VN06SPTR-E [STMICROELECTRONICS]

0.18A BUF OR INV BASED PRPHL DRVR, PDSO10, SOP-10;
VN06SPTR-E
型号: VN06SPTR-E
厂家: ST    ST
描述:

0.18A BUF OR INV BASED PRPHL DRVR, PDSO10, SOP-10

外围驱动器 驱动程序和接口 接口集成电路 继电器 固态继电器 局域网
文件: 总11页 (文件大小:193K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VN06  
ISO HIGH SIDE SMART POWER SOLID STATE RELAY  
PRELIMINARY DATA  
TYPE  
VN06  
VDSS  
RDS(on)  
In(*)  
VCC  
60 V  
0.18  
1.9 A  
26 V  
MAXIMUM CONTINUOUS OUTPUT  
CURRENT (#): 9 A @ Tc= 85oC  
5V LOGIC LEVEL COMPATIBLE INPUT  
THERMAL SHUT-DOWN  
UNDER VOLTAGE PROTECTION  
OPEN DRAIN DIAGNOSTIC OUTPUT  
INDUCTIVE LOAD FAST DEMAGNETIZATION  
VERY LOW STAND-BY POWER DISSIPATION  
PENTAWATT  
(vertical)  
PENTAWATT  
(horizontal)  
DESCRIPTION  
The VN06 is a monolithic device made using  
SGS-THOMSON Vertical Intelligent Power  
Technology, intended for driving resistive or  
inductive loads with one side grounded.  
Built-in thermal shut-down protects the chip from  
over temperature and short circuit.  
The open drain diagnostic output indicates: open  
load in off state and in on state, output shorted to  
VCC and overtemperature. Fast demagnetization  
of inductive loads is archieved by negative (-18V)  
load voltage at turn-off.  
PENTAWATT  
(in-line)  
ORDER CODES:  
PENTAWATT vertical  
VN06  
PENTAWATT horizontal VN06 (011Y)  
PENTAWATT in-line VN06 (012Y)  
BLOCK DIAGRAM  
(*) In= Nominal current according to ISO definition for high side automotive switch (see note 1)  
(#) The maximum continuous output current is the current at Tc = 85 oC for a battery voltage of 13 V which does not activate  
self protection  
1/11  
September 1994  
VN06  
ABSOLUTE MAXIMUM RATING  
Symbol  
Parameter  
Value  
Unit  
V
V(BR)DSS Drain-Source Breakdown Voltage  
60  
IOUT  
IR  
Output Current (cont.) at Tc = 85 oC  
Reverse Output Current at Tc = 85 oC  
Input Current  
9
-9  
A
A
IIN  
±10  
mA  
V
-VCC  
ISTAT  
VESD  
Ptot  
Tj  
Reverse Supply Voltage  
-4  
Status Current  
±10  
mA  
V
Electrostatic Discharge (1.5 k, 100 pF)  
Power Dissipation at Tc = 85 oC  
Junction Operating Temperature  
Storage Temperature  
2000  
27  
W
-40 to 150  
-55 to 150  
oC  
oC  
Tstg  
CONNECTION DIAGRAM  
CURRENT AND VOLTAGE CONVENTIONS  
2/11  
VN06  
THERMAL DATA  
Rthj-case Thermal Resistance Junction-case  
Rthj-amb Thermal Resistance Junction-ambient  
Max  
Max  
2.4  
60  
oC/W  
oC/W  
ELECTRICAL CHARACTERISTICS (VCC = 13 V; -40 Tj 125 oC unless otherwise specified)  
POWER  
Symbol  
VCC  
Parameter  
Supply Voltage  
Test Conditions  
Min.  
5.5  
Typ.  
Max.  
Unit  
V
13  
26  
In(*)  
Nominal Current  
On State Resistance  
Tc = 85 oC  
V
DS(on) 0.5 (note 1)  
1.9  
A
Ron  
IOUT = 1.9 A  
IOUT = 1.9 A  
0.36  
Tj = 25 oC  
Tj 25 oC  
0.18  
IS  
Supply Current  
Off State  
On State  
50  
15  
µA  
mA  
VDS(MAX) Maximum Voltage Drop IOUT = 8.5 A  
SWITCHING  
Tc = 85 oC  
2.75  
V
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
td(on)(^) Turn-on Delay Time Of IOUT = 1.9 A Resistive Load  
20  
µs  
Output Current  
Input Rise Time < 0.1 µs  
tr(^)  
Rise Time Of Output  
Current  
IOUT = 1.9 A Resistive Load  
Input Rise Time < 0.1 µs  
20  
25  
µs  
µs  
µs  
td(off)(^) Turn-off Delay Time Of IOUT = 1.9 A Resistive Load  
Output Current  
Input Rise Time < 0.1 µs  
tf(^)  
Fall Time Of Output  
Current  
IOUT = 1.9 A Resistive Load  
Input Rise Time < 0.1 µs  
6
(di/dt)on Turn-on Current Slope IOUT = 1.9 A  
IOUT = IOV  
0.08  
0.5  
1
A/µs  
A/µs  
(di/dt)off Turn-off Current Slope IOUT = 1.9 A  
IOUT = IOV  
0.2  
-18  
3
3
A/µs  
A/µs  
Vdemag  
Inductive Load Clamp  
Voltage  
IOUT = 1.9 A L = 1 mH  
-24  
-14  
V
LOGIC INPUT  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
VIL  
Input Low Level  
Voltage  
0.8  
V
VIH  
Input High Level  
Voltage  
2
()  
V
V
VI(hyst.) Input Hysteresis  
Voltage  
0.5  
IIN  
Input Current  
VIN = 5 V  
VIN = 2 V  
VIN = 0.8 V  
250  
500  
250  
µA  
µA  
µA  
25  
VICL  
Input Clamp Voltage  
IIN = 10 mA  
IIN = -10 mA  
5.5  
6
-0.7  
V
V
-0.3  
3/11  
VN06  
ELECTRICAL CHARACTERISTICS (continued)  
PROTECTION AND DIAGNOSTICS (continued)  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
VSTAT  
Status Voltage Output ISTAT = 1.6 mA  
Low  
0.4  
V
VUSD  
VSCL  
Under Voltage Shut  
Down  
5
V
Status Clamp Voltage  
ISTAT = 10 mA  
ISTAT = -10 mA  
6
-0.7  
V
V
IOV  
IAV  
Over Current  
RLOAD < 10 mΩ  
RLOAD < 10 mΩ  
-40 Tc 125 oC  
Tc = 85 oC  
60  
A
A
Average Current in  
Short Circuit  
1.4  
80  
IOL  
Open Load Current  
Level  
5
180  
mA  
oC  
TTSD  
Thermal Shut-down  
Temperature  
140  
TR  
Reset Temperature  
125  
2.5  
oC  
V
VOL  
Open Load Voltage  
Level  
Off-State (note 2)  
(note 3)  
3.75  
5
t1(on)  
t1(off)  
t2(off)  
Open Load Filtering  
Time  
1
1
1
5
5
5
10  
10  
10  
10  
ms  
ms  
ms  
Open Load Filtering  
Time  
(note 3)  
Open Load Filtering  
Time  
(note 3)  
tpovl  
tpol  
Status Delay  
(note 3)  
(note 3)  
5
µs  
µs  
Status Delay  
50  
700  
(^) See Switchig Time Waveforms  
() The VI H is internally clamped at 6V about. It is possible to connect this pin to an higher voltage via an external resistor  
calculated to not exceed 10 mA at the input pin.  
note 1: The Nominal Current is the current at Tc = 85 oC for battery voltage of 13V which produces a voltage drop of 0.5 V  
note 2: IOL( of f) = (VCC -VOL)/ROL (see figure)  
note 3: t1( on ): minimum open load duration which acctivates the status output  
t1( of f): minimum load recovery time which desactivates the status output  
t2( of f): minimum on time after thermal shut down which desactivates status output  
tpo vl tpol: ISO definition (see figure)  
Note 2 Relevant Figure  
Note 3 Relevant Figure  
4/11  
VN06  
Switching Time Waveforms  
device ensures the fast demagnetization with a  
typical voltage (Vdemag) of -18V.  
This function allows to greatly reduce the power  
dissipation according to the formula:  
Pdem = 0.5 Lload (Iload)2 [(VCC+Vdemag)/Vdemag] f  
where f = switching frequency and  
V
demag = demagnetization voltage  
Based on this formula it is possible to know  
the value of inductance and/or current to avoid  
a thermal shut-down. The maximum inductance  
which causes the chip temperature to reach the  
shut down temperature in a specific thermal  
environment, is infact a function of the load  
current for a fixed VCC, Vdemag and f.  
PROTECTING THE DEVICE AGAIST LOAD  
DUMP - TEST PULSE 5  
The device is able to withstand the test pulse  
No. 5 at level II (Vs = 46.5V) according to the  
FUNCTIONAL DESCRIPTION  
The device has  
a diagnostic output which  
indicates open load conditions in off state as well  
as in on state, output shorted to VCC and  
overtemperature. The truth table shows input,  
diagnostic and output voltage level in normal  
operation and in fault conditions. The output  
signals are processed by internal logic. The  
open load diagnostic output has a 5 ms filtering.  
The filter gives a continuous signal for the fault  
condition after an initial delay of about 5 ms. This  
ISO T/R 7637/1  
component. This means that all functions of the  
device are performed as designed after  
without  
any  
external  
exposure to disturbance at level II. The VN06 is  
able to withstand the test pulse No.5 at level III  
adding an external resistor of 150 ohm between  
pin 1 and ground plus a filter capacitor of 1000  
µF between pin 3 and ground (if RLOAD 20 ).  
means that  
a disconnection during normal  
PROTECTING  
REVERSE BATTERY  
THE  
DEVICE  
AGAINST  
operation, with a duration of less than 5 ms does  
not affect the status output. Equally, any  
re-connection of less than 5 ms during a  
disconnection duration does not affect the status  
output. No delay occur for the status to go low in  
case of overtemperature conditions. From the  
falling edge of the input signal the status output  
initially low in fault condition (over temperature or  
open load) will go back with a delay (tpovl)in case  
of overtemperature condition and a delay (tpol) in  
case of open load. These feature fully comply  
with International Standard Office (I.S.O.)  
requirement for automotive High Side Driver.  
The simplest way to protect the device against a  
continuous reverse battery voltage (-26V) is to  
insert a Schottky diode between pin 1(GND) and  
ground, as shown in the typical application circuit  
(fig.3).  
The consequences of the voltage drop across  
this diode are as follows:  
– If the input is pulled to power GND, a negative  
voltage of -Vf is seen by the device. (Vil, Vih  
thresholds and Vstat are increased by Vf with  
respect to power GND).  
– The undervoltage shutdown level is increa-  
sed by Vf.  
To protect the device against short circuit and  
over current conditions, the thermal protection  
If there is no need for the control unit to handle  
external analog signals referred to the power  
GND, the best approach is to connect the  
reference potential of the control unit to node [1]  
(see application circuit in fig. 4), which becomes  
the common signal GND for the whole control  
board avoiding shift of Vih, Vil and Vstat. This  
solution allows the use of a standard diode.  
turns the integrated Power MOS off  
minimum junction  
at  
a
temperature of 140 oC.  
When the temperature returns to 125 oC the  
switch is automatically turned on again. In short  
circuit the protection reacts with virtually no  
delay, the sensor being located in the region of  
the die where the heat is generated. Driving  
inductive loads, an internal function of the  
5/11  
VN06  
TRUTH TABLE  
Normal Operation  
INPUT  
OUTPUT  
DIAGNOSTIC  
L
H
L
H
H
H
Open Circuit (No Load)  
Over-temperature  
Under-voltage  
H
H
X
L
H
L
L
L
L
H
L
Short load to VCC  
H
Figure 1: Waveforms  
Figure 2: Over Current Test Circuit  
6/11  
VN06  
Figure 3: Typical Application Circuit With A Schottky Diode For Reverse Supply Protection  
Figure 4: Typical Application Circuit With Separate Signal Ground  
7/11  
VN06  
Pentawatt (vertical) MECHANICAL DATA  
mm  
inch  
TYP.  
DIM.  
MIN.  
TYP.  
MAX.  
4.8  
MIN.  
MAX.  
0.189  
0.054  
0.110  
0.053  
0.022  
0.041  
0.055  
0.142  
0.276  
0.409  
0.409  
A
C
1.37  
2.8  
D
2.4  
1.2  
0.35  
0.8  
1
0.094  
0.047  
0.014  
0.031  
0.039  
0.126  
0.260  
D1  
E
1.35  
0.55  
1.05  
1.4  
F
F1  
G
3.2  
6.6  
3.4  
6.8  
3.6  
0.134  
0.268  
G1  
H2  
H3  
L
7
10.4  
10.4  
10.05  
0.396  
17.85  
15.75  
21.4  
0.703  
0.620  
0.843  
0.886  
L1  
L2  
L3  
L5  
L6  
L7  
M
22.5  
2.6  
15.1  
6
3
0.102  
0.594  
0.236  
0.118  
0.622  
0.260  
15.8  
6.6  
4.5  
4
0.177  
0.157  
M1  
Dia  
3.65  
3.85  
0.144  
0.152  
L
L1  
L2  
L3  
L5  
Dia.  
L7  
P010E  
L6  
8/11  
VN06  
Pentawatt (horizontal) MECHANICAL DATA  
mm  
inch  
DIM.  
MIN.  
TYP.  
MAX.  
4.8  
MIN.  
TYP.  
MAX.  
A
C
0.189  
0.054  
0.110  
0.053  
0.022  
0.041  
0.055  
0.142  
0.276  
0.409  
0.409  
0.590  
0244  
1.37  
2.8  
D
2.4  
1.2  
0.35  
0.8  
1
0.094  
0.047  
0.014  
0.031  
0.039  
0.126  
0.260  
D1  
E
1.35  
0.55  
1.05  
1.4  
F
F1  
G
3.2  
6.6  
3.4  
6.8  
3.6  
0.134  
0.268  
G1  
H2  
H3  
L
7
10.4  
10.4  
15  
10.05  
14.2  
5.7  
0.396  
0.559  
L1  
L2  
L3  
L5  
L6  
L7  
Dia  
6.2  
14.6  
3.5  
15.2  
4.1  
0.598  
0.161  
0.118  
0.622  
0.260  
0.152  
0.137  
0.102  
0.594  
0.236  
0.144  
2.6  
3
15.1  
6
15.8  
6.6  
3.65  
3.85  
P010F  
9/11  
VN06  
Pentawatt (In- Line) MECHANICAL DATA  
mm  
inch  
TYP.  
DIM.  
MIN.  
TYP.  
MAX.  
4.8  
MIN.  
MAX.  
0.189  
0.054  
0.110  
0.053  
0.022  
0.041  
0.055  
0.142  
0.276  
0.409  
0.409  
0.937  
1.028  
0.118  
0.622  
0.260  
0.152  
A
C
1.37  
2.8  
D
2.4  
1.2  
0.35  
0.8  
1
0.094  
0.047  
0.014  
0.031  
0.039  
0.126  
0.260  
D1  
E
1.35  
0.55  
1.05  
1.4  
F
F1  
G
3.2  
6.6  
3.4  
6.8  
3.6  
0.134  
0.268  
G1  
H2  
H3  
L2  
L3  
L5  
L6  
L7  
Dia  
7
10.4  
10.4  
23.8  
26.1  
3
10.05  
23.05  
25.3  
2.6  
0.396  
0.907  
0.996  
0.102  
0.594  
0.236  
0.144  
23.4  
0.921  
1.010  
25.65  
15.1  
6
15.8  
6.6  
3.65  
3.85  
P010D  
10/11  
VN06  
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the  
consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No  
license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics.Specificationsmentioned  
in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.  
SGS-THOMSON Microelectronicsproducts arenot authorizedfor use as criticalcomponents in life supportdevices or systems without express  
written approval of SGS-THOMSON Microelectonics.  
1994 SGS-THOMSON Microelectronics - All Rights Reserved  
SGS-THOMSON Microelectronics GROUP OF COMPANIES  
Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -  
Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A  
11/11  

相关型号:

VN0808

N-Channel Enhancement-Mode Vertical DMOS FETs
SUPERTEX

VN0808L

N-Channel 80- and 90-V (D-S) MOSFETs
VISHAY

VN0808L

N-Channel Enhancement-Mode Vertical DMOS FETs
SUPERTEX

VN0808L-G

Small Signal Field-Effect Transistor, 0.3A I(D), 80V, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-92, GREEN PACKAGE-3
SUPERTEX

VN0808L-TA

Small Signal Field-Effect Transistor, 0.3A I(D), 80V, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-226AA, TO-226AA (TO-92), 3 PIN
VISHAY

VN0808L-TR1

TRANSISTOR 300 mA, 80 V, N-CHANNEL, Si, SMALL SIGNAL, MOSFET, TO-226AA, TO-92, 3 PIN, FET General Purpose Small Signal
VISHAY

VN0808LP001

Small Signal Field-Effect Transistor, 0.26A I(D), 80V, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-92
SUPERTEX

VN0808LP003

Small Signal Field-Effect Transistor, 0.3A I(D), 80V, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-92
SUPERTEX

VN0808LP004

Small Signal Field-Effect Transistor, 0.26A I(D), 80V, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-92
SUPERTEX

VN0808LP005

Small Signal Field-Effect Transistor, 0.26A I(D), 80V, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-92
SUPERTEX

VN0808LP006

Small Signal Field-Effect Transistor, 0.26A I(D), 80V, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-92
SUPERTEX

VN0808LP007

Small Signal Field-Effect Transistor, 0.26A I(D), 80V, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-92
SUPERTEX