BZX85B47TA [TAK_CHEONG]

Zener Diode, 47V V(Z), 2%, 1.3W, Silicon, Unidirectional, DO-41, HERMETIC SEALED, GLASS, DO-204AL, 2 PIN;
BZX85B47TA
型号: BZX85B47TA
厂家: Tak Cheong Electronics (Holdings) Co.,Ltd    Tak Cheong Electronics (Holdings) Co.,Ltd
描述:

Zener Diode, 47V V(Z), 2%, 1.3W, Silicon, Unidirectional, DO-41, HERMETIC SEALED, GLASS, DO-204AL, 2 PIN

文件: 总7页 (文件大小:846K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
Licensed by ON Semiconductor,  
A trademark of semiconductor  
TAK CHEONG  
Components  
Industries,  
LLC  
for  
Zener Technology and Products.  
1.3 Watt DO-41 Hermetically  
Sealed Glass Zener Voltage  
Regulators  
Maximum Ratings  
Rating  
Symbol  
Value  
Units  
Maximum Steady State Power Dissipation  
W
PD  
1.3  
@TL50, Lead Length = 3/8”  
8.67  
mW/℃  
Derate Above 50℃  
Operating and Storage  
Temperature Range  
TJ, Tstg  
-65 to +200  
°C  
Specification Features:  
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
Zener Voltage Range = 3.3V to 100V  
ESD Rating of Clas 3 (>6 KV) per Human Body Model  
DO-41 Package (DO-204AL)  
Double Slug Type Construction  
Metallurgical Bonded Construction  
Oxide Passivated Die  
Cathode  
Anode  
Specification Features:  
Case  
Finish  
: Double slug type, hermetically sealed glass  
: All external surfaces are corrosion resistant and leads are readily solderable  
Polarity : Cathode indicated by polarity band  
Mounting: Any  
L
85C  
xxx  
Maximum Lead Temperature for Soldering Purposes  
230, 1/16” from the case for 10 seconds  
L
= Logo  
= Device Code  
85Cxxx  
Ordering Information  
Device  
BZX85Cxxx  
Package  
Axial Lead  
Axial Lead  
Axial Lead  
Axial Lead  
Axial Lead  
Quantity  
2000 Units / Box  
BZX85CxxxRL  
BZX85CxxxRL2*  
BZX85CxxxTA  
BZX85CxxxTA2*  
6000 Units / Tape & Reel  
6000 Units / Tape & Reel  
4000 Units / Tape & Ammo  
4000 Units / Tape & Ammo  
* The “2” suffix refer to 26mm tape spacing.  
Devices listed in bold italic are Tak Cheong Preferred  
devices. Preferred devices are recommended choices  
for future use and best overall value.  
December 2005 / B  
http://takcheong.com  
1
BZX85C3V3 through BZX85C100 Series  
ELECTRICAL CHARACTERISTICS (TA  
= 25ºC unless  
otherwise noted. VF = 1.2 V Max @ IF = 200mA for all types)  
Symbol  
VZ  
Parameter  
Reverse Zener Voltage @ IZT  
Reverse Zener Current  
IZT  
ZZT  
IZk  
Maximum Zener Impedance @ IZT  
Reverse Zener Current  
ZZk  
IR  
Maximum Zener Impedance @ IZk  
Reverse Leakage Current @ VR  
Reverse Voltage  
VR  
IF  
Forward Current  
VF  
Forward Voltage @ IF  
Ir  
Surge Current @ TA = 25ºC  
ELECTRICAL CHARACTERISTICS (TA = 25ºC unless otherwise noted, VF = 1.2 V Max @ IF = 200mA for all types)  
(Note 2 & 3.)  
(Note 4.)  
Zener Voltage  
VZ (Volts)  
Zener Impedance  
Leakage Current  
IR @ VR  
Ir  
@ IZT  
ZZT @ IZT  
ZZK @ IZK  
(Note 5.)  
Device  
Device  
Min  
Nom  
Max  
(mA)  
(mA)  
(Volts)  
(mA)  
Marking  
()  
()  
(µA Max)  
(Note 1.)  
BZX85C3V3  
BZX85C3V6  
BZX85C3V9  
BZX85C4V3  
BZX85C4V7  
BZX85C5V1  
BZX85C5V6  
BZX85C6V2  
BZX85C6V8  
BZX85C7V5  
BZX85C8V2  
BZX85C9V1  
BZX85C10  
BZX85C3V3  
BZX85C3V6  
BZX85C3V9  
BZX85C4V3  
BZX85C4V7  
BZX85C5V1  
BZX85C5V6  
BZX85C6V2  
BZX85C6V8  
BZX85C7V5  
BZX85C8V2  
BZX85C9V1  
BZX85C10  
3.1  
3.4  
3.7  
4
3.3  
3.6  
3.9  
4.3  
4.7  
5.1  
5.6  
6.2  
6.8  
7.5  
8.2  
9.1  
10  
3.5  
3.8  
4.1  
4.6  
5
80  
60  
60  
50  
45  
45  
45  
35  
35  
35  
25  
25  
25  
20  
20  
20  
15  
15  
13  
13  
10  
7
400  
500  
500  
500  
600  
500  
400  
300  
300  
200  
200  
200  
200  
300  
350  
1
1
60  
30  
5
1
1
1380  
1260  
1190  
1070  
970  
890  
810  
730  
660  
605  
550  
500  
454  
414  
380  
1
1
1
3
1
4.4  
4.8  
5.2  
5.8  
6.4  
7
1
3
1.5  
2
5.4  
6
1
1
1
1
2
6.6  
7.2  
7.9  
8.7  
9.6  
10.6  
11.6  
12.7  
4
1
1
3
3.5  
3
1
1
4
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
1
4.5  
5
7.7  
8.5  
9.4  
10.4  
11.4  
5
1
5
1
6.5  
7
7
0.5  
0.5  
0.5  
BZX85C11  
BZX85C11  
11  
8
7.7  
8.4  
BZX85C12  
BZX85C12  
12  
9
1. TOLERANCE AND TYPE NUMBER DESIGNATION  
Tolerance designation – the type numbers listed have zener voltage min/max limits as shown. Device tolerance of ±2% are  
indicated by a “B” instead of a “C”.  
2. SPECIALS AVAILABLE INCLUDE  
Nominal zener voltages between the voltages shown and tighter voltage tolerances. For detailed information on price,  
availability and delivery, contact your nearest Tak Cheong representative.  
3. ZENER VOLTAGE (VZ) MEASUREMENT  
VZ is measured after the test current has been applied to 40 ±10msec., while maintaining the lead temperature (TL) at 30°C  
±1°C and 3/8” lead length.  
4. ZENER IMPEDANCE (ZZ) DERIVATION  
The zener impedance is derived from the 60 cycle AC voltage, which results when an AC current having an RMS value  
equal to 10% of the DC zener current (IZT or IZK) is superimposed on IZT or IZK  
.
5. SURGE CURRENT (Ir) NON-REPETITIVE  
The rating listed in the electrical characteristics table is maximum peak, non-repetitive, reverse surge current of ½ square  
wave or equivalent sine wave pulse of 1/120 second duration superimposed on the test current IZT per JEDEC registration;  
however, actual device capability is as described in figure 5 of the General Data DO-41 Glass.  
http://www.takcheong.com  
2
BZX85C3V3 through BZX85C100 Series  
ELECTRICAL CHARACTERISTICS (TA = 25ºC unless otherwise noted, VF = 1.2 V Max @ IF = 200mA for all types)  
(Note 7 & 8.)  
(Note 9.)  
Zener Voltage  
VZ (Volts)  
Zener Impedance  
Leakage Current  
IR @ VR  
Ir  
@ IZT  
ZZT @ IZT  
ZZK @ IZK  
(Note 10.)  
Device  
Device  
Min  
Nom  
Max  
(mA)  
(mA)  
(Volts)  
(mA)  
Marking  
()  
()  
(µA Max)  
(Note 6.)  
BZX85C13  
BZX85C15  
BZX85C16  
BZX85C18  
BZX85C20  
BZX85C22  
BZX85C24  
BZX85C27  
BZX85C30  
BZX85C33  
BZX85C36  
BZX85C39  
BZX85C43  
BZX85C47  
BZX85C51  
BZX85C56  
BZX85C62  
BZX85C68  
BZX85C75  
BZX85C82  
BZX85C91  
BZX85C100  
BZX85C13  
BZX85C15  
BZX85C16  
BZX85C18  
BZX85C20  
BZX85C22  
BZX85C24  
BZX85C27  
BZX85C30  
BZX85C33  
BZX85C36  
BZX85C39  
BZX85C43  
BZX85C47  
BZX85C51  
BZX85C56  
BZX85C62  
BZX85C68  
BZX85C75  
BZX85C82  
BZX85C91  
BZX85C100  
12.4  
13.8  
15.3  
16.8  
18.8  
20.8  
22.8  
25.1  
28  
13  
15  
16  
18  
20  
22  
24  
27  
30  
33  
36  
39  
43  
47  
51  
56  
62  
68  
75  
82  
91  
100  
14.1  
15.6  
17.1  
19.1  
21.2  
23.3  
25.6  
28.9  
32  
20  
15  
15  
15  
10  
10  
10  
8
10  
15  
400  
500  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
9.1  
10.5  
11  
344  
304  
285  
250  
225  
205  
190  
170  
150  
135  
125  
115  
110  
95  
15  
500  
0.5  
20  
500  
0.5  
12.5  
14  
24  
600  
0.5  
25  
600  
0.5  
15.5  
17  
25  
600  
0.5  
30  
750  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
19  
8
30  
1000  
1000  
1000  
1000  
1000  
1500  
1500  
2000  
2000  
2000  
2000  
3000  
3000  
3000  
21  
31  
35  
8
35  
23  
34  
38  
8
40  
25  
37  
41  
6
45  
27  
40  
46  
6
50  
30  
44  
50  
4
90  
33  
48  
54  
4
115  
120  
125  
130  
150  
200  
250  
350  
36  
90  
52  
60  
4
39  
80  
58  
66  
4
43  
70  
64  
72  
4
47  
65  
70  
80  
4
51  
60  
77  
87  
2.7  
2.7  
2.7  
56  
55  
85  
96  
62  
50  
96  
106  
68  
45  
6. TOLERANCE AND TYPE NUMBER DESIGNATION  
Tolerance designation – the type numbers listed have zener voltage min/max limits as shown. Device tolerance of ±2% are  
indicated by a “B” instead of a “C”.  
7. SPECIALS AVAILABLE INCLUDE  
Nominal zener voltages between the voltages shown and tighter voltage tolerances. For detailed information on price,  
availability and delivery, contact your nearest Tak Cheong representative.  
8. ZENER VOLTAGE (VZ) MEASUREMENT  
VZ is measured after the test current has been applied to 40 ±10msec., while maintaining the lead temperature (TL) at 30°C  
±1°C and 3/8” lead length.  
9. ZENER IMPEDANCE (ZZ) DERIVATION  
The zener impedance is derived from the 60 cycle AC voltage, which results when an AC current having an RMS value  
equal to 10% of the DC zener current (IZT or IZK) is superimposed on IZT or IZK  
.
10. SURGE CURRENT (Ir) NON-REPETITIVE  
The rating listed in the electrical characteristics table is maximum peak, non-repetitive, reverse surge current of ½ square  
wave or equivalent sine wave pulse of 1/120 second duration superimposed on the test current IZT per JEDEC registration;  
however, actual device capability is as described in figure 5 of the General Data DO-41 Glass.  
http://www.takcheong.com  
3
BZX85C3V3 through BZX85C100 Series  
1.7  
1.3  
0.9  
0.5  
0.1  
120  
T , LEAD TEMPERATURE (°C)  
0
60  
80  
160  
20  
40  
100  
140  
180  
200  
L
Figure 1. Power Temperature Derating Curve  
http://www.takcheong.com  
4
BZX85C3V3 through BZX85C100 Series  
a. Range for Units to 12 Volts  
b. Range for Units to 12 to 100 Volts  
100  
+12  
+10  
+8  
+6  
+4  
+2  
0
70  
50  
30  
20  
RANGE  
V
@ I  
Z ZT  
10  
7
5
V
@ I  
ZT  
Z
RANGE  
3
2
-2  
1
-4  
10  
11  
12  
10  
20  
30  
V , ZENER VOLTAGE (VOLTS)  
Z
50  
70  
100  
6
4
7
8
9
3
2
5
V
, ZENER VOLTAGE (VOLTS)  
Z
Figure 2. Temperature Coefficients  
(-55 °C to +150 °C temperature range; 90% of the units are in the ranges indicated.)  
+6  
175  
150  
V
@ I  
Z
= 25 °C  
Z
+4  
+2  
T
A
125  
100  
20 mA  
75  
50  
0
0.01 mA  
1 mA  
-2  
NOTE: BELOW 3 VOLTS AND ABOVE 8 VOLTS  
NOTE: CHANGES IN ZENER CURRENT DO NOT  
NOTE: EFFECT TEMPERATURE COEFFICIENTS  
25  
0
-4  
4
7
8
3
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.60.7  
0.8  
0.9  
1
6
5
V
, ZENER VOLTAGE (VOLTS)  
Z
L, LEAD LENGTH TO HEAT SINK (INCHES)  
Figure 3. Typical Thermal Resistance  
versus Lead Length  
Figure 4. Effect of Zener Current  
100  
70  
50  
RECT ANGULAR  
WAVEFORM  
11 V - 100 V NONREPETITIVE  
3.3 V - 10 V NONREPETITIVE  
T
= 25°C PRIOR TO  
J
30  
20  
5% DUTY CYCLE  
INITIAL PULSE  
10  
7
10% DUTY CYCLE  
20% DUTY CYCLE  
5
3
2
1
0.01  
0.02  
0.05  
0.1  
0.2  
0.5  
1
2
5
10  
20  
50  
100  
200  
500  
1000  
PW, PULSE WIDTH (ms)  
This graph represents 90 percentile data points.  
For worst case design characteristics, multiply surge power by 2/3.  
Figure 5. Maximum Surge Power  
http://www.takcheong.com  
5
BZX85C3V3 through BZX85C100 Series  
1000  
500  
1000  
700  
500  
T
i
= 25 °C  
(rms) = 0.1 I (dc)  
T
i
= 25 °C  
J
J
Z
V
= 2.7 V  
(rms) = 0.1 I (dc)  
Z
Z
Z
Z
f = 60 Hz  
f = 60 Hz  
I
= 1 mA  
Z
200  
200  
100  
47 V  
27 V  
100  
50  
5 mA  
70  
50  
20 mA  
20  
10  
20  
10  
7
5
6.2 V  
5
2
1
2
1
0.1  
0.2  
0.5  
1
2
5
10  
20  
50 100  
1
2
3
5
7
10  
V , ZENER VOLTAGE (V)  
Z
20  
30  
50 70 100  
I
, ZENER CURRENT (mA)  
Z
Figure 6. Effect of Zener Current  
on Zener Impedance  
Figure 7. Effect of Zener Voltage  
on Zener Impedance  
10000  
7000  
5000  
400  
300  
200  
100  
50  
TYPICAL LEAKAGE CURRENT  
AT 80% OF NOMINAL  
2000  
1000  
0 V BIAS  
1 V BIAS  
BREAKDOWN VOLTAGE  
700  
500  
200  
20  
100  
70  
50  
10  
8
50% OF BREAKDOWN BIAS  
20  
10  
4
1
2
5
10  
20  
50  
100  
7
5
V
, NOMINAL V (VOLTS)  
Z
Z
Figure 9. Typical Capacitance versus VZ  
2
1
0.7  
0.5  
1000  
500  
MINIMUM  
MAXIMUM  
+125 °C  
0.2  
200  
100  
50  
0.1  
0.07  
0.05  
0.02  
0.01  
0.007  
0.005  
20  
10  
75°C  
+25°C  
25°C  
0°C  
5
150°C  
0.002  
0.001  
2
1
0.4  
0.5  
0.6  
0.7  
V , FORWARD VOLTAGE (VOLTS)  
F
0.8  
0.9  
1
1.1  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
V
, NOMINAL ZENER VOLTAGE (VOLTS)  
Z
Figure 8. Typical Leakage Current  
Figure 10. Typical Forward Characteristics  
http://www.takcheong.com  
6
BZX85C3V3 through BZX85C100 Series  
APPLICATION NOTE  
Since the actual voltage available from a given zener  
T is the increase in junction temperature above the lead  
JL  
diode is temperature dependent, it is necessary to determine  
junction temperature under any set of operating conditions  
in order to calculate its value. The following procedure is  
recommended:  
temperature and may be found as follows:  
TJL = θJLPD.  
θ
may be determined from Figure 3 for dc power  
JL  
conditions. For worst-case design, using expected limits of  
I , limits of P and the extremes of T (T ) may be  
Lead Temperature, T , should be determined from:  
L
Z
D
J
J
TL = θLAPD + TA.  
estimated. Changes in voltage, V , can then be found from:  
Z
θ
is the lead-to-ambient thermal resistance (°C/W) and P  
D
LA  
V = θVZ TJ.  
is the power dissipation. The value for θ will vary and  
LA  
θ
, the zener voltage temperature coefficient, is found  
VZ  
depends on the device mounting method. θ is generally 30  
LA  
from Figure 2.  
to 40°C/W for the various clips and tie points in common use  
and for printed circuit board wiring.  
Under high power-pulse operation, the zener voltage will  
vary with time and may also be affected significantly by the  
zener resistance. For best regulation, keep current  
excursions as low as possible.  
Surge limitations are given in Figure 5. They are lower  
than would be expected by considering only junction  
temperature, as current crowding effects cause temperatures  
to be extremely high in small spots, resulting in device  
degradation should the limits of Figure 5 be exceeded.  
The temperature of the lead can also be measured using a  
thermocouple placed on the lead as close as possible to the  
tie point. The thermal mass connected to the tie point is  
normally large enough so that it will not significantly  
respond to heat surges generated in the diode as a result of  
pulsed operation once steady-state conditions are achieved.  
Using the measured value of T , the junction temperature  
L
may be determined by:  
TJ = TL + TJL  
.
http://www.takcheong.com  
7

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY