STOD03B [STMICROELECTRONICS]

Step-up with LDO and inverter converters;
STOD03B
型号: STOD03B
厂家: ST    ST
描述:

Step-up with LDO and inverter converters

文件: 总22页 (文件大小:934K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STOD03B  
150 mA dual DC-DC converter with LDO  
for powering AMOLED displays  
Features  
Step-up with LDO and inverter converters  
Operating input voltage range from 2.3 V to  
4.8 V  
Synchronous rectification for both DC-DC  
converters  
Minimum 150 mA output current  
LDO post regulator for 4.6 V fixed positive  
output to provide line and load transient  
response with minimum output voltage ripple  
DFN12L (3 x 3 mm)  
Programmable negative voltage by S  
from  
WIRE  
- 2.4 V to -5.4 V at 100 mV steps  
Description  
Typical efficiency: 82%  
The STOD03B is a dual DC-DC converter for  
AMOLED display panels. It integrates a step-up  
and an inverting DC-DC converter making it  
particularly suitable for battery operated products,  
in which the major concern is the overall system  
efficiency. It works in pulse skipping mode during  
low load conditions and PWM-MODE at 1.5 MHz  
frequency for medium/high load conditions. The  
high frequency allows the value and size of  
external components to be reduced. The 4.6 V  
output is provided by an LDO in cascade with the  
step-up converter. This allows a noise and ripple  
free positive output for the AMOLED panel to  
provide stable picture quality. The Enable pin  
allows the device to be turned off, therefore  
reducing the current consumption to less than  
1 µA. The negative output voltage can be  
Pulse skipping mode in light load condition  
1.5 MHz PWM mode control switching  
frequency  
Enable pin for shutdown mode  
Low quiescent current in shutdown mode  
Soft-start with inrush current protection  
Overtemperature protection  
Temperature range: -40 °C to 85 °C  
True-shutdown mode  
Package DFN (3 x 3) 12 leads 0.6 mm height  
Applications  
Active matrix AMOLED power supply in  
portable devices  
programmed by an MCU through a dedicated pin  
which implements single-wire protocol. Soft-start  
with controlled inrush current limit and thermal  
shutdown are integrated functions of the device.  
Cellular phones  
Camcorders and digital still cameras  
Multimedia players  
Table 1.  
Device summary  
Order code  
Positive voltage  
Negative voltage  
Package  
Packaging  
STOD03BTPUR  
December 2011  
4.6V  
- 2.4V to - 5.4V  
DFN12L (3 x 3mm)  
3000 parts per reel  
Doc ID 022613 Rev 1  
1/22  
www.st.com  
22  
 
Contents  
STOD03B  
Contents  
1
2
3
4
5
6
Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Typical performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Detailed description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
6.1  
SWIRE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
6.1.1  
6.1.2  
6.1.3  
S
S
S
features and benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
basic operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
WIRE  
WIRE  
WIRE  
6.2  
6.3  
Negative output voltage levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Enable and S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
WIRE  
7
8
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
7.1  
7.2  
External passive components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
7.1.1  
7.1.2  
Inductor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Input and output capacitor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Recommended PCB layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Detailed description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
8.1  
General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
8.1.1  
8.1.2  
8.1.3  
8.1.4  
8.1.5  
Multiple operation modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Enable pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Soft-start and inrush current limiting . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Undervoltage lockout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Overtemperature protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
9
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
10  
2/22  
Doc ID 022613 Rev 1  
STOD03B  
Schematic  
1
Schematic  
Figure 1.  
Application schematic  
L1  
VBAT  
CIN  
VO1  
VO2  
CMID  
CO1  
S-Wire  
STOD03B  
EN  
CO2  
CREF  
L2  
AM10428v1  
Table 2.  
Typical external components  
Comp. Manufacturer  
Part number  
Value  
Size  
Ratings  
COILCRAFT  
LPS4012-472ML  
LQH3NPN4R7MJ0  
CIG22B4R7MNE  
LPF2810T-4R7M  
LPF2807T-4R7M  
4.0 x 4.0 x 1.2  
3.0 x 3.0 x 1.1  
20%, curr. 1.7A, res. 0.175Ω  
20%, curr. 1.1A, res. 0.156Ω  
20%, curr. 1.1A, res. 0.300Ω  
20%, curr. 0.85A, res. 0.33Ω  
20%, curr. 0.70A, res. 0.44Ω  
MURATA  
(1)  
L1  
SEMCO  
ABCO  
ABCO  
4.7µH 2.5 x 2.0 x 1.0  
2.8 x 2.8 x 1.0  
2.8 x 2.8 x 0.7  
LPS4012-472ML  
COILCRAFT  
MURATA  
TOKO  
4.0 x 4.0 x 1.2  
20%, curr. 1.7A, res. 0.175Ω  
20%, curr. 1.1A, res. 0.156Ω  
30%, curr. 1.2A, res. 0.252Ω  
20%, curr. 0.70A, res. 0.44Ω  
LQH3NPN4R7MJ0  
3.0 x 3.0 x 1.1  
4.7µH  
(2)  
L2  
DFE252012C 1239AS-H-  
4R7N  
2.5 x 2.0 x 1.2  
ABCO  
2.8 x 2.8 x 0.7  
LPF2807T-4R7M  
MURATA  
GRM219R61A106KE44  
LMK212BJ106KD-T  
0805  
10µF  
10%, X5R, 10V  
10%, X5R, 10V  
CIN  
TAIYO YUDEN  
0805  
MURATA  
GRM219R61A106KE44  
LMK212BJ106KD-T  
0805  
10µF  
10%, X5R, 10V  
10%, X5R, 10V  
CO1  
CO2  
TAIYO YUDEN  
0805  
MURATA  
GRM219R61A106KE44  
LMK212BJ106KD-T  
0805  
10µF  
10%, X5R, 10V  
10%, X5R, 10V  
TAIYO YUDEN  
0805  
Doc ID 022613 Rev 1  
3/22  
Schematic  
Table 2.  
STOD03B  
Typical external components (continued)  
Comp. Manufacturer  
Part number  
Value  
Size  
Ratings  
MURATA  
CMID  
GRM219R61A106KE44  
LMK212BJ106KD-T  
0805  
0805  
10%, X5R, 10V  
10%, X5R, 10V  
10µF  
TAIYO YUDEN  
MURATA  
CREF  
GRM185R60J105KE26  
JMK107BJ105KK-T  
0805  
0805  
10%, X5R, 10V  
10%, X5R, 10V  
1µF  
TAIYO YUDEN  
1. A 200 mA load can be provided with inductor saturation current as a minimum of 0.6 A.  
2. For VO2 in a range between - 4.9 V to -5.4 V, a load current of 150 mA to 200 mA can be provided using inductors with a  
saturation current as a minimum of 1 A. See Section 7.1.1.  
Note:  
All the above components refer to the typical application performance characteristics.  
Operation of the device is not limited to the choice of these external components. Inductor  
values ranging from 3.3 µH to 6.8 µH can be used together with STOD03B.  
Figure 2.  
Block schematic  
VINP  
LX1  
VINA  
VMID  
LDO  
VO1  
S-WIRE  
EN  
VO2  
VREF  
AGND  
PGND  
AM10429v1  
LX2  
4/22  
Doc ID 022613 Rev 1  
STOD03B  
Pin configuration  
2
Pin configuration  
Figure 3.  
Pin configuration (top view)  
Table 3.  
Pin description  
Pin n°  
Pin name  
Description  
Lx1  
PGND  
VMID  
1
2
3
4
5
Boost converter switching node  
Power ground pin  
Step-up converter output voltage (4.9V)  
4.6V fixed LDO output  
VO1  
AGND  
Signal ground pin. This pin must be connected to the power ground layer  
Voltage reference output. 1µF bypass capacitor must be connected  
between this pin and AGND  
VREF  
SWIRE  
EN  
6
7
8
Negative voltage setting pin.  
Enable control pin. High 1  
converter on; low or floating = converter in shutdown mode (1)  
VO2  
Lx2  
9
Inverting converter output voltage  
Inverting converter switching node  
Analogic input supply voltage  
Power input supply voltage  
10  
11  
12  
VIN A  
ViN P  
Internally connected to AGND. Exposed pad must be connected to ground  
layers in the PCB layout in order to guarantee proper operation of the  
device  
Exposed  
pad  
1. No pull-up/pull-down resistors are needed.  
Doc ID 022613 Rev 1  
5/22  
Maximum ratings  
STOD03B  
3
Maximum ratings  
Table 4.  
Absolute maximum ratings  
Parameter  
Symbol  
INA, VINP  
Value  
Unit  
V
DC supply voltage  
-0.3 to 6  
-0.3 to 4.6  
V
V
EN, SWIRE  
ILX2  
Logic input pins  
Inverting converter switching current  
Inverting converter switching node voltage  
Inverting converter output voltage  
LDO and step-up converter output voltage  
Step-up converter switching node voltage  
Step-up converter switching current  
Reference voltage  
Internally limited  
-10 to VINP+0.3  
-10 to AGND+0.3  
-0.3 to 6  
A
LX2  
V
VO2  
V
VO1, VMID  
V
LX1  
-0.3 to VMID+0.3  
Internally limited  
-0.3 to 3  
V
ILX1  
VREF  
PD  
A
V
Power dissipation  
Internally limited  
-65 to 150  
mW  
°C  
°C  
kV  
kV  
TSTG  
TJ  
Storage temperature range  
Maximum junction temperature  
Human Body Model Protection  
Machine Body Model Protection  
150  
± 2  
ESD  
± 200  
Note:  
Absolute maximum ratings are those values beyond which damage to the device may occur.  
Functional operation under these condition is not implied.  
Table 5.  
Thermal data  
Symbol  
Parameter  
Value  
Unit  
RthJA  
RthJC  
Thermal resistance junction-ambient  
33  
°C/W  
°C/W  
Thermal resistance junction-case (FR-4 PCB) (1)  
2.12  
1. The package is mounted on a 4-layer (2S2P) JEDEC board as per JESD51-7.  
6/22  
Doc ID 022613 Rev 1  
STOD03B  
Electrical characteristics  
4
Electrical characteristics  
T = 25 °C, V  
= V  
= 3.7 V, I  
= 30 mA, C = 2 x10 µF, C  
= 2 x10 µF, C = 10 µF,  
MID O1  
J
INA  
INP  
O1,2  
IN  
C
V
= 2 x10 µF, C  
= -4.9 V unless otherwise specified.  
= 1 µF, L1 = L2 = 4.7 µH, V = 2 V, V  
= 4.9 V, V = 4.6 V,  
O2  
O2  
REF  
EN  
MID O1  
Table 6.  
Symbol  
Electrical characteristics  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
General section  
INA, VINP Supply input voltage  
V
2.3  
1.9  
4.8  
V
V
V
UVLO_H  
UVLO_L  
Undervoltage lockout HIGH  
Undervoltage lockout LOW  
VINA rising  
INA falling  
No load condition (sum of  
2.22  
2.18  
2.25  
V
I_VI  
Input current  
1.3  
1.7  
1
mA  
µA  
VINA and VINP  
)
VEN=GND (sum of VINA and  
VINP); TJ=-40°C to +85°C;  
IQ_SH  
Shutdown current  
V
EN H  
Enable high threshold  
Enable low threshold  
1.2  
V
INA=2.3V to 4.8V,  
V
TJ=-40°C to +85°C;  
VEN  
IEN  
fS  
L
0.4  
1
VEN=VINA=4.8V;  
TJ=-40°C to +85°C;  
Enable input current  
Switching frequency  
µA  
PWM mode  
1.35  
1.5  
87  
87  
1.65  
MHz  
%
D1MAX  
D2MAX  
Step-up maximum duty cycle No load  
Inverting maximum duty cycle No load  
%
I
O1,O2=10 to 30mA,  
75  
%
VO1=4.6V, VO2=-4.9V  
η
Total system efficiency  
IO1,O2=30 to 150mA,  
82  
%
V
V
O1=4.6V, VO2=-4.9V  
VREF  
IREF  
Voltage reference  
IREF=10µA  
1.195  
100  
1.207  
1.219  
Voltage reference current  
capability  
At 98.5% of no load  
reference voltage  
µA  
°C  
°C  
OTP  
Overtemperature protection  
140  
15  
Overtemperature protection  
hysteresis  
OTPHYST  
Positive output section  
VINA=VINP=2.3V to 4.8V;  
VO1  
Positive voltage total variation TJ=-40°C to +85°C; IO1=5mA  
to 150mA, IO2 no load  
4.554  
4.6  
4.646  
V
VINA,P=3.5V to 3.0V,  
Line transient  
ΔVO1LT  
ΔVO1T  
-12  
20  
mV  
mV  
IO1=100mA; TR=TF=50µs  
IO1=3 to 30mA and IO1=30 to  
Load transient regulation  
3mA, TR=TF=150µs  
Doc ID 022613 Rev 1  
7/22  
Electrical characteristics  
STOD03B  
Table 6.  
Symbol  
Electrical characteristics (continued)  
Parameter  
Test conditions  
Min.  
Typ.  
Max  
Unit  
IO1=5 to 100mA; IO2 no load  
TDMA Noise TDMA noise immunity  
IO1 MAX Max. output current  
20  
mV  
mA  
(1)  
VINA,P=2.9V to 4.8V  
150  
4.8  
VINA=VINP=2.9V to 4.8V;  
Positive voltage total variation IMID=5mA to 150mA;  
IO2 no load; TJ=25°C  
4.9  
5.0  
0.5  
V
VMID  
VINA=VINP=3.7V; IMID=5mA;  
Temperature accuracy  
IO2 no load; TJ=-40 to  
+85°C;  
-05  
1
%
Step-up inductor peak  
current  
VMID 10% below nominal  
value  
I-L1MAX  
1.1  
1.6  
0.7  
A
Ω
Ω
P-channel Static Drain-  
source On resistance  
VINA=VINP=3.7V,  
ISW-P1=100mA  
RDSONP1  
1.0  
0.4  
N-channel Static Drain-  
source On resistance  
VINA=VINP=3.7V,  
ISW-P1=100mA  
RDSONN1  
Negative output  
Negative output voltage  
31 different values set by the  
SWIRE pin (see SWIRE)  
-5.4  
-2.4  
V
V
range  
VINA=VINP=2.9V to 4.8V;  
TJ=25°C; IO2=5mA to  
150mA, IO1 no load  
Negative output voltage total  
variation on default value  
-4.97  
-4.9  
-4.83  
VO2  
VINA=VINP=3.7V; IO2=5mA;  
Temperature accuracy  
IO2 no load;  
-0.5  
0.5  
%
TJ=-40°C to +85°C  
VINA,P=3.5V to 3.0V,  
IO2=100mA, TR=TF=50µs  
ΔVO2LT  
Line transient  
+12  
20  
mV  
mV  
mV  
IO2=3 to 30mA and IO2=30 to  
3mA, TR=TF=150µs  
Load transient regulation  
Load transient regulation  
ΔVO2T  
IO2=10 to 100mA and IO2=100  
25  
25  
to 10mA, TR=TF=150µs  
IO2=5 to 100mA; IO1 no load  
VINA,P=2.9V to 4.8V  
TDMA Noise TDMA noise immunity  
mV  
mA  
IO2 MAX  
I-L2MAX  
Maximum output current  
Inverting peak current  
-150  
-1.2  
VO2 below 10% of nominal  
value  
-0.9  
0.8  
0.8  
A
Ω
Ω
P-channel Static Drain-  
source On resistance  
VINA=VINP=3.7V;  
ISW-P2=100mA  
RDSONP2  
RDSONN2  
0.42  
0.43  
N-channel Static Drain-  
source On resistance  
VINA=VINP=3.7V;  
ISW-P2=100mA  
1. VINA,P = 4.2 to 3.7 V, 3.7 to 3.2 V, 3.4 to 2.9 V, f = 200 Hz, tON = 3.65 ms, tOFF = 1.25 ms, TR = TF = 50 µs, pulse signal.  
8/22  
Doc ID 022613 Rev 1  
STOD03B  
Typical performance characteristics  
5
Typical performance characteristics  
V
= -4.9 V; T = 25 °C; See Table 1. for external components used in the tests below.  
J
O2  
Figure 4.  
Max power output vs. V  
Figure 5.  
Efficiency vs. output current  
IN  
Figure 6.  
Positive output operation  
Figure 7.  
Negative output operation  
IO2 = 100 mA  
IO1 = 100 mA  
Figure 8.  
Soft-start inrush current  
Figure 9.  
Output current vs. input voltage  
VINA = VINAP = 2.3 to 4.8 V, VO1 = 4.6 V  
IO = 200 mA, VO2 = - 4.9 V  
Doc ID 022613 Rev 1  
9/22  
Detailed description  
STOD03B  
6
Detailed description  
6.1  
SWIRE  
Protocol: to digitally communicate over a single cable with single-wire components  
Single-wire’s 3 components:  
1. An external MCU  
2. Wiring and associated connectors  
3. STOD03B device with a dedicated single-wire pin.  
6.1.1  
S
features and benefits  
WIRE  
Fully digital signal  
No handshake needed  
Protection against glitches and spikes though an internal low pass filter acting on falling  
edge  
Uses a single wire (plus analog ground) to accomplish both communication and power  
control transmission  
Simplify design with an interface protocol that supplies control and signaling over a  
single-wire connection to set the output voltages.  
6.1.2  
S
protocol  
WIRE  
Single-wire protocol uses conventional CMOS/TTL logic levels (maximum 0.6 V for  
logic “zero” and a minimum 1.2 V for logic “one”) with operation specified over a supply  
voltage range of 2.3 V to 4.8 V  
Both master (MCU) and slave (STOD03B) are configured to permit bit sequential data  
to flow only in one direction at a time; master initiates and controls the device  
Data is bit-sequential with a START bit and a STOP bit  
Signal is transferred in real time  
System clock is not required; each single-wire pulse is self-clocked by the oscillator  
integrated in the master and is asserted valid within a frequency range of 250 kHz  
(maximum).  
6.1.3  
S
basic operations  
WIRE  
The negative output voltage levels are selectable within a wide range (steps of 100 mV)  
The device can be enabled / disabled via S in combination with the Enable pin.  
WIRE  
10/22  
Doc ID 022613 Rev 1  
STOD03B  
Detailed description  
6.2  
Negative output voltage levels  
Table 7.  
Default output voltage  
Pulse  
VO2  
Pulse  
VO2  
Pulse  
VO2  
1
2
-5.4  
-5.3  
-5.2  
-5.1  
-5.0  
-4.9  
-4.8  
-4.7  
-4.6  
-4.5  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
-4.4  
-4.3  
-4.2  
-4.1  
-4.0  
-3.9  
-3.8  
-3.7  
-3.6  
-3.5  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
-3.4  
-3.3  
-3.2  
-3.1  
-3.0  
-2.9  
-2.8  
-2.7  
-2.6  
-2.5  
-2.4  
3
4
5
6 (1)  
7
8
9
10  
1. Default value.  
6.3  
Enable and SWIRE  
(1)  
Table 8.  
EN and S  
Enable  
operation table  
WIRE  
SWIRE  
Action  
Low  
Low  
High  
High  
Low  
High  
Low  
High  
Device off  
Negative output voltage set by SWIRE  
Default negative output voltage  
Default negative output voltage  
1. The Enable pin must be set to AGND while using the SWIRE function.  
Doc ID 022613 Rev 1  
11/22  
Application information  
STOD03B  
7
Application information  
7.1  
External passive components  
7.1.1  
Inductor selection  
Magnetic shielded low ESR power inductors must be chosen as the key passive  
components for switching converters.  
For the step-up converter an inductance between 4.7 µH and 6.8 µH is recommended.  
For the inverting stage the suggested inductance ranges from 3.3 µH to 4.7 µH.  
It is very important to select the right inductor according to the maximum current the  
inductor can handle to avoid saturation. The step-up and the inverting peak current can be  
calculated as follows:  
Equation 1  
VMID ×IOUT VINMIN ×(VMID VINMIN  
)
IPEAKBOOST  
=
+
η1× VINMIN  
2× VMID × fs×L1  
Equation 2  
(VINMIN VO2MIN )xIOUT  
η2 × VINMIN  
VINMIN × VO2MIN  
2 × (VO2MIN VINMIN ) × fs × L2  
IPEAK INVERTING  
where  
=
+
V
: step-up output voltage, fixed at 4.9 V;  
MID  
V
: inverting output voltage including sign (minimum value is the absolute maximum  
O2  
value);  
I : output current for both DC-DC converters;  
O
V : input voltage of STOD03B;  
IN  
f : switching frequency. Use the minimum value of 1.35 MHz for the worst case;  
s
η1: efficiency of step-up converter. Typical value is 0.70;  
η2: efficiency of inverting converter. Typical value is 0.60.  
The negative output voltage can be set via S  
at -5.4 V. Accordingly, the inductor peak  
WIRE  
current, at the maximum load condition, increases. A proper inductor, with a saturation  
current as a minimum of 1 A, is preferred.  
STOD03B is capable of supplying a load current from 150 mA to 200 mA. Inductors with a  
saturation current as a minimum of 1 A must be selected.  
12/22  
Doc ID 022613 Rev 1  
STOD03B  
Application information  
7.1.2  
Input and output capacitor selection  
It is recommended to use X5R or X7R low ESR ceramic capacitors as input and output  
capacitors in order to filter any disturbance present in the input line and to obtain stable  
operation for the two switching converters. A minimum real capacitance value of 6 µF must  
be guaranteed for CMID, CO1 and CO2 in all conditions. Considering tolerance, temperature  
variation and DC polarization, 2 x 10 µF, 10 V 10% as CMID, a 10 µF 10V 10% capacitor  
as CO1 and 2 x 10 µF 10 V 10% as CO2 can be used to achieve the needed 6 µF.  
7.2  
Recommended PCB layout  
The STOD03B is a high frequency power switching device and therefore requires a proper  
PCB layout in order to obtain the necessary stability and optimize line/load regulation and  
output voltage ripple.  
Analog input (VINA) and power input (VINP) must be kept separated and connected together  
at the CIN pad only. The input capacitor must be as close as possible to the IC.  
In order to minimize ground noise, a common ground node for power ground and a different  
one for analog ground must be used. In the recommended layout, the AGND node is placed  
close to CREF ground while the PGND node is centered at CIN ground. They are connected  
by a separated layer routing on the bottom through vias.  
The exposed pad is connected to AGND through vias.  
Figure 10. Top layer and top silk-screen (top view, not to scale)  
Doc ID 022613 Rev 1  
13/22  
Application information  
Figure 11. Bottom layer and silk-screen (top view, not to scale)  
STOD03B  
14/22  
Doc ID 022613 Rev 1  
STOD03B  
Detailed description  
8
Detailed description  
8.1  
General description  
The STOD03B is a high efficiency dual DC-DC converter which integrates a step-up with an  
LDO and inverting power stages suitable for supplying AMOLED panels. Thanks to the high  
level of integration it needs only 6 external components to operate and it achieves very high  
efficiency using a synchronous rectification technique for each of the two DC-DC converters.  
This topology of a boost followed by an LDO regulator offers an efficient ripple reduction  
solution for loads up to 200 mA. The controller uses an average current mode technique in  
order to obtain good stability and precise voltage regulation in all possible conditions of input  
voltage, output voltage, and output current. In addition, the peak inductor current is  
monitored in order to avoid saturation of the coils. The STOD03B implements a power  
saving technique in order to maintain high efficiency at very light load and it switches to  
PWM operation as the load increases, in order to guarantee the best dynamic performance  
and low noise operation. The STOD03B avoids battery leakage thanks to the true-shutdown  
feature and it is self protected by overtemperature. Undervoltage lockout and soft-start  
guarantee proper operation during startup.  
8.1.1  
Multiple operation modes  
Both the step-up and the inverting stage of the STOD03B operate in three different modes:  
pulse skipping mode (PSM), discontinuous conduction mode (DCM), and continuous  
conduction mode (CCM). It switches automatically between the three modes according to  
input voltage, output current, and output voltage conditions.  
Pulse skipping operation:  
The STOD03B works in pulse skipping mode when the load current is below a few mA.  
The load current level at which this way of operating occurs depends on input voltage only  
for the step-up converter and on input voltage and negative output voltage (VO2) for the  
inverting converter.  
Discontinuous conduction mode:  
When the load increases above some tens of mA, the STOD03B enters DCM operation.  
In order to obtain this type of operation the controller must avoid the inductor current going  
negative. The discontinuous mode detector (DMD) blocks sense the voltage across the  
synchronous rectifiers (P1B for the step-up and N2 for the inverting) and turn off the  
switches when the voltage crosses a defined threshold which, in turn, represents a certain  
current in the inductor. This current can vary according to the slope of the inductor current  
which depends on input voltage, inductance value, and output voltage.  
Continuous conduction mode:  
At medium/high output loads, the STOD03B enters full CCM at constant switching  
frequency mode for each of the two DC-DC converters.  
Doc ID 022613 Rev 1  
15/22  
Detailed description  
STOD03B  
8.1.2  
Enable pin  
The device operates when the EN pin is set high. If the EN pin is set low, the device stops  
switching, and all the internal blocks are turned off. In this condition the current drawn from  
VINP/VINA is below 1 µA in the whole temperature range. In addition, the internal switches  
are in an OFF state so the load is electrically disconnected from the input, this avoids  
unwanted current leakage from the input to the load.  
8.1.3  
Soft-start and inrush current limiting  
After the EN pin is pulled high, or after a suitable voltage is applied to VINP, VINA and EN, the  
device initiates the startup phase. As a first step, the CMID capacitor is charged and the P1B  
switch implements a current limiting technique in order to keep the charge current below  
400 mA. This avoids the battery overloading during startup. After VMID reaches the VINP  
voltage level, the P1B switch is fully turned on and the soft-start procedure for the step-up is  
started.  
After around 2 ms the soft-start for the inverting is started. The positive and negative  
voltages are under regulation by around 6 ms after the EN pin is asserted high.  
8.1.4  
8.1.5  
Undervoltage lockout  
The undervoltage lockout function avoids improper operation of the STOD03B when the  
input voltage is not high enough. When the input voltage is below the UVLO threshold the  
device is in shutdown mode. The hysteresis of 50 mV avoids unstable operation when the  
input voltage is close to the UVLO threshold.  
Overtemperature protection  
An internal temperature sensor continuously monitors the IC junction temperature. If the IC  
temperature exceeds 140 °C, typical, the device stops operating. As soon as the  
temperature falls below 125 °C, typical, normal operation is restored.  
16/22  
Doc ID 022613 Rev 1  
STOD03B  
Package mechanical data  
9
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in different grades of  
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com. ECOPACK  
is an ST trademark.  
Doc ID 022613 Rev 1  
17/22  
Package mechanical data  
STOD03B  
DFN12L (3 x 3 x 0.6 mm) mechanical data  
mm.  
Typ.  
0.55  
inch.  
Typ.  
Dim.  
Min.  
Max.  
0.60  
0.05  
Min.  
0.020  
0
Max.  
0.024  
0.002  
A
A1  
A3  
b
0.51  
0
0.022  
0.02  
0.20  
0.25  
3
0.001  
0.008  
0.010  
0.118  
0.080  
0.118  
0.048  
0.018  
0.016  
0.18  
2.85  
1.87  
2.85  
1.06  
0.30  
3.15  
2.12  
3.15  
1.31  
0.007  
0.112  
0.074  
0.112  
0.042  
0.012  
0.124  
0.083  
0.124  
0.052  
D
D2  
E
2.02  
3
E2  
e
1.21  
0.45  
0.40  
L
0.30  
0.50  
0.012  
0.020  
8085116/A  
18/22  
Doc ID 022613 Rev 1  
STOD03B  
Package mechanical data  
Tape & reel QFNxx/DFNxx (3x3) mechanical data  
mm.  
TYP  
inch  
TYP.  
DIM.  
MIN.  
MAX.  
330  
MIN.  
MAX.  
12.992  
0.519  
A
C
12.8  
20.2  
99  
13.2  
0.504  
0.795  
3.898  
D
N
101  
3.976  
T
14.4  
0.567  
Ao  
Bo  
Ko  
Po  
P
3.3  
3.3  
1.1  
4
0.130  
0.130  
0.043  
0.157  
0.315  
8
Doc ID 022613 Rev 1  
19/22  
Package mechanical data  
Figure 12. DFN12L (3 x 3 mm) footprint recommended data  
STOD03B  
20/22  
Doc ID 022613 Rev 1  
STOD03B  
Revision history  
10  
Revision history  
Table 9.  
Date  
Document revision history  
Revision  
Changes  
19-Dec-2011  
1
Initial release.  
Doc ID 022613 Rev 1  
21/22  
STOD03B  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2011 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
22/22  
Doc ID 022613 Rev 1  

相关型号:

STOD03BTPUR

Step-up with LDO and inverter converters
STMICROELECTR

STOD1317B

Very high efficiency at light load thanks to pulse skipping operation
STMICROELECTR

STOD1317BTPUR

Very high efficiency at light load thanks to pulse skipping operation
STMICROELECTR

STOD13AM

Step-up and inverter converters
STMICROELECTR

STOD13AMTPUR

Step-up and inverter converters
STMICROELECTR

STOD13AS

Synchronous rectification for both DC-DC converters
STMICROELECTR

STOD13ASTPUR

Synchronous rectification for both DC-DC converters
STMICROELECTR

STOD13ATPUR

250 mA dual DC-DC converter for powering AMOLED displays
STMICROELECTR

STOD13CM

250 mA dual DC-DC converter
STMICROELECTR

STOD13CMTPUR

250 mA dual DC-DC converter
STMICROELECTR

STOD14

700 mA dual DC-DC converter for powering AMOLED displays
ETC

STOD1412

Step-up and inverting DC-DC converter
STMICROELECTR