꢀ?-)3/ꢄ  
30)ꢀ?3#+ꢄ 30)ꢀ?.33  
0ORT #  
0ORT $  
0ORT %  
0ORT &  
0ORT '  
30)ꢂ?-/3)ꢄ 30)ꢂ?-)3/ꢄ  
30)ꢂ?3#+ꢄ 30)ꢂ?.33  
53!24ꢀ?28ꢄ 53!24ꢀ?48ꢄ  
53!24ꢀ?#+  
53!24ꢂ?28ꢄ 53!24ꢂ?48ꢄ  
53!24ꢂ?#+  
53!24ꢉ?28ꢄ 53!24ꢉ?48ꢄ  
53!24ꢉ?#+  
53!24ꢀ  
53!24ꢂ  
53!24ꢉ  
0%;ꢁꢏꢐ=  
0&;ꢁꢏꢐ=  
0';ꢁꢏꢐ=  
6
6
 6  
ꢎ6  
0(;ꢁꢏꢐ=  
0);ꢉꢏꢐ=  
$$!ꢄ 33!  
$$! 33!  
0ORT (  
0ORT )  
!$#ꢀ?).X  
ꢀꢂꢇBIT !$#ꢀ  
4EMP SENSOR  
6
$$2%&  
6
332%&  
"%%0  
"EEPER  
24#  
!,!2-ꢄ #!,)"ꢄ  
4!-0ꢀꢎꢂꢎꢉ  
)NTERNAL REFERENCE  
VOLTAGE  
62%&).4 OUT  
)7$'  
ꢈꢉꢃ K(Z CLOCKꢊ  
#/-0ꢀ?).0  
#/-0ꢂ?).0  
#/-0ꢂ?).-  
#/-0   
#/-0   
77$'  
%"$ꢄꢃꢅ"'ꢆ  
%"$ꢇꢃꢅ"'ꢆ  
ꢀꢂꢇBIT $!#ꢀ  
,#$ DRIVER  
ꢀYꢁꢂꢃPSꢃꢁYꢁꢁ  
3%'Xꢄ #/-X  
*'  
ꢀꢂꢇBIT $!#ꢂ  
,#$ BOOSTER  
6
 ꢂꢋꢍ TO ꢉꢋꢅ 6  
,#$  
AIꢀꢁꢂꢃꢃB  
1. Legend:  
AF: alternate function  
ADC: Analog-to-digital converter  
BOR: Brownout reset  
DMA: Direct memory access  
DAC: Digital-to-analog converter  
I²C: Inter-integrated circuit multimaster interface  
IWDG: Independent watchdog  
12/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Functional overview  
LCD: Liquid crystal display  
POR/PDR: Power on reset / power-down reset  
RTC: Real-time clock  
SPI: Serial peripheral interface  
SWIM: Single wire interface module  
USART: Universal synchronous asynchronous receiver transmitter  
WWDG: Window watchdog  
3.1  
Low power modes  
The High density and medium+ density STM8L15xxdevices support five low power modes  
to achieve the best compromise between low power consumption, short startup time and  
available wakeup sources:  
Wait mode: CPU clock is stopped, but selected peripherals keep running. An internal  
or external interrupt or a Reset can be used to exit the microcontroller from Wait mode  
(WFE or WFI mode).  
Low power run mode: The CPU and the selected peripherals are running. Execution  
is done from RAM with a low speed oscillator (LSI or LSE). Flash memory and data  
EEPROM are stopped and the voltage regulator is configured in Ultralow power mode.  
The microcontroller enters Low power run mode by software and can exit from this  
mode by software or by a reset.  
All interrupts must be masked. They cannot be used to exit the microcontroller from this  
mode.  
Low power wait mode: This mode is entered when executing a Wait for event in Low  
power run mode. It is similar to Low power run mode except that the CPU clock is  
stopped. The wakeup from this mode is triggered by a Reset or by an internal or  
external event (peripheral event generated by the timers, serial interfaces, DMA  
controller (DMA1), comparators and I/O ports). When the wakeup is triggered by an  
event, the system goes back to Low power run mode.  
All interrupts must be masked. They cannot be used to exit the microcontroller from this  
mode.  
Active-halt mode: CPU and peripheral clocks are stopped, except RTC. The wakeup  
can be triggered by RTC interrupts, external interrupts or reset.  
Halt mode: CPU and peripheral clocks are stopped, the device remains powered on.  
The wakeup is triggered by an external interrupt or reset. A few peripherals have also a  
wakeup from Halt capability. Switching off the internal reference voltage reduces power  
consumption. Through software configuration it is also possible to wake up the device  
without waiting for the internal reference voltage wakeup time to have a fast wakeup  
time of 5 µs.  
3.2  
Central processing unit STM8  
3.2.1  
Advanced STM8 Core  
The 8-bit STM8 core is designed for code efficiency and performance with an Harvard  
architecture and a 3-stage pipeline.  
It contains 6 internal registers which are directly addressable in each execution context, 20  
addressing modes including indexed indirect and relative addressing, and 80 instructions.  
Doc ID 17943 Rev 1  
13/122  
Functional overview  
STM8L15xx8, STM8L15xR6  
Architecture and registers  
Harvard architecture  
3-stage pipeline  
32-bit wide program memory bus - single cycle fetching most instructions  
X and Y 16-bit index registers - enabling indexed addressing modes with or without  
offset and read-modify-write type data manipulations  
8-bit accumulator  
24-bit program counter - 16 Mbyte linear memory space  
16-bit stack pointer - access to a 64 Kbyte level stack  
8-bit condition code register - 7 condition flags for the result of the last instruction  
Addressing  
20 addressing modes  
Indexed indirect addressing mode for lookup tables located anywhere in the address  
space  
Stack pointer relative addressing mode for local variables and parameter passing  
Instruction set  
80 instructions with 2-byte average instruction size  
Standard data movement and logic/arithmetic functions  
8-bit by 8-bit multiplication  
16-bit by 8-bit and 16-bit by 16-bit division  
Bit manipulation  
Data transfer between stack and accumulator (push/pop) with direct stack access  
Data transfer using the X and Y registers or direct memory-to-memory transfers  
3.2.2  
Interrupt controller  
The high density and medium+ density STM8L15xxdevices feature a nested vectored  
interrupt controller:  
Nested interrupts with 3 software priority levels  
32 interrupt vectors with hardware priority  
Up to 40 external interrupt sources on 11 vectors  
Trap and reset interrupts  
3.3  
Reset and supply management  
3.3.1  
Power supply scheme  
The device requires a 1.65 V to 3.6 V operating supply voltage (V ). The external power  
DD  
supply pins must be connected as follows:  
V
, V  
, V  
, V  
, V  
, V  
, V  
, V  
= 1.65 to 3.6 V: external power supply  
SS1 DD1 SS2 DD2  
SS3  
DD3  
SS4 DD4  
for I/Os and for the internal regulator. Provided externally through V pins, the  
DD  
14/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
corresponding ground pin is V . V  
Functional overview  
/V /V /V  
/V  
/V  
/V  
and V  
SS  
SS1 SS2 SS3 SS4 DD1 DD2 DD3 DD4  
must not be left unconnected.  
V , V = 1.65 to 3.6 V: external power supplies for analog peripherals (minimum  
SSA  
DDA  
voltage to be applied to V  
is 1.8 V when the ADC1 is used). V  
and V  
must be  
DDA  
DDA  
SSA  
connected to V and V , respectively.  
DD  
SS  
V
, V  
(for ADC1): external reference voltage for ADC1. Must be provided  
REF-  
REF+  
externally through V  
and V  
pin.  
REF+  
REF-  
V
(for DAC1/2): external voltage reference for DAC1 and DAC2 must be provided  
REF+  
externally through V  
.
REF+  
3.3.2  
Power supply supervisor  
The device has an integrated ZEROPOWER power-on reset (POR)/power-down reset  
(PDR), coupled with a brownout reset (BOR) circuitry. When the microcontroller operates  
between 1.8 and 3.6 V, BOR is always active and ensures proper operation starting from  
1.8 V. After the 1.8 V BOR threshold is reached, the option byte loading process starts,  
either to confirm or modify default thresholds, or to disable BOR permanently (in which  
case, the V min value at power-down is 1.65 V).  
DD  
Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To  
reduce the power consumption in Halt mode, it is possible to automatically switch off the  
internal reference voltage (and consequently the BOR) in Halt mode. The device remains in  
reset state when V is below a specified threshold, V  
or V  
, without the need for  
DD  
POR/PDR  
BOR  
any external reset circuit.  
Note:  
When the microcontroller operates between 1.65 and 3.6 V, BOR is permanently disabled.  
The device features an embedded programmable voltage detector (PVD) that monitors the  
V
/V  
power supply and compares it to the V  
threshold. This PVD offers 7 different  
DD DDA  
PVD  
levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An  
interrupt can be generated when V /V drops below the V threshold and/or when  
DD DDA  
PVD  
V
/V  
is higher than the V  
threshold. The interrupt service routine can then generate  
DD DDA  
PVD  
a warning message and/or put the MCU into a safe state. The PVD is enabled by software.  
3.3.3  
Voltage regulator  
The high density and medium+ density STM8L15xxdevices embed an internal voltage  
regulator for generating the 1.8 V power supply for the core and peripherals.  
This regulator has two different modes:  
Main voltage regulator mode (MVR) for Run, Wait for interrupt (WFI) and Wait for event  
(WFE) modes.  
Low power voltage regulator mode (LPVR) for Halt, Active-halt, Low power run and Low  
power wait modes.  
When entering Halt or Active-halt modes, the system automatically switches from the MVR  
to the LPVR in order to reduce current consumption.  
3.4  
Clock management  
The clock controller distributes the system clock (SYSCLK) coming from different oscillators  
to the core and the peripherals. It also manages clock gating for low power modes and  
ensures clock robustness.  
Doc ID 17943 Rev 1  
15/122  
Functional overview  
Features  
STM8L15xx8, STM8L15xR6  
Clock prescaler: to get the best compromise between speed and current consumption  
the clock frequency to the CPU and peripherals can be adjusted by a programmable  
prescaler  
Safe clock switching: Clock sources can be changed safely on the fly in run mode  
through a configuration register.  
Clock management: To reduce power consumption, the clock controller can stop the  
clock to the core, individual peripherals or memory.  
System clock sources: 4 different clock sources can be used to drive the system  
clock:  
1-16 MHz High speed external crystal (HSE)  
16 MHz High speed internal RC oscillator (HSI)  
32.768 Low speed external crystal (LSE)  
38 kHz Low speed internal RC (LSI)  
RTC and LCD clock sources: the above four sources can be chosen to clock the RTC  
and the LCD, whatever the system clock.  
Startup clock: After reset, the microcontroller restarts by default with an internal  
2 MHz clock (HSI/8). The prescaler ratio and clock source can be changed by the  
application program as soon as the code execution starts.  
Clock security system (CSS): This feature can be enabled by software. If a HSE clock  
failure occurs, the system clock is automatically switched to HSI.  
Configurable main clock output (CCO): This outputs an external clock for use by the  
application.  
Figure 2.  
Clock tree diagram  
#33  
(3% /3#  
ꢀꢇꢀꢅ -(Z  
(3%  
(3)  
/3#?/54  
/3#?).  
TO CORE AND  
MEMORY  
393#,+  
393#,+  
0RESCALER  
ꢎꢀꢑꢂꢑꢆꢑꢃꢑꢀꢅꢑꢉꢂꢑꢅꢆꢑꢀꢂꢃ  
(3) 2#  
ꢀꢅ -(Z  
,3)  
,3%  
0#,+  
TO PERIPHERALS  
0ERIPHERAL  
#LOCK ENABLE ꢈꢂꢐ BITSꢊ  
,3%  
"%%0#,+  
)7$'#,+  
TO "%%0  
TO )7$'  
#,+"%%03%,;ꢀꢏꢐ=  
,3)  
,3) 2#  
ꢉꢃ K(Z  
24##,+  
TO 24#  
TO ,#$  
24#3%,;ꢉꢏꢐ=  
,#$ PERIPHERAL  
CLOCK ENABLE ꢈꢀ BITꢊ  
24#  
PRESCALER  
24##,+ꢎꢂ  
24##,+  
   
ꢎꢀꢑꢂꢑꢆꢑꢃꢑꢀꢅꢑꢉꢂꢑꢅꢆ  
/3#ꢉꢂ?/54  
/3#ꢉꢂ?).  
,3% /3#  
ꢉꢂ ꢁꢅꢃ K(  
Z
(ALT  
,#$#,+  
TO ,#$  
393#,+  
(3)  
,3)  
(3%  
,3%  
CONFIGURABLE  
CLOCK OUTPUT  
##/  
PRESCALER  
ꢎꢀꢑꢂꢑꢆꢑꢃꢑꢀꢅꢑꢉꢂꢑꢅꢆ  
,#$ PERIPHERAL  
CLOCK ENABLE ꢈꢀ BITꢊ  
##/  
AIꢀꢃꢂꢅꢒ  
16/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Functional overview  
3.5  
Low power real-time clock  
The real-time clock (RTC) is an independent binary coded decimal (BCD) timer/counter.  
Six byte locations contain the second, minute, hour (12/24 hour), week day, date, month,  
year, in BCD (binary coded decimal) format. Correction for 28, 29 (leap year), 30, and 31  
day months are made automatically. The subsecond field can also be read in binary format.  
The calendar can be corrected from 1 to 32767 RTC clock pulses. This allows to make a  
synchronization to a master clock.  
The RTC offers a digital calibration which allows an accuracy of +/-0.5ppm.  
It provides a programmable alarm and programmable periodic interrupts with wakeup from  
Halt capability.  
Periodic wakeup time using the 32.768 kHz LSE with the lowest resolution (of 61 µs) is  
from min. 122 µs to max. 3.9 s. With a different resolution, the wakeup time can reach  
36 hours  
Periodic alarms based on the calendar can also be generated from LSE period to every  
year  
A clock security system detects a failure on LSE, and can provide an interrupt with wakeup  
capability. The RTC clock can automatically switch to LSI in case of LSE failure.  
The RTC also provides 3 anti-tamper detection pins. This detection embeds a  
programmable filter and can wakeup the MCU.  
3.6  
LCD (Liquid crystal display)  
The liquid crystal display drives up to 8 common terminals and up to 40 segment terminals  
to drive up to 320 pixels. It can also be configured to drive up to 4 common and 44 segments  
(up to 176 pixels).  
Internal step-up converter to guarantee contrast control whatever V  
.
DD  
Static 1/2, 1/3, 1/4, 1/8 duty supported.  
Static 1/2, 1/3, 1/4 bias supported.  
Phase inversion to reduce power consumption and EMI.  
Up to 8 pixels which can programmed to blink.  
The LCD controller can operate in Halt mode.  
Note:  
Unnecessary segments and common pins can be used as general I/O pins.  
3.7  
Memories  
The high density and medium+ density STM8L15xxdevices have the following main  
features:  
Up to 4 Kbytes of RAM  
The non-volatile memory is divided into three arrays:  
Up to 64 Kbytes of medium-density embedded Flash program memory  
Up to 2 Kbytes of Data EEPROM  
Option bytes.  
Doc ID 17943 Rev 1  
17/122  
Functional overview  
STM8L15xx8, STM8L15xR6  
The EEPROM embeds the error correction code (ECC) feature. It supports the read-while-  
write (RWW): it is possible to execute the code from the program matrix while  
programming/erasing the data matrix.  
The option byte protects part of the Flash program memory from write and readout piracy.  
3.8  
3.9  
DMA  
A 4-channel direct memory access controller (DMA1) offers a memory-to-memory and  
peripherals-from/to-memory transfer capability. The 4 channels are shared between the  
following IPs with DMA capability: ADC1, DAC1,DAC2, I2C1, SPI1, SPI2, USART1,  
USART2, USART3, and the 5 Timers.  
Analog-to-digital converter  
12-bit analog-to-digital converter (ADC1) with 28 channels (including 4 fast channel),  
temperature sensor and internal reference voltage  
Conversion time down to 1 µs with f  
= 16 MHz  
SYSCLK  
Programmable resolution  
Programmable sampling time  
Single and continuous mode of conversion  
Scan capability: automatic conversion performed on a selected group of analog inputs  
Analog watchdog: interrupt generation when the converted voltage is outside the  
programmed threshold  
Triggered by timer  
Note:  
ADC1 can be served by DMA1.  
3.10  
Digital-to-analog converter  
12-bit DAC with 2 buffered outputs (two digital signals can be converted into two analog  
voltage signal outputs)  
Synchronized update capability using timers  
DMA capability for each channel  
External triggers for conversion  
Noise-wave generation  
Triangular-wave generation  
Dual DAC channels with independent or simultaneous conversions  
Input reference voltage V  
for better resolution  
REF+  
Note:  
DAC can be served by DMA1.  
18/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Functional overview  
3.11  
Ultralow power comparators  
The high density and medium+ density STM8L15xxdevices embed two comparators  
(COMP1 and COMP2) sharing the same current bias and voltage reference. The voltage  
reference can be internal or external (coming from an I/O).  
One comparator with fixed threshold (COMP1).  
One comparator rail to rail with fast or slow mode (COMP2). The threshold can be one  
of the following:  
DAC output  
External I/O  
Internal reference voltage or internal reference voltage submultiple (1/4, 1/2, 3/4)  
The two comparators can be used together to offer a window function. They can wake up  
from Halt mode.  
3.12  
3.13  
System configuration controller and routing interface  
The system configuration controller provides the capability to remap some alternate  
functions on different I/O ports. TIM4 and ADC1 DMA channels can also be remapped.  
The highly flexible routing interface allows application software to control the routing of  
different I/Os to the TIM1 timer input captures. It also controls the routing of internal analog  
signals to ADC1, COMP1, COMP2, DAC1 and the internal reference voltage V  
.
REFINT  
Finally, it provides a set of registers for efficiently managing a set of dedicated I/Os  
TM  
supporting up to 16 capacitive sensing channels using the ProxSense technology.  
Timers  
The high density and medium+ density STM8L15xxdevices contain one advanced control  
timer (TIM1), three 16-bit general purpose timers (TIM2,TIM3 and TIM5) and one 8-bit basic  
timer (TIM4).  
All the timers can be served by DMA1.  
Table 2 compares the features of the advanced control, general-purpose and basic timers.  
Table 2.  
Timer  
Timer feature comparison  
DMA1  
Counter Counter  
Capture/compare Complementary  
Prescaler factor  
request  
resolution  
type  
channels  
outputs  
generation  
Any integer  
from 1 to 65536  
TIM1  
3 + 1  
3
TIM2  
TIM3  
TIM5  
16-bit  
8-bit  
up/down  
up  
Any power of 2  
from 1 to 128  
Yes  
2
0
None  
Any power of 2  
from 1 to 32768  
TIM4  
Doc ID 17943 Rev 1  
19/122  
Functional overview  
STM8L15xx8, STM8L15xR6  
3.13.1  
16-bit advanced control timer (TIM1)  
This is a high-end timer designed for a wide range of control applications. With its  
complementary outputs, dead-time control and center-aligned PWM capability, the field of  
applications is extended to motor control, lighting and half-bridge driver.  
16-bit up, down and up/down autoreload counter with 16-bit prescaler  
3 independent capture/compare channels (CAPCOM) configurable as input capture,  
output compare, PWM generation (edge and center aligned mode) and single pulse  
mode output  
1 additional capture/compare channel which is not connected to an external I/O  
Synchronization module to control the timer with external signals  
Break input to force timer outputs into a defined state  
3 complementary outputs with adjustable dead time  
Encoder mode  
Interrupt capability on various events (capture, compare, overflow, break, trigger)  
3.13.2  
16-bit general purpose timers (TIM2, TIM3, TIM5)  
16-bit autoreload (AR) up/down-counter  
7-bit prescaler adjustable to fixed power of 2 ratios (1…128)  
2 individually configurable capture/compare channels  
PWM mode  
Interrupt capability on various events (capture, compare, overflow, break, trigger)  
Synchronization with other timers or external signals (external clock, reset, trigger and  
enable)  
3.13.3  
8-bit basic timer (TIM4)  
The 8-bit timer consists of an 8-bit up auto-reload counter driven by a programmable  
prescaler. It can be used for timebase generation with interrupt generation on timer overflow  
or for DAC trigger generation.  
3.14  
Watchdog timers  
The watchdog system is based on two independent timers providing maximum security to  
the applications.  
3.14.1  
Window watchdog timer  
The window watchdog (WWDG) is used to detect the occurrence of a software fault, usually  
generated by external interferences or by unexpected logical conditions, which cause the  
application program to abandon its normal sequence.  
3.14.2  
Independent watchdog timer  
The independent watchdog peripheral (IWDG) can be used to resolve processor  
malfunctions due to hardware or software failures.  
20/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Functional overview  
It is clocked by the internal LSI RC clock source, and thus stays active even in case of a  
CPU clock failure.  
3.15  
Beeper  
The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in  
the range of 1, 2 or 4 kHz.  
3.16  
Communication interfaces  
3.16.1  
SPI  
The serial peripheral interfaces (SPI1 and SPI2) provide half/ full duplex synchronous serial  
communication with external devices.  
Maximum speed: 8 Mbit/s (f  
/2) both for master and slave  
SYSCLK  
Full duplex synchronous transfers  
Simplex synchronous transfers on 2 lines with a possible bidirectional data line  
Master or slave operation - selectable by hardware or software  
Hardware CRC calculation  
Slave/master selection input pin  
Note:  
SPI1 and SPI2 can be served by the DMA1 Controller.  
2
3.16.2  
I C  
2
The I C bus interface (I2C1) provides multi-master capability, and controls all I²C bus-  
specific sequencing, protocol, arbitration and timing.  
2
Master, slave and multi-master capability  
Standard mode up to 100 kHz and fast speed modes up to 400 kHz.  
7-bit and 10-bit addressing modes.  
SMBus 2.0 and PMBus support  
Hardware CRC calculation  
Note:  
I C1 can be served by the DMA1 Controller.  
3.16.3  
USART  
The USART interfaces (USART1, USART2 and USART3) allow full duplex, asynchronous  
communications with external devices requiring an industry standard NRZ asynchronous  
serial data format. It offers a very wide range of baud rates.  
1 Mbit/s full duplex SCI  
SPI1 emulation  
High precision baud rate generator  
Smartcard emulation  
IrDA SIR encoder decoder  
Single wire half duplex mode  
Doc ID 17943 Rev 1  
21/122  
Functional overview  
STM8L15xx8, STM8L15xR6  
Note:  
USART1, USART2 and USART3 can be served by the DMA1 Controller.  
3.17  
Infrared (IR) interface  
The high density and medium+ density STM8L15xxdevices contain an infrared interface  
which can be used with an IR LED for remote control functions. Two timer output compare  
channels are used to generate the infrared remote control signals.  
3.18  
Development support  
Development tools  
Development tools for the STM8 microcontrollers include:  
The STice emulation system offering tracing and code profiling  
The STVD high-level language debugger including C compiler, assembler and  
integrated development environment  
The STVP Flash programming software  
The STM8 also comes with starter kits, evaluation boards and low-cost in-circuit  
debugging/programming tools.  
Single wire data interface (SWIM) and debug module  
The debug module with its single wire data interface (SWIM) permits non-intrusive real-time  
in-circuit debugging and fast memory programming.  
The Single wire interface is used for direct access to the debugging module and memory  
programming. The interface can be activated in all device operation modes.  
The non-intrusive debugging module features a performance close to a full-featured  
emulator. Beside memory and peripherals, CPU operation can also be monitored in real-  
time by means of shadow registers.  
Bootloader  
A bootloader is available to reprogram the Flash memory using the USART1, USART2,  
USART3 (USARTs in asynchronous mode), SPI1 or SPI2 interfaces.  
22/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Pin description  
4
Pin description  
Figure 3. STM8L151M8 80-pin package pinout (without LCD)  
ꢃꢐ ꢁꢒ ꢁꢃ ꢁꢁ ꢁꢅ ꢁꢍ ꢁꢆ ꢁꢉ ꢁꢂ ꢁꢀ ꢁꢐ ꢅꢒ ꢅꢃ ꢅꢁ ꢅꢅ ꢅꢍ ꢅꢆ ꢅꢉ ꢅꢂ ꢅꢀ  
0$ꢁ  
ꢅꢐ  
ꢍꢒ  
ꢍꢃ  
ꢍꢁ  
ꢍꢅ  
ꢍꢍ  
ꢍꢆ  
ꢍꢉ  
ꢍꢂ  
ꢍꢀ  
ꢍꢐ  
ꢆꢒ  
ꢆꢃ  
ꢆꢁ  
ꢆꢅ  
ꢆꢍ  
ꢆꢆ  
ꢆꢉ  
ꢆꢂ  
ꢆꢀ  
0(ꢐ  
0(ꢀ  
0(ꢂ  
0(ꢉ  
0!  
0$ꢅ  
0$ꢍ  
0$ꢆ  
0&ꢁ  
0&ꢅ  
0&ꢍ  
.234ꢎ0!  
0!  
0&ꢆ  
0!  
0!  
0!  
0!  
0&ꢉ  
0&ꢂ  
0&ꢀ  
0&ꢐ  
ꢀꢐ  
ꢀꢀ  
ꢀꢂ  
0!  
6
6
33ꢆ  
$$ꢆ  
633!ꢎ62%&ꢇ ꢀꢉ  
ꢀꢆ  
633ꢀ  
ꢀꢍ  
ꢀꢅ  
ꢀꢁ  
ꢀꢃ  
0"ꢁ  
0"ꢅ  
0"ꢍ  
0"ꢆ  
0"ꢉ  
0"ꢂ  
6$$ꢀ  
6$$!  
62%&ꢓ  
0'ꢐ  
0'ꢀ ꢀꢒ  
ꢂꢐ  
0'ꢂ  
ꢂꢀ ꢂꢂ ꢂꢉ ꢂꢆ ꢂꢍ ꢂꢅ ꢂꢁ ꢂꢃ ꢂꢒ ꢉꢐ ꢉꢀ ꢉꢂ ꢉꢉ ꢉꢆ ꢉꢍ ꢉꢅ ꢉꢁ ꢉꢃ ꢉꢒ ꢆꢐ  
AIꢀꢁꢃꢉꢐ  
1. Pin 22 is reserved and must be tied to VDD  
.
Figure 4. STM8L152M8 80-pin package pinout (with LCD)  
ꢃꢐ ꢁꢒ ꢁꢃ ꢁꢁ ꢁꢅ ꢁꢍ ꢁꢆ ꢁꢉ ꢁꢂ ꢁꢀ ꢁꢐ ꢅꢒ ꢅꢃ ꢅꢁ ꢅꢅ ꢅꢍ ꢅꢆ ꢅꢉ ꢅꢂ ꢅꢀ  
0$ꢁ  
0$ꢅ  
0$ꢍ  
0$ꢆ  
0&ꢁ  
ꢅꢐ  
ꢍꢒ  
0(ꢐ  
0(ꢀ  
0(ꢂ  
0(ꢉ  
0!  
ꢍꢃ  
ꢍꢁ  
ꢍꢅ  
ꢍꢍ  
ꢍꢆ  
ꢍꢉ  
ꢍꢂ  
ꢍꢀ  
0&ꢅ  
0&ꢍ  
.234ꢎ0!  
0!  
0!  
0!  
0!  
0!  
0&ꢆ  
0&ꢉ  
0&ꢂ  
0&ꢀ  
0&ꢐ  
ꢀꢐ  
ꢀꢀ  
ꢀꢂ  
ꢍꢐ  
ꢆꢒ  
ꢆꢃ  
ꢆꢁ  
ꢆꢅ  
0!  
6
6
33ꢆ  
$$ꢆ  
633!ꢎ62%&ꢇ ꢀꢉ  
ꢀꢆ  
633ꢀ  
6$$ꢀ  
6$$!  
62%&ꢓ  
0'ꢐ  
0'ꢀ  
0'ꢂ  
ꢀꢍ  
ꢀꢅ  
ꢀꢁ  
ꢀꢃ  
ꢀꢒ  
ꢂꢐ  
0"ꢁ  
0"ꢅ  
0"ꢍ  
0"ꢆ  
0"ꢉ  
0"ꢂ  
ꢆꢍ  
ꢆꢆ  
ꢆꢉ  
ꢆꢂ  
ꢆꢀ  
ꢂꢀ ꢂꢂ ꢂꢉ ꢂꢆ ꢂꢍ ꢂꢅ ꢂꢁ ꢂꢃ ꢂꢒ ꢉꢐ ꢉꢀ ꢉꢂ ꢉꢉ ꢉꢆ ꢉꢍ ꢉꢅ ꢉꢁ ꢉꢃ ꢉꢒ ꢆꢐ  
AIꢀꢁꢃꢉꢉ  
Doc ID 17943 Rev 1  
23/122  
Pin description  
Figure 5.  
STM8L15xx8, STM8L15xR6  
STM8L151R8 and STM8L151R6 64-pin pinout (without LCD)  
ꢅꢆ ꢅꢉ ꢅꢂ ꢅꢀ ꢅꢐ ꢍꢒ ꢍꢃ ꢍꢁ ꢍꢅ ꢍꢍ ꢍꢆ ꢍꢉ ꢍꢂ ꢍꢀ ꢍꢐ ꢆꢒ  
ꢀꢐ  
ꢆꢃ  
ꢆꢁ  
ꢆꢅ  
ꢆꢍ  
ꢆꢆ  
ꢆꢉ  
ꢆꢂ  
ꢆꢀ  
ꢆꢐ  
ꢉꢒ  
ꢉꢃ  
ꢉꢁ  
ꢉꢅ  
ꢉꢍ  
ꢉꢆ  
ꢉꢉ  
0$ꢁ  
0$ꢅ  
0$ꢍ  
0$ꢆ  
0&ꢁ  
0&ꢅ  
0&ꢍ  
0&ꢆ  
0&ꢀ  
0&ꢐ  
0"ꢁ  
0"ꢅ  
0!  
.234ꢎ0!  
0!  
0!  
0!  
0!  
0!  
0!  
633!ꢎ62%&ꢇ  
633ꢀ  
6$$ꢀ ꢀꢀ  
6$$!  
ꢀꢂ  
ꢀꢉ  
ꢀꢆ  
62%&ꢓ  
0"ꢍ  
0"ꢆ  
0"ꢉ  
0"ꢂ  
0'ꢐ  
0'ꢀ ꢀꢍ  
0'ꢂ ꢀꢅ  
ꢀꢁ ꢀꢃ ꢀꢒ ꢂꢐ ꢂꢀ ꢂꢂ ꢂꢉ ꢂꢆ ꢂꢍ ꢂꢅ ꢂꢁ ꢂꢃ ꢂꢒ ꢉꢐ ꢉꢀ ꢉꢂ  
AIꢀꢁꢃꢉꢀ  
1. Pin 18 is reserved and must be tied to VDD  
.
Figure 6.  
STM8L152R8 and STM8L152R6 64-pin pinout (with LCD)  
ꢅꢆ ꢅꢉ ꢅꢂ ꢅꢀ ꢅꢐ ꢍꢒ ꢍꢃ ꢍꢁ ꢍꢅ ꢍꢍ ꢍꢆ ꢍꢉ ꢍꢂ ꢍꢀ ꢍꢐ ꢆꢒ  
ꢆꢃ  
ꢆꢁ  
ꢆꢅ  
ꢆꢍ  
ꢆꢆ  
ꢆꢉ  
ꢆꢂ  
ꢆꢀ  
ꢆꢐ  
ꢉꢒ  
ꢉꢃ  
ꢉꢁ  
ꢉꢅ  
ꢉꢍ  
ꢉꢆ  
ꢉꢉ  
0$ꢁ  
0$ꢅ  
0$ꢍ  
0$ꢆ  
0&ꢁ  
0&ꢅ  
0&ꢍ  
0&ꢆ  
0&ꢀ  
0&ꢐ  
0"ꢁ  
0"ꢅ  
0!  
.234ꢎ0!  
0!  
0!  
0!  
0!  
0!  
0!  
633!ꢎ62%&ꢇ  
633ꢀ  
ꢀꢐ  
6$$ꢀ ꢀꢀ  
6$$!  
ꢀꢂ  
ꢀꢉ  
ꢀꢆ  
62%&ꢓ  
0"ꢍ  
0"ꢆ  
0"ꢉ  
0"ꢂ  
0'ꢐ  
0'ꢀ ꢀꢍ  
0'ꢂ ꢀꢅ  
ꢀꢁ ꢀꢃ ꢀꢒ ꢂꢐ ꢂꢀ ꢂꢂ ꢂꢉ ꢂꢆ ꢂꢍ ꢂꢅ ꢂꢁ ꢂꢃ ꢂꢒ ꢉꢐ ꢉꢀ ꢉꢂ  
AIꢀꢁꢃꢉꢍ  
24/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Figure 7. STM8L151C8 48-pin pinout (without LCD)  
Pin description  
ꢆꢃ ꢆꢁ ꢆꢅ ꢆꢍ ꢆꢆ ꢆꢉ ꢆꢂ ꢆꢀ ꢆꢐ ꢉꢒ ꢉꢃ ꢉꢁ  
ꢉꢅ  
ꢉꢍ  
ꢉꢆ  
ꢉꢉ  
ꢉꢂ  
ꢉꢀ  
ꢉꢐ  
ꢂꢒ  
ꢂꢃ  
ꢂꢁ  
ꢂꢅ  
ꢂꢍ  
0$ꢁ  
0$ꢅ  
0$ꢍ  
0$ꢆ  
0&ꢐ  
0"ꢁ  
0"ꢅ  
0"ꢍ  
0"ꢆ  
0"ꢉ  
0"ꢂ  
0"ꢀ  
0!  
.234ꢎ0!  
0!  
0!  
0!  
0!  
0!  
0!  
6
33633!ꢎ62%&ꢇ  
6$$ꢀ  
6$$!  
62%&ꢓ  
ꢀꢐ  
ꢀꢀ  
ꢀꢂ  
ꢀꢉ ꢀꢆ ꢀꢍ ꢀꢅ ꢀꢁ ꢀꢃ ꢀꢒ ꢂꢐ ꢂꢀ ꢂꢂ ꢂꢉ ꢂꢆ  
AIꢀꢁꢃꢉꢂ  
1. Pin 13 is reserved and must be tied to VDD  
.
Figure 8.  
STM8L152C8 48-pin pinout (with LCD)  
ꢆꢃ ꢆꢁ ꢆꢅ ꢆꢍ ꢆꢆ ꢆꢉ ꢆꢂ ꢆꢀ ꢆꢐ ꢉꢒ ꢉꢃ ꢉꢁ  
ꢉꢅ  
ꢉꢍ  
ꢉꢆ  
ꢉꢉ  
ꢉꢂ  
ꢉꢀ  
ꢉꢐ  
ꢂꢒ  
ꢂꢃ  
ꢂꢁ  
ꢂꢅ  
ꢂꢍ  
0$ꢁ  
0!  
.234ꢎ0!  
0!  
0$ꢅ  
0$ꢍ  
0$ꢆ  
0&ꢐ  
0"ꢁ  
0"ꢅ  
0"ꢍ  
0"ꢆ  
0"ꢉ  
0"ꢂ  
0"ꢀ  
0!  
0!  
0!  
0!  
0!  
6
33633!ꢎ62%&ꢇ  
6$$ꢀ  
6$$!  
62%&ꢓ  
ꢀꢐ  
ꢀꢀ  
ꢀꢂ  
ꢀꢉ ꢀꢆ ꢀꢍ ꢀꢅ ꢀꢁ ꢀꢃ ꢀꢒ ꢂꢐ ꢂꢀ ꢂꢂ ꢂꢉ ꢂꢆ  
AIꢀꢁꢃꢉꢆ  
Doc ID 17943 Rev 1  
25/122  
Pin description  
STM8L15xx8, STM8L15xR6  
Table 3.  
Legend/abbreviation  
Type  
I= input, O = output, S = power supply  
Input  
CM = CMOS  
Level  
Output  
Input  
HS = high sink/source (20 mA)  
float = floating, wpu = weak pull-up  
Port and control  
configuration  
Output  
T = true open drain, OD = open drain, PP = push pull  
Bold X (pin state after reset release).  
Reset state  
Unless otherwise specified, the pin state is the same during the reset phase (i.e.  
“under reset”) and after internal reset release (i.e. at reset state).  
Table 4.  
High density and medium+ density STM8L15x pin description  
Pin  
number  
Input  
Output  
Pin name  
Default alternate function  
1
2
3
4
6
-
-
-
-
-
-
PH0/LCD SEG 36 (3)  
PH1/LCD SEG 37 (3)  
PH2/LCD SEG 38 (3)  
PH3/LCD SEG 39 (3)  
I/O  
I/O  
I/O  
I/O  
I/O  
X
X
X
X
X
X
X
X
X
X
X
X
X
HS  
X
X
X
X
X
X Port H0 LCD segment 36  
HS  
HS  
HS  
HS  
X Port H1 LCD segment 37  
X Port H2 LCD segment 38  
X Port H3 LCD segment 39  
-
-
2
2 NRST/PA1(1)  
X Reset  
PA1  
PA2/OSC_IN/  
3 [USART1_TX](2)  
[SPI1_MISO] (2)  
HSE oscillator input /  
X Port A2 [USART1 transmit] / [SPI1  
7
8
3
4
/
I/O  
I/O  
X
X
X
X
X
X
HS  
HS  
X
X
master in- slave out] /  
HSE oscillator output /  
X Port A3 [USART1 receive]/ [SPI1  
master out/slave in]/  
PA3/OSC_OUT/[USART1  
4
_RX](2)/[SPI1_MOSI](2)  
Timer 2 - break input /  
/[Timer 2 - trigger] /  
X Port A4 LCD COM 0 / ADC1 input  
2/Comparator 1 positive  
input  
PA4/TIM2_BKIN/  
[TIM2_TRIG](2)  
9
5
5
I/O FT  
I/O FT  
X
X
X
HS  
X
LCD_COM0(3)/ADC1_IN2  
COMP1_INP  
Timer 3 - break input /  
[Timer 3 - trigger] /  
X Port A5 LCD_COM 1 /  
ADC1 input 1/Comparator 1  
positive input  
PA5/TIM3_BKIN/  
[TIM3_TRIG](2)  
/
10  
11  
6
7
6
X
X
X
X
X
X
HS  
HS  
X
X
LCD_COM1(3)/ADC1_IN1/  
COMP1_INP  
PA6/ADC1_TRIG/  
ADC1 - trigger / LCD_COM2  
X Port A6 / ADC1 input 0/Comparator  
1 positive input  
7 LCD_COM2(3)/ADC1_IN0/ I/O Ft  
COMP1_INP  
26/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Pin description  
Table 4.  
High density and medium+ density STM8L15x pin description (continued)  
Pin  
number  
Input  
Output  
Pin name  
Default alternate function  
PA7/LCD_SEG0(3)  
TIM5_CH1  
/
LCD segment 0 / TIM5  
channel 1  
12  
8
8
I/O FT  
I/O FT  
X
X
X
X
X
X
HS  
X
X
X Port A7  
X Port B0  
PB0(4)/TIM2_CH1/  
Timer 2 - channel 1 / LCD  
segment 10 /  
ADC1_IN18/Comparator 1  
positive input  
LCD_SEG10(3)  
ADC1_IN18/  
/
39 31 24  
40 32 25  
41 33 26  
HS  
HS  
COMP1_INP  
PB1/TIM3_CH1/  
Timer 3 - channel 1 / LCD  
segment 11 /  
ADC1_IN17/Comparator 1  
positive input  
LCD_SEG11(3)  
ADC1_IN17/  
/
I/O FT  
X
X
X
X
X Port B1  
COMP1_INP  
PB2/ TIM2_CH2/  
Timer 2 - channel 2 / LCD  
segment 12 /  
ADC1_IN16/Comparator 1  
positive input  
LCD_SEG12(3)  
ADC1_IN16/  
/
I/O FT  
I/O FT  
I/O FT  
X
X
X
X
X
X
X
X
X
HS  
HS  
HS  
X
X
X
X Port B2  
X Port B3  
X Port B4  
COMP1_INP  
Timer 2 - trigger / LCD  
segment 13  
/ADC1_IN15/Comparator 1  
positive input  
PB3/TIM2_TRIG/  
42 34 27 LCD_SEG13(3)  
/
ADC1_IN15/COMP1_INP  
SPI1 master/slave select /  
LCD segment 14 /  
ADC1_IN14/Comparator 1  
positive input  
PB4(3)/SPI1_NSS/  
43 35  
-
LCD_SEG14(3)  
/
ADC1_IN14/COMP1_INP  
SPI1 master/slave select /  
LCD segment 14 /  
ADC1_IN14 /  
DAC channel 2  
output/Comparator 1  
positive input  
PB4(3)/SPI1_NSS/  
LCD_SEG14(3)  
/
-
-
28  
I/O FT  
X
X
X
HS  
X
X Port B4  
X Port B5  
ADC1_IN14/DAC_OUT2/  
COMP1_INP  
PB5/SPI1_SCK/  
SPI1 clock / LCD segment  
15 /  
ADC1_IN13/Comparator 1  
positive input  
LCD_SEG15(3)  
ADC1_IN13  
/
44 36  
-
I/O FT  
I/O FT  
X
X
X
X
X
X
HS  
HS  
X
X
COMP1_INP  
[SPI1 clock] / LCD segment  
15 / ADC1_IN13 / DAC  
X Port B5 channel 2  
output/Comparator 1  
positive input  
PB5/SPI1_SCK/  
LCD_SEG15(3)  
/
-
-
29  
ADC1_IN13/DAC_OUT2/  
COMP1_INP  
Doc ID 17943 Rev 1  
27/122  
Pin description  
STM8L15xx8, STM8L15xR6  
Table 4.  
High density and medium+ density STM8L15x pin description (continued)  
Pin  
number  
Input  
Output  
Pin name  
Default alternate function  
SPI1 master out/slave in/  
LCD segment 16 /  
ADC1_IN12/Comparator 1  
positive input  
PB6/SPI1_MOSI/  
45 37  
-
LCD_SEG16(3)  
/
I/O FT  
I/O FT  
I/O FT  
X
X
X
X
X
X
X
X
X
HS  
X
X
X
X Port B6  
ADC1_IN12/COMP1_INP  
SPI1 master out/  
slave in / LCD segment 16 /  
X Port B6 ADC1_IN12 / DAC channel  
2 output/Comparator 1  
PB6/SPI1_MOSI/  
LCD_SEG16(3)  
/
-
-
30  
HS  
HS  
ADC1_IN12/DAC_OUT2/  
COMP1_INP  
positive input  
SPI1 master in- slave out/  
LCD segment 17 /  
ADC1_IN11/Comparator 1  
PB7/SPI1_MISO/  
46 38 31 LCD_SEG17(3)  
/
X Port B7  
ADC1_IN11/COMP1_INP  
positive input  
Port C0 I2C1 data  
Port C1 I2C1 clock  
USART1 receive /  
65 53 37 PC0/I2C1_SDA  
I/O FT  
I/O FT  
X
X
X
X
T(5)  
T(4)  
66 54 38 PC1/I2C1_SCL  
PC2/USART1_RXI/  
69 57 41 LCD_SEG22/ADC1_IN6/ I/O FT  
COMP1_INP  
LCD segment 22 /  
ADC1_IN6/Comparator 1  
positive input  
X
X
X
X
X
X
HS  
HS  
X
X
X Port C2  
PC3/USART1_TXI/  
USART1 transmit /  
X Port C3 LCD segment 23 /  
ADC1_IN5  
-
-
42 LCD_SEG23(3)  
ADC1_IN5  
/
I/O FT  
I/O FT  
PC3/USART1_TX/  
LCD_SEG23(3)  
USART1 transmit /  
LCD segment 23 /  
X Port C3 ADC1_IN5 /  
Comparator 2 negative input  
/Comparator 1 input positive  
/
ADC1_IN5/COMP_IN3M/  
COMP2_INM/  
70 58  
-
X
X
X
HS  
X
COMP1_INP  
USART1 synchronous clock  
/ I2C1_SMB / Configurable  
clock output / LCD segment  
24 / ADC1_IN4 /  
Comparator 2 negative input  
/ Comparator 1 positive input  
PC4/USART1_CK]/  
I2C1_SMB/CCO/  
71 59 43 LCD_SEG24(3)  
/
I/O FT  
I/O FT  
X
X
X
X
X
X
HS  
HS  
X
X
X Port C4  
ADC1_IN4/COMP2_INM/  
COMP1_INP  
PC5/OSC32_IN  
LSE oscillator input / [SPI1  
X Port C5 master/slave select] /  
[USART1 transmit]  
72 60 44 /[SPI1_NSS](2)  
/
[USART1_TX](2)  
28/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Pin description  
Table 4.  
High density and medium+ density STM8L15x pin description (continued)  
Pin  
number  
Input  
Output  
Pin name  
Default alternate function  
PC6/OSC32_OUT/  
LSE oscillator output / [SPI1  
clock] / [USART1 receive]  
73 61 45 [SPI1_SCK](2)  
/
I/O FT  
X
X
X
X
X
X
HS  
X
X
X Port C6  
X Port C7  
[USART1_RX](2)  
LCD segment 25  
PC7/LCD_SEG25(3)  
/
/ADC1_IN3/ Comparator  
negative input / Comparator  
1 positive input  
74 62  
-
ADC1_IN3/COMP2_INM I/O FT  
HS  
HS  
(6)/COMP1_INP  
LCD segment 25  
/ADC1_IN3/ USART3  
synchronous clock/  
PC7/LCD_SEG25(3)  
ADC1_IN3/USART3_CK/  
/
-
-
46  
I/O FT  
I/O FT  
X
X
X
X
X
X
X
X
X Port C7  
COMP2_INM/  
Comparator 2 negative input  
/ Comparator 1 positive input  
COMP1_INP  
Timer 3 - channel 2 /  
[ADC1_Trigger] / LCD  
X Port D0 segment 7 / ADC1_IN22 /  
PD0/TIM3_CH2/  
[ADC1_TRIG](2)  
/
29 25 20  
30 26 21  
HS  
LCD_SEG7(3)  
/
Comparator 2 positive input  
2
ADC1_IN22/COMP2_INP  
PD1/TIM3_TRIG/  
Timer 3 - trigger /  
LCD_COM3 / ADC1_IN21 /  
comparator 1 positive input/  
comparator 2 positive input  
LCD_COM3(3)  
/
I/O FT  
I/O FT  
I/O FT  
I/O FT  
X
X
X
X
X
X
X
X
X
X
X
X
HS  
HS  
HS  
HS  
X
X
X
X
X Port D1  
ADC1_IN21/COMP1_INP/  
COMP2_INP  
Timer 1 - channel 1 / LCD  
PD2/TIM1_CH1  
segment 8 /  
X Port D2  
31 27 22 /LCD_SEG8(3)  
/
ADC1_IN20/Comparator 1  
ADC1_IN20/COMP1_INP  
positive input  
PD3/ TIM1_TRIG/  
Timer 1 - trigger / LCD  
segment 9 /  
ADC1_IN19/Comparator 1  
positive input  
LCD_SEG9(3)  
ADC1_IN19/  
COMP1_INP  
/
32 28 23  
X Port D3  
PD4/TIM1_CH2  
Timer 1 - channel 2 / LCD  
segment 18 /  
ADC1_IN10/Comparator 1  
positive input  
/LCD_SEG18(3)  
ADC1_IN10/  
COMP1_INP  
/
57 45  
-
X Port D4  
Timer 1 - channel 2 / LCD  
segment 18 /  
X Port D4 ADC1_IN10/SPI2 master  
in/slave out/Comparator 1  
positive input  
PD4/TIM1_CH2  
/LCD_SEG18(3)  
/
-
-
33  
I/O FT  
X
X
X
HS  
X
ADC1_IN10/SPI2_MISO/  
COMP1_INP  
Doc ID 17943 Rev 1  
29/122  
Pin description  
STM8L15xx8, STM8L15xR6  
Table 4.  
High density and medium+ density STM8L15x pin description (continued)  
Pin  
number  
Input  
Output  
Pin name  
Default alternate function  
PD5/TIM1_CH3  
Timer 1 - channel 3 / LCD  
segment 19 /  
ADC1_IN9/Comparator 1  
positive input  
/LCD_SEG19(3)  
ADC1_IN9/  
/
58 46  
-
I/O FT  
I/O FT  
I/O FT  
I/O FT  
X
X
X
X
X
X
X
X
X
X
X
X
HS  
X
X
X
X
X Port D5  
COMP1_INP  
Timer 1 - channel 3 / LCD  
segment 19 / ADC1_IN9/  
X Port D5 SPI2 master out/slave  
in/Comparator 1 positive  
input  
PD5/TIM1_CH3  
/LCD_SEG19(3)  
/
-
-
34  
HS  
HS  
HS  
ADC1_IN9/SPI2_MOSI/  
COMP1_INP  
PD6/TIM1_BKIN  
Timer 1 - break input / LCD  
segment 20 / ADC1_IN8 /  
RTC calibration/Comparator  
1 positive input  
/LCD_SEG20(3)  
/
59 47  
X Port D6  
ADC1_IN8/RTC_CALIB/C  
OMP1_INP  
Timer 1 - break input / LCD  
segment 20 / ADC1_IN8 /  
X Port D6 RTC calibration/SPI2  
clock/Comparator 1 positive  
input  
PD6/TIM1_BKIN  
/LCD_SEG20(3)  
/
-
-
35  
ADC1_IN8/RTC_CALIB/  
SPI2_SCK/COMP1_INP  
Timer 1 - inverted channel 1/  
LCD segment 21 /  
X Port D7 ADC1_IN7 / RTC  
alarm/Comparator 1 positive  
input  
PD7/TIM1_CH1N  
/LCD_SEG21(3)  
/
60 48  
-
I/O FT  
I/O FT  
X
X
X
X
X
X
HS  
HS  
X
X
ADC1_IN7/RTC_ALARM/  
COMP1_INP  
Timer 1 - inverted channel 1/  
LCD segment 21 /  
ADC1_IN7 / RTC alarm  
/SPI2 master/slave  
select/Comparator 1 positive  
input  
PD7/TIM1_CH1N  
/LCD_SEG21(3)  
/
-
-
36  
X Port D7  
ADC1_IN7/RTC_ALARM/  
SPI2_NSS/COMP1_INP  
PG4/LCD_SEG32/  
SPI2_NSS  
LCD segment 32 / SPI2  
X Port G4  
61 49  
62 50  
63 51  
64 52  
-
-
-
-
I/O FT  
I/O FT  
I/O FT  
I/O FT  
X
X
X
X
X
X
X
X
X
X
X
X
HS  
HS  
HS  
HS  
X
X
X
X
master/slave select  
PG5/LCD_SEG33/  
SPI2_SCK  
LCD segment 33 / SPI2  
clock  
X Port G5  
PG6/LCD_SEG34/  
SPI2_MOSI  
LCD segment 34 / SPI2  
X Port G6  
master out- slave in  
PG7/LCD_SEG35/  
SPI2_MISO  
LCD segment 35 / SPI2  
X Port G7  
master in- slave out  
30/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Pin description  
Table 4.  
High density and medium+ density STM8L15x pin description (continued)  
Pin  
number  
Input  
Output  
Pin name  
Default alternate function  
PE0/LCD_SEG1(3)  
TIM5_CH2  
/
LCD segment 1 /Timer 5  
channel 2  
23  
-
-
-
I/O FT  
I/O FT  
I/O FT  
X
X
X
X
X
X
X
X
X
HS  
X
X
X
X Port E0  
X Port E0  
X Port E1  
PE0/LCD_SEG1(3)  
/
LCD segment 1 /Timer 5  
channel 2 / RTC tamper 1  
19 14  
HS  
HS  
TIM5_CH2/RTC_TAMP1  
PE1/TIM1_CH2N  
/LCD_SEG2(3)  
Timer 1 - inverted channel 2  
/ LCD segment 2  
24  
-
-
PE1/TIM1_CH2N  
Timer 1 - inverted channel 2  
X Port E1 / LCD segment 2 /  
-
25  
-
20 15 /LCD_SEG2(3)  
RTC_TAMP2  
/
I/O FT  
I/O FT  
I/O FT  
X
X
X
X
X
X
X
X
X
HS  
HS  
HS  
X
X
X
RTC tamper 2  
PE2/TIM1_CH3N  
/LCD_SEG3(3)  
Timer 1 - inverted channel 3  
/ LCD segment 3  
-
-
X Port E2  
PE2/TIM1_CH3N  
Timer 1 - inverted channel 3  
X Port E2 / LCD segment 3 /  
21 16 /LCD_SEG3(3)  
/
RTC_TAMP3  
RTC tamper 3  
26  
-
-
-
PE3/LCD_SEG4(3)  
I/O FT  
I/O FT  
X
X
X
X
X
X
HS  
HS  
X
X
X Port E3 LCD segment 4  
PE3/LCD_SEG4(3)  
USART2_RX  
/
LCD segment 4/  
X Port E3  
22 17  
USART2 receive  
PE4/LCD_SEG5(3)  
DAC_TRIG1  
/
LCD segment 5/  
X Port E4  
27  
-
-
-
I/O FT  
I/O FT  
X
X
X
X
X
X
HS  
HS  
X
X
DAC 1 trigger  
LCD segment 5/  
X Port E4 DAC 2 trigger/  
USART2 transmit  
PE4/LCD_SEG5(3)  
/
23 18  
DAC_TRIG2/USART2_TX  
LCD segment 6 /  
ADC1_IN23/Comparator 1  
positive input/Comparator 2  
positive input  
PE5/LCD_SEG6(3)  
ADC1_IN23/COMP1_INP/ I/O FT  
COMP2_INP  
/
28  
-
-
X
X
X
X
X
X
HS  
HS  
X
X
X Port E5  
LCD segment 6 /  
ADC1_IN23/ Comparator 1  
X Port E5 positive input/ Comparator 2  
positive input/USART2  
PE5/LCD_SEG6(3)  
/
ADC1_IN23/COMP1_INP/  
COMP2_INP/  
USART2_CK  
-
-
24 19  
I/O FT  
synchronous clock  
PE6/LCD_SEG26(3)  
/
LCD segment 26 /PVD_IN  
X Port E6 /TIM5 break input / USART3  
transmit  
-
47 PVD_IN/TIM5_BKIN/  
USART3_TX  
I/O FT  
I/O FT  
X
X
X
X
X
X
HS  
HS  
X
X
PE6/LCD_SEG26(3)  
PVD_IN/TIM5_BKIN  
/
LCD segment 26 /PVD_IN  
X Port E6  
75 63  
-
/TIM5 break input  
Doc ID 17943 Rev 1  
31/122  
Pin description  
STM8L15xx8, STM8L15xR6  
Table 4.  
High density and medium+ density STM8L15x pin description (continued)  
Pin  
number  
Input  
Output  
Pin name  
Default alternate function  
PE7/LED_SEG27/  
TIM5_TRIG  
LCD segment 27/  
TIM5 trigger  
76 64  
-
I/O FT  
I/O FT  
X
X
X
X
X
X
HS  
X
X
X Port E7  
PE7/LED_SEG27/  
48 TIM5_TRIG/  
USART3_RX  
LCD segment 27/TIM5 trig-  
ger/USART3 receive  
-
-
-
HS  
HS  
X Port E7  
X Port I0  
RTC tamper 1 output  
[SPI2 master/slave select]  
[TIM3 channel 3]  
PI0/RTC_TAMP1/  
[SPI2_NSS]/[TIM3_CH3]  
77  
-
I/O FT  
X
X
X
X
PI1/RTC_TAMP2/  
[SPI2_SCK]  
RTC tamper 2 output  
[SPI2 clock]  
78  
79  
-
-
-
I/O FT  
I/O FT  
X
X
X
X
X
X
HS  
HS  
X
X
X Port I1  
X Port I2  
PI2/RTC_TAMP3/  
[SPI2_MOSI]  
RTC tamper 3 output  
[SPI2 master out- slave in]  
-
TIM5 Channel 1  
[SPI2 master out- slave in]  
[TIM3 channel 2]  
PI3/TIM5_CH1/  
[SPI2_MOSI]/[TIM3_CH2]  
80  
-
-
-
-
I/O FT  
I/O  
X
X
X
X
X
X
X
X
X
HS  
HS  
HS  
X
X
X
X Port I3  
PF0/ADC1_IN24/  
32  
X Port F0 ADC1_IN24 / DAC 1 output  
DAC_OUT1  
PF0/ADC1_IN24/  
DAC_OUT1  
[USART3_TX]  
ADC1_IN24 /  
X Port F0 DAC 1 output/  
[USART3 transmit]  
-
39  
-
-
I/O  
PF0/ADC1_IN24/  
DAC_OUT1/  
[USART3_TX]/[SPI1_MIS  
O]  
ADC1_IN24 / DAC 1 output/  
X Port F0 [USART3 transmit]  
[SPI1 master in- slave out]  
49  
-
I/O  
X
X
X
HS  
X
PF1/ADC1_IN25/  
DAC_OUT2/  
[USART3_RX]/  
[SPI1_MOSI]  
ADC1_IN25/  
DAC channel 2 output/  
[USART3 receive]  
[SPI1 master out- slave in]  
50  
-
-
-
-
I/O  
I/O  
X
X
X
X
X
X
HS  
HS  
X
X
X Port F1  
PF1/ADC1_IN25/  
DAC_OUT2/  
[USART3_RX]  
ADC1_IN25/  
X Port F1 DAC channel 2 output/  
[USART3 receive]  
40  
PF2/ADC1_IN26/  
ADC1_IN26  
X Port F2 [SPI2 clock]  
[USART3 clock]  
51  
52  
-
-
-
-
I/O  
I/O  
X
X
X
X
X
X
HS  
HS  
X
X
[SPI2_SCK]/  
[USART3_SCK]  
PF3/ADC1_IN27/  
ADC1_IN26  
X Port F3  
[SPI1 master/slave select]  
[SPI1_NSS]  
32/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Pin description  
Table 4.  
High density and medium+ density STM8L15x pin description (continued)  
Pin  
number  
Input  
Output  
Pin name  
Default alternate function  
53 41  
54 42  
55 43  
56 44  
-
PF4/LCD_COM4  
PF5/LCD_COM5  
PF6/LCD_COM6  
PF7/LCD_COM7  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
S
X
X
X
X
X
X
X
X
X
X
X
X
HS  
X
X
X
X
X Port F4 LCD COM4  
-
-
-
HS  
HS  
HS  
X Port F5 LCD COM5  
X Port F6 LCD COM6  
X Port F7 LCD COM7  
LCD booster external capacitor  
Digital power supply  
22 18 13 VLCD(7)  
15 11 10 VDD1  
S
14 10  
-
VSS1  
I/O ground  
16 12 11 VDDA  
S
S
Analog supply voltage  
ADC1 and DAC1/2 positive voltage  
reference  
17 13 12 VREF+/VREF+_DAC  
PG0/LCD SEG  
LCD segment 28/  
X Port G0 USART3 receive /  
[Timer 2 - break input]  
18 14  
19 15  
-
-
28(3)/USART3_RX/  
I/O FT  
I/O FT  
X
X
X
X
X
X
HS  
HS  
X
X
[TIM2_BKIN]  
PG1/LCD SEG  
29(3)/USART3_TX/  
[TIM3_BKIN]  
LCD segment 29/  
X Port G1 USART3 transmit /  
[Timer 3 -break input]  
LCD segment 30/  
X Port G2 USART 3 synchronous  
clock  
PG2/LCD_SEG 30(3)  
USART3_CK  
/
/
20 16  
21 17  
-
-
I/O FT  
I/O FT  
X
X
X
X
X
X
HS  
HS  
X
X
PG3/LCD SEG 31 (3)  
[TIM3_TRIG]  
LCD segment 31/  
X Port G3  
[Timer 3 - trigger]  
33  
34  
PH4/USART2_RX  
PH5/USART2_TX  
I/O FT  
I/O FT  
X
X
X
X
X
X
HS  
HS  
X
X
X Port H3  
X Port H3  
PH6/USART2_CK/  
TIM5_CH1  
35  
36  
-
I/O FT  
I/O FT  
S
X
X
X
X
X
X
HS  
HS  
X
X
X Port H3  
X Port H3  
PH7/TIM5_CH2  
I/O ground / Analog ground voltage /  
ADC1 negative voltage reference  
9 VSS/VSSA/VREF-  
Analog ground voltage /  
ADC1 negative voltage reference  
13  
9
-
VSSA/VREF-  
S
37 29  
38 30  
-
-
VDD3  
VSS3  
S
S
IOs supply voltage  
IOs ground voltage  
Doc ID 17943 Rev 1  
33/122  
Pin description  
STM8L15xx8, STM8L15xR6  
High density and medium+ density STM8L15x pin description (continued)  
Input Output  
Table 4.  
Pin  
number  
Pin name  
Default alternate function  
[USART1 synchronous  
clock](2) / SWIM input and  
X Port A0 output /  
PA0(8)/[USART1_CK](2)  
/
HS  
5
1
1
I/O  
X
X
X
X
(7)  
SWIM/BEEP/IR_TIM (9)  
Beep output / Infrared Timer  
output  
68 56 40 VSS2  
67 55 39 VDD2  
IOs ground voltage  
IOs supply voltage  
IOs ground voltage  
IOs supply voltage  
48  
47  
-
-
-
-
VSS4  
VDD4  
1. At power-up, the PA1/NRST pin is a reset input pin with pull-up. To be used as a general purpose pin (PA1), it can be  
configured only as output open-drain or push-pull, not as a general purpose input. Refer to Section Configuring NRST/PA1  
pin as general purpose output in the STM8L15xx and STM8L16xx reference manual (RM0031).  
2. [ ] Alternate function remapping option (if the same alternate function is shown twice, it indicates an exclusive choice not a  
duplication of the function).  
3. Available on STM8L152xx devices only.  
4. A pull-up is applied to PB0 and PB4 during the reset phase. These two pins are input floating after reset release.  
5. In the open-drain output column, ‘T’ defines a true open-drain I/O (P-buffer and protection diode to VDD are not  
implemented).  
6. Not in 64-pin version.  
7. Available on STM8L152xx devices only. On STM8L151xx devices it is reserved and must be tied to VDD  
8. The PA0 pin is in input pull-up during the reset phase and after reset release.  
9. High Sink LED driver capability available on PA0.  
.
34/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Pin description  
System configuration options  
As shown in Table 4: High density and medium+ density STM8L15x pin description, some  
alternate functions can be remapped on different I/O ports by programming one of the two  
remapping registers described in the “ Routing interface (RI) and system configuration  
controller” section in the STM8L15xx and STM8L16xx reference manual (RM0031).  
Doc ID 17943 Rev 1  
35/122  
Memory and register map  
STM8L15xx8, STM8L15xR6  
5
Memory and register map  
5.1  
Memory mapping  
The memory map is shown in Figure 9.  
Figure 9.  
Memory map  
ꢐX   
2!- ꢈUP TO  +BYTESꢊ  
INCLUDING  
3TACK ꢈꢍꢀꢉ BYTESꢊ  
ꢐX &&&  
ꢐX ꢀꢐꢐꢐ  
$ATA %%02/-  
ꢈUP TO  +BYTESꢊ  
ꢐX ꢁ&&  
ꢐX ꢀꢃꢐꢐ  
ꢐX ꢐꢐ ꢍꢐ  
' 0)/ 0O RTS  
ꢐX ꢐꢐ ꢍꢐꢍꢐ  
2ESERVED  
&LASH  
ꢐX ꢐꢐ ꢍꢐ  
$-!  
ꢐX &&  
ꢐX   
ꢐXꢐꢐ ꢍꢐ$  
393#& '  
/PTION BYTES  
2E SERVED  
ꢐXꢐꢐ ꢍꢐ!  
ꢐX &&  
ꢐX   
)4 # %8 4 )  
ꢐXꢐꢐ ꢍꢐ!  
7 &%  
ꢐXꢐꢐ ꢍꢐ"ꢐ  
234  
ꢐX   
ꢐX   
ꢐX   
ꢐX   
ꢐXꢐꢐ ꢍꢐ"ꢂ  
072  
62%&).4?&ACTORY?#/.6  
43?&ACTORY?#/.6?6ꢒꢐ  
ꢐXꢐꢐ  ꢐ#ꢐ  
#,+  
ꢐXꢐꢐ  ꢐ$ꢉ  
77 $'  
ꢐXꢐꢐ ꢍꢐ%ꢐ  
)7$'  
ꢐXꢐꢐ ꢍꢐ&   
2E SERVED  
5NIQUE )$  
ꢐX   
ꢐX   
ꢐX   
ꢐX   
ꢐXꢐꢐ &&&  
ꢐX   
"% %0  
ꢐXꢐꢐ ꢍꢀ ꢆꢐ  
24#  
ꢐXꢐꢐ ꢍꢂ ꢐꢐ  
2E SERVED  
30 )   
ꢐXꢐꢐ ꢍꢂ ꢀꢐ  
)#   
'0)/ AND PERIPHERAL REGISTERS  
ꢐXꢐꢐ ꢍꢂ ꢉꢐ  
53!24   
ꢐX &&  
ꢐX   
ꢐXꢐꢐ ꢍꢂ ꢍꢐ  
4 )-   
ꢐXꢐꢐ ꢍꢂ ꢃꢐ  
4 )-   
2E SERVED  
ꢐXꢐꢐ ꢍꢂ"ꢐ  
4)-   
ꢐXꢐꢐ ꢍꢂ%ꢐ  
ꢐXꢐꢐ &&&  
ꢐX   
4)-   
"OOT 2/-  
ꢈꢂ +BYTESꢊ  
ꢐXꢐꢐ ꢍꢂ&&  
)24)-  
ꢐXꢐꢐ ꢍꢉꢐꢐ  
ꢐX &&  
ꢐX   
4)-   
ꢐXꢐꢐ ꢍꢉ ꢆꢐ  
!$#   
ꢐXꢐꢐ ꢍꢉ ꢃꢐ  
$!#  
2E SERVED  
ꢐXꢐꢐ ꢁ%&&  
ꢐXꢐꢐ ꢁ&ꢐꢐ  
ꢐXꢐꢐ ꢍꢉ #ꢐ  
30)ꢂ  
ꢐXꢐꢐ ꢍꢉ %ꢐ  
53!24ꢂ  
ꢐXꢐꢐ ꢍꢉ &ꢐ  
#0537)-$EBUG)4#  
2EGISTERS  
53!24ꢉ  
ꢐXꢐꢐ ꢍꢆ ꢐꢐ  
,#$  
ꢐXꢐꢐ &&&  
ꢐX   
ꢐXꢐꢐ ꢃꢐꢁ&  
ꢐX   
ꢐXꢐꢐ ꢍꢆ ꢉꢐ  
2ESET AND INTERRUPT VECTORS  
2)  
ꢐXꢐꢐ ꢍꢆ ꢆꢐ  
#/ -0  
ꢐXꢐꢐ ꢍꢆ ꢆꢆ  
(IGH DENSITY  
&LASH PROGRAM MEMORY  
ꢈUP TO ꢅꢆ +BYTESꢊ  
ꢐXꢐꢀ ꢁ&&&  
AIꢀꢁꢂꢃꢒ  
1. Refer to Table 8 for an overview of hardware register mapping, to Table 7 for details on I/O port hardware  
registers, and to Table 9 for information on CPU/SWIM/debug module controller registers.  
36/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Memory and register map  
Table 5.  
Flash and RAM boundary addresses  
Memory area  
Size  
Start address  
0x00 0000  
End address  
0x00 07FF  
0x00 0FFF  
2 Kbytes  
4 Kbytes  
RAM  
0x00 0000  
32 Kbytes  
64 Kbytes  
0x00 8000  
0x00 8000  
0x00 FFFF  
0x01 7FFF  
Flash program memory  
5.2  
Register map  
Table 6.  
Factory conversion regiserst  
Reset  
status  
Address  
Block  
Register label  
Register name  
VREFINT_Factory_  
CONV  
Value of the internal reference voltage  
measured during the factory phase  
0x00 4910  
-
0xXX  
Value of the temperature sensor output  
voltage measured during the factory  
phase  
TS_Factory_CONV_  
V90  
0x00 4911  
-
0xXX  
Table 7.  
I/O port hardware register map  
Reset  
status  
Address  
Block  
Register label  
Register name  
0x00 5000  
0x00 5001  
0x00 5002  
0x00 5003  
0x00 5004  
0x00 5005  
0x00 5006  
0x00 5007  
0x00 5008  
0x00 5009  
0x00 500A  
0x00 500B  
0x00 500C  
0x00 500D  
0x00 500E  
PA_ODR  
PA_IDR  
Port A data output latch register  
Port A input pin value register  
Port A data direction register  
Port A control register 1  
0x00  
0xXX  
0x00  
0x01  
0x00  
0x00  
0xXX  
0x00  
0x00  
0x00  
0x00  
0xXX  
0x00  
0x00  
0x00  
Port A  
PA_DDR  
PA_CR1  
PA_CR2  
PB_ODR  
PB_IDR  
PB_DDR  
PB_CR1  
PB_CR2  
PC_ODR  
PB_IDR  
PC_DDR  
PC_CR1  
PC_CR2  
Port A control register 2  
Port B data output latch register  
Port B input pin value register  
Port B data direction register  
Port B control register 1  
Port B  
Port B control register 2  
Port C data output latch register  
Port C input pin value register  
Port C data direction register  
Port C control register 1  
Port C  
Port C control register 2  
Doc ID 17943 Rev 1  
37/122  
Memory and register map  
Table 7. I/O port hardware register map (continued)  
Address  
STM8L15xx8, STM8L15xR6  
Reset  
Block  
Register label  
Register name  
status  
0x00 500F  
0x00 5010  
0x00 5011  
0x00 5012  
0x00 5013  
0x00 5014  
0x00 5015  
0x00 5016  
0x00 5017  
0x00 5018  
0x00 5019  
0x00 501A  
0x00 501B  
0x00 501C  
0x00 501D  
0x00 501E  
0x00 501F  
0x00 5020  
0x00 5021  
0x00 5022  
0x00 5023  
0x00 5024  
0x00 5025  
0x00 5026  
0x00 5027  
0x00 5028  
0x00 5029  
0x00 502A  
0x00 502B  
0x00 502C  
PD_ODR  
PD_IDR  
PD_DDR  
PD_CR1  
PD_CR2  
PE_ODR  
PE_IDR  
PE_DDR  
PE_CR1  
PE_CR2  
PF_ODR  
PF_IDR  
PF_DDR  
PF_CR1  
PF_CR2  
PG_ODR  
PG_IDR  
PG_DDR  
PG_CR1  
PG_CR2  
PH_ODR  
PH_IDR  
PH_DDR  
PH_CR1  
PH_CR2  
PI_ODR  
PI_IDR  
Port D data output latch register  
Port D input pin value register  
Port D data direction register  
Port D control register 1  
0x00  
0xXX  
0x00  
0x00  
0x00  
0x00  
0xXX  
0x00  
0x00  
0x00  
0x00  
0xXX  
0x00  
0x00  
0x00  
0x00  
0xXX  
0x00  
0x00  
0x00  
0x00  
0xXX  
0x00  
0x00  
0x00  
0x00  
0xXX  
0x00  
0x00  
0x00  
Port D  
Port D control register 2  
Port E data output latch register  
Port E input pin value register  
Port E data direction register  
Port E control register 1  
Port E  
Port F  
Port G  
Port H  
Port I  
Port E control register 2  
Port F data output latch register  
Port F input pin value register  
Port F data direction register  
Port F control register 1  
Port F control register 2  
Port F data output latch register  
Port G input pin value register  
Port G data direction register  
Port G control register 1  
Port G control register 2  
Port H data output latch register  
Port H input pin value register  
Port H data direction register  
Port H control register 1  
Port H control register 2  
Port I data output latch register  
Port I input pin value register  
Port I data direction register  
Port I control register 1  
PI_DDR  
PI_CR1  
PI_CR2  
Port I control register 2  
38/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Memory and register map  
Reset  
Table 8.  
General hardware register map  
Address  
Block  
Register label  
Register name  
status  
0x00 502E  
to  
0x00 5049  
Reserved area (44 bytes)  
Flash control register 1  
0x00 5050  
0x00 5051  
FLASH_CR1  
FLASH_CR2  
0x00  
0x00  
Flash control register 2  
Flash program memory unprotection key  
register  
0x00 5052  
0x00 5053  
0x00 5054  
FLASH _PUKR  
FLASH _DUKR  
FLASH _IAPSR  
0x00  
0x00  
0x00  
Flash  
Data EEPROM unprotection key register  
Flash in-application programming status  
register  
0x00 5055  
to  
Reserved area (27 bytes)  
0x00 506F  
Doc ID 17943 Rev 1  
39/122  
Memory and register map  
Table 8. General hardware register map (continued)  
Address  
STM8L15xx8, STM8L15xR6  
Reset  
Block  
Register label  
Register name  
status  
DMA1 global configuration & status  
register  
0x00 5070  
0x00 5071  
DMA1_GCSR  
DMA1_GIR1  
0xFC  
0x00  
DMA1 global interrupt register 1  
Reserved area (3 bytes)  
0x00 5072 to  
0x00 5074  
0x00 5075  
0x00 5076  
DMA1_C0CR  
DMA1 channel 0 configuration register  
DMA1 channel 0 status & priority register  
0x00  
0x00  
DMA1_C0SPR  
DMA1 number of data to transfer register  
(channel 0)  
0x00 5077  
0x00 5078  
DMA1_C0NDTR  
DMA1_C0PARH  
DMA1_C0PARL  
0x00  
0x52  
0x00  
DMA1 peripheral address high register  
(channel 0)  
DMA1 peripheral address low register  
(channel 0)  
0x00 5079  
0x00 507A  
0x00 507B  
Reserved area (1 byte)  
DMA1  
DMA1 memory 0 address high register  
(channel 0)  
DMA1_C0M0ARH  
DMA1_C0M0ARL  
0x00  
0x00  
DMA1 memory 0 address low register  
(channel 0)  
0x00 507C  
0x00 507D to  
0x00 507E  
Reserved area (2 bytes)  
0x00 507F  
0x00 5080  
DMA1_C1CR  
DMA1 channel 1 configuration register  
DMA1 channel 1 status & priority register  
0x00  
0x00  
DMA1_C1SPR  
DMA1 number of data to transfer register  
(channel 1)  
0x00 5081  
0x00 5082  
0x00 5083  
DMA1_C1NDTR  
DMA1_C1PARH  
DMA1_C1PARL  
0x00  
0x52  
0x00  
DMA1 peripheral address high register  
(channel 1)  
DMA1 peripheral address low register  
(channel 1)  
40/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Table 8. General hardware register map (continued)  
Address  
Memory and register map  
Reset  
Block  
Register label  
Register name  
status  
0x00 5084  
0x00 5085  
Reserved area (1 byte)  
DMA1 memory 0 address high register  
(channel 1)  
DMA1_C1M0ARH  
DMA1_C1M0ARL  
0x00  
0x00  
DMA1 memory 0 address low register  
(channel 1)  
0x00 5086  
0x00 5087  
0x00 5088  
Reserved area (2 bytes)  
0x00 5089  
0x00 508A  
DMA1_C2CR  
DMA1 channel 2 configuration register  
DMA1 channel 2 status & priority register  
0x00  
0x00  
DMA1_C2SPR  
DMA1 number of data to transfer register  
(channel 2)  
0x00 508B  
0x00 508C  
DMA1_C2NDTR  
DMA1_C2PARH  
DMA1_C2PARL  
0x00  
0x52  
0x00  
DMA1 peripheral address high register  
(channel 2)  
DMA1 peripheral address low register  
(channel 2)  
0x00 508D  
0x00 508E  
0x00 508F  
Reserved area (1 byte)  
DMA1 memory 0 address high register  
(channel 2)  
DMA1_C2M0ARH  
DMA1_C2M0ARL  
0x00  
0x00  
DMA1 memory 0 address low register  
(channel 2)  
DMA1  
0x00 5090  
0x00 5091  
0x00 5092  
Reserved area (2 bytes)  
0x00 5093  
0x00 5094  
DMA1_C3CR  
DMA1 channel 3 configuration register  
DMA1 channel 3 status & priority register  
0x00  
0x00  
DMA1_C3SPR  
DMA1 number of data to transfer register  
(channel 3)  
0x00 5095  
0x00 5096  
0x00 5097  
0x00 5098  
0x00 5099  
0x00 509A  
DMA1_C3NDTR  
0x00  
0x40  
0x00  
0x00  
0x00  
0x00  
DMA1_C3PARH_  
C3M1ARH  
DMA1 peripheral address high register  
(channel 3)  
DMA1_C3PARL_  
C3M1ARL  
DMA1 peripheral address low register  
(channel 3)  
DMA channel 3 memory 0 extended  
address register  
DMA_C3M0EAR  
DMA1_C3M0ARH  
DMA1_C3M0ARL  
DMA1 memory 0 address high register  
(channel 3)  
DMA1 memory 0 address low register  
(channel 3)  
0x00 509B to  
0x00 509C  
Reserved area (3 bytes)  
Doc ID 17943 Rev 1  
41/122  
Memory and register map  
Table 8. General hardware register map (continued)  
Address  
STM8L15xx8, STM8L15xR6  
Reset  
Block  
Register label  
Register name  
status  
0x00 509D  
0x00 509E  
0x00 509F  
0x00 50A0  
0x00 50A1  
0x00 50A2  
0x00 50A3  
0x00 50A4  
0x00 50A5  
0x00 50A6  
0x00 50A7  
0x00 50A8  
0x00 50A9  
0x00 50AA  
0x00 50AB  
SYSCFG_RMPCR3  
Remapping register 3  
Remapping register 1  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
SYSCFG SYSCFG_RMPCR1  
SYSCFG_RMPCR2  
EXTI_CR1  
Remapping register 2  
External interrupt control register 1  
External interrupt control register 2  
External interrupt control register 3  
External interrupt status register 1  
External interrupt status register 2  
External interrupt port select register 1  
WFE control register 1  
EXTI_CR2  
EXTI_CR3  
ITC - EXTI  
EXTI_SR1  
EXTI_SR2  
EXTI_CONF1  
WFE_CR1  
WFE_CR2  
WFE  
WFE control register 2  
WFE_CR3  
WFE control register 3  
WFE_CR4  
WFE control register 4  
EXTI_CR4  
ITC - EXTI  
External interrupt control register 4  
External interrupt port select register 2  
EXTI_CONF2  
0x00 50A9  
to  
Reserved area (7 bytes)  
0x00 50AF  
0x00 50B0  
0x00 50B1  
0x00 50B2  
0x00 50B3  
RST_CR  
Reset control register  
Reset status register  
0x00  
0x01  
0x00  
0x00  
RST  
RST_SR  
PWR_CSR1  
PWR  
Power control and status register 1  
Power control and status register 2  
PWR_CSR2  
0x00 50B4  
to  
Reserved area (12 bytes)  
0x00 50BF  
42/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Table 8. General hardware register map (continued)  
Address  
Memory and register map  
Reset  
Block  
Register label  
Register name  
status  
0x00 50C0  
0x00 50C1  
0x00 50C2  
0x00 50C3  
0x00 50C4  
0x00 50C5  
0x00 50C6  
0x00 50C7  
0x00 50C8  
0x00 50C9  
0x00 50CA  
0x00 50CB  
0x00 50CC  
0x00 50CD  
0x00 50CE  
0x00 50CF  
0x00 50D0  
CLK_CKDIVR  
CLK_CRTCR  
CLK_ICKCR  
Clock master divider register  
Clock RTC register  
0x03  
0x00(1)  
0x11  
Internal clock control register  
Peripheral clock gating register 1  
Peripheral clock gating register 2  
Configurable clock control register  
External clock control register  
System clock status register  
System clock switch register  
Clock switch control register  
Clock security system register  
Clock BEEP register  
CLK_PCKENR1  
CLK_PCKENR2  
CLK_CCOR  
0x00  
0x00  
0x00  
CLK_ECKCR  
CLK_SCSR  
0x00  
0x01  
CLK  
CLK_SWR  
0x01  
CLK_SWCR  
0xX0  
CLK_CSSR  
0x00  
CLK_CBEEPR  
CLK_HSICALR  
CLK_HSITRIMR  
CLK_HSIUNLCKR  
CLK_REGCSR  
CLK_PCKENR3  
0x00  
HSI calibration register  
0xXX  
0x00  
HSI clock calibration trimming register  
HSI unlock register  
0x00  
Main regulator control status register  
Peripheral clock gating register 3  
0bxx11 100X  
0x00  
0x00 50D1  
to  
Reserved area (2 bytes)  
0x00 50D2  
0x00 50D3  
0x00 50D4  
WWDG_CR  
WWDG_WR  
WWDG control register  
WWDR window register  
0x7F  
0x7F  
WWDG  
IWDG  
0x00 50D5  
to  
00 50DF  
Reserved area (11 bytes)  
0x00 50E0  
0x00 50E1  
0x00 50E2  
IWDG_KR  
IWDG_PR  
IWDG_RLR  
IWDG key register  
IWDG prescaler register  
IWDG reload register  
0x01  
0x00  
0xFF  
0x00 50E3  
to  
Reserved area (13 bytes)  
0x00 50EF  
0x00 50F0  
BEEP_CSR1  
BEEP_CSR2  
BEEP control/status register 1  
Reserved area (2 bytes)  
0x00  
0x1F  
0x00 50F1  
0x00 50F2  
BEEP  
0x00 50F3  
BEEP control/status register 2  
Reserved area (76 bytes)  
0x00 50F4  
to0x00 513F  
Doc ID 17943 Rev 1  
43/122  
Memory and register map  
Table 8. General hardware register map (continued)  
Address  
STM8L15xx8, STM8L15xR6  
Reset  
Block  
Register label  
Register name  
status  
0x00 5140  
0x00 5141  
0x00 5142  
0x00 5143  
0x00 5144  
0x00 5145  
0x00 5146  
0x00 5147  
0x00 5148  
0x00 5149  
0x00 514A  
0x00 514B  
0x00 514C  
0x00 514D  
RTC_TR1  
RTC_TR2  
RTC_TR3  
Time register 1  
Time register 2  
0x00  
0x00  
0x00  
Time register 3  
Reserved area (1 byte)  
Date register 1  
RTC_DR1  
RTC_DR2  
RTC_DR3  
0x01  
0x21  
0x00  
Date register 2  
Date register 3  
Reserved area (1 byte)  
Control register 1  
RTC_CR1  
RTC_CR2  
RTC_CR3  
0x00(1)  
0x00(1)  
0x00(1)  
Control register 2  
Control register 3  
Reserved area (1 byte)  
Initialization and status register 1  
Initialization and Status register 2  
RTC_ISR1  
RTC_ISR2  
0x01  
0x00  
0x00 514E  
0x00 514F  
Reserved area (2 bytes)  
0x00 5150  
0x00 5151  
0x00 5152  
0x00 5153  
0x00 5154  
0x00 5155  
0x00 5156  
0x00 5157  
0x00 5158  
0x00 5159  
0x00 5158  
0x00 5159  
0x00 515A  
0x00 515B  
0x00 515C  
0x00 515D  
0x00 515E  
0x00 515F  
RTC_SPRERH  
RTC_SPRERL  
RTC_APRER  
Synchronous prescaler register high  
Synchronous prescaler register low  
Asynchronous prescaler register  
Reserved area (1 byte)  
Wakeup timer register high  
Wakeup timer register low  
Reserved area (1 byte)  
Subsecond register low  
Subsecond register high  
Write protection register  
Subsecond register high  
Write protection register  
Shift register high  
0x00(1)  
0xFF(1)  
0x7F(1)  
RTC  
RTC_WUTRH  
RTC_WUTRL  
0xFF(1)  
0xFF(1)  
RTC_SSRL  
RTC_SSRH  
0x00  
0x00  
RTC_WPR  
0x00  
RTC_SSRH  
0x00  
RTC_WPR  
0x00  
RTC_SHIFTRH  
RTC_SHIFTRL  
RTC_ALRMAR1  
RTC_ALRMAR2  
RTC_ALRMAR3  
RTC_ALRMAR4  
0x00  
Shift register low  
0x00  
Alarm A register 1  
0x00(1)  
0x00(1)  
0x00(1)  
0x00(1)  
Alarm A register 2  
Alarm A register 3  
Alarm A register 4  
44/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Table 8. General hardware register map (continued)  
Address  
Memory and register map  
Reset  
Block  
Register label  
Register name  
status  
0x00 5160 to  
0x00 5163  
Reserved area (4 bytes)  
0x00 5164  
0x00 5165  
RTC_ALRMASSRH  
RTC_ALRMASSRL  
Alarm A subsecond register high  
Alarm A subsecond register low  
0x00(1)  
0x00(1)  
RTC  
RTC_ALRMASSMS  
KR  
0x00 5166  
Alarm A masking register  
Reserved area (3 bytes)  
0x00(1)  
0x00 5167 to  
0x00 5169  
0x00 516A  
0x00 516B  
0x00 516C  
0x00 516D  
RTC_CALRH  
RTC_CALRL  
RTC_TCR1  
RTC_TCR2  
Calibration register high  
Calibration register low  
Tamper control register 1  
Tamper control register 2  
0x00(1)  
0x00(1)  
0x00(1)  
0x00(1)  
RTC  
0x00 516E to  
0x00 518A  
Reserved area  
0x00 5190  
CSSLSE_CSR  
CSS on LSE control and status register  
Reserved area  
0x00(1)  
0x00 519A to  
0x00 51FF  
0x00 5200  
0x00 5201  
0x00 5202  
0x00 5203  
0x00 5204  
0x00 5205  
0x00 5206  
0x00 5207  
SPI1_CR1  
SPI1_CR2  
SPI1 control register 1  
SPI1 control register 2  
SPI1 interrupt control register  
SPI1 status register  
0x00  
0x00  
0x00  
0x02  
0x00  
0x07  
0x00  
0x00  
SPI1_ICR  
SPI1_SR  
SPI1  
SPI1_DR  
SPI1 data register  
SPI1_CRCPR  
SPI1_RXCRCR  
SPI1_TXCRCR  
SPI1 CRC polynomial register  
SPI1 Rx CRC register  
SPI1 Tx CRC register  
0x00 5208  
to  
Reserved area (8 bytes)  
0x00 520F  
Doc ID 17943 Rev 1  
45/122  
Memory and register map  
Table 8. General hardware register map (continued)  
Address  
STM8L15xx8, STM8L15xR6  
Reset  
Block  
Register label  
Register name  
status  
0x00 5210  
0x00 5211  
0x00 5212  
0x00 5213  
0x00 5214  
0x00 5215  
0x00 5216  
0x00 5217  
0x00 5218  
0x00 5219  
0x00 521A  
0x00 521B  
0x00 521C  
0x00 521D  
0x00 521E  
I2C1_CR1  
I2C1_CR2  
I2C1 control register 1  
I2C1 control register 2  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x0X  
0x00  
0x00  
0x00  
0x02  
0x00  
I2C1_FREQR  
I2C1_OARL  
I2C1_OARH  
I2C1_OARH  
I2C1_DR  
I2C1 frequency register  
I2C1 own address register low  
I2C1 own address register high  
I2C1 own address register for dual mode  
I2C1 data register  
I2C1  
I2C1_SR1  
I2C1 status register 1  
I2C1_SR2  
I2C1 status register 2  
I2C1_SR3  
I2C1 status register 3  
I2C1_ITR  
I2C1 interrupt control register  
I2C1 clock control register low  
I2C1 clock control register high  
I2C1 TRISE register  
I2C1_CCRL  
I2C1_CCRH  
I2C1_TRISER  
I2C1_PECR  
I2C1 packet error checking register  
0x00 521F  
to  
Reserved area (17 bytes)  
0x00 522F  
0x00 5230  
0x00 5231  
0x00 5232  
0x00 5233  
0x00 5234  
0x00 5235  
0x00 5236  
0x00 5237  
0x00 5238  
0x00 5239  
0x00 523A  
USART1_SR  
USART1_DR  
USART1 status register  
USART1 data register  
0xC0  
0xXX  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
USART1_BRR1  
USART1_BRR2  
USART1_CR1  
USART1_CR2  
USART1_CR3  
USART1_CR4  
USART1_CR5  
USART1_GTR  
USART1_PSCR  
USART1 baud rate register 1  
USART1 baud rate register 2  
USART1 control register 1  
USART1 control register 2  
USART1 control register 3  
USART1 control register 4  
USART1 control register 5  
USART1 guard time register  
USART1 prescaler register  
USART1  
0x00 523B  
to  
Reserved area (21 bytes)  
0x00 524F  
46/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Table 8. General hardware register map (continued)  
Address  
Memory and register map  
Reset  
Block  
Register label  
Register name  
status  
0x00 5250  
0x00 5251  
0x00 5252  
0x00 5253  
0x00 5254  
0x00 5255  
0x00 5256  
0x00 5257  
0x00 5258  
0x00 5259  
0x00 525A  
0x00 525B  
0x00 525C  
0x00 525D  
0x00 525E  
0x00 525F  
0x00 5260  
0x00 5261  
0x00 5262  
0x00 5263  
0x00 5264  
0x00 5265  
0x00 5266  
TIM2_CR1  
TIM2_CR2  
TIM2 control register 1  
TIM2 control register 2  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
TIM2_SMCR  
TIM2_ETR  
TIM2 Slave mode control register  
TIM2 external trigger register  
TIM2 DMA1 request enable register  
TIM2 interrupt enable register  
TIM2 status register 1  
TIM2_DER  
TIM2_IER  
TIM2_SR1  
TIM2_SR2  
TIM2 status register 2  
TIM2_EGR  
TIM2 event generation register  
TIM2 capture/compare mode register 1  
TIM2 capture/compare mode register 2  
TIM2 capture/compare enable register 1  
TIM2 counter high  
TIM2_CCMR1  
TIM2_CCMR2  
TIM2_CCER1  
TIM2_CNTRH  
TIM2_CNTRL  
TIM2_PSCR  
TIM2_ARRH  
TIM2_ARRL  
TIM2_CCR1H  
TIM2_CCR1L  
TIM2_CCR2H  
TIM2_CCR2L  
TIM2_BKR  
TIM2  
TIM2 counter low  
TIM2 prescaler register  
TIM2 auto-reload register high  
TIM2 auto-reload register low  
TIM2 capture/compare register 1 high  
TIM2 capture/compare register 1 low  
TIM2 capture/compare register 2 high  
TIM2 capture/compare register 2 low  
TIM2 break register  
TIM2_OISR  
TIM2 output idle state register  
0x00 5267 to  
0x00 527F  
Reserved area (25 bytes)  
Doc ID 17943 Rev 1  
47/122  
Memory and register map  
Table 8. General hardware register map (continued)  
Address  
STM8L15xx8, STM8L15xR6  
Reset  
Block  
Register label  
Register name  
status  
0x00 5280  
0x00 5281  
0x00 5282  
0x00 5283  
0x00 5284  
0x00 5285  
0x00 5286  
0x00 5287  
0x00 5288  
0x00 5289  
0x00 528A  
0x00 528B  
0x00 528C  
0x00 528D  
0x00 528E  
0x00 528F  
0x00 5290  
0x00 5291  
0x00 5292  
0x00 5293  
0x00 5294  
0x00 5295  
0x00 5296  
TIM3_CR1  
TIM3_CR2  
TIM3 control register 1  
TIM3 control register 2  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
TIM3_SMCR  
TIM3_ETR  
TIM3 Slave mode control register  
TIM3 external trigger register  
TIM3 DMA1 request enable register  
TIM3 interrupt enable register  
TIM3 status register 1  
TIM3_DER  
TIM3_IER  
TIM3_SR1  
TIM3_SR2  
TIM3 status register 2  
TIM3_EGR  
TIM3 event generation register  
TIM3 Capture/Compare mode register 1  
TIM3 Capture/Compare mode register 2  
TIM3 Capture/Compare enable register 1  
TIM3 counter high  
TIM3_CCMR1  
TIM3_CCMR2  
TIM3_CCER1  
TIM3_CNTRH  
TIM3_CNTRL  
TIM3_PSCR  
TIM3_ARRH  
TIM3_ARRL  
TIM3_CCR1H  
TIM3_CCR1L  
TIM3_CCR2H  
TIM3_CCR2L  
TIM3_BKR  
TIM3  
TIM3 counter low  
TIM3 prescaler register  
TIM3 Auto-reload register high  
TIM3 Auto-reload register low  
TIM3 Capture/Compare register 1 high  
TIM3 Capture/Compare register 1 low  
TIM3 Capture/Compare register 2 high  
TIM3 Capture/Compare register 2 low  
TIM3 break register  
TIM3_OISR  
TIM3 output idle state register  
0x00 5297 to  
0x00 52AF  
Reserved area (25 bytes)  
48/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Table 8. General hardware register map (continued)  
Address  
Memory and register map  
Reset  
Block  
Register label  
Register name  
status  
0x00 52B0  
0x00 52B1  
0x00 52B2  
0x00 52B3  
0x00 52B4  
0x00 52B5  
0x00 52B6  
0x00 52B7  
0x00 52B8  
0x00 52B9  
0x00 52BA  
0x00 52BB  
0x00 52BC  
0x00 52BD  
0x00 52BE  
0x00 52BF  
0x00 52C0  
0x00 52C1  
0x00 52C2  
0x00 52C3  
0x00 52C4  
0x00 52C5  
0x00 52C6  
0x00 52C7  
0x00 52C8  
0x00 52C9  
0x00 52CA  
0x00 52CB  
0x00 52CC  
0x00 52CD  
0x00 52CE  
0x00 52CF  
0x00 52D0  
0x00 52D1  
TIM1_CR1  
TIM1_CR2  
TIM1 control register 1  
TIM1 control register 2  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
TIM1_SMCR  
TIM1_ETR  
TIM1 Slave mode control register  
TIM1 external trigger register  
TIM1_DER  
TIM1 DMA1 request enable register  
TIM1 Interrupt enable register  
TIM1 status register 1  
TIM1_IER  
TIM1_SR1  
TIM1_SR2  
TIM1 status register 2  
TIM1_EGR  
TIM1 event generation register  
TIM1 Capture/Compare mode register 1  
TIM1 Capture/Compare mode register 2  
TIM1 Capture/Compare mode register 3  
TIM1 Capture/Compare mode register 4  
TIM1 Capture/Compare enable register 1  
TIM1 Capture/Compare enable register 2  
TIM1 counter high  
TIM1_CCMR1  
TIM1_CCMR2  
TIM1_CCMR3  
TIM1_CCMR4  
TIM1_CCER1  
TIM1_CCER2  
TIM1_CNTRH  
TIM1_CNTRL  
TIM1_PSCRH  
TIM1_PSCRL  
TIM1_ARRH  
TIM1_ARRL  
TIM1_RCR  
TIM1 counter low  
TIM1  
TIM1 prescaler register high  
TIM1 prescaler register low  
TIM1 Auto-reload register high  
TIM1 Auto-reload register low  
TIM1 Repetition counter register  
TIM1 Capture/Compare register 1 high  
TIM1 Capture/Compare register 1 low  
TIM1 Capture/Compare register 2 high  
TIM1 Capture/Compare register 2 low  
TIM1 Capture/Compare register 3 high  
TIM1 Capture/Compare register 3 low  
TIM1 Capture/Compare register 4 high  
TIM1 Capture/Compare register 4 low  
TIM1 break register  
TIM1_CCR1H  
TIM1_CCR1L  
TIM1_CCR2H  
TIM1_CCR2L  
TIM1_CCR3H  
TIM1_CCR3L  
TIM1_CCR4H  
TIM1_CCR4L  
TIM1_BKR  
TIM1_DTR  
TIM1 dead-time register  
TIM1_OISR  
TIM1_DCR1  
TIM1 output idle state register  
DMA1 control register 1  
Doc ID 17943 Rev 1  
49/122  
Memory and register map  
Table 8. General hardware register map (continued)  
Address  
STM8L15xx8, STM8L15xR6  
Reset  
Block  
Register label  
Register name  
status  
0x00 52D2  
0x00 52D3  
TIM1_DCR2  
TIM1 DMA1 control register 2  
0x00  
0x00  
TIM1_DMA1R  
TIM1 DMA1 address for burst mode  
0x00 52D4  
to  
Reserved area (12 bytes)  
0x00 52DF  
0x00 52E0  
0x00 52E1  
0x00 52E2  
0x00 52E3  
0x00 52E4  
0x00 52E5  
0x00 52E6  
0x00 52E7  
0x00 52E8  
0x00 52E9  
TIM4_CR1  
TIM4_CR2  
TIM4_SMCR  
TIM4_DER  
TIM4_IER  
TIM4 control register 1  
TIM4 control register 2  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
TIM4 Slave mode control register  
TIM4 DMA1 request enable register  
TIM4 Interrupt enable register  
TIM4 status register 1  
TIM4  
TIM4_SR1  
TIM4_EGR  
TIM4_CNTR  
TIM4_PSCR  
TIM4_ARR  
TIM4 Event generation register  
TIM4 counter  
TIM4 prescaler register  
TIM4 Auto-reload register  
0x00 52EA  
to  
0x00 52FE  
Reserved area (21 bytes)  
Infrared control register  
0x00 52FF  
IRTIM  
IR_CR  
0x00  
50/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Table 8. General hardware register map (continued)  
Address  
Memory and register map  
Reset  
Block  
Register label  
Register name  
status  
0x00 5300  
0x00 5301  
0x00 5302  
0x00 5303  
0x00 5304  
0x00 5305  
0x00 5306  
0x00 5307  
0x00 5308  
0x00 5309  
0x00 530A  
0x00 530B  
0x00 530C  
0x00 530D  
0x00 530E  
0x00 530F  
0x00 5310  
0x00 5311  
0x00 5312  
0x00 5313  
0x00 5314  
0x00 5315  
0x00 5316  
TIM5_CR1  
TIM5_CR2  
TIM5 control register 1  
TIM5 control register 2  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
TIM5_SMCR  
TIM5_ETR  
TIM5 Slave mode control register  
TIM5 external trigger register  
TIM5 DMA1 request enable register  
TIM5 interrupt enable register  
TIM5 status register 1  
TIM5_DER  
TIM5_IER  
TIM5_SR1  
TIM5_SR2  
TIM5 status register 2  
TIM5_EGR  
TIM5 event generation register  
TIM5 Capture/Compare mode register 1  
TIM5 Capture/Compare mode register 2  
TIM5 Capture/Compare enable register 1  
TIM5 counter high  
TIM5_CCMR1  
TIM5_CCMR2  
TIM5_CCER1  
TIM5_CNTRH  
TIM5_CNTRL  
TIM5_PSCR  
TIM5_ARRH  
TIM5_ARRL  
TIM5_CCR1H  
TIM5_CCR1L  
TIM5_CCR2H  
TIM5_CCR2L  
TIM5_BKR  
TIM5  
TIM5 counter low  
TIM5 prescaler register  
TIM5 Auto-reload register high  
TIM5 Auto-reload register low  
TIM5 Capture/Compare register 1 high  
TIM5 Capture/Compare register 1 low  
TIM5 Capture/Compare register 2 high  
TIM5 Capture/Compare register 2 low  
TIM5 break register  
TIM5_OISR  
TIM5 output idle state register  
0x00 5317  
to  
Reserved area  
0x00 533F  
Doc ID 17943 Rev 1  
51/122  
Memory and register map  
Table 8. General hardware register map (continued)  
Address  
STM8L15xx8, STM8L15xR6  
Reset  
Block  
Register label  
Register name  
status  
0x00 5340  
0x00 5341  
0x00 5342  
0x00 5343  
0x00 5344  
0x00 5345  
0x00 5346  
0x00 5347  
0x00 5348  
0x00 5349  
0x00 534A  
0x00 534B  
0x00 534C  
0x00 534D  
0x00 534E  
0x00 534F  
0x00 5350  
0x00 5351  
ADC1_CR1  
ADC1_CR2  
ADC1 configuration register 1  
ADC1 configuration register 2  
ADC1 configuration register 3  
ADC1 status register  
0x00  
0x00  
0x1F  
0x00  
0x00  
0x00  
0x0F  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
ADC1_CR3  
ADC1_SR  
ADC1_DRH  
ADC1_DRL  
ADC1 data register high  
ADC1 data register low  
ADC1_HTRH  
ADC1_HTRL  
ADC1_LTRH  
ADC1_LTRL  
ADC1_SQR1  
ADC1_SQR2  
ADC1_SQR3  
ADC1_SQR4  
ADC1_TRIGR1  
ADC1_TRIGR2  
ADC1_TRIGR3  
ADC1_TRIGR4  
ADC1 high threshold register high  
ADC1 high threshold register low  
ADC1 low threshold register high  
ADC1 low threshold register low  
ADC1 channel sequence 1 register  
ADC1 channel sequence 2 register  
ADC1 channel sequence 3 register  
ADC1 channel sequence 4 register  
ADC1 trigger disable 1  
ADC1  
ADC1 trigger disable 2  
ADC1 trigger disable 3  
ADC1 trigger disable 4  
0x00 5352 to  
0x00 537F  
Reserved area (46 bytes)  
0x00 5380  
0x00 5381  
0x00 5382  
0x00 5383  
0x00 5384  
0x00 5385  
DAC_CH1CR1  
DAC_CH1CR2  
DAC_CH2CR1  
DAC_CH2CR2  
DAC_SWTRIG  
DAC_SR  
DAC channel 1 control register 1  
DAC channel 1 control register 2  
DAC channel 2 control register 1  
DAC channel 2 control register 2  
DAC software trigger register  
DAC status register  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
DAC  
0x00 5386 to  
0x00 5387  
Reserved area (2 bytes)  
DAC channel 1 right aligned data holding  
register high  
0x00 5388  
0x00 5389  
DAC_CH1RDHRH  
DAC_CH1RDHRL  
0x00  
0x00  
DAC  
DAC  
DAC channel 1 right aligned data holding  
register low  
0x00 538A to  
0x00 538B  
Reserved area (2 bytes)  
DAC channel 1 left aligned data holding  
register high  
0x00 538C  
DAC_CH1LDHRH  
0x00  
52/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Table 8. General hardware register map (continued)  
Address  
Memory and register map  
Reset  
Block  
Register label  
Register name  
status  
DAC channel 1 left aligned data holding  
register low  
0x00 538D  
DAC  
DAC_CH1LDHRL  
0x00  
0x00 538E  
to 0x00 538F  
Reserved area (2 bytes)  
DAC channel 1 8-bit data holding register  
Reserved area (3 bytes)  
0x00 5390  
DAC  
DAC  
DAC_CH1DHR8  
0x00  
0x00 5391 to  
0x00 5393  
DAC channel 2 right aligned data holding  
register high  
0x00 5394  
0x00 5395  
DAC_CH2RDHRH  
DAC_CH2RDHRL  
0x00  
0x00  
DAC channel 2 right aligned data holding  
register low  
0x00 5396 to  
0x00 5397  
Reserved area (2 bytes)  
DAC channel 2 left aligned data holding  
register high  
0x00 5398  
0x00 5399  
DAC_CH2LDHRH  
DAC_CH2LDHRL  
0x00  
0x00  
DAC  
DAC  
DAC channel 2 left aligned data holding  
register low  
0x00 539A  
to 0x00 539B  
Reserved area (2 bytes)  
DAC channel 2 8-bit data holding register  
Reserved area (3 bytes)  
0x00 539C  
DAC_CH2DHR8  
0x00  
0x00 539D  
to 0x00 539F  
Doc ID 17943 Rev 1  
53/122  
Memory and register map  
Table 8. General hardware register map (continued)  
Address  
STM8L15xx8, STM8L15xR6  
Reset  
Block  
Register label  
Register name  
status  
DAC channel 1 right aligned data holding  
register high  
0x00 53A0  
0x00 53A1  
DAC_DCH1RDHRH  
DAC_DCH1RDHRL  
0x00  
DAC channel 1 right aligned data holding  
register low  
0x00  
0x00 53A2  
to 0x00 53AB  
Reserved area (3 bytes)  
0x00 53AC  
0x00 53AD  
DAC_DORH  
DAC_DORL  
DAC data output register high  
DAC data output register low  
0x00  
0x00  
DAC channel 2 right aligned data holding  
register high  
0x00 53A2  
0x00 53A3  
0x00 53A4  
0x00 53A5  
0x00 53A6  
0x00 53A7  
0x00 53A8  
0x00 53A9  
DAC_DCH2RDHRH  
DAC_DCH2RDHRL  
DAC_DCH1LDHRH  
DAC_DCH1LDHRL  
DAC_DCH2LDHRH  
DAC_DCH2LDHRL  
DAC_DCH1DHR8  
DAC_DCH2DHR8  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
DAC channel 2 right aligned data holding  
register low  
DAC  
DAC channel 1left aligned data holding  
register high  
DAC channel 1left aligned data holding  
register low  
DAC channel 2 left aligned data holding  
register high  
DAC channel 2 left aligned data holding  
register low  
DAC channel 1 8-bit mode data holding  
register  
DAC channel 2 8-bit mode data holding  
register  
0x00 53AA to  
0x00 53AB  
Reserved area (2 bytes)  
DAC_CH1DORH  
Reset value  
0x00 53AC  
0x00 53AD  
DAC channel 1 data output register high  
DAC channel 1 data output register low  
Reserved area (2 bytes)  
0x00  
0x00  
DAC  
DAC  
DAC_CH1DORL  
Reset value  
0x00 53AE  
to 0x00 53AF  
DAC_CH2DORH  
Reset value  
0x00 53B0  
0x00 53B1  
DAC channel 2 data output register high  
DAC channel 2 data output register low  
Reserved area  
0x00  
0x00  
DAC_CH2DORL  
Reset value  
0x00 53B2  
to 0x00 53BF  
54/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Table 8. General hardware register map (continued)  
Address  
Memory and register map  
Reset  
Block  
Register label  
Register name  
status  
0x00 53C0  
0x00 53C1  
0x00 53C2  
0x00 53C3  
0x00 53C4  
0x00 53C5  
0x00 53C6  
0x00 53C7  
SPI2_CR1  
SPI2_CR2  
SPI2 control register 1  
SPI2 control register 2  
SPI2 interrupt control register  
SPI2 status register  
0x00  
0x00  
0x00  
0x02  
0x00  
0x07  
0x00  
0x00  
SPI2_ICR  
SPI2_SR  
SPI2  
SPI2_DR  
SPI2 data register  
SPI2_CRCPR  
SPI2_RXCRCR  
SPI2_TXCRCR  
SPI2 CRC polynomial register  
SPI2 Rx CRC register  
SPI2 Tx CRC register  
0x00 53C8 to  
0x00 53DF  
Reserved area  
0x00 53E0  
0x00 53E1  
0x00 53E2  
0x00 53E3  
0x00 53E4  
0x00 53E5  
0x00 53E6  
0x00 53E7  
0x00 53E8  
0x00 53E9  
0x00 53EA  
USART2_SR  
USART2_DR  
USART2 status register  
USART2 data register  
0xC0  
0xXX  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
USART2_BRR1  
USART2_BRR2  
USART2_CR1  
USART2_CR2  
USART2_CR3  
USART2_CR4  
USART2_CR5  
USART2_GTR  
USART2_PSCR  
USART2 baud rate register 1  
USART2 baud rate register 2  
USART2 control register 1  
USART2 control register 2  
USART2 control register 3  
USART2 control register 4  
USART2 control register 5  
USART2 guard time register  
USART2 prescaler register  
USART2  
0x00 53EB to  
0x00 53EF  
Reserved area  
0x00 53F0  
0x00 53F1  
0x00 53F2  
0x00 53F3  
0x00 53F4  
0x00 53F5  
0x00 53F6  
0x00 53F7  
0x00 53F8  
0x00 53F9  
0x00 53FA  
USART3_SR  
USART3_DR  
USART3 status register  
USART3 data register  
0xC0  
0xXX  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
USART3_BRR1  
USART3_BRR2  
USART3_CR1  
USART3_CR2  
USART3_CR3  
USART3_CR4  
USART3_CR5  
USART3_GTR  
USART3_PSCR  
USART3 baud rate register 1  
USART3 baud rate register 2  
USART3 control register 1  
USART3 control register 2  
USART3 control register 3  
USART3 control register 4  
USART3 control register 5  
USART3 guard time register  
USART3 prescaler register  
USART3  
Doc ID 17943 Rev 1  
55/122  
Memory and register map  
Table 8. General hardware register map (continued)  
Address  
STM8L15xx8, STM8L15xR6  
Reset  
Block  
Register label  
Register name  
status  
0x00 53FB to  
0x00 53FF  
Reserved area  
LCD control register 1  
0x00 5400  
0x00 5401  
0x00 5402  
0x00 5403  
0x00 5404  
0x00 5405  
0x00 5406  
0x00 5407  
0x00 5408  
0x00 5409  
LCD_CR1  
LCD_CR2  
LCD_CR3  
LCD_FRQ  
LCD_PM0  
LCD_PM1  
LCD_PM2  
LCD_PM3  
LCD_PM4  
LCD_PM5  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
LCD control register 2  
LCD control register 3  
LCD frequency selection register  
LCD Port mask register 0  
LCD Port mask register 1  
LCD Port mask register 2  
LCD Port mask register 3  
LCD Port mask register 4  
LCD Port mask register 5  
LCD  
56/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Table 8. General hardware register map (continued)  
Address  
Memory and register map  
Reset  
Block  
Register label  
Register name  
status  
0x00 540A to  
0x00 540B  
Reserved area (2 bytes)  
0x00 540C  
0x00 540D  
0x00 540E  
0x00 540F  
0x00 5410  
0x00 5411  
0x00 5412  
0x00 5413  
0x00 5414  
0x00 5415  
0x00 5416  
0x00 5417  
0x00 5418  
0x00 5419  
0x00 541A  
0x00 541B  
0x00 541C  
0x00 541D  
0x00 541E  
0x00 541F  
0x00 5420  
0x00 5421  
LCD_RAM0  
LCD_RAM1  
LCD_RAM2  
LCD_RAM3  
LCD_RAM4  
LCD_RAM5  
LCD_RAM6  
LCD_RAM7  
LCD_RAM8  
LCD_RAM9  
LCD_RAM10  
LCD_RAM11  
LCD_RAM12  
LCD_RAM13  
LCD_RAM14  
LCD_RAM15  
LCD_RAM16  
LCD_RAM17  
LCD_RAM18  
LCD_RAM19  
LCD_RAM20  
LCD_RAM21  
LCD display memory 0  
LCD display memory 1  
LCD display memory 2  
LCD display memory 3  
LCD display memory 4  
LCD display memory 5  
LCD display memory 6  
LCD display memory 7  
LCD display memory 8  
LCD display memory 9  
LCD display memory 10  
LCD display memory 11  
LCD display memory 12  
LCD display memory 13  
LCD display memory 12  
LCD display memory 13  
LCD display memory 11  
LCD display memory 12  
LCD display memory 13  
LCD display memory 12  
LCD display memory 13  
LCD display memory 13  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
LCD  
0x00 5422 to  
0x00 542F  
Reserved area  
Doc ID 17943 Rev 1  
57/122  
Memory and register map  
Table 8. General hardware register map (continued)  
Address  
STM8L15xx8, STM8L15xR6  
Reset  
Block  
Register label  
Register name  
status  
0x00 5430  
0x00 5431  
0x00 5432  
0x00 5433  
0x00 5434  
0x00 5435  
0x00 5436  
0x00 5437  
0x00 5438  
0x00 5439  
0x00 543A  
0x00 543B  
0x00 543C  
0x00 543D  
0x00 543E  
0x00 543F  
0x00 5440  
0x00 5441  
0x00 5442  
0x00 5443  
0x00 5444  
Reserved area (1 byte)  
0x00  
0x00  
0x00  
0xXX  
0xXX  
0xXX  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x3F  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
RI_ICR1  
RI_ICR2  
Timer input capture routing register 1  
Timer input capture routing register 2  
I/O input register 1  
RI_IOIR1  
RI_IOIR2  
I/O input register 2  
RI_IOIR3  
I/O input register 3  
RI_IOCMR1  
RI_IOCMR2  
RI_IOCMR3  
RI_IOSR1  
I/O control mode register 1  
I/O control mode register 2  
I/O control mode register 3  
I/O switch register 1  
RI  
RI_IOSR2  
I/O switch register 2  
RI_IOSR3  
I/O switch register 3  
RI_IOGCR  
RI_ASCR1  
RI_ASCR2  
RI_RCR  
I/O group control register  
Analog switch register 1  
Analog switch register 2  
Resistor control register 1  
Comparator control and status register 1  
Comparator control and status register 2  
Comparator control and status register 3  
Comparator control and status register 4  
Comparator control and status register 5  
COMP_CSR1  
COMP_CSR2  
COMP_CSR3  
COMP_CSR4  
COMP_CSR5  
COMP1/  
COMP2  
1. These registers are not impacted by a system reset. They are reset at power-on.  
58/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Table 9. CPU/SWIM/debug module/interrupt controller registers  
Address  
Memory and register map  
Reset  
status  
Block  
Register label  
Register name  
0x00 7F00  
0x00 7F01  
0x00 7F02  
0x00 7F03  
0x00 7F04  
0x00 7F05  
0x00 7F06  
0x00 7F07  
0x00 7F08  
0x00 7F09  
0x00 7F0A  
A
Accumulator  
0x00  
PCE  
PCH  
PCL  
XH  
Program counter extended  
Program counter high  
Program counter low  
X index register high  
X index register low  
Y index register high  
Y index register low  
Stack pointer high  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x03  
0xFF  
0x28  
CPU(1)  
XL  
YH  
YL  
SPH  
SPL  
CCR  
Stack pointer low  
Condition code register  
0x00 7F0B to  
0x00 7F5F  
Reserved area (85 bytes)  
CPU  
0x00 7F60  
0x00 7F70  
0x00 7F71  
0x00 7F72  
0x00 7F73  
0x00 7F74  
0x00 7F75  
0x00 7F76  
0x00 7F77  
CFG_GCR  
ITC_SPR1  
ITC_SPR2  
ITC_SPR3  
ITC_SPR4  
ITC_SPR5  
ITC_SPR6  
ITC_SPR7  
ITC_SPR8  
Global configuration register  
0x00  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
Interrupt Software priority register 1  
Interrupt Software priority register 2  
Interrupt Software priority register 3  
Interrupt Software priority register 4  
Interrupt Software priority register 5  
Interrupt Software priority register 6  
Interrupt Software priority register 7  
Interrupt Software priority register 8  
ITC-SPR  
0x00 7F78  
to  
0x00 7F79  
Reserved area (2 bytes)  
SWIM control status register  
Reserved area (15 bytes)  
0x00 7F80  
SWIM  
SWIM_CSR  
0x00  
0x00 7F81  
to  
0x00 7F8F  
Doc ID 17943 Rev 1  
59/122  
Memory and register map  
Table 9.  
Address  
STM8L15xx8, STM8L15xR6  
CPU/SWIM/debug module/interrupt controller registers (continued)  
Reset  
status  
Block  
Register label  
Register name  
0x00 7F90  
0x00 7F91  
0x00 7F92  
0x00 7F93  
0x00 7F94  
0x00 7F95  
0x00 7F96  
0x00 7F97  
0x00 7F98  
0x00 7F99  
0x00 7F9A  
DM_BK1RE  
DM_BK1RH  
DM_BK1RL  
DM_BK2RE  
DM_BK2RH  
DM_BK2RL  
DM_CR1  
DM breakpoint 1 register extended byte  
DM breakpoint 1 register high byte  
DM breakpoint 1 register low byte  
DM breakpoint 2 register extended byte  
DM breakpoint 2 register high byte  
DM breakpoint 2 register low byte  
DM Debug module control register 1  
DM Debug module control register 2  
DM Debug module control/status register 1  
DM Debug module control/status register 2  
DM enable function register  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x10  
0x00  
0xFF  
DM  
DM_CR2  
DM_CSR1  
DM_CSR2  
DM_ENFCTR  
0x00 7F9B  
to  
Reserved area (5 bytes)  
0x00 7F9F  
1. Accessible by debug module only  
60/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Interrupt vector mapping  
6
Interrupt vector mapping  
Table 10. Interrupt mapping  
Wakeup  
from  
Active-halt  
mode  
Wakeup  
from Wait from Wait  
(WFI  
mode)  
Wakeup  
Wakeup  
from Halt  
mode  
Vector  
IRQ  
No.  
Source  
block  
Description  
(WFE  
address  
mode)(1)  
RESET  
TRAP  
TLI(2)  
Reset  
Yes  
Yes  
Yes  
-
Yes  
-
0x00 8000  
0x00 8004  
0x00 8008  
0x00 800C  
0x00 8010  
0x00 8014  
Software interrupt  
-
-
-
-
-
-
-
-
-
-
0
1
2
3
External Top level Interrupt  
EOP/WR_PG_DIS  
-
-
FLASH  
Yes  
Yes  
Yes  
Yes(3)  
Yes(3)  
Yes(3)  
DMA1 0/1 DMA1 channels 0/1  
DMA1 2/3 DMA1 channels 2/3  
RTC/LSE_ RTC alarm interrupt/LSE  
4
5
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
0x00 8018  
0x00 801C  
CSS  
CSS interrupt  
EXTI  
PortE/F interrupt/PVD  
Yes(3)  
E/F/PVD(4) interrupt  
6
EXTIB/G External interrupt port B/G  
EXTID/H External interrupt port D/H  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
-
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
-
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes(3)  
Yes(3)  
Yes(3)  
Yes(3)  
Yes(3)  
Yes(3)  
Yes(3)  
Yes(3)  
Yes(3)  
Yes(3)  
Yes  
0x00 8020  
0x00 8024  
0x00 8028  
0x00 802C  
0x00 8030  
0x00 8034  
0x00 8038  
0x00 803C  
0x00 8040  
0x00 8044  
0x00 8048  
7
8
EXTI0  
EXTI1  
EXTI2  
EXTI3  
EXTI4  
EXTI5  
EXTI6  
EXTI7  
LCD  
External interrupt 0  
External interrupt 1  
External interrupt 2  
External interrupt 3  
External interrupt 4  
External interrupt 5  
External interrupt 6  
External interrupt 7  
LCD interrupt  
9
10  
11  
12  
13  
14  
15  
16  
CLK/  
TIM1/  
DAC  
System clock switch/CSS  
interrupt/TIM1 break/DAC  
17  
18  
-
-
Yes  
Yes  
Yes  
0x00 804C  
0x00 8050  
COMP1/  
COMP2  
ADC1  
Comparator 1 and 2  
interrupt/ADC1  
Yes  
Yes  
Yes(3)  
TIM2 update  
/overflow/trigger/break/  
TIM2/  
USART2 transmission  
19  
-
-
Yes  
Yes(3)  
0x00 8054  
USART2 complete/transmit data  
register empty  
interrupt  
Doc ID 17943 Rev 1  
61/122  
Interrupt vector mapping  
STM8L15xx8, STM8L15xR6  
Table 10. Interrupt mapping (continued)  
Wakeup  
from  
Active-halt  
mode  
Wakeup  
from Wait from Wait  
(WFI  
mode)  
Wakeup  
Wakeup  
from Halt  
mode  
Vector  
IRQ  
No.  
Source  
block  
Description  
(WFE  
address  
mode)(1)  
TIM2/  
USART2 2 interrupt  
Capture/Compare/USART  
20  
21  
-
-
-
Yes  
Yes  
Yes(3)  
Yes(3)  
0x00 8058  
0x00 805C  
TIM3 Update  
/Overflow/Trigger/Break/  
USART3 transmission  
TIM3/  
-
USART3 complete/transmit data  
register empty  
interrupt  
TIM3 Capture/Compare/  
USART3 Receive register  
TIM3/  
22  
23  
-
-
-
-
Yes  
-
Yes(3)  
Yes(3)  
0x00 8060  
0x00 8064  
data full/overrun/idle line  
USART3  
detected/parity error/  
interrupt  
Update /overflow/trigger/  
TIM1  
COM  
24  
25  
26  
TIM1  
TIM4  
SPI1  
Capture/Compare  
Update/overflow/trigger  
End of Transfer  
-
-
-
-
-
Yes(3)  
Yes(3)  
Yes(3)  
0x00 8068  
0x00 806C  
0x00 8070  
Yes  
Yes  
Yes  
Yes  
USART1 transmission  
complete/transmit data  
register empty/  
USART 1/  
TIM5  
27  
-
-
Yes  
Yes(3)  
0x00 8074  
TIM5 update/overflow/  
trigger/break  
USART1 Receive register  
data full/overrun/idle line  
detected/parity error/  
USART 1/  
TIM5  
28  
29  
-
-
Yes  
Yes  
Yes(3)  
Yes(3)  
0x00 8078  
0x00 807C  
TIM5 capture/compare  
I2C1 interrupt(5)  
SPI2  
/
I2C1/SPI2  
Yes  
Yes  
1. The Low power wait mode is entered when executing a WFE instruction in Low power run mode.  
2. The TLI interrupt is the logic OR between TIM2 overflow interrupt, and TIM4 overflow interrupts.  
3. In WFE mode, this interrupt is served if it has been previously enabled. After processing the interrupt, the processor goes  
back to WFE mode. When this interrupt is configured as a wakeup event, the CPU wakes up and resumes processing.  
4. The interrupt from PVD is logically OR-ed with Port E and F interrupts. Register EXTI_CONF allows to select between Port  
E and Port F interrupt (see External interrupt port select register (EXTI_CONF) in the RM0031).  
5. The device is woken up from Halt or Active-halt mode only when the address received matches the interface address.  
62/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Option bytes  
7
Option bytes  
Option bytes contain configurations for device hardware features as well as the memory  
protection of the device. They are stored in a dedicated memory block.  
All option bytes can be modified in ICP mode (with SWIM) by accessing the EEPROM  
address. See Table 11 for details on option byte addresses.  
The option bytes can also be modified ‘on the fly’ by the application in IAP mode, except for  
the ROP, UBC and PCODESIZE values which can only be taken into account when they are  
modified in ICP mode (with the SWIM).  
Refer to the STM8L15x/STM8L16x Flash programming manual (PM0054) and STM8 SWIM  
and Debug Manual (UM0320) for information on SWIM programming procedures.  
Table 11. Option byte addresses  
Option  
Option bits  
3
Factory  
default  
setting  
Addr.  
Option name  
byte  
No.  
7
6
5
4
2
1
0
Read-out  
protection  
(ROP)  
00 4800  
OPT0  
ROP[7:0]  
0x00  
UBC (User  
Boot code size)  
00 4802  
00 4807  
OPT1  
OPT2  
UBC[7:0]  
0x00  
0x00  
PCODESIZE  
PCODE[7:0]  
Independent  
watchdog  
option  
OPT3  
[3:0]  
WWDG WWDG IWDG IWDG  
_HALT _HW _HALT _HW  
00 4808  
Reserved  
0x00  
Number of  
stabilization  
00 4809 clock cycles for OPT4  
HSE and LSE  
Reserved  
Reserved  
LSECNT[1:0]  
HSECNT[1:0]  
0x00  
0x01  
oscillators  
Brownout reset  
(BOR)  
OPT5  
[3:0]  
BOR_  
ON  
00 480A  
BOR_TH  
00 480B  
00 480C  
Bootloader  
option bytes  
(OPTBL)  
0x00  
0x00  
OPTBL  
[15:0]  
OPTBL[15:0]  
Doc ID 17943 Rev 1  
63/122  
Option bytes  
STM8L15xx8, STM8L15xR6  
Table 12. Option byte description  
Option  
byte  
Option description  
No.  
ROP[7:0] Memory readout protection (ROP)  
OPT0  
OPT1  
0xAA: Disable readout protection (write access via SWIM protocol)  
Refer to Readout protection section in the STM8L reference manual (RM0031).  
UBC[7:0] Size of the user boot code area  
UBC[7:0] Size of the user boot code area  
0x00: No UBC  
0x01: Page 0 reserved for the UBC and write protected.  
0xFF: Page 0 to 254 reserved for the UBC and write-protected.  
Refer to User boot code section in the STM8L reference manual (RM0031).  
PCODESIZE[7:0] Size of the proprietary code area  
0x00: No proprietary code area  
0x01: Page 0 reserved for the proprietary code and read/write protected.  
0xFF: Page 0 to 254 reserved for the proprietary code and read/write protected.  
Refer to Proprietary code area (PCODE) section in the STM8L reference manual (RM0031) for more  
details.  
OPT2  
IWDG_HW: Independent watchdog  
0: Independent watchdog activated by software  
1: Independent watchdog activated by hardware  
IWDG_HALT: Independent window watchdog reset on Halt/Active-halt  
0: Independent watchdog continues running in Halt/Active-halt mode  
1: Independent watchdog stopped in Halt/Active-halt mode  
OPT3  
WWDG_HW: Window watchdog  
0: Window watchdog activated by software  
1: Window watchdog activated by hardware  
WWDG_HALT: Window window watchdog reset on Halt/Active-halt  
0: Window watchdog stopped in Halt mode  
1: Window watchdog generates a reset when MCU enters Halt mode  
HSECNT: Number of HSE oscillator stabilization clock cycles  
0x00 - 1 clock cycle  
0x01 - 16 clock cycles  
0x10 - 512 clock cycles  
0x11 - 4096 clock cycles  
OPT4  
LSECNT: Number of LSE oscillator stabilization clock cycles  
0x00 - 1 clock cycle  
0x01 - 16 clock cycles  
0x10 - 512 clock cycles  
0x11 - 4096 clock cycles  
64/123  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Option bytes  
Table 12. Option byte description (continued)  
Option  
Option description  
byte  
No.  
BOR_ON:  
0: Brownout reset off  
1: Brownout reset on  
OPT5  
BOR_TH[3:1]: Brownout reset thresholds. Refer to Table 18 for details on the thresholds according to  
the value of BOR_TH bits.  
OPTBL[15:0]:  
This option is checked by the boot ROM code after reset. Depending on  
OPTBL content of addresses 00 480B, 00 480C and 0x8000 (reset vector) the  
CPU jumps to the bootloader or to the reset vector.  
Refer to the UM0560 bootloader user manual for more details.  
Doc ID 17943 Rev 1  
65/122  
Unique ID  
STM8L15xx8, STM8L15xR6  
8
Unique ID  
devices feature a 96-bit unique device identifier which provides a reference number that is  
unique for any device and in any context. The 96 bits of the identifier can never be altered by  
the user.  
The unique device identifier can be read in single bytes and may then be concatenated  
using a custom algorithm.  
The unique device identifier is ideally suited:  
For use as serial numbers  
For use as security keys to increase the code security in the program memory while  
using and combining this unique ID with software crytograhic primitives and protocols  
before programming the internal memory.  
To activate secure boot processes  
Table 13. Unique ID registers (96 bits)  
Unique ID bits  
Content  
Address  
description  
7
6
5
4
3
2
1
0
0x4926  
0x4927  
0x4928  
0x4929  
0x492A  
0x492B  
0x492C  
0x492D  
0x492E  
0x492F  
0x4930  
0x4931  
U_ID[7:0]  
X co-ordinate on  
the wafer  
U_ID[15:8]  
U_ID[23:16]  
U_ID[31:24]  
U_ID[39:32]  
U_ID[47:40]  
U_ID[55:48]  
U_ID[63:56]  
U_ID[71:64]  
U_ID[79:72]  
U_ID[87:80]  
U_ID[95:88]  
Y co-ordinate on  
the wafer  
Wafer number  
Lot number  
66/123  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Electrical parameters  
9
Electrical parameters  
9.1  
Parameter conditions  
Unless otherwise specified, all voltages are referred to V  
.
SS  
9.1.1  
Minimum and maximum values  
Unless otherwise specified the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T = 25 °C and T = T max (given by  
A
A
A
the selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean 3Σ).  
9.1.2  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = 3 V. They are given  
A
DD  
only as design guidelines and are not tested.  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range, where 95% of the devices have an  
error less than or equal to the value indicated (mean 2Σ).  
9.1.3  
9.1.4  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 10.  
Figure 10. Pin loading conditions  
STM8L PIN  
50 pF  
Doc ID 17943 Rev 1  
67/122  
Electrical parameters  
STM8L15xx8, STM8L15xR6  
9.1.5  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 11.  
Figure 11. Pin input voltage  
STM8L PIN  
V
IN  
9.2  
Absolute maximum ratings  
Stresses above those listed as “absolute maximum ratings” may cause permanent damage  
to the device. This is a stress rating only and functional operation of the device under these  
conditions is not implied. Exposure to maximum rating conditions for extended periods may  
affect device reliability.  
Table 14. Voltage characteristics  
Symbol  
Ratings  
Min  
Max  
Unit  
External supply voltage (including VDDA  
VDD- VSS  
- 0.3  
4.0  
(1)  
and VDD2  
)
Input voltage on true open-drain pins  
(PC0 and PC1)(2)  
VSS - 0.3  
VDD + 4.0  
V
VIN  
Input voltage on FT pins (2)  
VSS - 0.3  
VSS - 0.3  
VDD + 4.0  
4.0  
Input voltage on any other pin (3)  
see Absolute maximum  
ratings (electrical sensitivity)  
on page 113  
VESD  
Electrostatic discharge voltage  
1. All power (VDD1, VDD2, VDDA) and ground (VSS1, VSS2, VSSA) pins must always be connected to the  
external power supply.  
2. Positive injection is not possible on these I/Os. VIN maximum must always be respected. IINJ(PIN) must  
never be exceeded. A negative injection is induced by VIN<VSS  
.
3. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum  
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive  
injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS  
.
68/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Electrical parameters  
Table 15. Current characteristics  
Symbol  
Ratings  
Max.  
Unit  
IVDD  
IVSS  
Total current into VDD power line (source)  
Total current out of VSS ground line (sink)  
80  
80  
Output current sunk by IR_TIM pin (with high sink LED  
driver capability)  
80  
IIO  
Output current sunk by any other I/O and control pin  
Output current sourced by any I/Os and control pin  
25  
- 25  
- 5  
mA  
Injected current on true open-drain pins (PC0 and PC1)(1)  
Injected current on FT pins(1)  
IINJ(PIN)  
- 5  
5
Injected current on any other pin (2)  
Total injected current (sum of all I/O and control pins) (3)  
25  
ΣIINJ(PIN)  
1. Positive injection is not possible on these I/Os. VIN maximum must always be respected. IINJ(PIN) must  
never be exceeded. A negative injection is induced by VIN<VSS  
.
2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum  
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive  
injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS  
.
3. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the  
positive and negative injected currents (instantaneous values). These results are based on  
characterization with ΣIINJ(PIN) maximum current injection on four I/O port pins of the device.  
Table 16. Thermal characteristics  
Symbol  
Ratings  
Storage temperature range  
Maximum junction temperature  
Value  
Unit  
TSTG  
TJ  
-65 to +150  
150  
° C  
Doc ID 17943 Rev 1  
69/122  
Electrical parameters  
STM8L15xx8, STM8L15xR6  
9.3  
Operating conditions  
Subject to general operating conditions for V and T .  
DD  
A
9.3.1  
General operating conditions  
Table 17. General operating conditions  
Symbol Parameter  
System clock  
Conditions  
Min  
Max  
Unit  
(1)  
f
1.65 V VDD < 3.6 V  
0
16  
MHz  
SYSCLK  
frequency  
BOR detector disabled  
1.65  
(D suffix version)  
BOR detector enabled  
ADC not used  
Standard operating  
voltage  
VDD  
3.6  
V
1.8(2)  
1.65(2)  
1.8  
3.6  
3.6  
V
V
Analog operating  
voltage  
Must be at the same  
potential as VDD  
VDDA  
ADC used  
LQFP80  
288  
288  
288  
288  
131  
104  
156  
77  
Power dissipation at  
TA= 85 °C for suffix 6  
devices  
LQFP64  
UFQFPN48  
LQFP48  
(3)  
PD  
mW  
LQFP80  
Power dissipation at  
TA= 125 °C for suffix 3  
devices  
LQFP64  
UFQFPN48  
LQFP48  
1.65 V VDD < 3.6 V (6 suffix version)  
1.65 V VDD < 3.6 V (3 suffix version)  
-40  
-40  
85  
TA  
TJ  
Temperature range  
125  
-40 °C TA < 85 °C  
(6 suffix version)  
°C  
-40  
-40  
105  
130  
Junction temperature  
range  
-40 °CTA < 125 °C  
(3 suffix version)  
1. fSYSCLK = fCPU  
2. 1.8 V at power-up, 1.65 V at power-down if BOR is disabled by option byte  
3. To calculate PDmax(TA), use the formula PDmax=(TJmax -TA)/ΘJA with TJmax in this table and ΘJA in “Thermal characteristics”  
table.  
70/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Electrical parameters  
9.3.2  
Power-up / power-down operating conditions  
Table 18. Operating conditions at power-up / power-down  
Symbol(1)  
Parameter(1)  
Conditions(1)  
Typ  
Min  
Max  
Unit  
0(2)  
0(2)  
VDD rise time rate  
tVDD  
µs/V  
ms  
VDD fall time rate  
V
DD rising  
tTEMP  
VPOR  
VPDR  
Reset release delay  
3
Power-on reset threshold  
Rising edge  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
1.5  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Power-down reset threshold Falling edge  
1.5  
Falling edge  
1.7  
Brown-out reset threshold 0  
(BOR_TH[2:0]=000)  
VBOR0  
VBOR1  
VBOR2  
VBOR3  
VBOR4  
VPVD0  
VPVD1  
VPVD2  
VPVD3  
VPVD4  
VPVD5  
VPVD6  
Rising edge  
1.75  
1.93  
2.04  
2.3  
Falling edge  
Brown-out reset threshold 1  
(BOR_TH[2:0]=001)  
Rising edge  
Falling edge  
Brown-out reset threshold 2  
(BOR_TH[2:0]=010)  
Rising edge  
2.41  
2.55  
2.66  
2.80  
2.90  
1.84  
1.94  
2.04  
2.14  
2.24  
2.34  
2.44  
2.54  
2.64  
2.74  
2.83  
2.94  
3.05  
3.15  
40  
Falling edge  
Brown-out reset threshold 3  
(BOR_TH[2:0]=011)  
Rising edge  
Falling edge  
Brown-out reset threshold 4  
(BOR_TH[2:0]=100)  
Rising edge  
Falling edge  
PVD threshold 0  
V
Rising edge  
Falling edge  
PVD threshold 1  
Rising edge  
Falling edge  
PVD threshold 2  
Rising edge  
Falling edge  
PVD threshold 3  
Rising edge  
Falling edge  
PVD threshold 4  
Rising edge  
Falling edge  
PVD threshold 5  
Rising edge  
Falling edge  
PVD threshold 6  
Rising edge  
BOR0 threshold  
All BOR and PVD  
thresholds  
Vhyst  
Hysteresis voltage  
mV  
100  
excepting BOR0  
Doc ID 17943 Rev 1  
71/122  
Electrical parameters  
STM8L15xx8, STM8L15xR6  
1. Based on characterization results, unless otherwise specified.  
2. Guaranteed by design, not tested in production.  
Figure 12. Power supply thresholds  
VDD/VDDA  
100 mV  
hysteresis  
VPVD  
100 mV  
hysteresis  
VBOR  
VPOR  
V
/
PDR  
IT enabled  
PVD output  
BOR reset  
(NRST)  
BOR/PDR reset  
(NRST)  
POR/PDR reset  
(NRST)  
(Note 1)  
(Note 2)  
(Note 3)  
PVD  
BOR always active  
BOR disabled by option byte  
POR/PDR (BOR not available) (Note 4)  
ai17211b  
72/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Electrical parameters  
9.3.3  
Supply current characteristics  
Total current consumption  
The MCU is placed under the following conditions:  
All I/O pins in input mode with a static value at V or V (no load)  
DD SS  
All peripherals are disabled except if explicitly mentioned.  
Subject to general operating conditions for V and T .  
DD  
A
Table 19. Total current consumption in Run mode  
Para  
Max  
Conditions(1)(2)  
meter  
Symbol  
Typ  
Unit  
105 °C  
85 °C  
(3)  
125 °C  
(4)  
(1)  
55°C  
(4)  
fCPU = 125 kHz  
CPU = 1 MHz  
0.26 TBD  
0.35 TBD  
0.63 TBD  
1.01 TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
f
HSI RC osc.  
(16 MHz)(6)  
fCPU = 4 MHz  
fCPU = 8 MHz  
TBD  
TBD  
All  
1.76 TBD TBD(8)  
TBD(8)  
TBD  
peripherals  
OFF,  
code  
fCPU = 16 MHz  
Supply  
current  
fCPU = 125 kHz  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD  
TBD  
in run  
mode  
(5)  
IDD(RUN)  
executed  
from RAM,  
VDD from  
mA  
HSE  
external  
clock  
fCPU = 1 MHz  
fCPU = 4 MHz  
fCPU = 8 MHz  
TBD  
TBD  
TBD  
(fCPU=fHSE  
)
1.65 V to  
3.6 V  
TBD  
TBD  
(7)  
TBD(8)  
TBD(8)  
fCPU = 16 MHz  
fCPU = fLSI  
LSI RC osc.  
(typ. 38 kHz)  
0.037 TBD  
0.036 TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
LSE external  
clock  
fCPU = fLSE  
(32.768 kHz)  
Doc ID 17943 Rev 1  
73/122  
Electrical parameters  
STM8L15xx8, STM8L15xR6  
Table 19. Total current consumption in Run mode (continued)  
Para  
Max  
Conditions(1)(2)  
meter  
(1)  
Symbol  
Typ  
Unit  
105 °C  
85 °C  
(3)  
125 °C  
(4)  
55°C  
(4)  
fCPU = 125 kHz  
CPU = 1 MHz  
fCPU = 4 MHz  
0.33 TBD  
0.52 TBD  
1.19 TBD  
2.08 TBD  
3.94 TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
f
HSI RC  
osc.(9)  
f
CPU = 8 MHz  
CPU = 16 MHz  
f
All  
peripherals  
OFF, code  
executed  
from Flash,  
VDD from  
fCPU = 125 kHz  
Supply  
current  
in Run  
mode  
HSE  
external  
clock  
(fCPU=fHSE  
(7)  
f
CPU = 1 MHz  
CPU = 4 MHz  
mA  
IDD(RUN)  
f
)
1.65 V to  
3.6 V  
fCPU = 8 MHz  
f
CPU = 16 MHz  
CPU = fLSI  
f
LSI RC osc.  
LSE external  
clock  
(32.768  
fCPU = fLSE  
TBD TBD  
TBD  
TBD  
TBD  
kHz)(10)  
1. Based on characterization results, unless otherwise specified  
2. All peripherals OFF, VDD from 1.65 V to 3.6 V, HSI internal RC osc. , fCPU=fSYSCLK  
3. For devices with suffix 6  
4. For devices with suffix 3  
5. CPU executing typical data processing  
6. The run from RAM consumption can be approximated with the linear formula:  
IDD(run_from_RAM) = Freq * 95 µA/MHz + 250 µA  
7. Oscillator bypassed (HSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the HSE consumption  
(IDD HSE) must be added. Refer to Table 30.  
8. Design guaranteed, each individual device tested in production  
9. The run from Flash consumption can be approximated with the linear formula:  
IDD(run_from_Flash) = Freq * 200 µA/MHz + 330 µA  
10. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for extenal crystal, the LSE consumption  
(IDD LSE) must be added. Refer to Table 31  
74/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Electrical parameters  
(1)  
Table 20. Total current consumption in Wait mode  
Max  
Conditions(2)  
105  
°C  
Symbol Parameter  
Typ  
Unit  
125  
°C  
85 °C  
(3)  
55°C  
(4)  
(4)  
fCPU = 125 kHz  
0.25 TBD TBD TBD TBD  
0.27 TBD TBD TBD TBD  
0.35 TBD TBD TBD TBD  
0.46 TBD TBD TBD TBD  
f
f
f
CPU = 1 MHz  
CPU = 4 MHz  
CPU = 8 MHz  
HSI  
TBD  
TBD(  
f
CPU = 16 MHz  
0.65 TBD  
TBD  
(6)  
6)  
CPU not  
clocked,  
all peripherals  
OFF,  
code executed  
from RAM  
with Flash in IDDQ (fCPU=fHSE  
mode,(5)  
VDD from  
1.65 V to 3.6 V  
fCPU = 125 kHz  
TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD  
f
f
f
CPU = 1 MHz  
CPU = 4 MHz  
CPU = 8 MHz  
HSE  
external  
clock  
Supply  
IDD(Wait) current in  
Wait mode  
mA  
)
(7)  
TBD  
TBD  
(6)  
f
CPU = 16 MHz  
TBD TBD  
TBD  
(6)  
fCPU = fLSI  
LSI  
TBD TBD TBD TBD  
TBD TBD TBD TBD  
0.034  
0.033  
LSE(8)  
external  
clock  
(32.768  
kHz)  
fCPU = fLSE  
Doc ID 17943 Rev 1  
75/122  
Electrical parameters  
STM8L15xx8, STM8L15xR6  
Max  
(1)  
Table 20. Total current consumption in Wait mode  
(continued)  
Typ  
Conditions(2)  
105  
°C  
Symbol Parameter  
Unit  
125  
°C  
85 °C  
(3)  
55°C  
(4)  
(4)  
fCPU = 125 kHz  
TBD TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD TBD  
f
f
f
CPU = 1 MHz  
CPU = 4 MHz  
CPU = 8 MHz  
HSI  
fCPU = 16 MHz  
CPU not  
f
f
f
f
f
f
CPU = 125 kHz  
CPU = 1 MHz  
CPU = 4 MHz  
CPU = 8 MHz  
CPU = 16 MHz  
CPU = fLSI  
clocked,  
all peripherals  
OFF,  
code executed  
from Flash,  
VDD from  
HSE(7)  
external  
clock  
Supply  
IDD(Wait) current in  
Wait mode  
(fCPU=HSE)  
1.65 V to 3.6 V  
LSI  
LSE(8)  
external  
clock  
fCPU = fLSE  
TBD TBD TBD TBD TBD TBD  
(32.768  
kHz)  
1. Based on characterization results, unless specified  
2. All peripherals OFF, VDD from 1.65 V to 3.6 V, HSI internal RC osc. , fCPU = fSYSCLK  
3. For temperature range 6.  
4. For temperature range 3.  
5. Flash is configured in IDDQ mode in Wait mode by setting the EPM or WAITM bit in the Flash_CR1 register.  
6. Design guaranteed, each individual part tested in production  
7. Oscillator bypassed (HSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the HSE consumption  
(IDD HSE) must be added. Refer to Table 30.  
8. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for extenal crystal, the LSE consumption  
(IDD HSE) must be added. Refer to Table 31  
76/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Electrical parameters  
Table 21. Total current consumption and timing in Low power run mode at V = 1.65 V to  
DD  
3.6 V  
Parameter(1)  
Conditions(2)  
Typ(1) Max(1)  
Symbol  
Unit  
TA = -40 °C  
to 25 °C  
TBD  
TBD  
TA = 55 °C  
TA = 85 °C  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
all peripherals OFF  
TA = 105 °C TBD  
TA = 125 °C TBD  
LSI RC osc.  
(at 38 kHz)  
TA = -40 °C  
TBD  
TBD  
to 25 °C  
TA = 55 °C  
TA = 85 °C  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
with TIM2 active(3)  
TA = 105 °C TBD  
TA = 125 °C TBD  
Supply current in Low  
power run mode  
IDD(LPR)  
μA  
TA = -40 °C  
TBD  
TBD  
to 25 °C  
TA = 55 °C  
TA = 85 °C  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
all peripherals OFF  
TA = 105 °C TBD  
TA = 125 °C TBD  
LSE (4) external  
clock  
(32.768 kHz)  
TA = -40 °C  
TBD  
TBD  
to 25 °C  
TA = 55 °C  
TA = 85 °C  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
with TIM2 active (3)  
TA = 105 °C TBD  
TA = 125 °C TBD  
1. Based on characterization results, unless otherwise specified  
2. No floating I/Os  
3. Timer 2 clock enabled and counter running  
4. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for extenal crystal, the LSE consumption  
(IDD LSE) must be added. Refer to Table 31  
Doc ID 17943 Rev 1  
77/122  
Electrical parameters  
STM8L15xx8, STM8L15xR6  
Table 22. Total current consumption in Low power wait mode at V = 1.65 V to 3.6 V  
DD  
Typ Max  
(1)(2) (1)(2)  
Parameter(1)(2)  
Symbol  
Conditions  
Unit  
TA = -40 °C to 25 °C  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TA = 55 °C  
all peripherals OFF  
TA = 85 °C  
TA = 105 °C  
TA = 125 °C  
TA = -40 °C to 25 °C  
LSI RC osc.  
(at 38 kHz)  
TA = 55 °C  
with TIM2 active(3)  
TA = 85 °C  
TA = 105 °C  
TA = 125 °C  
TA = -40 °C to 25 °C  
Supply current in  
Low power wait mode  
IDD(LPW)  
μA  
TA = 55 °C  
all peripherals OFF  
TA = 85 °C  
TA = 105 °C  
TA = 125 °C  
TA = -40 °C to 25 °C  
LSE external  
clock(4)  
(32.768 kHz)  
TA = 55 °C  
TA = 85 °C  
TA = 105 °C  
TA = 125 °C  
with TIM2 active (3)  
1. No floating I/Os.  
2. Based on characterization results, unless otherwise specified.  
3. Timer 2 clock enabled and counter is running.  
4. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for extenal crystal, the LSE consumption  
(IDD LSE) must be added. Refer to Table 31.  
78/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Electrical parameters  
Table 23. Total current consumption and timing in Active-halt mode  
at V = 1.65 V to 3.6 V  
DD  
Typ  
(1)(2)  
Parameter(1)(2)  
Symbol  
Conditions  
Max Unit  
TA = -40 °C to 25 °C  
TA = 55 °C  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
LCD OFF(3)  
TA = 85 °C  
TA = 105 °C  
TA = 125 °C  
TA = -40 °C to 25 °C  
LCD ON  
(static duty/  
external  
TA = 55 °C  
TA = 85 °C  
(4)  
VLCD  
)
TA = 105 °C  
TA = 125 °C  
TA = -40 °C to 25 °C  
LSI RC  
μA  
Supply current in  
Active-halt mode  
IDD(AH)  
(at 38 kHz)  
LCD ON  
TA = 55 °C  
(1/4 duty/  
external  
(5)  
TA = 85 °C  
VLCD  
)
TA = 105 °C  
TA = 125 °C  
TA = -40 °C to 25 °C  
LCD ON  
TA = 55 °C  
TA = 85 °C  
TA = 105 °C  
TA = 125 °C  
(1/4 duty/  
internal  
(6)  
VLCD  
)
Doc ID 17943 Rev 1  
79/122  
Electrical parameters  
STM8L15xx8, STM8L15xR6  
Table 23. Total current consumption and timing in Active-halt mode  
at V = 1.65 V to 3.6 V (continued)  
DD  
Typ  
(1)(2)  
Parameter(1)(2)  
Symbol  
Conditions  
Max Unit  
TA = -40 °C to 25 °C  
TA = 55 °C  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
LCD OFF(8)  
TA = 85 °C  
TA = 105 °C  
TA = 125 °C  
TA = -40 °C to 25 °C  
TA = 55 °C  
LCD ON  
(static duty)  
(4)  
TA = 85 °C  
TA = 105 °C  
TA = 125 °C  
TA = -40 °C to 25 °C  
LSE external  
clock  
(32.768 kHz)  
Supply current in  
Active-halt mode  
IDD(AH)  
μA  
(7)  
TA = 55 °C  
LCD ON  
(1/4 duty) (5)  
TA = 85 °C  
TA = 105 °C  
TA = 125 °C  
TA = -40 °C to 25 °C  
LCD ON  
(1/4 duty/  
internal  
TA = 55 °C  
TA = 85 °C  
TA = 105 °C  
TA = 125 °C  
(6)  
VLCD  
)
Supply current during  
wakeup time from  
Active-halt mode  
(using HSI)  
IDD(WUFAH)  
TBD  
mA  
Wakeup time from  
Active-halt mode to  
Run mode (using HSI)  
(9)  
tWU_HSI(AH)  
TBD TBD  
TBD  
μs  
μs  
(10)  
Wakeup time from  
Active-halt mode to  
Run mode (using LSI)  
(9)  
tWU_LSI(AH)  
(10)  
1. No floating I/O, unless otherwise specified.  
2. Based on characterization results, unless otherwise specified.  
3. RTC enabled. Clock source = LSI  
4. RTC enabled, LCD enabled with external VLCD = 3 V, static duty, division ratio = 256, all pixels active, no LCD connected.  
5. RTC enabled, LCD enabled with external VLCD, 1/4 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD connected.  
6. LCD enabled with internal LCD booster VLCD = 3 V , 1/4 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD  
connected.  
80/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Electrical parameters  
7. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for extenal crystal, the LSE consumption  
(IDD LSE) must be added. Refer to Table 31  
8. RTC enabled. Clock source = LSE  
9. Wakeup time until start of interrupt vector fetch.  
The first word of interrupt routine is fetched 4 CPU cycles after tWU  
.
10. ULP=0 or ULP=1 and FWU=1 in the PWR_CSR2 register.  
Table 24. Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal  
Symbol  
Parameter  
Condition  
Typ  
Unit  
LSE  
LSE/32(2)  
LSE  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
V
DD = 1.8 V  
Supply current in Active-halt  
mode  
(1)  
V
DD = 3 V  
µA  
IDD(AH)  
LSE/32(2)  
LSE  
VDD = 3.6 V  
LSE/32(2)  
1. Based on measurements on bench with 32.768 kHz external crystal oscillator.  
2. RTC clock is LSE divided by 32.  
Table 25. Total current consumption and timing in Halt mode at V = 2 V  
DD  
Typ  
(1)(2)  
Max  
(1)(2)  
Parameter (1)(2)  
Symbol  
Condition  
Unit  
(3)  
TA = -40 °C to 25 °C  
TA = 55 °C  
400  
TBD  
TBD  
TBD  
Supply current in Halt mode  
TBD  
TBD  
TBD  
IDD(Halt)  
nA  
(Ultra low power ULP bit =1 in  
the PWR_CSR2 register)  
TA = 85 °C  
TA = 105 °C  
Supply current during wakeup  
time from Halt mode (using  
HSI)  
IDD(WUHalt)  
TBD  
TBD  
mA  
Wakeup time from Halt to Run  
mode (using HSI)  
(4)(5)  
TBD  
TBD  
TBD  
TBD  
µs  
µs  
tWU_HSI(Halt)  
Wakeup time from Halt mode  
to Run mode (using LSI)  
(4)(5)  
tWU_LSI(Halt)  
1. TA = -40 to 125 °C, no floating I/O, unless otherwise specified  
2. Based on characterization results, unless otherwise specified  
3. Data guaranteed, each individual device tested in production  
4. ULP=0 or ULP=1 and FWU=1 in the PWR_CSR2 register  
5. Wakeup time until start of interrupt vector fetch.  
The first word of interrupt routine is fetched 4 CPU cycles after tWU  
Doc ID 17943 Rev 1  
81/122  
Electrical parameters  
STM8L15xx8, STM8L15xR6  
Current consumption of on-chip peripherals  
Table 26. Peripheral current consumption  
Typ.  
Symbol  
Parameter  
Unit  
VDD = 3.0 V  
TIM1 supply current(1)  
TIM2 supply current (1)  
TIM3 supply current (1)  
TIM5 supply current (1)  
TIM4 timer supply current (1)  
USART1 supply current (2)  
USART2 supply current (3)  
USART3 supply current (4)  
SPI1 supply current (4)  
SPI2 supply current (4)  
IDD(TIM1)  
IDD(TIM2)  
IDD(TIM3)  
IDD(TIM5)  
IDD(TIM4)  
IDD(USART1)  
IDD(USART2)  
IDD(USART3)  
IDD(SPI1)  
10  
7
7
7
3
5
5
µA/MHz  
5
3
IDD(SPI2)  
3
I2C1 supply current (4)  
DMA1 supply current  
WWDG supply current  
IDD(I2C1)  
4
IDD(DMA1)  
IDD(WWDG)  
IDD(ALL)  
3
1
Peripherals ON(5)  
63  
1500  
370  
ADC1 supply current(6)  
DAC supply current(7)  
Comparator 1 supply current(8)  
IDD(ADC1)  
IDD(DAC)  
IDD(COMP1)  
0.160  
Slow mode  
Fast mode  
2
5
Comparator 2 supply current(8)  
IDD(COMP2)  
µA  
Power voltage detector and brownout Reset unit supply current  
IDD(PVD/BOR)  
IDD(BOR)  
2.6  
(9)  
Brownout Reset unit supply current (9)  
including LSI supply  
current  
Independent watchdog supply current  
excluding LSI  
2.4  
0.45  
IDD(IDWDG)  
0.05  
supply current  
1. Data based on a differential IDD measurement between all peripherals OFF and a timer counter running at 16 MHz. The  
CPU is in Wait mode in both cases. No IC/OC programmed, no I/O pins toggling. Not tested in production.  
2. Data based on a differential IDD measurement between the on-chip peripheral in reset configuration and not clocked and  
the on-chip peripheral when clocked and not kept under reset. The CPU is in Wait mode in both cases. No I/O pins  
toggling. Not tested in production.  
3. Data based on a differential IDD measurement between the on-chip peripheral in reset configuration and not clocked and  
the on-chip peripheral when clocked and not kept under reset. The CPU is in Wait mode in both cases. No I/O pins  
toggling. Not tested in production.  
82/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Electrical parameters  
4. Data based on a differential IDD measurement between the on-chip peripheral in reset configuration and not clocked and  
the on-chip peripheral when clocked and not kept under reset. The CPU is in Wait mode in both cases. No I/O pins  
toggling. Not tested in production.  
5. Peripherals listed above the IDD(ALL) parameter ON: TIM1, TIM2, TIM3, TIM4, USART1, SPI1, I2C1, DMA1, WWDG.  
6. Data based on a differential IDD measurement between ADC in reset configuration and continuous ADC conversion.  
7. Data based on a differential IDD measurement between DAC in reset configuration and continuous DAC conversion of  
V
DD /2. Floating DAC output.  
8. Data based on a differential IDD measurement between COMP1 or COMP2 in reset configuration and COMP1 or COMP2  
enabled with static inputs. Supply current of internal reference voltage excluded.  
9. Including supply current of internal reference voltage.  
Table 27. Current consumption under external reset  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
VDD = 1.8 V  
DD = 3 V  
VDD = 3.6 V  
48  
80  
95  
Supply current under  
external reset (1)  
PB1/PB3/PA5 pins are  
externally tied to VDD  
IDD(RST)  
V
µA  
1. All pins except PA0, PB0 and PB4 are floating under reset. PA0, PB0 and PB4 are configured with pull-up under reset.  
PB1, PB3 and PA5 must be tied externally under reset to avoid the consumption due to their schmitt trigger.  
9.3.4  
Clock and timing characteristics  
HSE external clock (HSEBYP = 1 in CLK_ECKCR)  
Subject to general operating conditions for V and T .  
DD  
A
Table 28. HSE external clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
External clock source  
frequency(1)  
fHSE_ext  
1
16  
MHz  
OSC_IN input pin high level  
voltage  
(2)  
0.7 x VDD  
VSS  
VDD  
VHSEH  
V
OSC_IN input pin low level  
voltage  
(2)  
0.3 x VDD  
VHSEL  
OSC_IN input  
capacitance(1)  
Cin(HSE)  
2.6  
pF  
µA  
OSC_IN input leakage  
current  
ILEAK_HSE  
VSS < VIN < VDD  
1
1. Guaranteed by design, not tested in production.  
2. Data based on characterization results, not tested in production.  
LSE external clock (LSEBYP=1 in CLK_ECKCR)  
Subject to general operating conditions for V and T .  
DD  
A
Doc ID 17943 Rev 1  
83/122  
Electrical parameters  
STM8L15xx8, STM8L15xR6  
Table 29. LSE external clock characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
External clock source frequency(1)  
fLSE_ext  
32.768  
kHz  
(2)  
OSC32_IN input pin high level voltage  
0.7 x VDD  
VSS  
VDD  
VLSEH  
V
(2)  
OSC32_IN input pin low level voltage  
0.3 x VDD  
VLSEL  
OSC32_IN input capacitance(1)  
OSC32_IN input leakage current  
Cin(LSE)  
0.6  
pF  
µA  
ILEAK_LSE  
1
1. Guaranteed by design, not tested in production.  
2. Data based on characterization results, not tested in production.  
84/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Electrical parameters  
HSE crystal/ceramic resonator oscillator  
The HSE clock can be supplied with a 1 to 16 MHz crystal/ceramic resonator oscillator. All  
the information given in this paragraph is based on characterization results with specified  
typical external components. In the application, the resonator and the load capacitors have  
to be placed as close as possible to the oscillator pins in order to minimize output distortion  
and startup stabilization time. Refer to the crystal resonator manufacturer for more details  
(frequency, package, accuracy...).  
Table 30. HSE oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
High speed external oscillator  
frequency  
fHSE  
1
16  
MHz  
RF  
Feedback resistor  
200  
20  
kΩ  
C(1)  
pF  
Recommended load capacitance (2)  
C = 20 pF,  
OSC = 16 MHz  
2.5 (startup)  
f
0.7 (stabilized)(3)  
IDD(HSE) HSE oscillator power consumption  
mA  
C = 10 pF,  
2.5 (startup)  
fOSC =16 MHz  
0.46 (stabilized)(3)  
gm  
Oscillator transconductance  
Startup time  
3.5  
mA/V  
ms  
(4)  
tSU(HSE)  
VDD is stabilized  
1
1. C=  
C =CL2 is approximately equivalent to 2 x crystal CLOAD.  
L1  
2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with small Rm value.  
Refer to crystal manufacturer for more details  
3. Guaranteed by design. Not tested in production.  
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 16 MHz oscillation. This  
value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.  
Figure 13. HSE oscillator circuit diagram  
f
to core  
HSE  
R
m
R
F
C
O
L
m
C
L1  
OSC_IN  
C
m
g
m
Resonator  
Consumption  
control  
Resonator  
STM8  
OSC_OUT  
C
L2  
HSE oscillator critical g formula  
m
gmcrit = (2 × Π × fHSE)2 × Rm(2Co + C)2  
R : Motional resistance (see crystal specification), L : Motional inductance (see crystal specification),  
m
m
C : Motional capacitance (see crystal specification), Co: Shunt capacitance (see crystal specification),  
m
C
=C =C: Grounded external capacitance  
L1  
L2  
g
>> g  
m
mcrit  
Doc ID 17943 Rev 1  
85/122  
Electrical parameters  
STM8L15xx8, STM8L15xR6  
LSE crystal/ceramic resonator oscillator  
The LSE clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All  
the information given in this paragraph is based on characterization results with specified  
typical external components. In the application, the resonator and the load capacitors have  
to be placed as close as possible to the oscillator pins in order to minimize output distortion  
and startup stabilization time. Refer to the crystal resonator manufacturer for more details  
(frequency, package, accuracy...).  
Table 31. LSE oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Low speed external oscillator  
frequency  
fLSE  
32.768  
kHz  
RF  
Feedback resistor  
ΔV = 200 mV  
1.2  
8
MΩ  
pF  
C(1)  
Recommended load capacitance (2)  
1.4(3)  
µA  
V
DD = 1.8 V  
450  
600  
750  
IDD(LSE) LSE oscillator power consumption  
VDD = 3 V  
nA  
VDD = 3.6 V  
gm  
Oscillator transconductance  
Startup time  
3
µA/V  
s
(4)  
tSU(LSE)  
VDD is stabilized  
1
1. C=  
C =CL2 is approximately equivalent to 2 x crystal CLOAD.  
L1  
2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with a small Rm value.  
Refer to crystal manufacturer for more details.  
3. Guaranteed by design. Not tested in production.  
4. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation.  
This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.  
Figure 14. LSE oscillator circuit diagram  
f
LSE  
R
m
R
F
C
O
L
m
C
L1  
OSC_IN  
C
m
g
m
Resonator  
Consumption  
control  
Resonator  
STM8  
OSC_OUT  
C
L2  
86/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Electrical parameters  
Internal clock sources  
Subject to general operating conditions for V , and T .  
DD  
A
High speed internal RC oscillator (HSI)  
Table 32. HSI oscillator characteristics  
Conditions(1)  
Symbol  
Min  
Typ  
Max  
Unit  
Parameter  
Frequency  
fHSI  
VDD = 3.0 V  
16  
MHz  
%
VDD = 3.0 V, TA = 25 °C  
-1  
1
1.5  
2
VDD = 3.0 V, 0 °C TA 55 °C  
-1.5  
-2  
%
V
DD = 3.0 V, -10 °C TA 70 °C  
%
Accuracy of HSI  
oscillator (factory  
calibrated)  
(2)  
ACCHSI  
VDD = 3.0 V, -10 °C TA 85 °C  
VDD = 3.0 V, -10 °C TA 125 °C  
-2.5  
-4.5  
2
%
2
%
1.65 V VDD 3.6 V,  
-40 °C TA 125 °C  
-4.5  
3
%
%
HSI user trim  
resolution  
1.65 V VDD 3.6 V,  
-40 °C TA 125 °C  
TRIM(2)  
0.4 (2)  
3.7  
0.5(2)  
7.4  
HSI oscillator setup  
time (wakeup time)  
(3)  
tsu(HSI)  
µs  
HSI oscillator power  
consumption  
(3)  
IDD(HSI)  
100  
140  
µA  
1. VDD = 3.0 V, TA = -40 to 125 °C unless otherwise specified.  
2. Based on characterization, not tested in production.  
3. Guaranteed by design, not tested in production  
Figure 15. Typical HSI frequency vs V  
DD  
ꢀꢃꢋꢐ  
ꢀꢁꢋꢍ  
ꢀꢁꢋꢐ  
ꢀꢅꢋꢍ  
ꢀꢅꢋꢐ  
ꢀꢍꢋꢍ  
ꢀꢍꢋꢐ  
ꢀꢆꢋꢍ  
ꢀꢆꢋꢐ  
ꢀꢉꢋꢍ  
ꢀꢉꢋꢐ  
ꢇꢆꢐ #  
ꢂꢍ #  
ꢒꢐ #  
ꢀꢉꢐ #  
ꢀꢋꢅꢍ ꢀꢋꢃ ꢀꢋꢒꢍ ꢂꢋꢀ ꢂꢋꢂꢍ ꢂꢋꢆ ꢂꢋꢍꢍ ꢂꢋꢁ ꢂꢋꢃꢍ  
6$$ ;6=  
ꢉꢋꢀꢍ ꢉꢋꢉ ꢉꢋꢆꢍ ꢉꢋꢅ  
AIꢀꢃꢂꢀꢃ  
Doc ID 17943 Rev 1  
87/122  
Electrical parameters  
STM8L15xx8, STM8L15xR6  
Low speed internal RC oscillator (LSI)  
Table 33. LSI oscillator characteristics  
Conditions(1)  
Symbol  
Min  
Typ  
Max  
Unit  
Parameter  
Frequency  
fLSI  
26  
38  
56  
kHz  
µs  
tsu(LSI) LSI oscillator wakeup time  
200(2)  
LSI oscillator frequency  
D(LSI)  
drift(3)  
0 °C TA 85 °C  
-10  
4
%
1. VDD = 1.8 V to 3.0 V, TA = -40 to 125 °C unless otherwise specified.  
2. Guaranteed by design, not tested in production.  
3. This is a deviation for an individual part, once the initial frequency has been measured.  
Figure 16. Typical LSI frequency vs. V  
DD  
ꢆꢍ  
ꢆꢉ  
ꢆꢀ  
ꢉꢒ  
ꢉꢁ  
ꢉꢍ  
ꢉꢉ  
ꢉꢀ  
ꢂꢒ  
ꢂꢁ  
ꢂꢍ  
ꢇꢆꢐ #  
ꢂꢍ #  
ꢒꢐ #  
ꢀꢉꢐ #  
ꢀꢋꢅ  
ꢂꢋꢀ  
ꢂꢋꢅ  
ꢉꢋꢀ  
ꢉꢋꢅ  
6$$ ;6=  
AIꢀꢃꢂꢀꢒ  
88/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Electrical parameters  
9.3.5  
Memory characteristics  
T = -40 to 125 °C unless otherwise specified.  
A
Table 34. RAM and hardware registers  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VRM  
Data retention mode (1)  
Halt mode (or Reset)  
1.4  
V
1. Minimum supply voltage without losing data stored in RAM (in Halt mode or under Reset) or in hardware  
registers (only in Halt mode). Guaranteed by characterization, not tested in production.  
Flash memory  
Table 35. Flash program and data EEPROM memory  
Max  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Unit  
(1)  
Operating voltage  
(all modes, read/write/erase)  
VDD  
fSYSCLK = 16 MHz  
1.65  
3.6  
V
Programming time for 1 or 128 bytes (block)  
erase/write cycles (on programmed byte)  
6
3
ms  
ms  
tprog  
Programming time for 1 to 128 bytes (block)  
write cycles (on erased byte)  
TA=+25 °C, VDD = 3.0 V  
TA=+25 °C, VDD = 1.8 V  
Iprog  
Programming/ erasing consumption  
0.7  
mA  
Data retention (program memory) after 10000  
erase/write cycles at TA=+85 °C  
TRET=+55 °C  
TRET=+55 °C  
20(1)  
20(1)  
Data retention (data memory) after 10000  
erase/write cycles at TA=+85 °C  
tRET  
years  
Data retention (data memory) after 10000  
erase/write cycles at TA=+85 °C  
TRET=+85 °C  
See notes (1)(2)  
See notes (1)(3)  
1(1)  
Erase/write cycles (program memory)  
10(1)  
300(1)  
NRW  
kcycles  
Erase/write cycles (data memory)  
(4)  
1. Data based on characterization results, not tested in production.  
2. Retention guaranteed after cycling is 10 years @ 55 °C.  
3. Retention guaranteed after cycling is 1 year @ 55 °C.  
4. Data based on characterization performed on the whole data memory.  
Doc ID 17943 Rev 1  
89/122  
Electrical parameters  
STM8L15xx8, STM8L15xR6  
9.3.6  
I/O port pin characteristics  
General characteristics  
Subject to general operating conditions for V and T unless otherwise specified. All  
DD  
A
unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or  
an external pull-up or pull-down resistor.  
Table 36. I/O static characteristics  
Parameter(1)  
Symbol  
Conditions(1)  
Typ  
Min  
Max  
Unit  
Input voltage on true  
open-drain pins (PC0  
and PC1)  
VSS -0.3  
0.3 x VDD  
Input low level voltage(2)  
VIL  
Input voltage on FT  
pins (PA7 and PE0)  
V
VSS -0.3  
VSS -0.3  
0.3 x VDD  
0.3 x VDD  
Input voltage on any  
other pin  
Input voltage on true  
open-drain pins (PC0  
and PC1)  
5.2  
with VDD < 2 V  
0.70 x VDD  
Input voltage on true  
open-drain pins (PC0  
and PC1)  
5.5  
5.2  
with VDD 2 V  
Input high level voltage (2)  
VIH  
V
Input voltage on FT  
pins (PA7 and PE0)  
with VDD < 2 V  
0.70 x VDD  
0.70 x VDD  
Input voltage on FT  
pins (PA7 and PE0)  
with VDD 2 V  
5.5  
Input voltage on any  
other pin  
VDD+0.3  
Standard I/Os  
200  
200  
Schmitt trigger voltage hysteresis (3)  
Vhys  
mV  
nA  
True open drain I/Os  
VSSVINVDD  
Standard I/Os  
-
-
-
-
50 (5)  
VSSVINVDD  
True open drain I/Os  
200(5)  
Ilkg  
Input leakage current (4)  
VSSVINVDD  
PA0 with high sink LED  
driver capability  
-
-
200(5)  
60  
Weak pull-up equivalent resistor(6)  
I/O pin capacitance  
RPU  
VIN=VSS  
30  
45  
5
kΩ  
(7)  
pF  
CIO  
1. VDD = 3.0 V, TA = -40 to 125 °C unless otherwise specified.  
90/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Electrical parameters  
2. Data based on characterization results, not tested in production.  
3. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested.  
4. The max. value may be exceeded if negative current is injected on adjacent pins.  
5. Not tested in production.  
6. RPU pull-up equivalent resistor based on a resistive transistor(corresponding IPU current characteristics described in  
Figure 20).  
7. Data guaranteed by Design, not tested in production.  
Figure 17. Typical V and V vs V (standard I/Os)  
IL  
IH  
DD  
ꢂꢋꢍ  
ꢇꢆꢐ #  
ꢂꢍ #  
ꢒꢐ #  
ꢀꢉꢐ #  
ꢀꢋꢍ  
ꢐꢋꢍ  
ꢀꢋꢅ  
ꢂꢋꢀ  
ꢂꢋꢅ  
ꢉꢋꢀ  
ꢉꢋꢅ  
6$$ ;6=  
AIꢀꢃꢂꢂꢐ  
Figure 18. Typical V and V vs V (true open drain I/Os)  
IL  
IH  
DD  
ꢂꢋꢍ  
ꢇꢆꢐ #  
ꢂꢍ #  
ꢒꢐ #  
ꢀꢉꢐ #  
ꢀꢋꢍ  
ꢐꢋꢍ  
ꢀꢋꢅ  
ꢂꢋꢀ  
ꢂꢋꢅ  
$$ ;6=  
ꢉꢋꢀ  
ꢉꢋꢅ  
6
AIꢀꢃꢂꢂꢀ  
Doc ID 17943 Rev 1  
91/122  
Electrical parameters  
STM8L15xx8, STM8L15xR6  
Figure 19. Typical pull-up resistance R vs V with V =V  
PU  
DD  
IN  
SS  
ꢅꢐ  
ꢍꢍ  
ꢍꢐ  
ꢆꢍ  
ꢆꢐ  
ꢉꢍ  
ꢉꢐ  
ꢇꢆꢐ #  
ꢂꢍ #  
ꢒꢐ #  
ꢀꢉꢐ #  
ꢀꢋꢅ  
ꢀꢋꢃ  
ꢂꢋꢂ  
ꢂꢋꢆ  
ꢂꢋꢅ  
6$$ ;6=  
ꢂꢋꢃ  
ꢉꢋꢂ  
ꢉꢋꢆ  
ꢉꢋꢅ  
AIꢀꢃꢂꢂꢂ  
Figure 20. Typical pull-up current I vs V with V =V  
SS  
pu  
DD  
IN  
ꢀꢂꢐ  
ꢀꢐꢐ  
ꢃꢐ  
ꢅꢐ  
ꢆꢐ  
ꢂꢐ  
ꢇꢆꢐ #  
ꢂꢍ #  
ꢒꢐ #  
ꢀꢉꢐ #  
ꢀꢋꢅꢍ ꢀꢋꢃ ꢀꢋꢒꢍ ꢂꢋꢀ ꢂꢋꢂꢍ ꢂꢋꢆ ꢂꢋꢍꢍ ꢂꢋꢁ ꢂꢋꢃꢍ  
$$ ;6=  
ꢉꢋꢀꢍ ꢉꢋꢉ ꢉꢋꢆꢍ ꢉꢋꢅ  
AIꢀꢃꢂꢂꢉ  
6
92/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Electrical parameters  
Output driving current  
Subject to general operating conditions for V and T unless otherwise specified.  
DD  
A
Table 37. Output driving current (standard ports)  
I/O  
Symbol  
Parameter  
Conditions  
Min  
Max Unit  
Type  
IIO = +2 mA,  
VDD = 3.0 V  
0.45  
0.45  
0.7  
V
V
V
V
V
V
IIO = +2 mA,  
VDD = 1.8 V  
(1)  
Output low level voltage for an I/O pin  
VOL  
I
IO = +10 mA,  
VDD = 3.0 V  
IIO = -2 mA,  
VDD = 3.0 V  
V
DD-0.45  
I
IO = -1 mA,  
(2)  
VDD-0.45  
VDD-0.7  
Output high level voltage for an I/O pin  
VOH  
VDD = 1.8 V  
I
IO = -10 mA,  
VDD = 3.0 V  
1. The IIO current sunk must always respect the absolute maximum rating specified in Table 15 and the sum  
of IIO (I/O ports and control pins) must not exceed IVSS  
.
2. The IIO current sourced must always respect the absolute maximum rating specified in Table 15 and the  
sum of IIO (I/O ports and control pins) must not exceed IVDD  
.
Table 38. Output driving current (true open drain ports)  
I/O  
Symbol  
Parameter  
Conditions  
Min  
Max Unit  
Type  
IIO = +3 mA,  
VDD = 3.0 V  
0.45  
V
(1)  
Output low level voltage for an I/O pin  
VOL  
IIO = +1 mA,  
VDD = 1.8 V  
0.45  
1. The IIO current sunk must always respect the absolute maximum rating specified in Table 15 and the sum  
of IIO (I/O ports and control pins) must not exceed IVSS  
.
Table 39. Output driving current (PA0 with high sink LED driver capability)  
I/O  
Symbol  
Parameter  
Conditions  
Min  
Max Unit  
Type  
IIO = +20 mA,  
VDD = 2.0 V  
(1)  
Output low level voltage for an I/O pin  
0.45  
V
VOL  
1. The IIO current sunk must always respect the absolute maximum rating specified in Table 15 and the sum  
of IIO (I/O ports and control pins) must not exceed IVSS  
.
Doc ID 17943 Rev 1  
93/122  
Electrical parameters  
STM8L15xx8, STM8L15xR6  
Figure 21. Typ. V @ V = 3.0 V (standard  
Figure 22. Typ. V @ V = 1.8 V (standard  
OL DD  
OL  
DD  
ports)  
ports)  
ꢐꢋꢁꢍ  
ꢐꢋꢍ  
ꢐꢋꢁ  
ꢐꢋꢅ  
ꢐꢋꢍ  
ꢐꢋꢆ  
ꢐꢋꢉ  
ꢐꢋꢂ  
ꢐꢋꢀ  
ꢇꢆꢐ #  
ꢂꢍ #  
ꢒꢐ #  
ꢇꢆꢐ #  
ꢂꢍ #  
ꢒꢐ #  
ꢀꢉꢐ #  
ꢀꢉꢐ #  
ꢐꢋꢂꢍ  
ꢀꢐ  
ꢀꢂ  
ꢀꢆ  
ꢀꢅ  
ꢀꢃ  
ꢂꢐ  
)
/, ;M!=  
)
;M!=  
/,  
AIꢀꢃꢂꢂꢅ  
AIꢀꢃꢂꢂꢁ  
Figure 23. Typ. V @ V = 3.0 V (true open Figure 24. Typ. V @ V = 1.8 V (true open  
OL  
DD  
OL  
DD  
drain ports)  
drain ports)  
ꢐꢋꢍ  
ꢐꢋꢆ  
ꢐꢋꢉ  
ꢐꢋꢂ  
ꢐꢋꢀ  
ꢐꢋꢍ  
ꢐꢋꢆ  
ꢐꢋꢉ  
ꢐꢋꢂ  
ꢐꢋꢀ  
ꢇꢆꢐ #  
ꢂꢍ #  
ꢇꢆꢐ #  
ꢂꢍ #  
ꢒꢐ #  
ꢀꢉꢐ #  
ꢒꢐ #  
ꢀꢉꢐ #  
)
/, ;M!=  
)/, ;M!=  
BJꢄꢀꢇꢇꢈ  
AIꢀꢃꢂꢂꢃ  
Figure 25. Typ. V  
V
@ V = 3.0 V  
Figure 26. Typ. V  
V
@ V = 1.8 V  
DD - OH  
DD  
DD - OH DD  
(standard ports)  
(standard ports)  
ꢀꢋꢁꢍ  
ꢀꢋꢍ  
ꢀꢋꢂꢍ  
ꢐꢋꢍ  
ꢐꢋꢆ  
ꢐꢋꢉ  
ꢐꢋꢂ  
ꢐꢋꢀ  
ꢇꢆꢐ #  
ꢂꢍ #  
ꢇꢆꢐ #  
ꢂꢍ #  
ꢒꢐ #  
ꢒꢐ #  
ꢀꢉꢐ #  
ꢀꢉꢐ #  
ꢐꢋꢁꢍ  
ꢐꢋꢍ  
ꢐꢋꢂꢍ  
ꢀꢐ  
ꢀꢂ  
ꢀꢆ  
ꢀꢅ  
ꢀꢃ  
ꢂꢐ  
)
/( ;M!=  
)
/( ;M!=  
AIꢀꢂꢃꢉꢐ  
BJꢄꢀꢇꢉꢄ  
94/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
NRST pin  
Electrical parameters  
Subject to general operating conditions for V and T unless otherwise specified.  
DD  
A
Table 40. NRST pin characteristics  
Typ (1)  
Symbol  
VIL(NRST)  
VIH(NRST)  
Parameter  
Conditions  
Min  
VSS  
1.4  
Max  
Unit  
NRST input low level voltage (1)  
NRST input high level voltage (1)  
0.8  
VDD  
IOL = 2 mA  
for 2.7 V VDD 3.6 V  
V
VOL(NRST)  
NRST output low level voltage  
0.4  
IOL = 1.5 mA  
for VDD < 2.7 V  
10%VDD  
NRST input hysteresis(3)  
VHYST  
mV  
(2)  
RPU(NRST)  
VF(NRST)  
NRST pull-up equivalent resistor  
NRST input filtered pulse (3)  
NRST input not filtered pulse (3)  
30  
45  
60  
50  
kΩ  
ns  
VNF(NRST)  
300  
1. Data based on characterization results, not tested in production.  
2. 200 mV min.  
3. Data guaranteed by design, not tested in production.  
Figure 27. Typical NRST pull-up resistance R vs V  
PU  
DD  
ꢅꢐ  
ꢇꢆꢐ #  
ꢂꢍ #  
ꢒꢐ #  
ꢀꢉꢐ #  
ꢍꢍ  
ꢍꢐ  
ꢆꢍ  
ꢆꢐ  
ꢉꢍ  
ꢉꢐ  
ꢀꢋꢅ  
ꢀꢋꢃ  
ꢂꢋꢂ  
ꢂꢋꢆ  
ꢂꢋꢅ  
6$$ ;6=  
ꢂꢋꢃ  
ꢉꢋꢂ  
ꢉꢋꢆ  
ꢉꢋꢅ  
AIꢀꢃꢂꢂꢆ  
Doc ID 17943 Rev 1  
95/122  
Electrical parameters  
Figure 28. Typical NRST pull-up current I vs V  
STM8L15xx8, STM8L15xR6  
pu  
DD  
ꢀꢂꢐ  
ꢀꢐꢐ  
ꢃꢐ  
ꢅꢐ  
ꢆꢐ  
ꢂꢐ  
ꢇꢆꢐ #  
ꢂꢍ #  
ꢒꢐ #  
ꢀꢉꢐ #  
ꢀꢋꢅꢍ ꢀꢋꢃ ꢀꢋꢒꢍ ꢂꢋꢀ ꢂꢋꢂꢍ ꢂꢋꢆ ꢂꢋꢍꢍ ꢂꢋꢁ ꢂꢋꢃꢍ  
6$$ ;6=  
ꢉꢋꢀꢍ ꢉꢋꢉ ꢉꢋꢆꢍ ꢉꢋꢅ  
AIꢀꢃꢂꢂꢍ  
The reset network shown in Figure 29 protects the device against parasitic resets. The user  
must ensure that the level on the NRST pin can go below the V max. level specified in  
IL  
Table 40. Otherwise the reset is not taken into account internally. For power consumption-  
sensitive applications, the capacity of the external reset capacitor can be reduced to limit the  
charge/discharge current. If the NRST signal is used to reset the external circuitry, the user  
must pay attention to the charge/discharge time of the external capacitor to meet the reset  
timing conditions of the external devices. The minimum recommended capacity is 10 nF.  
Figure 29. Recommended NRST pin configuration  
V
DD  
RPU  
EXTERNAL  
RESET  
CIRCUIT  
RSTIN  
INTERNAL RESET  
STM8L  
Filter  
0.1 μF  
96/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Electrical parameters  
9.3.7  
Communication interfaces  
SPI1 - Serial peripheral interface  
Unless otherwise specified, the parameters given in Table 41 are derived from tests  
performed under ambient temperature, f frequency and V supply voltage  
SYSCLK  
DD  
conditions summarized in Section 9.3.1. Refer to I/O port characteristics for more details on  
the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).  
Table 41. SPI1 characteristics  
Symbol  
Parameter  
Conditions(1)  
Master mode  
Min  
Max  
Unit  
MHz  
ns  
0
0
8
8
fSCK  
1/tc(SCK)  
SPI1 clock frequency  
Slave mode  
tr(SCK)  
tf(SCK)  
SPI1 clock rise and fall  
time  
Capacitive load: C = 30 pF  
-
30  
(2)  
tsu(NSS)  
NSS setup time  
NSS hold time  
Slave mode  
Slave mode  
4 x 1/fSYSCLK  
80  
-
-
(2)  
th(NSS)  
(2)  
tw(SCKH)  
tw(SCKL)  
Master mode,  
fMASTER = 8 MHz, fSCK= 4 MHz  
SCK high and low time  
Data input setup time  
105  
145  
(2)  
(2)  
Master mode  
30  
3
-
tsu(MI)  
tsu(SI)  
(2)  
Slave mode  
-
(2)  
Master mode  
15  
0
-
th(MI)  
th(SI)  
Data input hold time  
(2)  
Slave mode  
-
(2)(3)  
ta(SO)  
Data output access time  
Data output disable time  
Data output valid time  
Slave mode  
-
3x 1/fSYSCLK  
(2)(4)  
tdis(SO)  
Slave mode  
30  
-
-
(2)  
(2)  
(2)  
(2)  
tv(SO)  
tv(MO)  
th(SO)  
th(MO)  
Slave mode (after enable edge)  
60  
Master mode (after enable  
edge)  
Data output valid time  
-
20  
-
Slave mode (after enable edge)  
15  
1
Data output hold time  
Master mode (after enable  
edge)  
-
1. Parameters are given by selecting 10 MHz I/O output frequency.  
2. Values based on design simulation and/or characterization results, and not tested in production.  
3. Min time is for the minimum time to drive the output and max time is for the maximum time to validate the data.  
4. Min time is for the minimum time to invalidate the output and max time is for the maximum time to put the data in Hi-Z.  
Doc ID 17943 Rev 1  
97/122  
Electrical parameters  
STM8L15xx8, STM8L15xR6  
Figure 30. SPI1 timing diagram - slave mode and CPHA=0  
NSS input  
t
t
t
SU(NSS)  
c(SCK)  
h(NSS)  
CPHA=0  
CPOL=0  
t
t
w(SCKH)  
w(SCKL)  
CPHA=0  
CPOL=1  
t
t
t
t
t
dis(SO)  
v(SO)  
r(SCK)  
f(SCK)  
h(SO)  
t
a(SO)  
MISO  
OUT PUT  
MSB O UT  
BI T6 OUT  
BIT1 IN  
LSB OUT  
t
su(SI)  
MOSI  
M SB IN  
LSB IN  
INPUT  
t
h(SI)  
ai14134  
(1)  
Figure 31. SPI1 timing diagram - slave mode and CPHA=1  
NSS input  
t
t
t
SU(NSS)  
t
c(SCK)  
h(NSS)  
CPHA=1  
CPOL=0  
w(SCKH)  
CPHA=1  
CPOL=1  
t
w(SCKL)  
t
t
r(SCK)  
f(SCK)  
t
t
t
v(SO)  
h(SO)  
dis(SO)  
t
a(SO)  
MISO  
OUT PUT  
MSB O UT  
BI T6 OUT  
LSB OUT  
t
t
su(SI)  
h(SI)  
MOSI  
M SB IN  
BIT1 IN  
LSB IN  
INPUT  
ai14135  
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD  
.
98/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Electrical parameters  
(1)  
Figure 32. SPI1 timing diagram - master mode  
High  
NSS input  
t
c(SCK)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
t
t
t
t
w(SCKH)  
w(SCKL)  
r(SCK)  
f(SCK)  
t
su(MI)  
MISO  
INPUT  
MSBIN  
BIT6 IN  
LSB IN  
t
h(MI)  
MOSI  
M SB OUT  
BIT1 OUT  
LSB OUT  
OUTUT  
t
t
v(MO)  
h(MO)  
ai14136  
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD  
.
Doc ID 17943 Rev 1  
99/122  
Electrical parameters  
STM8L15xx8, STM8L15xR6  
I2C - Inter IC control interface  
Subject to general operating conditions for V  
, and T unless otherwise specified.  
, f  
DD  
A
SYSCLK  
2
2
The STM8L I C interface (I2C1) meets the requirements of the Standard I C communication  
protocol described in the following table with the restriction mentioned below:  
Refer to I/O port characteristics for more details on the input/output alternate function  
characteristics (SDA and SCL).  
Table 42. I2C characteristics  
Standard mode  
Fast mode I2C(1)  
I2C  
Symbol  
Parameter  
Unit  
Min(2)  
4.7  
Max (2)  
Min (2)  
1.3  
Max (2)  
tw(SCLL)  
tw(SCLH)  
tsu(SDA)  
th(SDA)  
SCL clock low time  
μs  
SCL clock high time  
SDA setup time  
4.0  
0.6  
250  
0
100  
0
SDA data hold time  
900  
300  
tr(SDA)  
tr(SCL)  
ns  
SDA and SCL rise time  
1000  
300  
tf(SDA)  
tf(SCL)  
SDA and SCL fall time  
300  
th(STA)  
tsu(STA)  
tsu(STO)  
tw(STO:STA)  
Cb  
START condition hold time  
4.0  
4.7  
4.0  
4.7  
0.6  
0.6  
0.6  
1.3  
μs  
Repeated START condition setup  
time  
STOP condition setup time  
μs  
μs  
pF  
STOP to START condition time (bus  
free)  
Capacitive load for each bus line  
400  
400  
1. fSYSCLK must be at least equal to 8 MHz to achieve max fast I2C speed (400 kHz).  
Data based on standard I2C protocol requirement, not tested in production.  
2.  
Note:  
For speeds around 200 kHz, the achieved speed can have a 5% tolerance  
For other speed ranges, the achieved speed can have a 2% tolerance  
The above variations depend on the accuracy of the external components used.  
100/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Electrical parameters  
2
Typical application with I C bus and timing diagram1)  
Figure 33.  
V
V
DD  
DD  
4.7kΩ  
4.7kΩ  
100Ω  
100Ω  
SDA  
SCL  
2
I C BUS  
STM8L  
REPEATED START  
START  
t
t
su(STA)  
w(STO:STA)  
START  
SDA  
t
t
r(SDA)  
f(SDA)  
STOP  
t
t
h(SDA)  
su(SDA)  
SCL  
t
t
t
t
t
su(STO)  
t
h(STA)  
w(SCLH)  
w(SCLL)  
r(SCL)  
f(SCL)  
1. Measurement points are done at CMOS levels: 0.3 x VDD and 0.7 x VDD  
Doc ID 17943 Rev 1  
101/122  
Electrical parameters  
STM8L15xx8, STM8L15xR6  
9.3.8  
LCD controller (STM8L152xx only)  
(1)  
Table 43. LCD characteristics  
Symbol  
Parameter  
Min  
Typ  
Max.  
Unit  
VLCD  
VLCD0  
VLCD1  
VLCD2  
VLCD3  
VLCD4  
VLCD5  
VLCD6  
VLCD7  
CEXT  
LCD external voltage  
3.6  
V
V
LCD internal reference voltage 0  
LCD internal reference voltage 1  
LCD internal reference voltage 2  
LCD internal reference voltage 3  
LCD internal reference voltage 4  
LCD internal reference voltage 5  
LCD internal reference voltage 6  
LCD internal reference voltage 7  
VLCD external capacitance  
2.6  
2.7  
2.8  
3.0  
3.1  
3.2  
3.4  
3.5  
1
V
V
V
V
V
V
V
0.1  
2
µF  
µA  
µA  
Supply current(2) at VDD = 1.8 V  
Supply current(2) at VDD = 3 V  
3
IDD  
3
(3)  
RHN  
Low drive resistive network  
6.6  
MΩ  
kΩ  
(= 3 X RH)  
(4)  
RLN  
(= 3 X RL)  
High drive resistive network  
240  
V33  
V23  
V12  
V13  
V0  
Segment/Common higher level voltage  
Segment/Common 2/3 level voltage  
Segment/Common 1/2 level voltage  
Segment/Common 1/3 level voltage  
Segment/Common lowest level voltage  
VLCDx  
V
V
V
V
V
2/3VLCDx  
1/2VLCDx  
1/3VLCDx  
0
1. Data guaranteed by Design, not tested in production.  
2. LCD enabled with 3 V internal booster (LCD_CR1 = 0x08), 1/4 duty, 1/3 bias, division ratio= 64, all pixels  
active, no LCD connected.  
3. RHN is the total resistive network value. The bridge is made of 3 RH serial resistors.  
4. RLN is the total resistive network value. The bridge is made of 3 RL serial resistors.  
VLCD external capacitor (STM8L152xx only)  
The application can achieve a stabilized LCD reference voltage by connecting an external  
capacitor C  
to the V  
pin. C  
is specified in Table 43.  
EXT  
LCD  
EXT  
102/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Electrical parameters  
9.3.9  
Embedded reference voltage  
Based on characterization results, not tested in production, unless otherwise specified.  
Table 44. Reference voltage characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ Max.  
Unit  
Internal reference voltage  
consumption  
IREFINT  
1.4  
µA  
ADC sampling time when reading  
the internal reference voltage(2)  
(1)  
TS_VREFINT  
5
10  
25  
µs  
Internal reference voltage buffer  
consumption (used for ADC)  
(1)  
IBUF  
13.5  
µA  
V
VREFINT out  
VREFINT_DIV1  
VREFNT_DIV2  
VREFNT_DIV3  
Reference voltage output  
1/4 reference voltage  
1/2 reference voltage  
3/4 reference voltage  
1.202 1.224 1.242  
25  
50  
75  
%VREFINT_COMP  
Internal reference voltage low power  
buffer consumption (used for  
comparators or output)  
(1)  
ILPBUF  
730 1200  
nA  
(1)  
IREFOUT  
Buffer output current(3)  
1
µA  
pF  
CREFOUT  
Reference voltage output load  
50  
Internal reference voltage startup  
time  
(1)  
tVREFINT  
2
3
ms  
µs  
Internal reference voltage buffer  
startup time once enabled (2)  
(1)  
tBUFEN  
10  
Accuracy of VREFINT stored in the  
VREFINT_Factory_CONV byte(4)  
ACCVREFINT  
STABVREFINT  
5
mV  
Stability of VREFINT over temperature -40 °C TA 125 °C  
Stability of VREFINT over temperature 0 °C TA 50 °C  
20  
50  
20  
ppm/°C  
ppm/°C  
ppm  
STABVREFINT Stability of VREFINT after 1000 hours  
TBD  
1. Guaranteed by design, not tested in production  
2. Defined when ADC output reaches its final value 1/2LSB  
3. To guaranty less than 1% VREFOUT deviation  
4. Measured at VDD = 3 V 10 mV. This value takes into account VDD accuracy and ADC conversion accuracy.  
Doc ID 17943 Rev 1  
103/122  
Electrical parameters  
STM8L15xx8, STM8L15xR6  
9.3.10  
Temperature sensor  
Based on characterization results, not tested in production, unless otherwise specified.  
Table 45. TS characteristics  
Symbol  
Parameter  
Min  
Typ  
Max.  
Unit  
Sensor reference voltage at 90°C 5 °C,  
V90  
0.580  
0.597  
0.614  
V
(1)  
TL  
VSENSOR linearity with temperature  
Average slope  
1
1.62  
3.4  
2
1.65  
6
°C  
mV/°C  
µA  
Avg_slope(2)  
1.59  
(2)  
IDD(TEMP)  
Consumption  
(2)  
TSTART  
Temperature sensor startup time (3)  
10  
µs  
ADC sampling time when reading the  
temperature sensor  
(2)  
TS_TEMP  
5
10  
µs  
1. Measured at VDD = 3 V 10 mV. The 8 LSB of the V90 ADC conversion result are stored in the  
TS_Factory_CONV_V90 byte.  
2. Guaranteed by Design, not tested in production.  
3. Defined for ADC output reaching its final value 1/2LSB.  
9.3.11  
Comparator characteristics  
Data guaranteed by design, not tested in production.  
Table 46. Comparator 1 characteristics  
Symbol  
Parameter  
Analog supply voltage  
Min  
Typ  
Max  
Unit  
VDDA  
1.65  
-40  
300  
7.5  
3.6  
125  
V
TA  
R400  
R10  
VIN  
Temperature range  
R400 value  
°C  
kΩ  
kΩ  
V
400  
10  
500  
R10 value  
12.5  
VDDA  
Comparator input voltage range  
0.6  
Internal reference voltage (1)  
Startup time after enable  
Propagation delay(2)  
VREFINT  
tSTART  
1.202  
1.225  
1.242  
V
7
3
10  
10  
µs  
µs  
td  
Voffset  
ICMP1  
Comparator offset error  
Consumption(3)  
10  
mV  
nA  
160  
260  
1. Based on characterization results.  
2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-  
inverting input set to the reference.  
3. Comparator consumption only. Internal reference voltage not included.  
104/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Data guaranteed by design, not tested in production.  
Table 47. Comparator 2 characteristics  
Electrical parameters  
Symbol  
Parameter  
Analog supply voltage  
Min  
Typ  
Max  
Unit  
VDDA  
1.65  
-40  
0
3.6  
125  
V
°C  
V
TA  
Temperature range  
VIN  
VDDA  
Comparator input voltage range  
Startup time after enable in fast mode  
Startup time after enable in slow mode  
Propagation delay in fast mode(1)  
Propagation delay in slow mode(1)  
Comparator offset error  
20  
30  
2.5  
6
µs  
µs  
µs  
µs  
mV  
µA  
µA  
tSTART  
tdf  
tds  
Voffset  
10  
5
IDD(CMP2F) Consumption in fast mode  
IDD(CMP2S) Consumption in slow mode  
2
1. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-  
inverting input set to the reference.  
9.3.12  
12-bit DAC characteristics  
Data guaranteed by design, not tested in production.  
Table 48. DAC characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VDDA  
TA  
Analog supply voltage  
Temperature range  
1.8  
-40  
3.6  
125  
550  
700  
360  
V
°C  
Middle code  
370  
500  
140  
(1)  
DAC supply current  
µA  
IDD(DAC)  
Worst code  
IVREF+  
RL  
Current on VREF+ supply  
Resistive load(2) (3)  
Output impedance  
Capacitive load(4)  
µA  
kΩ  
kΩ  
pF  
V
DACOUT buffer ON  
DACOUT buffer OFF  
5
RO  
8
10  
50  
CL  
DACOUT buffer ON  
DACOUT buffer OFF  
0.2  
0
VREF+-0.2  
VREF+ -1 LSB  
DAC_OUT DAC_OUT voltage(5)  
V
Settling time (full scale: for a 12-  
bit input code transition between  
the lowest and the highest input  
codes when DAC_OUT reaches  
the final value 1LSB)  
RL 5 kΩ, CL50 pF  
tsettling  
7
12  
1
µs  
Max frequency for a correct  
DAC_OUT (@95%) change when  
small variation of the input code  
(from code i to i+1LSB).  
RL 5 kΩ, CL 50 pF  
Update rate  
Msps  
Doc ID 17943 Rev 1  
105/122  
Electrical parameters  
STM8L15xx8, STM8L15xR6  
Table 48. DAC characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Wakeup time from OFF state.  
tWAKEUP Input code between lowest and  
highest possible codes.  
RL 5 kΩ, CL50 pF  
9
15  
µs  
Power supply rejection ratio (to  
PSRR+  
RL5 kΩ, CL50 pF  
-60  
-35  
dB  
VDDA) (static DC measurement)  
1. Includes supply current on VDDA and VREF+  
2. Resistive load between DACOUT and GNDA  
3. Output on PF0 (48-pin package only)  
4. Capacitive load at DACOUT pin  
5. It gives the output excursion of the DAC  
Data based on characterization results, not tested in production.  
Table 49. DAC accuracy  
Symbol  
Parameter  
Conditions  
Typ  
Max  
Unit  
RL 5 kΩ, C 50 pF  
DACOUT buffer ON(2)  
L
1.5  
3
DNL  
Differential non linearity(1)  
No load  
DACOUT buffer OFF  
1.5  
2
3
RL 5 kΩ, C 50 pF  
L
4
DACOUT buffer ON(2)  
Integral non linearity(3)  
12-bit  
LSB  
INL  
No load  
DACOUT buffer OFF  
2
4
RL 5 kΩ, C 50 pF  
DACOUT buffer ON(2)  
L
10  
25  
Offset  
Offset1  
Offset error(4)  
No load  
DACOUT buffer OFF  
5
8
5
Offset error at Code 1 (5)  
Gain error  
DACOUT buffer OFF  
1.5  
RL 5 kΩ, C 50 pF  
L
0.2  
0.3  
12  
8
0.5  
0.5  
30  
DACOUT buffer ON(2)  
Gain error  
%
No load  
DACOUT buffer OFF  
RL 5 kΩ, C 50 pF  
L
DACOUT buffer ON(2)  
12-bit  
LSB  
TUE  
Total unadjusted error  
No load  
DACOUT buffer OFF  
12  
1. Difference between two consecutive codes - 1 LSB.  
2. For 48-pin packages only. For 28-pin and 32-pin packages, DAC output buffer must be kept off and no load must be  
applied.  
3. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023.  
4. Difference between measured value and ideal value = VREF/2.  
106/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Electrical parameters  
5. Difference between measured value and ideal value Code 1.  
(1)  
Table 50. DAC output on PB4-PB5-PB6  
Symbol  
Parameter  
Conditions  
Max  
1.4  
1.6  
3.2  
8.2  
Unit  
2.7 V < VDD < 3.6 V  
2.4 V < VDD < 3.6 V  
2.0 V < VDD < 3.6 V  
1.8 V < VDD < 3.6 V  
Internal resistance  
between DAC output and  
PB4-PB5-PB6 output  
Rint  
kΩ  
1. 32 or 28-pin packages only. The DAC channel can be routed either on PB4, PB5 or PB6 using the routing  
interface I/O switch registers.  
12-bit ADC1 characteristics  
Table 51. ADC1 characteristics  
Parameter (1)  
Min (1)  
1.8  
Typ(1)  
Max(1)  
Symbol  
Conditions  
Unit  
VDDA  
Analog supply voltage  
3.6  
V
V
V
V
2.4 V VDDA3.6 V  
1.8 VVDDA2.4 V  
VDDA  
2.4  
Reference supply  
voltage  
VREF+  
VDDA  
VSSA  
VREF-  
IVDDA  
Lower reference voltage  
Current on the VDDA  
input pin  
1000  
1450  
µA  
µA  
µA  
700  
(peak)(2)  
Current on the VREF+  
input pin  
IVREF+  
400  
450  
(average)(2)  
Conversion voltage  
range  
0(3)  
-40  
VAIN  
TA  
VREF+  
125  
Temperature range  
°C  
on PF0 fast channel  
on all other channels  
on PF0 fast channel  
on all other channels  
External resistance on  
VAIN  
50(4)  
kΩ  
RAIN  
Internal sample and  
hold capacitor  
CADC  
16  
pF  
2.4 VVDDA3.6 V  
without zooming  
0.320  
0.320  
16  
8
MHz  
MHz  
ADC sampling clock  
frequency  
fADC  
1.8 VVDDA2.4 V  
with zooming  
Doc ID 17943 Rev 1  
107/122  
Electrical parameters  
STM8L15xx8, STM8L15xR6  
Unit  
Table 51. ADC1 characteristics (continued)  
Parameter (1)  
Min (1)  
Typ(1)  
Max(1)  
Symbol  
Conditions  
V
AIN on PF0 fast  
1(4)(5)  
MHz  
kHz  
channel  
fCONV  
12-bit conversion rate  
VAIN on all other  
channels  
760(4)(5)  
External trigger  
frequency  
fTRIG  
tLAT  
tconv  
3.5  
1/fADC  
External trigger latency  
1/fSYSCLK  
VAIN on PF0 fast  
channel  
VDDA < 2.4 V  
0.43(4)(5)  
µs  
µs  
VAIN on PF0 fast  
channel  
0.22(4)(5)  
tS  
Sampling time  
2.4 V VDDA3.6 V  
VAIN on slow channels  
VDDA < 2.4 V  
0.86(4)(5)  
0.41(4)(5)  
µs  
µs  
VAIN on slow channels  
2.4 V VDDA3.6 V  
12 + tS  
1(4)  
1/fADC  
µs  
tconv  
12-bit conversion time  
16 MHz  
Wakeup time from OFF  
state  
tWKUP  
3
µs  
s
Time before a new  
conversion  
(6)  
tIDLE  
Internal reference  
voltage startup time  
refer to  
Table 44  
tVREFINT  
ms  
1. Data guaranteed by design, not tested in production.  
2. The current consumption through VREF is composed of two parameters:  
- one constant (max 300 µA)  
- one variable (max 400 µA), only during sampling time + 2 first conversion pulses.  
So, peak consumption is 300+400 = 700 µA and average consumption is 300 + [(4 sampling + 2) /16] x 400 = 450 µA at  
1Msps  
3.  
VREF- or VDDA must be tied to ground.  
4. Minimum sampling and conversion time is reached for maximum Rext = 0.5 kΩ..  
5. Value obtained for continuous conversion on fast channel.  
6. The time between 2 conversions, or between ADC ON and the first conversion must be lower than tIDLE.  
108/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Electrical parameters  
Table 52. ADC1 accuracy with V  
= 3.3 V to 2.5 V  
Conditions  
DDA  
Max(1)  
Unit  
Symbol  
Parameter  
Typ  
f
ADC = 16 MHz  
1
TBD  
TBD  
TBD  
TBD  
DNL  
Differential non linearity fADC = 8 MHz  
fADC = 4 MHz  
1
1
f
ADC = 16 MHz  
1.2  
1.2  
1.2  
2.2  
1.8  
1.8  
1.5  
1
INL  
TUE  
Integral non linearity  
Total unadjusted error  
Offset error  
fADC = 8 MHz  
fADC = 4 MHz  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
LSB  
f
ADC = 16 MHz  
fADC = 8 MHz  
fADC = 4 MHz  
f
ADC = 16 MHz  
Offset  
Gain  
fADC = 8 MHz  
f
f
ADC = 4 MHz  
ADC = 16 MHz  
0.7  
LSB  
Gain error  
fADC = 8 MHz  
ADC = 4 MHz  
1
TBD  
f
1. Data based on characterization, not tested in production.  
Table 53. ADC1 accuracy with V  
Symbol  
= 2.4 V to 3.6 V  
Parameter  
DDA  
Max(1)  
Typ  
Unit  
DNL  
INL  
Differential non linearity  
Integral non linearity  
1
TBD  
TBD  
LSB  
LSB  
1.7  
TUE  
Offset  
Gain  
2
1
TBD  
TBD  
TBD  
LSB  
LSB  
LSB  
Total unadjusted error  
Offset error  
Gain error  
1.5  
1. Data based on characterization, not tested in production.  
+
Table 54. ADC1 accuracy with V  
Symbol  
= V  
= 1.8 V to 2.4 V  
DDA  
REF  
Max(1)  
Parameter  
Typ  
Unit  
DNL  
INL  
Differential non linearity  
Integral non linearity  
1
2
3
2
2
TBD  
TBD  
TBD  
TBD  
TBD  
LSB  
LSB  
LSB  
LSB  
LSB  
TUE  
Offset  
Gain  
Total unadjusted error  
Offset error  
Gain error  
1. Data based on characterization, not tested in production.  
Doc ID 17943 Rev 1  
109/122  
Electrical parameters  
Figure 34. ADC1 accuracy characteristics  
STM8L15xx8, STM8L15xR6  
VREF+  
VDDA  
4096  
[1LSBIDEAL  
=
(or  
depending on package)]  
4096  
EG  
(1) Example of an actual transfer curve  
(2) The ideal transfer curve  
4095  
4094  
4093  
(3) End point correlation line  
(2)  
ET=Total Unadjusted Error: maximum deviation  
ET  
between the actual and the ideal transfer curves.  
(3)  
7
6
5
4
3
2
1
EO=Offset Error: deviation between the first actual  
transition and the first ideal one.  
(1)  
EG=Gain Error: deviation between the last ideal  
transition and the last actual one.  
EO  
EL  
ED=Differential Linearity Error: maximum deviation  
between actual steps and the ideal one.  
EL=Integral Linearity Error: maximum deviation  
between any actual transition and the end point  
correlation line.  
ED  
1 LSBIDEAL  
0
1
2
3
4
5
6
7
4093 4094 4095 4096  
VDDA  
VSSA  
ai14395b  
Figure 35. Typical connection diagram using the ADC  
34-ꢃ,ꢀꢍXXX  
6
$$  
3AMPLE AND HOLD !$#  
CONVERTER  
6
 6  
4
ꢈꢀꢊ  
#
2
2
!).  
!$#  
!).X  
ꢀꢂꢇBIT  
CONVERTER  
6
4
6
!).  
 6  
#
ꢈꢀꢊ  
!$#  
PARASITIC  
) ›ꢍꢐ N!  
,
AIꢀꢁꢐꢒꢐC  
1. Refer to Table 51 for the values of RAIN and CADC  
.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the  
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy  
this, fADC should be reduced.  
General PCB design guidelines  
Power supply decoupling should be performed as shown in Figure 36 or Figure 37,  
depending on whether V  
is connected to V  
or not. Good quality ceramic 10 nF  
REF+  
DDA  
capacitors should be used. They should be placed as close as possible to the chip.  
110/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Electrical parameters  
Figure 36. Power supply and reference decoupling (V  
not connected to V  
)
DDA  
REF+  
STM8L  
V
REF+  
DDA  
1 µF // 10 nF  
V
V
1 µF // 10 nF  
/V  
SSA REF-  
ai17031  
Figure 37. Power supply and reference decoupling (V  
connected to V  
)
REF+  
DDA  
STM8L  
V
/V  
REF+ DDA  
1 µF // 10 nF  
V
/V  
REF– SSA  
ai17032  
9.3.13  
EMC characteristics  
Susceptibility tests are performed on a sample basis during product characterization.  
Doc ID 17943 Rev 1  
111/122  
Electrical parameters  
STM8L15xx8, STM8L15xR6  
Functional EMS (electromagnetic susceptibility)  
Based on a simple running application on the product (toggling 2 LEDs through I/O ports),  
the product is stressed by two electromagnetic events until a failure occurs (indicated by the  
LEDs).  
ESD: Electrostatic discharge (positive and negative) is applied on all pins of the device  
until a functional disturbance occurs. This test conforms with the IEC 61000 standard.  
FTB: A burst of fast transient voltage (positive and negative) is applied to V and V  
DD  
SS  
through a 100 pF capacitor, until a functional disturbance occurs. This test conforms  
with the IEC 61000 standard.  
A device reset allows normal operations to be resumed. The test results are given in the  
table below based on the EMS levels and classes defined in application note AN1709.  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
Prequalification trials:  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1  
second.  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring (see application note AN1015).  
Table 55. EMS data  
Level/  
Class  
Symbol  
Parameter  
Conditions  
VDD = 3.3 V, TA = +25 °C,  
Voltage limits to be applied on  
VFESD  
any I/O pin to induce a functional fCPU= 16 MHz,  
TBD  
disturbance  
conforms to IEC 61000  
Fast transient voltage burst limits  
to be applied through 100 pF on  
VDD and VSS pins to induce a  
VDD = 3.3 V, TA = +25 °C,  
fCPU = 16 MHz,  
conforms to IEC 61000  
TBD  
TBD  
Using HSI  
Using HSE  
VEFTB  
functional disturbance  
Electromagnetic interference (EMI)  
Based on a simple application running on the product (toggling 2 LEDs through the I/O  
ports), the product is monitored in terms of emission. This emission test is in line with the  
norm IEC61967-2 which specifies the board and the loading of each pin.  
112/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Table 56. EMI data  
Electrical parameters  
(1)  
Max vs.  
Unit  
16 MHz  
Monitored  
frequency band  
Symbol  
Parameter  
Conditions  
0.1 MHz to 30 MHz  
30 MHz to 130 MHz  
130 MHz to 1 GHz  
SAE EMI Level  
TBD  
VDD = 3.6 V,  
TA = +25 °C,  
LQFP32  
conforming to  
IEC61967-2  
TBD  
TBD  
TBD  
dBμV  
SEMI  
Peak level  
-
1. Not tested in production.  
Absolute maximum ratings (electrical sensitivity)  
Based on two different tests (ESD and LU) using specific measurement methods, the  
product is stressed in order to determine its performance in terms of electrical sensitivity.  
For more details, refer to the application note AN1181.  
Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts*(n+1) supply pin). Two models  
can be simulated: human body model and charge device model. This test conforms to the  
JESD22-A114A/A115A standard.  
Table 57. ESD absolute maximum ratings  
Maximum  
Symbol  
Ratings  
Conditions  
Unit  
value (1)  
Electrostatic discharge voltage  
(human body model)  
VESD(HBM)  
TBD  
TA = +25 °C  
V
Electrostatic discharge voltage  
(charge device model)  
VESD(CDM)  
TBD  
1. Data based on characterization results, not tested in production.  
Static latch-up  
LU: 3 complementary static tests are required on 10 parts to assess the latch-up  
performance. A supply overvoltage (applied to each power supply pin) and a current  
injection (applied to each input, output and configurable I/O pin) are performed on each  
sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more details,  
refer to the application note AN1181.  
Table 58. Electrical sensitivities  
Symbol  
Parameter  
Class  
LU  
Static latch-up class  
II  
Doc ID 17943 Rev 1  
113/122  
Electrical parameters  
STM8L15xx8, STM8L15xR6  
9.4  
Thermal characteristics  
The maximum chip junction temperature (T  
) must never exceed the values given in  
Jmax  
Table 17: General operating conditions on page 70.  
The maximum chip-junction temperature, T  
the following equation:  
, in degree Celsius, may be calculated using  
Jmax  
T
= T  
+ (P  
x Θ )  
Dmax JA  
Jmax  
Amax  
Where:  
T
is the maximum ambient temperature in °C  
is the package junction-to-ambient thermal resistance in ° C/W  
Amax  
Θ
JA  
P
is the sum of P  
and P  
(P  
= P  
+ P  
)
I/Omax  
Dmax  
INTmax  
I/Omax  
Dmax  
INTmax  
P
is the product of I and V , expressed in Watts. This is the maximum chip  
INTmax  
DD  
DD  
internal power.  
P
represents the maximum power dissipation on output pins  
I/Omax  
Where:  
P
= Σ (V *I ) + Σ((V -V )*I ),  
I/Omax  
OL OL  
DD OH  
OH  
taking into account the actual V /I and V /I of the I/Os at low and high level in  
OL OL  
OH OH  
the application.  
(1)  
Table 59. Thermal characteristics  
Symbol  
Parameter  
Value  
Unit  
Thermal resistance junction-ambient  
LQFP 48- 7 x 7 mm  
Θ
65  
°C/W  
JA  
Thermal resistance junction-ambient  
UFQFPN 48- 7 x 7mm  
Θ
32  
48  
38  
°C/W  
°C/W  
°C/W  
JA  
Thermal resistance junction-ambient  
LQFP 64- 10 x 10 mm  
Θ
JA  
Thermal resistance junction-ambient  
LQFP 80- 14 x 14 mm  
Θ
JA  
1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection  
environment.  
114/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Package characteristics  
10  
Package characteristics  
10.1  
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
Doc ID 17943 Rev 1  
115/122  
Package characteristics  
STM8L15xx8, STM8L15xR6  
Figure 38. 80-pin low profile quad flat package (14 x 14 mm)  
D
ccc  
C
D1  
D3  
A
A2  
41  
60  
40  
61  
b
L1  
E3 E1  
E
L
A1  
K
80  
Pin 1  
identification  
1
c
1S_ME  
Table 60. 80-pin low profile quad flat package mechanical data  
mm  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
-
0.050  
1.350  
0.220  
0.090  
15.800  
13.800  
-
-
1.600  
0.150  
1.450  
0.380  
0.200  
16.200  
14.200  
-
-
-
0.0630  
0.0059  
0.0571  
0.0150  
0.0079  
0.6378  
0.5591  
-
-
0.0020  
0.0531  
0.0087  
0.0035  
0.6220  
0.5433  
-
-
1.400  
0.320  
-
0.0551  
0.0126  
-
c
D
16.000  
14.000  
12.350  
16.000  
14.000  
12.350  
0.650  
0.600  
1.000  
3.5°  
0.6299  
0.5512  
0.4862  
0.6299  
0.5512  
0.4862  
0.0256  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
15.800  
13.800  
-
16.200  
14.200  
-
0.6220  
0.5433  
-
0.6378  
0.5591  
-
E1  
E3  
e
-
-
-
-
L
0.450  
-
0.750  
-
0.0177  
0.0295  
-
L1  
k
0.0°  
-
7.0°  
0.0°  
-
7.0°  
ccc  
-
0.100  
-
0.0039  
1. Values in inches are converted from mm and rounded to four decimal places.  
116/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Package characteristics  
Figure 39. LQFP64 – 10 x 10 mm, 64 pin low-profile quad Figure 40. Recommended  
(1)  
(1)(2)  
flat package outline  
footprint  
D
ccc  
C
D1  
A
A2  
48  
33  
D3  
33  
48  
0.3  
49  
32  
0.5  
32  
49  
12.7  
10.3  
b
L1  
10.3  
64  
17  
E3 E1  
E
1.2  
1
16  
L
7.8  
A1  
12.7  
64  
17  
ai14909  
1
ntification  
1
16  
c
5W ME  
1. Drawing is not to scale.  
2. Dimensions are in millimeters.  
Table 61. LQFP64 – 10 x 10 mm, 64-pin low-profile quad flat package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
1.60  
0.15  
1.45  
0.27  
0.20  
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.05  
1.35  
0.17  
0.09  
0.0020  
0.0531  
0.0067  
0.0035  
1.40  
0.22  
0.0551  
0.0087  
c
D
12.00  
10.00  
12.00  
10.00  
0.50  
0.4724  
0.3937  
0.4724  
0.3937  
0.0197  
3.5°  
D1  
E
E1  
e
θ
0°  
3.5°  
7°  
0°  
7°  
L
0.45  
0.60  
0.75  
0.0177  
0.0236  
0.0394  
0.0295  
L1  
1.00  
Number of pins  
N
64  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Doc ID 17943 Rev 1  
117/122  
Package characteristics  
STM8L15xx8, STM8L15xR6  
Figure 41. LQFP48 – 7 x 7 mm, 48-pin low-profile quad flat Figure 42. Recommended  
(1)  
(1)(2)  
package outline  
footprint  
D
ccc  
C
D1  
D3  
25  
A
A2  
0.50  
1.20  
36  
0.30  
36  
25  
24  
37  
37  
24  
L1  
0.20  
7.30  
b
9.70 5.80  
E3  
E1  
E
7.30  
48  
13  
12  
1
48  
L
1.20  
13  
A1  
5.80  
9.70  
n 1  
entification  
1
12  
c
ai14911b  
1. Drawing is not to scale.  
2. Dimensions are in millimeters.  
Table 62. LQFP48 – 7 x 7 mm, 48-pin low-profile quad flat package mechanical data  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
1.600  
0.150  
1.450  
0.270  
0.200  
9.200  
7.200  
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.3622  
0.2835  
0.050  
1.350  
0.170  
0.090  
8.800  
6.800  
0.0020  
0.0531  
0.0067  
0.0035  
0.3465  
0.2677  
1.400  
0.220  
0.0551  
0.0087  
c
D
9.000  
7.000  
5.500  
9.000  
7.000  
5.500  
0.500  
0.600  
1.000  
3.5°  
0.3543  
0.2756  
0.2165  
0.3543  
0.2756  
0.2165  
0.0197  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
8.800  
6.800  
9.200  
7.200  
0.3465  
0.2677  
0.3622  
0.2835  
E1  
E3  
e
L
0.450  
0°  
0.750  
7°  
0.0177  
0°  
0.0295  
7°  
L1  
k
ccc  
0.080  
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
118/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Package characteristics  
Figure 43. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package Figure 44. Recommended footprint  
(1)(2)(3)  
(1)  
outline  
(dimensions in mm)  
$ꢂ  
,
B
ꢂꢆ  
ꢀꢉ  
7.30  
ꢂꢍ  
ꢀꢂ  
,
48  
37  
1
36  
6.20  
%ꢂ  
0.20  
%
B
E
7.30  
6.20  
5.60  
5.80  
ꢉꢅ  
5.60  
5.80  
0.30  
0.55  
ꢉꢁ  
ꢆꢃ  
E
12  
25  
$
13  
24  
!ꢉ  
!ꢀ  
!
0.75  
0.50  
ai15697  
#
!ꢂ  
3EATING  
PLANE  
!ꢐ"ꢒ?-%  
1. Drawing is not to scale.  
2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.  
3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this  
back-side pad to PCB ground.  
Table 63. UFQFPN48 – ultra thin fine pitch quad flat pack no-lead 7 × 7 mm, 0.5 mm  
pitch package mechanical data  
millimeters  
Min  
inches(1)  
Symbol  
Typ  
Max  
Typ  
Min  
Max  
A
0.550  
0.020  
0.530  
0.150  
0.230  
7.000  
4.700  
7.000  
4.700  
0.500  
0.400  
0.500  
0
0.600  
0.050  
0.550  
0.160  
0.300  
7.150  
5.250  
7.150  
5.250  
0.550  
0.500  
0.02170  
0.0008  
0.0209  
0.0059  
0.0091  
0.2756  
0.1850  
0.2756  
0.1850  
0.0197  
0.0157  
0.01970  
0
0.0236  
0.0020  
0.0217  
0.0063  
0.0118  
0.2815  
0.2067  
0.2815  
0.2067  
0.0217  
0.0197  
A1  
A2  
A3  
b
0.500  
0.140  
0.180  
6.850  
2.250  
6.850  
2.250  
0.450  
0.300  
0.080  
0.0197  
0.0055  
0.0071  
0.2697  
0.0886  
0.2697  
0.0886  
0.0177  
0.0118  
0.0031  
D
D2  
E
E2  
e
L
ddd  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Doc ID 17943 Rev 1  
119/122  
Ordering information scheme  
STM8L15xx8, STM8L15xR6  
11  
Ordering information scheme  
Table 64. Ordering information scheme  
Example:  
STM8  
L
152  
C
8
T
6
D
Device family  
STM8 microcontroller  
Product type  
L = Low power  
Device subfamily  
151: Devices without LCD  
152: Devices with LCD  
Pin count  
C = 48 pins  
R = 64 pins  
M = 80 pins  
Program memory size  
8 = 64 Kbytes of Flash memory  
6 = 32 Kbytes  
Package  
T = LQFP  
U= UFQFPN  
Temperature range  
3 = Industrial temperature range, – 40 to 125 °C  
6 = Industrial temperature range, – 40 to 85 °C  
Option  
Blank = VDD range from 1.8 to 3.6 V and BOR enabled  
D = VDD range from 1.65 to 3.6 V and BOR disabled  
For a list of available options (e.g. memory size, package) and orderable part numbers or for  
further information on any aspect of this device, please go to www.st.com or contact the ST  
Sales Office nearest to you.  
120/122  
Doc ID 17943 Rev 1  
STM8L15xx8, STM8L15xR6  
Revision history  
12  
Revision history  
Table 65. Document revision history  
Date  
Revision  
Changes  
13-Sep-2010  
1
Initial release.  
Doc ID 17943 Rev 1  
121/122  
STM8L15xx8, STM8L15xR6  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2010 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
122/122  
Doc ID 17943 Rev 1  

相关型号:

STM8L152R6T6

8-bit ultralow power MCU, up to 64 KB Flash 2 KB data EEPROM, RTC, LCD, timers, USARTs, I2C, SPIs, ADC, DAC, comparators
STMICROELECTR

STM8L152R8

8-bit ultralow power MCU, up to 64 KB Flash 2 KB data EEPROM
STMICROELECTR

STM8L152x4

Advanced STM8 core
STMICROELECTR

STM8L152x6

Advanced STM8 core
STMICROELECTR

STM8L152x8

8-bit ultralow power MCU, up to 64 KB Flash 2 KB data EEPROM, RTC, LCD, timers, USARTs, I2C, SPIs, ADC, DAC, comparators
STMICROELECTR

STM8L152XX

8-bit ultralow power MCU, up to 32 KB Flash, 1 KB Data EEPROM RTC, LCD, timers, USART, I2C, SPI, ADC, DAC, comparators
STMICROELECTR

STM8L15X

STM8L05xx, STM8L15xx, STM8L162x, STM8AL31xx and STM8AL3Lxx microcontroller family
STMICROELECTR

STM8L162M8

device limitations
STMICROELECTR

STM8L162R8

device limitations
STMICROELECTR

STM8N35/3

TRANSISTOR | MOSFET | N-CHANNEL | 350V V(BR)DSS | 8A I(D) | TO-3
ETC

STM8N40/3

TRANSISTOR | MOSFET | N-CHANNEL | 400V V(BR)DSS | 8A I(D) | TO-3
ETC

STM8S003F3

Value line, 16-MHz STM8S 8-bit MCU, 8-Kbyte Flash memory, 128-byte data EEPROM, 10-bit ADC, 3 timers, UART, SPI, I²C
STMICROELECTR