TSX564AIYPT [STMICROELECTRONICS]

Micropower, wide bandwidth (900 kHz), 16 V CMOS operational amplifiers; 微功耗,高带宽( 900千赫) ,16V CMOS运算放大器
TSX564AIYPT
型号: TSX564AIYPT
厂家: ST    ST
描述:

Micropower, wide bandwidth (900 kHz), 16 V CMOS operational amplifiers
微功耗,高带宽( 900千赫) ,16V CMOS运算放大器

运算放大器
文件: 总27页 (文件大小:1362K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TSX561, TSX562, TSX564,  
TSX561A, TSX562A, TSX564A  
Micropower, wide bandwidth (900 kHz), 16 V CMOS  
operational amplifiers  
Datasheet - production data  
Benefits  
Single  
Power savings in power-conscious  
applications  
Easy interfacing with high impedance sensors  
Related products  
SOT23-5  
Dual  
See TSX63x series for reduced power  
consumption (45 μA, 200 kHz)  
See TSX92x series for higher gain bandwidth  
products (10 MHz)  
Applications  
DFN8 2x2  
MiniSO8  
Industrial and automotive signal conditioning  
Active filtering  
Medical instrumentation  
High impedance sensors  
Quad  
Description  
QFN16 3x3  
TSSOP14  
The TSX56x, TSX56xA series of operational  
®
amplifiers benefits from STMicroelectronics 16 V  
CMOS technology to offer state-of-the-art  
accuracy and performance in the smallest  
industrial packages. The TSX56x, TSX56xA have  
pinouts compatible with industry standards and  
offer an outstanding speed/power consumption  
ratio, 900 kHz gain bandwidth product while  
consuming only 250 µA at 16 V. Such features  
make the TSX56x, TSX56xA ideal for sensor  
interfaces and industrial signal conditioning. The  
wide temperature range and high ESD tolerance  
ease use in harsh automotive applications.  
Features  
Low power consumption: 235 µA typ. at 5 V  
Supply voltage: 3 V to 16 V  
Gain bandwidth product: 900 kHz typ.  
Low offset voltage  
– “A” version: 600 µV max.  
– Standard version: 1 mV max.  
Low input bias current: 1 pA typ.  
High tolerance to ESD: 4 kV  
Wide temperature range: -40 to +125 °C  
Automotive qualification  
Table 1.  
Version  
Device summary  
Standard Vio  
Enhanced Vio  
Single  
Dual  
TSX561  
TSX562  
TSX564  
TSX561A  
TSX562A  
TSX564A  
Tiny packages available  
– SOT23-5  
– DFN8 2 mm x 2 mm, MiniSO8  
– QFN16 3 mm x 3 mm, TSSOP14  
Quad  
May 2013  
DocID023274 Rev 3  
1/27  
This is information on a product in full production.  
www.st.com  
27  
 
 
 
 
 
Contents  
TSX56x, TSX56xA  
Contents  
1
2
3
4
Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 4  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
Operating voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Rail-to-rail input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Input offset voltage drift over temperature . . . . . . . . . . . . . . . . . . . . . . . . 15  
Long term input offset voltage drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
PCB layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Macromodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
5
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
5.1  
5.2  
5.3  
5.4  
5.5  
SOT23-5 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
DFN8 2x2 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
MiniSO8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
QFN16 3x3 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
TSSOP14 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
6
7
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
2/27  
DocID023274 Rev 3  
TSX56x, TSX56xA  
Pin connections  
1
Pin connections  
Figure 1. Pin connections for each package (top view)  
Single  
SOT23-5 (TSX561)  
Dual  
287ꢂ  
,1ꢂꢁ  
9&&ꢀ  
287ꢃ  
287ꢂ  
,1ꢂꢁ  
9&&ꢀ  
287ꢃ  
,1ꢃꢁ  
,1ꢂꢀ  
9&&ꢁ  
,1ꢂꢀ  
,1ꢃꢁ  
9&&ꢁ  
,1ꢃꢀ  
,1ꢃꢀ  
DFN8 2x2 (TSX562)  
MiniSO8 (TSX562)  
Quad  
ꢂꢇ  
ꢂꢆ  
ꢂꢅ  
ꢂꢄ  
ꢂꢃ  
ꢂꢂ  
ꢂꢊ  
,1ꢂꢀ  
9&&ꢀ  
1&  
,1ꢅꢀ  
9&&ꢁ  
1&  
,1ꢃꢀ  
,1ꢄꢀ  
QFN16 3x3 (TSX564)  
TSSOP14 (TSX564)  
DocID023274 Rev 3  
3/27  
 
Absolute maximum ratings and operating conditions  
TSX56x, TSX56xA  
2
Absolute maximum ratings and operating conditions  
Table 2. Absolute maximum ratings (AMR)  
Parameter  
Symbol  
Value  
Unit  
VCC  
Vid  
Vin  
Iin  
Supply voltage(1)  
18  
±VCC  
Differential input voltage(2)  
Input voltage(3)  
V
VCC- - 0.2 to VCC++ 0.2  
10  
Input current(4)  
mA  
°C  
Tstg  
Storage temperature  
-65 to +150  
Thermal resistance junction to ambient(5)(6)  
SOT23-5  
DFN8 2x2  
MiniSO8  
250  
120  
190  
80  
Rthja  
QFN16 3x3  
TSSOP14  
°C/W  
100  
Thermal resistance junction to case  
DFN8 2x2  
Rthjc  
33  
30  
QFN16 3x  
Tj  
Maximum junction temperature  
HBM: human body model(7)  
150  
4
°C  
kV  
MM: machine model for TSX561(8)  
MM: machine model for TSX562 and TSX564(8)  
CDM: charged device model(9)  
Latch-up immunity  
200  
100  
1.5  
200  
ESD  
V
kV  
mA  
1. All voltage values, except differential voltage, are with respect to network ground terminal.  
2. The differential voltage is the non-inverting input terminal with respect to the inverting input terminal.  
3. VCC - Vin must not exceed 18 V, Vin must not exceed 18 V.  
4. Input current must be limited by a resistor in series with the inputs.  
5. Short-circuits can cause excessive heating and destructive dissipation.  
6. Rth are typical values.  
7. Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for  
all couples of pin combinations with other pins floating.  
8. Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two  
pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin  
combinations with other pins floating.  
9. Charged device model: all pins plus package are charged together to the specified voltage and then  
discharged directly to ground.  
Table 3. Operating conditions  
Symbol  
Parameter  
Value  
Unit  
VCC  
Vicm  
Toper  
Supply voltage  
3 to 16  
V
Common mode input voltage range  
Operating free air temperature range  
VCC- - 0.1 to VCC+ + 0.1  
-40 to +125  
°C  
4/27  
DocID023274 Rev 3  
 
TSX56x, TSX56xA  
Electrical characteristics  
3
Electrical characteristics  
Table 4. Electrical characteristics at V  
= +3.3 V with V  
= 0 V, V  
= V /2, T  
= 25 °C, and  
CC+  
CC-  
icm  
CC  
amb  
R =10 kΩ connected to V /2 (unless otherwise specified)  
L
CC  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
DC performance  
TSX56xA, T = 25 °C  
TSX56xA, -40 °C < T < 125 °C  
TSX56x, T = 25 °C  
TSX56x, -40 °C < T < 125 °C  
-40 °C < T < 125 °C(1)  
T = 25 °C  
600  
μV  
1800  
1
Vio  
Offset voltage  
mV  
2.2  
ΔVio/ΔT Input offset voltage drift  
2
1
12  
μV/°C  
100(2)  
200(2)  
100(2)  
200(2)  
Input offset current  
(Vout = VCC/2)  
Iio  
-40 °C < T < 125 °C  
T = 25 °C  
1
pA  
1
Input bias current  
(Vout = VCC/2)  
Iib  
-40 °C < T < 125 °C  
T = 25 °C  
1
Common mode rejection ratio  
CMR = 20 log (ΔVic/ΔVio)  
(Vic = -0.1 V to VCC-1.5 V,  
63  
59  
47  
45  
80  
CMR1  
-40 °C < T < 125 °C  
T = 25 °C  
Vout = VCC/2, RL > 1 MΩ)  
Common mode rejection ratio  
CMR = 20 log (ΔVic/ΔVio)  
(Vic = -0.1 V to VCC+0.1 V,  
66  
dB  
CMR2  
-40 °C < T < 125 °C  
Vout = VCC/2, RL > 1 MΩ)  
Large signal voltage gain  
(Vout = 0.5 V to (VCC - 0.5 V),  
RL > 1 MΩ)  
T = 25 °C  
85  
83  
Avd  
-40 °C < T < 125 °C  
T = 25 °C  
70  
100  
70  
High level output voltage  
VOH  
(VOH = VCC - Vout  
)
-40 °C < T < 125 °C  
T = 25 °C  
mV  
VOL  
Low level output voltage  
-40 °C < T < 125 °C  
T = 25 °C  
100  
4.3  
2.5  
3.3  
2.5  
5.3  
4.3  
220  
Isink (Vout = VCC  
)
-40 °C < T < 125 °C  
T = 25 °C  
Iout  
mA  
µA  
Isource (Vout = 0 V)  
-40 °C < T < 125 °C  
T = 25 °C  
Supply current  
(per channel, Vout = VCC/2,  
RL > 1 MΩ)  
300  
350  
ICC  
-40 °C < T < 125 °C  
DocID023274 Rev 3  
5/27  
 
Electrical characteristics  
TSX56x, TSX56xA  
Table 4. Electrical characteristics at V  
= +3.3 V with V  
= 0 V, V  
= V /2, T  
= 25 °C, and  
CC+  
CC-  
icm  
CC  
amb  
R =10 kΩ connected to V /2 (unless otherwise specified) (continued)  
L
CC  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
AC performance  
GBP  
Fu  
Gain bandwidth product  
Unity gain frequency  
Phase margin  
600  
800  
690  
55  
kHz  
RL = 10 kΩ, CL = 100 pF  
Φm  
Degree  
dB  
Gm  
Gain margin  
9
RL = 10 kΩ, CL = 100 pF,  
SR  
en  
en  
Slew rate  
1
V/μs  
Vout = 0.5 V to VCC - 0.5 V  
Low-frequency peak-to-peak  
input noise  
Bandwidth: f = 0.1 to 10 Hz  
16  
µVpp  
Equivalent input noise voltage  
density  
f = 1 kHz  
f = 10 kHz  
55  
29  
nV  
-----------  
Hz  
Follower configuration,  
f
in = 1 kHz,  
THD+N Total harmonic distortion + noise RL = 100 kΩ,  
Vicm = (VCC -1.5 V)/2,  
0.004  
%
BW = 22 kHz, Vout = 1 Vpp  
1. See Section 4.3: Input offset voltage drift over temperature on page 15.  
2. Guaranteed by design.  
6/27  
DocID023274 Rev 3  
TSX56x, TSX56xA  
Electrical characteristics  
Table 5. Electrical characteristics at V  
= +5 V with V  
= 0 V, V  
= V /2, T  
= 25 °C, and  
CC+  
CC-  
icm  
CC  
amb  
R = 10 kΩ connected to V /2 (unless otherwise specified)  
L
CC  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
DC performance  
TSX56xA, T = 25 °C  
600  
μV  
TSX56xA, -40 °C < T < 125 °C  
TSX56x, T = 25 °C  
1800  
1
Vio  
Offset voltage  
mV  
TSX56x, -40 °C < T < 125 °C  
-40 °C < T < 125 °C(1)  
2.2  
12  
ΔVio/ΔT Input offset voltage drift  
2
5
μV/°C  
nV  
Long-term input offset voltage  
drift  
--------------------------  
ΔVio  
T = 25 °C(2)  
month  
T = 25 °C  
1
1
100(3)  
200(3)  
100(3)  
200(3)  
Input offset current  
(Vout = VCC/2)  
Iio  
-40 °C < T < 125 °C  
T = 25 °C  
pA  
1
Input bias current  
(Vout = VCC/2)  
Iib  
-40 °C < T < 125 °C  
1
Common mode rejection ratio T = 25 °C  
66  
63  
50  
47  
84  
CMR = 20 log (ΔVic/ΔVio)  
(Vic = -0.1 V to VCC - 1.5 V,  
Vout = VCC/2, RL > 1 MΩ)  
CMR1  
-40 °C < T < 125 °C  
Common mode rejection ratio T = 25 °C  
CMR = 20 log (ΔVic/ΔVio)  
69  
dB  
CMR2  
Avd  
(Vic = -0.1 V to VCC + 0.1 V,  
Vout = VCC/2, RL > 1 MΩ)  
-40 °C < T < 125 °C  
Large signal voltage gain  
(Vout = 0.5 V to (VCC - 0.5 V),  
RL > 1 MΩ)  
T = 25 °C  
85  
83  
-40 °C < T < 125 °C  
High level output voltage  
RL = 10 kΩ, T = 25 °C  
70  
100  
VOH  
VOL  
(VOH = VCC - Vout  
)
RL = 10 kΩ, -40 °C < T < 125 °C  
mV  
RL = 10 kΩ, T = 25 °C  
RL = 10 kΩ, -40 °C < T < 125 °C  
70  
100  
Low level output voltage  
Isink  
Vout = VCC, T = 25 °C  
Vout = VCC, -40 °C < T < 125 °C  
Vout = 0 V, T = 25 °C  
11  
8
14  
12  
Iout  
mA  
µA  
9
Isource  
Vout = 0 V, -40 °C < T < 125 °C  
T = 25 °C  
7
Supply current  
(per channel, Vout = VCC/2,  
RL > 1 MΩ)  
235  
350  
400  
ICC  
-40 °C < T < 125 °C  
DocID023274 Rev 3  
7/27  
 
Electrical characteristics  
TSX56x, TSX56xA  
Table 5. Electrical characteristics at V  
= +5 V with V  
= 0 V, V  
= V /2, T  
= 25 °C, and  
CC+  
CC-  
icm  
CC  
amb  
R = 10 kΩ connected to V /2 (unless otherwise specified) (continued)  
L
CC  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
AC performance  
GBP  
Fu  
Gain bandwidth product  
Unity gain frequency  
Phase margin  
700  
850  
730  
55  
kHz  
RL = 10 kΩ, CL = 100 pF  
Φm  
Degree  
dB  
Gm  
Gain margin  
9
RL = 10 kΩ, CL = 100 pF,  
SR  
en  
en  
Slew rate  
1.1  
15  
V/μs  
Vout = 0.5 V to VCC - 0.5 V  
Low-frequency peak-to-peak  
input noise  
Bandwidth: f = 0.1 to 10 Hz  
µVpp  
Equivalent input noise voltage f = 1 kHz  
55  
29  
nV  
-----------  
density  
f = 10 kHz  
Hz  
Follower configuration,  
fin = 1 kHz,  
RL = 100 kΩ, Vicm = (VCC - 1.5 V)/2,  
BW = 22 kHz, Vout = 2 Vpp  
Total harmonic distortion +  
noise  
THD+N  
0.002  
%
1. See Section 4.3: Input offset voltage drift over temperature on page 15.  
2. Typical value is based on the Vio drift observed after 1000h at 125 °C extrapolated to 25 °C using the Arrhenius law and  
assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration.  
3. Guaranteed by design.  
8/27  
DocID023274 Rev 3  
TSX56x, TSX56xA  
Electrical characteristics  
Table 6. Electrical characteristics at V  
= +16 V with V  
= 0 V, V  
= V /2, T  
= 25 °C, and  
CC+  
CC-  
icm  
CC  
amb  
R = 10 kΩ connected to V /2 (unless otherwise specified)  
L
CC  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
DC performance  
TSX56xA, T = 25 °C  
600  
μV  
TSX56xA, -40 °C < T < 125 °C  
TSX56x, T = 25 °C  
1800  
1
Vio  
Offset voltage  
mV  
TSX56x, -40 °C < T < 125 °C  
-40 °C < T < 125 °C(1)  
2.2  
12  
ΔVio/ΔT Input offset voltage drift  
2
μV/°C  
μV  
month  
Long-term input offset voltage  
drift  
T = 25 °C(2)  
1.6  
--------------------------  
ΔVio  
T = 25 °C  
1
1
100(3)  
200(3)  
100(3)  
200(3)  
Input offset current  
(Vout = VCC/2)  
Iio  
-40 °C < T < 125 °C  
T = 25 °C  
pA  
1
Input bias current  
(Vout = VCC/2)  
Iib  
-40 °C < T < 125 °C  
1
Common mode rejection ratio T = 25 °C  
CMR = 20 log (ΔVic/ΔVio)  
76  
72  
60  
56  
76  
72  
95  
CMR1  
CMR2  
(Vic = -0.1 V to VCC - 1.5 V,  
-40 °C < T < 125 °C  
Vout = VCC/2, RL > 1 MΩ)  
Common mode rejection ratio T = 25 °C  
CMR = 20 log (ΔVic/ΔVio)  
78  
90  
(Vic = -0.1 V to VCC + 0.1 V,  
Vout = VCC/2, RL > 1 MΩ)  
-40 °C < T < 125 °C  
dB  
Common mode rejection ratio T = 25 °C  
20 log (ΔVCC/ΔVio)  
SVR  
Avd  
(VCC = 3 V to 16 V,  
Vout = Vicm = VCC/2)  
-40 °C < T < 125 °C  
Large signal voltage gain  
(Vout = 0.5 V to (VCC - 0.5 V),  
RL > 1 MΩ)  
T = 25 °C  
85  
83  
-40 °C < T < 125 °C  
High level output voltage  
RL = 10 kΩ, T = 25 °C  
70  
100  
VOH  
VOL  
(VOH = VCC - Vout  
)
RL = 10 kΩ, -40 °C < T < 125 °C  
mV  
RL = 10 kΩ, T = 25 °C  
RL = 10 kΩ, -40 °C < T < 125 °C  
70  
100  
Low level output voltage  
Isink  
Vout = VCC, T = 25 °C  
40  
35  
30  
25  
92  
90  
Vout = VCC, -40 °C < T < 125 °C  
Iout  
mA  
µA  
Vout = 0 V, T = 25 °C  
Vout = 0 V, -40 °C < T < 125 °C  
T = 25 °C  
Isource  
Supply current  
(per channel, Vout = VCC/2,  
RL > 1 MΩ)  
250  
360  
400  
ICC  
-40 °C < T < 125 °C  
DocID023274 Rev 3  
9/27  
Electrical characteristics  
TSX56x, TSX56xA  
Table 6. Electrical characteristics at V  
= +16 V with V  
= 0 V, V  
= V /2, T  
= 25 °C, and  
CC+  
CC-  
icm  
CC  
amb  
R = 10 kΩ connected to V /2 (unless otherwise specified) (continued)  
L
CC  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
AC performance  
GBP Gain bandwidth product  
750  
900  
750  
55  
kHz  
Fu  
Φm  
Gm  
Unity gain frequency  
Phase margin  
RL = 10 kΩ, CL = 100 pF  
Degree  
dB  
Gain margin  
9
RL = 10 kΩ, CL = 100 pF,  
SR  
en  
en  
Slew rate  
1.1  
15  
V/μs  
Vout = 0.5 V to VCC - 0.5 V  
Low-frequency peak-to-peak  
input noise  
Bandwidth: f = 0.1 to 10 Hz  
µVpp  
Equivalent input noise voltage f = 1 kHz  
48  
27  
nV  
-----------  
density  
f = 10 kHz  
Hz  
Follower configuration, fin = 1 kHz,  
RL = 100 kΩ, Vicm = (VCC - 1.5 V)/2,  
BW = 22 kHz, Vout = 5 Vpp  
Total harmonic distortion +  
noise  
THD+N  
0.0005  
%
1. See Section 4.3: Input offset voltage drift over temperature on page 15.  
2. Typical value is based on the Vio drift observed after 1000h at 125 °C extrapolated to 25 °C using the Arrhenius law and  
assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration.  
3. Guaranteed by design.  
10/27  
DocID023274 Rev 3  
TSX56x, TSX56xA  
Electrical characteristics  
Figure 2. Supply current vs. supply voltage at  
Figure 3. Input offset voltage distribution  
V
= V /2  
at V = 16 V and V  
= 8 V  
icm  
CC  
CC  
icm  
Figure 4. Input offset voltage temperature  
coefficient distribution at V = 16 V, V = 8 V  
Figure 5. Input offset voltage vs. input common  
mode voltage at V = 12 V  
CC  
icm  
CC  
Figure 6. Input offset voltage vs. temperature at V = 16 V  
CC  
ꢃꢆꢊꢊ  
/LPLWꢌIRUꢌ76;ꢆꢇ[$  
ꢃꢊꢊꢊ  
/LPLWꢌIRUꢌ76;ꢆꢇ[  
ꢂꢆꢊꢊ  
ꢂꢊꢊꢊ  
ꢆꢊꢊ  
ꢁꢆꢊꢊ  
ꢁꢂꢊꢊꢊ  
ꢁꢂꢆꢊꢊ  
9
ꢌ ꢌꢂꢇꢌ9ꢌ9 ꢌ ꢌꢉꢌ9  
ꢁꢃꢊꢊꢊ  
ꢁꢃꢆꢊꢊ  
&& LFP  
ꢁꢅꢊ  
ꢁꢃꢊ  
ꢃꢊ  
ꢅꢊ  
ꢇꢊ  
ꢉꢊ  
ꢂꢊꢊ  
ꢂꢃꢊ  
$0ꢊꢊꢅꢄꢈ  
DocID023274 Rev 3  
11/27  
Electrical characteristics  
TSX56x, TSX56xA  
Figure 7. Output current vs. output voltage  
Figure 8. Output current vs. output voltage  
at V = 3.3 V  
at V = 5 V  
CC  
CC  
Figure 9. Output current vs. output voltage  
Figure 10. Bode diagram at V  
= 3.3 V  
CC  
at V = 16 V  
CC  
Figure 11. Bode diagram at V  
= 5 V  
Figure 12. Bode diagram at V  
= 16 V  
CC  
CC  
12/27  
DocID023274 Rev 3  
TSX56x, TSX56xA  
Electrical characteristics  
Figure 13. Phase margin vs. capacitive load Figure 14. GBP vs. input common mode voltage  
at V = 12 V  
at V = 12 V  
CC  
CC  
Figure 15. A vs. input common mode voltage  
Figure 16. Slew rate vs. supply voltage  
vd  
at V = 12 V  
CC  
Figure 17. Noise vs. frequency at V = 3.3 V  
Figure 18. Noise vs. frequency at V = 5 V  
CC  
CC  
DocID023274 Rev 3  
13/27  
Electrical characteristics  
TSX56x, TSX56xA  
Figure 19. Noise vs. frequency at V = 16 V Figure 20. Distortion + noise vs. output voltage  
CC  
amplitude  
Figure 21. Distortion + noise vs. amplitude  
at V = V /2 and V = 12 V  
Figure 22. Distortion + noise vs. frequency  
icm  
CC  
CC  
14/27  
DocID023274 Rev 3  
TSX56x, TSX56xA  
Application information  
4
Application information  
4.1  
Operating voltages  
The amplifiers of the TSX56x and TSX56xA series can operate from 3 V to 16 V. Their  
parameters are fully specified at 3.3 V, 5 V and 16 V power supplies. However, the  
parameters are very stable in the full V range. Additionally, the main specifications are  
CC  
guaranteed in extended temperature ranges from -40 to +125 ° C.  
4.2  
Rail-to-rail input  
The TSX56x and TSX56xA devices are built with two complementary PMOS and NMOS  
input differential pairs. The devices have a rail-to-rail input, and the input common mode  
range is extended from V  
- 0.1 V to V  
+ 0.1 V.  
CC-  
CC+  
However, the performance of these devices is clearly optimized for the PMOS differential  
pairs (which means from V - 0.1 V to V - 1.5 V).  
CC-  
CC+  
Beyond V  
- 1.5 V, the operational amplifiers are still functional but with degraded  
CC+  
performance, as can be observed in the electrical characteristics section of this datasheet  
(mainly V and GBP). These performances are suitable for a number of applications  
io  
needing to be rail-to-rail.  
The devices are designed to prevent phase reversal.  
4.3  
Input offset voltage drift over temperature  
The maximum input voltage drift over the temperature variation is defined as the offset  
variation related to the offset value measured at 25 °C. The operational amplifier is one of  
the main circuits of the signal conditioning chain, and the amplifier input offset is a major  
contributor to the chain accuracy. The signal chain accuracy at 25 °C can be compensated  
during production at application level. The maximum input voltage drift over temperature  
enables the system designer to anticipate the effects of temperature variations.  
The maximum input voltage drift over temperature is computed in Equation 1.  
Equation 1  
ΔVio  
Vio(T) Vio(25° C)  
----------- = max  
ΔT  
--------------------------------------------------  
T 25° C  
with T = -40 °C and 125 °C.  
The datasheet maximum value is guaranteed by measurement on a representative sample  
size ensuring a C (process capability index) greater than 2.  
pk  
DocID023274 Rev 3  
15/27  
 
 
Application information  
TSX56x, TSX56xA  
4.4  
Long term input offset voltage drift  
To evaluate product reliability, two types of stress acceleration are used:  
Voltage acceleration, by changing the applied voltage  
Temperature acceleration, by changing the die temperature (below the maximum  
junction temperature allowed by the technology) with the ambient temperature.  
The voltage acceleration has been defined based on JEDEC results, and is defined using  
Equation 2.  
Equation 2  
(VS VU)  
AFV = eβ ⋅  
Where:  
A
is the voltage acceleration factor  
FV  
β is the voltage acceleration constant in 1/V, constant technology parameter (β = 1)  
V is the stress voltage used for the accelerated test  
S
V is the voltage used for the application  
U
The temperature acceleration is driven by the Arrhenius model, and is defined in Equation 3.  
Equation 3  
Ea  
------ ------ – ------  
1
1
AFT = e k  
TU TS  
Where:  
A
is the temperature acceleration factor  
FT  
E is the activation energy of the technology based on the failure rate  
a
-5  
-1  
k is the Boltzmann constant (8.6173 x 10 eV.K )  
T is the temperature of the die when V is used (K)  
U
U
T is the temperature of the die under temperature stress (K)  
S
The final acceleration factor, A , is the multiplication of the voltage acceleration factor and  
F
the temperature acceleration factor (Equation 4).  
Equation 4  
AF = AFT × AFV  
A is calculated using the temperature and voltage defined in the mission profile of the  
F
product. The A value can then be used in Equation 5 to calculate the number of months of  
F
use equivalent to 1000 hours of reliable stress duration.  
16/27  
DocID023274 Rev 3  
 
 
 
 
TSX56x, TSX56xA  
Application information  
Equation 5  
Months = AF × 1000 h × 12 months ⁄ (24 h × 365.25 days)  
To evaluate the op-amp reliability, a follower stress condition is used where V is defined  
CC  
as a function of the maximum operating voltage and the absolute maximum rating (as  
recommended by JEDEC rules).  
The V drift (in µV) of the product after 1000 h of stress is tracked with parameters at  
io  
different measurement conditions (see Equation 6).  
Equation 6  
VCC = maxVop with Vicm = VCC 2  
The long term drift parameter (ΔV ), estimating the reliability performance of the product, is  
io  
obtained using the ratio of the V (input offset voltage value) drift over the square root of the  
io  
calculated number of months (Equation 7).  
Equation 7  
Viodrift  
ΔVio = -----------------------------  
(months)  
where V drift is the measured drift value in the specified test conditions after 1000 h stress  
io  
duration.  
4.5  
4.6  
PCB layouts  
For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible  
to the power supply pins.  
Macromodel  
Accurate macromodels of the TSX56x, TSX56xA devices are available on the  
STMicroelectronics’ website at www.st.com. These models are a trade-off between  
accuracy and complexity (that is, time simulation) of the TSX56x and TSX56xA operational  
amplifiers. They emulate the nominal performance of a typical device within the specified  
operating conditions mentioned in the datasheet. They also help to validate a design  
approach and to select the right operational amplifier, but they do not replace on-board  
measurements.  
DocID023274 Rev 3  
17/27  
 
 
 
Package information  
TSX56x, TSX56xA  
5
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
ECOPACK is an ST trademark.  
18/27  
DocID023274 Rev 3  
 
TSX56x, TSX56xA  
Package information  
5.1  
SOT23-5 package information  
Figure 23. SOT23-5 package mechanical drawing  
Table 7. SOT23-5 package mechanical data  
Dimensions  
Ref.  
Millimeters  
Inches  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
A2  
B
0.90  
1.20  
1.45  
0.15  
1.30  
0.50  
0.20  
3.00  
0.035  
0.047  
0.057  
0.006  
0.051  
0.019  
0.008  
0.118  
0.90  
0.35  
0.09  
2.80  
1.05  
0.40  
0.15  
2.90  
1.90  
0.95  
2.80  
1.60  
0.35  
0.035  
0.013  
0.003  
0.110  
0.041  
0.015  
0.006  
0.114  
0.075  
0.037  
0.110  
0.063  
0.013  
C
D
D1  
e
E
2.60  
1.50  
0.10  
0 °  
3.00  
1.75  
0.60  
10 °  
0.102  
0.059  
0.004  
0 °  
0.118  
0.069  
0.023  
10 °  
F
L
K
DocID023274 Rev 3  
19/27  
 
 
Package information  
TSX56x, TSX56xA  
5.2  
DFN8 2x2 package information  
Figure 24. DFN8 2x2 package mechanical drawing  
'
%
3,1ꢌꢂꢌ,1'(;ꢌ$5($  
ꢊꢏꢂꢊ  
& ꢃ[  
723ꢌ9,(:  
ꢊꢏꢂꢊ  
&
&
6($7,1*  
3/$1(  
6,'(ꢌ9,(:  
H
ꢊꢏꢊꢉ  
&
EꢌꢐꢉꢌSOFVꢑ  
ꢊꢏꢂꢊ  
3,1ꢌꢂꢌ,1'(;ꢌ$5($  
&
$ %  
3LQꢎꢂꢌ,'  
%27720ꢌ9,(:  
*$06ꢃꢃꢊꢃꢂꢄꢂꢇꢄꢆ&%  
Table 8. DFN8 2x2 package mechanical data  
Dimensions  
Ref.  
Millimeters  
Typ.  
Inches  
Typ.  
Min.  
Max.  
Min.  
Max.  
A
A1  
b
0.70  
0.00  
0.15  
0.75  
0.02  
0.20  
2.00  
2.00  
0.50  
0.55  
8
0.80  
0.05  
0.25  
0.028  
0.000  
0.006  
0.030  
0.001  
0.008  
0.079  
0.079  
0.020  
0.022  
8
0.031  
0.002  
0.010  
D
E
e
L
0.045  
0.65  
0.018  
0.026  
N
20/27  
DocID023274 Rev 3  
 
 
TSX56x, TSX56xA  
Package information  
5.3  
MiniSO8 package information  
Figure 25. MiniSO8 package mechanical drawing  
Table 9. MiniSO8 package mechanical data  
Dimensions  
Symbol  
Millimeters  
Inches  
Typ.  
Min.  
Typ.  
Max.  
Min.  
Max.  
A
A1  
A2  
b
1.10  
0.15  
0.95  
0.40  
0.23  
3.20  
5.15  
3.10  
0.043  
0.006  
0.037  
0.016  
0.009  
0.126  
0.203  
0.122  
0
0
0.75  
0.22  
0.08  
2.80  
4.65  
2.80  
0.85  
0.030  
0.009  
0.003  
0.11  
0.033  
c
D
3.00  
4.90  
3.00  
0.65  
0.60  
0.95  
0.25  
0.118  
0.193  
0.118  
0.026  
0.024  
0.037  
0.010  
E
0.183  
0.11  
E1  
e
L
0.40  
0°  
0.80  
0.016  
0°  
0.031  
L1  
L2  
k
8°  
8°  
ccc  
0.10  
0.004  
DocID023274 Rev 3  
21/27  
ꢌ,1'(;ꢌ$5($  
                                             
Package information  
TSX56x, TSX56xA  
5.4  
QFN16 3x3 package information  
Figure 26. QFN16 3x3 package mechanical drawing  
'
%
ꢐ'ꢒꢃ[(ꢒꢃꢑ  
DDD  
& ꢃ[  
723ꢌ9,(:  
FFF  
&
&
6($7,1*  
3/$1(  
6,'(ꢌ9,(:  
H
HHH  
&
/
E
EEE  
EEE  
&
&
$ %  
ꢂꢃ  
ꢂꢇ  
ꢂꢄ  
3LQꢎꢂꢌ,'  
5ꢊꢏꢂꢂ  
%27720ꢌ9,(:  
*$06ꢃꢆꢊꢃꢂꢄꢂꢊꢆꢂ&%  
22/27  
DocID023274 Rev 3  
TSX56x, TSX56xA  
Package information  
Table 10. QFN16 3x3 package mechanical data  
Dimensions  
Ref.  
Millimeters  
Typ.  
Inches  
Typ.  
Min.  
Max.  
Min.  
Max.  
A
A1  
b
0.50  
0
0.65  
0.05  
0.30  
0.020  
0
0.026  
0.002  
0.012  
0.18  
0.25  
3.00  
3.00  
0.50  
0.007  
0.010  
0.118  
0.118  
0.020  
D
E
e
L
0.30  
0.50  
0.15  
0.10  
0.10  
0.05  
0.08  
0.012  
0.020  
0.006  
0.004  
0.004  
0.002  
0.003  
aaa  
bbb  
ccc  
ddd  
eee  
DocID023274 Rev 3  
23/27  
Package information  
TSX56x, TSX56xA  
5.5  
TSSOP14 package information  
Figure 27. TSSOP14 package mechanical drawing  
Table 11. TSSOP14 package mechanical data  
Dimensions  
Symbol  
Millimeters  
Typ.  
Inches  
Typ.  
Min.  
Max.  
Min.  
Max.  
A
A1  
A2  
b
1.20  
0.15  
1.05  
0.30  
0.20  
5.10  
6.60  
4.50  
0.047  
0.006  
0.041  
0.012  
0.0089  
0.201  
0.260  
0.176  
0.05  
0.80  
0.19  
0.09  
4.90  
6.20  
4.30  
0.002  
0.031  
0.007  
0.004  
0.193  
0.244  
0.169  
0.004  
0.039  
1.00  
c
D
5.00  
6.40  
4.40  
0.65  
0.60  
1.00  
0.197  
0.252  
E
E1  
e
0.173  
0.0256 BSC  
L
0.45  
0°  
0.75  
L1  
k
8°  
0°  
8°  
aaa  
0.10  
0.018  
0.024  
0.030  
24/27  
DocID023274 Rev 3  
 
 
TSX56x, TSX56xA  
Ordering information  
6
Ordering information  
Table 12. Order codes  
Channel  
Order code  
Temperature range  
Package  
Packaging  
Marking  
number  
TSX561ILT  
1
2
2
4
4
1
2
4
1
2
4
1
2
4
SOT23-5  
DFN8 2 x 2  
MiniSO8  
TSX562IQ2T  
TSX562IST  
K23  
-40 to 125 °C  
TSX564IQ4T  
TSX564IPT  
QFN16 3 x 3  
TSSOP14  
SOT23-5  
MiniSO8  
TSX564I  
K116  
TSX561IYLT  
TSX562IYST  
TSX564IYPT  
TSX561AILT  
TSX562AIST  
TSX564AIPT  
TSX561AIYLT  
TSX562AIYST  
TSX564AIYPT  
-40 to 125 °C  
automotive grade(1)  
Tape and reel  
TSSOP14  
SOT23-5  
MiniSO8  
TSX564IY  
K117  
-40 to 125 °C  
TSSOP14  
SOT23-5  
MiniSO8  
TSX564AI  
K118  
-40 to 125 °C  
automotive grade(1)  
TSSOP14  
TSX564AIY  
1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC  
Q001 and Q 002 or equivalent are ongoing.  
DocID023274 Rev 3  
25/27  
 
 
Revision history  
TSX56x, TSX56xA  
7
Revision history  
Table 13. Document revision history  
Changes  
Date  
Revision  
06-Jun-2012  
1
Initial release.  
Added TSX562, TSX564, TSX562A, and TSX564A devices.  
Updated Features, Description, Figure 1, Table 1 (added DFN8,  
MiniSO8, QFN16, and TSSOP14 package).  
Updated Table 1 (updated ESD MM values).  
18-Sep-2012  
2
Updated Table 4 and Table 5 (added footnotes), Section 5 (added  
Figure 24 to Figure 27 and Table 8 to Table 11), Table 12 (added dual  
and quad devices).  
Minor corrections throughout document.  
Replaced the silhouette, pinout, package diagram, and mechanical  
data of the DFN8 2x2 and QFN16 3x3 packages.  
Added Benefits and Related products.  
Table 1: updated Rthja values and added Rthjc values for DFN8 2x2 and  
QFN16 3x3.  
23-May-2013  
3
Updated Section 4.3, Section 4.4, and Section 4.6  
Replaced Figure 23: SOT23-5 package mechanical drawing and  
Table 7: SOT23-5 package mechanical data.  
26/27  
DocID023274 Rev 3  
TSX56x, TSX56xA  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE  
IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH  
PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR  
ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED  
FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN  
WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE,  
AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS.  
PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE  
CORRESPONDING GOVERNMENTAL AGENCY.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2013 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
DocID023274 Rev 3  
27/27  

相关型号:

TSX564IPT

Micropower, wide bandwidth (900 kHz), 16 V CMOS operational amplifiers
STMICROELECTR

TSX564IQ4T

Micropower, wide bandwidth (900 kHz), 16 V CMOS operational amplifiers
STMICROELECTR

TSX564IYPT

Micropower, wide bandwidth (900 kHz), 16 V CMOS operational amplifiers
STMICROELECTR

TSX56X

Micropower, wide bandwidth (900 kHz), 16 V CMOS operational amplifiers
STMICROELECTR

TSX631

Micropower (45 μA, 200 kHz) rail-to-rail 16 V CMOS operational amplifiers
STMICROELECTR

TSX631A

Micropower (45 μA, 200 kHz) rail-to-rail 16 V CMOS operational amplifiers
STMICROELECTR

TSX632

Micropower (45 μA, 200 kHz) rail-to-rail 16 V CMOS operational amplifiers
STMICROELECTR

TSX632A

Micropower (45 μA, 200 kHz) rail-to-rail 16 V CMOS operational amplifiers
STMICROELECTR

TSX632IYST

Micropower (60uA), rail-to-rail 16V CMOS Op-Amps, dual, GBP 200kHz
STMICROELECTR

TSX634

Micropower (45 μA, 200 kHz) rail-to-rail 16 V CMOS operational amplifiers
STMICROELECTR

TSX634A

Micropower (45 μA, 200 kHz) rail-to-rail 16 V CMOS operational amplifiers
STMICROELECTR

TSX68332MA16

RISC Microcontroller, 32-Bit, CMOS, CQFP132, CERQUAD-132
ATMEL