TS512AIYD [STMICROELECTRONICS]

Precision dual operational amplifier; 精密双路运算放大器
TS512AIYD
型号: TS512AIYD
厂家: ST    ST
描述:

Precision dual operational amplifier
精密双路运算放大器

运算放大器 放大器电路 光电二极管
文件: 总16页 (文件大小:217K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TS512  
Precision dual operational amplifier  
Features  
Low input offset voltage: 500 µV max.  
Low power consumption  
N
Short-circuit protection  
DIP8  
(Plastic package)  
Low distortion, low noise  
High gain-bandwidth product: 3 MHz  
High channel separation  
ESD protection 2 kV  
Macromodel included in this specification  
D
SO-8  
Description  
(Plastic micropackage)  
The TS512 is a high performance dual  
operational amplifier with frequency and phase  
compensation built into the chip. The internal  
phase compensation allows stable operation in  
voltage follower in spite of its high gain-bandwidth  
product.  
Pin connections  
(Top view)  
+
8
7
The circuit presents very stable electrical  
V
CC  
Output 1  
1
characteristics over the entire supply voltage  
range, and is particularly intended for professional  
and telecom applications (such as active filtering).  
Output  
Inverting Input 1 2  
-
+
Inverting Input 2  
6
5
Non-inverting Input 1  
-
3
4
-
Non-inverting Input 2  
+
V
CC  
May 2008  
Rev 3  
1/16  
www.st.com  
16  
Absolute maximum ratings and operating conditions  
TS512  
1
Absolute maximum ratings and operating conditions  
Table 1.  
Symbol  
Absolute maximum ratings  
Parameter  
Value  
Unit  
VCC  
Vin  
Supply voltage  
±18  
±VCC  
V
Input voltage  
Vid  
Differential input voltage  
±(VCC - 1)  
Thermal resistance junction to ambient (1)  
Rthja  
85  
°C/W  
°C/W  
DIP8  
SO-8  
125  
Thermal resistance junction to case (1)  
Rthjc  
41  
40  
DIP8  
SO-8  
Tj  
Junction temperature  
+ 150  
°C  
°C  
kV  
V
Tstg  
Storage temperature range  
HBM: human body model(2)  
MM: machine model(3)  
-65 to +150  
2
ESD  
200  
1.5  
CDM: charged device model(4)  
kV  
1. Short-circuits can cause excessive heating and destructive dissipation.Rth are typical values.  
2. Human body model: A 100 pF capacitor is charged to the specified voltage, then discharged through a  
1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations  
while the other pins are floating.  
3. Machine model: A 200 pF capacitor is charged to the specified voltage, then discharged directly between  
two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of  
connected pin combinations while the other pins are floating.  
4. Charged device model: all pins and the package are charged together to the specified voltage and then  
discharged directly to the ground through only one pin. This is done for all pins.  
Table 2.  
Symbol  
Operating conditions  
Parameter  
Value  
Unit  
VCC  
Vicm  
Toper  
Supply voltage(1)  
6 to 30V  
VDD+1.5 to VCC-1.5  
-40 to +125  
V
V
Common mode input voltage range  
Operating free air temperature range  
°C  
1. Value with respect to VDD pin.  
2/16  
TS512  
Schematic diagram  
2
Schematic diagram  
Figure 1.  
Schematic diagram (1/2 TS512)  
VCC  
R16  
4kΩ  
R1  
2kΩ  
R2  
2kΩ  
R5  
4kΩ  
R6  
4kΩ  
R11  
1kΩ  
R18  
2kΩ  
Q25  
Q13  
Q14  
Q35  
Q11  
Q2  
Q12  
R12  
812Ω  
Q3  
Q29  
Q27  
Q21  
R13  
27Ω  
Q37  
Q36  
Non-inverting  
Input  
Output  
Inverting  
Input  
Q38  
R17  
4kΩ  
R14  
27Ω  
Q15  
Q22  
Q28  
Q5  
C2  
23pF  
Q7  
Q30  
Q17  
Q20  
Q31  
Q9  
Q32  
Q10  
Q4  
Q6  
Q18  
Q19  
Q8  
Q23  
R8  
150kΩ  
C1  
43pF  
Q33  
Q34  
R15  
150k  
R3  
60kΩ  
R4  
1.2kΩ  
R7  
15kΩ  
R9  
15kΩ  
R10  
45kΩ  
Ω
VCC  
3/16  
Electrical characteristics  
TS512  
3
Electrical characteristics  
Table 3.  
Symbol  
V
= ±15V, T  
= 25°C (unless otherwise specified)  
CC  
amb  
Parameter  
Min. Typ. Max.  
Unit  
Supply current (per operator)  
0.5  
0.6  
ICC  
mA  
Tmin Tamb T max  
0.75  
Input bias current  
Tmin Tamb T max  
50  
1
150  
300  
Iib  
nA  
Rin  
Input resistance, f = 1kHz  
MΩ  
Input offset voltage  
TS512  
TS512A  
0.5  
2.5  
0.5  
Vio  
mV  
Tmin Tamb Tmax  
3.5  
1.5  
TS512  
TS512A  
Input offset voltage drift  
Tmin Tamb Tmax  
ΔVio  
2
5
µV/°C  
nA  
Input offset current  
Tmin Tamb Tmax  
20  
40  
Iio  
Input offset current drift  
Tmin Tamb Tmax  
nA  
-------  
ΔIio  
0.08  
23  
° C  
Ios  
Output short-circuit current  
mA  
Large signal voltage gain  
Avd  
90  
dB  
RL = 2kΩ, VCC = ±15V, Tmin Tamb T max  
VCC = ± 4V  
100  
95  
GBP  
Gain-bandwidth product, f = 100kHz  
Equivalent input noise voltage, f = 1kHz  
1.8  
3
MHz  
Rs = 50Ω  
Rs = 1kΩ  
Rs = 10kΩ  
8
10  
18  
nV  
en  
-----------  
Hz  
%
V
Total harmonic distortion  
THD  
Av = 20dB, RL = 2kΩ  
Vo = 2Vpp, f = 1kHz  
0.03  
Output voltage swing  
±Vopp  
RL = 2kΩ, VCC = ±15V, Tmin Tamb T max  
VCC = ± 4V  
±13  
±3  
28  
Large signal voltage swing  
RL = 10kΩ, f = 10kHz  
Vopp  
SR  
Vpp  
V/µs  
dB  
Slew rate  
Unity gain, RL = 2kΩ  
0.8  
90  
1.5  
Common mode rejection ratio  
Vic = ±10V  
CMR  
4/16  
TS512  
Electrical characteristics  
Table 3.  
Symbol  
V
= ±15V, T  
= 25°C (unless otherwise specified)  
CC  
amb  
Parameter  
Supply voltage rejection ratio  
Min. Typ. Max.  
Unit  
SVR  
90  
dB  
dB  
Vo1/Vo2 Channel separation, f = 1kHz  
120  
5/16  
Electrical characteristics  
TS512  
Figure 2.  
V
distribution at V = ±15V and  
Figure 3.  
V distribution at V = ±15V and  
io CC  
io  
CC  
T= 25°C  
T= 125°C  
30  
25  
20  
15  
10  
5
20  
Vio distribution at T = 25 °C  
Vio distribution at T = 125 °C  
15  
10  
5
0
0
-400  
-200  
0
200  
400  
-400  
-200  
0
200  
400  
Input offset voltage (µV)  
Input offset voltage (µV)  
Figure 4.  
Input offset voltage vs. input  
Figure 5.  
Input offset voltage vs. input  
common mode voltage at V = 10V  
common mode voltage at V = 30V  
CC  
CC  
0.4  
0.2  
0.4  
0.2  
T=125°C  
T=125°C  
0.0  
T=25°C  
T=-40°C  
0.0  
T=25°C  
T=-40°C  
-0.2  
-0.4  
-0.6  
-0.2  
-0.4  
Vcc = 30 V  
Vcc = 10 V  
-0.8  
1
-0.6  
0
2
3
4
5
6
7
8
9
5
10  
15  
20  
25  
30  
Input Common Mode Voltage (V)  
Input Common Mode Voltage (V)  
Figure 6.  
Supply current (per operator) vs.  
Figure 7.  
Supply current (per operator) vs.  
input common mode voltage at  
supply voltage at V = V /2  
icm  
CC  
V
= 6V  
CC  
0.6  
0.5  
0.4  
0.3  
0.2  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
T=125°C  
T=25°C  
T=125°C  
T=25°C  
T=-40°C  
T=-40°C  
Follower configuration  
Vcc = 6 V  
Vicm = Vcc/2  
18  
0.1  
6
9
12  
15  
21  
24  
27  
30  
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Supply voltage (V)  
Input Common Mode Voltage (V)  
6/16  
TS512  
Electrical characteristics  
Figure 8.  
Supply current (per operator) vs.  
input common mode voltage at  
Figure 9.  
Supply current (per operator) vs.  
input common mode voltage at  
V
= 10V  
V
= 30V  
CC  
CC  
0.50  
0.45  
0.40  
0.35  
0.30  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
T=125°C  
T=25°C  
T=125°C  
T=25°C  
T=-40°C  
T=-40°C  
Follower configuration  
Vcc = 10 V  
Follower configuration  
cc = 30 V  
V
0.25  
1
0.25  
0
2
3
4
5
6
7
8
9
10  
5
10 15  
20  
25  
30  
Input Common Mode Voltage (V)  
Input Common Mode Voltage (V)  
Figure 10. Output current vs. supply voltage at Figure 11. Output current vs. output voltage at  
= V /2 = 6V  
V
V
CC  
icm  
CC  
40  
40  
Source  
Vid = 1V  
T=-40°C  
T=25°C  
30  
30  
T=-40°C  
Source  
T=25°C  
Vid = 1V  
20  
20  
T=125°C  
T=125°C  
10  
10  
0
Vicm = Vcc/2  
0
Vcc = 6 V  
-10  
-20  
-30  
-40  
-10  
T=125°C  
T=125°C  
-20 Sink  
T=25°C  
Vid = -1V  
T=25°C  
Sink  
T=-40°C  
T=-40°C  
-30  
-40  
Vid = -1V  
10.0  
15.0  
20.0  
25.0  
30.0  
0
1
2
3
4
5
6
Supply voltage (V)  
Output Voltage (V)  
Figure 12. Output current vs. output voltage at Figure 13. Output current vs. output voltage at  
V
= 10V  
V
= 30V  
CC  
CC  
40  
30  
40  
30  
T=-40°C  
T=-40°C  
Source  
Vid = 1V  
T=25°C  
T=125°C  
Source  
Vid = 1V  
T=25°C  
20  
20  
T=125°C  
10  
10  
Vcc = 10 V  
T=125°C  
0
0
Vcc = 30 V  
-10  
-20  
-30  
-40  
-10  
-20  
-30  
-40  
T=125°C  
Sink  
Vid = -1V  
T=-40°C  
T=25°C  
Sink  
T=25°C  
25  
Vid = -1V  
T=-40°C  
0
2
4
6
8
10  
0
5
10  
15  
20  
30  
Output Voltage (V)  
Output Voltage (V)  
7/16  
Electrical characteristics  
TS512  
Figure 14. Voltage gain and phase for different Figure 15. Voltage gain and phase for different  
capacitive loads at V = 6V, capacitive loads at V = 10V,  
CC  
CC  
V
= 3V and T= 25°C  
V
= 5V and T= 25°C  
icm  
icm  
50  
40  
30  
20  
10  
0
45  
50  
40  
30  
20  
10  
0
45  
Gain  
Gain  
0
0
Phase  
-45  
-90  
-135  
-180  
-225  
-270  
-45  
-90  
-135  
-180  
-225  
-270  
Phase  
CL=100pF  
CL=100pF  
CL=600pF  
CL=330pF  
CL=600pF  
CL=330pF  
Vcc = 10 V, Vicm = 5 V, G = -100  
L = 2 kΩ connected to the ground  
Vcc = 6 V, Vicm = 3 V, G = -100  
L = 2 kΩ connected to the ground  
-10  
-10  
R
R
T
amb = 25 °C  
Tamb = 25 °C  
-20  
-20  
103  
104  
105  
106  
103  
104  
105  
106  
Frequency (Hz)  
Frequency (Hz)  
Figure 16. Voltage gain and phase for different Figure 17. Frequency response for different  
capacitive loads at V = 30V, capacitive loads at V = 6V,  
CC  
CC  
V
= 15V and T= 25°C  
V
= 3V and T= 25°C  
icm  
icm  
50  
40  
30  
20  
10  
0
45  
20  
10  
Gain  
0
Gain with CL=600 pF  
-45  
-90  
-135  
-180  
-225  
-270  
0
Phase  
CL=100pF  
Gain with CL=100 pF  
-10  
-20  
-30  
-40  
CL=600pF  
CL=330pF  
Gain with CL=330 pF  
Vcc = 30 V, Vicm = 15 V, G = -100  
L = 2 kΩ connected to the ground  
Vcc = 6 V, Vicm = 3 V  
-10  
R
RL = 2 k  
Tamb = 25  
Ω
connected to the ground  
C
T
amb = 25 °C  
-20  
103  
104  
105  
106  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
Figure 18. Frequency response for different  
capacitive loads at V = 10V,  
Figure 19. Frequency response for different  
capacitive loads at V = 30V,  
CC  
CC  
V
= 5V and T= 25°C  
V
= 15V and T= 25°C  
icm  
icm  
20  
10  
20  
10  
Gain with CL=600 pF  
Gain with CL=100 pF  
Gain with CL=600 pF  
0
0
Gain with CL=100 pF  
Gain with CL=330 pF  
-10  
-20  
-30  
-40  
-10  
-20  
-30  
-40  
Gain with CL=330 pF  
Vcc = 10 V, Vicm = 5 V  
Vcc = 30 V, Vicm = 15 V  
RL = 2 k  
Tamb = 25  
Ω
connected to the ground  
C
RL = 2 k  
Tamb = 25  
Ω
connected to the ground  
C
10k  
100k  
1M  
10M  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
8/16  
TS512  
Electrical characteristics  
Figure 20. Phase margin vs. output current, at Figure 21. Phase margin vs. output current, at  
V
= 6V, V = 3V and T= 25°C  
V
= 10V, V = 5V and T= 25°C  
CC  
icm  
CC  
icm  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
Recommended area  
Recommended area  
CL=100 pF  
CL=100 pF  
CL=330 pF  
CL=600 pF  
CL=330 pF  
CL=600 pF  
Vcc = 10 V  
Vicm = 5 V  
Vcc = 6 V  
Vicm = 3 V  
-10  
-20  
-30  
-40  
-10  
-20  
-30  
T
amb = 25 °C  
T
amb = 25 °C  
RL = 2 kΩ  
RL = 2 kΩ  
-3  
-2  
-1  
0
1
2
3
-3  
-2  
-1  
0
1
2
3
Output Current (mA)  
Output Current (mA)  
Figure 22. Phase margin vs. output current, at  
V
= 30V, V = 15V and T= 25°C  
CC  
icm  
70  
60  
50  
40  
30  
20  
10  
0
Recommended area  
CL=100 pF  
CL=330 pF  
CL=600 pF  
Vcc = 30 V  
icm = 15 V  
Tamb = 25 °C  
V
-10  
-20  
R
L = 2 kΩ  
-3  
-2  
-1  
0
1
2
3
Output Current (mA)  
9/16  
Macromodels  
TS512  
4
Macromodels  
4.1  
Important note concerning this macromodel  
Please consider the following remarks before using this macromodel.  
All models are a trade-off between accuracy and complexity (i.e. simulation time).  
Macromodels are not a substitute to breadboarding; rather, they confirm the validity of  
a design approach and help to select surrounding component values.  
A macromodel emulates the nominal performance of a typical device within specified  
operating conditions (temperature, supply voltage, for example). Thus the  
macromodel is often not as exhaustive as the datasheet, its purpose is to illustrate the  
main parameters of the product.  
Data derived from macromodels used outside of the specified conditions (V , temperature,  
CC  
for example) or even worse, outside of the device operating conditions (V , V , for  
CC icm  
example), is not reliable in any way.  
4.2  
Macromodel code  
** Standard Linear Ics Macromodels, 1993.  
** CONNECTIONS :  
* 1 INVERTING INPUT  
* 2 NON-INVERTING INPUT  
* 3 OUTPUT  
* 4 POSITIVE POWER SUPPLY  
* 5 NEGATIVE POWER SUPPLY  
.SUBCKT TS512 1 3 2 4 5  
********************************************************  
.MODEL MDTH D IS=1E-8 KF=6.565195E-17 CJO=10F  
* INPUT STAGE  
CIP 2 5 1.000000E-12  
CIN 1 5 1.000000E-12  
EIP 10 5 2 5 1  
EIN 16 5 1 5 1  
RIP 10 11 2.600000E+01  
RIN 15 16 2.600000E+01  
RIS 11 15 1.061852E+02  
DIP 11 12 MDTH 400E-12  
DIN 15 14 MDTH 400E-12  
VOFP 12 13 DC 0  
VOFN 13 14 DC 0  
IPOL 13 5 1.000000E-05  
CPS 11 15 12.47E-10  
DINN 17 13 MDTH 400E-12  
VIN 17 5 1.500000e+00  
DINR 15 18 MDTH 400E-12  
VIP 4 18 1.500000E+00  
FCP 4 5 VOFP 3.400000E+01  
FCN 5 4 VOFN 3.400000E+01  
10/16  
TS512  
Macromodels  
FIBP 2 5 VOFN 1.000000E-02  
FIBN 5 1 VOFP 1.000000E-02  
* AMPLIFYING STAGE  
FIP 5 19 VOFP 9.000000E+02  
FIN 5 19 VOFN 9.000000E+02  
RG1 19 5 1.727221E+06  
RG2 19 4 1.727221E+06  
CC 19 5 6.000000E-09  
DOPM 19 22 MDTH 400E-12  
DONM 21 19 MDTH 400E-12  
HOPM 22 28 VOUT 6.521739E+03  
VIPM 28 4 1.500000E+02  
HONM 21 27 VOUT 6.521739E+03  
VINM 5 27 1.500000E+02  
GCOMP 5 4 4 5 6.485084E-04  
RPM1 5 80 1E+06  
RPM2 4 80 1E+06  
GAVPH 5 82 19 80 2.59E-03  
RAVPHGH 82 4 771  
RAVPHGB 82 5 771  
RAVPHDH 82 83 1000  
RAVPHDB 82 84 1000  
CAVPHH 4 83 0.331E-09  
CAVPHB 5 84 0.331E-09  
EOUT 26 23 82 5 1  
VOUT 23 5 0  
ROUT 26 3 6.498455E+01  
COUT 3 5 1.000000E-12  
DOP 19 25 MDTH 400E-12  
VOP 4 25 1.742230E+00  
DON 24 19 MDTH 400E-12  
VON 24 5 1.742230E+00  
.ENDS  
Table 4.  
Symbol  
V
= ±15V, T  
= 25°C (unless otherwise specified)  
Conditions  
CC  
amb  
Value  
Unit  
Vio  
Avd  
0
mV  
V/mV  
µA  
RL = 2kΩ  
100  
350  
ICC  
No load, per operator  
Vicm  
VOH  
VOL  
Isink  
Isource  
GBP  
SR  
-13.4 to 14  
+14  
V
V
RL = 2kΩ  
RL = 2kΩ  
-14  
V
Vo = 0V  
27.5  
27.5  
2.5  
mA  
Vo = 0V  
mA  
RL = 2kΩ, CL = 100pF  
RL = 2kΩ  
MHz  
V/μs  
Degrees  
1.4  
m  
RL = 2kΩ, CL = 100pF  
55  
11/16  
Package information  
TS512  
5
Package information  
®
In order to meet environmental requirements, ST offers these devices in ECOPACK  
packages. These packages have a lead-free second level interconnect. The category of  
second level interconnect is marked on the package and on the inner box label, in  
compliance with JEDEC Standard JESD97. The maximum ratings related to soldering  
conditions are also marked on the inner box label. ECOPACK is an ST trademark.  
ECOPACK specifications are available at: www.st.com.  
12/16  
TS512  
Package information  
Figure 23. DIP8 package mechanical drawing  
Table 5.  
Ref.  
DIP8 package mechanical data  
Millimeters  
Dimensions  
Inches  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
A2  
b
5.33  
0.210  
0.38  
2.92  
0.36  
1.14  
0.20  
9.02  
7.62  
6.10  
0.015  
0.115  
0.014  
0.045  
0.008  
0.355  
0.300  
0.240  
3.30  
0.46  
1.52  
0.25  
9.27  
7.87  
6.35  
2.54  
7.62  
4.95  
0.56  
1.78  
0.36  
10.16  
8.26  
7.11  
0.130  
0.018  
0.060  
0.010  
0.365  
0.310  
0.250  
0.100  
0.300  
0.195  
0.022  
0.070  
0.014  
0.400  
0.325  
0.280  
b2  
c
D
E
E1  
e
eA  
eB  
L
10.92  
3.81  
0.430  
0.150  
2.92  
3.30  
0.115  
0.130  
13/16  
Package information  
TS512  
Figure 24. SO-8 package mechanical drawing  
Table 6.  
Ref.  
SO-8 package mechanical data  
Millimeters  
Dimensions  
Inches  
Typ.  
Min.  
Typ.  
Max.  
Min.  
Max.  
A
A1  
A2  
b
1.75  
0.25  
0.069  
0.010  
0.10  
1.25  
0.28  
0.17  
4.80  
5.80  
3.80  
0.004  
0.049  
0.011  
0.007  
0.189  
0.228  
0.150  
0.48  
0.23  
5.00  
6.20  
4.00  
0.019  
0.010  
0.197  
0.244  
0.157  
c
D
4.90  
6.00  
3.90  
1.27  
0.193  
0.236  
0.154  
0.050  
E
E1  
e
h
0.25  
0.40  
1°  
0.50  
1.27  
8°  
0.010  
0.016  
1°  
0.020  
0.050  
8°  
L
k
ccc  
0.10  
0.004  
14/16  
TS512  
Ordering information  
6
Ordering information  
Table 7.  
Order codes  
Temperature  
Order code  
Package  
Packaging  
Marking  
range  
TS512IN  
512IN  
DIP8  
Tube  
TS512AIN  
512AIN  
TS512ID  
512I  
512AI  
512IY  
Tube or  
Tape & reel  
TS512IDT  
SO-8  
-40°C, + 125°C  
TS512AID-DT  
TS512IYD(1)  
TS512IYDT(1)  
SO-8  
Tube or  
TS512AIYD(1)  
TS512AIYDT(1)  
(Automotive grade)  
Tape & reel  
512AIY  
1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening  
according to AEC Q001 & Q 002 or equivalent are on-going.  
7
Revision history  
Table 8.  
Date  
Document revision history  
Revision  
Changes  
21-Nov-2001  
23-Jun-2005  
1
2
Initial release.  
PPAP references inserted in the datasheet, see Table 7: Order  
codes.  
AC and DC performance characteristics curves added for VCC= 6V,  
VCC= 10V and VCC= 30V.  
5-May-2008  
3
Modified ICC typ, added parameters over temperature range in  
electrical characteristics table.  
Corrected macromodel information.  
15/16  
TS512  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2008 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
16/16  

相关型号:

TS512AIYDT

Precision dual operational amplifier
STMICROELECTR

TS512B

低噪声和低畸变(8nV/sqrtHz & 0.03%)
STMICROELECTR

TS512I

HIGH SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS
STMICROELECTR

TS512IA

HIGH SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS
STMICROELECTR

TS512ID

HIGH SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS
STMICROELECTR

TS512IDT

Precision dual operational amplifier
STMICROELECTR

TS512IN

Precision dual operational amplifier
STMICROELECTR

TS512IYD

Precision dual operational amplifier
STMICROELECTR

TS512IYDT

Precision dual operational amplifier
STMICROELECTR

TS512MCF100I

Industrial CF Card
TRANSCEND

TS512MCF80

80X CompactFlash Card
TRANSCEND

TS512MCFI

industrial CompactFlash Card
TRANSCEND