STM8T141AUMAJ1TR [STMICROELECTRONICS]

SPECIALTY ANALOG CIRCUIT, PDSO8, 2 X 3 MM, ROHS COMPLIANT, UFDFPN-8;
STM8T141AUMAJ1TR
型号: STM8T141AUMAJ1TR
厂家: ST    ST
描述:

SPECIALTY ANALOG CIRCUIT, PDSO8, 2 X 3 MM, ROHS COMPLIANT, UFDFPN-8

光电二极管
文件: 总50页 (文件大小:1182K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM8T141  
Single-channel capacitive sensor for touch  
or proximity detection with shielded sensing electrode  
Features  
Touch or proximity detection (a few  
centimeters)  
Built-in driven shield function:  
– Enhance proximity detection  
– Protect sensing electrode from noise  
interference  
SO8  
(narrow)  
UFDFPN8  
(2 x 3 mm)  
Ultra-low power modes suitable for battery  
applications (11 µA in extreme low power  
mode)  
On-chip integrated voltage regulator  
Environment compensation filter  
Table 1.  
Device summary  
Feature  
STM8T141  
User programmable options include:  
– Four detection thresholds  
– Four output modes  
Operating supply voltage  
Supported interface  
2.0 V to 5.5 V  
Single key state output  
–40° to +85 °C  
– Four low power modes  
– Reference freeze timeout  
Operating temperature  
8-pin SO  
Packages  
Minimal external components  
8-pin UFDFPN  
Applications  
Consumer electronics  
Power-critical and battery applications  
– Wake-up on proximity  
Home and office appliances  
– Find-in-the-dark (FITD) applications using  
proximity detection  
– Sanitary ware and white goods  
Flameproof human interface devices for use in  
hazardous environments  
June 2011  
Doc ID 15699 Rev 7  
1/50  
www.st.com  
1
 
 
Contents  
STM8T141  
Contents  
1
2
3
4
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
STM8T ProxSense technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
4.1  
4.2  
Capacitive sensing overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Charge transfer acquisition principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
5
STM8T processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
5.1  
5.2  
5.3  
Signal and reference calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Determining touch/proximity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Environment compensation filter (ECF) . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5.3.1  
5.3.2  
5.3.3  
ECF principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Reference freeze timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Debounce filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
6
7
Typical application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Device operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
7.1  
7.2  
Option byte description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
TOUT/POUT output mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
7.2.1  
7.2.2  
7.2.3  
7.2.4  
Active . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Toggle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3-second latch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
30-second latch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
7.3  
7.4  
Detection threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
7.4.1  
7.4.2  
7.4.3  
7.4.4  
Normal Power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Low Power mode with Zoom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Extreme Low Power mode with Zoom . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Extreme Low Power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
7.5  
Charge transfer frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
2/50  
Doc ID 15699 Rev 7  
STM8T141  
Contents  
7.6  
Sampling period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
8
Design guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
8.1  
Shield function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
8.1.1  
Shield application example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
8.2  
Sensitivity adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
8.2.1  
8.2.2  
C influence on sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
S
PCB layout and construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
8.3  
Influence of power supply variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
9
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
9.1  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
9.1.1  
9.1.2  
9.1.3  
9.1.4  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
9.2  
9.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
9.3.1  
9.3.2  
9.3.3  
General operating conditions and supply characteristics . . . . . . . . . . . 30  
Average current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Output characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
9.4  
9.5  
9.6  
Regulator and reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Capacitive sensing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
9.6.1  
9.6.2  
9.6.3  
9.6.4  
9.6.5  
9.6.6  
Functional EMS (electromagnetic susceptibility) . . . . . . . . . . . . . . . . . . 35  
Prequalification trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Electromagnetic interference (EMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 36  
Electrostatic discharge (ESD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Static latchup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
10  
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
10.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
10.1.1 SO8 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
10.1.2 UFDFPN8 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
10.2 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
10.2.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Doc ID 15699 Rev 7  
3/50  
Contents  
STM8T141  
11  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
11.1 STM8T141 ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . 42  
11.2 Orderable favorite device lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
11.3 In-factory option byte programming service . . . . . . . . . . . . . . . . . . . . . . . 43  
12  
13  
STM8T141 development tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
4/50  
Doc ID 15699 Rev 7  
STM8T141  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
STM8T141 pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Explanation of ECF example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Explanation of ECF example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Option byte description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Detection thresholds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Low power period according to selected power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Operating characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Average current consumption without shield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Output pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Regulator and reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
General capacitive sensing characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Response times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
External sensing component characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
EMS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
EMI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
8-lead plastic small outline - package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
8-lead ultra thin fine pitch dual flat - package mechanical data . . . . . . . . . . . . . . . . . . . . . 40  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Orderable favorite device lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Doc ID 15699 Rev 7  
5/50  
List of figures  
STM8T141  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
STM8T141 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
S08 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
UFDFPN8 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Coupling with hand increases the capacitance of the sensing electrode . . . . . . . . . . . . . . 10  
STM8T measuring circuitry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Conversion period examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Environmental compensation filter (ECF) example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Environmental compensation filter (ECF) example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Reference freeze timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 10. Typical application shematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 11. Possible load configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 12. Active mode output operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 13. Toggle mode output operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 14. 3-second latch mode output operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 15. 30-second latch mode output operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 16. Charge cycle timing diagram in Normal Power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 17. Charge cycle timing diagram in Low Power mode with Zoom . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 18. Charge cycle timing diagram in Extreme Low Power mode with Zoom . . . . . . . . . . . . . . . 24  
Figure 19. Charge cycle timing diagram in Extreme Low Power mode . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 20. Connecting the shield (coaxial cable implementation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 21. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 22.  
I
average current consumption vs R  
DD SHIELD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
Figure 23. Sigma variation across V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
DD  
Figure 24. SO8-lead plastic small outline - package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 25. UFDFPN8-lead ultra thin fine pitch dual flat package (MLP) package outline . . . . . . . . . . 40  
Figure 26. STM8T141 ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 27. STM8T141-EVAL evaluation kit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 28. STM8T141 blank module box. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 29. STM8T141-EVAL programming tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
6/50  
Doc ID 15699 Rev 7  
STM8T141  
Description  
1
Description  
The STM8T141 is a ProxSense™ single-channel, fully integrated, charge-transfer,  
capacitive sensor that is designed to replace conventional electromechanical switches in  
cost-sensitive applications.  
The STM8T141 is offered in 8-pin packages and is ideally suited for 1-button applications. It  
can be configured either in touch or proximity sensing mode for wake-up or backlighting on  
actuation.  
The extremely low current consumption makes it an ideal solution for battery-powered  
applications.  
The device features an internal voltage regulator to enhance detection sensitivity and  
stability.  
The STM8T141 touchpad can sense through almost any dielectric and can thereby contain  
the electronics in a sealed environment.  
The STM8T141 also incorporates the advantages of using a driven shielding capability. This  
makes it possible to separate the sealed electronics from the sensing electrode. The shield  
feature enables the designer to protect part of the sensing element from unwanted  
environmental interference and enhances proximity detection when used with battery (DC)  
applications.  
Note:  
ProxSense™ is a trademark of Azoteq.  
Doc ID 15699 Rev 7  
7/50  
 
Block diagram  
STM8T141  
2
Block diagram  
Figure 1.  
STM8T141 block diagram  
C
C
X
V
V
REG  
ProxSense  
engine  
Voltage  
regulator  
DD  
S
V
SS  
500 kHz RC  
oscillator  
POR  
TOUT/POUT  
MCU system engine  
SHLDIN  
SHLDOUT  
ai17207  
RC oscillator  
The 500-kHz RC oscillator is an internal fixed frequency oscillator used to supply the clock  
to the MCU system engine.  
Power-On-Reset (POR)  
The POR generates a reset signal depending on the power supply level and the clock  
pulses received from the RC oscillator.  
Voltage regulator  
The voltage regulator has an internal comparison and feedback circuit that ensures the  
V
voltage is kept stable and constant. The regulator requires an external smoothing  
REG  
capacitor.  
MCU system engine  
The MCU system engine controls the capacitive sensing engine and processes touch and  
proximity detection signals.  
ProxSense engine  
The ProxSense engine circuitry employs a charge-transfer method to detect changes in  
capacitance.  
8/50  
Doc ID 15699 Rev 7  
 
 
STM8T141  
Pin descriptions  
3
Pin descriptions  
Figure 2.  
S08 pinout  
6
4/54ꢉ0/54  
33  
#
#
6
3
$$  
3(,$/54  
8
3(,$).  
6
2%'  
!)ꢀꢁꢂꢃꢄ  
Figure 3.  
UFDFPN8 pinout  
6
4/54ꢉ0/54  
33  
#
6
3
8
$$  
#
3(,$/54  
6
3(,$).  
2%'  
!)ꢀꢁꢆꢈꢈ  
Table 2.  
STM8T141 pin descriptions  
Pin no.  
PIn type(1)  
Pin name  
Pin function  
SO8 UFDFPN8  
1
S
VSS  
CS  
Ground  
Capacitive sensing channel pin to  
2
SNS  
(2)  
CS  
3
4
5
6
7
SNS  
I
CX  
Capacitive sensing channel pin to RX  
Shield input  
SHLDIN(3)  
VREG  
S
Internal voltage regulator output (4)  
Shield output  
OD  
S
SHLDOUT  
VDD  
Supply voltage  
Touch/proximity(5) output  
(active high)  
8
PP  
TOUT/POUT  
1. I: input pin, OD: open drain, PP: output push-pull pin, S: supply pin and SNS: capacitive sensing pin.  
2. Use COG or NPO capacitor type.  
3. If the active shield is unused, please connect this pin to VSS  
.
4. Requires a low ESR, 1µF capacitor to ground. This output must not be used to power other devices.  
5. Depending on the value of bits [1:0] of OPT0.  
Doc ID 15699 Rev 7  
9/50  
 
 
 
 
STM8T ProxSense technology  
STM8T141  
4
STM8T ProxSense technology  
4.1  
Capacitive sensing overview  
A capacitance exists between any reference point and ground as long as they are  
electrically isolated. If this reference point is a sensing electrode, it can help to think of it as  
a capacitor. The positive electrode of the capacitor is the sensing electrode, and the  
negative electrode is formed by the surrounding area (virtual ground reference in Figure 4).  
Figure 4.  
Coupling with hand increases the capacitance of the sensing electrode  
Sensing electrode  
CT  
CX  
Lower capacitance  
Higher capacitance  
When a conductive object is brought into proximity of the sensing electrode, coupling  
appears between them, and the capacitance of the sensing electrode relative to ground  
increases. For example, a human hand raises the capacitance of the sensing electrode as it  
approaches it. Touching the dielectric panel that protects the electrode increases its  
capacitance significantly.  
4.2  
Charge transfer acquisition principle  
To measure changes in the electrode capacitance, STM8T devices employ bursts of charge-  
transfer cycles.  
The measuring circuitry is connected to the C pin. It is composed of a serial resistor R  
X
X
plus the sensing electrode itself of equivalent capacitance C (see Figure 5). The sensing  
X
electrode can be made of any electrically conductive material, such as copper on PCBs, or  
transparent conductive material like Indium Tin Oxide (ITO) deposited on glass or Plexiglas.  
The dielectric panel usually provides a high degree of isolation to prevent ESD discharge  
from reaching the STM8T touch sensing controller. Connecting the serial resistor (R ) to the  
X
C pin improves ESD immunity even more.  
X
10/50  
Doc ID 15699 Rev 7  
 
 
 
 
STM8T141  
STM8T ProxSense technology  
Figure 5.  
STM8T measuring circuitry  
CT (~5 pF)  
STM8T141  
(1)  
Serial resistor (RX)  
Earth  
C
X
C (~20 pF)  
x
C
S
CS (a few nF)  
Ai15249a  
1. RX must be placed as close as possible to the STM8T device.  
The principle of charge transfer is to charge the electrode capacitance (C ) using a stable  
X
power supply. When C is fully charged, part of the accumulated charge is transferred from  
X
C to an external sampling capacitance, referred to as C . The transfer cycle is repeated  
X
S
until the voltage across the sampling capacitor C reaches the end of acquisition reference  
S
voltage (V  
). The change in the electrode capacitance is detected by measuring the  
TRIP  
number of transfer cycles composing a burst (see Figure 6).  
Throughout this document the following naming conventions apply:  
The charge transfer period (tTRANSFER) refers to the charging of C and the  
X
subsequent transfer of the charge to C .  
S
The burst cycle duration (t  
) is the time required to charge C to V  
.
TRIP  
BURST  
S
The sampling period (t  
) is the acquisition rate.  
SAMPLING  
Figure 6.  
Conversion period examples  
T
42!.3&%2  
#
3
T
3!-0,).'  
6
6
2%'  
T
"
5234  
42)0  
T
ꢀꢃ MS  
!Iꢀꢁꢆꢅꢄ  
Doc ID 15699 Rev 7  
11/50  
 
 
STM8T processing  
STM8T141  
5
STM8T processing  
The STM8T141 device is designed to ensure reliable operation whatever the environment  
and operating conditions. To achieve this high level of robustness, dedicated processing  
have been implemented:  
Signal and reference calculation  
Determining touch/proximity  
Self-calibration  
Environmental compensation filter  
Debounce filter  
5.1  
Signal and reference calculation  
Capacitive touch or proximity sensing is a technique based on detecting the electrode  
capacitance change when someone is in proximity of the sensing electrode. The  
capacitance change, induced by the presence of a finger or a hand in the device detection  
area, is sensed by the variation in the number of charge transfer pulses composing the  
burst. The charge transfer pulse number, also called “signal” is compared to a reference to  
decide if there is a touch/proximity detection or not.  
At power-up, a calibration sequence is performed to compute one reference value per  
capacitive sensing channel. The reference is extracted from 32 burst measurements. Then,  
the ECF takes care of its slow evolution over time.  
To speed up the calibration process, the device is kept in normal mode whatever the low  
power mode selected. The device operates in the selected low power mode when the  
calibration process is completed.  
5.2  
Determining touch/proximity  
The minimum difference between the reference and the signal necessary to report a  
touch/proximity is the detection threshold (D ). A time filtering, similar to the debouncing of  
Th  
the mechanical switches, is applied to avoid noise induced detections.  
Four different detection threshold settings are available and selectable by option byte. The  
touch and sensitive touch levels are relative, which means the actual sensing distance is not  
influenced by the Cs capacitor. The two thresholds should be able to adapt to various  
surroundings and panel material or thickness. The proximity sensitivity thresholds are  
absolute. This implies that the detection distance increases with the Cs capacitor. It provides  
an easy way to tune the proximity sensing distance according to the application needs.  
12/50  
Doc ID 15699 Rev 7  
 
 
 
STM8T141  
STM8T processing  
5.3  
Environment compensation filter (ECF)  
5.3.1  
ECF principle  
The capacitive sensing channel reference value increases or decreases according to  
environmental conditions such as temperature, power supply, moisture, and surrounding  
conductive objects. The STM8T141 includes a built-in digital infinite impulse response (IIR)  
filter capable of tracking slow changes in the environment called the Environment  
Compensation Filter (ECF). This is a first order digital low pass filter with a gain of one. The  
filter makes the reference follow slow changes of the signal while fast changes are  
recognized as a touch or proximity.  
When a touch or proximity condition is detected, the corresponding capacitive sensing  
channel reference is frozen.  
Figure 7.  
Environmental compensation filter (ECF) example 1  
.UMBER OF COUNTS  
2EFERENCE  
3IGNAL  
$ETECTION  
2EFERENCE ꢊ $  
4H  
T
:ONE ꢀ  
:ONE ꢂ  
:ONE ꢅ  
:ONE ꢆ  
:ONE ꢀ  
AIꢀꢁꢆꢂꢁ  
Table 3.  
Explanation of ECF example 1  
Zone 1  
Zone 2  
Zone 3  
Zone 4  
The object, is inside the  
The object (finger) is electrode field range. It  
The object comes inside the  
detection range before the  
reference compensates for  
its presence.  
outside the  
electrode field  
range.  
induces a signal change  
but, not large enough to  
cross the detection  
threshold (Dth).  
The object exits  
from the  
electrode’s  
Event description  
A touch or proximity event is  
triggered because the  
signal level falls below the  
Electrode  
environment is  
stable  
detection range.  
The reference adapts  
slowly to the object  
proximity.  
reference - DTh  
.
Detection state  
ECF operation  
Reference  
No detection  
Detection  
Halt  
No detection  
Active  
Active  
Adapting  
Frozen  
Adapting  
Doc ID 15699 Rev 7  
13/50  
 
 
 
 
STM8T processing  
STM8T141  
Figure 8.  
Environmental compensation filter (ECF) example 2  
Number of counts  
Reference  
Signal  
Detection  
Reference - D  
Th  
Environment changing  
Zone 1  
Zone 2  
Zone 3  
Zone 4  
t
ai17429  
Table 4.  
Explanation of ECF example 2  
Zone 1  
Zone 2  
Zone 3  
Zone 4  
The system  
environment  
An object (finger) is  
detected. The  
environment continues  
to change.  
The object is still under  
detection but, the  
environment is not  
changing anymore.  
changes and the  
device adapts its  
reference according  
to this environment  
change.  
The object exits  
from detection.  
Event description  
Detection operation  
ECF state  
No detection  
Active  
Detection  
No detection  
Active  
Halt  
Reference  
Adapting  
Frozen  
Adapting  
Surrounding  
environment  
Changing  
Stable  
14/50  
Doc ID 15699 Rev 7  
 
 
STM8T141  
STM8T processing  
5.3.2  
Reference freeze timeout  
To prevent an object under detection from influencing the reference value, the ECF is halted  
as soon as a detection happens. Consequently, the reference is frozen.  
In order to be able to recover from a sudden environment change, the reference freeze ends  
after a maximum programmable delay called the “reference freeze timeout” (t  
).  
RFT  
When a detection lasts longer than the t , the ECF is enabled again and the reference  
RFT  
moves toward the detection signal. After a short period of time, the difference between the  
signal and the reference become smaller than the detection threshold and the device  
reports no detection.  
Note:  
Reference freeze timeout was incorrectly called “recalibration timeout” in previous versions  
of this document.  
Figure 9.  
Reference freeze timeout  
.UMBER OF COUNTS  
.O DETECTION  
$ETECTION  
%#& FROZEN  
.O DETECTION  
.O DETECTION  
%#& ACTIVE  
2EFERENCE  
3IGNAL  
2EFERENCE ꢊ $  
4H  
%#& ACTIVE  
3IGNAL LIMIT  
T
ꢋꢀꢌ  
T
2&4  
-ASKED DETECTION  
ꢋꢂꢌ  
%#& FREEZE  
TIMEOUT  
WINDOW  
AIꢀꢁꢆꢈꢀ  
1. See max values of tRFT in Table 16: General capacitive sensing characteristics.  
2. Between the moment when the finger is removed from the sensor and the instant the reference - DTh curve  
crosses the signal limit, the device is unable to detect a new touch. This delay is called “masked detection  
window”. It depends on the environmental change or object signal variation speed inside the electrode’s  
field. The detection threshold also impacts the masked detection window.  
Doc ID 15699 Rev 7  
15/50  
 
 
STM8T processing  
STM8T141  
5.3.3  
Debounce filter  
The debounce filter mechanism works together with the ECF to dramatically reduce the  
effects of noise on the touch and proximity detection. Debouncing is applied to acquisition  
samples to filter undesired abrupt changes.  
The number of consecutive detection debounce count (DDC) and end of detection  
debounce count (EDDC) needed to identify a proximity/touch detection are defined in  
Section 9.5: Capacitive sensing characteristics on page 33.  
16/50  
Doc ID 15699 Rev 7  
 
STM8T141  
Typical application diagram  
6
Typical application diagram  
Figure 10. Typical application shematic  
4/54ꢉ0/54  
4/54ꢉ0/54  
6
33  
6
$$  
'.$  
ꢆꢁN&ꢋꢂꢌ  
2
3()%,$  
#
3
6
$$  
'.$  
'.$  
3HIELD  
#
8
3(,$/54  
2
ꢀ —&  
3ENSING ELECTRODE  
8
3(,$).  
6
2%'  
'.$  
'.$  
AIꢀꢁꢆꢅꢍ  
1. If the active shield is not used, The SHLDIN pin must be grounded, SHLDOUT should be left unconnected, and R  
can be removed.  
SHIELD  
2. Use COG or NPO or higher grade capacitor.  
The smaller the value of the R  
consumption.  
resistor, the better its effect but, the greater the device  
SHIELD  
Pin TOUT/POUT can directly drive a HV FET (as shown in Figure 11) that, in turn, can drive  
any load.  
Figure 11. Possible load configurations  
A
B
C
Load POS  
Load  
Load POS  
Load POS  
Load POS  
voltage  
Relay on Load  
LED as Load  
Low Voltage DC  
Light Bulb as Load  
Load NEG  
terminals to  
Switch any High  
Voltage Load  
3
R
D
1
G
TOUT/POUT  
S
2
K1  
GND  
LED  
Load NEG  
Load NEG  
Load NEG  
ai15523  
A touch or proximity detection is defined as an actuation (high = logical '1' and  
low = logical '0').  
Doc ID 15699 Rev 7  
17/50  
 
 
 
Device operation  
STM8T141  
7
Device operation  
The STM8T141 can be configured through a set of selectable one-time programmable  
(OTP) option bytes. These options can be used in their default (unconfigured) state or set for  
specific applications. For large orders, preconfigured devices are available (please refer to  
Section 11: Ordering information).  
The STM8T141 can be configured to act as a touch or proximity detection device. A number  
of other options are also user programmable, including:  
Four output modes  
Active mode  
Toggle mode  
3-second Latch mode  
30-second Latch mode  
TOUT/POUT output mode selection  
Four detection thresholds  
Two for touch detection  
Two for proximity detection  
Four power modes  
Normal power mode  
Three low power modes  
Reference freeze timeout  
7.1  
Option byte description  
A set of tools is supplied by STMicroelectronics to program the user OTP options for  
prototyping purposes. Please refer to Section 12: STM8T141 development tools for more  
details.  
Note:  
Devices that are not yet programmed (“blank” devices) are delivered cleared (at value ‘0’) for  
all bits.  
Table 5.  
Option bytes  
Option  
byte  
no.  
Option bits  
Bit 4 Bit 3  
Factory  
default  
setting  
Bit 7  
Bit 6  
Bit 5  
Bit 2  
Bit 1  
Bit 0  
Charge  
transfer Reserved 0xX0  
frequency  
Sampling  
period  
OPT1  
OPT0  
Reserved  
Reference freeze  
timeout  
TOUT/POUT  
0x00  
Power mode  
Detection threshold  
output mode  
The user options allow the STM8T141 to be customized for each specific application.  
Default values for the oscillator, conversion rate (t  
settings should be used initially for first designs.  
), filter freeze and device reset  
SAMPLING  
18/50  
Doc ID 15699 Rev 7  
 
 
 
STM8T141  
Device operation  
Table 6.  
Option byte description  
Option  
byte no.  
Description  
Bits [7:3]: Reserved  
Bit 2: Sampling period (tSAMPLING)(Section 7.6: Sampling period)  
0: Conversion period is 20 ms  
1: Conversion period is 10 ms  
OPT1  
Bit 1: Charge transfer frequency (fTRANSFER)(Section 7.5: Charge transfer frequency)  
0: 125 kHz  
1: 250 kHz  
Bit 0: Reserved  
Bits [7:6]: Power mode (Section 7.4: Power modes)  
00: Low Power mode with Zoom  
01: Normal Power mode  
10: Extreme Low Power mode with Zoom  
11: Extreme Low Power mode  
Bits [5:4]: Detection threshold (Section 7.3: Detection threshold)  
00: Standard proximity  
01: Standard touch  
10: Sensitive proximity  
11: Sensitive touch  
OPT0  
Bits [3:2]: Reference freeze timeout (Section 5.3.2: Reference freeze timeout)  
00: 15-second reference freeze timeout  
01: 45-second reference freeze timeout  
10: Reserved  
11: Infinite reference freeze  
Bits [1:0]: TOUT/POUT output mode (Section 7.2: TOUT/POUT output mode)  
00: Active mode  
01: Toggle mode  
10: 3-second Latch mode  
11: 30-second Latch mode  
Doc ID 15699 Rev 7  
19/50  
 
Device operation  
STM8T141  
7.2  
TOUT/POUT output mode  
Four output modes are available on the STM8T141:  
Active mode  
Toggle mode  
3-second Latch mode  
30-second Latch mode  
For each output operation described, touch or proximity detection can be used. Upon the  
detection of either of these actions, the TOUT/POUT pin will latch high, otherwise the  
TOUT/POUT pin stays low. The detailed working of each user interface is described below.  
The TOUT/POUT pin is active high, and can source enough current to directly drive a LED.  
The pin is sourced from V when active. The TOUT/POUT pin always goes high for a  
DD  
minimum time of t  
. For more information, please refer to Section 9: Electrical  
HIGH  
characteristics.  
Bits [1:0] of option byte OPT0 are used to select the correct output mode.  
7.2.1  
Active  
Upon the detection of an actuation, the condition of the TOUT/POUT pin will change to high  
and stay high for as long as the touch or proximity detection condition occurs. Figure 12  
illustrates this output operation.  
Figure 12. Active mode output operation  
4OUCHꢉPROXIMITY DETECTION  
$ETECTION  
.O DETECTION  
T
4/54ꢉ0/54  
(IGH  
,OW  
T
ꢀꢂꢆ?ꢃꢁ  
20/50  
Doc ID 15699 Rev 7  
 
 
 
STM8T141  
Device operation  
7.2.2  
Toggle  
Upon the detection of an actuation, the TOUT/POUT pin will toggle between high and low.  
Thus if TOUT/POUT is low, an actuation will change it to high, and also if TOUT/POUT is  
high, an actuation will change it to low. Figure 13 illustrates this output operation.  
Figure 13. Toggle mode output operation  
4OUCHꢉPROXIMITY DETECTION  
$ETECTION  
.O DETECTION  
T
4/54ꢉ0/54  
(IGH  
T
,OW  
ꢀꢂꢆ?ꢃꢄ  
7.2.3  
3-second latch  
Upon the detection of an actuation the TOUT/POUT pin will latch high for 3 seconds  
minimum. If the actuation occurs for longer than 3 seconds, the TOUT/POUT pin will stay  
high and will only go low when the actuation stops.  
Figure 14. 3-second latch mode output operation  
4OUCHꢉPROXIMITY DETECTION  
$ETECTION  
.O DETECTION  
T
ꢎ 4IME THAT TOUCH OR PROXIMITY  
DETECTION IS STILL ACTIVE  
4/54ꢉ0/54  
ꢅ SEC  
ꢅ SEC  
ꢅ SEC  
(IGH  
,OW  
T
ꢀꢂꢆ?ꢃꢍ  
Doc ID 15699 Rev 7  
21/50  
 
 
 
 
Device operation  
STM8T141  
7.2.4  
30-second latch  
Upon the detection of an actuation, the TOUT/POUT pin will latch high. After 30 seconds  
from when the actuation stops, the TOUT/POUT pin will go low.  
If the TOUT/POUT pin is high and another actuation occur before the 30 seconds has  
expired, the counter will reset and only 30 seconds after the new actuation has stopped, will  
the TOUT/POUT pin go low. Figure 15 illustrates this output operation.  
Figure 15. 30-second latch mode output operation  
4OUCHꢉPROXIMITY DETECTION  
$ETECTION  
.O DETECTION  
T
4/54ꢉ0/54  
ꢅꢃ SEC  
ꢅꢃ SEC  
ꢅꢃ SEC  
(IGH  
,OW  
T
ꢀꢂꢆ?ꢀꢃ  
7.3  
Detection threshold  
The user has a choice between four detection threshold levels (D ) at which the touch or  
Th  
proximity detection condition is triggered. This depends on which threshold configuration is  
selected. See Table 7 for more details regarding the detection threshold selections.  
Bits [5:4] of option byte OPT0 are used to select the correct detection threshold levels.  
Table 7.  
Detection thresholds  
DTh setting  
Sensitivity  
Description  
Most sensitive Sensitive proximity threshold  
Standard proximity threshold  
Proximity for battery-powered applications.  
Proximity with good ground. Contact through   
3 mm acrylic glass and no ground.  
Contact through thin acrylic glass with battery  
application.  
Sensitive touch threshold  
Standard touch threshold  
Contact through thin dielectric with good ground.  
Least sensitive  
22/50  
Doc ID 15699 Rev 7  
 
 
 
 
STM8T141  
Device operation  
7.4  
Power modes  
The STM8T141 device offers four power modes. The low power modes are specifically  
designed for battery applications:  
Normal Power mode  
Low Power mode with Zoom  
Extreme Low Power mode with Zoom  
Extreme Low Power mode  
Burst cycles can occur either every 10 ms or 20 ms according to the selected sampling  
period (t ). By selecting low power modes, extra delays are interlaced between  
SAMPLING  
bursts. This improves the device current consumption at the expense of the response time.  
Bits [7:6] of option byte OPT0 are used to select the correct power mode.  
Table 8.  
Low power period according to selected power mode  
Power mode  
Condition  
tLP value  
Normal Power mode  
0
Touch or proximity detection  
Untouched  
0
Low Power mode with Zoom  
4 x tSAMPLING  
0
Touch or proximity detection  
Untouched  
Extreme Low Power mode with  
Zoom  
16 x tSAMPLING  
16 x tSAMPLING  
Extreme Low Power mode  
7.4.1  
Normal Power mode  
When in Normal Power mode, burst cycles occur at the rate of t  
. No extra delays  
SAMPLING  
are added between burst cycles (Figure 16).  
Figure 16. Charge cycle timing diagram in Normal Power mode  
CS  
Burst cycle duration  
t
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
Doc ID 15699 Rev 7  
23/50  
 
 
 
 
Device operation  
STM8T141  
7.4.2  
Low Power mode with Zoom  
With the STM8T141 in Low Power mode with Zoom, burst cycles occur every 5th t  
SAMPLING  
period (or 20% of the Normal Power mode).  
Once activity is detected, the STM8T141 device wakes up from Low Power mode with Zoom  
to Normal Power mode with charge cycles occurring every t  
return to Low Power mode after an end of low power period (t  
period. The device will  
) when no touch or  
SAMPLING  
ELP  
proximity detection conditions are detected. This enables the device to reduce power  
consumption when not in use, and still have a sufficient response time when needed  
(Figure 17).  
Figure 17. Charge cycle timing diagram in Low Power mode with Zoom  
CS  
Zoom to Normal mode after touch  
or proximity detection occurred  
Burst cycle  
duration  
t
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
tLP  
7.4.3  
Extreme Low Power mode with Zoom  
With the STM8T141 in Extreme Low Power Mode with Zoom, burst cycles only occur every  
17th t period (or 5.88% of the Normal Power mode).  
SAMPLING  
Once activity is detected, the STM8T141 device wakes up from Extreme Low Power mode  
and Zoom to Normal Power mode with charge cycles occurring every t . The device  
SAMPLING  
will return to Low Power mode after an end of low power period (t  
) when no touch or  
ELP  
proximity detection conditions are detected. This enables the device to reduce power  
consumption when not in use and still have a sufficient response time when needed  
(Figure 18).  
Figure 18. Charge cycle timing diagram in Extreme Low Power mode with Zoom  
CS  
Zoom to Normal mode after touch  
or proximity detection occurred  
Burst cycle every 17th tSAMPLING period  
t
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
tLP  
24/50  
Doc ID 15699 Rev 7  
 
 
 
 
STM8T141  
Device operation  
7.4.4  
Extreme Low Power mode  
With the STM8T141 in Extreme Low Power mode, burst cycles only occur every 17th  
t
t
period (or 5.88% of the Normal Power mode), thus adding 16 extra delays of  
between charge cycles to conserve power.  
SAMPLING  
SAMPLING  
This reduces the amount of burst cycles in Extreme Low Power mode even more than Low  
Power mode which in turn saves even more power but comes at the expense of a higher  
system response time (Figure 19).  
Figure 19. Charge cycle timing diagram in Extreme Low Power mode  
CS  
Burst cycle every 17th tSAMPLING period  
t
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
tLP  
7.5  
7.6  
Charge transfer frequency  
The STM8T141 offers two charge transfer frequencies. The charge transfer frequency must  
be adjusted depending on the C capacitor. The charge transfer frequency may need to be  
S
raised to 250 kHz in order to reduce t  
when the C capacitance is large.  
BURST  
S
125 kHz  
250 kHz  
Bit 1 of option byte OPT1 is used to select the correct charge transfer frequency.  
Sampling period  
The default sampling period (t  
) is configurable in order to allow different  
SAMPLING  
compromises between power consumption and conversion rates:  
20-ms sampling rate to reduce average power consumption  
10-ms sampling rate to increase detection response time  
When using a faster sampling rate (t  
modes will occur at twice the speed.  
= 10 ms), all the timing values of the Power  
SAMPLING  
BIt 2 of option byte OPT1 is used to select the correct conversion period.  
Doc ID 15699 Rev 7  
25/50  
 
 
 
 
Design guidelines  
STM8T141  
8
Design guidelines  
8.1  
Shield function  
The STM8T141 offers a built-in shielding function. This function provides the following  
advantages for designing the end-application:  
Sensing electrode separated from sealed electronics.  
Sensing wire shielded from unwanted environmental interferences.  
Enhanced proximity detection when used with battery (DC) applications.  
The shield principle consists in actively driving the shield plane or element with the same  
signal as that of the electrode. The parasitic capacitance between the electrode and the  
shield does not need to be charged anymore and its effect on the sensitivity is cancelled.  
Note:  
Grounding the shield reduces the sensitivity of the keys and may render the system  
unusable.  
8.1.1  
Shield application example  
Ideally, a coaxial cable is used for the shield. A R (typically 2 k) resistor should be  
X
connected to the C pin. The other side of the R resistor should be connected to the center  
X
X
core of the coaxial cable. The SHLDOUT pin should be connected to the metallic shield part  
of the coaxial cable. A pull-up resistor (R  
) should be added between SHLDOUT and  
SHIELD  
V
as shown in Figure 20.  
DD  
(a)  
The example shown in Figure 20 is given for R = 2 k, R  
= 100 k, and V = 5 V  
.
X
SHIELD  
DD  
This setup has been successfully implemented with a coaxial cable of up to 4 m.  
A longer coaxial cable could be used, but this would mean decreasing the R  
and consequently increasing current consumption.  
resistor,  
SHIELD  
Note:  
A smaller R  
Figure 20).  
ensures better shielding but increases current consumption (see  
SHIELD  
a. VDD must range from 4.5 to 5.5 V to use the shield function.Please refer to Table 12: Operating characteristics  
for the correct power supply operating voltage when using the shield function.  
26/50  
Doc ID 15699 Rev 7  
 
 
 
STM8T141  
Design guidelines  
Figure 20. Connecting the shield (coaxial cable implementation)  
V
DD  
Coaxial cable  
RSHIELD  
100 kΩ  
Plastic jacket  
Metal shield  
SHLDOUT  
Center core  
RX  
C
X
2 kΩ  
SHLDIN  
Dielectric insulator  
ai15527  
8.2  
Sensitivity adjustment  
Several factors impact device sensitivity:  
The sensing electrode material and size  
The touch panel material and thickness  
The board layout and in particular the sensing signal tracks  
The value of the sampling capacitor (C ) for proximity thresholds only  
S
The ground coupling of the object (finger or hand) and sensor.  
The touch or proximity detection threshold selected by the option byte.  
8.2.1  
8.2.2  
C influence on sensitivity  
S
In touch mode, the Cs capacitor value has no influence on the sensitivity as the thresholds  
are relative to the actual reference value. In proximity mode, the Cs value allows the  
sensivity to be tuned. A higher sampling capacitor value increases the resolution and the  
sensitivity but also the charging time. Decreasing the sampling capacitor value therefore  
decreases the sensitivity.  
For more details, please refer to application note AN2966.  
PCB layout and construction  
The PCB traces, wiring, and components associated or in contact with C pins become  
X
touch sensitive and should be treated with caution to limit the touch area to the desired  
location. As an example, multiple touch electrodes connected to a sensing channel can be  
used to create control surfaces on both sides of an object.  
It is important to limit the amount of stray capacitance on the C pin. This can be done by  
X
minimizing trace lengths and widths to achieve for higher gain without using higher values of  
C . To minimize cross-coupling, electrode traces from adjacent sensing channel should not  
S
run close to each other for long distances. For detailed information on the impacts of the first  
three factors, refer to application note AN2869.  
Doc ID 15699 Rev 7  
27/50  
 
 
 
 
Design guidelines  
STM8T141  
8.3  
Influence of power supply variation  
The stability of the device power supply is critical in order to provide a precise and  
repeatable capacitance measure. For this reason, a linear regulator is embedded into the  
device to provide the best power supply noise rejection possible.  
Even with the embedded regulator, variations of the power supply voltage may have an  
impact on the measured signal, especially in proximity configurations with a large  
acquisition gain and small detection threshold.  
A variation of the power supply voltage (V) induces a variation of the signal burst count  
(BC) according to Equation 1.  
Equation 1  
BC = G    V  
The gain, G, of the acquisition is the ratio Cs/Cx.  
The parameter Ϭ is the power supply rejection ratio.  
For stability reasons, it is advised to limit BC to less than half the detection threshold. If  
V
is less than 2.9 V, special care should be taken of the supply quality. An external  
DD  
voltage regulator may be necessary.  
28/50  
Doc ID 15699 Rev 7  
 
 
STM8T141  
Electrical characteristics  
9
Electrical characteristics  
9.1  
Parameter conditions  
Unless otherwise specified, all voltages are in reference to V  
.
SS  
9.1.1  
Minimum and maximum values  
Unless otherwise specified, the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature and supply voltage by tests in production on 100% of the  
devices with an ambient temperature at T = 25 °C and T = T max (given by the selected  
A
A
A
temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean 3 ).  
9.1.2  
9.1.3  
9.1.4  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, and V = 5 V. They are  
given only as design guidelines and are not tested.  
A
DD  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 21.  
Figure 21. Pin loading conditions  
Output pin  
50 pF  
Doc ID 15699 Rev 7  
29/50  
 
 
 
 
 
 
 
Electrical characteristics  
STM8T141  
9.2  
Absolute maximum ratings  
Stresses above those listed as “absolute maximum ratings” may cause permanent damage  
to the device. This is a stress rating only and functional operation of the device under these  
conditions is not implied. Exposure to maximum rating conditions for extended periods may  
affect device reliability.  
Table 9.  
Symbol  
VDD VSS Supply voltage  
Voltage characteristics  
Ratings  
Maximum value  
Unit  
5.5  
V
Table 10. Current characteristics  
Symbol  
Ratings  
Maximum value  
Unit  
IVDD  
IVSS  
Total current into VDD power lines (source)(1)  
Total current out of VSS ground lines (sink)(1)  
Output current sunk by output pin  
11  
11  
10  
10  
mA  
IIO  
Output current sourced by output pin  
1. All power (VDD) and ground (VSS) lines must always be connected to the external supply.  
Table 11. Thermal characteristics  
Symbol  
Ratings  
Storage temperature range  
Value  
Unit  
TSTG  
65 to +150  
°C  
Junction temperature range (SO8 narrow and UFDFPN8  
packages)  
TJ  
90  
°C  
9.3  
Operating conditions  
9.3.1  
General operating conditions and supply characteristics  
Table 12. Operating characteristics  
Symbol  
Parameter  
Condition  
Min. Max. Unit  
Shield feature not used  
Shield feature used  
2.0  
4.5  
5.5  
5.5  
VDD  
TA  
Supply voltage  
V
Operating temperature  
-
-40  
85  
°C  
Turn-on slope (Rise time  
rate)  
0
1
tVDD  
V/s  
Turn-off slope (Fall time  
rate)  
1(1)  
1. This constraint must be respected only if the voltage does not reach 0 V.  
30/50  
Doc ID 15699 Rev 7  
 
 
 
 
 
 
 
 
STM8T141  
Electrical characteristics  
9.3.2  
Average current consumption  
Test conditions: T = 25 °C, C = 20 pF, C = 47 nF and R = 2 k..  
A
X
S
X
Table 13. Average current consumption without shield  
Symbol  
Parameter  
Conditions  
Typ. Max. Unit  
Normal Power mode  
Low Power  
– Shield output unconnected  
– Shield input grounded  
30  
17  
45(1)  
IDD  
µA  
– Options other than Low Power are  
left in default configuration  
Extreme Low Power mode  
11  
1. Data based on characterization results, not tested in production.  
Note:  
Consumption does not depend on either detection threshold or acquisition rate.  
Figure 22. I average current consumption vs R  
DD  
SHIELD  
ꢀꢃꢃꢃꢃ  
%XT ,0  
ꢀꢃꢃꢃ  
ꢀꢃꢃ  
ꢀꢃ  
,0  
.0  
ꢀꢃꢃꢃ  
ꢀꢃꢃ  
2
ꢀꢃ  
ꢋK/HMSꢌ  
AIꢀꢁꢆꢈꢅ  
3()%,$  
1. ExtLP = External Low Power mode  
2. LP = Low Power mode  
3. NP = Normal Power mode  
Doc ID 15699 Rev 7  
31/50  
 
 
 
Electrical characteristics  
STM8T141  
9.3.3  
Output characteristics  
Table 14. Output pin characteristics  
Symbol  
Parameter  
Conditions  
Typ.  
Max.  
Unit  
I
LOAD = 8 mA  
1200  
540  
250  
650  
320  
400  
300  
4.7  
4.4  
3.9  
3.0  
2.7  
2.5  
1.8  
40  
1600  
750  
450  
1000  
500  
500  
500  
VDD = 5 V  
ILOAD = 4 mA  
ILOAD = 2 mA  
ILOAD = 4 mA  
ILOAD = 2 mA  
ILOAD = 2 mA  
ILOAD = 1 mA  
VOL  
mV  
VDD = 3.3 V  
VDD = 2.9 V  
VDD = 2.0 V  
ILOAD = –2 mA  
VDD = 5 V  
ILOAD = –4 mA  
ILOAD = –8 mA  
ILOAD = –2 mA  
ILOAD = –4 mA  
ILOAD = –2 mA  
ILOAD = -100 µA  
VOH  
V
VDD = 3.3 V  
VDD = 2.9 V  
VDD = 2.0 V  
tHIGH  
tLOW  
Output minimum high time  
Output minimum low time  
ms  
40  
9.4  
Regulator and reference voltage  
Table 15. Regulator and reference voltage  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Voltage regulator decoupling  
capacitance(1)  
Cref  
1
10  
µF  
Vreg  
Vtrip  
Regulated voltage during acquisition  
End of acquisition reference voltage  
2.1  
V
0.68  
1. Equivalent serial Rresistor 0.2 at 1 MHz.  
32/50  
Doc ID 15699 Rev 7  
 
 
 
 
STM8T141  
Electrical characteristics  
9.5  
Capacitive sensing characteristics  
.
(1)  
Table 16. General capacitive sensing characteristics  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Charge-transfer frequency at 125-kHz  
setting  
90  
125  
160  
fTRANSFER  
kHz  
Charge-transfer frequency at 250-kHz  
setting  
185  
250  
315  
Scanning period at 10-ms setting  
Scanning period at 20-ms setting  
Low Power  
7.5  
15  
10  
20  
12.5  
25  
tSAMPLING  
4 tSAMPLING  
ms  
tLP  
Extreme Low Power  
16 tSAMPLING  
Time before switching back to Low  
Power mode  
tELP  
540  
15 s reference freeze timeout  
45 s reference freeze timeout  
Burst detection  
11  
33  
32  
15  
45  
19  
57  
(2)  
tRFT  
s
tBURST  
DDC  
214  
tTRANSFER  
Counts  
Detection debounce count  
4
3
EDDC  
End of detection debounce count  
Proximity detection threshold  
Sensitive proximity detection threshold  
Touch detection threshold  
– 8  
– 2  
(3)  
DTh  
Counts  
Ref./16  
Ref./32  
Sensitive touch detection threshold  
Power supply rejection ratio VDDMIN  
VDD < 3 V)  
<
0.0250  
0.0005  
(4)  
Count/V  
Power supply rejection ratio (3.5 V < VDD  
< VDDMAX  
)
1. Values guaranteed by design.  
2. See tRFT in Figure 9: Reference freeze timeout.  
3. Reference value (Ref.) described in Section 5.3.3: Debounce filter on page 16.  
4. Between 3 V and 3.5 V, evolves as shown in Figure 23.  
Doc ID 15699 Rev 7  
33/50  
 
 
Electrical characteristics  
Figure 23. Sigma variation across V  
STM8T141  
DD  
ꢃꢏꢀ  
ꢃꢏꢃꢀ  
ꢃꢏꢃꢃꢀ  
ꢃꢏꢃꢃꢃꢀ  
6
ꢋ6ꢌ  
$$  
AIꢀꢁꢆꢈꢂ  
(1)  
Table 17. Response times  
Mode  
tSAMPLING = 10 ms tSAMPLING = 20 ms  
Unit  
Min.  
Max.  
Min.  
Max.  
Normal Power mode  
30  
30  
50  
60  
60  
100  
200  
Low Power with Zoom mode  
100  
250  
850  
ms  
Extreme Low Power with Zoom mode  
Extreme Low Power mode  
30  
60  
500  
510  
1020  
1700  
1. Values guaranteed by design.  
Table 18. External sensing component characteristics  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
CS  
CX  
CT  
RX  
Sampling capacitor (COG or NPO type)(1)  
Equivalent electrode capacitance  
Equivalent touch capacitance  
47  
2
14 x CX  
100  
nF  
pF  
5
2
Electrode serial resistance  
22  
kOhm  
RSHIELD Shield pull-up resistance  
1
1000  
1. For more information about capacitors, please refer to Application note: AN2966.  
34/50  
Doc ID 15699 Rev 7  
 
 
 
STM8T141  
Electrical characteristics  
9.6  
EMC characteristics  
Susceptibility and emission tests are performed on a sample basis during product  
characterization.  
Both the sample and its applicative hardware environment (Figure 10) are mounted on a  
dedicated specific EMC board defined in the IEC61967-1 standard.  
9.6.1  
Functional EMS (electromagnetic susceptibility)  
While running in the above described environment the product is stressed by two  
electromagnetic events until a failure occurs.  
ESD: Electrostatic discharge (positive and negative) is applied on all pins of the device  
until a functional disturbance occurs. This test complies with the IEC 1000-4-2  
standard.  
FTB: A burst of fast transient voltage (positive and negative) is applied to V and V  
DD  
SS  
through a 100 pF capacitor, until a functional disturbance occurs. This test complies  
with the IEC 1000-4-4 standard.  
A device reset allows normal operations to be resumed. The test results are given in  
Table 19 based on the EMS levels and classes defined in application note AN1709.  
9.6.2  
Prequalification trials  
Table 19. EMS data  
Symbol  
Parameter  
Conditions  
Level/class  
VDD 5 V, TA+25 °C, SO8  
(Narrow) package, complies  
with IEC 1000-4-2  
Voltage limits to be applied on any pin to  
induce a functional disturbance  
VFESD  
1B  
Fast transient voltage burst limits to be  
VDD5 V, TA+25 °C, SO8  
VEFTB applied through 100pF on VDD and VSS pins  
4A  
(Narrow) package, complies  
with IEC 1000-4-4  
to induce a functional disturbance  
Doc ID 15699 Rev 7  
35/50  
 
 
 
 
Electrical characteristics  
STM8T141  
9.6.3  
Electromagnetic interference (EMI)  
Emission tests conform to the IEC61967-2 standard for board layout and pin loading. Worse  
case EMI measurements are performed during maximum device activity.  
Table 20. EMI data  
RCOSC =  
500 kHz (1)  
Monitored  
frequency band  
Symbol  
Parameter  
General conditions  
Unit  
VDD 5 V, TA +25 °C,0.1 MHz to 30 MHz  
-4  
-9  
-6  
-1  
20  
-8  
-7  
15  
SO8 (Narrow) package,  
Complies with SAE  
J1752/3, No finger on  
touch electrode  
Peak level  
30 MHz to 130 MHz  
130 MHz to 1 GHz  
dBµV  
SAE EMI level  
Peak level  
SEMI  
VDD 5 V, TA +25 °C,0.1 MHz to 30 MHz  
SO8 (Narrow) package,  
Complies with SAE  
J1752/3, Finger on  
touch electrode  
30 MHz to 130 MHz  
130 MHz to 1 GHz  
dBµV  
SAE EMI level  
1. Data based on characterization results, not tested in production.  
9.6.4  
9.6.5  
Absolute maximum ratings (electrical sensitivity)  
Based on two different tests (ESD and LU) using specific measurement methods, the  
product is stressed in order to determine its performance in terms of electrical sensitivity.  
For more details, refer to the application note AN1181.  
Electrostatic discharge (ESD)  
Electrostatic discharges (3 positive then 3 negative pulses separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This test  
conforms to the JESD22-A114A/A115A standard. For more details, refer to the application  
note AN1181.  
Table 21. ESD absolute maximum ratings  
Maximum  
Symbol  
Ratings  
Conditions  
Class  
Unit  
value(1)  
TA +25°C, conforming  
to JESD22-A114  
Electrostatic discharge voltage  
(Human body model)  
VESD(HBM)  
A
2000  
V
V
TA +25°C, conforming  
to JESD22-C101  
Electrostatic discharge voltage  
(Charge device model)  
VESD(CDM)  
IV  
1000  
1. Data based on characterization results, not tested in production  
36/50  
Doc ID 15699 Rev 7  
 
 
 
 
 
STM8T141  
Electrical characteristics  
9.6.6  
Static latchup  
Two complementary static tests are required on 10 parts to assess the latchup performance.  
A supply overvoltage (applied to each power supply pin) and  
A current injection (applied to each input, output and configurable I/O pin) are  
performed on each sample.  
This test conforms to the EIA/JESD 78 IC latchup standard. For more details, refer to  
application note AN1181.  
Table 22. Electrical sensitivities  
Class(1)  
Symbol  
Parameter  
Conditions  
TA +25 °C  
TA +85 °C  
A
A
LU  
Static latchup class  
1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the  
JEDEC specifications, that means when a device belongs to class A it exceeds the JEDEC standard. B  
class strictly covers all the JEDEC criteria (international standard).  
Doc ID 15699 Rev 7  
37/50  
 
 
Package characteristics  
STM8T141  
10  
Package characteristics  
In order to meet environmental requirements, ST offers these devices in different grades of  
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®  
specifications, grade definitions and product status are available at www.st.com.  
ECOPACK® is an ST trademark.  
10.1  
Package mechanical data  
10.1.1  
SO8 package mechanical data  
Figure 24. SO8-lead plastic small outline - package outline  
h x 45˚  
A2  
A
c
ccc  
b
e
0.25 mm  
D
GAUGE PLANE  
k
8
1
E1  
E
L
A1  
L1  
SO-A  
38/50  
Doc ID 15699 Rev 7  
 
 
 
 
STM8T141  
Package characteristics  
Table 23. 8-lead plastic small outline - package mechanical data  
millimeters  
Typ.  
inches (1)  
Symbol  
Min.  
Max.  
Min.  
Typ.  
Max.  
A
-
-
1.750  
0.250  
-
-
-
0.0689  
0.0098  
-
A1  
A2  
b
0.100  
1.250  
0.280  
0.170  
-
-
0.0039  
0.0492  
0.0110  
0.0067  
-
-
-
-
-
0.480  
0.230  
0.100  
5.000  
6.200  
4.000  
-
-
0.0189  
0.0091  
0.0039  
0.1969  
0.2441  
0.1575  
-
c
-
-
ccc  
D (2)  
E
-
-
4.800  
5.800  
3.800  
-
4.900  
6.000  
3.900  
1.270  
-
0.1890  
0.2283  
0.1496  
-
0.1929  
0.2362  
0.1535  
0.0500  
-
E1 (3)  
e
h
0.250  
0°  
0.500  
8°  
0.0098  
0°  
0.0197  
8°  
k
-
-
L
0.400  
-
-
1.270  
-
0.0157  
-
-
0.0500  
-
L1  
1.040  
0.0409  
1. Values in inches are rounded to 4 decimal digits  
2. Dimension D does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs  
shall not exceed 0.15mm in total (both side).  
3. Dimension E1 does not include interlead flash or protrusions. Interlead flash or protrusions shall not  
exceed 0.25 mm per side.  
Doc ID 15699 Rev 7  
39/50  
 
Package characteristics  
STM8T141  
10.1.2  
UFDFPN8 package mechanical data  
Figure 25. UFDFPN8-lead ultra thin fine pitch dual flat package (MLP) package  
outline  
e
b
D
L1  
L3  
E
E2  
L
A
D2  
ddd  
A1  
UFDFPN-01  
Table 24. 8-lead ultra thin fine pitch dual flat - package mechanical data  
millimeters  
Typ  
inches (1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
0.450  
0.000  
0.200  
1.900  
1.500  
2.900  
0.100  
-
0.550  
0.020  
0.250  
2.000  
1.600  
3.000  
0.200  
0.500  
0.450  
-
0.600  
0.050  
0.300  
2.100  
1.700  
3.100  
0.300  
-
0.0177  
0.0000  
0.0079  
0.0748  
0.0591  
0.1142  
0.0039  
-
0.0217  
0.0008  
0.0098  
0.0787  
0.0630  
0.1181  
0.0079  
0.0197  
0.0177  
-
0.0236  
0.0020  
0.0118  
0.0827  
0.0669  
0.1220  
0.0118  
-
A1  
b
D
D2  
E
E2  
e
L
0.400  
-
0.500  
0.150  
-
0.0157  
-
0.0197  
0.0059  
-
L1  
L3  
0.300  
-
0.0118  
-
Tolerance  
ddd (2)  
millimeters  
0.080  
inches  
0.0031  
-
-
-
-
1. Values in inches are rounded to 4 decimal digits  
2. Applied for exposed die paddle and terminals. Exclude embedding part of exposed die paddle from  
measuring.  
40/50  
Doc ID 15699 Rev 7  
 
 
 
STM8T141  
Package characteristics  
10.2  
Package thermal characteristics  
The maximum chip junction temperature (T  
) must never exceed the values given in  
Jmax  
Table 12: Operating characteristics on page 30.  
The maximum chip-junction temperature, T  
using the following equation:  
, in degrees Celsius, may be calculated  
Jmax  
T
= T  
+ (P  
x )  
Jmax  
Amax  
Dmax JA  
Where:  
T
is the maximum ambient temperature in C  
Amax  
is the package junction-to-ambient thermal resistance in C/W  
JA  
P
is the sum of P  
and P  
(P  
= P  
+ P  
)
I/Omax  
Dmax  
INTmax  
I/Omax  
Dmax  
INTmax  
P
is the product of I and V , expressed in Watts. This is the maximum chip  
INTmax  
DD  
DD  
internal power.  
P
I/Omax  
represents the maximum power dissipation on output pins  
Where:  
= (V *I ) + ((V -V )*I ),   
P
I/Omax  
OL OL  
DD OH OH  
taking into account the actual V /I and V /I of the I/Os at low and high level in  
OL OL  
OH OH  
the application.  
(1)  
Table 25. Thermal characteristics  
Symbol  
Parameter  
Thermal resistance junction-ambient  
Value  
Unit  
JA  
130  
°C/W  
SO8 (Narrow)  
Thermal resistance junction-ambient  
UFDFPN 8 (2 x 3 mm)  
JA  
120  
°C/W  
1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection  
environment.  
10.2.1  
Reference document  
JESD51-2 integrated circuits thermal test method environment conditions - natural  
convection (still air). Available from www.jedec.org.  
Doc ID 15699 Rev 7  
41/50  
 
 
 
Ordering information  
STM8T141  
11  
Ordering information  
11.1  
STM8T141 ordering information scheme  
Figure 26. STM8T141 ordering information scheme  
Example:  
STM8T 141  
A
M
XXXY TR  
Device type  
STM8T: ST touch sensing MCU  
Device sub-family  
141 = 1 channel/proximity  
Pin count  
A: 8 pins  
Package  
M: S08 (small outline)  
U: FPN (dual flat no lead)  
Device configuration  
XXXY: device with specific configuration(1)  
61T: OTP blank device (all user bits set to 0)(2)  
Packing  
No character: tray or tube  
TR: tape and reel  
1. See Table 26: Orderable favorite device lists and the explanation below of “in factory option byte  
programming service”  
2. The STM8T141 OTP devices are available for production and development. These parts are blank devices  
with unconfigured option bytes (all option bits are set to ‘0’). For more   
information, please refer to Section 7: Device operation.  
42/50  
Doc ID 15699 Rev 7  
 
 
 
 
STM8T141  
Ordering information  
11.2  
Orderable favorite device lists  
Table 26. Orderable favorite device lists  
(1)  
Option byte configuration  
Part numbers  
UFDFPN8  
Config.  
Charge  
transfer  
frequency  
Reference  
freeze  
timeout  
TOUT/  
POUT output  
mode  
Sampling  
period  
Power  
modes  
Detection  
threshold  
SO8  
Default  
config.  
(OTP)  
Low Power  
mode with  
zoom  
Standard  
proximity  
20 ms  
20 ms  
125 kHz  
125 kHz  
15 s  
Active mode  
Active mode  
STM8T141AM61T  
Not yet available  
STM8T141AU61TTR  
Low Power  
mode with  
zoom  
STM8T141AUMAJ1TR  
Sensitive  
touch  
Infinite  
(XXXY = MAJ1)  
1. Please refer to Section 7: Device operation.  
11.3  
In-factory option byte programming service  
For specific configurations not listed in Table 26: Orderable favorite device lists, in-factory  
option byte programming is available on customer request and for large order quantities.  
Customers have to fill out the option list (see below) and send it back to STMicroelectronics.  
Customers are then informed by STMicroelectronics about the ordering part number  
corresponding to the customer configuration. The XXXY parameter of the final ordering part  
number (e.g. STM8T141AMXXXY) depends on the device configuration and is assigned by  
STMicroelectronics.  
Doc ID 15699 Rev 7  
43/50  
 
 
 
Ordering information  
STM8T141  
STM8T141 programming service option list  
(last update: February 2010)  
Customer name:  
Address:  
Contact name:  
Phone number:  
Select the package type (tick one box)  
STM8T141AM6 - S08 or  
"
STM8T141AU6 – DFN8  
"
Customer settings  
(tick one box by option)  
Sampling period (see Section 7.6: Sampling period)  
" 10 ms sampling period  
" 20 ms sampling period(1)  
Charge transfer frequency (see Section 7.5: Charge transfer frequency)  
" 125 kHz(1)  
" 250 kHz  
Power modes (see Section 7.4: Power modes)  
" Normal Power mode  
" Low Power mode with Zoom(1)  
" Extreme Low Power mode with Zoom  
" Extreme Low Power mode  
Detection threshold (see Section 7.3: Detection threshold)  
" Sensitive proximity  
" Standard proximity(1)  
" Sensitive touch  
" Standard touch  
Reference freeze timeout (see Section 5.3.2:Reference freeze timeout)  
" 15-second reference freeze timeout(1)  
" 45-second reference freeze timeout  
" Infinite reference freeze  
TOUT/POUT output mode (see Section 7.2: TOUT/POUT output mode)  
" Active mode(1)  
" Toggle mode  
" 3-second Latch mode  
" 30-second Latch mode  
Packaging  
" Tape & reel  
" Tube  
Comment :  
Date  
Signature :  
1. Configuration by default in OTP devices.  
44/50  
Doc ID 15699 Rev 7  
STM8T141  
STM8T141 development tools  
12  
STM8T141 development tools  
STM8T141 evaluation kit  
The STM8T141-EVAL is an evaluation kit which introduces developers to the STM8T141. It  
contains an STM8T141 evaluation board, plus a set of preconfigured plug-in modules which  
allow the STM8T141 device performances to be evaluated in either touch or proximity  
detection.  
Figure 27. STM8T141-EVAL evaluation kit  
Doc ID 15699 Rev 7  
45/50  
 
 
STM8T141 development tools  
STM8T141  
STM8T141 “blank” modules  
An additional box of 10 STM8T141 “blank” modules (STM8T141AM-MOD) can be ordered  
separately, where the device option bytes are left unprogrammed (see Figure 28).  
Figure 28. STM8T141 blank module box  
1. The above figure is not binding.  
46/50  
Doc ID 15699 Rev 7  
 
STM8T141  
STM8T141 development tools  
Programming tool  
Figure 29 shows the STM8T141-EVAL programming tool.  
To program the device option bytes so that the device can be tested in different  
configurations, the following materials are available:  
A programming socket board (STM8T14X-SB). When connected to the programming  
dongle, this board allows SO8 and DFN8 devices as well as plug-in modules delivered  
in the evaluation kit to be programmed.  
A programming dongle (ST-TSLINK) and its associated programming software, STVP.  
Figure 29. STM8T141-EVAL programming tool  
Programming socket boards (STM8T14X-SB)  
Programming dongle (ST-TSLINK)  
Ordering information  
Table 27. Ordering information  
Part number  
Order codes  
Description  
STM8T141-EVAL  
STM8T141-EVAL  
STM8T141 evaluation kit  
Box containing 10 blank modules based on  
STM8T141AM61T (OTP device in SO8  
package)  
STM8T-MOD  
STM8T141AM-MOD  
ST-TSLINK  
ST-TSLINK(1)  
STM8T141 programming dongle  
STM8T141 socket board  
STM8T14X-SB  
STM8T14X-SB(1)  
1. The ST-TSLINK dongle and the STM8T14X-SB socket board are not part of the STM8T141-EVAL  
evaluation kit, and consequently must be ordered separately.  
Doc ID 15699 Rev 7  
47/50  
 
 
 
 
Revision history  
STM8T141  
13  
Revision history  
Table 28. Document revision history  
Date  
Revision  
Changes  
09-Jun-2009  
1
Initial release.  
VDD range changed to 2.9 to 5.5V. Table 12 and Table 14 updated.  
Internal voltage regulator bypassed configuration removed.  
IDDLP removed from Table 13.  
02-Jul-2009  
31-Jul-2009  
2
3
Upgraded document from Preliminary Data to full Datasheet.  
Updated oscillator information in Figure 1: STM8T141 block diagram  
on page 8.  
Added detection threshold values in Table 16: General capacitive  
sensing characteristics on page 33.  
Updated values in Table 17: Response times on page 34.  
Updated Section 11: Ordering information.  
Section 11.2: Orderable favorite device lists: added information on  
option byte programming; added option list.  
05-Oct-2009  
4
Added Section 12: STM8T141 development tools  
Lower operating supply voltage changed from 2.9 V to 2.0 V. The  
following tables were impacted: Table 1: Device summary, Table 12:  
Operating characteristics, Table 13: Average current consumption  
without shield, Table 16: General capacitive sensing characteristics,  
and Table 16: General capacitive sensing characteristics.  
Introduced trademark for ProxSense (ProxSense™)  
Throughout document, “sensitivity threshold or level” replaced with  
“detection threshold”, “automatic recalibration” with “reference freeze  
timeout”, “STH” with “DTh”, and “SO” with “SO8”.  
Section 2: Block diagram: replaced ‘capacitive sensing engine’ with  
‘ProxSense engine’.  
Added Figure 3: UFDFPN8 pinout.  
Updated Table 2: STM8T141 pin descriptions.  
Renamed Section 4 as STM8T ProxSense technology  
24-Feb-2010  
5
Renamed Section 4.2 as Charge transfer acquisition principle and  
updated text.  
Figure 5: STM8T measuring circuitry: updated.  
Figure 6: Conversion period examples: updated.  
Sections 4.3 renamed Section 5: STM8T processing. Section re-  
organised and reworked with new figures and tables added.  
Section 6: Typical application diagram: removed introductory text;  
modified Figure 10, modified footnote 1, added footnote 2, added text  
regarding RSHIELD resistor, define a touch or proximity detection.  
Section 7: Device operation: Re-organisation of text; removed  
reference related to low power modes.  
Section 7.1: Option byte description: added reference to Section 12.  
Table 5: Option bytes: updated factory default setting of OPT1,  
recalibration timeout renamed reference freeze timeout.  
48/50  
Doc ID 15699 Rev 7  
 
 
STM8T141  
Revision history  
Table 28. Document revision history (continued)  
Date  
Revision  
Changes  
Section 7.2.1, Section 7.2.2, Section 7.2.3, and Section 7.2.4:  
replaced “output configuration” with “output operation”.  
Section 7.2.3: 3-second latch: removed some text concerning the  
TOUT/POUT pin.  
Renamed Section 7.3: Detection threshold.  
Section 7.4: Power modes: small text changes; Table 8 moved to this  
section from Section 7.4.4: Extreme Low Power mode.  
Section 8.1: Shield function: removed text about RSHIELD  
.
Figure 20: Connecting the shield (coaxial cable implementation):  
amended ohm symbol.  
Section 8.2: Sensitivity adjustment/ added text regarding sensitivity;  
updated bullet points.  
Added Section 8.3: Influence of power supply variation.  
Table 12: Operating characteristics: added tVDD data.  
Section 9.3.2: Average current consumption: for test conditions,   
100 nF replaced with 47 nF; modified Table 13 and note underneath  
it; added Figure 22.  
24-Feb-2010  
5 cont’d  
Table 14: Output pin characteristics: removed tVDD data.  
Added Section 9.4: Regulator and reference voltage and Table 15.  
Section 9.5: Capacitive sensing characteristics: amended Table 16  
for values of fTRANSFER, tRFT, and tBURST; updated symbols for tRFT  
,
DTh, and ; added Figure 23.  
Table 18: External sensing component characteristics: modified CS  
parameter and RSHIELD min value.  
Section 11: Ordering information: updated Figure 26; added  
Section 11.2 and Section 11.3.  
Section 11.2: Orderable favorite device lists: updated ordering part  
number; added footnote to option list concerning default  
configuration of OPT devices, added packaging information to the  
option list, updated headings and date.  
Section 12: STM8T141 development tools: replaced STM8T1X1 with  
STM8T141.  
01-Apr-2010  
28-Jun-2011  
6
7
Added that ProxSense™ is a trademark of Azoteq.  
Figure 26: STM8T141 ordering information scheme: updated  
footnote 2.  
Programming tool: replaced STM8T141-SB with STM8T14X-SB.  
Figure 29: STM8T141-EVAL programming tool: replaced  
STM8T141-SB with STM8T14X-SB.  
Table 27: Ordering information: replaced STM8T1X1-EVAL and  
STM8T141-SB with STM8T141-EVAL and STM8T14X-SB  
respectively.  
Doc ID 15699 Rev 7  
49/50  
STM8T141  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2011 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
50/50  
Doc ID 15699 Rev 7  

相关型号:

STM8T143

Single-channel capacitive sensor for touch and proximity detection
STMICROELECTR

STM8T143-EVAL

STM8T143-EVAL evaluation board
STMICROELECTR

STM8T143AM61T

PROXIMITY SENSOR-CAPACITIVE
STMICROELECTR

STM8T143AM62T

PROXIMITY SENSOR-CAPACITIVE
STMICROELECTR

STM8T143AU61T

PROXIMITY SENSOR-CAPACITIVE
STMICROELECTR

STM8T143AU61TTR

PROXIMITY SENSOR-CAPACITIVE, RECTANGULAR, SURFACE MOUNT, 2 X 3 MM, ROHS COMPLIANT, UFDFPN-8
STMICROELECTR

STM8T143AU62T

PROXIMITY SENSOR-CAPACITIVE
STMICROELECTR

STM8T143AU62TTR

Single-channel capacitive sensor for touch and proximity detection
STMICROELECTR

STM8T143AULET2TR

PROXIMITY SENSOR-CAPACITIVE
STMICROELECTR

STM8T143AUMEI2TR

Single-channel capacitive sensor for touch and proximity detection
STMICROELECTR

STM8T143AUTAB2TR

PROXIMITY SENSOR-CAPACITIVE
STMICROELECTR

STM8T14X-SB

STM8T14x device programming
STMICROELECTR