TSH72CD [STMICROELECTRONICS]

WIDE BAND, LOW POWER OPERATIONAL AMPLIFIER WITH STANDBY FUNCTION; WIDE BAND ,低功耗运算放大器,待机功能
TSH72CD
型号: TSH72CD
厂家: ST    ST
描述:

WIDE BAND, LOW POWER OPERATIONAL AMPLIFIER WITH STANDBY FUNCTION
WIDE BAND ,低功耗运算放大器,待机功能

运算放大器
文件: 总25页 (文件大小:1097K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TSH70,71,72,73,74,75  
WIDE BAND, LOW POWER OPERATIONAL AMPLIFIER  
WITH STANDBY FUNCTION  
3V, 5V, ±5V SPECIFICATIONS  
PIN CONNECTIONS (top view)  
3dB-BANDWIDTH : 90MHz  
TSH70 : SOT23-5/SO8  
GAIN-BANDWIDTH PRODUCT : 70MHz  
SLEW-RATE : 100V/µs  
NC  
NC  
1
2
3
4
8
7
6
5
Output  
1
5
VCC +  
_
+
Inv. In.  
Non-Inv. In.  
VCC -  
VCC +  
Output  
NC  
VCC - 2  
+ -  
Inv. In.  
Non-Inv. In. 3  
4
OUTPUT CURRENT : up to 55mA  
INPUT SINGLE SUPPLY VOLTAGE  
OUTPUT RAIL TO RAIL  
TSH71 : SO8/TSSOP8  
NC  
1
2
3
4
8
7
6
5
STANDBY  
VCC +  
Output  
NC  
_
+
Inverting Input  
SPECIFIED FOR 150LOAD  
LOW DISTORTION, THD : 0.1%  
SOT23-5, TSSOP and SO PACKAGES  
Non Inverting Input  
VCC -  
TSH72 : SO8/TSSOP8  
Output1  
VCC +  
1
2
3
4
8
7
6
5
Inverting Input1  
Non Inverting Input1  
VCC -  
Output2  
DESCRIPTION  
_
+
_
+
Inverting Input2  
Non Inverting Input2  
TSH7x serie offers Single, Dual, Triple and Quad  
operational amplifiers featuring high video perfor-  
mances with large bandwidth, low distortion and  
excellent supply voltage rejection.  
TSH73 : SO14/TSSOP14  
STANDBY1  
1
2
3
4
5
14  
13  
12  
Output3  
Inverting Input3  
Non Inverting Input3  
STANDBY2  
STANDBY3  
VCC +  
_
+
Running at single supply voltage from 3V to 12V,  
amplifiers feature large output voltage swing and  
high output current capability to drive standard  
150loads. Low operating voltage makes TSH7x  
amplifiers ideal for use on portable equipments.  
11 VCC -  
10  
9
Non Inverting Input1  
Non Inverting Input2  
Inverting Input2  
+
_
+
_
6
7
Inverting Input1  
Output1  
Output2  
8
The TSH71, TSH73 and TSH75 also feature some  
Standby input, each of which allows the op amp to  
be put into a standby mode with low power con-  
sumption and high output impedance.The function  
allows power saving or signals switching/multi-  
plexing for high speed applications and video ap-  
plications.  
TSH74 : SO14/TSSOP14  
1
2
3
4
14  
Output4  
Output1  
Inverting Input1  
Non Inverting Input1  
VCC +  
_
+
13 Inverting Input4  
12 Non Inverting Input4  
11 VCC -  
_
+
Non Inverting Input2  
5
6
7
10 Non Inverting Input3  
+
_
+
_
Inverting Input3  
Output3  
9
8
Inverting Input2  
Output2  
For board space and weight saving, TSH7x series  
is proposed in SOT23-5, TSSOP and SO packag-  
es.  
TSH75 : SO16/TSSOP16  
1
2
3
4
5
16  
Output4  
Output1  
Inverting Input1  
Non Inverting Input1  
VCC +  
_
+
15 Inverting Input4  
14 Non Inverting Input4  
13 VCC -  
_
+
APPLICATION  
Non Inverting Input2  
12 Non Inverting Input3  
+
_
+
_
Video buffers  
Inverting Input3  
11  
6
7
8
Inverting Input2  
Output2  
10 Output3  
STANDBY  
A/D Converters driver  
HiFi applications  
STANDBY  
9
August 2002  
1/25  
TSH70, 71, 72, 73, 74, 75  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Value  
Unit  
1)  
VCC  
14  
V
V
Supply Voltage  
2)  
Vid  
±2  
Differential Input Voltage  
3)  
Vi  
±6  
0 to +70  
-65 to +150  
150  
V
Input Voltage  
Toper  
Tstg  
Tj  
Operating Free Air Temperature Range  
Storage Temperature  
°C  
°C  
°C  
Maximum Junction Temperature  
4)  
Thermal resistance junction to case  
80  
SOT23-5  
SO8  
28  
22  
35  
37  
32  
SO14  
SO16  
TSSOPO8  
TSSOP14  
TSSOP16  
Rthjc  
°C/W  
35  
Thermal resistance junction to ambiant area  
250  
157  
125  
110  
130  
110  
SOT23-5  
SO8  
SO14  
Rthja  
SO16  
°C/W  
kV  
TSSOPO8  
TSSOP14  
TSSOP16  
110  
ESD  
HumanBodyModel  
2
1.  
2.  
3.  
4.  
All voltages values, except differential voltage are with respect to network ground terminal  
Differential voltages are non-inverting input terminal with respect to the inverting terminal  
The magnitude of input and output must never exceed V  
Short-circuits can cause excessive heating  
+0.3V  
CC  
OPERATING CONDITIONS  
Symbol  
Parameter  
Value  
Unit  
VCC  
VIC  
Supply Voltage  
Common Mode Input Voltage Range  
3 to 12  
V
V
V
-
+
VCC to (VCC -1.1)  
-
+
Standby  
(VCC ) to (VCC  
)
ORDER CODES  
C = Temperature range  
Type  
Temperature  
Package  
Marking  
D = Small Outline Package (SO) - also available in Tape & Reel (DT)  
TSH70CLT  
TSH70CD  
TSH70CDT  
TSH71CD  
TSH71CDT  
TSH71CPT  
TSH72CD  
TSH72CDT  
TSH72CPT  
TSH73CD  
TSH73CDT  
TSH73CPT  
TSH74CD  
TSH74CDT  
TSH74CPT  
TSH75CD  
TSH75CDT  
TSH75CPT  
SOT23-5  
SO8  
K301  
70C  
70C  
71C  
71C  
71C  
72C  
72C  
72C  
73C  
73C  
73C  
74C  
74C  
74C  
75C  
75C  
75C  
P = Thin Shrink Small Outline Package (TSSOP) - only available in Tape  
& Reel (PT)  
SO8 Tape  
SO8  
L = Tiny Package (SOT23-5) - only available in Tape & Reel (LT)  
SO8 Tape  
TSSOP8  
SO8  
SO8 Tape  
TSSOP8  
SO14  
0°C to 70°C  
SO14 Tape  
TSSOP14  
SO14  
SO14 Tape  
TSSOP14  
SO16  
SO16 Tape  
TSSOP16  
2/25  
TSH70, 71, 72, 73, 74, 75  
ELECTRICAL CHARACTERISTICS  
VCC = 3V, VCC = GND, Vic = 1.5V, Tamb = 25 C (unless otherwise specified)  
+
-
°
Symbol  
Parameter  
Input Offset Voltage  
TestCondition  
amb = 25°C  
Tmin. < Tamb < Tmax.  
Min.  
Typ.  
Max.  
Unit  
T
1.2  
10  
12  
|Vio|  
Vio  
Iio  
mV  
µV/°C  
µA  
T
T
min. < Tamb < Tmax.  
amb = 25°C  
Input Offset Voltage Drift vs. Temperature  
Input Offset Current  
4
0.1  
3.5  
5
Tmin. < Tamb < Tmax.  
amb = 25°C  
Tmin. < Tamb < Tmax.  
T
6
15  
20  
Iib  
Input Bias Current  
µA  
pF  
Cin  
ICC  
Input Capacitance  
0.2  
7.2  
T
amb = 25°C  
9.8  
11  
Supply Current per Operator  
mA  
Tmin. < Tamb < Tmax.  
+0.1<Vic<+1.9V & Vout=1.5V  
Tamb = 25°C  
Common Mode Rejection Ratio  
(δVic/δVio)  
CMR  
65  
64  
90  
74  
dB  
T
min. < Tamb < Tmax.  
Tamb = 25°C  
Tmin. < Tamb < Tmax.  
Supply Voltage Rejection Ratio  
(δVCC/δVio)  
66  
65  
SVR  
PSR  
dB  
dB  
Power Supply Rejection Ratio  
(δVCC/δVout)  
Positive & Negative Rail  
75  
81  
RL=150to 1.5V  
Vout=1V to 2V  
Avd  
Large Signal Voltage Gain  
dB  
T
amb = 25°C  
70  
65  
Tmin. < Tamb < Tmax.  
Tamb=25°C  
Vid=+1, Vout to 1.5V  
Vid=-1, Vout to 1.5V  
|Source|  
30  
24  
43  
33  
Sink  
Io  
Output Short Circuit Current Source  
mA  
Tmin. < Tamb < Tmax.  
Vid=+1, Vout to 1.5V  
Vid=-1, Vout to 1.5V  
|Source|  
22  
23  
Sink  
Tamb=25°C  
2.45  
2.60  
2.87  
2.91  
2.93  
RL = 150to GND  
RL = 600to GND  
RL = 2kto GND  
RL = 10kto GND  
2.65  
2.77  
2.90  
2.92  
2.93  
RL = 150to 1.5V  
RL = 600to 1.5V  
RL = 2kto 1.5V  
RL = 10kto 1.5V  
Voh  
High Level Output Voltage  
V
Tmin. < Tamb < Tmax.  
RL = 150to GND  
RL = 150to 1.5V  
2.4  
2.6  
3/25  
TSH70, 71, 72, 73, 74, 75  
Symbol  
Parameter  
TestCondition  
Tamb=25°C  
Min.  
Typ.  
Max.  
Unit  
46  
52  
53  
54  
150  
RL = 150to GND  
RL = 600to GND  
RL = 2kto GND  
RL = 10kto GND  
140  
90  
68  
300  
RL = 150to 1.5V  
RL = 600to 1.5V  
RL = 2kto 1.5V  
RL = 10kto 1.5V  
Vol  
Low Level Output Voltage  
mV  
57  
Tmin. < Tamb < Tmax.  
RL = 150to GND  
RL = 150to 1.5V  
200  
350  
F=10MHz  
AVCL=+11  
AVCL=-10  
GBP  
Bw  
Gain Bandwidth Product  
Bandwidth @-3dB  
65  
55  
MHz  
MHz  
AVCL=+1  
87  
RL=150to 1.5V  
AVCL=+2  
RL=150// CL to 1.5V  
CL = 5pF  
CL = 30pF  
SR  
Slew Rate  
V/µs  
80  
85  
45  
RL=150// 30pF to 1.5V  
φm  
Phase Margin  
40  
11  
°
en  
Equivalent Input Noise Voltage  
F=100kHz  
nV/Hz  
AVCL=+2, F=4MHz  
RL=150// 30pF to 1.5V  
Vout=1Vpp  
THD  
IM2  
Total Harmonic Distortion  
dB  
-61  
-54  
Vout=2Vpp  
AVCL=+2, Vout=2Vpp  
RL=150to 1.5V  
Fin1=180kHz, Fin2=280KHz  
spurious measurement  
@100kHz  
Second order intermodulation product  
-76  
-68  
dBc  
AVCL=+2, Vout=2Vpp  
RL=150to 1.5V  
IM3  
Third order inter modulation product  
Differential gain  
dBc  
Fin1=180kHz, Fin2=280KHz  
spurious measurement  
@400kHz  
A
VCL=+2, RL=150to 1.5V  
F=4.5MHz, Vout=2Vpp  
VCL=+2, RL=150to 1.5V  
G  
0.5  
0.5  
%
°
A
Df  
Gf  
Differential phase  
Gain Flatness  
F=4.5MHz, Vout=2Vpp  
F=DC to 6MHz, AVCL=+2  
F=1MHz to 10MHz  
0.2  
65  
dB  
dB  
Vo1/Vo2 Channel Separation  
4/25  
TSH70, 71, 72, 73, 74, 75  
ELECTRICAL CHARACTERISTICS  
VCC = 5V, VCC = GND, Vic = 2.5V, Tamb = 25 C (unless otherwise specified)  
+
-
°
Symbol  
Parameter  
Input Offset Voltage  
TestCondition  
amb = 25°C  
Tmin. < Tamb < Tmax.  
Min.  
Typ.  
Max.  
Unit  
T
1.1  
10  
12  
|Vio|  
Vio  
Iio  
mV  
µV/°C  
µA  
T
T
min. < Tamb < Tmax.  
amb = 25°C  
Input Offset Voltage Drift vs Temperature  
Input Offset Current  
3
0.1  
3.5  
5
Tmin. < Tamb < Tmax.  
amb = 25°C  
Tmin. < Tamb < Tmax.  
T
6
15  
20  
Iib  
Input Bias Current  
µA  
pF  
Cin  
ICC  
Input Capacitance  
0.3  
8.2  
T
amb = 25°C  
10.5  
11.5  
Supply Current per Operator  
mA  
Tmin. < Tamb < Tmax.  
+0.1<Vic<3.9V & Vout=2.5V  
Tamb = 25°C  
Common Mode Rejection Ratio  
(δVic/δVio)  
CMR  
72  
71  
97  
75  
dB  
T
min. < Tamb < Tmax.  
Tamb = 25°C  
Tmin. < Tamb < Tmax.  
Supply Voltage Rejection Ratio  
(δVCC/δVio)  
68  
67  
SVR  
PSR  
dB  
dB  
Power Supply Rejection Ratio  
(δVCC/δVout)  
Positive & Negative Rail  
75  
84  
RL=150to 1.5V  
Vout=1V to 4V  
Avd  
Large Signal Voltage Gain  
dB  
T
amb = 25°C  
75  
70  
Tmin. < Tamb < Tmax.  
Tamb=25°C  
Vid=+1, Vout to 1.5V  
Vid=-1, Vout to 1.5V  
|Source|  
35  
33  
55  
55  
Sink  
Io  
Output Short Circuit Current Source  
mA  
Tmin. < Tamb < Tmax.  
Vid=+1, Vout to 1.5V  
Vid=-1, Vout to 1.5V  
|Source|  
34  
32  
Sink  
Tamb=25°C  
4.2  
4.36  
4.85  
4.90  
4.93  
RL = 150to GND  
RL = 600to GND  
RL = 2kto GND  
RL = 10kto GND  
4.5  
4.66  
4.90  
4.92  
4.93  
RL = 150to 2.5V  
RL = 600to 2.5V  
RL = 2kto 2.5V  
RL = 10kto 2.5V  
Voh  
High Level Output Voltage  
V
Tmin. < Tamb < Tmax.  
RL = 150to GND  
RL = 150to 2.5V  
4.1  
4.4  
5/25  
TSH70, 71, 72, 73, 74, 75  
Symbol  
Parameter  
TestCondition  
Tamb=25°C  
Min.  
Typ.  
Max.  
Unit  
48  
54  
55  
56  
150  
RL = 150to GND  
RL = 600to GND  
RL = 2kto GND  
RL = 10kto GND  
220  
105  
76  
400  
RL = 150to 2.5V  
RL = 600to 2.5V  
RL = 2kto 2.5V  
RL = 10kto 2.5V  
Vol  
Low Level Output Voltage  
mV  
61  
Tmin. < Tamb < Tmax.  
RL = 150to GND  
RL = 150to 2.5V  
200  
450  
F=10MHz  
AVCL=+11  
AVCL=-10  
GBP  
Bw  
Gain Bandwidth Product  
Bandwidth @-3dB  
65  
55  
MHz  
MHz  
AVCL=+1  
87  
RL=150to 2.5V  
AVCL=+2  
RL=150// CL to 2.5V  
CL = 5pF  
CL = 30pF  
SR  
Slew Rate  
V/µs  
104  
105  
60  
RL=150// 30pF to 2.5V  
φm  
Phase Margin  
40  
11  
°
en  
Equivalent Input Noise Voltage  
F=100kHz  
nV/Hz  
AVCL=+2, F=4MHz  
RL=150// 30pF to 2.5V  
Vout=1Vpp  
THD  
IM2  
Total Harmonic Distortion  
dB  
-61  
-54  
Vout=2Vpp  
AVCL=+2, Vout=2Vpp  
RL=150to 2.5V  
Fin1=180kHz, Fin2=280kHz  
spurious measurement  
@100kHz  
Second order intermodulation product  
-76  
-68  
dBc  
AVCL=+2, Vout=2Vpp  
RL=150to 2.5V  
IM3  
Third order inter modulation product  
Differential gain  
dBc  
Fin1=180kHz, Fin2=280KHz  
spurious measurement  
@400kHz  
A
VCL=+2, RL=150to 2.5V  
F=4.5MHz, Vout=2Vpp  
VCL=+2, RL=150to 2.5V  
G  
0.5  
0.5  
%
°
A
Df  
Gf  
Differential phase  
Gain Flatness  
F=4.5MHz, Vout=2Vpp  
F=DC to 6MHz, AVCL=+2  
F=1MHz to 10MHz  
0.2  
65  
dB  
dB  
Vo1/Vo2 Channel Separation  
6/25  
TSH70, 71, 72, 73, 74, 75  
ELECTRICAL CHARACTERISTICS  
VCC = 5V, VCC = -5V, Vic = GND, Tamb = 25 C (unless otherwise specified)  
+
-
°
Symbol  
Parameter  
Test Condition  
amb = 25°C  
Tmin. < Tamb < Tmax.  
Min.  
Typ.  
Max.  
Unit  
T
0.8  
10  
12  
|Vio|  
Vio  
Iio  
Input Offset Voltage  
mV  
µV/°C  
µA  
T
min. < Tamb < Tmax.  
Input Offset Voltage Drift vs Temperature  
Input Offset Current  
2
T
amb = 25°C  
0.1  
3.5  
5
Tmin. < Tamb < Tmax.  
amb = 25°C  
Tmin. < Tamb < Tmax.  
T
6
15  
20  
Iib  
Input Bias Current  
µA  
pF  
Cin  
ICC  
Input Capacitance  
0.7  
9.8  
T
amb = 25°C  
12.3  
13.4  
Supply Current per Operator  
mA  
Tmin. < Tamb < Tmax.  
-4.9<Vic<3.9V & Vout=GND  
amb = 25°C  
Tmin. < Tamb < Tmax.  
Common Mode Rejection Ratio  
(δVic/δVio)  
T
CMR  
81  
80  
106  
77  
dB  
Tamb = 25°C  
Tmin. < Tamb < Tmax.  
Supply Voltage Rejection Ratio  
(δVCC/δVio)  
71  
70  
SVR  
PSR  
dB  
dB  
Power Supply Rejection Ratio  
(δVCC/δVout)  
Positive & Negative Rail  
75  
86  
RL=150to GND  
Vout=-4 to +4  
Avd  
Large Signal Voltage Gain  
dB  
T
amb = 25°C  
75  
70  
Tmin. < Tamb < Tmax.  
Tamb=25°C  
Vid=+1, Vout to 1.5V  
Vid=-1, Vout to 1.5V  
|Source|  
35  
30  
55  
55  
Sink  
Io  
Output Short Circuit Current Source  
mA  
Tmin. < Tamb < Tmax.  
Vid=+1, Vout to 1.5V  
Vid=-1, Vout to 1.5V  
|Source|  
34  
29  
Sink  
T
amb=25°C  
RL = 150to GND  
RL = 600to GND  
RL = 2kto GND  
RL = 10kto GND  
4.2  
4.36  
4.85  
4.9  
Voh  
High Level Output Voltage  
V
4.93  
Tmin. < Tamb < Tmax.  
RL = 150to GND  
4.1  
T
amb=25°C  
RL = 150to GND  
RL = 600to GND  
RL = 2kto GND  
RL = 10kto GND  
-4.63  
-4.86  
-4.9  
-4.4  
-4.3  
Vol  
Low Level Output Voltage  
mV  
-4.93  
Tmin. < Tamb < Tmax.  
RL = 150to GND  
F=10MHz  
A
VCL=+11  
GBP  
Bw  
Gain Bandwidth Product  
Bandwidth @-3dB  
65  
55  
MHz  
MHz  
AVCL=-10  
AVCL=+1  
100  
RL=150// 30pF to GND  
7/25  
TSH70, 71, 72, 73, 74, 75  
Symbol  
Parameter  
Test Condition  
AVCL=+2  
Min.  
Typ.  
Max.  
Unit  
RL=150// CL to GND  
CL = 5pF  
CL = 30pF  
SR  
Slew Rate  
V/µs  
117  
118  
68  
RL=150to gnd  
φm  
Phase Margin  
40  
°
en  
Equivalent Input Noise Voltage  
F=100kHz  
11  
nV/Hz  
AVCL=+2, F=4MHz  
RL=150// 30pF to gnd  
Vout=1Vpp  
THD  
IM2  
Total Harmonic Distortion  
dB  
-61  
-54  
Vout=2Vpp  
AVCL=+2, Vout=2Vpp  
RL=150to gnd  
Fin1=180kHz, Fin2=280KHz  
spurious measurement  
@100kHz  
Second order intermodulation product  
-76  
-68  
dBc  
AVCL=+2, Vout=2Vpp  
RL=150to gnd  
IM3  
Third order intermodulation product  
Differential gain  
dBc  
Fin1=180kHz, Fin2=280KHz  
spurious measurement  
@400kHz  
A
VCL=+2, RL=150to gnd  
F=4.5MHz, Vout=2Vpp  
VCL=+2, RL=150to gnd  
G  
0.5  
0.5  
%
°
A
Df  
Gf  
Differential phase  
Gain Flatness  
F=4.5MHz, Vout=2Vpp  
F=DC to 6MHz, AVCL=+2  
F=1MHz to 10MHz  
0.2  
65  
dB  
dB  
Vo1/Vo2 Channel Separation  
8/25  
TSH70, 71, 72, 73, 74, 75  
STANDBY MODE  
+
-
VCC , VCC , Tamb = 25°C (unless otherwise specified)  
Symbol  
Vlow  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
V
-
(VCC  
-
Standby Low Level  
VCC  
+0.8)  
-
+
Vhigh  
Standby High Level  
V
(VCC +2)  
(VCC  
)
-
pin 8 (TSH71) to VCC  
-
pin 1,2 or 3 (TSH73) to VCC  
Current Consumption per Operator  
when STANDBY is Active  
ICC SBY  
20  
55  
µA  
+
pin 8 (TSH75) to VCC  
-
pin 9 (TSH75) to VCC  
Rout  
Cout  
10  
17  
MΩ  
pF  
Zout  
Ton  
Toff  
Output Impedance (Rout//Cout)  
Time from Standby Mode to Active  
Mode  
2
µs  
µs  
Time from Active Mode to Standby  
Mode  
Down to ICC SBY = 10µA  
10  
TSH71 STANDBY CONTROL pin 8 (SBY)  
OPERATOR STATUS  
Vlow  
Standby  
Active  
Vhigh  
TSH73 STANDBY CONTROL  
OPERATOR STATUS  
pin 1  
(SBY OP1)  
pin 2  
(SBY OP2)  
pin 3  
(SBY OP3)  
OP1  
OP1  
OP3  
Vlow  
x
x
x
x
x
Standby  
x
x
x
x
x
Vhigh  
Active  
x
Vlow  
Vhigh  
x
x
x
x
x
x
x
x
x
Standby  
Active  
Vlow  
x
x
Standby  
Active  
Vhigh  
x
TSH75 STANDBY CONTROL  
OPERATOR STATUS  
pin 8  
(SBY OP2)  
pin 9  
(SBY OP3)  
OP1  
OP2  
OP3  
OP4  
Vhigh  
Vhigh  
Vlow  
Vlow  
Vlow  
Vhigh  
Vlow  
Vhigh  
Active  
Active  
Active  
Active  
Standby  
Standby  
Active  
Standby  
Active  
Active  
Active  
Active  
Active  
Standby  
Active  
Active  
9/25  
TSH70, 71, 72, 73, 74, 75  
Closed Loop Gain and Phase vs. Frequency  
Gain=+2, Vcc= ±1.5V, RL=150, Tamb = 25 C  
Overshoot function of output capacitance  
Gain=+2, Vcc= ±1.5V, Tamb = 25 C  
°
°
10  
10  
200  
100  
150//33pF  
150 //22pF  
5
Gain  
150//10pF  
5
0
0
150  
-5  
0
Phase  
-10  
-15  
-20  
-100  
-5  
-200  
1E+6  
1E+7  
1E+4  
1E+5  
1E+6  
1E+7  
1E+8  
1E+9  
1E+8  
1E+9  
Frequency (Hz)  
Frequency (Hz)  
Closed Loop Gain and Phase vs. Frequency  
Gain=-10, Vcc= ±1.5V, RL=150, Tamb = 25 C  
Closed Loop Gain and Phase vs. Frequency  
Gain=+11, Vcc= ±1.5V, RL=150, Tamb = 25 C  
°
°
30  
20  
10  
0
200  
150  
100  
50  
30  
20  
10  
0
0
Phase  
Phase  
-50  
-100  
-150  
Gain  
Gain  
0
-50  
-10  
-100  
-10  
1E+4  
1E+5  
1E+6  
1E+7  
1E+8  
1E+9  
1E+4  
1E+5  
1E+6  
1E+7  
1E+8  
1E+9  
Frequency (Hz)  
Frequency (Hz)  
Large Signal Measurement - Positive Slew Rate  
Gain=2,Vcc=±1.5V,ZL=150//5.6pF,Vin=400mVpk  
Large Signal Measurement - Negative Slew Rate  
Gain=2,Vcc=±1.5V,ZL=150//5.6pF,Vin=400mVpk  
1
0.5  
0
1
0.5  
0
-0.5  
-1  
-0.5  
-1  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
50  
40  
Time (ns)  
Time (ns)  
10/25  
TSH70, 71, 72, 73, 74, 75  
Small Signal Measurement - Rise Time  
Small Signal Measurement - Fall Time  
Gain=2,Vcc=±1.5V, ZL=150,Vin=400mVpk  
Gain=2,Vcc=±1.5V, ZL=150,Vin=400mVpk  
0.06  
0.06  
0.04  
0.02  
0.04  
0.02  
Vout  
Vin  
0
0
-0.02  
-0.04  
-0.06  
Vout  
Vin  
-0.02  
-0.04  
-0.06  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
Time (ns)  
Time (ns)  
Channel separation (Xtalk) vs frequency  
Channel separation (Xtalk) vs frequency  
Measurement configuration : Xtalk=20log(V0/V1)  
Gain=+11, Vcc=±1.5V, ZL=150//27pF  
-20  
-30  
-40  
VIN  
+
49.9Ω  
-
V1  
4/1output  
-50  
3/1output  
150  
1k  
100  
-60  
-70  
-80  
2/1output  
+
-90  
-100  
-110  
49.9  
-
VO  
150Ω  
1k  
100  
1E+4  
1E+5  
1E+6  
1E+7  
Frequency (Hz)  
Equivalent Noise Voltage  
Maximum Output Swing  
Gain=100, Vcc=±1.5V, No load  
Gain=11, Vcc=±5V, RL=150Ω  
5
4
30  
+
_
Vout  
3
25  
10k  
100  
2
1
20  
15  
10  
5
Vin  
0
-1  
-2  
-3  
-4  
-5  
0.1  
1
10  
100  
1000  
0.0E+0  
5.0E-2  
1.0E-1  
1.5E-1  
2.0E-1  
Frequency (kHz)  
Time (ms)  
11/25  
TSH70, 71, 72, 73, 74, 75  
Standby Mode - Ton, Toff  
Vcc= ±1.5V, Open Loop  
Group Delay  
Gain=2, Vcc=±1.5V, ZL=150//27pF, Tamb = 25 C  
°
2
Vin  
Gain  
1
0
Vout  
-1  
-2  
Group  
5.87ns  
Delay  
Standby  
6E-6  
Toff  
Ton  
0
2E-6  
4E-6  
8E-6  
1E-5  
Time (s)  
Third Order Intermodulation  
Gain=2, Vcc=±1.5V, ZL=150//27pF, Tamb = 25 C  
°
0
-10  
-20  
-30  
Intermodulation products  
The IFR2026 synthesizer generates a two  
tones signal (F1=180kHz, F2=280kHz); each  
tone having the same amplitude level.  
The HP3585 spectrum analyzer measures the  
intermodulation products function of the output  
voltage. The generator and the spectrum ana-  
lyzer are phase locked for precision consider-  
ations.  
-40  
80kHz  
-50  
740kHz  
-60  
-70  
640kHz  
-80  
-90  
380kHz  
-100  
0
1
2
3
4
Vout peak(V)  
12/25  
TSH70, 71, 72, 73, 74, 75  
Closed Loop Gain and Phase vs. Frequency  
Gain=+2, Vcc= ±2.5V, RL=150, Tamb = 25 C  
Overshoot function of output capacitance  
Gain=+2, Vcc= ±2.5V, Tamb = 25 C  
°
°
10  
10  
5
200  
100  
0
150//33pF  
Gain  
150 //22pF  
5
0
150//10pF  
0
150  
-5  
Phase  
-100  
-200  
-10  
-15  
-5  
1E+4  
1E+5  
1E+6  
1E+7  
1E+8  
1E+9  
1E+6  
1E+7  
1E+8  
1E+9  
Frequency (Hz)  
Frequency (Hz)  
Closed Loop Gain and Phase vs. Frequency  
Gain=-10, Vcc= ±2.5V, RL=150, Tamb = 25 C  
Closed Loop Gain and Phase vs. Frequency  
Gain=+11, Vcc= ±2.5V, RL=150, Tamb = 25 C  
°
°
30  
20  
10  
0
200  
150  
100  
50  
30  
20  
10  
0
0
Phase  
Phase  
-50  
-100  
-150  
Gain  
Gain  
0
-50  
-10  
-10  
-100  
1E+4  
1E+5  
1E+6  
1E+7  
1E+8  
1E+9  
1E+4  
1E+5  
1E+6  
1E+7  
1E+8  
1E+9  
Frequency (Hz)  
Frequency (Hz)  
Large Signal Measurement - Positive Slew Rate  
Gain=2,Vcc=±2.5V,ZL=150//5.6pF,Vin=400mVpk  
Large Signal Measurement - Negative Slew Rate  
Gain=2,Vcc=±2.5V,ZL=150//5.6pF,Vin=400mVpk  
3
2
3
2
1
1
0
0
-1  
-2  
-3  
-1  
-2  
-3  
0
10  
20  
30  
40  
50  
60  
70  
0
10  
20  
30  
40  
50  
60  
70  
80  
Time (ns)  
Time (ns)  
13/25  
TSH70, 71, 72, 73, 74, 75  
Small Signal Measurement - Rise Time  
Small Signal Measurement - Fall Time  
Gain=2,Vcc=±2.5V,Zl=150,Vin=400mVpk  
Gain=2,Vcc=±2.5V,Zl=150,Vin=400mVpk  
0.06  
0.04  
0.06  
0.04  
0.02  
0.02  
Vout  
Vin  
0
0
-0.02  
-0.04  
-0.06  
Vout  
Vin  
-0.02  
-0.04  
-0.06  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
Time (ns)  
Time (ns)  
Channel separation (Xtalk) vs frequency  
Channel separation (Xtalk) vs frequency  
Measurement configuration : Xtalk=20log(V0/V1)  
Gain=+11, Vcc=±2.5V, ZL=150//27pF  
-20  
-30  
-40  
VIN  
+
49.9Ω  
-
V1  
4/1output  
-50  
150  
3/1output  
1k  
100  
-60  
-70  
-80  
2/1output  
+
-90  
-100  
-110  
49.9  
-
VO  
150Ω  
1k  
1E+4  
1E+5  
1E+6  
1E+7  
100  
Frequency (Hz)  
Equivalent Noise Voltage  
Maximum Output Swing  
Gain=100, Vcc=±2.5V, No load  
Gain=11, Vcc=±2.5V, RL=150Ω  
3
30  
+
_
2
25  
Vout  
10k  
100  
1
20  
15  
10  
5
Vin  
0
-1  
-2  
-3  
0.1  
1
10  
100  
1000  
0.0E+0  
5.0E-2  
1.0E-1  
1.5E-1  
2.0E-1  
Frequency (kHz)  
Time (ms)  
14/25  
TSH70, 71, 72, 73, 74, 75  
Standby Mode - Ton, Toff  
Vcc= ±2.5V, Open Loop  
Group Delay  
Gain=2, Vcc= ±2.5V, ZL=150//27pF, Tamb = 25 C  
°
Vin  
3
2
1
0
Gain  
Vout  
-1  
Group  
Delay  
-2  
5.32ns  
Standby  
-3  
Ton  
2E-6  
Toff  
0
4E-6  
6E-6  
8E-6  
1E-5  
Time (s)  
Third Order Intermodulation  
Gain=2, Vcc= ±2.5V, ZL=150//27pF, Tamb = 25 C  
°
0
-10  
-20  
-30  
-40  
Intermodulation products  
The IFR2026 synthesizer generates a two  
tones signal (F1=180kHz, F2=280kHz); each  
tone having the same amplitude level.  
The HP3585 spectrum analyzer measures the  
intermodulation products function of the output  
voltage. The generator and the spectrum ana-  
lyzer are phase locked for precision consider-  
ations.  
740kHz  
-50  
-60  
80kHz  
-70  
-80  
-90  
380kHz  
640kHz  
2
-100  
0
1
3
4
Vout peak(V)  
15/25  
TSH70, 71, 72, 73, 74, 75  
Closed Loop Gain and Phase vs. Frequency  
Gain=+2, Vcc= ±5V, RL=150, Tamb = 25 C  
Overshoot function of output capacitance  
Gain=+2, Vcc= ±5V, Tamb = 25 C  
°
°
10  
10  
5
200  
100  
0
150 //33pF  
Gain  
150 //22pF  
5
0
150 //10pF  
0
150  
-5  
Phase  
1E+7  
-100  
-10  
-15  
-200  
-5  
1E+4  
1E+5  
1E+6  
1E+8  
1E+9  
1E+6  
1E+7  
1E+8  
1E+9  
Frequency (Hz)  
Frequency (Hz)  
Closed Loop Gain and Phase vs. Frequency  
Gain=-10, Vcc= ±5V, RL=150, Tamb = 25 C  
Closed Loop Gain and Phase vs. Frequency  
Gain=+11, Vcc= ±5V, RL=150, Tamb = 25 C  
°
°
30  
20  
10  
0
0
30  
20  
10  
0
200  
150  
100  
50  
Phase  
Phase  
-50  
-100  
-150  
Gain  
Gain  
0
-10  
-50  
-10  
1E+7  
1E+8  
1E+4  
1E+5  
1E+6  
1E+9  
1E+4  
1E+5  
1E+6  
1E+7  
1E+8  
1E+9  
Frequency (Hz)  
Frequency (Hz)  
Large Signal Measurement - Positive Slew Rate  
Gain=2,Vcc=±5V,ZL=150//5.6pF,Vin=400mVpk  
Large Signal Measurement - Negative Slew Rate  
Gain=2,Vcc=±5V,ZL=150//5.6pF,Vin=400mVpk  
5
4
5
4
3
3
2
2
1
1
0
0
-1  
-2  
-3  
-4  
-5  
-1  
-2  
-3  
-4  
-5  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
Time (ns)  
Time (ns)  
16/25  
TSH70, 71, 72, 73, 74, 75  
Small Signal Measurement - Rise Time  
Small Signal Measurement - Fall Time  
Gain=2,Vcc=±5V,ZL=150,Vin=400mVpk  
Gain=2,Vcc=±5V,ZL=150,Vin=400mVpk  
0.06  
0.04  
0.02  
0.06  
0.04  
0.02  
Vout  
0
0
Vin  
Vout  
Vin  
-0.02  
-0.04  
-0.06  
-0.02  
-0.04  
-0.06  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
Time (ns)  
Time (ns)  
Channel separation (Xtalk) vs frequency  
Channel separation (Xtalk) vs frequency  
Measurementconfiguration :Xtalk=20log(V0/V1)  
Gain=+11, Vcc=±5V, ZL=150//27pF  
-20  
-30  
-40  
VIN  
+
49.9Ω  
-
V1  
4/1output  
-50  
-60  
3/1output  
150  
1k  
100  
-70  
-80  
2/1output  
+
-90  
49.9  
-
VO  
-100  
-110  
150Ω  
1k  
1E+4  
1E+5  
1E+6  
100Ω  
1E+7  
Frequency (Hz)  
Equivalent Noise Voltage  
Maximum Output Swing  
Gain=100, Vcc=±5V, No load  
Gain=11, Vcc=±5V, RL=150Ω  
5
4
30  
Vout  
3
25  
+
_
2
10k  
100  
1
20  
15  
10  
5
Vin  
0
-1  
-2  
-3  
-4  
-5  
0.1  
1
10  
100  
1000  
0.0E+0  
5.0E-2  
1.0E-1  
1.5E-1  
2.0E-1  
Frequency (kHz)  
Time (ms)  
17/25  
TSH70, 71, 72, 73, 74, 75  
Standby Mode - Ton, Toff  
Vcc=±5V, Open Loop  
Group Delay  
Gain=2, Vcc=±5V, ZL=150//27pF, Tamb = 25 C  
°
Vin  
5
Gain  
Vout  
0
Group  
Delay  
5.1ns  
-5  
Standby  
Ton  
Toff  
0
2E-6  
4E-6  
6E-6  
8E-6  
Time (s)  
Third Order Intermodulation  
Gain=2, Vcc=±5V, ZL=150//27pF, Tamb = 25 C  
°
0
-10  
-20  
-30  
Intermodulation products  
The IFR2026 synthesizer generates a two  
tones signal (F1=180kHz, F2=280kHz); each  
tone having the same amplitude level.  
The HP3585 spectrum analyzer measures the  
intermodulation products function of the output  
voltage. The generator and the spectrum ana-  
lyzer are phase locked for precision consider-  
ations.  
-40  
80kHz  
-50  
740kHz  
-60  
-70  
-80  
-90  
380kHz  
640kHz  
-100  
0
1
2
3
4
Vout peak(V)  
18/25  
TSH70, 71, 72, 73, 74, 75  
TESTING CONDITIONS:  
Layout precautions:  
Maximum input level:  
The input level must not exceed the following val-  
ues:  
To use the TSH7X circuits in the best manner at  
high frequencies, some precautions have to be  
taken for power supplies:  
negative peak: must be greater than  
-Vcc+400mV.  
- First of all, the implementation of a proper ground  
plane in both sides of the PCB is mandatory for  
high speed circuit applications to provide low in-  
ductance and low resistance common return.  
- Power supply bypass capacitors (4.7uF and ce-  
ramic 100pF) should be placed as close as possi-  
ble to the IC pins in order to improve high frequen-  
cy bypassing and reduce harmonic distortion. The  
power supply capacitors must be incorporated for  
both the negative and the positive pins.  
- Proper termination of all inputs and outputs must  
be in accordance with output termination resistors;  
then the amplifier load will be only resistive and  
the stability of the amplifier will be improved.  
All leads must be wide and as short as possible  
especially for op amp inputs and outputs in order  
to decrease parasitic capacitance and inductance.  
- For lower gain application, attention should be  
paid not to use large feedback resistance (>1k)  
to reduce time constant with parasitic capacitanc-  
es.  
positive peak value: must be lower than  
+Vcc-400mV.  
The electrical characteristics show the influence of  
the load on this parameter.  
Video capabilities:  
To characterize the differential phase and differ-  
ential gain a CCIR330 video line is used.  
The video line contains 5 (flat) levels of luma on  
which is superimposed chroma signal. (the first  
level contains no luma). The luma gives various  
amplitudes which define the saturation of the sig-  
nal. The chrominance gives various phases which  
define the colour of the signal.  
Differential phase (respectively differential gain)  
distortion is present if a signal chrominance phase  
(gain) is affected by luminance level. They repre-  
sent the ability to uniformly process the high fre-  
quency information at all luminance levels.  
- Choose component sizes as small as possible  
(SMD).  
When differential gain is present, colour saturation  
is not correctly reproduced.  
- Finally, on output, the load capacitance must be  
negligible to maintain good stability. You can put a  
serial resistance the closest to the output pin to  
minimize its influence.  
The input generator is the Rohde & Schwarz  
CCVS. The output measurement is done by the  
Rohde and Schwarz VSA.  
Measurement on Rohde and Schwarz VSA.  
CCIR330 video line  
19/25  
TSH70, 71, 72, 73, 74, 75  
Video Results:  
Value  
Value  
Parameter  
Unit  
Vcc=+-2.5V  
Vcc=+-5V  
Lum NL  
0.1  
100  
100  
99.9  
99.9  
99.9  
0
0.3  
100  
99.9  
99.8  
99.9  
99.7  
0
%
%
%
Lum NL Step 1  
Lum NL Step 2  
Lum NL Step 3  
Lum NL Step 4  
Lum NL Step 5  
Diff Gain pos  
%
%
%
%
Diff Gain neg  
Diff Gain pp  
-0.7  
0.7  
-0.6  
0.6  
%
%
Diff Gain Step1  
Diff Gain Step2  
Diff Gain Step3  
Diff Gain Step4  
Diff Gain Step5  
Diff Phase pos  
Diff Phase neg  
Diff Phase pp  
-0.5  
-0.7  
-0.3  
-0.1  
-0.4  
0
-0.3  
-0.6  
-0.5  
-0.3  
-0.5  
0.1  
%
%
%
%
%
deg  
deg  
deg  
deg  
deg  
deg  
deg  
deg  
-0.2  
0.2  
-0.4  
0.5  
Diff Phase Step1  
Diff Phase Step2  
Diff Phase Step3  
Diff Phase Step4  
Diff Phase Step5  
-0.2  
-0.1  
-0.1  
0
-0.4  
-0.4  
-0.3  
0.1  
-0.2  
-0.1  
Precautions on asymmetrical supply  
operation:  
R2, R3 are such that the current through them  
must be superior to 100 times the bias current. So,  
we take R2=R3=4.7K.  
The TSH7X can be used either with a dual or a  
single supply. If a single supply is used, the inputs  
are biased to the mid-supply voltage (+Vcc/2).  
This bias network must be carefully designed, in  
order to reject any noise present on the supply rail.  
Cin, as Cout are chosen to filter the DC signal by  
the lowpass filters (R1,Cin) and (Rout, Cout). By  
taking R1=10K, RL=150Ω, and Cin=2uF,  
Cout=220uF we provide a cutoff frequency below  
10Hz.  
As the bias current is 15uA, you must carefully  
choose the resistance R1 not to introduce an off-  
set mismatch at the amplifier inputs.  
Use of the TSH7X in gain=-1 configuration:  
Cf  
1k  
Cin  
R1  
IN  
Cin  
IN  
1k  
Cout  
-
Cout  
OUT  
RL  
OUT  
+
-
Vcc+  
Vcc+  
+
R1  
RL  
R2  
R5  
Cf  
R2  
R3  
C3  
C2  
C3  
R3 C1 C2  
C1  
R4  
Some precautions have to be added, specially for  
low power supply application.  
R1=10Kwill be convenient. C1, C2, C3 are by-  
pass capacitors from perturbation on Vcc as well  
as for the input and output signals. We choose  
C1=100nF and C2=C3=100uF.  
A feedback capacitance Cf should be added for  
better stability. The table summarizes the impact  
of the capacitance Cf on the phase margin of the  
circuit.  
20/25  
TSH70, 71, 72, 73, 74, 75  
Parameter  
Cf (pF)  
Vcc=!1.5V  
Vcc=!2.5V  
Vcc=!5V  
Unit  
Phase Margin  
f-3dB  
28  
40  
43  
39.3  
43  
39.3  
52  
56  
38.3  
56  
38.3  
67  
deg  
MHz  
deg  
MHz  
deg  
MHz  
deg  
MHz  
0
Phase Margin  
f-3dB  
30  
40  
5.6  
22  
33  
Phase Margin  
f-3dB  
37  
37  
34  
32  
Phase Margin  
f-3dB  
48  
33.7  
65  
30.7  
78  
27.6  
Example of a video application :  
Vcc/2  
IN  
Vcc/2  
C4  
AOP1  
Ce  
Rb1  
R3 C3  
PAL  
Rb1  
+
-
V1  
AOP2  
R6  
V2  
V3  
R4  
+
-
A1  
Re  
LPF1  
R2  
Cf  
OUT  
Rout Cout  
V4  
R1  
R5  
Cf  
Vcc/2  
Vcc/2  
RL  
Standby  
Vcc/2  
C8  
NTSC  
R7 C7  
Rb1  
AOP3  
R10  
+
-
A2  
R8  
LPF2  
Cf  
R9  
Vcc/2  
Standby  
This example shows a possible application of the TSH7X circuit. Here, you can multiplex the channels for  
the different standard PAL, NTSC as you filter for the different bands; the video signal can be filtered with  
two different cutoff frequencies, corresponding to a PAL encoded signal (LPF1) or a NTSC signal (LPF2).  
You can multiplex input signals, as the outputs are in high impedance state in standby mode.This enables  
you, to use a PAL filter as the Standby mode is active and to use the NTSC filter otherwise.  
The video application requires 1Vpeak at input and output.  
Calculation of components:  
A decoupling capacitor is provided to cutoff the frequencies below 10Hz according I bias.Hence Ce=10uF,  
with Rb1=10K. At the output, Cout=220uF.  
The AOP1 is in 6dB configuration for the adaptation bridge. R1=R2=1KΩ.V1=2Vpk. V2=1Vpk  
For the PAL communication, we need a lowpass filtering. The load resistance R4 is function of the output  
resistance of the filter.V3=V2/A1 where A1 is the attenuation factor of the filter LPF1.  
To compensate the filter insertion loss, we add an additional factor to the gain of the 2nd amplifier AOP2.  
For example, for an attenuation of 3dB, we choose R5=300and R6=1K. We have V4=2Vpk and  
Vout=1Vpk.  
The calculation of the parameters R7, C7, R8, C8, R9, R10 will be exactly the same .  
21/25  
TSH70, 71, 72, 73, 74, 75  
PACKAGE MECHANICAL DATA  
8 PINS - PLASTIC MICROPACKAGE (SO)  
PACKAGE MECHANICAL DATA  
8 PINS - THIN SHRINK SMALL OUTLINE  
PACKAGE (TSSOP)  
k
c
0.25mm  
.010 inch  
GAGE PLANE  
L
L1  
E1  
A
E
A2  
A1  
b
4
5
8
D
e
1
PIN 1 IDENTIFICATION  
Millimeters  
Typ.  
Inches  
Typ.  
Millimeters  
Typ.  
Inches  
Typ.  
Dim.  
Dim.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
A
a1  
a2  
a3  
b
1.75  
0.069  
0.010  
0.065  
0.033  
0.019  
0.010  
0.020  
A
A1  
A2  
b
1.20  
0.15  
0.05  
0.1  
0.25 0.004  
1.65  
0.05  
0.80  
0.19  
0.09  
2.90  
0.01  
0.006  
1.00  
1.05 0.031 0.039 0.041  
0.65  
0.35  
0.19  
0.25  
0.85 0.026  
0.48 0.014  
0.25 0.007  
0.30 0.007  
0.20 0.003  
0.15  
c
0.012  
b1  
C
D
E
3.00  
6.40  
4.40  
0.65  
3.10  
0.114 0.118 0.122  
0.252  
0.5  
0.010  
c1  
D
45° (typ.)  
E1  
e
4.30  
4.50 0.169 0.173 0.177  
0.025  
4.8  
5.8  
5.0  
6.2  
0.189  
0.228  
0.197  
0.244  
E
k
0°  
8°  
0°  
8°  
e
1.27  
3.81  
0.050  
0.150  
l
0.50  
0.60  
0.75  
0.09 0.0236 0.030  
e3  
F
3.8  
0.4  
4.0  
0.150  
0.157  
0.050  
0.024  
L
1.27 0.016  
0.6  
M
S
8° (max.)  
22/25  
TSH70, 71, 72, 73, 74, 75  
PACKAGE MECHANICAL DATA  
PACKAGE MECHANICAL DATA  
14 PINS - PLASTIC MICROPACKAGE (SO)  
14 PINS - THIN SHRINK SMALL OUTLINE  
PACKAGE (TSSOP)  
0,25 mm  
.010 inch  
GAGE PLANE  
L
G
c1  
b
e
s
e3  
D
E
M
E
A
A2  
A1  
14  
1
8
7
8
7
14  
1
PIN 1 IDENTIFICATION  
Millimeters  
Typ.  
Inches  
Typ.  
Millimeters  
Typ.  
Inches  
Typ.  
Dim.  
Dim.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
A
a1  
a2  
b
1.75  
0.2  
0.069  
0.008  
0.063  
0.018  
0.010  
A
A1  
A2  
b
1.20  
0.15  
0.05  
0.1  
0.004  
0.05  
0.80  
0.19  
0.09  
4.90  
0.01  
0.006  
1.6  
1.00  
1.05 0.031 0.039 0.041  
0.35  
0.19  
0.46 0.014  
0.25 0.007  
0.30 0.007  
0.20 0.003  
0.15  
b1  
C
c
0.012  
0.5  
0.020  
D
E
5.00  
6.40  
4.40  
0.65  
5.10 0.192 0.196 0.20  
c1  
45° (typ.)  
0.252  
4.50 0.169 0.173 0.177  
0.025  
D (1) 8.55  
8.75 0.336  
0.344  
0.244  
E1  
e
4.30  
E
e
5.8  
6.2  
0.228  
1.27  
7.62  
0.050  
0.300  
k
0°  
8°  
0°  
8°  
e3  
F (1)  
G
l
0.50  
0.60  
0.75  
0.09 0.0236 0.030  
3.8  
4.6  
0.5  
4.0  
5.3  
0.150  
0.181  
0.157  
0.208  
0.050  
0.027  
L
1.27 0.020  
0.68  
M
S
8° (max.)  
Note : (1) D and F do not include mold flash or protrusions - Mold flash  
or protrusions shall not exceed 0.15mm (.066 inc) ONLY FOR DATA  
BOOK.  
23/25  
TSH70, 71, 72, 73, 74, 75  
PACKAGE MECHANICAL DATA  
16 PINS - PLASTIC MICROPACKAGE (SO)  
PACKAGE MECHANICAL DATA  
16 PINS - THIN SHRINK SMALL OUTLINE  
PACKAGE (TSSOP)  
c
0,25 mm  
.010 inch  
GAGE PLANE  
E
A
A2  
A1  
9
8
16  
1
PIN 1 IDENTIFICATION  
Millimeters  
Typ.  
Inches  
Typ.  
Millimeters  
Inches  
Typ.  
Dim.  
Dim.  
Min.  
Max.  
Min.  
Max.  
Min.  
Typ.  
Max.  
Min.  
Max.  
A
a1  
a2  
b
1.75  
0.2  
0.069  
0.008  
0.063  
0.018  
0.010  
A
A1  
A2  
B
0.90  
0
1.20  
1.45 0.035 0.047 0.057  
0.15 0.006  
0.1  
0.004  
1.6  
0.90  
0.35  
0.09  
2.80  
1.05  
0.40  
0.15  
2.90  
1.90  
0.95  
2.80  
1.60  
0.5  
1.30 0.035 0.041 0.051  
0.50 0.014 0.016 0.020  
0.20 0.004 0.006 0.008  
0.35  
0.19  
0.46 0.014  
0.25 0.007  
b1  
C
C
0.5  
0.020  
D
3.00  
0.110 0.114 0.118  
c1  
D
45° (typ.)  
D1  
e
0.075  
0.037  
9.8  
5.8  
10  
0.386  
0.228  
0.394  
0.244  
E
6.2  
E
2.60  
1.50  
0.10  
3.00 0.102 0.110 0.0118  
1.75 0.059 0.063 0.069  
0.60 0.004 0.014 0.024  
e
1.27  
8.89  
0.050  
0.350  
F
e3  
F
L
3.8  
4.6  
0.5  
4.0  
5.3  
0.150  
0.181  
0.157  
0.209  
0.050  
0.024  
G
L
1.27 0.020  
0.62  
M
S
8° (max.)  
24/25  
TSH70, 71, 72, 73, 74, 75  
PACKAGE MECHANICAL DATA  
5 PINS - TINY PACKAGE (SOT23)  
A
E
A2  
E
D
D1  
B
A1  
L
C
F
Millimeters  
Inches  
Dim.  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
A2  
B
0.90  
0
1.20  
1.45  
0.15  
1.30  
0.50  
0.20  
3.00  
0.035  
0.047  
0.057  
0.006  
0.051  
0.020  
0.008  
0.118  
0.90  
0.35  
0.09  
2.80  
1.05  
0.40  
0.15  
2.90  
1.90  
0.95  
2.80  
1.60  
0.5  
0.035  
0.014  
0.004  
0.110  
0.041  
0.016  
0.006  
0.114  
0.075  
0.037  
0.110  
0.063  
0.014  
C
D
D1  
e
E
2.60  
1.50  
0.10  
0d  
3.00  
1.75  
0.60  
10d  
0.102  
0.059  
0.004  
0d  
0.0118  
0.069  
0.024  
10d  
F
L
K
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the  
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from  
its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications  
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information  
previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or  
systems without express written approval of STMicroelectronics.  
© The ST logo is a registered trademark of STMicroelectronics  
© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia  
Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States  
© http://www.st.com  
25/25  

相关型号:

TSH72CD/CDT

VIDEO AMPLIFIER
STMICROELECTR

TSH72CDT

WIDE BAND, LOW POWER OPERATIONAL AMPLIFIER WITH STANDBY FUNCTION
STMICROELECTR

TSH72CPT

WIDE BAND, LOW POWER OPERATIONAL AMPLIFIER WITH STANDBY FUNCTION
STMICROELECTR

TSH73

WIDE BAND, LOW POWER OPERATIONAL AMPLIFIER WITH STANDBY FUNCTION
STMICROELECTR

TSH73CD

WIDE BAND, LOW POWER OPERATIONAL AMPLIFIER WITH STANDBY FUNCTION
STMICROELECTR

TSH73CD/CDT

VIDEO AMPLIFIER
STMICROELECTR

TSH73CDT

WIDE BAND, LOW POWER OPERATIONAL AMPLIFIER WITH STANDBY FUNCTION
STMICROELECTR

TSH73CPT

WIDE BAND, LOW POWER OPERATIONAL AMPLIFIER WITH STANDBY FUNCTION
STMICROELECTR

TSH74

WIDE BAND, LOW POWER OPERATIONAL AMPLIFIER WITH STANDBY FUNCTION
STMICROELECTR

TSH74CD

WIDE BAND, LOW POWER OPERATIONAL AMPLIFIER WITH STANDBY FUNCTION
STMICROELECTR

TSH74CD/CDT

VIDEO AMPLIFIER
STMICROELECTR

TSH74CDT

WIDE BAND, LOW POWER OPERATIONAL AMPLIFIER WITH STANDBY FUNCTION
STMICROELECTR