MQFL-270-06S [SYNQOR]

HIGH RELIABILITY DC-DC CONVERTER; 高可靠性DC-DC转换器
MQFL-270-06S
型号: MQFL-270-06S
厂家: SYNQOR WORLDWIDE HEADQUARTERS    SYNQOR WORLDWIDE HEADQUARTERS
描述:

HIGH RELIABILITY DC-DC CONVERTER
高可靠性DC-DC转换器

转换器 DC-DC转换器
文件: 总16页 (文件大小:1267K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MQFL-270-06S  
Single Output  
HI G H RELIABILITY DC-DC CONVERTER  
155-400 V  
155-475 V  
6.0 V  
20 A  
86% @ 10A / 88% @ 20A  
Continuous Input  
Transient Input  
Output  
Output  
Efficiency  
FU L L PO W E R OP E R A T I O N : -55ºC TO +125ºC  
The MilQor® series of high-reliability DC-DC converters  
brings SynQor’s field proven high-efficiency synchronous  
rectifier technology to the Military/Aerospace industry.  
TM  
SynQor’s innovative QorSeal packaging approach ensures  
survivability in the most hostile environments. Compatible  
with the industry standard format, these converters operate  
at a fixed frequency, have no opto-isolators, and follow  
conservative component derating guidelines. They are  
designed and manufactured to comply with a wide range of  
military standards.  
Design Process  
MQFL series converters are:  
• Designed for reliability per NAVSO-P3641-A guidelines  
D
F
ESIGNED & MA N U F A C T U R E D IN T H E USA  
E A T U R IN G O R -REL S S E M B L Y  
EALH  
Q
S
I
A
• Designed with components derated per:  
— MIL-HDBK-1547A  
Features  
— NAVSO P-3641A  
• Fixed switching frequency  
• No opto-isolators  
• Parallel operation with current share  
• Remote sense  
• Clock synchronization  
• Primary and secondary referenced enable  
Qualification Process  
MQFL series converters are qualified to:  
• MIL-STD-810F  
— consistent with RTCA/D0-160E  
• SynQor’s First Article Qualification  
• Continuous short circuit and overload protection with  
— consistent with MIL-STD-883F  
auto-restart feature  
• SynQor’s Long-Term Storage Survivability Qualification  
• SynQor’s on-going life test  
• Input under-voltage lockout/over-voltage shutdown  
Specification Compliance  
In-Line Manufacturing Process  
MQFL series converters (with MQME filter) are designed to meet:  
• MIL-HDBK-704-8 (A through F)  
• RTCA/DO-160E Section 16  
• MIL-STD-1275B  
• AS9100 and ISO 9001:2000 certified facility  
• Full component traceability  
• Temperature cycling  
• DEF-STAN 61-5 (part 6)/5  
• MIL-STD-461 (C, D, E)  
• RTCA/DO-160E Section 22  
• Constant acceleration  
• 24, 96, 160 hour burn-in  
• Three level temperature screening  
Product # MQFL-270-06S  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-MQ2706S Rev. 2  
08/20/08  
Page 1  
MQFL-270-06S  
Output:  
Current:  
6.0 V  
20 A  
Technical Specification  
BLOCK DIAGRAM  
REGULATION STAGE  
ISOLATION STAGE  
CURRENT  
SENSE  
1
7
+Vin  
+Vout  
T1  
T1  
T2  
2
INPUT  
RETURN  
8
OUTPUT  
RETURN  
T2  
3
CASE  
GATE DRIVERS  
GATE DRIVERS  
UVLO  
OVSD  
CURRENT  
LIMIT  
4
ENABLE 1  
PRIMARY  
CONTROL  
MAGNETIC  
12  
5
ENABLE 2  
SYNC OUT  
11  
DATA COUPLING  
BIAS POWER  
6
SECONDARY  
CONTROL  
SHARE  
SYNC IN  
10  
+ SENSE  
CONTROL  
POWER  
9
TRANSFORMER  
-
SENSE  
TYPICAL CONNECTION DIAGRAM  
1
12  
+VIN  
ENA 2  
SHARE  
+ SNS  
open  
means  
on  
2
11  
10  
IN RTN  
3
CASE  
+
MQFL  
4
5
6
9
8
7
+
270Vdc  
Load  
ENA 1  
– SNS  
OUT RTN  
+VOUT  
SYNC OUT  
SYNC IN  
open  
means  
on  
Product # MQFL-270-06S  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-MQ2706S Rev. 2  
08/20/08  
Page 2  
MQFL-270-06S  
Output:  
Current:  
6.0 V  
20 A  
Technical Specification  
MQFL-270-06S ELECTRICAL CHARACTERISTICS  
Parameter  
Min. Typ. Max. Units Notes & Conditions  
Group A  
Subgroup  
(see Note 13)  
Vin=270 V dc ±5%, Iout=20 A, CL=0 µF, free running (see Note 10)  
unless otherwise specified  
ABSOLUTE MAXIMUM RATINGS  
Input Voltage  
Non-Operating  
600  
550  
-0.8  
-1.2  
V
V
V
V
Operating  
See Note 1  
See Note 2  
Reverse Bias (Tcase = 125ºC)  
Reverse Bias (Tcase = -55ºC)  
Isolation Voltage (I/O to case, I to O)  
Continuous  
-500  
-800  
-55  
500  
800  
125  
135  
300  
50  
A
V
°C  
°C  
°C  
V
Transient (≤100 µs)  
Operating Case Temperature  
Storage Case Temperature  
Lead Temperature (20 s)  
-65  
Voltage at ENA1, ENA2  
-1.2  
INPUT CHARACTERISTICS  
Operating Input Voltage Range  
"
155  
155  
270  
270  
400  
475  
V
V
Continuous  
Transient, 1 s  
See Note 3  
1, 2, 3  
4, 5, 6  
Input Under-Voltage Lockout  
Turn-On Voltage Threshold  
Turn-Off Voltage Threshold  
Lockout Voltage Hysteresis  
Input Over-Voltage Shutdown  
Turn-Off Voltage Threshold  
Turn-On Voltage Threshold  
Shutdown Voltage Hysteresis  
Maximum Input Current  
142  
133  
5
150  
140  
11  
155  
145  
17  
V
V
V
1, 2, 3  
1, 2, 3  
1, 2, 3  
See Note 3  
490  
450  
20  
520  
475  
50  
550  
500  
80  
1
35  
4
V
V
V
A
mA  
mA  
mA  
mA  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
Vin = 155 V; Iout = 20 A  
No Load Input Current (operating)  
Disabled Input Current (ENA1)  
Disabled Input Current (ENA2)  
Input Terminal Current Ripple (pk-pk)  
OUTPUT CHARACTERISTICS  
Output Voltage Set Point (Tcase = 25ºC)  
Vout Set Point Over Temperature  
Output Voltage Line Regulation  
Output Voltage Load Regulation  
Total Output Voltage Range  
Vout Ripple and Noise Peak to Peak  
Operating Output Current Range  
Operating Output Power Range  
Output DC Current-Limit Inception  
Short Circuit Output Current  
Back-Drive Current Limit while Enabled  
Back-Drive Current Limit while Disabled  
Maximum Output Capacitance  
DYNAMIC CHARACTERISTICS  
Output Voltage Deviation Load Transient  
For a Pos. Step Change in Load Current  
For a Neg. Step Change in Load Current  
Settling Time (either case)  
Output Voltage Deviation Line Transient  
For a Pos. Step Change in Line Voltage  
For a Neg. Step Change in Line Voltage  
Settling Time (either case)  
Turn-On Transient  
28  
1
6
Vin = 155 V, 270 V, 475 V  
Vin = 155 V, 270 V, 475 V  
Bandwidth = 100 kHz – 10 MHz; see Figure 14  
10  
180  
140  
5.94  
5.90  
-20  
20  
5.88  
6.00  
6.00  
0
30  
6.00  
15  
6.06  
6.10  
20  
V
V
mV  
mV  
V
mV  
A
W
A
A
A
Vout at sense leads  
1
2, 3  
"
" ; Vin = 155 V, 270 V, 475 V; Iout=20 A  
" ; Vout @ (Iout=0 A) - Vout @ (Iout=20 A)  
"
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
See Note 5  
40  
6.12  
40  
Bandwidth = 10 MHz; CL=11µF  
0
0
21  
21  
20  
120  
25  
23  
24  
7.5  
10  
See Note 4  
Vout ≤ 1.2 V; see Note 15  
27  
50  
10,000  
mA  
µF  
See Note 6  
-525  
-375  
375  
300  
mV  
mV  
µs  
Total Iout step = 10A‹-›20A, 2A‹-›10A; CL=11µF  
4, 5, 6  
4, 5, 6  
4, 5, 6  
525  
500  
"
See Note 7  
Vin step = 155V‹-›475V; CL=11 µF; see Note 8  
-500  
-800  
500  
800  
600  
mV  
mV  
µs  
"
"
4, 5, 6  
4, 5, 6  
See Note 5  
500  
See Note 7  
Output Voltage Rise Time  
Output Voltage Overshoot  
Turn-On Delay, Rising Vin  
6
0
75  
5.0  
2.0  
10  
2
120  
10.0  
4.0  
ms  
%
ms  
ms  
ms  
Vout = 0.6V-›5.4V  
4, 5, 6  
See Note 5  
4, 5, 6  
4, 5, 6  
4, 5, 6  
50  
ENA1, ENA2 = 5 V; see Notes 9 & 11  
ENA2 = 5 V  
ENA1 = 5 V  
Turn-On Delay, Rising ENA1  
Turn-On Delay, Rising ENA2  
EFFICIENCY  
Iout = 20 A (155 Vin)  
85  
86  
84  
83  
81  
78  
90  
89  
88  
86  
86  
82  
19  
24  
%
%
%
%
%
%
W
W
1, 2, 3  
1, 2, 3  
Iout = 10 A (155 Vin)  
Iout = 20 A (270 Vin)  
1, 2, 3  
Iout = 10 A (270 Vin)  
1, 2, 3  
Iout = 20 A (400 Vin)  
1, 2, 3  
Iout = 10 A (400 Vin)  
1, 2, 3  
Load Fault Power Dissipation  
Short Circuit Power Dissipation  
29  
34  
Iout at current limit inception point 4  
Vout ≤ 1.2 V; see Note 15  
1, 2, 3  
See Note 5  
Product # MQFL-270-06S  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-MQ2706S Rev. 2  
08/20/08  
Page 3  
MQFL-270-06S  
Output:  
Current:  
6.0 V  
20 A  
Technical Specification  
MQFL-270-06S ELECTRICAL CHARACTERISTICS (Continued)  
Parameter  
Min. Typ. Max. Units Notes & Conditions  
Group A  
Vin=270 V dc ±5%, Iout=20 A, CL=0 µF, free running (see Note 10)  
unless otherwise specified  
Subgroup  
(see Note 13)  
ISOLATION CHARACTERISTICS  
Isolation Voltage  
Input RTN to Output RTN  
Any Input Pin to Case  
Dielectric strength  
500  
500  
500  
100  
100  
V
V
1
1
1
1
1
1
Any Output Pin to Case  
Isolation Resistance (in rtn to out rtn)  
Isolation Resistance (any pin to case)  
Isolation Capacitance (in rtn to out rtn)  
FEATURE CHARACTERISTICS  
Switching Frequency (free running)  
Synchronization Input  
V
MΩ  
MΩ  
nF  
44  
500  
550  
600  
kHz  
1, 2, 3  
Frequency Range  
500  
2.0  
-0.5  
20  
700  
10  
0.8  
80  
kHz  
V
V
%
1, 2, 3  
1, 2, 3  
1, 2, 3  
Logic Level High  
Logic Level Low  
Duty Cycle  
See Note 5  
Synchronization Output  
Pull Down Current  
Duty Cycle  
20  
25  
mA  
%
VSYNC OUT = 0.8 V  
Output connected to SYNC IN of other MQFL unit  
See Note 5  
See Note 5  
75  
Enable Control (ENA1 and ENA2)  
Off-State Voltage  
Module Off Pulldown Current  
On-State Voltage  
Module On Pin Leakage Current  
Pull-Up Voltage  
0.8  
V
µA  
V
µA  
V
1, 2, 3  
See Note 5  
1, 2, 3  
See Note 5  
1, 2, 3  
80  
2
Current drain required to ensure module is off  
20  
4.8  
Imax draw from pin allowed with module still on  
See Figure A  
3.2  
4.0  
RELIABILITY CHARACTERISTICS  
Calculated MTBF (MIL-STD-217F2)  
GB @ Tcase = 70ºC  
3
2600  
300  
TBD  
10 Hrs.  
3
AIF @ Tcase = 70ºC  
10 Hrs.  
3
Demonstrated MTBF  
10 Hrs.  
WEIGHT CHARACTERISTICS  
Device Weight  
79  
g
Electrical Characteristics Notes  
1. Converter will undergo input over-voltage shutdown.  
2. Derate output power to 50% of rated power at Tcase = 135º C.  
3. High or low state of input voltage must persist for about 200µs to be acted on by the lockout or shutdown circuitry.  
4. Current limit inception is defined as the point where the output voltage has dropped to 90% of its nominal value.  
5. Parameter not tested but guaranteed to the limit specified.  
6. Load current transition time ≥ 10 µs.  
7. Settling time measured from start of transient to the point where the output voltage has returned to ±1% of its final value.  
8. Line voltage transition time ≥ 100 µs.  
9. Input voltage rise time ≤ 250 µs.  
10. Operating the converter at a synchronization frequency above the free running frequency will slightly reduce the converter’s efficiency and may also  
cause a slight reduction in the maximum output current/power available. For more information consult the factory.  
11. After a disable or fault event, module is inhibited from restarting for 300 ms. See Shut Down section.  
12. SHARE pin outputs a power failure warning pulse during a fault condition. See Current Share section.  
13. Only the ES and HB grade products are tested at three temperatures. The B and C grade products are tested at one temperature. Please refer to the  
ESS table for details.  
14. These derating curves apply for the ES- and HB- grade products. The C- grade product has a maximum case temperature of 100º C and a maximum  
junction temperature rise of 20º C above TCASE. The B- grade product has a maximum case temperature of 85º C and a maximum junction temperature  
rise of 20º C at full load.  
15. Converter delivers current into a persisting short circuit for up to 1 second. See Current Limit in the Application Notes section.  
Product # MQFL-270-06S  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-MQ2706S Rev. 2  
08/20/08  
Page 4  
MQFL-270-06S  
Output:  
Current:  
6.0 V  
20 A  
Technical Specification  
100  
95  
90  
85  
80  
75  
70  
100  
95  
90  
85  
80  
75  
70  
65  
60  
155 Vin  
155 Vin  
270 Vin  
400 Vin  
270 Vin  
400 Vin  
65  
60  
4
8
12  
16  
20  
-55°C -35°C -15°C  
5°C  
25°C  
45°C  
65°C  
85°C 105°C 125°C  
Load Current (A)  
Case Temperature (ºC)  
Figure 1: Efficiency at nominal output voltage vs. load current for  
Figure 2: Efficiency at nominal output voltage and 60% rated power vs.  
minimum, nominal, and maximum input voltage at TCASE=25  
°C.  
case temperature for input voltage of 155V, 270V, and 400V.  
22  
20  
18  
16  
14  
12  
10  
8
22  
20  
18  
16  
14  
12  
10  
8
6
6
155 Vin  
270 Vin  
400 Vin  
155 Vin  
4
4
270 Vin  
2
2
400 Vin  
0
0
4
8
12  
16  
20  
-55°C -35°C -15°C  
5°C  
25°C  
45°C  
65°C  
85°C 105°C 125°C  
Load Current (A)  
Case Temperature (ºC)  
Figure 3: Power dissipation at nominal output voltage vs. load current  
Figure 4: Power dissipation at nominal output voltage and 60% rated  
for minimum, nominal, and maximum input voltage at TCASE=25  
°
C.  
power vs. case temperature for input voltage of 155V, 270V, and 400V.  
32  
28  
24  
20  
16  
12  
192  
168  
144  
120  
96  
7
6
5
4
3
2
72  
8
4
0
48  
= 105ºC  
= 125ºC  
= 145ºC  
Tj  
Tj  
Tj  
max  
max  
max  
270 Vin  
1
24  
0
0
25  
45  
65  
85  
105  
125 135 145  
0
5
10  
15  
20  
25  
Case Temperature (ºC)  
Load Current (A)  
Figure 5: Output Current / Output Power derating curve as a function  
of T and the Maximum desired power MOSFET junction tempera-  
Figure 6: Output voltage vs. load current showing typical current limit  
curves. See Current Limit section in the Application Notes.  
CASE  
ture. Vin = 270V  
Product # MQFL-270-06S  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-MQ2706S Rev. 2  
08/20/08  
Page 5  
MQFL-270-06S  
Output:  
Current:  
6.0 V  
20 A  
Technical Specification  
Figure 7: Turn-on transient at full resistive load and zero output capac-  
itance initiated by ENA1. Input voltage pre-applied. Ch 1: Vout (2V/  
div). Ch 2: ENA1 (5V/div).  
Figure 8: Turn-on transient at full resistive load and 10 mF output  
capacitance initiated by ENA1. Input voltage pre-applied. Ch 1: Vout  
(2V/div). Ch 2: ENA1 (5V/div).  
Figure 9: Turn-on transient at full resistive load and zero output capac-  
itance initiated by ENA2. Input voltage pre-applied. Ch 1: Vout (2V/  
div). Ch 2: ENA2 (5V/div).  
Figure 10: Turn-on transient at full resistive load and zero output  
capacitance initiated by Vin. ENA1 and ENA2 both previously high.  
Ch 1: Vout (2V/div). Ch 2: Vin (100V/div).  
Figure 11: Output voltage response to step-change in load current  
Figure 12: Output voltage response to step-change in load current  
50%-100%-50% of Iout (max). Load cap: 1  
µ
F ceramic cap and 10  
µF, 100  
10%-50%-10% of Iout (max). Load cap: 1µF ceramic cap and 10µF, 100  
m
W
ESR tantalum cap. Ch 1: Vout (500 mV/div). Ch 2: Iout (10 A/div).  
mW ESR tantalum cap. Ch 1: Vout (500 mV/div). Ch 2: Iout (10 A/div).  
Product # MQFL-270-06S  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-MQ2706S Rev. 2  
08/20/08  
Page 6  
MQFL-270-06S  
Output:  
Current:  
6.0 V  
20 A  
Technical Specification  
See Fig. 15  
See Fig. 16  
iC  
MQME  
Filter  
MQFL  
Converter  
VOUT  
VSOURCE  
10  
µ
W
F,  
ESR  
1 µF  
ceramic  
100 m  
capacitor  
capacitor  
Figure 13: Output voltage response to step-change in input voltage (155 V  
- 400 V - 155 V) in 250 μS. Load cap: 10μF, 100 mΩ ESR tantalum cap and  
1μF ceramic cap. Ch 1: Vin (100 V/div). Ch 4: Vout (500 mV/div).  
Figure 14: Test set-up diagram showing measurement points for  
Input Terminal Ripple Current (Figure 15) and Output Voltage Ripple  
(Figure 16).  
Figure 15: Input terminal current ripple, i , at full rated output current  
and nominal input voltage with SynQor MQ filter module (50 mA/div).  
Bandwidth: 20MHz. See Figure 14.  
Figure 16: Output voltage ripple, Vout, at nominal input voltage and  
c
rated load current (20 mV/div). Load capacitance: 1  
µF ceramic capac-  
itor and 10 F tantalum capacitor. Bandwidth: 10 MHz. See Figure 14.  
µ
Figure 17: Rise of output voltage after the removal of a short circuit  
Figure 18: SYNC OUT vs. time, driving SYNC IN of a second SynQor  
across the output terminals. Ch 1: Vout (2V/div). Ch 2: Iout (10A/div).  
MQFL converter. Ch1: SYNC OUT: (1V/div).  
Product # MQFL-270-06S  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-MQ2706S Rev. 2  
08/20/08  
Page 7  
MQFL-270-06S  
Output:  
Current:  
6.0 V  
20 A  
Technical Specification  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0.01  
155 Vin  
270 Vin  
400 Vin  
155 Vin  
270 Vin  
400 Vin  
0.001  
10  
100  
1,000  
Hz  
10,000  
100,000  
10  
100  
1,000  
Hz  
10,000  
100,000  
Figure 19: Magnitude of incremental output impedance (Z  
= v  
/
Figure 20: Magnitude of incremental forward transmission (FT = v  
/
out  
out  
out  
i
) for minimum, nominal, and maximum input voltage at full rated  
v ) for minimum, nominal, and maximum input voltage at full rated  
out  
power.  
in  
power.  
5
10000  
-5  
-15  
-25  
-35  
-45  
-55  
1000  
100  
10  
155 Vin  
270 Vin  
400 Vin  
155 Vin  
270 Vin  
400 Vin  
1
10  
100  
1,000  
Hz  
10,000  
100,000  
10  
100  
1,000  
Hz  
10,000  
100,000  
Figure 21: Magnitude of incremental reverse transmission (RT = i  
/
Figure 22: Magnitude of incremental input impedance (Z = v /i )  
in in in  
for minimum, nominal, and maximum input voltage at full rated power.  
in  
) for minimum, nominal, and maximum input voltage at full rated  
i
out  
power.  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10K  
00K  
1M  
10M  
10K  
100K  
1M  
10M  
Frequency (in Hz)  
Frequency (in Hz)  
Figure 23: High frequency conducted emissions of standalone MQFL-  
270-05S, 5Vout module at 120W output, as measured with Method  
CE102. Limit line shown is the ‘Basic Curve’ for all applications with a  
270V source.  
Figure 24: High frequency conducted emissions of MQFL-270-05S,  
5Vout module at 120W output with MQME-270-P filter, as measured with  
Method CE102. Limit line shown is the ‘Basic Curve’ for all applications  
with a 270V source.  
Product # MQFL-270-06S  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-MQ2706S Rev. 2  
08/20/08  
Page 8  
MQFL-270-06S  
Output:  
Current:  
6.0 V  
20 A  
Technical Specification  
BASIC OPERATION AND FEATURES  
CONTROL FEATURES  
ENABLE: The MQFL converter has two enable pins. Both must  
have a logic high level for the converter to be enabled. A logic  
low on either pin will inhibit the converter.  
The MQFL DC-DC converter uses a two-stage power conversion  
topology. The first, or regulation, stage is a buck-converter that  
keeps the output voltage constant over variations in line, load,  
and temperature. The second, or isolation, stage uses transform-  
ers to provide the functions of input/output isolation and voltage  
transformation to achieve the output voltage required.  
The ENA1 pin (pin 4) is referenced with respect to the converter’s  
input return (pin 2). The ENA2 pin (pin 12) is referenced with  
respect to the converter’s output return (pin 8). This permits the  
converter to be inhibited from either the input or the output side.  
Both the regulation and the isolation stages switch at a fixed  
frequency for predictable EMI performance. The isolation stage  
switches at one half the frequency of the regulation stage, but due  
to the push-pull nature of this stage it creates a ripple at double its  
switching frequency. As a result, both the input and the output of  
the converter have a fundamental ripple frequency of about 550  
kHz in the free-running mode.  
Regardless of which pin is used to inhibit the converter, the regu-  
lation and the isolation stages are turned off. However, when  
the converter is inhibited through the ENA1 pin, the bias supply  
is also turned off, whereas this supply remains on when the con-  
verter is inhibited through the ENA2 pin. A higher input standby  
current therefore results in the latter case.  
Rectification of the isolation stage’s output is accomplished with  
synchronous rectifiers. These devices, which are MOSFETs with a  
very low resistance, dissipate far less energy than would Schottky  
diodes. This is the primary reason why the MQFL converters have  
such high efficiency, particularly at low output voltages.  
Both enable pins are internally pulled high so that an open connec-  
tion on both pins will enable the converter. Figure A shows the equiv-  
alent circuit looking into either enable pins. It is TTL compatible.  
5.0V  
Besides improving efficiency, the synchronous rectifiers permit  
operation down to zero load current. There is no longer a need  
for a minimum load, as is typical for converters that use diodes for  
rectification. The synchronous rectifiers actually permit a nega-  
tive load current to flow back into the converter’s output terminals  
if the load is a source of short or long term energy. The MQFL  
converters employ a “back-drive current limit” to keep this nega-  
tive output terminal current small.  
68K  
1N4148  
PIN 4  
(or PIN 12)  
ENABLE  
TO ENABLE  
CIRCUITRY  
250K  
125K  
2N3904  
There is a control circuit on both the input and output sides of the  
MQFL converter that determines the conduction state of the power  
switches. These circuits communicate with each other across the  
isolation barrier through a magnetically coupled device. No  
opto-isolators are used. A separate bias supply provides power  
to both the input and output control circuits.  
PIN 2  
(or PIN 8)  
IN RTN  
Figure A: Equivalent circuit looking into either the ENA1 or ENA2  
pins with respect to its corresponding return pin.  
An input under-voltage lockout feature with hysteresis is provided,  
as well as an input over-voltage shutdown. There is also an  
output current limit that is nearly constant as the load impedance  
decreases to a short circuit (i.e., there is no fold-back or fold-  
forward characteristic to the output current under this condition).  
When a load fault is removed, the output voltage rises exponen-  
tially to its nominal value without an overshoot.  
SHUT DOWN: The MQFL converter will shut down in response  
to following conditions:  
- ENA1 input low  
- ENA2 input low  
- VIN input below under-voltage lockout threshold  
- VIN input above over-voltage shutdown threshold  
- Persistent current limit event lasting more than 1 second  
Following a shutdown from a disable event or an input voltage  
fault, there is a startup inhibit delay which will prevent the con-  
verter from restarting for approximately 300ms. After the 300ms  
delay elapses, if the enable inputs are high and the input voltage  
is within the operating range, the converter will restart. If the VIN  
input is brought down to nearly 0V and back into the operating  
range, there is no startup inhibit, and the output voltage will rise  
according to the “Turn-On Delay, Rising Vin” specification.  
The MQFL converter’s control circuit does not implement an output  
over-voltage limit or an over-temperature shutdown.  
The following sections describe the use and operation of addi-  
tional control features provided by the MQFL converter.  
Product # MQFL-270-06S  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-MQ2706S Rev. 2  
08/20/08  
Page 9  
MQFL-270-06S  
Output:  
Current:  
6.0 V  
20 A  
Technical Specification  
Refer to the following Current Limit section for details regarding  
OUT has a duty cycle of 50% and a frequency that matches the  
switching frequency of the converter with which it is associated.  
This frequency is either the free-running frequency if there is no  
synchronization signal at the SYNC IN pin, or the synchroniza-  
tion frequency if there is.  
persistent current limit behavior.  
REMOTE SENSE: The purpose of the remote sense pins is to  
correct for the voltage drop along the conductors that connect the  
converter’s output to the load. To achieve this goal, a separate  
conductor should be used to connect the +SENSE pin (pin 10)  
directly to the positive terminal of the load, as shown in the con-  
nection diagram. Similarly, the –SENSE pin (pin 9) should be  
connected through a separate conductor to the return terminal of  
the load.  
The SYNC OUT signal is available only when the DC input volt-  
age is above approximately 125V and when the converter is not  
inhibited through the ENA1 pin. An inhibit through the ENA2 pin  
will not turn the SYNC OUT signal off.  
NOTE: An MQFL converter that has its SYNC IN pin driven by  
the SYNC OUT pin of a second MQFL converter will have its start  
of its switching cycle delayed approximately 180 degrees relative  
to that of the second converter.  
NOTE: Even if remote sensing of the load voltage is not desired,  
the +SENSE and the -SENSE pins must be connected to +Vout (pin  
7) and OUTPUT RETURN (pin 8), respectively, to get proper regu-  
lation of the converter’s output. If they are left open, the converter  
will have an output voltage that is approximately 200mV higher  
than its specified value. If only the +SENSE pin is left open, the  
output voltage will be approximately 25mV too high.  
Figure B shows the equivalent circuit looking into the SYNC IN  
pin. Figure C shows the equivalent circuit looking into the SYNC  
OUT pin.  
5V  
Inside the converter, +SENSE is connected to +Vout with a 100W  
resistor and –SENSE is connected to OUTPUT RETURN with a  
10W resistor.  
5K  
It is also important to note that when remote sense is used, the  
voltage across the converter’s output terminals (pins 7 and 8)  
will be higher than the converter’s nominal output voltage due to  
resistive drops along the connecting wires. This higher voltage at  
the terminals produces a greater voltage stress on the converter’s  
internal components and may cause the converter to fail to deliver  
the desired output voltage at the low end of the input voltage  
range at the higher end of the load current and temperature  
range. Please consult the factory for details.  
TO SYNC  
CIRCUITRY  
PIN 6  
SYNC IN  
IN RTN  
5K  
PIN 2  
Figure B: Equivalent circuit looking into the SYNC IN pin with  
respect to the IN RTN (input return) pin.  
SYNCHRONIZATION: The MQFL converter’s switching fre-  
quency can be synchronized to an external frequency source  
that is in the 500 kHz to 700 kHz range. A pulse train at the  
desired frequency should be applied to the SYNC IN pin (pin 6)  
with respect to the INPUT RETURN (pin 2). This pulse train should  
have a duty cycle in the 20% to 80% range. Its low value should  
be below 0.8V to be guaranteed to be interpreted as a logic low,  
and its high value should be above 2.0V to be guaranteed to be  
interpreted as a logic high. The transition time between the two  
states should be less than 300ns.  
5V  
5K  
SYNC OUT  
FROM SYNC  
CIRCUITRY  
PIN 5  
PIN 2  
IN RTN  
OPEN COLLECTOR  
OUTPUT  
If the MQFL converter is not to be synchronized, the SYNC IN pin  
should be left open circuit. The converter will then operate in its  
free-running mode at a frequency of approximately 550 kHz.  
Figure C: Equivalent circuit looking into SYNC OUT pin with  
respect to the IN RTN (input return) pin.  
CURRENT SHARE: When several MQFL converters are placed  
in parallel to achieve either a higher total load power or N+1  
redundancy, their SHARE pins (pin 11) should be connected  
together. The voltage on this common SHARE node represents  
the average current delivered by all of the paralleled converters.  
Each converter monitors this average value and adjusts itself so  
that its output current closely matches that of the average.  
If, due to a fault, the SYNC IN pin is held in either a logic low or  
logic high state continuously, the MQFL converter will revert to its  
free-running frequency.  
The MQFL converter also has a SYNC OUT pin (pin 5). This  
output can be used to drive the SYNC IN pins of as many as ten  
(10) other MQFL converters. The pulse train coming out of SYNC  
Product # MQFL-270-06S  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-MQ2706S Rev. 2  
08/20/08  
Page 10  
MQFL-270-06S  
Output:  
Current:  
6.0 V  
20 A  
Technical Specification  
Since the SHARE pin is monitored with respect to the OUTPUT  
RETURN (pin 8) by each converter, it is important to connect all of  
the converters’ OUTPUT RETURN pins together through a low DC  
and AC impedance. When this is done correctly, the converters  
will deliver their appropriate fraction of the total load current to  
within +/- 10% at full rated load.  
100,000.0  
10,000.0  
1,000.0  
100.0  
Whether or not converters are paralleled, the voltage at the  
SHARE pin could be used to monitor the approximate average  
current delivered by the converter(s). A nominal voltage of 1.0V  
represents zero current and a nominal voltage of 2.2V represents  
the maximum rated total current, with a linear relationship in  
between. The internal source resistance of a converter’s SHARE  
pin signal is 2.5 kW.  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
Increase in Vout  
During an input voltage fault or primary disable event, the SHARE  
pin outputs a power failure warning pulse. The SHARE pin will  
go to 3V for approximately 14ms as the output voltage falls.  
During a current limit auto-restart event, the SHARE pin outputs a  
startup synchronization pulse. The SHARE pin will go to 5V for  
approximately 2ms before the converter restarts.  
Figure E: Output Voltage Trim Graph  
where:  
Vnom = the converter’s nominal output voltage,  
Vout = the desired output voltage (greater than Vnom), and  
Rtrim is in Ohms.  
NOTE: Converters operating from separate input filters with  
reverse polarity protection (such as the MQME-270-R filter) with  
their outputs connected in parallel may exhibit auto-restart opera-  
tion at light loads. Consult factory for details.  
As the output voltage is trimmed up, it produces a greater voltage  
stress on the converter’s internal components and may cause the  
converter to fail to deliver the desired output voltage at the low  
end of the input voltage range at the higher end of the load cur-  
rent and temperature range. Please consult the factory for details.  
Factory trimmed converters are available by request.  
OUTPUT VOLTAGE TRIM: If desired, it is possible to increase  
the MQFL converter’s output voltage above its nominal value. To  
do this, use the +SENSE pin (pin 10) for this trim function instead  
of for its normal remote sense function, as shown in Figure D.  
In this case, a resistor connects the +SENSE pin to the –SENSE  
pin (which should still be connected to the output return, either  
remotely or locally). The value of the trim resistor should be cho-  
sen according to the following equation or from Figure E:  
INPUT UNDER-VOLTAGE LOCKOUT: The MQFL converter  
has an under-voltage lockout feature that ensures the converter  
will be off if the input voltage is too low. The threshold of input  
voltage at which the converter will turn on is higher that the thresh-  
old at which it will turn off. In addition, the MQFL converter will  
not respond to a state of the input voltage unless it has remained  
in that state for more than about 200µs. This hysteresis and the  
delay ensure proper operation when the source impedance is  
high or in a noisy environment.  
Vnom  
Vout – Vnom – 0.025  
Rtrim = 100 x  
[
]
1
12  
+VIN  
ENA 2  
2
3
11  
IN RTN  
CASE  
SHARE  
10  
+ SNS  
Rtrim  
4
5
6
9
+
270Vdc  
ENA 1  
– SNS  
8
7
SYNC OUT  
SYNC IN  
OUT RTN  
+VOUT  
open  
means  
on  
Load  
+
Figure D: Typical connection for output voltage trimming.  
Product # MQFL-270-06S  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-MQ2706S Rev. 2  
08/20/08  
Page 11  
MQFL-270-06S  
Output:  
Current:  
6.0 V  
20 A  
Technical Specification  
INPUT OVER-VOLTAGE SHUTDOWN: The MQFL converter  
also has an over-voltage feature that ensures the converter will be  
off if the input voltage is too high. It also has a hysteresis and  
time delay to ensure proper operation.  
THERMAL CONSIDERATIONS: Figure 5 shows the suggested  
Power Derating Curves for this converter as a function of the case  
temperature and the maximum desired power MOSFET junction  
temperature. All other components within the converter are  
cooler than its hottest MOSFET, which at full power is no more  
than 20ºC higher than the case temperature directly below this  
MOSFET. The Mil-HDBK-1547A component derating guideline  
calls for a maximum component temperature of 105ºC. Figure  
5 therefore has one power derating curve that ensures this limit  
is maintained. It has been SynQor’s extensive experience that  
reliable long-term converter operation can be achieved with a  
maximum component temperature of 125ºC. In extreme cases,  
a maximum temperature of 145ºC is permissible, but not recom-  
mended for long-term operation where high reliability is required.  
Derating curves for these higher temperature limits are also  
included in Figure 5. The maximum case temperature at which  
the converter should be operated is 135ºC.  
CURRENT LIMIT: The converter will reduce its output voltage  
in response to an overload condition, as shown in Figure 6. If  
the output voltage drops to below approximately 50% of the  
nominal setpoint for longer than 1 second, the auto-restart feature  
will engage. The auto-restart feature will stop the converter from  
delivering load current, in order to protect the converter and the  
load from thermal damage. After four seconds have elapsed, the  
converter will automatically restart.  
In a system with multiple converters configured for load sharing  
using the SHARE pin, if the auto-restart feature engages, the con-  
verters will synchronize their restart using signals communicated  
on the SHARE pin.  
When the converter is mounted on a metal plate, the plate will  
help to make the converter’s case bottom a uniform temperature.  
How well it does so depends on the thickness of the plate and  
on the thermal conductance of the interface layer (e.g. thermal  
grease, thermal pad, etc.) between the case and the plate. Unless  
this is done very well, it is important not to mistake the plate’s  
temperature for the maximum case temperature. It is easy for  
them to be as much as 5-10ºC different at full power and at high  
temperatures. It is suggested that a thermocouple be attached  
directly to the converter’s case through a small hole in the plate  
when investigating how hot the converter is getting. Care must  
also be made to ensure that there is not a large thermal resistance  
between the thermocouple and the case due to whatever adhe-  
sive might be used to hold the thermocouple in place.  
BACK-DRIVE CURRENT LIMIT: Converters that use MOSFETs as  
synchronous rectifiers are capable of drawing a negative current  
from the load if the load is a source of short- or long-term energy.  
This negative current is referred to as a “back-drive current”.  
Conditions where back-drive current might occur include paral-  
leled converters that do not employ current sharing, or where the  
current share feature does not adequately ensure sharing during  
the startup or shutdown transitions. It can also occur when con-  
verters having different output voltages are connected together  
through either explicit or parasitic diodes that, while normally  
off, become conductive during startup or shutdown. Finally, some  
loads, such as motors, can return energy to their power rail. Even  
a load capacitor is a source of back-drive energy for some period  
of time during a shutdown transient.  
INPUT SYSTEM INSTABILITY: This condition can occur  
because any DC-DC converter appears incrementally as a  
negative resistance load. A detailed application note titled  
“Input System Instability” is available on the SynQor website  
which provides an understanding of why this instability arises,  
and shows the preferred solution for correcting it.  
To avoid any problems that might arise due to back-drive current,  
the MQFL converters limit the negative current that the converter  
can draw from its output terminals. The threshold for this back-  
drive current limit is placed sufficiently below zero so that the con-  
verter may operate properly down to zero load, but its absolute  
value (see the Electrical Characteristics page) is small compared  
to the converter’s rated output current.  
Product # MQFL-270-06S  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-MQ2706S Rev. 2  
08/20/08  
Page 12  
MQFL-270-06S  
Output:  
Current:  
6.0 V  
20 A  
Technical Specification  
CONSTRUCTION AND ENVIRONMENTAL STRESS SCREENING OPTIONS  
ES-Grade  
(-55 ºC to +125 ºC)  
(Element Evaluation)  
HB-Grade  
(-55 ºC to +125 ºC)  
(Element Evaluation)  
Consistent with  
MIL-STD-883F  
B-Grade  
(-40 ºC to +85 ºC)  
C-Grade  
(-40 ºC to +100 ºC)  
Screening  
Internal Visual  
Yes  
No  
Yes  
No  
Yes  
Yes  
*
Condition B  
(-55 ºC to +125 ºC)  
Condition C  
(-65 ºC to +150 ºC)  
Temperature Cycle  
Method 1010  
Constant  
Acceleration  
Method 2001  
(Y1 Direction)  
Condition A  
(5000g)  
No  
No  
500g  
Method 1015  
Load Cycled  
Burn-in  
• 10s period  
12 Hrs @ +100 ºC  
24 Hrs @ +125 ºC  
96 Hrs @ +125 ºC  
160 Hrs @ +125 ºC  
• 2s @ 100% Load  
• 8s @ 0% Load  
Method 5005  
(Group A)  
Final Electrical Test  
+25 ºC  
+25 ºC  
-45, +25, +100 ºC  
Full QorSeal  
-55, +25, +125 ºC  
Full QorSeal  
Mechanical Seal,  
Thermal, and Coating  
Process  
Anodized Package  
Full QorSeal  
External Visual  
2009  
Yes  
Yes  
*
*
Construction Process  
Ruggedized  
QorSeal  
QorSeal  
QorSeal  
* Per IPC-A-610 (Rev. D) Class 3  
MilQor converters and filters are offered in four variations of construction technique and environmental stress screening options. The  
three highest grades, C, ES, and HB, all use SynQor’s proprietary QorSeal™ Hi-Rel assembly process that includes a Parylene-C coating  
of the circuit, a high performance thermal compound filler, and a nickel barrier gold plated aluminum case. The B-grade version uses  
a ruggedized assembly process that includes a medium performance thermal compound filler and a black anodized aluminum case.  
Each successively higher grade has more stringent mechanical and electrical testing, as well as a longer burn-in cycle. The ES- and  
HB-Grades are also constructed of components that have been procured through an element evaluation process that pre-qualifies each  
new batch of devices.  
† Note: Since the surface of the black anodized case is not guaranteed to be electrically conductive, a star washer or similar device  
should be used to cut through the surface oxide if electrical connection to the case is desired.  
Product # MQFL-270-06S  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-MQ2706S Rev. 2  
08/20/08  
Page 13  
MQFL-270-06S  
Output:  
Current:  
6.0 V  
20 A  
Technical Specification  
0.093  
[2.36]  
0.250 [6.35]  
+VIN  
ENA 2  
1
2
3
4
5
6
12  
0.200 [5.08]  
TYP. NON-CUM.  
IN RTN  
STABILITY  
SHARE  
11  
1.50 [32.10]  
MQFL-270-06S-X-HB  
DC-DC CONVERTER  
270Vin 6.0 Vout @ 20 A  
+SNS  
-SNS  
10 1.260  
[32.00]  
ENA 1  
9
8
7
OUT RTN  
+VOUT  
SYNC OUT  
SYNC IN  
0.220 [5.59]  
PIN  
S/N 0000000 D/C 3205-301 CAGE 1WX10  
2.50 [63.50]  
2.76 [70.10]  
3.00 [76.20]  
0.050 [1.27]  
0.220 [5.59]  
0.28 [3.25]  
2.96 [75.2]  
0.228 [5.79]  
0.390 [9.91]  
Case X  
PACKAGE PINOUTS  
0.300 [7.62]  
0.140 [3.56]  
1.15 [29.21]  
Pin #  
1
2
3
4
5
6
7
8
Function  
0.250 [6.35]  
TYP  
POSITIVE INPUT  
INPUT RETURN  
CASE  
0.250 [6.35]  
1
2
3
4
5
6
+VIN  
12  
ENA 2  
0.200 [5.08]  
TYP. NON-CUM.  
2.00  
[50.80]  
IN RTN  
STABILITY  
SHARE  
+SNS  
11  
10  
9
MQFL-270-06S-X-HB  
DC-DC CONVERTER  
270Vin 6.0 Vout @ 20 A  
ENABLE 1  
1.50  
[38.10]  
-SNS  
ENA 1  
SYNC OUTPUT  
SYNC INPUT  
POSITIVE OUTPUT  
OUTPUT RETURN  
- SENSE  
+ SENSE  
SHARE  
ENABLE 2  
OUT RTN  
+VOUT  
SYNC OUT  
SYNC IN  
8
1.750  
[44.45]  
S/N 0000000 D/C 3205-301 CAGE 1WX10  
7
0.040 [1.02]  
PIN  
0.050 [1.27]  
0.220 [5.59]  
1.750 [44.45]  
2.50 [63.50]  
0.375 [9.52]  
9
0.390 [9.91]  
10  
11  
12  
2.96 [75.2]  
0.228 [5.79]  
Case Y  
Case W (variant of Y)  
Case Z (variant of Y)  
NOTES  
1) Case: Aluminum with gold over  
nickel plate finish for the C-, ES-, and  
HB-Grade products.  
0.250 [6.35]  
0.250 [6.35]  
0.200 [5.08]  
TYP. NON-CUM.  
0.200 [5.08]  
TYP. NON-CUM.  
Aluminum with black anodized finish  
for the B-Grade products.  
2) Pins: Diameter: 0.040” (1.02mm)  
Material: Copper  
Finish: Gold over Nickel plate  
3) All dimensions as inches (mm)  
4) Tolerances: a) x.xx +0.02”  
(x.x +0.5mm)  
b) x.xxx +0.010”  
(x.xx +0.25mm)  
5) Weight: 2.8 oz. (79 g) typical  
6) Workmanship: Meets or exceeds  
IPC-A-610C Class III  
0.420 [10.7]  
0.040 [1.02]  
PIN  
0.040 [1.02]  
PIN  
0.220 [5.59]  
0.420 [10.7]  
0.050 [1.27]  
0.220 [5.59]  
0.050 [1.27]  
0.050 [1.27]  
2.80 [71.1]  
0.525 [13.33]  
2.80 [71.1]  
0.525  
[13.33]  
0.390  
[9.91]  
0.390 [9.91  
Product # MQFL-270-06S  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-MQ2706S Rev. 2  
08/20/08  
Page 14  
MQFL-270-06S  
Output:  
Current:  
6.0 V  
20 A  
Technical Specification  
MilQor MQFL FAMILY MATRIX  
The tables below show the array of MQFL converters available. When ordering SynQor converters, please ensure that you use  
the complete part number according to the table in the last page. Contact the factory for other requirements.  
1.5V  
1.8V  
2.5V  
3.3V  
5V  
6V  
7.5V  
9V  
12V  
(12S)  
15V  
(15S)  
28V  
(28S)  
Single Output  
(1R5S) (1R8S) (2R5S) (3R3S) (05S)  
(06S) (7R5S) (09S)  
MQFL-28  
16-40Vin Cont.  
16-50Vin 1s Trans.*  
Absolute Max Vin = 60V  
40A  
40A  
40A  
40A  
40A  
40A  
40A  
40A  
40A  
40A  
40A  
40A  
40A  
40A  
40A  
40A  
40A  
40A  
40A  
40A  
30A  
30A  
30A  
30A  
30A  
30A  
30A  
22A  
24A  
24A  
20A  
24A  
24A  
20A  
15A  
20A  
20A  
17A  
17A  
20A  
17A  
12A  
16A  
16A  
13A  
13A  
16A  
13A  
10A  
13A  
13A  
11A  
11A  
13A  
11A  
8A  
10A  
10A  
8A  
8A  
8A  
4A  
4A  
MQFL-28E  
16-70Vin Cont.  
16-80Vin 1s Trans.*  
Absolute Max Vin =100V  
MQFL-28V  
16-40Vin Cont.  
5.5-50Vin 1s Trans.*  
Absolute Max Vin = 60V  
6.5A  
6.5A  
8A  
3.3A  
4A  
MQFL-28VE  
16-70Vin Cont.  
5.5-80Vin 1s Trans.*  
Absolute Max Vin = 100V  
8A  
MQFL-270  
155-400Vin Cont.  
155-475Vin 0.1s Trans.*  
Absolute Max Vin = 550V  
10A  
8A  
4A  
MQFL-270E  
130-475Vin Cont.  
130-520Vin 0.1s Trans.*  
Absolute Max Vin = 600V  
6.5A  
5A  
3.3A  
2.7A  
MQFL-270L  
65-350Vin Cont.  
65-475Vin 0.1s Trans.*  
Absolute Max Vin = 550V  
6A  
5V  
(05D)  
12V  
(12D)  
15V  
(15D)  
3.3V/±12V  
(3R312T)  
3.3V/±15V  
(3R315T)  
5V/±12V  
(0512T)  
5V/±15V  
(0515T)  
30V/±15V  
(3015T)  
Dual Output  
Triple Output  
MQFL-28  
MQFL-28  
16-40Vin Cont.  
8A  
Total  
16-40Vin Cont.  
22A/  
±1A  
22A/  
±0.8A  
15A/  
±1A  
15A/  
±0.8A  
2.5A/  
±0.8A  
24A Total 10A Total  
24A Total 10A Total  
16-50Vin 1s Trans.*  
Absolute Max Vin = 60V  
16-50Vin 1s Trans.*  
Absolute Max Vin = 60V  
MQFL-28E  
16-70Vin Cont.  
16-80Vin 1s Trans.*  
Absolute Max Vin =100V  
MQFL-28E  
16-70Vin Cont.  
16-80Vin 1s Trans.*  
8A  
Total  
22A/  
±1A  
22A/  
±0.8A  
15A/  
±1A  
15A/  
±0.8A  
2.5A/  
±0.8A  
Absolute Max Vin =100V  
MQFL-28V  
MQFL-28V  
16-40Vin Cont.  
8A  
20A Total  
Total  
6.5A  
Total  
16-40Vin Cont.  
22A/  
±1A  
22A/  
±0.8A  
15A/  
±1A  
15A/  
±0.8A  
2.5A/  
±0.8A  
5.5-50Vin 1s Trans.*  
Absolute Max Vin = 60V  
5.5-50Vin 1s Trans.*  
Absolute Max Vin = 60V  
MQFL-28VE  
MQFL-28VE  
16-70Vin Cont.  
8A  
20A Total  
Total  
6.5A  
Total  
16-70Vin Cont.  
22A/  
±1A  
22A/  
±0.8A  
15A/  
±1A  
15A/  
±0.8A  
2.5A/  
±0.8A  
5.5-80Vin 1s Trans.*  
Absolute Max Vin = 100V  
5.5-80Vin 1s Trans.*  
Absolute Max Vin = 100V  
MQFL-270  
MQFL-270  
155-400Vin Cont.  
155-400Vin Cont.  
22A/  
±1A  
22A/  
±0.8A  
15A/  
±1A  
15A/  
±0.8A  
2.5A/  
±0.8A  
24A Total 10A Total 8A Total  
155-475Vin 0.1s Trans.*  
Absolute Max Vin = 550V  
155-475Vin 0.1s Trans.*  
Absolute Max Vin = 550V  
MQFL-270E  
MQFL-270E  
130-475Vin Cont.  
8A  
Total  
6.5A  
Total  
130-475Vin Cont.  
22A/  
±1A  
22A/  
±0.8A  
15A/  
±1A  
15A/  
±0.8A  
2.5A/  
±0.8A  
20A Total  
130-520Vin 0.1s Trans.*  
Absolute Max Vin = 600V  
130-520Vin 0.1s Trans.*  
Absolute Max Vin = 600V  
MQFL-270L  
MQFL-270L  
22A/  
±1A  
22A/  
±0.8A  
15A/  
±1A  
15A/  
±0.8A  
2.5A/  
±0.8A  
65-350Vin Cont.  
15A  
Total  
6A  
Total  
5A  
Total  
65-350Vin Cont.  
65-475Vin 0.1s Trans.*  
Absolute Max Vin = 550V  
65-475Vin 0.1s Trans.*  
Absolute Max Vin = 550V  
(75W  
Total Output Power)  
max  
*Converters may be operated continuously at the highest transient input voltage, but some  
component electrical and thermal stresses would be beyond MIL-HDBK-1547A guidelines.  
†80% of total output current available on  
any one output.  
Product # MQFL-270-06S  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-MQ2706S Rev. 2  
08/20/08  
Page 15  
MQFL-270-06S  
Output:  
Current:  
6.0 V  
20 A  
Technical Specification  
PART NUMBERING SYSTEM  
The part numbering system for SynQor’s MilQor DC-DC converters follows the format shown in the table below.  
Output Voltage(s)  
Input  
Model  
Name  
Package Outline/  
Pin Configuration  
Screening  
Grade  
Voltage  
Range  
Single  
Output  
Dual  
Output  
Triple  
Output  
1R5S  
1R8S  
2R5S  
3R3S  
05S  
06S  
7R5S  
09S  
28  
28E  
28V  
28VE  
3R312T  
3R315T  
0512T  
0515T  
3015T  
X
Y
W
Z
B
C
ES  
HB  
05D  
12D  
15D  
MQFL  
270  
270E  
270L  
12S  
15S  
28S  
Example:  
MQFL – 270 – 06S – Y – ES  
APPLICATION NOTES  
A variety of application notes and technical white papers can be downloaded in pdf format from the SynQor website.  
PATENTS  
SynQor holds the following patents, one or more of which might apply to this product:  
5,999,417  
6,927,987  
6,222,742  
7,050,309  
6,545,890  
7,072,190  
6,577,109  
7,085,146  
6,594,159  
7,119,524  
6,731,520  
7,269,034  
6,894,468  
7,272,021  
6,896,526  
7,272,023  
Contact SynQor for further information:  
Phone:  
978-849-0600  
Warranty  
SynQor offers a two (2) year limited warranty. Complete warranty  
information is listed on our website or is available upon request from  
SynQor.  
Toll Free: 888-567-9596  
Fax:  
978-849-0602  
E-mail:  
Web:  
power@synqor.com  
www.synqor.com  
Information furnished by SynQor is believed to be accurate and reliable.  
However, no responsibility is assumed by SynQor for its use, nor for any  
infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any  
patent or patent rights of SynQor.  
Address: 155 Swanson Road  
Boxborough, MA 01719  
USA  
Product # MQFL-270-06S  
Phone 1-888-567-9596  
www.synqor.com  
Doc.# 005-MQ2706S Rev. 2  
08/20/08  
Page 16  

相关型号:

MQFL-270-06S-WC

1-OUTPUT 120W DC-DC REG PWR SUPPLY MODULE, MODULE-12
SYNQOR

MQFL-270-06S-WES

1-OUTPUT 120W DC-DC REG PWR SUPPLY MODULE, MODULE-12
SYNQOR

MQFL-270-06S-WHB

1-OUTPUT 120W DC-DC REG PWR SUPPLY MODULE, MODULE-12
SYNQOR

MQFL-270-06S-XES

1-OUTPUT 120W DC-DC REG PWR SUPPLY MODULE, MODULE-12
SYNQOR

MQFL-270-06S-XHB

1-OUTPUT 120W DC-DC REG PWR SUPPLY MODULE, MODULE-12
SYNQOR

MQFL-270-06S-Y-ES

HIGH RELIABILITY DC-DC CONVERTER
SYNQOR

MQFL-270-06S-YB

暂无描述
SYNQOR

MQFL-270-06S-YC

1-OUTPUT 120W DC-DC REG PWR SUPPLY MODULE, MODULE-12
SYNQOR

MQFL-270-06S-YES

1-OUTPUT 120W DC-DC REG PWR SUPPLY MODULE, MODULE-12
SYNQOR

MQFL-270-06S-YHB

1-OUTPUT 120W DC-DC REG PWR SUPPLY MODULE, MODULE-12
SYNQOR

MQFL-270-09S

HIGH RELIABILITY DC-DC CONVERTER
SYNQOR

MQFL-270-09S-Y-ES

HIGH RELIABILITY DC-DC CONVERTER
SYNQOR