TSM102_04 [STMICROELECTRONICS]

VOLTAGE AND CURRENT CONTROLLER; 电压和电流控制器
TSM102_04
型号: TSM102_04
厂家: ST    ST
描述:

VOLTAGE AND CURRENT CONTROLLER
电压和电流控制器

控制器
文件: 总9页 (文件大小:102K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TSM102/A  
VOLTAGE AND CURRENT CONTROLLER  
OPERATIONAL AMPLIFIERS  
LOW SUPPLY CURRENT : 200µA/amp.  
MEDIUM SPEED : 2.1MHz  
LOW LEVEL OUTPUT VOLTAGE CLOSE TO  
-
V
: 0.1V typ.  
CC  
INPUT COMMON MODE VOLTAGE RANGE  
INCLUDES GROUND  
COMPARATORS  
LOW SUPPLY CURRENT : 200µA/amp.  
(V = 5V)  
CC  
INPUT COMMON MODE VOLTAGE RANGE  
INCLUDES GROUND  
LOW OUTPUT SATURATION VOLTAGE :  
250mV (Io = 4mA)  
D
SO16  
(Plastic Micropackage)  
REFERENCE  
ADJUSTABLE OUTPUT VOLTAGE :  
V to 36V  
ref  
SINK CURRENT CAPABILITY : 1 to 100mA  
1% and 0.4% VOLTAGE PRECISION  
LACTH-UP IMMUNITY  
PIN CONNECTIONS (top view)  
DESCRIPTION  
The TSM102 is a monolithic IC that includes two  
op-amps, two comparators and a precision volt-  
age reference. This device is offering space and  
cost saving in many applications like power supply  
management or data acquisition systems.  
Output 1  
16  
15  
14  
13  
12  
11  
10  
9
Output 4  
1
2
3
Inverting Input 1  
Inverting Input  
Non-inverting Input 1  
Non-inverting Input 4  
COMP  
COMP  
ORDER CODE  
VCC  
-
VCC  
+
4
5
Non-inverting Input 2  
Inverting Input 2  
Non-inverting Input 3  
Inverting Input 3  
Package  
Temperature  
Part Number  
6
7
8
Range  
D
Output 2  
Vref  
Output 3  
Cathode  
TSM102I  
-40°C, +85°C  
-40°C, +85°C  
TSM102AI  
D = Small Outline Package (SO) - also available in Tape & Reel (DT)  
January 2004  
1/9  
TSM102/A  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Value  
Unit  
VCC  
DC supply Voltage  
36  
36  
V
V
V
Differential Input Voltage  
id  
Vi  
Input Voltage  
-0.3 to +36  
-40 to +125  
150  
V
Toper  
Operating Free-air Temperature Range  
Maximum Junction Temperature  
Thermal Resistante Junction to Ambient  
°C  
T
°C  
j
150  
°C/W  
ELECTRICAL CHARACTERISTICS  
VCC+ = 5V, VCC- = 0V, Tamb = 25°C (unless otherwise specified)  
Symbol  
Parameter  
Min.  
Typ  
Max.  
Unit  
Total Supply Current  
min. Tamb Tmax  
0.8  
1.5  
2
mA  
I
CC  
T
OPERATIONAL AMPLIFIER  
VCC+ = 5V, VCC = GND, R1 connected to V , Tamb = 25°C (unless otherwise specified)  
cc/2  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Input Offset Voltage  
T T  
max  
1
4.5  
6.5  
mV  
V
io  
T
min  
amb  
DV  
Input Offset Voltage Drift  
Input Bias Current  
10  
20  
µV/°C  
io  
100  
200  
nA  
I
ib  
T
T  
T  
min  
amb  
max  
Input Offset Current  
T T  
5
20  
40  
nA  
I
io  
T
min  
amb  
max  
Large Signal Voltage Gain  
+
A
R1=10k, V = 30V, V = 5V to 25V  
50  
25  
100  
100  
V/mV  
vd  
cc  
o
T
T  
T  
amb max  
min  
Supply Voltage Rejection Ratio  
= 5V to 30V  
SVR  
dB  
V
V
80  
cc  
-
+
(V ) to (V ) -1.8  
Input Common Mode Rejection Ratio  
T T  
cc  
cc  
V
icm  
-
+
T
min  
amb  
max  
(V ) to (V ) -2.2  
cc  
cc  
Common Mode Rejection Ratio  
70  
90  
dB  
CMR  
+
+
V
= 30V, Vicm = 0V to (V ) -1.8  
cc  
cc  
Output Short Circuit Current  
= ±1V, V = 2.5V  
mA  
V
id  
o
I
sc  
3
3
6
6
Source  
Sink  
High Level Output Voltage  
R = 10kΩ  
L
V
+
V
27  
26  
28  
V
T
= 30V  
OH  
cc  
T  
T  
max  
min  
amb  
Low Level Output Voltage  
T T  
R = 10kΩ  
100  
2
150  
210  
mV  
L
V
OL  
T
min  
amb  
max  
Slew Rate  
1.6  
V/µs  
V
= ±15V  
SR  
cc  
V = ±10V, R = 10k, C = 100pF  
i
L
L
2/9  
TSM102/A  
Symbol  
Parameter  
Gain Bandwidth Product  
Min.  
Typ.  
Max.  
Unit  
1.4  
2.1  
MHz  
GBP  
R = 10k, C = 100pF, f = 100kHZ  
L
L
Phase Margin  
Degrees  
%
m
R = 10k, C = 100pF  
45  
L
L
THD  
Toatal Harmonic Distortion  
0.05  
nV  
Equivalent Input Noise Voltage  
f = 1kHz  
-----------  
e
n
29  
Hz  
COMPARATORS  
VCC+ = 5V, VCC = Ground, Tamb = 25°C (unless otherwise specified)  
Symbol  
Parameter  
Min.  
Typ  
Max.  
Unit  
Input Offset Voltage  
T T  
5
9
mV  
V
io  
T
min  
amb  
max  
max  
max  
Input Offset Current  
50  
150  
nA  
nA  
I
io  
T
T  
T  
T  
min  
amb  
Input Bias Current  
T  
250  
400  
I
ib  
T
min  
amb  
High Level Output Current  
0.1  
nA  
µA  
V
= 1V, V = V = 30V  
I
1
id  
cc  
o
OH  
T
T  
T  
max  
min  
amb  
Low Level Output Voltage  
mV  
V
= -1V, I  
= 4mA  
V
250  
400  
700  
id  
sink  
OL  
T
T  
T  
max  
min  
amb  
Large Signal Voltage Gain  
V/mV  
mA  
A
vd  
R1 = 15k, V = 15V, V = 1 to 11V  
200  
16  
cc  
o
Output Sink Current  
6
I
sink  
V
= -1V, V = 1.5V  
id  
o
+
V
-1.5  
Input Common Mode Voltage Range  
T T  
0
0
V
cc  
V
icm  
+
T
min  
amb  
max  
V
-2  
cc  
+
V
Differential Input Voltage  
V
V
id  
cc  
1)  
Response Time  
1.3  
µs  
t
re  
+
R1 = 5.1k to V  
,V = 1.4V  
ref  
cc  
Large Signal Response Time  
= 1.4V, Vi = TTL, R1 = 5.1k to V  
300  
t
rel  
+
ns  
V
ref  
cc  
1.  
The response time specified is for 100mV input step with 5mV overdrive.  
For larger overdrive signals, 300ns can be obtained.  
VOLTAGE REFERENCE  
Symbol  
Parameter  
Value  
to 36  
Unit  
V
VKA  
Cathode to Anode Voltage  
Cathode Current  
V
ref  
I
1 to 100  
mA  
k
3/9  
TSM102/A  
ELECTRICAL CHARACTERISTICS  
= 25°C (unless otherwise specified)  
T
amb  
Symbol  
Parameter  
Min.  
Typ  
Max.  
Unit  
Reference Input Voltage -(figure1)- T  
= 25°C  
amb  
V
V
TSM102, V = V , I = 10mA  
KA ref K  
2.475  
2.490  
2.500  
2.500  
2.525  
2.510  
ref  
TSM102A, V = V , I = 10mA  
KA  
ref  
K
Reference Input Voltage Deviation Over  
mV  
1)  
V  
Temperature Range -(figure1, note )  
ref  
7
30  
V
= V , I = 10mA, T  
T  
T  
amb max  
KA  
ref  
K
min  
2)  
V  
ppm/°C  
Temperature Coefficient of Reference Input Voltage - note  
= V , I = 10mA, T T T  
ref  
---------------  
±22  
V
±100  
T  
KA  
ref  
K
min  
amb  
max  
Ratio of Change in Reference Input Voltage to Change in Cath-  
ode to Anode Voltage -(figure2)  
mV/V  
V  
ref  
---------------  
V  
I = 10mA, V = 36 to 3V  
KA  
-1.1  
1.5  
-2  
K
KA  
Reference Input Current -(figure2)  
I = 10mA, R1 = 10k, R2 = ∞  
µA  
µA  
K
Iref  
T
= 25°C  
2.5  
3
amb  
T
T  
T  
amb max  
min  
Reference Input Current Deviation Over  
Temperature Range -(figure2)  
Iref  
I = 10mA, R1 = 10k, R2 = ∞  
0.5  
1
K
T
T  
T  
amb max  
min  
Minimum Cathode Current for Regulation -(figure1)  
= V  
mA  
nA  
I
min  
V
0.5  
1
KA  
ref  
Ioff  
Off-State Cathode Current -(figure3)  
180  
500  
1.  
2.  
V is defined as the difference between the maximum and minimum values obtained over the full temperature range.  
ref  
V = Vref max. - Vref min  
ref  
The temperature coefficient is defined as the slopes (positive and negative) of the voltage vs temperature limits whithin  
which the reference voltage is guaranteed.  
- n ppm / °C  
Vref max.  
+ n ppm / °C  
max  
2.5V  
min  
Vref min.  
Temperature  
T2  
T1  
Temperature  
25°C  
4/9  
TSM102/A  
Figure 1 : Test Circuit for V = V  
KA  
ref  
V
Input  
KA  
I
K
V
ref  
Figure 2 : Test Circuit for V > V  
KA  
ref  
VKA  
Input  
IK  
R
1
R1  
1 + ------- + I  
ref  
R2  
V
= V  
R1  
KA  
ref  
Iref  
R
2
V
ref  
Figure 3 : Test Circuit for I  
off  
= 36V  
VKA  
Input  
Ioff  
5/9  
APPLICATION NOTE  
A BATTERY CHARGER USING THE TSM102  
This application note explains how to use the  
1 - TSM102 PRESENTATION  
TSM102 in an SMPS-type battery charger which  
features :  
The TSM102 integrated circuit includes two Oper-  
ational Amplifiers, two Comparators and one ad-  
justable precision Voltage Reference (2.5V to  
36V, 0.4% or 1%).  
TSM102 can sustain up to 36V power supply volt-  
age.  
Voltage Control  
Current Control  
Low Battery Detection and End Of Charge  
Detection  
Figure 1: TSM102 Pinout  
16  
15  
1
TSM102  
2
3
14  
COMP  
COMP  
VCC  
+
5
6
7
VCC  
-
12  
11  
10  
Vref  
Cathode  
2 - APPLICATION CONTEXT AND PRINCIPLE  
OF OPERATION  
and C4. R15 polarizes the base of the transistor  
and at the same time limits the current through the  
zener diode during regulation mode of the auxilia-  
ry power supply.  
In the battery charging field which requires ever in-  
creasing performances in more and more reduced  
space, the TSM102A provides an attractive solu-  
tion in terms of PCB area saving, precision and  
versatility.  
The current and voltage regulations are made  
thanks to the two Operational Amplifiers.  
The first amplifier senses the current flow through  
the sense resistor Rs and compares it with a part  
of the reference voltage (resistor bridge R7, R8,  
R9). The second amplifier compares the reference  
voltage with a part of the chargers output (resistor  
bridge R1, R2, R3).  
Figure 2 shows the secondary side of a battery  
charger (SMPS type) where TSM102A is used in  
optimised conditions : the two Operational Amplifi-  
ers perform current and voltage control, the two  
Comparators provide End of Chargeand Low  
Batterysignals and the Voltage Reference en-  
sures precise reference for all measurements.  
When either of these two operational amplifiers  
tends to lower its ouput, this linear information is  
propagated towards the primary side via two OR-  
ing diodes (D1, D2) and an optocoupler (D3). The  
compensation loops of these regulation functions  
are ensured by the capacitors C1 and C2.  
The TSM102A is supplied by an auxiliary power  
supply (forward configuration - D7) regulated by a  
bipolar transistor and a zener diode on its base  
(Q2 and DZ), and smoothed by the capacitors C3  
6/9  
TSM102/A  
Figure 2 : The Application Schematic - Battery Charger Secondary Side  
The first comparator ensures the Low Battery”  
signal generation thanks to the comparison of a  
part of the chargers output voltage (resistor  
bridge R17, R19) and the reference voltage. Prop-  
er hysteresis is given thanks to R20. An improve-  
ment to the chargers security and to the batterys  
life time optimization is achieved by lowering the  
current control measurement thanks to Q1 that  
shunts the resistor R9 when the batterys voltage  
is below the Low Batterylevel.  
I = 720mA  
P = power dissipation through the sense resistor =  
R I2 = 0.375 x 0.7202 = 194mW  
In case of Low Batteryconditions, the current  
control is lowered thanks to the following  
equation :  
I = U / R = [ V R8 / (R7 + R8) ] / Rs  
ref  
= [ 2.5 x 390 / (10000 + 390 ) ] / 0.375  
= 250mA  
The second comparator ensures the End of  
Chargesignal generation thanks to the compari-  
son of a part of the chargers output voltage (resis-  
tor bridge R1, R2, R3) and the reference voltage.  
When either of these two signals is active, the cor-  
responding LED is polarized for convenient visual-  
ization of the battery status.  
I (LoBatt) = 250mA  
Voltage Control :  
V
= V / [ R2 / (R1 + R2 + R3) ]  
out  
ref  
= 2.5 / [ 56 / (131.5 + 56 + 0.68 ) ]  
= 8.400V  
V
= 8.400V  
out  
3 - CALCULATION OF THE ELEMENTS  
Low Battery signal :  
All the components values have been chosen for a  
two-Lithium-Ion batteries charge application :  
If R5 = 0and R6 = open :  
Current Control : 720mA (Low Battery current  
V
(LoBatt) = Vref / [ R19 / ( R17 + R19 ) ]  
= 2.5 / [ 10 / (12.4 + 10) ]  
= 5.6V  
out  
control : 250mA)  
Voltage Control : 8.4V (= 2x 4.2V)  
Low Battery : 5.6V (= 2x 2.5V + 0.6V)  
End of Charge : 8.3V (= 2x 4.15V)  
V
(LoBatt) = 5.6V  
out  
Current Control :  
End of Charge signal :  
The voltage reference is polarized thanks to the  
R4 resistor (2.5mA), and the cathode of the refer-  
ence gives a fixed 2.500V voltage.  
V
(EOC) = Vref / [ (R2 + R3 ) / (R1 + R2 + R3) ]  
= 2.5 / [(56 + 0.68) / (131.5 + 56 + 0.68)]  
= 8.300V  
out  
I = U / R = [V ( R8 + R9 ) / (R7 + R8 + R9) ] / Rs  
ref  
= [2.5 x (390 + 820) / (10000 + 390 + 820)] / 0.375  
= 720mA  
V
(EOC)= 8.300V  
out  
7/9  
TSM102/A  
Notes:  
The chosen values impose a 44µA discharge cur-  
rent max.  
The current control values must be chosen in ac-  
cordance with the elements of the primary side.  
The performances of the battery charger in their  
globality are highly dependent on the adequation  
of the primary and the secondary elements.  
R12 and R13 are the equivalent resistors seen  
from the opamp and from the comparator.  
A hysteresis resistor can be connected to the End  
Of Chargecomparator to ensure proper hystere-  
sis to this signal, but this resistor must be chosen  
carefully not to degrade the output voltage preci-  
sion. It might be needed to impose unidirectionnal  
hysteresis (by inserting a diode on the positive  
feedback of the comparator).  
Figure 3 shows how to use the integrated Voltage  
Reference to build a precise Power Supply for the  
TSM102A (and other components if necessary).  
Pin 8 remains the reference for all voltage mea-  
surements for the rest of the application.  
The addition of the diode D9 is necessary to avoid  
dramatic discharge of the battery cells in case of  
the charger disconnection from the mains voltage,  
and therefore, the voltage measurement is to be  
operated on the cathode side of the diode not to  
take its voltage drop into account. The total bridge  
value of R1, R2, R3 must ensure low battery dis-  
charge if the charger is disconnected from main,  
but remains connected to the battery by mistake.  
Figure 3 : A precise power supply for the TSM102A and other components  
Vaux  
Vcc  
Vaux  
+
+
9
8
13  
TSM102 Vref  
8/9  
TSM102/A  
PACKAGE MECHANICAL DATA  
SO-16 MECHANICAL DATA  
mm.  
inch  
TYP.  
DIM.  
MIN.  
TYP  
MAX.  
1.75  
0.2  
MIN.  
MAX.  
0.068  
0.008  
0.064  
0.018  
0.010  
A
a1  
a2  
b
0.1  
0.004  
1.65  
0.46  
0.25  
0.35  
0.19  
0.013  
0.007  
b1  
C
0.5  
0.019  
c1  
D
45˚ (typ.)  
9.8  
5.8  
10  
0.385  
0.228  
0.393  
0.244  
E
6.2  
e
1.27  
8.89  
0.050  
0.350  
e3  
F
3.8  
4.6  
0.5  
4.0  
5.3  
0.149  
0.181  
0.019  
0.157  
0.208  
0.050  
0.024  
G
L
1.27  
0.62  
M
S
8
˚ (max.)  
PO13H  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the  
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from  
its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications  
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information  
previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or  
systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics  
All other names are the property of their respective owners.  
© 2004 STMicroelectronics - All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Belgium - Brazil - Canada - China - Czech Repubic - Finland - France - Germany  
Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain  
Sweden - Switzerland - United Kingdom - United States  
http://www.st.com  
9/9  

相关型号:

TSM102_15

DUAL OPERATIONAL AMPLIFIER, DUAL COMPARATOR
TI

TSM103

DUAL OPERATIONAL AMPLIFIER AND VOLTAGE REFERENCE
STMICROELECTR

TSM103A

DUAL OPERATIONAL AMPLIFIER AND VOLTAGE REFERENCE
STMICROELECTR

TSM103AD

DUALOPERATIONAL AMPLIFIER AND VOLTAGE REFERENCE
STMICROELECTR

TSM103AI

DUALOPERATIONAL AMPLIFIER AND VOLTAGE REFERENCE
STMICROELECTR

TSM103AID

OP-AMP|DUAL|BIPOLAR|SOP|8PIN|PLASTIC
ETC

TSM103AIDT

DUAL OPERATIONAL AMPLIFIER AND VOLTAGE REFERENCE
STMICROELECTR

TSM103AIN

Voltage-Feedback Operational Amplifier
ETC

TSM103AN

DUALOPERATIONAL AMPLIFIER AND VOLTAGE REFERENCE
STMICROELECTR

TSM103AWD

Operational Amplifier
ETC

TSM103AWDT

Operational Amplifier
ETC

TSM103D

DUALOPERATIONAL AMPLIFIER AND VOLTAGE REFERENCE
STMICROELECTR