TLP270M-TR [STMICROELECTRONICS]

400V, 31A, SILICON SURGE PROTECTOR, POWER, SO-10;
TLP270M-TR
型号: TLP270M-TR
厂家: ST    ST
描述:

400V, 31A, SILICON SURGE PROTECTOR, POWER, SO-10

光电二极管
文件: 总14页 (文件大小:334K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
TLPxxM/G/G-1  
TRIPOLAR OVERVOLTAGE  
PROTECTION for TELECOM LINE  
Application Specific Discretes  
A.S.D.  
MAIN APPLICATIONS  
Any sensitive telecom equipment requiring protec-  
tion against lightning :  
GND  
RING  
RING  
TIP  
TIP  
TIP  
Analog and ISDN line cards  
Main Distribution Frames  
RING  
RING  
RING  
TIP  
TIP  
Terminal and transmission equipment  
Gas-tube replacement  
PowerSO-10TM TLPxxM  
DESCRIPTION  
The TLPxxM/G/G-1 series are tripolar transient  
surge arrestors used for primary and secondary  
protection in sensitive telecom equipment.  
GND  
TAB  
FEATURES  
GND  
TRIPOLAR CROWBAR PROTECTION  
TIP  
RING  
VOLTAGE  
TELECOM APPLICATIONS  
RANGE  
SELECTED  
FOR  
D2PAK TLPxxG  
REPETITIVE PEAK PULSE CURRENT :  
I
PP = 100 A (10 / 1000 µs)  
HOLDING CURRENT : IH = 150 mA  
LOW CAPACITANCE : C = 110 pF typ.  
LOW LEAKAGE CURRENT : IR = 5 µA max  
GND  
TAB  
BENEFITS  
No ageing and no noise.  
TIP GND RING  
If destroyed, the TLPxxM/G/G-1 falls into short  
circuit, still ensuring protection.  
I2PAK TLPxxG-1  
Access to Surface Mount applications thanks to  
the PowerSO-10TM and D2PAK package.  
TM: ASD and PowerSO-10 are trademarks of ST Microelectronics.  
September 1998 - Ed : 3C  
1/14  
TLPxxM/G/G-1  
Peak Surge  
Voltage  
(V)  
Voltage  
Current  
Admissible Necessary  
COMPLIES WITH THE  
FOLLOWING STANDARDS:  
Waveform  
Waveform  
Ipp  
(A)  
Resistor  
( s)  
µ
( s)  
µ
( )  
CCITT K20  
VDE0433  
4000  
4000  
4000  
10/700  
10/700  
1.2/50  
5/310  
5/310  
1/20  
100  
100  
100  
-
-
-
VDE0878  
IEC-1000-4-5  
level 4  
level 4  
10/700  
1.2/50  
5/310  
8/20  
100  
100  
-
-
FCC Part 68, lightning surge  
type A  
1500  
800  
10/160  
10/560  
10/160  
10/560  
200  
100  
-
-
FCC Part 68, lightning surge  
type B  
1000  
5/320  
5/320  
25  
-
BELLCORE TR-NWT-001089  
FIRST LEVEL  
2500  
1000  
2/10  
10/1000  
2/10  
10/1000  
500  
100  
-
-
BELLCORE TR-NWT-001089  
SECOND LEVEL  
5000  
2/10  
2/10  
500  
-
CNET I31-24  
4000  
0.5/700  
0.8/310  
100  
-
TYPICAL APPLICATION  
Primary protection module  
TLPxxM/G/G-1  
Analog  
Line  
Card  
Main Distribution Frame  
Analog line card protection  
- Vbat  
LCP1511D  
TLPxxM/G/G-1  
PTC  
LINE A  
RING  
RELAY  
SLIC  
nF  
220  
LINE B  
PTC  
2/14  
TLPxxM/G/G-1  
TYPICAL APPLICATION  
ISDN: U interface protection  
1/2 DA108S1  
TLPxxM/G/G-1  
R3  
R4  
Internal  
circuitry  
R5  
Power  
Feeder  
PARAMETER MEASUREMENT INFORMATION  
Symbol  
IPP  
Description  
Peak pulse current  
I
PP  
ITSM  
IR  
IRM  
IH  
Maximum peak on-state current  
Leakage current  
IH  
Leakage current  
I
IRRM  
Holding current  
V
RM  
V
R
V
BO  
VBR  
VR  
Breakdown voltage  
Continuous reverse voltage  
Maximum stand-off voltage  
Breakover voltage  
VRM  
VBO  
C
Capacitance  
ABSOLUTE MAXIMUM RATINGS (Tamb = 25°C)  
Symbol  
Parameter  
Peak pulse current (longitudinal & transversal mode) :  
10/1000 µs (open circuit voltage waveform 1 kV 10/1000 µs)  
Value  
Unit  
IPP  
100  
250  
500  
A
A
A
8/20 µs  
2/10 µs  
(open circuit voltage waveform 4 kV 1.2/50 µs)  
(open circuit voltage waveform 2.5kV 2/10 µs)  
ITSM  
Mains power induction  
VRMS = 300V, R = 600Ω  
t = 200ms  
0.7  
A
Mains power contact  
V
RMS = 220V, R = 10(Fail-Safe threshold)  
t = 200 ms  
t = 15 mn  
31  
A
VRMS = 220V, R = 600Ω  
0.42  
A
Tstg  
Tj  
Storage temperature range  
- 55 to + 150  
150  
°C  
°C  
°C  
°C  
Maximum operating junction temperature  
Maximum lead temperature for soldering during 10 s  
Operating temperature range  
TL  
260  
TOP  
- 40 to + 85  
3/14  
TLPxxM/G/G-1  
THERMAL RESISTANCE  
Symbol  
Parameter  
Value  
Unit  
Rth (j-c)  
Junction to case  
TLPxxM  
TLPxxG  
TLPxxG-1  
1.0  
1.0  
1.0  
°C/W  
Rth (j-a)  
Junction to ambient  
TLPxxM  
TLPxxG  
TLPxxG-1  
see table page 14 °C/W  
see table page 14  
see table page 14  
ELECTRICAL CHARACTERISTICS BETWEEN TIP AND RING (Tamb = 25°C)  
RM @ VRM IR @ VR  
I
C
max.  
max.  
typ.  
note  
Type  
µA  
5
V
µA  
50  
50  
50  
V
pF  
35  
35  
35  
TLP140M/G/G-1  
TLP200M/G/G-1  
TLP270M/G/G-1  
120  
180  
230  
140  
200  
270  
5
5
Note : V = 50 V bias, V  
RMS  
= 1V, F = 1 MHz.  
R
ELECTRICAL CHARACTERISTICS BETWEEN TIP AND GND, RING AND GND (Tamb = 25°C)  
VBO  
IBO  
@
I
RM @ VRM  
IR @ VR  
IH  
C @ VR  
typ.  
max.  
max.  
note 1  
max.  
max.  
min.  
Type  
note 2  
V
note 3 note 4 note 5  
µA  
5
V
120  
µA  
50  
50  
50  
V
mA  
500  
500  
500  
mA  
150  
150  
150  
pF  
pF  
40  
40  
40  
TLP140M/G/G-1  
TLP200M/G/G-1  
TLP270M/G/G-1  
140  
200  
270  
200  
290  
400  
110  
110  
110  
5
180  
5
230  
Note 1: I measured at V guarantees V  
> V .  
R
R
R
BR min  
Note 2: Measured at 50 Hz.  
Note 3: See functional holding current test circuit.  
Note 4: V = 0V bias, V  
= 1V, F = 1 MHz.  
R
RMS  
Note 5: V = 50V bias, V  
= 1V, F = 1 MHz (TIP or RING (-) / GND (+)).  
RMS  
R
4/14  
TLPxxM/G/G-1  
FUNCTIONAL HOLDING CURRENT (IH) TEST CIRCUIT: GO-NO GO TEST  
R
- V  
P
V
- 48 V  
BAT  
D.U.T.  
=
generator  
Surge  
This is a GO-NO GO test which allows to confirm the holding current (IH) level in a functional test circuit.  
TEST PROCEDURE :  
- Adjust the current level at the IH value by short circuiting the D.U.T.  
- Fire the D.U.T. with a surge current : IPP = 10A, 10/1000µs.  
- The D.U.T. will come back to the off-state within a duration of 50ms max.  
MARKING  
Package  
Types  
Marking  
PowerSO-10  
TLP140M  
TLP200M  
TLP270M  
TLP140M  
TLP200M  
TLP270M  
D2PAK  
I2PAK  
TLP140G  
TLP200G  
TLP270G  
TLP140G  
TLP200G  
TLP270G  
TLP140G-1  
TLP200G-1  
TLP270G-1  
TLP140G  
TLP200G  
TLP270G  
ORDER CODE  
TPL 270 M TR  
-
Packaging:  
-TR= tapeandreelonlyfor"M"version(600pcs)  
= tube (50 pcs)  
Tripolar Line Protection  
Breakdown Voltage  
Package:  
M : Power SO10  
G : D2PAK  
G-1 : I2PAK  
5/14  
TLPxxM/G/G-1  
Fig. 1: Maximum peak on-state current versus  
Fig. 2: Relative variation of IH versus Tamb  
.
pulse duration.  
ITSM(A)  
IH (Tamb) / IH (25°C)  
100  
2
90  
1.8  
1.6  
1.4  
1.2  
1
TIP or RING  
vs GND  
F=50Hz  
Tj initial=25°C  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.8  
0.6  
Tamb (°C)  
t(s)  
0.4  
0.01  
0.1  
1
10  
100  
1000  
-40  
-20  
0
20  
40  
60  
80  
Fig. 3-1 :junction capacitance versus applied re-  
verse voltage (typical values) (TLP140M/G/G-1).  
Fig. 3-2 :junction capacitance versus applied re-  
verse voltage (typical values) (TLP200M/G/G-1).  
C(pF)  
C(pF)  
200  
200  
F=1MHz  
Vosc=1VRMS  
Tj=25°C  
F=1MHz  
Vosc=1VRMS  
Tj=25°C  
LINE+ / GND-  
100  
LINE+ / GND-  
100  
LINE / LINE  
50  
LINE / LINE  
50  
LINE- / GND+  
LINE- / GND+  
20  
20  
VR(V)  
VR(V)  
10  
10  
1
10  
100 200  
1
10  
100 200  
Fig. 3-3 :junction capacitance versus applied re-  
verse voltage (typical values) (TLP270M/G/G-1).  
Fig. 4: Test diagram for breakover voltage  
measurement.  
C(pF)  
200  
TIP  
F=1MHz  
Vosc=1VRMS  
Tj=25°C  
V
BO  
100  
10 / 1000 µs  
100 A  
surge generator  
TIP - GND  
V
BO  
LINE+ / GND-  
GND  
TIP RING  
50  
LINE / LINE  
RING  
LINE- / GND+  
20  
VR(V)  
10  
1
10  
100  
300  
6/14  
TLPxxM/G/G-1  
Fig. 5-1 : Breakover voltage measurement  
(TLP140M/G/G-1).  
Fig. 5-2 : Breakover voltage measurement  
(TLP200M/G/G-1).  
Vbr/Vbr  
Vbo/Vbr  
2.6  
2.6  
2.4  
2.4  
2.2  
2
TIP RING  
2.2  
2
TIP RING  
1.8  
1.6  
1.4  
1.2  
1
1.8  
1.6  
1.4  
1.2  
1
TIP+ GND -  
TIP+ GND -  
TIP- GND +  
1,000 10,000 100,000  
TIP- GND +  
1,000 10,000 100,000  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
dV/dt  
dV/dt  
Fig. 5-3 : Breakover voltage measurement  
(TLP270M/G/G-1).  
Vbo/Vbr  
2.6  
2.4  
TIP RING  
2.2  
2
1.8  
1.6  
1.4  
1.2  
1
TIP+ GND -  
TIP- GND +  
1,000 10,000 100,000  
0.01  
0.1  
1
10  
100  
dV/dt  
7/14  
TLPxxM/G/G-1  
PACKAGE MECHANICAL DATA  
D2PAK Plastic  
DIMENSIONS  
Millimeters Inches  
Min. Typ. Max. Min. Typ. Max.  
REF.  
A
E
C2  
A
4.30  
4.60 0.169  
2.69 0.098  
0.23 0.001  
0.93 0.027  
0.181  
0.106  
0.009  
0.037  
L2  
A1 2.49  
A2 0.03  
D
B
B2  
C
0.70  
L
1.40  
0.055  
L3  
0.45  
0.60 0.017  
1.36 0.047  
9.35 0.352  
10.28 0.393  
5.28 0.192  
15.85 0.590  
1.40 0.050  
1.75 0.055  
0.024  
0.054  
0.368  
0.405  
0.208  
0.624  
0.055  
0.069  
A1  
C2 1.21  
B2  
B
D
E
G
L
8.95  
10.00  
4.88  
R
C
G
15.00  
A2  
L2 1.27  
L3 1.40  
R
2.0 MIN.  
FLAT ZONE  
0.40  
0.016  
V2  
V2  
0°  
8°  
0°  
8°  
FOOT-PRINT D2PAK  
16.90  
10.30  
5.08  
1.30  
3.70  
8.90  
8/14  
TLPxxM/G/G-1  
Inches  
PACKAGE MECHANICAL DATA  
I2PAK Plastic  
DIMENSIONS  
Millimeters  
REF.  
Min. Typ. Max. Min. Typ. Max.  
A
4.30  
4.60 0.169  
2.69 0.098  
0.93 0.028  
1.38 0.047  
0.181  
0.106  
0.037  
0.054  
A1 2.49  
0.70  
B
B1 1.20  
B2 1.25 1.40  
0.049 0.055  
C
0.45  
0.60 0.018  
1.36 0.048  
9.35 0.352  
2.64 0.096  
10.28 0.394  
13.60 0.516  
3.78 0.137  
1.40 0.050  
0.024  
0.054  
0.368  
0.104  
0.405  
0.535  
0.149  
0.055  
C2 1.21  
D
e
8.95  
2.44  
E
L
10.00  
13.10  
L1 3.48  
L2 1.27  
V
5°  
5°  
V4  
45°  
45°  
9/14  
TLPxxM/G/G-1  
PACKAGE MECHANICAL DATA  
Power-SO10  
B
0.10 A B  
10  
6
E3 E1  
E
E2  
H
1
5
SEATING  
PLANE  
A
e
B
DETAIL "A"  
C
0.25 M  
Q
D
h
F
D1  
A
SEATING  
PLANE  
A1  
A1  
L
DETAIL "A"  
a
E4  
DIMENSIONS  
DIMENSIONS  
Millimeters Inches  
Min. Typ. Max. Min. Typ. Max.  
REF.  
Millimeters  
Inches  
REF.  
Min. Typ. Max. Min. Typ. Max.  
A
3.35  
3.65 0.131  
0.10 0.00  
0.60 0.0157  
0.55 0.0137  
9.60 0.370  
7.60 0.291  
9.50 0.366  
7.40 0.283  
7.60 0.283  
0.143  
0.0039  
0.0236  
0.0217  
0.378  
0.299  
0.374  
0.291  
0.299  
E3 6.10  
6.35 0.240  
6.10 0.232  
0.250  
0.240  
A1 0.00  
E4 5.90  
e
B
C
D
0.40  
0.35  
9.40  
1.27  
0.05  
F
H
h
1.25  
1.35 0.0492  
14.40 0.543  
0.0531  
0.567  
13.80  
D1 7.40  
9.30  
0.50  
1.70  
0.019  
0.067  
E
L
1.20  
0°  
1.80 0.0472  
0.0708  
8°  
E1 7.20  
E2 7.20  
Q
a
8°  
0°  
10/14  
TLPxxM/G/G-1  
FOOT PRINT Power-SO10  
HEADER SHAPE  
MOUNTING PAD LAYOUT  
RECOMMENDED  
Dimensions in millimeters  
Dimensions in millimeters  
SHIPPING TUBE  
DIMENSIONS (mm)  
C
TYP  
B
A
18  
12  
0,8  
532  
B
C
Length tube  
Quantity per tube  
50  
A
Surface mount film taping : contact sales office  
11/14  
TLPxxM/G/G-1  
SOLDERING RECOMMENDATION  
Voids pose a difficult reliability problem for large  
surface mount devices. Such voids under the  
package result in poor thermal contact and the  
high thermal resistance leads to component fail-  
ures. The PowerSO-10 is designed from scratch to  
be solely a surface mount package, hence symme-  
try in the x- and y-axis gives the package excellent  
weight balance. Moreover, the PowerSO-10 offers  
the unique possibility to control easily the flatness  
and quality of the soldering process. Both the top  
and the bottom soldered edges of the package are  
accessible for visual inspection (soldering menis-  
cus).  
Coplanarity between the substrate and the pack-  
age can be easily verified. The quality of the solder  
joints is very important for two reasons : (I) poor  
quality solder joints result directly in poor reliability  
and (II) solder thickness affects the thermal resis-  
tance significantly. Thus a tight control of this pa-  
rameter results in thermally efficient and reliable  
solder joints.  
The soldering process causes considerable ther-  
mal stress to a semiconductor component. This  
has to be minimized to assure a reliable and ex-  
tended lifetime of the device. The PowerSO-10  
package can be exposed to a maximum tempera-  
ture of 260°C for 10 seconds. However a proper  
soldering of the package could be done at 215°C  
for 3 seconds. Any solder temperature profile  
should be within these limits. As reflow techniques  
are most common in surface mounting, typical  
heating profiles are given in Figure 1,either for  
mounting on FR4 or on metal-backed boards. For  
each particular board, the appropriate heat profile  
has to be adjusted experimentally. The present  
proposal is just a starting point. In any case, the fol-  
lowing precautions have to be considered :  
- always preheat the device  
- peak temperature should be at least 30 °C  
higher than the melting point of the solder  
alloy chosen  
- thermal capacity of the base substrate  
Fig. 1 : Typical reflow soldering heat profile  
Temperature (o C)  
250  
245oC  
215oC  
200  
Soldering  
Epoxy FR4  
150  
100  
50  
board  
Preheating  
Cooling  
Metal-backed  
board  
0
0
40  
80  
120 160 200 240 280 320 360  
Time (s)  
12/14  
TLPxxM/G/G-1  
SUBSTRATES AND MOUNTING INFORMATION  
decrease thermal resistance accordingly. Using  
a configuration with 16 holes under the spreader of  
the package with a pitch of 1.8 mm and a diameter  
of 0.7 mm, the thermal resistance (junction -  
heatsink) can be reduced to 12°C/W (see fig. 3).  
Beside the thermal advantage, this solution allows  
multi-layer boards to be used. However, a draw-  
back of this traditional material prevents its use in  
very high power, high current circuits. For instance,  
it is not advisable to surface mount devices with  
currents greater than 10 A on FR4 boards. A  
Power Mosfet or Schottky diode in a surface mount  
power package can handle up to around 50 A if  
better substrates are used.  
The use of epoxy FR4 boards is quite common for  
surface mounting techniques, however, their poor  
thermal conduction compromises the otherwise  
outstanding thermal performance of the PowerSO-  
10. Some methods to overcome this limitation are  
discussed below.  
One possibility to improve the thermal conduction  
is the use of large heat spreader areas at the cop-  
per layer of the PC board. This leads to a reduction  
of thermal resistance to 35 °C for 6 cm2 of the  
board heatsink (see fig. 2).  
Use of copper-filled through holes on conventional  
FR4 techniques will increase the metallization and  
Fig. 2 : Mounting on epoxy FR4 head dissipation by extending the area of the copper layer  
Copper foil  
FR4 board  
Fig. 3 : Mounting on epoxy FR4 by using copper-filled through holes for heat transfer  
Copper foil  
FR4 board  
heatsink  
heat transfer  
13/14  
TLPxxM/G/G-1  
A new technology available today is IMS - an Insu-  
lated Metallic Substrate. This offers greatly en-  
hanced thermal characteristics for surface  
mount components. IMS is a substrate consisting  
of three different layers, (I) the base material which  
is available as an aluminium or a copper plate, (II)  
a thermal conductive dielectrical layer and (III) a  
copper foil, which can be etched as a circuit layer.  
Using this material a thermal resistance of 8°C/W  
with 40 cm2 of board floating in air is achievable  
(see fig. 4). If even higher power is to be dissipated  
an external heatsink could be applied which leads  
to an Rth(j-a) of 3.5°C/W (see Fig. 5), assuming  
that Rth (heatsink-air) is equal to Rth (junction-  
heatsink). This is commonly applied in practice,  
leading to reasonable heatsink dimensions. Often  
power devices are defined by considering the  
maximum junction temperature of the device. In  
practice , however, this is far from being exploited.  
A summary of various power management capa-  
bilities is made in table 1 based on a reasonable  
delta T of 70°C junction to air.  
The PowerSO-10 concept also represents an  
attractive alternative to C.O.B. techniques.  
PowerSO-10 offers devices fully tested at low  
and high temperature. Mounting is simple - only  
conventional SMT is required - enabling the users  
to get rid of bond wire problems and the problem to  
control the high temperature soft soldering as well.  
An optimized thermal management is guaranteed  
through PowerSO-10 as the power chips must in  
any case be mounted on heat spreaders before  
being mounted onto the substrate.  
Fig. 4 : Mounting on metal backed board  
Fig. 5 : Mounting on metal backed board with an  
external heatsink applied  
Copper foil  
FR4 board  
Copper foil  
Insulation  
Aluminium  
heatsink  
Aluminium  
TABLE 1  
Printed circuit board material  
1.FR4 using the recommended pad-layout  
2.FR4 with heatsink on board (6cm2)  
Rth (j-a)  
50 °C/W  
35 °C/W  
12 °C/W  
8 °C/W  
P Diss  
1.5 W  
2.0 W  
5.8 W  
8.8 W  
20 W  
3.FR4 with copper-filled through holes and external heatsink applied  
4. IMS floating in air (40 cm2)  
5. IMS with external heatsink applied  
3.5 °C/W  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of  
use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by  
implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to  
change without notice. This publication supersedes and replaces all information previously supplied.  
STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written ap-  
proval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics  
© 1998 STMicroelectronics - Printed in Italy - All rights reserved.  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco -  
The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.  
http://www.st.com  
14/14  

相关型号:

TLP270MTR

400V, 31A, SILICON SURGE PROTECTOR, POWER, SO-10
STMICROELECTR

TLP2745

GaAℓAs Infrared LED & Photo IC
TOSHIBA

TLP2745D4

GaAℓAs Infrared LED & Photo IC
TOSHIBA

TLP2745D4-LF4

GaAℓAs Infrared LED & Photo IC
TOSHIBA

TLP2745D4-LF4E

GaAℓAs Infrared LED & Photo IC
TOSHIBA

TLP2745D4-TP

GaAℓAs Infrared LED & Photo IC
TOSHIBA

TLP2745D4-TP4

GaAℓAs Infrared LED & Photo IC
TOSHIBA

TLP2745D4-TP4E

GaAℓAs Infrared LED & Photo IC
TOSHIBA

TLP2745D4-TPE

GaAℓAs Infrared LED & Photo IC
TOSHIBA

TLP2745D4E

GaAℓAs Infrared LED & Photo IC
TOSHIBA

TLP2745E

GaAℓAs Infrared LED & Photo IC
TOSHIBA

TLP2745LF4

GaAℓAs Infrared LED & Photo IC
TOSHIBA