TS2007FC [STMICROELECTRONICS]

3 W filter-free class D audio power amplifier with 6 or 12 dB fixed gain select; 3 W无滤波器D类音频功率放大器6或12分贝固定增益选择
TS2007FC
型号: TS2007FC
厂家: ST    ST
描述:

3 W filter-free class D audio power amplifier with 6 or 12 dB fixed gain select
3 W无滤波器D类音频功率放大器6或12分贝固定增益选择

放大器 功率放大器
文件: 总28页 (文件大小:455K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TS2007FC  
3 W filter-free class D audio power amplifier  
with 6 or 12 dB fixed gain select  
Features  
Operates from V =2.4 V to 5.5 V  
TS2007EIJT - 9-bump flip-chip  
CC  
Standby mode active low  
Output power: 1.4 W at 5 V or 0.5 W at 3.0 V  
into 8 Ω with 1% THD+N max.  
Output power: 2.3 W at 5V or 0.75 W at 3.0 V  
into 4 Ω with 1% THD+N max.  
Two fixed gain selects: 6 dB or 12 dB  
Low current consumption  
Efficiency: 86% typical  
Signal-to-noise ratio: 90 dB typical  
PSRR: 68 dB typical at 217 Hz with 6 dB gain  
PWM base frequency: 280 kHz  
Low pop and click noise  
Pinout (top view)  
Thermal shutdown protection  
Output short-circuit protection  
OUT+  
GND  
VCC  
OUT-  
GS  
Flip-chip lead-free 9-bump package with back  
coating in option.  
STBY  
IN-  
Applications  
IN+  
VCC  
Cellular phone  
PDA  
Notebook PC  
Description  
A standby mode function (active low) keeps the  
current consumption down to 1 μA typical.  
The TS2007FC is a class D power audio  
amplifier. Able to drive up to 1.4 W into an 8 Ω  
load at 5 V, it achieves better efficiency than  
typical class AB audio power amplifiers.  
The TS2007FC is available in a 9-bump flip-chip  
lead-free package.  
This device can switch between two gain settings,  
6 dB or 12 dB via a logic signal on the gain select  
pin. Pop and click reduction circuitry provides low  
on/off switch noise and allows the device to start  
within 1 ms typically.  
August 2008  
Rev 1  
1/28  
www.st.com  
28  
Contents  
TS2007FC  
Contents  
1
2
3
Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 3  
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3.1  
3.2  
Electrical characteristics tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Electrical characteristic curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
4
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
Differential configuration principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Gain settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Common mode feedback loop limitations . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Low frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Circuit decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Wake-up time (twu) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Shutdown time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Consumption in shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Single-ended input configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
4.10 Output filter considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
4.11 Short-circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
4.12 Thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
5
6
7
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
2/28  
TS2007FC  
Absolute maximum ratings and operating conditions  
1
Absolute maximum ratings and operating conditions  
Table 1.  
Symbol  
Absolute maximum ratings (AMR)  
Parameter  
Value  
Unit  
VCC  
Vin  
Supply voltage (1)  
6
GND to VCC  
-40 to + 85  
-65 to +150  
150  
V
V
Input voltage (2)  
Toper  
Tstg  
Tj  
Operating free-air temperature range  
Storage temperature  
°C  
°C  
Maximum junction temperature  
Thermal resistance junction to ambient (3)  
Power dissipation  
°C  
Rthja  
Pd  
200  
°C/W  
Internally limited (4)  
Human body model (5)  
Machine model (6)  
2
kV  
V
ESD  
200  
Latch-up Latch-up immunity  
Lead temperature (soldering, 10 sec)  
Class A = 200  
260  
mA  
°C  
Output short circuit protection (7)  
1. All voltage values are measured with respect to the ground pin.  
2. The magnitude of input signal must never exceed VCC + 0.3 V / GND - 0.3 V  
3. The device is protected in case of over temperature by a thermal shutdown active @ 150° C.  
4. Exceeding the power derating curves during a long period provokes abnormal operating conditions.  
5. Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for  
all couples of pin combinations with other pins floating.  
6. Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two  
pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin  
combinations with other pins floating.  
7. Implemented short-circuit protection protects the amplifier against damage by short-circuit between  
positive and negative outputs and between outputs and ground.  
3/28  
Absolute maximum ratings and operating conditions  
TS2007FC  
Unit  
Table 2.  
Symbol  
Operating conditions  
Parameter  
Value  
VCC  
Vin  
Supply voltage  
2.4 to 5.5  
V
V
Input voltage range  
GND to VCC  
GND + 0.15 V to  
VCC - 0.7 V  
Vicm  
Input common mode voltage range (1)  
V
V
Standby voltage input: (2)  
VSTBY  
Device ON  
Device OFF  
1.4 VSTBY VCC  
GND VSTBY 0.4 (3)  
Gain select input voltage: (4)  
VGS  
V
Gain = 6 dB  
Gain = 12 dB  
1.4 VGS VCC  
GND VGS 0.4  
RL  
Load resistor  
4  
Ω
Rthja  
Thermal resistance junction to ambient (5)  
90  
°C/W  
1. |Voo| 35 mV max with both differential gains.  
2. Without any signal on VSTBY, the device is in standby (internal 300 kΩ pull down resistor).  
3. Minimum current consumption is obtained when VSTBY = GND.  
4. Without any signal on GS pin, the device is in a 6 dB gain configuration (internal 300 kΩ pull up resistor).  
5. With mounted on 4-layer PCB.  
4/28  
TS2007FC  
Application information  
2
Application information  
Table 3.  
External component description  
Components  
Functional description  
Cs  
Supply capacitor that provides power supply filtering.  
Input coupling capacitors (optional) that block the DC voltage at the amplifier input  
terminal. These capacitors also form a high pass filter with  
Zin (Fc = 1 / (2 x π x Zin x Cin)).  
Cin  
See  
Table 4.  
Pin name  
Pin description  
Pin description  
IN+  
VCC  
IN-  
Positive differential input  
Power supply  
Negative differential input  
Gain select input  
GS  
STDBY  
GND  
OUT+  
OUT-  
Standby pin (active low)  
Ground  
Positive differential output  
Negative differential output  
Figure 1.  
Typical application  
VCC  
Cs  
Gain select control  
1uF  
Input capacitors  
are optional  
TS2007  
In-  
GS  
Vcc  
Cin  
Speaker  
C1 IN-  
OUT+ C3  
-
Differential  
Input  
H
Bridge  
Gain  
Select  
PWM  
A1  
A3  
+
IN+  
OUT-  
Cin  
In+  
Standby  
Control  
Protection  
Circuit  
Oscillator  
Gnd  
Standby  
Standby control  
Note:  
See Section 4.10: Output filter considerations on page 23.  
5/28  
Electrical characteristics  
TS2007FC  
3
Electrical characteristics  
3.1  
Electrical characteristics tables  
Table 5.  
V
= +5 V, GND = 0 V, V = 2.5 V, T  
= 25°C (unless otherwise specified)  
CC  
ic  
amb  
Symbol  
Parameter  
Min. Typ. Max. Unit  
ICC  
ICC-STBY  
Voo  
Supply current. No input signal, no load  
Standby current (1). No input signal, VSTBY = GND.  
Output offset voltage. Floating inputs, RL = 8 Ω  
Output power  
2.5  
1
4
2
mA  
µA  
25  
mV  
THD = 1% max, F = 1 kHz, RL = 4 Ω  
THD = 1% max, F = 1 kHz, RL = 8 Ω  
THD = 10% max, F = 1 kHz, RL = 4 Ω  
THD = 10% max, F = 1 kHz, RL = 8 Ω  
2.3  
1.4  
3
Po  
W
1.75  
Total harmonic distortion + noise  
Po = 900 mWRMS, G = 6 dB, F= 1 kHz, RL = 8 Ω  
THD + N  
Efficiency  
0.12  
%
%
Efficiency  
Po = 2.3 Wrms, RL = 4 Ω (with LC output filter)  
Po = 1.4 Wrms, RL = 8 Ω (with LC output filter)  
86  
92  
Power supply rejection ratio with inputs grounded, CIN = 1 µF (2)  
PSRR  
dB  
F= 217 Hz, RL = 8 Ω, Gain = 6 dB, Vripple = 200 mVpp  
F= 217 Hz, RL = 8 Ω, Gain = 12 dB, Vripple = 200 mVpp  
68  
65  
Common mode rejection ratio Cin=1 µF, RL = 8 Ω  
20 Hz < F< 20 kHz, Gain = 6 dB, ΔVICM = 200 mVpp  
CMRR  
Gain  
60  
dB  
dB  
Gain value, Gs = 0 V  
Gain value, GS = VCC  
11.5  
5.5  
12  
6
12.5  
6.5  
Zin  
Single ended input impedance (3)  
68  
75  
82  
kΩ  
FPWM  
Pulse width modulator base frequency  
190 280 370  
93  
kHz  
Signal-to-noise ratio (A-weighting), F = 1 kHz, Po = 1.9 W  
G = 6 dB, RL = 4 Ω (with LC output filter)  
SNR  
dB  
tWU  
Wake-up time  
1
1
3
ms  
ms  
tSTBY  
Standby time  
Output voltage noise, F = 20 Hz to 20 kHz, RL = 4 Ω  
Unweighted (filterless, G = 6 dB)  
A-weighted (filterless, G = 6 dB)  
87  
60  
Unweighted (with LC output filter, G = 6 dB)  
A-weighted (with LC output filter, G = 6 dB)  
Unweighted (filterless, G = 12 dB)  
83  
58  
106  
77  
VN  
µVrms  
A-weighted (filterless, G = 12 dB)  
Unweighted (with LC output filter, G = 12 dB)  
A-weighted (with LC output filter, G = 12 dB)  
101  
75  
1. Standby mode is active when VSTBY is tied to GND.  
2. Dynamic measurement - 20*log(rms(Vout)/rms(Vripple)). Vripple is the superimposed sinus signal to VCC @ F =217 Hz.  
3. Independent of gain configuration (6 or 12 dB) and between IN+ or IN- and GND.  
6/28  
TS2007FC  
Electrical characteristics  
Table 6.  
Symbol  
V
= +4.2 V, GND = 0 V, V = 2.1 V, T  
= 25°C (unless otherwise specified)  
CC  
ic  
amb  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Supply current  
ICC  
ICC-STBY  
Voo  
2
3.3  
mA  
No input signal, no load  
Standby current (1)  
0.85  
2
µA  
No input signal, VSTBY = GND  
Output offset voltage  
25  
mV  
Floating inputs, RL = 8 Ω  
Output power  
THD = 1% max, F = 1 kHz, RL = 4 Ω  
THD = 1% max, F = 1 kHz, RL = 8 Ω  
THD = 10% max, F = 1 kHz, RL = 4 Ω  
THD = 10% max, F = 1 kHz, RL = 8 Ω  
1.6  
0.95  
2
Po  
W
1.2  
Total harmonic distortion + noise  
THD + N  
Efficiency  
0.09  
%
%
Po = 600 mWrms, G = 6 dB, F = 1 kHz, RL = 8 Ω  
Efficiency  
86  
92  
Po = 1.6 Wrms, RL = 4 Ω (with LC output filter)  
Po = 0.95 Wrms, RL = 8 Ω (with LC output filter)  
Power supply rejection ratio with inputs grounded,  
Cin = 1 µF (2)  
PSRR  
dB  
F = 217 Hz, RL = 8 Ω, Gain = 6 dB, Vripple = 200 mVpp  
F = 217 Hz, RL = 8 Ω, Gain = 12 dB, Vripple = 200 mVpp  
68  
65  
Common mode rejection ratio Cin = 1 µF, RL = 8 Ω,  
20 Hz < F< 20 kHz, Gain = 6 dB, ΔVICM = 200 mVpp  
CMRR  
Gain  
60  
dB  
dB  
Gain value  
Gs = 0 V  
GS = VCC  
11.5  
5.5  
12  
6
12.5  
6.5  
ZIN  
Single ended input impedance (3)  
68  
75  
82  
kΩ  
FPWM  
Pulse width modulator base frequency  
190  
280  
370  
kHz  
Signal-to-noise ratio (A-weighting), F=1 kHz, Po = 1.3 W  
G = 6 dB, RL = 4 Ω (with LC output filter)  
SNR  
92  
dB  
tWU  
Wake-up time  
1
1
3
ms  
ms  
tSTBY  
Standby time  
Output voltage noise, F = 20 Hz to 20 kHz, RL = 4 Ω  
Unweighted (filterless, G = 6 dB)  
A-weighted (filterless, G = 6 dB)  
86  
59  
Unweighted (with LC output filter, G = 6 dB)  
A-weighted (with LC output filter, G = 6 dB)  
Unweighted (filterless, G = 12 dB)  
82  
57  
105  
74  
VN  
µVrms  
A-weighted (filterless, G = 12 dB)  
Unweighted (with LC output filter, G = 12 dB)  
A-weighted (with LC output filter, G = 12 dB)  
100  
74  
1. Standby mode is active when VSTBY is tied to GND.  
2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the superimposed sinus signal to VCC @ F = 217 Hz.  
3. Independent of Gain configuration (6 or 12 dB) and between IN+ or IN- and GND.  
7/28  
Electrical characteristics  
TS2007FC  
Table 7.  
Symbol  
V
= +3.6 V, GND = 0 V, V = 1.8 V, T  
= 25°C (unless otherwise specified)  
CC  
ic  
amb  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Supply current  
ICC  
ICC-STBY  
Voo  
1.7  
3.1  
mA  
No input signal, no load  
Standby current (1)  
0.75  
2
µA  
No input signal, VSTBY = GND  
Output offset voltage  
25  
mV  
Floating inputs, RL = 8 Ω  
Output power  
THD = 1% max, F = 1 kHz, RL = 4 Ω  
THD = 1% max, F = 1 kHz, RL = 8 Ω  
THD = 10% max, F = 1 kHz, RL = 4 Ω  
THD = 10% max, F = 1 kHz, RL = 8 Ω  
1.2  
0.7  
1.55  
0.9  
Po  
W
Total harmonic distortion + noise  
THD + N  
Efficiency  
0.06  
%
%
Po = 400 mWrms, G = 6 dB, F = 1 kHz, RL = 8 Ω  
Efficiency  
Po = 1.18 Wrms, RL = 4 Ω (with LC output filter)  
Po = 0.7 Wrms, RL = 8 Ω (with LC output filter)  
86  
92  
Power supply rejection ratio with inputs grounded,  
Cin = 1 µF (2)  
PSRR  
dB  
F = 217 Hz, RL = 8 Ω, Gain = 6 dB, Vripple = 200 mVpp  
F = 217 Hz, RL = 8 Ω, Gain = 12 dB, Vripple = 200 mVpp  
68  
65  
Common mode rejection ratio Cin = 1 µF, RL = 8 Ω,  
20 Hz < F< 20 kHz, Gain = 6 dB, ΔVICM = 200 mVpp  
CMRR  
Gain  
60  
dB  
dB  
Gain value  
Gs = 0 V  
GS = VCC  
11.5  
5.5  
12  
6
12.5  
6.5  
Zin  
Single ended input impedance (3)  
68  
75  
82  
kΩ  
FPWM  
Pulse width modulator base frequency  
190  
280  
370  
kHz  
Signal-to-noise ratio (A-weighting), F=1 kHz, Po = 0.9 W  
G = 6 dB, RL = 4 Ω (with LC output filter)  
SNR  
90  
dB  
tWU  
Wake-up time  
1
1
3
ms  
ms  
tSTBY  
Standby time  
Output voltage noise, F = 20 Hz to 20 kHz, RL = 4 Ω  
Unweighted (filterless, G = 6 dB)  
A-weighted (filterless, G = 6 dB)  
Unweighted (with LC output filter, G = 6 dB)  
A-weighted (with LC output filter, G = 6 dB)  
Unweighted (filterless, G = 12 dB)  
A-weighted (filterless, G = 12 dB)  
Unweighted (with LC output filter, G = 12 dB)  
A-weighted (with LC output filter, G = 12 dB)  
84  
58  
79  
56  
104  
75  
99  
72  
VN  
μVRMS  
1. Standby mode is active when VSTBY is tied to GND.  
2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the superimposed sinus signal to VCC @ F= 217 Hz.  
3. Independent of gain configuration (6 or 12 dB) and between IN+ or IN- and GND.  
8/28  
TS2007FC  
Electrical characteristics  
Table 8.  
Symbol  
V
= +3.0 V, GND = 0 V, V = 1.5 V, T  
= 25°C (unless otherwise specified)  
CC  
ic  
amb  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Supply current  
ICC  
ICC-STBY  
Voo  
1.5  
2.9  
mA  
No input signal, no load  
Standby current (1)  
0.6  
2
µA  
No input signal, VSTBY = GND  
Output offset voltage  
25  
mV  
Floating inputs, RL = 8 Ω  
Output power  
THD = 1% max, F = 1 kHz, RL = 4 Ω  
THD = 1% max, F = 1 kHz, RL = 8 Ω  
THD = 10% max, F = 1 kHz, RL = 4 Ω  
THD = 10% max, F = 1 kHz, RL = 8 Ω  
0.75  
0.5  
1
Po  
W
0.6  
Total harmonic distortion + noise  
THD + N  
Efficiency  
0.04  
%
%
Po = 300 mWRMS, G = 6 dB, F= 1 kHz, RL = 8 Ω  
Efficiency  
Po = 0.8 Wrms, RL = 4 Ω (with LC output filter)  
Po = 0.5 Wrms, RL = 8 Ω (with LC output filter)  
85  
91  
Power supply rejection ratio with inputs grounded,  
Cin = 1 µF (2)  
PSRR  
dB  
F = 217 Hz, RL = 8 Ω, Gain = 6 dB, Vripple = 200 mVpp  
F = 217 Hz, RL = 8 Ω, Gain = 12 dB, Vripple = 200 mVpp  
68  
65  
Common mode rejection ratio Cin = 1 µF, RL = 8 Ω,  
20 Hz < F< 20 kHz, Gain = 6 dB, ΔVICM = 200 mVpp  
CMRR  
Gain  
60  
dB  
dB  
Gain value  
Gs = 0 V  
GS = VCC  
11.5  
5.5  
12  
6
12.5  
6.5  
Zin  
Single ended input impedance (3)  
68  
75  
82  
kΩ  
FPWM  
Pulse width modulator base frequency  
190  
280  
370  
kHz  
Signal-to-noise ratio (A-weighting), F=1 kHz, Po = 0.6 W  
G = 6 dB, RL = 4 Ω (with LC output filter)  
SNR  
89  
dB  
tWU  
Wake-up time  
1
1
3
ms  
ms  
tSTBY  
Standby time  
Output voltage noise, F = 20 Hz to 20 kHz, RL = 4 Ω  
Unweighted (filterless, G = 6 dB)  
A-weighted (filterless, G = 6 dB)  
Unweighted (with LC output filter, G = 6 dB)  
A-weighted (with LC output filter, G = 6 dB)  
Unweighted (filterless, G = 12 dB)  
A-weighted (filterless, G = 12 dB)  
Unweighted (with LC output filter, G = 12 dB)  
A-weighted (with LC output filter, G = 12 dB)  
82  
57  
78  
55  
103  
74  
99  
71  
VN  
µVRMS  
1. Standby mode is active when VSTBY is tied to GND.  
2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the superimposed sinus signal to VCC @ F = 217 Hz.  
3. Independent of Gain configuration (6 or 12 dB) and between IN+ or IN- and GND.  
9/28  
Electrical characteristics  
TS2007FC  
Table 9.  
Symbol  
V
= +2.7 V, GND = 0 V, V = 1.35 V, T  
= 25°C (unless otherwise specified)  
CC  
ic  
amb  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Supply current  
ICC  
ICC-STBY  
Voo  
1.45  
2.5  
mA  
No input signal, no load  
Standby current (1)  
0.5  
2
µA  
No input signal, VSTBY = GND  
Output offset voltage  
25  
mV  
Floating inputs, RL = 8 Ω  
Output power  
THD = 1% max, F = 1 kHz, RL = 4 Ω  
THD = 1% max, F = 1 kHz, RL = 8 Ω  
THD = 10% max, F = 1 kHz, RL = 4 Ω  
THD = 10% max, F = 1 kHz, RL = 8 Ω  
0.64  
0.39  
0.83  
0.49  
Po  
W
Total harmonic distortion + noise  
THD + N  
Efficiency  
0.03  
%
%
Po = 250 mWrms, G = 6 dB, F = 1 kHz, RL = 8 Ω  
Efficiency  
Po = 0.64 Wrms, RL = 4 Ω (with LC output filter)  
Po = 0.39 Wrms, RL = 8 Ω (with LC output filter)  
84  
91  
Power supply rejection ratio with inputs grounded,  
Cin = 1 µF (2)  
PSRR  
dB  
F= 217 Hz, RL = 8 Ω, Gain = 6 dB, Vripple = 200 mVpp  
F= 217 Hz, RL = 8 Ω, Gain = 12 dB, Vripple = 200 mVpp  
68  
65  
Common mode rejection ratio Cin = 1 µF, RL = 8 Ω,  
20 Hz < F< 20 kHz, Gain = 6 dB, ΔVICM = 200 mVpp  
CMRR  
Gain  
60  
dB  
dB  
Gain value  
Gs = 0 V  
GS = VCC  
11.5  
5.5  
12  
6
12.5  
6.5  
Zin  
Single ended input impedance (3)  
68  
75  
82  
kΩ  
FPWM  
Pulse width modulator base frequency  
190  
280  
370  
kHz  
Signal-to-noise ratio (A-weighting), F=1 kHz, Po = 0.5 W  
G = 6 dB, RL = 4 Ω (with LC output filter)  
SNR  
88  
dB  
tWU  
Wake-up time  
1
1
3
ms  
ms  
tSTBY  
Standby time  
Output voltage noise, F = 20 Hz to 20 kHz, RL = 4 Ω  
Unweighted (filterless, G = 6 dB)  
A-weighted (filterless, G = 6 dB)  
Unweighted (with LC output filter, G = 6 dB)  
A-weighted (with LC output filter, G = 6 dB)  
Unweighted (filterless, G = 12 dB)  
A-weighted (filterless, G = 12 dB)  
Unweighted (with LC output filter, G = 12 dB)  
A-weighted (with LC output filter, G = 12 dB)  
82  
56  
77  
55  
100  
73  
98  
70  
VN  
µVRMS  
1. Standby mode is active when VSTBY is tied to GND.  
2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the superimposed sinus signal to VCC @ F= 217 Hz.  
3. Independent of Gain configuration (6 or 12 dB) and between IN+ or IN- and GND.  
10/28  
TS2007FC  
Electrical characteristics  
3.2  
Electrical characteristic curves  
The graphs shown in this section use the following abbreviations:  
R + 15 µH or 30 µH = pure resistor + very low series resistance inductor  
L
Filter = LC output filter (1 µF+ 30 µH for 4 Ω and 0.5 µF+15 µH for 8 Ω)  
All measurements are done with C = 1 µF and C = 100 nF (Figure 2), except for the  
S1  
S2  
PSRR where C is removed (Figure 3).  
S1  
Figure 2.  
Test diagram for measurements  
Cs1  
Cs2  
100nF  
VCC  
1
μ
F
GND  
GND  
RL  
4 or 8  
Cin  
Cin  
Ω
Out+  
In+  
5th order  
50kHz  
μ
μ
15 H or 30 H  
TS2007  
or  
low-pass filter  
LC Filter  
In-  
Out-  
GND  
Audio Measurement  
Bandwith < 30kHz  
Figure 3.  
Test diagram for PSRR measurements  
Cs2  
100nF  
VCC  
20Hz to 20kHz  
Vripple  
Vcc  
GND  
GND  
1 F  
μ
RL  
4 or 8  
Cin  
Ω
Out+  
In+  
5th order  
50kHz  
μ
μ
15 H or 30 H  
TS2007  
or  
low-pass filter  
LC Filter  
In-  
Out-  
Cin  
μ
1 F  
GND  
GND  
5th order  
50kHz  
RMS Selective Measurement  
Bandwith =1% of Fmeas  
reference  
low-pass filter  
11/28  
Electrical characteristics  
TS2007FC  
For quick reference, a list of the graphs shown in this section is provided in Table 10.  
Table 10. Index of graphs  
Description  
Figure  
Current consumption vs. power supply voltage  
Standby current vs. power supply voltage  
Current consumption vs. standby voltage  
Efficiency vs. output power  
Figure 4  
Figure 5  
Figure 6  
Figure 7 to Figure 12  
Figure 13, Figure 14  
Figure 15 to Figure 18  
Figure 19 to Figure 28  
Figure 29  
Output power vs. power supply voltage  
THD+N vs. output power  
THD+N vs. frequency  
PSRR vs. frequency  
PSRR vs. common mode input voltage  
CMRR vs. frequency  
Figure 30, Figure 31  
Figure 32  
CMRR vs. common mode input voltage  
Gain vs. frequency  
Figure 33, Figure 34  
Figure 35, Figure 36  
Figure 37 to Figure 39  
Figure 40  
Output offset vs. common mode input voltage  
Power derating curves  
Startup and shutdown phase  
Figure 41 to Figure 43  
12/28  
TS2007FC  
Electrical characteristics  
Figure 4.  
Current consumption vs. power  
supply voltage  
Figure 5.  
Standby current vs. power supply  
voltage  
1.4  
3.5  
No load  
Vstdby = GND  
No load  
TAMB = 25  
°
C
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Tamb = 25°C  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Power Supply Voltage (V)  
Power Supply Voltage (V)  
Figure 6.  
Current consumption vs. standby Figure 7.  
voltage  
Efficiency vs. output power  
4
100  
80  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
3
2
1
Efficiency  
Vcc=5V  
Vcc=4.2V  
60  
40  
20  
0
Vcc = 5V  
F = 1kHz  
Vcc=3.6V  
Power  
RL = 4  
THD+N  
BW 30kHz  
Ω
+
10%  
15  
μ
H
Dissipation  
Vcc=2.7V  
2
Vcc=3V  
3
No load  
TAMB = 25°C  
TAMB = 25  
°C  
0
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
1
4
5
Output Power (W)  
Standby Voltage (V)  
Figure 8.  
Efficiency vs. output power  
Figure 9.  
Efficiency vs. output power  
100  
80  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
100  
80  
60  
40  
20  
0
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
Efficiency  
Efficiency  
60  
Power  
Dissipation  
Vcc = 5V  
F = 1kHz  
Vcc = 3.6V  
F = 1kHz  
40  
RL = 8  
THD+N  
BW 30kHz  
Ω
+
10%  
15  
μ
H
RL = 4  
THD+N  
BW 30kHz  
Ω
+
15  
μH  
Power  
Dissipation  
10%  
20  
TAMB = 25  
°
C
TAMB = 25  
°
C
0
0.0  
0.5  
1.0  
Output Power (W)  
1.5  
2.0  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
Output Power (W)  
13/28  
Electrical characteristics  
TS2007FC  
Figure 10. Efficiency vs. output power  
Figure 11. Efficiency vs. output power  
100  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
100  
80  
60  
40  
20  
0
0.20  
0.18  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
80  
60  
40  
20  
0
Efficiency  
Efficiency  
Vcc = 3.6V  
F = 1kHz  
Vcc = 2.7V  
F = 1kHz  
Power  
Dissipation  
RL = 8  
THD+N  
BW 30kHz  
Ω
+
15  
μ
H
RL = 4  
THD+N  
BW 30kHz  
TAMB = 25  
Ω
+
15  
μH  
Power  
10%  
10%  
Dissipation  
TAMB = 25  
°
C
°C  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
Output Power (W)  
Output Power (W)  
Figure 12. Efficiency vs. output power  
Figure 13. Output power vs. power supply  
voltage  
3.0  
100  
0.050  
F = 1kHz  
BW < 30kHz  
TAMB = 25°C  
0.045  
0.040  
0.035  
0.030  
0.025  
0.020  
0.015  
0.010  
0.005  
0.000  
2.5  
80  
RL=4Ω+15μH  
Efficiency  
2.0  
1.5  
1.0  
0.5  
0.0  
60  
Vcc = 2.7V  
F = 1kHz  
Power  
Dissipation  
40  
20  
0
RL = 8  
THD+N  
BW 30kHz  
Ω
+
15  
μH  
10%  
RL=8  
4.5  
Ω+15μH  
TAMB = 25  
°C  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
2.5  
3.0  
3.5  
4.0  
5.0  
5.5  
Output Power (W)  
Power supply voltage (V)  
Figure 14. Output power vs. power supply  
voltage  
Figure 15. THD+N vs. output power  
10  
F = 1kHz  
BW < 30kHz  
TAMB = 25°C  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
RL = 4  
F = 100Hz  
G = +6dB  
BW < 30kHz  
TAMB = 25°C  
Ω + 15μH  
Vcc=5V  
Vcc=4.2V  
RL=4Ω+15μH  
Vcc=3.6V  
1
0.1  
Vcc=3V  
Vcc=2.7V  
RL=8  
4.5  
Ω+15μH  
0.01  
0.01  
0.1  
1
2.5  
3.0  
3.5  
4.0  
5.0  
5.5  
Power supply voltage (V)  
Output power (W)  
14/28  
TS2007FC  
Electrical characteristics  
Figure 16. THD+N vs. output power  
Figure 17. THD+N vs. output power  
10  
10  
Vcc=5V  
RL = 4  
F = 1kHz  
G = +6dB  
Ω + 15μH  
RL = 8  
Ω + 15μH  
Vcc=4.2V  
Vcc=3.6V  
F = 100Hz  
G = +6dB  
Vcc=4.2V  
BW < 30kHz  
TAMB = 25°C  
BW < 30kHz  
TAMB = 25°C  
Vcc=3V  
Vcc=2.7V  
Vcc=3.6V  
Vcc=3V  
1
0.1  
1
Vcc=2.7V  
0.1  
0.01  
Vcc=5V  
1
0.01  
0.01  
0.1  
1
0.01  
0.1  
Output power (W)  
Output power (W)  
Figure 18. THD+N vs. output power  
Figure 19. THD+N vs. frequency  
10  
10  
Vcc = 5V  
Vcc=4.2V  
Vcc=3.6V  
Vcc=3V  
RL = 8  
F = 1kHz  
G = +6dB  
BW < 30kHz  
Ω + 15μH  
RL = 4  
Ω + 15μH  
G = +6dB  
BW < 30kHz  
TAMB = 25°C  
Tamb = 25°C  
1
1
0.1  
Po=1400mW  
Vcc=2.7V  
0.1  
Po=700mW  
Vcc=5V  
0.01  
0.01  
0.01  
0.1  
Output power (W)  
1
100  
1000  
10000  
Frequency (Hz)  
Figure 20. THD+N vs. frequency  
Figure 21. THD+N vs. frequency  
10  
10  
Vcc = 5V  
RL = 8Ω + 15μH  
G = +6dB  
Vcc = 4.2V  
RL = 4  
Ω + 15μH  
G = +6dB  
BW < 30kHz  
TAMB = 25°C  
BW < 30kHz  
TAMB = 25°C  
Po=900mW  
1
1
Po=1000mW  
0.1  
0.1  
Po=450mW  
Po=500mW  
0.01  
0.01  
100  
1000  
10000  
100  
1000  
10000  
Frequency (Hz)  
Frequency (Hz)  
15/28  
Electrical characteristics  
TS2007FC  
Figure 22. THD+N vs. frequency  
Figure 23. THD+N vs. frequency  
10  
10  
Vcc = 4.2V  
RL = 8Ω + 15μH  
G = +6dB  
BW < 30kHz  
Vcc = 3.6V  
RL = 4  
Ω + 15μH  
G = +6dB  
BW < 30kHz  
TAMB = 25°C  
Po=600mW  
TAMB = 25°C  
1
1
Po=700mW  
0.1  
0.1  
Po=300mW  
Po=350mW  
0.01  
0.01  
100  
1000  
10000  
10000  
10000  
100  
1000  
10000  
Frequency (Hz)  
Frequency (Hz)  
Figure 24. THD+N vs. frequency  
Figure 25. THD+N vs. frequency  
10  
10  
Vcc = 3V  
RL = 4  
G = +6dB  
Vcc = 3.6V  
RL = 8  
G = +6dB  
Ω + 15μH  
Ω + 15μH  
BW < 30kHz  
TAMB = 25°C  
BW < 30kHz  
TAMB = 25°C  
1
1
Po=500mW  
Po=400mW  
0.1  
0.1  
Po=250mW  
Po=200mW  
0.01  
0.01  
100  
1000  
100  
1000  
10000  
Frequency (Hz)  
Frequency (Hz)  
Figure 26. THD+N vs. frequency  
Figure 27. THD+N vs. frequency  
10  
10  
Vcc = 3V  
RL = 8Ω + 15μH  
G = +6dB  
BW < 30kHz  
TAMB = 25°C  
Vcc = 2.7V  
RL = 4  
G = +6dB  
Ω + 15μH  
BW < 30kHz  
TAMB = 25°C  
Po=300mW  
Po=400mW  
1
1
Po=200mW  
Po=150mW  
0.1  
0.1  
0.01  
0.01  
100  
1000  
100  
1000  
10000  
Frequency (Hz)  
Frequency (Hz)  
16/28  
TS2007FC  
Electrical characteristics  
Figure 28. THD+N vs. frequency  
Figure 29. PSRR vs. frequency  
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
Vcc = 2.7V  
RL = 8Ω + 15μH  
G = +6dB  
BW < 30kHz  
TAMB = 25°C  
Inputs grounded  
Vcc = 5V, 4.2V, 3.6V, 3V, 2.7V  
Vripple = 200mVpp  
Po=250mW  
Po=125mW  
CIN = 1  
RL =  
TAMB = 25  
μF  
1
4
Ω
+
C
15μH  
°
G=+6dB  
G=+12dB  
0.1  
0.01  
100  
1000  
10000  
100  
1000  
Frequency (Hz)  
10000  
Frequency (Hz)  
Figure 30. PSRR vs. common mode input  
voltage  
Figure 31. PSRR vs. common mode input  
voltage  
0
0
Vripple = 200mVpp  
Vripple = 200mVpp  
-10  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
G = +12dB  
F = 217Hz  
G = +6dB  
F = 217Hz  
-20  
RL =  
4
Ω
+
15μH  
RL =  
4
Ω
+
C
15μH  
TAMB = 25  
°
C
TAMB = 25  
°
-30  
-40  
-50  
-60  
-70  
-80  
-90  
Vcc=3V  
Vcc=5V  
Vcc=4.2V  
Vcc=3V  
Vcc=2.7V  
Vcc=2.7V  
Vcc=3.6V  
Vcc=4.2V  
Vcc=3.6V  
Vcc=5V  
4
0
1
2
3
5
0
1
2
3
4
5
Common Mode Input Voltage (V)  
Common Mode Input Voltage (V)  
Figure 32. CMRR vs. frequency  
Figure 33. CMRR vs. common mode input  
voltage  
0
0
Δ
Vicm = 200mVpp  
G = +6dB, +12dB  
Cin = 4.7  
RL =  
Tamb = 25  
Δ
Vic = 200mVpp  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-10 G = +6dB  
μ
F
F = 217Hz  
RL = ≥ 4Ω  
TAMB = 25  
4Ω + 15μH  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
+
15μH  
°
C
°
C
Vcc=5V  
Vcc=4.2V  
Vcc=3V  
Vcc=2.7V  
Vcc=5V, 4.2V, 3.6V, 3V, 2.7V  
Vcc=3.6V  
0
1
2
3
4
5
100  
1000  
10000  
Common Mode Input Voltage (V)  
Frequency (dB)  
17/28  
Electrical characteristics  
TS2007FC  
Figure 34. CMRR vs. common mode input  
voltage  
Figure 35. Gain vs. frequency  
8
0
Δ
Vic = 200mVpp  
No load  
7
6
5
4
3
2
1
0
-10 G = +12dB  
F = 217Hz  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
RL =  
TAMB = 25  
4
Ω
+
15μH  
°
C
Vcc=3.6V  
RL=8  
RL=8  
RL=4  
Ω+15μH  
Vcc=3V  
Vcc=2.7V  
Ω
+30μH  
Ω
+30  
μ
H
RL=4  
Ω
+15μH  
Set Gain = +6dB  
Vin = 500mVpp  
TAMB = 25°C  
Vcc=5V  
Vcc=4.2V  
3
0
1
2
4
5
100  
1000  
Frequency (Hz)  
10000  
Common Mode Input Voltage (V)  
Figure 36. Gain vs. frequency  
Figure 37. Output offset vs. common mode  
input voltage  
14  
10  
No load  
13  
12  
11  
10  
9
1
RL=8  
RL=8  
RL=4  
Ω
+15  
μ
H
G=+6dB  
0.1  
Ω
+30  
μH  
Ω
+30  
μ
H
G=+12dB  
0.01  
1E-3  
8
RL=4  
Ω
+15μH  
Vcc = 5V  
RL = 8  
TAMB = 25  
Set Gain = +12dB  
Vin = 500mVpp  
TAMB = 25°C  
Ω
+ 15μH  
7
°
C
6
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
100  
1000  
Frequency (Hz)  
10000  
Common Mode Input Voltage (V)  
Figure 38. Output offset vs. common mode  
input voltage  
Figure 39. Output offset vs. common mode  
input voltage  
10  
10  
1
1
G=+6dB  
0.1  
0.1  
G=+6dB  
G=+12dB  
G=+12dB  
0.01  
0.01  
Vcc = 3.6V  
Vcc = 2.7V  
RL = 8  
Ω + 15μH  
RL = 8  
Ω + 15μH  
TAMB = 25  
°
C
TAMB = 25  
°C  
1E-3  
0.0  
1E-3  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5 3.0  
3.5  
0.5  
1.0  
1.5  
2.0 2.5  
Common Mode Input Voltage (V)  
Common Mode Input Voltage (V)  
18/28  
TS2007FC  
Electrical characteristics  
Figure 40. Power derating curves  
Figure 41. Startup and shutdown phase  
=5 V, G=6 dB, C =1 μF, inputs  
V
CC  
in  
grounded  
1.6  
1.4  
Vo1  
Mounted on a 4-layer PCB  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Vo2  
Standby  
Vo1 - Vo2  
No Heat sink  
AMR value  
0
25  
50  
75  
100  
C)  
125  
150  
Ambiant Temperature (  
°
Figure 42. Startup and shutdown phase  
=5 V, G=6 dB, C =1 μF,  
Figure 43. Startup and shutdown phase  
V
V
=5 V, G=12 dB, C =1 μF,  
CC  
in  
CC in  
V =1 V , F=10 kHz  
V =1 V , F=10 kHz  
in  
pp  
in pp  
Vo1  
Vo2  
Vo1  
Vo2  
Standby  
Standby  
Vo1 - Vo2  
Vo1 - Vo2  
19/28  
Application information  
TS2007FC  
4
Application information  
4.1  
Differential configuration principle  
The TS2007 is a monolithic fully-differential input/output class D power amplifier. The  
TS2007 includes a common-mode feedback loop that controls the output bias value to  
average it at V /2 in the range of DC common mode input voltage. This allows the device  
CC  
to always have a maximum output voltage swing, and by consequence, maximize the output  
power. In addition, as the load is connected differentially compared to a single-ended  
topology, the output is four times higher for the same power supply voltage.  
A fully-differential amplifier has the following advantages.  
High PSRR (power supply rejection ratio).  
High CMRR (common mode noise rejection).  
Virtually zero pop without additional circuitry, giving a faster start-up time than  
conventional single-ended input amplifiers.  
Easy interfacing with differential output audio DACs.  
No input coupling capacitors required since there is a common mode feedback loop.  
4.2  
Gain settings  
In the flat region of the frequency-response curve (no input coupling capacitor or internal  
feedback loop + load effect), the differential gain can be set to either 6 or 12 dB depending  
on the logic level of the GS pin.  
Table 11. GS pin gains  
GS pin  
Gain (dB)  
Gain (V/V)  
1
0
6 dB  
2
4
12 dB  
Note:  
Between the GS pin and V there is an internal 300 kΩ resistor. When the pin is floating  
CC  
the gain is 6 dB. In standby mode, this internal resistor is disconnected (HiZ input).  
4.3  
Common mode feedback loop limitations  
As explained previously, the common mode feedback loop allows the output DC bias voltage  
to be averaged at V /2 for any DC common mode bias input voltage.  
CC  
Due to the V limitation of the input stage (see Table 2: Operating conditions), the common  
icm  
mode feedback loop can fulfill its role only within the defined range.  
4.4  
Low frequency response  
If a low frequency bandwidth limitation is required, it is possible to use input coupling  
capacitors. In the low frequency region, the input coupling capacitor C has a greater effect.  
in  
C and the input impedance Z form a first-order high-pass filter with a -3 dB cut-off  
in  
in  
frequency (see Table 5 to Table 9).  
20/28  
TS2007FC  
Application information  
1
FCL = --------------------------------------------  
2 ⋅ π Zin Cin  
So, for a desired cut-off frequency F we can calculate C :  
CL  
in  
1
Cin = ---------------------------------------------  
2 ⋅ π Zin FCL  
with F in Hz, Z in Ω and C in F.  
CL  
in  
in  
The input impedance Z is for the whole power supply voltage range, typically 75 kΩ. There  
in  
is also a tolerance around the typical value (see Table 5 to Table 9). With regard to the  
tolerance, you can also calculate tolerance of the F  
:
CL  
FCLmax = 1.103 FCL  
FCLmin = 0.915 FCL  
4.5  
Circuit decoupling  
A power supply capacitor, referred to as C , is needed to correctly bypass the TS2007.  
S
The TS2007 has a typical switching frequency of 280 kHz and output fall and rise time of  
less than or equal to 5 ns. Due to these very fast transients, careful decoupling is  
mandatory.  
A 1 µF ceramic capacitor is enough, but it must be located very close to the TS2007 in order  
to avoid any extra parasitic inductance created by a long track wire. Parasitic loop  
inductance, in relation with di/dt, introduces overvoltage that decreases the global efficiency  
of the device and may cause, if this parasitic inductance is too high, a TS2007 breakdown.  
For filtering low frequency noise signals on the power line, it is recommended to use a  
capacitor C of at least 1 µF.  
S
In addition, even if a ceramic capacitor has an adequate high frequency ESR (equivalent  
series resistance) value, its current capability is also important. A 0603 size is a good  
compromise, particularly when a 4 Ω load is used.  
Another important parameter is the rated voltage of the capacitor. A 1 µF/6.3 V capacitor  
used at 5 V, loses about 50% of its value: with a power supply voltage of 5 V, the decoupling  
value, instead of 1 µF, could be reduced to 0.5 µF. As C has particular influence on the  
S
THD+N in the medium to high frequency region, this capacitor variation becomes decisive.  
In addition, less decoupling means higher overshoots which can be problematic if they reach  
the power supply AMR value (6 V).  
4.6  
Wake-up time (twu)  
When the standby is released to set the device ON, there is a wait of 1 ms typically. The  
TS2007 has an internal digital delay that mutes the outputs and releases them after this  
time in order to avoid any pop noise.  
Note:  
The gain increases smoothly (see Figure 42 and Figure 43) from the mute to the gain  
selected by the GS pin (Section 4.2).  
21/28  
Application information  
TS2007FC  
4.7  
Shutdown time  
When the standby command is set to high, the time required to put the two output stages  
into high impedance and to put the internal circuitry in shutdown mode, is typically 1 ms.  
This time is used to decrease the gain and avoid any pop noise during shutdown.  
Note:  
The gain decreases smoothly until the outputs are muted (see Figure 42 and Figure 43).  
4.8  
Consumption in shutdown mode  
Between the shutdown pin and GND there is an internal 300 kΩresistor. This resistor forces  
the TS2007 to be in shutdown when the shutdown input is left floating.  
However, this resistor also introduces additional shutdown power consumption if the  
shutdown pin voltage does not equal 0 V. This extra current is provided by the device that  
drives the standby pin of the amplifier.  
Referring to Table 2: Operating conditions on page 4, with a 0.4 V shutdown voltage pin for  
example, you must add 0.4 V/300 k = 1.3 µA in typical (0.4 V/273 k = 1.46 µA maximum) to  
the shutdown current specified in Table 5 to Table 9.  
4.9  
Single-ended input configuration  
It is possible to use the TS2007 in a single-ended input configuration. However, input  
coupling capacitors are needed in this configuration. The following schematic diagram  
shows a typical single-ended input application.  
Figure 44. Typical application for single-ended input configuration  
VCC  
Cs  
Gain select control  
1uF  
TS2007  
GS  
Vcc  
Input  
Cin  
Cin  
Speaker  
C1 IN-  
OUT+ C3  
-
H
Bridge  
Gain  
Select  
PWM  
A1  
A3  
+
IN+  
OUT-  
Standby  
Control  
Protection  
Circuit  
Oscillator  
Gnd  
Standby  
Standby control  
22/28  
TS2007FC  
Application information  
4.10  
Output filter considerations  
The TS2007 is designed to operate without an output filter. However, due to very sharp  
transients on the TS2007 output, EMI radiated emissions may cause some standard  
compliance issues.  
These EMI standard compliance issues can appear if the distance between the TS2007  
outputs and loudspeaker terminal are long (typically more than 50 mm, or 100 mm in both  
directions). As the PCB layout and internal equipment device are different for each  
configuration, it is difficult to provide a one-size-fits-all solution.  
However, to decrease the probability of EMI issues, there are several simple rules to follow.  
Reduce, as much as possible, the distance between the TS2007 output pins and the  
speaker terminals.  
Use a ground plane for shielding sensitive wires.  
Place, as close as possible to the TS2007 and in series with each output, a ferrite bead  
with a rated current of minimum 2.5 A and impedance greater than 50 Ω at frequencies  
above 30 MHz.  
Allow extra footprint to place, if necessary, a capacitor to short perturbations to ground  
(Figure 45).  
Figure 45. Ferrite chip bead placement  
Ferrite chip bead  
From TS2007 output  
to speaker  
about 100pF  
gnd  
In the case where the distance between the TS2007 output and the speaker terminals is too  
long, it is possible to have low frequency EMI issues due to the fact that the typical operating  
PWM frequency is 280 kHz and fall and rise time of the output signal is less than or equal to  
5 ns. In this configuration, it is necessary to use the output filter represented in Figure 46 on  
page 24, that consists of L1, C1, L2 and C2 as close as possible to the TS2007 outputs.  
When an output filter is used and there exists a possibility to disconnect a load, it is  
recommended to use an RC network that consists of C3 and R as shown in Figure 46 on  
page 24. In this case, when the output filter is connected without any load, the filter acts like  
a short circuit for input frequencies above 10 kHz. The RC network corrects frequency  
response of the output filter and compensates this limitation.  
23/28  
Application information  
TS2007FC  
Table 12. Example of component choice  
Component RL = 4 Ω  
RL = 8 Ω  
L1  
L2  
C1  
C2  
C3  
R
15μH / 1.4A  
15μH / 1.4A  
2μF / 10V  
2μF / 10V  
1μF / 10V  
30μH / 0.7A  
30μH / 0.7A  
1μF / 10V  
1μF / 10V  
1μF / 10V  
22Ω / 0.25W  
47Ω / 0.25W  
Figure 46. LC output filter with RC network  
LC Output Filter  
OUT+  
RC network  
L1  
C1  
C3  
R
from TS2007  
R
L
L2  
C2  
OUT-  
4.11  
4.12  
Short-circuit protection  
The TS2007 includes an output short-circuit protection. This protection prevents the device  
from being damaged if there are fault conditions on the amplifier outputs.  
When a channel is in operating mode and a short-circuit occurs directly between two  
outputs (Out+ and Out-) or between an output and ground (Out+ and GND or Out- and  
GND), the short-circuit protection detects this situation and puts the amplifier into standby.  
To put the amplifier back into operating mode, put the standby pin to logical LO and then to  
logical HI.  
Thermal shutdown  
The TS2007 device has an internal thermal shutdown protection in the event of extreme  
temperatures to protect the device from overheating. Thermal shutdown is active when the  
device reaches 150°C. When the temperature decreases to safe levels, the circuit switches  
back to normal operation.  
24/28  
TS2007FC  
Package information  
5
Package information  
In order to meet environmental requirements, STMicroelectronics offers these devices in  
®
ECOPACK packages. These packages have a lead-free second level interconnect. The  
category of second level interconnect is marked on the package and on the inner box label,  
in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering  
conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics  
trademark. ECOPACK specifications are available at: www.st.com.  
Figure 47. 9-bump flip-chip pinout (top view)  
OUT-  
GS  
OUT+  
STBY  
IN-  
GND  
VCC  
3
2
1
IN+  
VCC  
C
A
B
Balls are underneath  
Figure 48. Marking (top view)  
E
Logo: ST  
First two digits for part number: K7  
Third digit for assembly plant: X  
Three digit date code: YWW  
Dot indicates pin A1  
K7 X  
YWW  
E symbol for lead free  
25/28  
Package information  
Figure 49. 9-bump flip-chip package mechanical data  
TS2007FC  
1.57 mm  
Die size: 1.57 mm x 1.57 mm 30 µm  
Die height (including bumps): 600 µm  
Bump diameter: 315 µm 50 µm  
Bump diameter before reflow: 300 µm 10 µm  
Bump height: 250 µm 40 µm  
1.57 mm  
0.5mm  
Die height: 350 µm 20 µm  
Pitch: 500 µm 50 µm  
0.5mm  
0.25mm  
Back coating layer height*: 40 µm 10 µm  
Coplanarity: 50 µm max  
* Optional  
40µm  
600µm  
26/28  
TS2007FC  
Ordering information  
6
Ordering information  
Table 13. Order codes  
Order code  
Temperature range  
Package  
Marking  
TS2007EIJT  
-40° C to +85° C  
-40° C to +85° C  
Flip chip  
K7  
TS2007EKIJT  
Flip chip with back coating  
K7  
7
Revision history  
Table 14. Document revision history  
Date  
Revision  
Changes  
19-Aug-2008  
1
Initial release.  
27/28  
TS2007FC  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2008 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
28/28  

相关型号:

TS2007IQT

3W filter-free Class D audio power amplifer with 6-12dB fixed gain select
STMICROELECTR

TS2007_11

3 W filter-free Class D audio power amplifer with 6-12 dB fixed gain select
STMICROELECTR

TS200F11CET

Parallel - Fundamental Quartz Crystal, 20MHz Nom, GREEN, RESISTANCE WELDED, METAL CAN, HC-49/US-SM, 2 PIN
CTS

TS200F11CKB

Parallel - Fundamental Quartz Crystal, 20MHz Nom, GREEN, RESISTANCE WELDED, METAL CAN, HC-49/US-SM, 2 PIN
CTS

TS200F13CSB

Series - Fundamental Quartz Crystal, 20MHz Nom, GREEN, RESISTANCE WELDED, METAL CAN, HC-49/US-SM, 2 PIN
CTS

TS200F22ILT

Parallel - Fundamental Quartz Crystal, 20MHz Nom, GREEN, RESISTANCE WELDED, METAL CAN, HC-49/US-SM, 2 PIN
CTS

TS200F23CDT

Parallel - Fundamental Quartz Crystal, 20MHz Nom, GREEN, RESISTANCE WELDED, METAL CAN, HC-49/US-SM, 2 PIN
CTS

TS200F23CET

Parallel - Fundamental Quartz Crystal, 20MHz Nom, GREEN, RESISTANCE WELDED, METAL CAN, HC-49/US-SM, 2 PIN
CTS

TS200F23IDT

Parallel - Fundamental Quartz Crystal, 20MHz Nom, GREEN, RESISTANCE WELDED, METAL CAN, HC-49/US-SM, 2 PIN
CTS

TS200F23IET

Parallel - Fundamental Quartz Crystal, 20MHz Nom, GREEN, RESISTANCE WELDED, METAL CAN, HC-49/US-SM, 2 PIN
CTS

TS200F25CEB

Parallel - Fundamental Quartz Crystal, 20MHz Nom, GREEN, RESISTANCE WELDED, METAL CAN, HC-49/US-SM, 2 PIN
CTS

TS200F2XILB

Parallel - Fundamental Quartz Crystal, 20MHz Nom, GREEN, RESISTANCE WELDED, METAL CAN, HC-49/US-SM, 2 PIN
CTS