TSZ181ILT [STMICROELECTRONICS]

Very high accuracy (25 μV) high bandwidth (3 MHz) zero drift 5 V operational amplifiers;
TSZ181ILT
型号: TSZ181ILT
厂家: ST    ST
描述:

Very high accuracy (25 μV) high bandwidth (3 MHz) zero drift 5 V operational amplifiers

文件: 总43页 (文件大小:2332K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TSZ181, TSZ182  
Datasheet  
Very high accuracy (25 µV) high bandwidth (3 MHz) zero drift 5 V operational  
amplifiers  
Features  
Very high accuracy and stability: offset voltage 25 µV max. at 25 °C, 35 µV over  
full temperature range (-40 °C to 125 °C)  
DFN6 1.2x1.3  
(TSZ181)  
SOT23-5  
(TSZ181)  
Rail-to-rail input and output  
Low supply voltage: 2.2 - 5.5 V  
Low power consumption: 1 mA max. at 5 V  
Gain bandwidth product: 3 MHz  
Automotive qualification  
DFN8 2x2  
(TSZ182)  
MiniSO8  
SO8  
(TSZ182)  
(TSZ182)  
Extended temperature range: -40 to 125 °C  
Micropackages: DFN8 2x2, SO8 and MiniSO8  
Benefits:  
Higher accuracy without calibration  
Accuracy virtually unaffected by temperature change  
Applications  
High accuracy signal conditioning  
Automotive current measurement and sensor signal conditioning  
Medical instrumentation  
Description  
Maturity status link  
TSZ181  
The TSZ181, TSZ182 are single and dual operational amplifiers featuring very low  
offset voltages with virtually zero drift versus temperature changes.  
The TSZ181, TSZ182 offer rail-to-rail input and output, excellent speed/power  
consumption ratio, and 3 MHz gain bandwidth product, while consuming just 1 mA at  
5 V. The device also features an ultra-low input bias current.  
TSZ182  
Related products  
TSZ121  
TSZ122  
TSZ124  
TSV711  
TSV731  
These features make the TSZ18x ideal for high-accuracy high-bandwidth sensor  
interfaces.  
For zero drift  
amplifiers with more  
power savings  
(400 kHz for 40 μA)  
For continuous-time  
precision amplifiers  
DS11863 - Rev 5 - August 2018  
For further information contact your local STMicroelectronics sales office.  
www.st.com  
TSZ181, TSZ182  
Package pin connections  
1
Package pin connections  
Figure 1. Pin connections for each package (top view)  
SOT23-5 (TSZ181)  
DFN6 1.2x1.3 (TSZ181)  
MiniSO8 and SO8 (TSZ182)  
DFN8 2x2 (TSZ182)  
1.  
The exposed pad of the DFN8 2x2 can be connected to VCC- or left floating.  
DS11863 - Rev 5  
page 2/43  
 
 
TSZ181, TSZ182  
Absolute maximum ratings and operating conditions  
2
Absolute maximum ratings and operating conditions  
Table 1. Absolute maximum ratings (AMR)  
Symbol  
Parameter  
Value  
Unit  
Supply voltage (1)  
V
6
CC  
Differential input voltage (2)  
V
±V  
V
id  
CC  
Input voltage (3)  
Input current (4)  
V
(V  
) - 0.2 to (V  
) + 0.2  
CC +  
in  
CC -  
I
10  
mA  
°C  
in  
T
Storage temperature  
Maximum junction temperature  
-65 to 150  
150  
57  
stg  
T
j
DFN8 2x2  
DFN6 1.2x1.3  
SOT23-5  
MiniSO8  
232  
250  
190  
125  
4
Thermal resistance junction-to-ambient (5) (6)  
R
thja  
°C/W  
SO8  
HBM: human body model (7)  
CDM: charged device model (8)  
Latch-up immunity  
ESD  
kV  
1.5  
200  
mA  
1. All voltage values, except differential voltage, are with respect to network ground terminal.  
2. The differential voltage is the non-inverting input terminal with respect to the inverting input terminal.  
3. - V must not exceed 6 V, V must not exceed 6 V.  
4. Input current must be limited by a resistor in series with the inputs.  
5. are typical values.  
6. Short-circuits can cause excessive heating and destructive dissipation.  
V
CC  
in  
in  
R
th  
7. Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for all couples of pin  
combinations with other pins floating.  
8. Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to  
ground.  
Table 2. Operating conditions  
Symbol  
Parameter  
Value  
2.2 to 5.5  
Unit  
V
V
Supply voltage  
CC  
V
(V  
) - 0.1 to (V  
) + 0.1  
Common mode input voltage range  
Operating free-air temperature range  
icm  
CC -  
CC +  
T
-40 to 125  
°C  
oper  
DS11863 - Rev 5  
page 3/43  
 
 
 
 
 
 
 
 
 
 
 
TSZ181, TSZ182  
Electrical characteristics  
3
Electrical characteristics  
Table 3. Electrical characteristics at V CC+ = 2.2 V with V CC- = 0 V, Vicm = V CC/2, T = 25 °C, and RL = 10 kΩ connected to  
V CC/2 (unless otherwise specified)  
Symbol  
Parameter  
Conditions  
DC performance  
Min.  
Typ.  
Max.  
Unit  
T = 25 °C  
-40 °C < T< 125 °C  
-40 °C < T< 125 °C  
T = 25 °C  
3.5  
35  
V
Input offset voltage  
µV  
io  
45  
Input offset voltage drift (1)  
ΔV /ΔT  
0.1  
µV/°C  
io  
200 (2)  
300 (2)  
400 (2)  
600 (2)  
30  
60  
I
Input bias current (V = V /2)  
out CC  
ib  
io  
-40 °C < T< 125 °C  
T = 25 °C  
pA  
I
Input offset current (V = V /2)  
out  
CC  
-40 °C < T< 125 °C  
T = 25 °C  
Common-mode rejection ratio, 20 log (ΔV  
ΔV ), V = 0 V to V , V = V /2,  
/
96  
94  
115  
icm  
CMR1  
CMR3  
io  
ic  
CC  
out  
CC  
-40 °C < T< 125 °C  
T = 25 °C  
R > 1 MΩ  
L
Common mode rejection ratio, 20 log (ΔV  
/
102  
100  
120  
icm  
dB  
ΔV ), V = 1.1 V to V , V = V /2,  
io  
ic  
CC  
out  
CC  
-40 °C < T< 125 °C  
R > 1 MΩ  
L
T = 25 °C  
-40 °C < T< 125 °C  
T = 25 °C  
112  
100  
130  
15  
10  
6
Large signal voltage gain, V = 0.5 V to  
out  
A
vd  
(V - 0.5 V)  
cc  
40  
70  
30  
70  
V
High-level output voltage, V = V - V  
OH cc out  
OH  
-40 °C < T< 125 °C  
T = 25 °C  
mV  
mA  
V
Low-level output voltage  
OL  
out  
CC  
-40 °C < T< 125 °C  
T = 25 °C  
4
I
(V = V  
out  
)
CC  
sink  
-40 °C < T< 125 °C  
T = 25 °C  
2.5  
3.5  
2
I
4
I
(V = 0 V)  
out  
source  
-40 °C < T< 125 °C  
T = 25 °C  
0.7  
1
Supply current (per channel, V = V /2,  
out  
CC  
I
R > 1 MΩ)  
L
-40 °C < T< 125 °C  
1.2  
AC performance  
T = 25 °C, R = 10 kΩ,  
L
1.6  
1.2  
2.3  
C = 100 pF  
L
GBP  
Gain bandwidth product  
MHz  
-40 °C < T< 125 °C,  
R = 10 kΩ, C = 100 pF  
L
L
Φ
Phase margin  
Gain margin  
59  
16  
degrees  
dB  
m
R = 10 kΩ, C = 100 pF  
L
L
G
m
T = 25 °C  
3
4.6  
Slew rate (3)  
Settling time  
SR  
V/µs  
ns  
-40 °C < T< 125 °C  
2.5  
t
To 0.1%, V = 0.8 Vpp  
in  
500  
s
DS11863 - Rev 5  
page 4/43  
 
 
TSZ181, TSZ182  
Electrical characteristics  
Symbol  
Parameter  
Conditions  
f = 1 kHz  
Min.  
Typ.  
50  
Max.  
Unit  
e
n
Equivalent input noise voltage density  
nV/√Hz  
f = 10 kHz  
50  
e
Voltage noise  
f = 0.1 to 10 Hz  
f = 1 kHz  
0.6  
120  
60  
µVpp  
dB  
n-pp  
C
Channel separation  
s
T = 25 °C  
Initialization time, G = 100 (4)  
t
µs  
init  
-40 °C < T< 125 °C  
100  
1. See Section 5.5 Input offset voltage drift over temperature. Input offset measurements are performed on  
x100 gain configuration. The amplifiers and the gain setting resistors are at the same temperature.  
2. Guaranteed by design.  
3. Slew rate value is calculated as the average between positive and negative slew rates.  
4. Initialization time is defined as the delay between the moment when supply voltage exceeds 2.2 V and  
output voltage stabilization  
Table 4. Electrical characteristics at VCC+ = 3.3 V with VCC- = 0 V, Vicm = VCC/2, T = 25 °C, and RL = 10 kΩ connected to  
VCC/2 (unless otherwise specified)  
Symbol  
Parameter  
Conditions  
DC performance  
Min.  
Typ.  
Max.  
Unit  
T = 25 °C  
-40 °C < T< 125 °C  
-40 °C < T< 125 °C  
T = 25 °C  
2
30  
V
Input offset voltage  
µV  
io  
40  
Input offset voltage drift (1)  
ΔV /ΔT  
0.1  
µV/°C  
io  
200 (2)  
300 (2)  
400 (2)  
600 (2)  
30  
60  
I
Input bias current (V = V /2)  
out CC  
ib  
io  
-40 °C < T< 125 °C  
T = 25 °C  
pA  
I
Input offset current (V = V /2)  
out  
CC  
-40 °C < T< 125 °C  
V
= 0 V to V  
T = 25 °C  
= 0 V to V  
,
ic  
ic  
CC  
104  
102  
106  
106  
120  
132  
Common mode rejection ratio, 20 log (ΔV  
/
/
icm  
CMR1  
CMR2  
ΔV ), V = V /2, R > 1 MΩ  
io  
out  
CC  
L
V
,
CC  
-40 °C < T< 125 °C  
V
= 0 V to V - 1.8 V,  
ic  
CC  
dB  
T = 25 °C  
Common mode rejection ratio, 20 log (ΔV  
ΔV ), V = V /2, R > 1 MΩ  
icm  
io  
out  
CC  
L
V
= 0 V to V - 2 V,  
CC  
ic  
-40 °C < T< 125 °C  
T = 25 °C  
120  
110  
138  
16  
Large signal voltage gain, V = 0.5 V to  
out  
A
vd  
(V - 0.5 V)  
CC  
-40 °C < T< 125 °C  
T = 25 °C  
40  
70  
30  
70  
V
High-level output voltage, V = V - V  
OH cc out  
OH  
-40 °C < T< 125 °C  
T = 25 °C  
mV  
11  
V
Low-level output voltage  
OL  
-40 °C < T< 125 °C  
DS11863 - Rev 5  
page 5/43  
 
 
 
 
 
TSZ181, TSZ182  
Electrical characteristics  
Symbol  
Parameter  
(V = V )  
CC  
Conditions  
T = 25 °C  
Min.  
10  
7.5  
6
Typ.  
Max.  
Unit  
15  
I
sink  
out  
-40 °C < T< 125 °C  
T = 25 °C  
I
mA  
out  
11  
I
(V = 0 V)  
out  
source  
-40 °C < T< 125 °C  
T = 25 °C  
4
0.7  
1
Supply current (per channel, V = V /2,  
out  
CC  
I
mA  
CC  
R > 1 MΩ)  
L
-40 °C < T< 125 °C  
1.2  
AC performance  
T = 25 °C, R = 10 kΩ,  
L
2
2.8  
C = 100 pF  
L
GBP  
Gain bandwidth product  
MHz  
-40 °C < T< 125 °C,  
1.6  
R = 10 kΩ, C = 100 pF  
L
L
Φ
Phase margin  
Gain margin  
56  
15  
degrees  
dB  
m
R = 10 kΩ, C = 100 pF  
L
L
G
m
T = 25 °C  
2.6  
2.1  
4.5  
Slew rate (3)  
Settling time  
SR  
V/µs  
ns  
-40 °C < T< 125 °C  
t
To 0.1%, V = 1.2 Vpp  
550  
40  
s
in  
f = 1 kHz  
f = 10 kHz  
e
n
Equivalent input noise voltage density  
nV/√Hz  
40  
e
Voltage noise  
f = 0.1 to 10 Hz  
f = 1 kHz  
0.5  
120  
60  
µVpp  
dB  
n-pp  
C
Channel separation  
s
T = 25 °C  
Initialization time, G = 100 (4)  
t
µs  
init  
-40 °C < T< 125 °C  
100  
1. See Section 5.5 Input offset voltage drift over temperature. Input offset measurements are performed on  
x100 gain configuration. The amplifiers and the gain setting resistors are at the same temperature.  
2. Guaranteed by design.  
3. Slew rate value is calculated as the average between positive and negative slew rates.  
4. Initialization time is defined as the delay between the moment when supply voltage exceeds 2.2 V and  
output voltage stabilization  
Table 5. Electrical characteristics at VCC+ = 5 V with VCC- = 0 V, Vicm = VCC/2, T = 25 °C, and RL = 10 kΩ connected to  
VCC/2 (unless otherwise specified)  
Symbol  
Parameter  
Conditions  
DC performance  
Min.  
Typ.  
Max.  
Unit  
T = 25 °C  
-40 °C < T< 125 °C  
-40 °C < T< 125 °C  
T = 25 °C  
1
25  
V
Input offset voltage  
µV  
io  
35  
Input offset voltage drift (1)  
ΔV /ΔT  
0.1  
µV/°C  
io  
200 (2)  
300 (2)  
400 (2)  
600 (2)  
30  
60  
I
Input bias current (V = V /2)  
out CC/  
ib  
io  
-40 °C < T< 125 °C  
T = 25 °C  
pA  
I
Input offset current (V = V /2)  
out  
CC  
-40 °C < T< 125 °C  
DS11863 - Rev 5  
page 6/43  
 
 
 
 
 
TSZ181, TSZ182  
Electrical characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
V
= 0 V to V  
T = 25 °C  
ic  
CC ,  
108  
126  
Common mode rejection ratio, 20 log (ΔV  
/
/
icm  
CMR1  
ΔV ), V = V /2, R > 1 MΩ  
io  
out  
CC  
L
V
= 0 V to V  
CC  
ic  
108  
112  
112  
-40 °C < T< 125 °C  
V
= 0 V to V - 1.8 V,  
ic  
CC  
136  
T = 25 °C  
Common mode rejection ratio, 20 log (ΔV  
ΔV ), V = V /2, R > 1 MΩ  
icm  
CMR2  
SVR1  
io  
out  
CC  
L
V
= 0 V to V - 2 V,  
CC  
ic  
-40 °C < T< 125 °C  
T = 25 °C  
dB  
105  
104  
120  
110  
123  
144  
Supply voltage rejection ratio, 20 log (ΔV  
/
CC  
ΔV ), V = 2.2 to 5.5 V, V = 0 V, R > 1 MΩ  
io  
CC  
ic  
L
-40 °C < T< 125 °C  
T = 25 °C  
Large signal voltage gain, V = 0.5 V to  
out  
A
vd  
(V - 0.5 V)  
cc  
-40 °C < T< 125 °C  
= 100 mVp, f = 400 MHz  
V
52  
52  
72  
85  
18  
RF  
V
= 100 mV , f = 900 MHz  
RF  
p
EMI rejection ratio, EMIRR = -20 log (V  
/
EMIRR  
(3)  
RFpeak  
ΔV )  
io  
V
= 100 mV , f = 1800 MHz  
RF  
p
V
= 100 mV ,f = 2400 MHz  
RF  
p
T = 25 °C  
-40 °C < T< 125 °C  
T = 25 °C  
40  
70  
30  
70  
V
High-level output voltage, V = V - V  
OH cc out  
OH  
mV  
mA  
13  
29  
25  
0.8  
V
Low-level output voltage  
OL  
out  
CC  
-40 °C < T< 125 °C  
T = 25 °C  
20  
15  
15  
10  
I
(V = V  
out  
)
CC  
sink  
-40 °C < T< 125 °C  
T = 25 °C  
I
I
V
= 0 V)  
source ( out  
-40 °C < T< 125 °C  
T = 25 °C  
1
Supply current (per channel, V = V /2,  
out  
CC  
I
R > 1 MΩ)  
L
-40 °C < T< 125 °C  
1.2  
AC performance  
T = 25 °C, R = 10 kΩ,  
L
2
3
C = 100 pF  
L
GBP  
Gain bandwidth product  
MHz  
-40 °C < T< 125 °C, R = 10 kΩ,  
L
1.6  
C = 100 pF  
L
Φ
Phase margin  
Gain margin  
56  
15  
degrees  
dB  
m
R = 10 kΩ, C = 100 pF  
L
L
G
m
T = 25 °C  
2.9  
2.4  
4.7  
Slew rate (4)  
Settling time  
SR  
V/µs  
-40 °C < T< 125 °C  
To 0.1 %, V = 1.5 Vpp  
600  
4
ns  
µs  
in  
t
s
To 0.01 %, V = 1 Vpp  
in  
f = 1 kHz  
f = 10 kHz  
37  
37  
0.4  
e
Equivalent input noise voltage  
Voltage noise  
nV/√Hz  
µVpp  
n
e
f = 0.1 to 10 Hz  
n-pp  
DS11863 - Rev 5  
page 7/43  
TSZ181, TSZ182  
Electrical characteristics  
Symbol  
Parameter  
Conditions  
f = 100 Hz  
Min.  
Typ.  
135  
60  
Max.  
Unit  
C
Channel separation  
dB  
s
T = 25 °C  
Initialization time, G = 100 (5)  
t
µs  
init  
-40 °C < T< 125 °C  
100  
1. See Section 5.5 Input offset voltage drift over temperature. Input offset measurements are performed on  
x100 gain configuration. The amplifiers and the gain setting resistors are at the same temperature.  
2. Guaranteed by design  
3. Tested on the MiniSO8 package, RF injection on the IN- pin  
4. Slew rate value is calculated as the average between positive and negative slew rates  
5. Initialization time is defined as the delay between the moment when supply voltage exceeds 2.2 V and  
output voltage stabilization  
DS11863 - Rev 5  
page 8/43  
 
 
 
 
 
TSZ181, TSZ182  
Electrical characteristic curves  
4
Electrical characteristic curves  
Figure 3. Input offset voltage distribution at VCC = 5 V  
Figure 2. Supply current vs. supply voltage  
Figure 4. Input offset voltage distribution at VCC = 3.3 V  
Figure 5. Input offset voltage distribution at VCC = 2.2 V  
Figure 6. Input offset voltage distribution at VCC = 5 V,  
T = 125 °C  
Figure 7. Input offset voltage distribution at VCC = 5 V,  
T = -40 °C  
DS11863 - Rev 5  
page 9/43  
 
 
 
 
 
TSZ181, TSZ182  
Electrical characteristic curves  
Figure 8. Input offset voltage distribution at VCC = 2.2 V,  
T = 125 °C  
Figure 9. Input offset voltage distribution at VCC = 2.2 V,  
T = -40 °C  
Figure 11. Input offset voltage vs. input common-mode at  
VCC = 5.5 V  
Figure 10. Input offset voltage vs. supply voltage  
Figure 12. Input offset voltage vs. input common-mode at Figure 13. Input offset voltage vs. input common-mode at  
VCC = 3.3 V VCC = 2.2 V  
DS11863 - Rev 5  
page 10/43  
 
 
 
 
TSZ181, TSZ182  
Electrical characteristic curves  
Figure 15. VOH vs. supply voltage  
Figure 14. Input offset voltage vs. temperature  
Figure 16. VOL vs. supply voltage  
Figure 17. Output current vs. output voltage at VCC = 5.5 V  
Figure 19. Input bias current vs. common-mode at  
VCC = 5 V  
Figure 18. Output current vs. output voltage at VCC = 2.2 V  
Vcc=5V  
T=25°C  
DS11863 - Rev 5  
page 11/43  
 
 
 
 
 
TSZ181, TSZ182  
Electrical characteristic curves  
Figure 20. Input bias current vs. temperature at VCC = 5 V  
Figure 21. Output rail linearity  
Vcc = 5V  
Vicm = Vcc/2  
Figure 22. Bode diagram at VCC = 5.5 V  
Figure 23. Bode diagram at VCC = 2.2 V  
Figure 24. Bode diagram at VCC = 3.3 V  
Figure 25. Open loop gain vs. frequency  
DS11863 - Rev 5  
page 12/43  
 
 
 
 
 
TSZ181, TSZ182  
Electrical characteristic curves  
Figure 26. Positive slew rate vs. supply voltage  
Figure 27. Negative slew rate vs. supply voltage  
Figure 28. Noise 0.1 - 10 Hz vs. time  
Figure 29. Noise vs. frequency  
Figure 30. Noise vs. frequency and temperature  
Figure 31. Output overshoot vs. load capacitance  
DS11863 - Rev 5  
page 13/43  
 
 
 
TSZ181, TSZ182  
Electrical characteristic curves  
Figure 32. Small signal VCC = 5 V  
Figure 33. Small signal VCC = 2.2 V  
Figure 34. Large signal VCC = 5 V  
Figure 35. Large signal VCC = 2.2 V  
Figure 36. Negative overvoltage recovery VCC = 2.2 V  
Figure 37. Positive overvoltage recovery VCC = 2.2 V  
DS11863 - Rev 5  
page 14/43  
 
 
 
TSZ181, TSZ182  
Electrical characteristic curves  
Figure 38. Output impedance vs. frequency  
Figure 40. Settling time negative step (2 V to 0 V)  
Figure 42. Settling time negative step (0.8 V to 0 V)  
Figure 39. Settling time positive step (-2 V to 0 V)  
Figure 41. Settling time positive step (-0.8 V to 0 V)  
Figure 43. Maximum output voltage vs. frequency  
DS11863 - Rev 5  
page 15/43  
 
 
 
TSZ181, TSZ182  
Electrical characteristic curves  
Figure 44. Crosstalk vs. frequency  
Figure 45. PSRR vs. frequency  
DS11863 - Rev 5  
page 16/43  
 
TSZ181, TSZ182  
Application information  
5
Application information  
5.1  
Operation theory  
The TSZ18x is a high precision CMOS device. It can achieve a low offset drift and no 1/f noise thanks to its  
chopper architecture. Chopper-stabilized amps constantly correct low-frequency errors across the inputs of the  
amplifier.  
Chopper-stabilized amplifiers can be explained with respect to:  
Time domain  
Frequency domain  
5.1.1  
Time domain  
The basis of the chopper amplifier is realized in two steps. These steps are synchronized thanks to a clock  
running at 2.4 MHz.  
Figure 46. Block diagram in the time domain (step 1)  
Chop 1  
Chop 2  
V
inp  
V
A1(f)  
A2(f)  
Filter  
out  
V
inn  
Figure 47. Block diagram in the time domain (step 2)  
Chop 1  
Chop 2  
V
inp  
V
A1(f)  
out  
A2(f)  
Filter  
V
inn  
Figure 46. Block diagram in the time domain (step 1) shows step 1, the first clock cycle, where Vio is amplified in  
the normal way.  
Figure 47. Block diagram in the time domain (step 2) shows step 2, the second clock cycle, where Chop1 and  
Chop2 swap paths. At this time, the Vio is amplified in a reverse way as compared to step 1.  
At the end of these two steps, the average Vio is close to zero.  
The A2(f) amplifier has a small impact on the Vio because the Vio is expressed as the input offset and is  
consequently divided by A1(f).  
In the time domain, the offset part of the output signal before filtering is shown in Figure 48. Vio cancellation  
principle.  
DS11863 - Rev 5  
page 17/43  
 
 
 
 
 
TSZ181, TSZ182  
Operating voltages  
Figure 48. Vio cancellation principle  
Step 1 S tep 1  
Step 1  
V
io  
Time  
V
io  
Step 2  
Step 2  
S tep 2  
The low pass filter averages the output value resulting in the cancellation of the Vio offset.  
The 1/f noise can be considered as an offset in low frequency and it is canceled like the Vio, thanks to the chopper  
technique.  
5.1.2  
Frequency domain  
The frequency domain gives a more accurate vision of chopper-stabilized amplifier architecture.  
Figure 49. Block diagram in the frequency domain  
V
inn  
Chop1  
Chop2  
V
Filter  
A(f)  
out  
A(f)  
V
inp  
V
+ V  
n
os  
1
2
3
4
The modulation technique transposes the signal to a higher frequency where there is no 1/f noise, and  
demodulate it back after amplification.  
1.  
2.  
3.  
According to Figure 49. Block diagram in the frequency domain, the input signal Vin is modulated once  
(Chop1) so all the input signal is transposed to the high frequency domain.  
The amplifier adds its own error (Vio (output offset voltage) + the noise Vn (1/f noise)) to this modulated  
signal.  
This signal is then demodulated (Chop2), but since the noise and the offset are modulated only once, they  
are transposed to the high frequency, leaving the output signal of the amplifier without any offset and low  
frequency noise. Consequently, the input signal is amplified with a very low offset and 1/f noise.  
4.  
To get rid of the high frequency part of the output signal (which is useless) a low pass filter is implemented.  
To further suppress the remaining ripple down to a desired level, another low pass filter may be added externally  
on the output of the TSZ18x.  
5.2  
Operating voltages  
The TSZ18x device can operate from 2.2 to 5.5 V. The parameters are fully specified for 2.2 V, 3.3 V, and 5 V  
power supplies. However, the parameters are very stable in the full VCC range and several characterization  
curves show the TSZ18x device characteristics at 2.2 V and 5.5 V. Additionally, the main specifications are  
guaranteed in extended temperature ranges from -40 to 125 °C.  
5.3  
Input pin voltage ranges  
The TSZ18x device has internal ESD diode protection on the inputs. These diodes are connected between the  
input and each supply rail to protect the input MOSFETs from electrical discharge.  
DS11863 - Rev 5  
page 18/43  
 
 
 
 
 
TSZ181, TSZ182  
Rail-to-rail input/output  
If the input pin voltage exceeds the power supply by 0.5 V, the ESD diodes become conductive and excessive  
current can flow through them. Without limitation this over current can damage the device.  
In this case, it is important to limit the current to 10 mA, by adding resistance on the input pin, as described in  
Figure 50. Input current limitation.  
Figure 50. Input current limitation  
V
+
CC  
Vin  
R
V
-
CC  
5.4  
5.5  
Rail-to-rail input/output  
The TSZ18x has a rail-to-rail input, and the input common mode range is extended from (VCC -) - 0.1 V to (VCC+  
+ 0.1 V.  
)
The operational amplifier output levels can go close to the rails: to a maximum of 40 mV above and below the rail  
when connected to a 10 kΩ resistive load to VCC/2.  
Input offset voltage drift over temperature  
The maximum input voltage drift variation over temperature is defined as the offset variation related to the offset  
value measured at 25 °C. The operational amplifier is one of the main circuits of the signal conditioning chain, and  
the amplifier input offset is a major contributor to the chain accuracy. The signal chain accuracy at 25 °C can be  
compensated during production at application level. The maximum input voltage drift over temperature enables  
the system designer to anticipate the effect of temperature variations.  
The maximum input voltage drift over temperature is computed using Equation 1.  
Equation 1  
Vio  
T  
°C  
Vio(T) Vio(25  
T 25 °C  
)
= max  
Where T = -40 °C and 125 °C.  
The TSZ18x datasheet maximum value is guaranteed by measurements on a representative sample size  
ensuring a Cpk (process capability index) greater than 1.3.  
5.6  
Capacitive load  
Driving large capacitive loads can cause stability problems. Increasing the load capacitance produces gain  
peaking in the frequency response, with overshoot and ringing in the step response. It is usually considered that  
with a gain peaking higher than 2.3 dB an op amp might become unstable.  
Generally, the unity gain configuration is the worst case for stability and the ability to drive large capacitive loads.  
Figure 51. Stability criteria with a serial resistor at VCC = 5 V, Figure 52. Stability criteria with a serial resistor at  
VCC = 3.3 V, and Figure 53. Stability criteria with a serial resistor at VCC = 2.2 V show the serial resistors that  
must be added to the output, to make a system stable. Figure 54. Test configuration for Riso shows the test  
configuration using an isolation resistor, Riso.  
DS11863 - Rev 5  
page 19/43  
 
 
 
 
 
TSZ181, TSZ182  
Capacitive load  
Figure 51. Stability criteria with a serial resistor at VCC = 5 V  
Figure 52. Stability criteria with a serial resistor at VCC = 3.3 V  
Figure 53. Stability criteria with a serial resistor at VCC = 2.2 V  
DS11863 - Rev 5  
page 20/43  
 
 
 
TSZ181, TSZ182  
PCB layout recommendations  
Figure 54. Test configuration for Riso  
+V  
CC  
Riso  
C
-
V
OUT  
V
IN  
+
10 kΩ  
load  
-V  
CC  
Note that the resistance Riso is in series with Rload and thus acts as a voltage divider, and reduces the output  
swing a little. Thanks to the natural good stability of TSZ18x, the Riso needed to keep the system stable when the  
capacitive load exceeds 200pF is lower than 50 Ω (VCC = 5 V), and so the error introduced is generally negligible.  
The Riso also modifies the open loop gain of the circuit, and tends to improve the phase margin as described in  
Table 6. Riso impact on stability.  
Table 6. Riso impact on stability  
Capacitive load  
100 pF  
1 nF  
10 nF  
22  
100 nF  
1 µF  
Riso (Ω)  
0
100  
15  
47  
23  
46  
100  
9
47  
8
8
13  
10  
58  
10  
12  
56  
6
8
Measured overshoot (%)  
Estimated phase margin (°)  
20.9  
47  
16  
52  
21  
47  
53  
59  
61  
61  
5.7  
PCB layout recommendations  
Particular attention must be paid to the layout of the PCB tracks connected to the amplifier, load and power  
supply. It is good practice to use short and wide PCB traces to minimize voltage drops and parasitic inductance.  
To minimize parasitic impedance over the entire surface, a multi-via technique that connects the bottom and top  
layer ground planes together in many locations is often used.  
The copper traces that connect the output pins to the load and supply pins should be as wide as possible to  
minimize trace resistance.  
A ground plane generally helps to reduce EMI, which is why it is generally recommended to use a multilayer PCB  
and use the ground plane as a shield to protect the internal track. In this case, pay attention to separate the digital  
from the analog ground and avoid any ground loop.  
Place external components as close as possible to the op amp and keep the gain resistances, Rf and Rg, close to  
the inverting pin to minimize parasitic capacitances.  
5.8  
Optimized application recommendation  
The TSZ18x is based on a chopper architecture. As the device includes internal switching circuitry, it is strongly  
recommended to place a 0.1 µF capacitor as close as possible to the supply pins.  
A good decoupling has several advantages for an application. First, it helps to reduce electromagnetic  
interference. Due to the modulation of the chopper, the decoupling capacitance also helps to reject the small  
ripple that may appear on the output.  
The TSZ18x has been optimized for use with 10 kΩ in the feedback loop. With this, or a higher value resistance,  
this device offers the best performance.  
DS11863 - Rev 5  
page 21/43  
 
 
 
 
 
TSZ181, TSZ182  
EMI rejection ration (EMIRR)  
5.9  
EMI rejection ration (EMIRR)  
The electromagnetic interference (EMI) rejection ratio, or EMIRR, describes the EMI immunity of operational  
amplifiers. An adverse effect that is common to many op amps is a change in the offset voltage as a result of RF  
signal rectification.  
The TSZ18x has been specially designed to minimize susceptibility to EMIRR and show an extremely good  
sensitivity. Figure 55. EMIRR on IN+ pin shows the EMIRR IN+, Figure 56. EMIRR on IN- pin shows the EMIRR  
IN- of the TSZ18x measured from 10 MHz up to 2.4 GHz.  
Figure 55. EMIRR on IN+ pin  
Figure 56. EMIRR on IN- pin  
5.10  
1/f noise  
1/f noise, also known as pink noise or flicker noise, is caused by defects, at the atomic level, in semiconductor  
devices. The noise is a non-periodic signal and it cannot be calibrated. So for an application requiring precision, it  
is extremely important to take this noise into account.  
1/f noise is a major noise contributor at low frequencies and causes a significant output voltage offset when  
amplified by the noise gain of the circuit. But, the TSZ18x, thanks to its chopper architecture, rejects 1/f noise and  
thus makes this device an excellent choice for DC high precision applications.  
As shown in Figure 28. Noise 0.1 - 10 Hz vs. time, 0.1 Hz to 10 Hz amplifier voltage noise is only 400 nVpp for a  
VCC = 5 V. Figure 29. Noise vs. frequency and Figure 30. Noise vs. frequency and temperature show the voltage  
noise density of the amplifier with no 1/f noise on a large bandwith. Figure 57. Noise vs frequency between 0.1  
and 10 Hz exhibiting no 1/f noise below depicts noise vs frequency between 0.1 and 10 Hz exhibiting no 1/f noise.  
DS11863 - Rev 5  
page 22/43  
 
 
 
TSZ181, TSZ182  
Overload recovery  
Figure 57. Noise vs frequency between 0.1 and 10 Hz exhibiting no 1/f noise  
5.11  
Overload recovery  
Overload recovery is defined as the time required for the op amp output to recover from a saturated state to a  
linear state.  
The saturation state occurs when the output voltage gets very close to either rail in the application. It can happen  
due to an excessive input voltage or when the gain setting is too high.  
When the output of the TSZ18x enters in saturation state it needs 10 µs to get back to a linear state as shown in  
Figure 58. Negative overvoltage recovery VCC = 5 V and Figure 59. Positive overvoltage recovery VCC = 5 V.  
Figure 36. Negative overvoltage recovery VCC = 2.2 V and Figure 37. Positive overvoltage recovery VCC = 2.2 V  
show the overvoltage recovery for a VCC = 2.2 V.  
Figure 58. Negative overvoltage recovery VCC = 5 V  
Figure 59. Positive overvoltage recovery VCC = 5 V  
5.12  
Phase reversal protection  
Some op amps can show a phase reversal when the common-mode voltage exceeds the VCC range.  
Phase reversal is a specific behavior of an op amp where its output reacts as if the inputs were inverted when at  
least one input is out of the specified common-mode voltage.  
The TSZ18x has been carefully designed to prevent any output phase reversal. The TSZ18x is a rail-to-rail input  
op amp, therefore, the common-mode range can extend up to the rails. If the input signal goes above the rail it  
does not cause any inversion of the output signal as shown in Figure 60. No phase reversal.  
If, in the application, the operating common-mode voltage is exceeded please read Section 5.3 Input pin voltage  
ranges.  
DS11863 - Rev 5  
page 23/43  
 
 
 
 
TSZ181, TSZ182  
Open loop gain close to the rail  
Figure 60. No phase reversal  
5.13  
Open loop gain close to the rail  
One of the key parameters of current measurement in low-side applications is precision. Moreover, it is generally  
interesting to be able to make a measurement when there is no current through the shunt resistance. But, when  
the output voltage gets close the rail some internal transistors saturate resulting in a loss of open loop gain.  
Therefore, the output voltage can be as high as several mV while it is expected to be close to 0 V.  
The TSZ18x has been designed to keep a high gain even when the op amp output is very close to the rail, to  
ensure good accuracy at low current.  
Figure 61. Gain vs. output voltage, VCC = 5 V, RI = 10 kΩ to GND shows the open loop gain of the TSZ18x vs.  
output voltage. A single power supply of 5 V and a common-mode voltage of 0 V is used, with a 10 kΩ resistor  
connected to GND.  
Figure 61. Gain vs. output voltage, VCC = 5 V, RI = 10 kΩ to GND  
5.14  
Application examples  
5.14.1  
Measuring gas concentration using the NDIR principle (thermopile)  
A thermopile is a serial interconnected array of thermocouples. Based on the Seebeck principle, a thermocouple  
is able to deliver an output voltage which depends on the temperature difference between a reference junction  
and an active junction.  
An NDIR sensor (non dispersive infrared) is generally composed of an infrared (IR) source, an optical cavity, a  
dual channel detector, and an internal thermistor. Both channels are made with a thermopile. One channel is  
considered as a reference and the other is considered as the active channel.  
DS11863 - Rev 5  
page 24/43  
 
 
 
 
 
TSZ181, TSZ182  
Application examples  
Certain gases absorb IR radiation at a specific wavelength. Each channel has a specific wavelength filter. The  
active channel has a filter centered on gas absorption while the reference channel has a filter on another  
wavelength which is still in the IR range.  
When a gas enters the optical cavity, the radiation hitting the active channel decreases, whereas it remains the  
same on the reference channel.  
The difference between the reference and active channel gives the concentration of gas present in the optical  
cavity.  
As the thermopile delivers extremely low voltages (hundreds of µV to several mV) the output signal must be  
amplified with a high gain and a very low offset in order to minimize DC errors.  
Moreover, the drift of Vio depending on temperature must be as low as possible not to impact the measurement  
once the calibration has been made.  
An NDIR sensor generally works at low frequency and the noise of the amplifiers must be as low as possible  
(0.1-10 Hz en-pp = 0.4 µVpp).  
Thanks to its chopper architecture, the TSZ18x combines all these specifications, particularly in having a ΔVio/Δt  
of 0.1 µV/°C, no 1/f noise in low frequency, and a white noise of 37 nV/√Hz.  
Figure 62. Principle schematic shows an NDIR gas sensing schematic where the active and reference channels  
are pre-amplified before treatment by an ADC thanks to the TSZ18x.  
A Vref voltage (in hundreds of mV) can be used to ensure the amplifiers are not saturated when the signal is close  
to the low rail. A gain of 1000 is used to allow amplification of the signal coming from the NDIR sensor (3 mV).  
Figure 62. Principle schematic  
100 nF  
10 kΩ  
Vref  
Vcc  
10 Ω  
-
VL  
TSZ182_a  
ADC1  
ADC2  
+
10 nF  
10 nF  
Ref.ch  
Act. ch  
+
TSZ182_b  
-
10 Ω  
ADC3  
10 kΩ  
100 nF  
5.14.2  
Precision instrumentation amplifier  
The instrumentation amplifier uses three op amps. The circuit, shown in Figure 63. Precision instrumentation  
amplifier schematic, exhibits high input impedance, so that the source impedance of the connected sensor has no  
impact on the amplification.  
DS11863 - Rev 5  
page 25/43  
 
 
TSZ181, TSZ182  
Application examples  
Figure 63. Precision instrumentation amplifier schematic  
TSZ182  
R2  
R4  
V1  
+
-
Rf  
Rf  
TSZ181  
-
Rg  
+
V
out  
R1  
R3  
-
+
V2  
TSZ182  
The gain is set by tuning the Rg resistor. To have the best performance, it is suggested to have R1 = R2 = R3 =  
R4. The output is given by Equation 2.  
Equation 2  
The matching of R1, R2 and R3, R4 is important to ensure a good common mode rejection ratio (CMR).  
5.14.3  
Low-side current sensing  
Power management mechanisms are found in most electronic systems. Current sensing is useful for protecting  
applications. The low-side current sensing method consists of placing a sense resistor between the load and the  
circuit ground. The resulting voltage drop is amplified using the TSZ181 (see Figure 64. Low-side current sensing  
schematic).  
Figure 64. Low-side current sensing schematic  
C1  
Rg1  
Rg2  
Rf1  
I
5 V  
+
I
n
-
R
shunt  
V
out  
+
-
I
p
TSZ181  
Rf2  
Vout can be expressed as follows:  
Equation 3  
Rg2  
Rg2 + Rf2  
Rg2 Rf2  
Rf1  
Rf1  
Rf1  
×
Vout = Rshun t I 1 –  
1 +  
+ Ip  
1 +  
– ln × Rf1 – Vio 1 +  
×
×
Rg1  
Rg2  
R
Rg1  
Rg1  
+
f2  
Assuming that Rf2 = Rf1 = Rf and Rg2 = Rg1 = Rg, Equation 3 can be simplified as follows:  
Equation 4  
Rf  
Rf  
Vout = Rshunt × I  
Vio 1 +  
+ Rf × Iio  
Rg  
Rg  
DS11863 - Rev 5  
page 26/43  
 
 
 
 
TSZ181, TSZ182  
Application examples  
The main advantage of using the chopper of the TSZ18x for a low-side current sensing, is that the errors due to  
Vio and Iio are extremely low and may be neglected.  
Therefore, for the same accuracy, the shunt resistor can be chosen with a lower value, resulting in lower power  
dissipation, lower drop in the ground path, and lower cost.  
Particular attention must be paid to the matching and precision of Rg1, Rg2, Rf1, and Rf2, to maximize the  
accuracy of the measurement.  
DS11863 - Rev 5  
page 27/43  
TSZ181, TSZ182  
Package information  
6
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK®  
packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions  
and product status are available at: www.st.com. ECOPACK® is an ST trademark.  
DS11863 - Rev 5  
page 28/43  
 
 
TSZ181, TSZ182  
DFN6 1.2 x 1.3 package information  
6.1  
DFN6 1.2 x 1.3 package information  
Figure 65. DFN6 1.2 x 1.3 package outline  
BOTTOM VIEW  
e
b
PIN#1 ID  
L3  
L
SIDE VIEW  
C
SEATING  
PLANE  
A1  
A
8
0.05 C  
TOP VIEW  
D
E
PIN 1  
DS11863 - Rev 5  
page 29/43  
 
TSZ181, TSZ182  
DFN6 1.2 x 1.3 package information  
Table 7. DFN6 1.2 x 1.3 mechanical data  
Dimensions  
Millimeters  
Ref  
Inches  
Min.  
0.31  
0.00  
0.15  
Typ.  
0.38  
0.02  
0.18  
0.05  
1.20  
1.30  
0.40  
0.525  
0.425  
Max.  
0.40  
0.05  
0.25  
Min.  
0.012  
0.000  
0.006  
Typ.  
Max.  
0.016  
0.002  
0.010  
A
A1  
b
0.015  
0.001  
0.007  
0.002  
0.047  
0.051  
0.016  
0.021  
0.017  
c
D
E
e
L
0.475  
0.375  
0.575  
0.475  
0.019  
0.015  
0.023  
0.019  
L3  
Figure 66. DFN6 1.2 x 1.3 recommended footprint  
0.40  
0.25  
3
1
1.20  
0.475  
4
6
DS11863 - Rev 5  
page 30/43  
 
 
 
TSZ181, TSZ182  
DFN8 2 x 2 package information  
6.2  
DFN8 2 x 2 package information  
Figure 67. DFN8 2 x 2 package outline  
Table 8. DFN8 2 x 2 mechanical data  
Dimensions  
Millimeters  
Ref.  
Inches  
Min.  
Typ.  
Max.  
0.60  
0.05  
Min.  
Typ.  
Max.  
0.024  
0.002  
A
A1  
A3  
b
0.51  
0.55  
0.020  
0.022  
0.15  
0.25  
2.00  
1.60  
2.00  
0.90  
0.50  
0.325  
0.006  
0.010  
0.079  
0.063  
0.079  
0.035  
0.020  
0.013  
0.18  
1.85  
1.45  
1.85  
0.75  
0.30  
2.15  
1.70  
2.15  
1.00  
0.007  
0.073  
0.057  
0.073  
0.030  
0.012  
0.085  
0.067  
0.085  
0.039  
D
D2  
E
E2  
e
L
0.225  
0.425  
0.08  
0.009  
0.017  
0.003  
ddd  
DS11863 - Rev 5  
page 31/43  
 
 
TSZ181, TSZ182  
MiniSO8 package information  
Figure 68. DFN8 2 x 2 recommended footprint  
6.3  
MiniSO8 package information  
Figure 69. MiniSO8 package outline  
Table 9. MiniSO8 package mechanical data  
Dimensions  
Millimeters  
Ref.  
Inches  
Min.  
Typ.  
Max.  
1.1  
Min.  
Typ.  
Max.  
0.043  
0.0006  
0.037  
A
A1  
A2  
0
0.15  
0.95  
0
0.75  
0.85  
0.030  
0.033  
DS11863 - Rev 5  
page 32/43  
 
 
 
 
TSZ181, TSZ182  
SO8 package information  
Dimensions  
Ref.  
Millimeters  
Typ.  
Inches  
Min.  
0.22  
0.08  
2.80  
4.65  
2.80  
Max.  
0.40  
0.23  
3.20  
5.15  
3.10  
Min.  
0.009  
0.003  
0.11  
Typ.  
Max.  
0.016  
0.009  
0.126  
0.203  
0.122  
b
c
D
3.00  
4.90  
3.00  
0.65  
0.60  
0.95  
0.25  
0.118  
0.193  
0.118  
0.026  
0.024  
0.037  
0.010  
E
0.183  
0.11  
E1  
e
L
0.40  
0°  
0.80  
0.016  
0°  
0.031  
L1  
L2  
k
8°  
8°  
ccc  
0.10  
0.004  
6.4  
SO-8 package information  
Figure 70. SO8 package outline  
Table 10. SO-8 mechanical data  
Inches(1)  
Typ.  
Milimeters  
Typ.  
Symbol  
Min.  
Max.  
1.75  
0.25  
Min.  
Max.  
0.069  
0.010  
A
A1  
A2  
b
0.10  
1.25  
0.28  
0.004  
0.049  
0.011  
0.48  
0.019  
DS11863 - Rev 5  
page 33/43  
 
 
 
TSZ181, TSZ182  
SOT23-5 package information  
Inches(1)  
Milimeters  
Typ.  
Symbol  
Min.  
0.17  
4.80  
5.80  
3.80  
Max.  
0.23  
5.00  
6.20  
4.00  
Min.  
0.007  
0.189  
0.228  
0.150  
Typ.  
Max.  
0.010  
0.197  
0.244  
0.157  
c
D
4.90  
6.00  
3.90  
1.27  
0.193  
0.236  
0.154  
0.050  
E
E1  
e
h
0.25  
0.40  
0.50  
1.27  
0.010  
0.016  
0.020  
0.050  
L
L1  
k
1.04  
0.040  
0°  
8°  
0°  
8°  
ccc  
0.10  
0.004  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
6.5  
SOT23-5 package information  
Figure 71. SOT23-5 package outline  
Table 11. SOT23-5 mechanical data  
Dimensions  
Millimeters  
Ref.  
Inches  
Typ.  
Min.  
Typ.  
Max.  
Min.  
Max.  
A
0.90  
1.20  
1.45  
0.035  
0.047  
0.057  
DS11863 - Rev 5  
page 34/43  
 
 
 
 
TSZ181, TSZ182  
SOT23-5 package information  
Dimensions  
Ref.  
Millimeters  
Typ.  
Inches  
Min.  
Max.  
0.15  
1.30  
0.50  
0.20  
3.00  
Min.  
Typ.  
Max.  
0.006  
0.051  
0.020  
0.008  
0.118  
A1  
A2  
B
0.90  
0.35  
0.09  
2.80  
1.05  
0.40  
0.15  
2.90  
1.90  
0.95  
2.80  
1.60  
0.35  
0.035  
0.014  
0.004  
0.110  
0.041  
0.016  
0.006  
0.114  
0.075  
0.037  
0.110  
0.063  
0.014  
C
D
D1  
e
E
2.60  
1.50  
3.00  
1.75  
0.60  
0.102  
0.059  
0.118  
0.069  
F
L
0.10  
0.004  
0.024  
K
0 degrees  
10 degrees  
0 degrees  
10 degrees  
DS11863 - Rev 5  
page 35/43  
TSZ181, TSZ182  
Ordering information  
7
Ordering information  
Table 12. Order code  
Order code  
TSZ181ILT  
Temperature range  
Package  
SOT23-5  
DFN6 1.2x1.3  
DFN8 2x2  
MiniSO8  
Packing  
Marking  
K215  
KB  
TSZ181IQ1T  
TSZ182IQ2T  
TSZ182IST  
-40 to 125 °C  
K4G  
Tape and reel  
TSZ182IDT  
SO8  
TSZ182I  
K216  
TSZ181IYLT (1)  
TSZ182IYST (1)  
TSZ182IYDT  
SOT23-5  
Automotive grade  
-40 to 125°C  
MiniSO8  
SO8  
K420  
TSZ182IY  
1. Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 &  
Q002 or equivalent.  
DS11863 - Rev 5  
page 36/43  
 
 
 
TSZ181, TSZ182  
Revision history  
Table 13. Document revision history  
Changes  
Date  
Revision  
21-Nov-2016  
1
Initial release  
Added SO-8 package information and updated automotive qualification status in Table 10 "Order  
codes".  
13-Jul-2017  
2
06-Nov-2017  
14-Mar-2018  
27-Aug-2018  
3
4
5
Added: new packages DFN6 1.2x1.3 and SOT23-5. Updated: Table 10 "Order codes".  
Updated footnote Table 12. Order code.  
Updated Figure 1. Pin connections for each package (top view).  
DS11863 - Rev 5  
page 37/43  
 
 
TSZ181, TSZ182  
Contents  
Contents  
1
2
3
4
5
Package pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2  
Absolute maximum ratings and operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Electrical characteristic curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Application information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
5.1  
Operation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
5.1.1  
5.1.2  
Time domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Frequency domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
Operating voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Input pin voltage ranges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Rail-to-rail input/output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Input offset voltage drift over temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Capacitive load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
PCB layout recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Optimized application recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
EMI rejection ration (EMIRR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
5.10 1/f noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
5.11 Overload recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
5.12 Phase reversal protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
5.13 Open loop gain close to the rail. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
5.14 Application examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
5.14.1 Measuring gas concentration using the NDIR principle (thermopile) . . . . . . . . . . . . . . . . . 24  
5.14.2 Precision instrumentation amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
5.14.3 Low-side current sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
6
Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
6.1  
6.2  
6.3  
6.4  
DFN6 1.2x1.3 package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
DFN8 2 x 2 package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
MiniSO8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
SO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
DS11863 - Rev 5  
page 38/43  
TSZ181, TSZ182  
Contents  
6.5  
SOT23-5 package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
7
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
DS11863 - Rev 5  
page 39/43  
TSZ181, TSZ182  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Absolute maximum ratings (AMR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Electrical characteristics at V CC+ = 2.2 V with V CC- = 0 V, Vicm = V CC/2, T = 25 °C, and RL = 10 kΩ connected to V  
CC/2 (unless otherwise specified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Table 4.  
Table 5.  
Electrical characteristics at VCC+ = 3.3 V with VCC- = 0 V, Vicm = VCC/2, T = 25 °C, and RL = 10 kΩ connected to  
VCC/2 (unless otherwise specified). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Electrical characteristics at VCC+ = 5 V with VCC- = 0 V, Vicm = VCC/2, T = 25 °C, and RL = 10 kΩ connected to  
VCC/2 (unless otherwise specified). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Riso impact on stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
DFN6 1.2 x 1.3 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
DFN8 2 x 2 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
MiniSO8 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 10. SO-8 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 11. SOT23-5 mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 12. Order code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 13. Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
DS11863 - Rev 5  
page 40/43  
TSZ181, TSZ182  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Pin connections for each package (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Supply current vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Input offset voltage distribution at VCC = 5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Input offset voltage distribution at VCC = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Input offset voltage distribution at VCC = 2.2 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Input offset voltage distribution at VCC = 5 V, T = 125 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Input offset voltage distribution at VCC = 5 V, T = -40 °C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Input offset voltage distribution at VCC = 2.2 V, T = 125 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Input offset voltage distribution at VCC = 2.2 V, T = -40 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Input offset voltage vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Input offset voltage vs. input common-mode at VCC = 5.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Input offset voltage vs. input common-mode at VCC = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Input offset voltage vs. input common-mode at VCC = 2.2 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Input offset voltage vs. temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
VOH vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
VOL vs. supply voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Output current vs. output voltage at VCC = 5.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Output current vs. output voltage at VCC = 2.2 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Input bias current vs. common-mode at VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Input bias current vs. temperature at VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Output rail linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Bode diagram at VCC = 5.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Bode diagram at VCC = 2.2 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Bode diagram at VCC = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Open loop gain vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Positive slew rate vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Negative slew rate vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Noise 0.1 - 10 Hz vs. time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Noise vs. frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Noise vs. frequency and temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Output overshoot vs. load capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Small signal VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Small signal VCC = 2.2 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Large signal VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Large signal VCC = 2.2 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Negative overvoltage recovery VCC = 2.2 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Positive overvoltage recovery VCC = 2.2 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Output impedance vs. frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Settling time positive step (-2 V to 0 V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Settling time negative step (2 V to 0 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Settling time positive step (-0.8 V to 0 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Settling time negative step (0.8 V to 0 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Maximum output voltage vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Crosstalk vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
PSRR vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Block diagram in the time domain (step 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Block diagram in the time domain (step 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Vio cancellation principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Block diagram in the frequency domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Figure 10.  
Figure 11.  
Figure 12.  
Figure 13.  
Figure 14.  
Figure 15.  
Figure 16.  
Figure 17.  
Figure 18.  
Figure 19.  
Figure 20.  
Figure 21.  
Figure 22.  
Figure 23.  
Figure 24.  
Figure 25.  
Figure 26.  
Figure 27.  
Figure 28.  
Figure 29.  
Figure 30.  
Figure 31.  
Figure 32.  
Figure 33.  
Figure 34.  
Figure 35.  
Figure 36.  
Figure 37.  
Figure 38.  
Figure 39.  
Figure 40.  
Figure 41.  
Figure 42.  
Figure 43.  
Figure 44.  
Figure 45.  
Figure 46.  
Figure 47.  
Figure 48.  
Figure 49.  
DS11863 - Rev 5  
page 41/43  
TSZ181, TSZ182  
List of figures  
Figure 50.  
Figure 51.  
Figure 52.  
Figure 53.  
Figure 54.  
Figure 55.  
Figure 56.  
Figure 57.  
Figure 58.  
Figure 59.  
Figure 60.  
Figure 61.  
Figure 62.  
Figure 63.  
Figure 64.  
Figure 65.  
Figure 66.  
Figure 67.  
Figure 68.  
Figure 69.  
Figure 70.  
Figure 71.  
Input current limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Stability criteria with a serial resistor at VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Stability criteria with a serial resistor at VCC = 3.3 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Stability criteria with a serial resistor at VCC = 2.2 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Test configuration for Riso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
EMIRR on IN+ pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
EMIRR on IN- pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Noise vs frequency between 0.1 and 10 Hz exhibiting no 1/f noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Negative overvoltage recovery VCC = 5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Positive overvoltage recovery VCC = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
No phase reversal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Gain vs. output voltage, VCC = 5 V, RI = 10 kΩ to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Principle schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Precision instrumentation amplifier schematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Low-side current sensing schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
DFN6 1.2 x 1.3 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
DFN6 1.2 x 1.3 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
DFN8 2 x 2 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
DFN8 2 x 2 recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
MiniSO8 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
SO8 package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
SOT23-5 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
DS11863 - Rev 5  
page 42/43  
TSZ181, TSZ182  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST  
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST  
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of  
Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2018 STMicroelectronics – All rights reserved  
DS11863 - Rev 5  
page 43/43  

相关型号:

TSZ181IQ1T

Very high accuracy (25 μV) high bandwidth (3 MHz) zero drift 5 V operational amplifiers
STMICROELECTR

TSZ181IYLT

Very high accuracy (25 μV) high bandwidth (3 MHz) zero drift 5 V operational amplifiers
STMICROELECTR

TSZ182

Very high accuracy (25 μV) high bandwidth (3 MHz) zero drift 5 V dual operational amplifiers
STMICROELECTR

TSZ182H

Automotive-grade, very high accuracy (25 μV), high bandwidth (3 MHz), high temperature (150 °C), zero-drift operational amplifiers
STMICROELECTR

TSZ182HYDT

Automotive-grade, very high accuracy (25 μV), high bandwidth (3 MHz), high temperature (150 °C), zero-drift operational amplifiers
STMICROELECTR

TSZ182IDT

Very high accuracy (25 μV) high bandwidth (3 MHz) zero drift 5 V operational amplifiers
STMICROELECTR

TSZ182IQ2T

Very high accuracy (25 μV) high bandwidth (3 MHz) zero drift 5 V dual operational amplifiers
STMICROELECTR

TSZ182IST

Very high accuracy (25 μV) high bandwidth (3 MHz) zero drift 5 V dual operational amplifiers
STMICROELECTR

TSZ182IYDT

Very high accuracy (25 μV) high bandwidth (3 MHz) zero drift 5 V operational amplifiers
STMICROELECTR

TSZ182IYST

Very high accuracy (25 μV) high bandwidth (3 MHz) zero drift 5 V dual operational amplifiers
STMICROELECTR