GYPRO2300LD [TDK]

陀螺仪;
GYPRO2300LD
型号: GYPRO2300LD
厂家: TDK ELECTRONICS    TDK ELECTRONICS
描述:

陀螺仪

CD
文件: 总22页 (文件大小:1534K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Tronic’s Microsystems S.A.  
98 rue du Pré de l’Horme, 38920 Crolles, France  
Phone: +33 (0)4 76 97 29 50  
www.tronicsgroup.com  
GYPRO2300 Datasheet  
Features  
Digital angular rate sensor with SPI interface  
Angular rate measurement around Z-axis (yaw)  
±300°/sec input range  
Ultra low noise  
Excellent bias instability  
General Description  
GYPRO® product line is an established family of Micro-Electro-  
Mechanical Systems (MEMS) angular rate sensor specifically  
designed for demanding applications.  
24 bit angular rate output  
Embedded temperature sensor for on-chip or  
external temperature compensation  
Built-in Self-Test  
5V single supply voltage  
The MEMS transducer is manufactured using Tronics  
proprietary vacuum wafer-level packaging technology based on  
micro-machined thick single crystal silicon.  
Low operating current consumption: 25mA  
CLCC 30 package: 19.6 mm x 11.5 mm x 2.9 mm  
Weight : 2 grams  
The integrated circuit (IC) provides a stable primary anti-  
phase vibration of the ‘drive’ proof masses, thanks to  
electrostatic comb drives. When the sensor is subjected to a  
rotation, the Coriolis force acts on the ‘sense’ proof masses and  
REACH and RoHS compatible  
forces them into  
a secondary anti-phase movement  
perpendicular to the direction of drive vibration, which is itself  
counter-balanced by electrostatic forces. The sense closed loop  
operates as an electromechanical ΣΔ modulator providing a  
digital output. This output is finally demodulated using the  
drive reference signal.  
Applications  
Precision instrumentation  
Platform stabilization and control  
Unmanned aerial vehicles  
The sensor is factory calibrated and compensated for  
temperature effects to provide high-accuracy digital output  
over a broad temperature range.  
Raw data output can be also chosen to enable customer-made  
compensations.  
GYPRO® Product references  
Part Number  
G2300  
G2310  
G3300  
Improved vibration  
tolerance & ultra-low  
delay configuration  
1ms  
G4300  
Improved bias thermal  
stability & reduced  
dimensions  
1ms  
Low delay  
configuration  
Description  
Standard configuration  
Latency  
Vibration range  
Bandwidth  
40ms  
4g rms  
100Hz  
2ms  
4g rms  
>200Hz  
8g rms  
>200Hz  
8g rms  
>200Hz  
Datarate  
200Hz  
1700Hz  
1800Hz  
1800Hz  
Angular Random Walk  
Size (L x l x h)  
Package  
0.14°/√hr  
19 x 11 x 3mm  
CLCC 30  
0.14°/√hr  
19 x 11 x 3mm  
CLCC 30  
0.15°/√hr  
19 x 11 x 4mm  
CLCC 30  
0.10°/√hr  
12 x 12 x 6mm  
28 pins J-Lead  
Disclaimer  
Information furnished by Tronics is believed to be accurate and reliable. However, no responsibility is assumed by Tronics for its  
use, nor for any infringements of patents or other rights of third parties that may result from its use.  
Specification subject to change without notice.  
No license is granted by implication or otherwise under any patent or patent rights of Tronics. Trademarks and registered  
trademarks are the property of their respective owners.  
©Copyright 2021 Tronic’s Microsystems S.A.. All rights reserved.  
Internal ref. : MCD001-F  
Page 1  
Specification subject to change without notice.  
 
 
 
 
 
Tronic’s Microsystems S.A.  
98 rue du Pré de l’Horme, 38920 Crolles, France  
Phone: +33 (0)4 76 97 29 50  
www.tronicsgroup.com  
GYPRO2300 Datasheet  
Contents  
Features ............................................................................................................................................... 1  
Applications.......................................................................................................................................... 1  
General Description .............................................................................................................................. 1  
GYPRO® Product references.................................................................................................................. 1  
Disclaimer............................................................................................................................................. 1  
Block diagram ............................................................................................................................................................................... 3  
Overall Dimensions....................................................................................................................................................................... 3  
1.  
2.  
3.  
4.  
Specifications ............................................................................................................................... 4  
Maximum Ratings ........................................................................................................................ 6  
Typical performances ................................................................................................................... 7  
Interface ...................................................................................................................................... 9  
4.1. Pinout, sensitive axis identification................................................................................................................................... 9  
4.2. Application circuit.............................................................................................................................................................. 9  
4.3. Input/Output Pin Definitions........................................................................................................................................... 10  
5.  
6.  
Soldering Recommendations ...................................................................................................... 11  
Digital SPI interface .................................................................................................................... 13  
6.1. Electrical and Timing Characteristics............................................................................................................................... 13  
6.2. SPI frames description..................................................................................................................................................... 14  
6.3. Angular rate readings ...................................................................................................................................................... 14  
6.4. Temperature readings..................................................................................................................................................... 14  
6.5. Advanced use of SPI registers.......................................................................................................................................... 15  
7.  
Angular rate calibration procedure ............................................................................................. 17  
7.1. Algorithm overview ......................................................................................................................................................... 17  
7.2. Programming of the new coefficients ............................................................................................................................. 18  
7.3. Switch to uncompensated data output........................................................................................................................... 18  
8.  
9.  
Temperature Sensor Calibration Procedure ................................................................................ 19  
8.1. Temperature sensor calibration model........................................................................................................................... 19  
8.2. Recommended Procedure............................................................................................................................................... 19  
Device Identification/Ordering information ................................................................................ 20  
9.1. Device identification........................................................................................................................................................ 20  
9.2. Ordering information ...................................................................................................................................................... 20  
10. Internal construction and Theory of Operation ........................................................................... 21  
11. Available Tools and Resources.................................................................................................... 22  
©Copyright 2021 Tronic’s Microsystems S.A.. All rights reserved.  
Page 2  
Internal ref. : MCD001-F  
Specification subject to change without notice.  
Tronic’s Microsystems S.A.  
98 rue du Pré de l’Horme, 38920 Crolles, France  
Phone: +33 (0)4 76 97 29 50  
www.tronicsgroup.com  
GYPRO2300 Datasheet  
Block diagram  
Overall Dimensions  
©Copyright 2021 Tronic’s Microsystems S.A.. All rights reserved.  
Specification subject to change without notice.  
Internal ref. : MCD001-F  
Page 3  
Tronic’s Microsystems S.A.  
98 rue du Pré de l’Horme, 38920 Crolles, France  
Phone: +33 (0)4 76 97 29 50  
www.tronicsgroup.com  
GYPRO2300 Datasheet  
1. Specifications  
Unless specified in brackets, GYPRO2300LD characteristics are the same as GYPRO2300.  
Parameter  
Unit  
Typ.  
Max  
Notes  
Measurement Ranges  
Input range*  
°/s  
°C  
±300  
±350  
Electronic clamping is applied and sensors will saturate before  
±500°/s.  
Temperature range *  
Bias  
-40 to +85  
Bias instability  
°/h  
°/h  
0.8  
30  
Lowest point of Allan variance curve at room temperature.  
Bias in-run (short term)  
stability  
Standard deviation of the 1 second filtered output over 1 hour  
at room temperature, after 30 min of stabilization.  
Residual Bias Temperature  
Error, calibrated *  
°/s  
0.05  
0.2  
Peak to peak deviation of the bias over the specified  
temperature range after warm-up. Factory calibration is  
performed in test socket following one stabilization thermal  
cycle and while sensor is powered up. As printed circuit board  
reflow soldering may cause shifts in bias temperature variations,  
it may be necessary to do an on-board calibration after  
soldering, depending on applications requirements.  
Bias run to run repeatability  
°/h  
10  
30  
Standard deviation of 7 bias measurements at 30°C that occurs  
between seven runs of operation with 30 minutes power off  
between each run.  
Vibration rectification  
coefficient  
°/h/g²  
Bias rectification under vibration, overall level 4g rms, according  
to Figure 11.  
Scale Factor (tested on ±300°/s range)  
Scale Factor *  
LSB/°/s  
%
10 000  
0.2  
Nominal scale factor.  
Residual Scale factor  
Temperature Error,  
calibrated *  
0.75  
Peak to peak deviation of the scale factor over the specified  
temperature range.  
Scale Factor run to run  
repeatability  
ppm  
ppm  
100  
70  
Standard deviation of 7 scale factor measurements at 30°C that  
occurs between seven runs of operation with 30 minutes power  
off between each run.  
Scale factor non linearity*  
500  
Maximum deviation of the output from the expected value using  
a best fit straight line, at room temperature.  
Noise  
RMS Noise [1-100Hz] *  
°/s  
0.02  
0.14  
0.05  
RMS noise level in the band [1-100Hz], obtained by integrating  
the power spectral density of the sensor output between 1 and  
100Hz at zero rate and room temperature.  
Angular random walk  
Frequency response  
Bandwidth  
°/√h  
-1/2 slope of Allan variance curve at room temperature.  
Hz  
Hz  
100  
(>200)  
Defined as the frequency for which attenuation is equal to -3dB.  
Drive resonant frequency of the sensor, at room temperature.  
Resonant Frequency  
3300 to 3950  
©Copyright 2021 Tronic’s Microsystems S.A.. All rights reserved.  
Page 4  
Internal ref. : MCD001-F  
Specification subject to change without notice.  
Tronic’s Microsystems S.A.  
98 rue du Pré de l’Horme, 38920 Crolles, France  
Phone: +33 (0)4 76 97 29 50  
www.tronicsgroup.com  
GYPRO2300 Datasheet  
Parameter  
Unit  
Typ.  
Max  
Notes  
Data Rate  
Hz  
190 to 240  
Refresh rate of the output data at room temperature.  
(1560 to 1890)  
Latency  
ms  
s
40  
(2)  
Group delay of the filtering chain.  
Start-up Time  
0.8  
Time interval between application of power on and the  
availability of an output signal (at least 90% of the input rate, at  
room temperature.  
Linear acceleration  
G sensitivity  
°/h/g  
ms  
18  
10  
Mean value on all axis of output variations under 1g.  
Recovery time  
Time interval between an impact (half sine 50 g, 6 ms) and the  
presence of a usable output of the sensor.  
Axis alignment  
Rate Axis misalignment  
mrad  
16  
Misalignment between the sensitive axis and the normal to the  
package bottom plane, by design.  
Environmental  
Storage temperature range  
Humidity at 45°C  
°C  
%
--  
-55 to +100  
<98  
1
Moisture Sensitivity Level  
(MSL)  
Unlimited floor life out of the bag (hermetic package).  
Half sine.  
Shock (operating)  
Shock (survival)  
g | ms  
g | ms  
grms  
50 | 6  
2000 | 0.3  
Vibrations (operating)  
Vibrations (survival)  
Electrical  
4
See Figure 11  
grms  
20  
Power Supply Voltage  
V
4.75 to 5.25  
25  
Current consumption  
(normal mode)  
mA  
Current consumption  
(power down mode)  
µA  
1
<5  
Power down mode is activated by switching EN pin to GND.  
Power supply rejection ratio  
Temperature sensor  
°/h/V  
40  
Scale Factor (raw data)  
LSB/°C  
LSB  
20  
Temperature sensor is not factory-calibrated.  
Temperature sensor is not factory-calibrated.  
25°C typical output (raw  
data)  
2000  
Refresh rate  
Hz  
6
Table 1 Specifications  
* 100% tested in production.  
** Unless otherwise specified, max values are ±3 sigma variation limits from validation test population.  
©Copyright 2021 Tronic’s Microsystems S.A.. All rights reserved.  
Internal ref. : MCD001-F  
Page 5  
Specification subject to change without notice.  
Tronic’s Microsystems S.A.  
98 rue du Pré de l’Horme, 38920 Crolles, France  
Phone: +33 (0)4 76 97 29 50  
www.tronicsgroup.com  
GYPRO2300 Datasheet  
2. Maximum Ratings  
Stresses at or exceeding the maximum ratings listed below may cause permanent damage to the device, or affect its reliability.  
Exposure to maximum ratings conditions for extended periods may also affect device reliability.  
Functional operation is not guaranteed once stresses exceeding the maximum ratings have been applied.  
Parameter  
Unit  
V
Min  
Max  
Supply Voltage  
-0.5  
+7  
±2  
Electrostatic Discharge (ESD) protection, any pin, Human Body Model  
Storage temperature range  
Shock survival  
kV  
°C  
--  
-55  
+100  
2000  
20  
g
--  
--  
Vibrations survival, 20-2000Hz  
Ultrasonic cleaning  
grms  
Not allowed  
Table 2 Maximum ratings  
Caution!  
The product may be damaged by ESD, which can cause performance degradation or device failure! We  
recommend handling the device only on a static safe work station. Precaution for the storage should also  
be taken.  
The sensor MUST be powered-on before any SPI operation, as shown in Figure 1 below. Having the SPI  
pads, or EN at a high level while VDD is at a low level could damage the sensor, due to ESD protection  
diodes and buffers.  
Figure 1 Recommended voltage sequence  
©Copyright 2021 Tronic’s Microsystems S.A.. All rights reserved.  
Page 6  
Internal ref. : MCD001-F  
Specification subject to change without notice.  
 
Tronic’s Microsystems S.A.  
98 rue du Pré de l’Horme, 38920 Crolles, France  
Phone: +33 (0)4 76 97 29 50  
www.tronicsgroup.com  
GYPRO2300 Datasheet  
3. Typical performances  
Figure 2 Distribution of bias over temperature  
Figure 5 Bias variation over temperature (5 samples)  
Figure 3 Distribution of scale factor over temperature  
Figure 6 Scale factor variation over temperature (5 samples)  
Figure 4 Distribution of scale factor non linearity (RT)  
Figure 7 Scale factor non linearity over temperature (5 samples)  
©Copyright 2021 Tronic’s Microsystems S.A.. All rights reserved.  
Specification subject to change without notice.  
Internal ref. : MCD001-F  
Page 7  
Tronic’s Microsystems S.A.  
98 rue du Pré de l’Horme, 38920 Crolles, France  
Phone: +33 (0)4 76 97 29 50  
www.tronicsgroup.com  
GYPRO2300 Datasheet  
Figure 8 Distribution of RMS Noise (RT)  
Figure 12 Typical Noise density (RT)  
Figure 13 Start-Up Time variation over temperature  
Figure 14 Allan variance (RT)  
Figure 9 Distribution of Start-Up time (RT)  
Figure 10 Typical Bandwidth  
Figure 11 Operating vibration profile  
©Copyright 2021 Tronic’s Microsystems S.A.. All rights reserved.  
Specification subject to change without notice.  
Page 8  
Internal ref. : MCD001-F  
Tronic’s Microsystems S.A.  
98 rue du Pré de l’Horme, 38920 Crolles, France  
Phone: +33 (0)4 76 97 29 50  
www.tronicsgroup.com  
GYPRO2300 Datasheet  
4.2. Application circuit  
4. Interface  
4.1. Pinout, sensitive axis identification  
Figure 17: Recommended Application Schematic (top view)  
Notes:  
All capacitances of Figure 17 should be placed as  
close as possible to their corresponding pins, except  
the 100nF capacitance between VDD and GND,  
which should be as close as possible to the board’s  
supply input.  
The 100µF filtering capacitance between GREF and  
GND should have low Equivalent Series Resistance  
(ESR < 1Ω) and low leakage current (< 6µA). A  
tantalum capacitor is recommended.  
Figure 15: How to locate Pin 1  
5.6µF and 330nF filtering capacitance between PLLF  
and GND should have a low leakage current (<1µA).  
Figure 16: GYPRO2300 Sensors Pinout (bottom view)  
Figure 18: Recommended Pad Layout in mm (top view)  
©Copyright 2021 Tronic’s Microsystems S.A.. All rights reserved.  
Internal ref. : MCD001-F  
Page 9  
Specification subject to change without notice.  
 
Tronic’s Microsystems S.A.  
98 rue du Pré de l’Horme, 38920 Crolles, France  
Phone: +33 (0)4 76 97 29 50  
www.tronicsgroup.com  
GYPRO2300 Datasheet  
4.3. Input/Output Pin Definitions  
Pin name  
Pin number  
Pin type  
Pin  
direction  
Pin levels  
Function  
1, 2, 3, 9, 26,  
28, 29, 30  
8, 10, 25  
GND  
VDD  
Supply  
Supply  
n/a  
n/a  
0V  
Power Ground  
+5V  
Power Supply  
External decoupling pad. MUST be  
connected to the board’s VSS through  
a 100µF external capacitor, in order to  
ensure low noise.  
GREF  
4
Analog  
n/a  
4.4V  
VDD with pull-  
up of 100kΩ  
EN  
6
Digital  
Analog  
Input  
Enable command. Active high.  
External filtering pad. MUST be  
PLLF  
11  
Output  
0.8V  
connected to  
a
filtering stage,  
described in Figure 17.  
Self-test status. Logic “1” when the  
sensor is OK.  
Reset. Reloads the internal calibration  
data. Active low  
Slave Selection signal. Active low  
SPI clock signal  
Master Output Slave Input signal  
Master Input Slave Output signal  
Internal clock  
ST  
15  
16  
Digital  
Digital  
Output  
Input  
VDD  
VDD with pull-  
up of 100kΩ  
VDD  
VDD  
VDD  
VDD  
VDD  
RSTB  
SSB  
SCLK  
MOSI  
MISO  
CLCK400K  
20  
21  
22  
23  
27  
Digital  
Digital  
Digital  
Digital  
Digital  
Input  
Input  
Input  
Output  
Output  
Do Not electrically Connect.  
These pins provide additional  
mechanical fixing to the board and  
should be soldered to an unconnected  
pad.  
5, 7, 12, 13,  
14, 17, 18, 19, --  
24  
DNC  
--  
--  
Table 3: Pin Functions  
Note: The digital pads maximum ratings are GND-0.3V and VDD+0.3V.  
©Copyright 2021 Tronic’s Microsystems S.A.. All rights reserved.  
Specification subject to change without notice.  
Page 10  
Internal ref. : MCD001-F  
Tronic’s Microsystems S.A.  
98 rue du Pré de l’Horme, 38920 Crolles, France  
Phone: +33 (0)4 76 97 29 50  
www.tronicsgroup.com  
GYPRO2300 Datasheet  
5. Recommendations  
5.1. Soldering  
Please note that the reflow profile to be used does not depend only on the sensor. The whole populated board characteristics  
shall be taken into account.  
MEMS components are sensitive to mechanical stress coming from the Printed Circuit Board (PCB) during the soldering reflow.  
This stress is caused by the mismatch between the Coefficient of Thermal Expansion (CTE) of the ceramic package and the PCB  
and can affect the Bias temperature variations. In order to achieve the best performance, it is recommended to do an on-board  
calibration after the soldering of the sensor.  
For a better reliability of the soldering, Tronics recommends using Copper-Invar-Copper or ceramic boards. These types of boards  
have a coefficient of thermal expansion (CTE) close to the CTE of GYPRO2300 package (6.8 ppm/°C).  
Figure 19: Reflow Profile, according to IPC/JEDEC J-STD-020D.1  
©Copyright 2021 Tronic’s Microsystems S.A.. All rights reserved.  
Internal ref. : MCD001-F  
Page 11  
Specification subject to change without notice.  
Tronic’s Microsystems S.A.  
98 rue du Pré de l’Horme, 38920 Crolles, France  
Phone: +33 (0)4 76 97 29 50  
www.tronicsgroup.com  
GYPRO2300 Datasheet  
Profile Feature  
Eutectic Assembly  
Time maintained above  
Temperature (TL)  
183°C  
Time (tL)  
60-150 sec  
240°C (+/-5°C)  
10-30 sec  
Peak Temperature (Tp)  
Time within 5°C of Actual Peak Temperature (tp)  
Table 4: Reflow Profile Details, according to IPC/JEDEC J-STD-020D.1  
5.2. Multi-sensor integration  
Mechanical coupling between drive frequencies of several sensors can affect performance at system level, for example within  
Inertial Measurement Units. Customer has to take care of such coupling during system design and validation.  
5.3. Traceability  
Label integrity has been validated with Vigon® and IPA. For other chemical treatment, the label integrity is not guaranteed.  
©Copyright 2021 Tronic’s Microsystems S.A.. All rights reserved.  
Page 12  
Internal ref. : MCD001-F  
Specification subject to change without notice.  
Tronic’s Microsystems S.A.  
98 rue du Pré de l’Horme, 38920 Crolles, France  
Phone: +33 (0)4 76 97 29 50  
www.tronicsgroup.com  
GYPRO2300 Datasheet  
6. Digital SPI interface  
6.1. Electrical and Timing Characteristics  
The device acts as a slave supporting only SPI mode 0(clock polarity CPOL=0, clock phase CPHA=0).  
Figure 20: SPI timing diagram  
Symbol  
Parameter  
Condition  
Unit  
Min  
Typ  
Max  
Electrical characteristics  
VIL  
Low level input voltage  
VDD  
VDD  
V
0
0.1  
1
VIH  
High level input voltage  
Low level output voltage  
High level output voltage  
Pull-up resistor  
0.8  
VOL  
ioL=0mA (Capacitive Load)  
GND  
VDD  
100  
-
VOH  
Rpull_up  
ioH=0mA (Capacitive Load)  
V
Internal pull-up resistance to VDD  
Internal pull-down resistance to GND  
kΩ  
kΩ  
Rpull_down  
Pull-down resistor  
Timing parameters  
Fspi  
SPI clock input frequency  
SCLK low pulse  
Maximal load 25pF on MOSI or MISO  
MHz  
ns  
0.2  
8
T_low_sclk  
T_high_sclk  
T_setup_mosi  
T_hold_mosi  
T_delay_miso  
T_setup_ssb  
T_hold_ssb  
62.5  
62.5  
10  
SCLK high pulse  
MOSI setup time  
MOSI hold time  
MISO output delay  
SSB setup time  
ns  
ns  
ns  
5
Load 25pF  
ns  
40  
Tsclk  
1
1
Tsclk  
SSB hold time  
Table 5: SPI timing parameters  
The MISO pin is kept in high impedance when the SSB level is high, which allows sharing the SPI bus with other components.  
IMPORTANT NOTE: It is forbidden to keep SPI pads at a high level while VDD is at 0V due to ESD protection diodes and buffers.  
©Copyright 2021 Tronic’s Microsystems S.A.. All rights reserved.  
Internal ref. : MCD001-F  
Page 13  
Specification subject to change without notice.  
Tronic’s Microsystems S.A.  
98 rue du Pré de l’Horme, 38920 Crolles, France  
Phone: +33 (0)4 76 97 29 50  
www.tronicsgroup.com  
GYPRO2300 Datasheet  
24-bit value by a factor 10 000 results in the angular  
rate in °/s, as shown in Table 7.  
6.2. SPI frames description  
The SPI frames used for the communication through the SPI  
Register are composed of an instruction followed by  
arguments. The SPI instruction is composed of 1 byte, and the  
arguments are composed of 2, 4 or 8 bytes, depending on the  
cases, as can be seen in Table 6 below.  
-350.0000 °/s  
-300.0000 °/s  
1100 1010 1001 1000 0010 0000  
1101 0010 0011 1001 0100 0000  
-0.0002 °/s  
-0.0001 °/s  
0.0000 °/s  
+0.0001 °/s  
+0.0002 °/s  
1111 1111 1111 1111 1111 1110  
1111 1111 1111 1111 1111 1111  
0000 0000 0000 0000 0000 0000  
0000 0000 0000 0000 0000 0001  
0000 0000 0000 0000 0000 0010  
Figure 21: SPI Message Structure  
+300.0000 °/s  
+350.0000 °/s  
0010 1101 1100 0110 1100 0000  
Instruction Argument  
Meaning  
0011 0101 0110 0111 1110 0000  
Table 7: Conversion table for calibrated angular rate output  
0x50  
0x54  
0x58  
0x78  
0x7C  
0x00000000 (n=4) Read Angular Rate  
0x0000 (n=2)  
Read Temperature  
6.3.2.  
Data Ready (DRY) bit  
0x00000000 (n=4)  
Advanced commands.  
The Data Ready bit is a flag which is raised when a new angular  
rate data is available. The flag stays raised until the new data is  
read.  
0xXXXXXXXX (n=8) See Section 6.5 for more  
details.  
0xXXXX (n=2)  
Table 6: Authorized SPI commands  
6.3.3.  
Self-Test (ST) bit  
The ST bit raises a flag (1 logic) at the same frequency as the  
angular rate output data rate indicating whether if the sensor  
is properly operating (i.e. whether the drive loop control  
provides stable drive oscillations amplitude).  
6.3. Angular rate readings  
From the 32-bits (4 bytes) frame obtained after the “Read  
Angular Rateinstruction, the 24-bits word of angular rate data  
(RATE) must be extracted as shown below in Figure 22.  
The self-test procedure is running in parallel to the main  
functions of the sensor.  
DRY and ST are respectively the data readyand self-test”  
bits.  
The ST data is also available on the pin 15. This pin is set to  
VDD when the sensor is working properly.  
6.4. Temperature readings  
The temperature data is an unsigned integer, 12-bits word  
(TEMP). It must be extracted from the 2 bytes of read data, as  
shown below in Figure 23.  
Figure 22: Angular rate reading frames and data organization  
6.3.1.  
Angular rate (RATE) output  
The 24-bit gyro output is coded in two’s complement  
(Table 7).  
Figure 23: Temperature reading frames and data organization  
If the temperature compensation is not enabled  
(GOUT_SEL=1), then the user should perform scale  
factor measurements.  
If the temperature compensation of the angular  
rate output is enabled (default case), dividing the  
By default the temperature sensor is not factory-calibrated  
(TOUTSEL=0).  
©Copyright 2021 Tronic’s Microsystems S.A.. All rights reserved.  
Specification subject to change without notice.  
Page 14  
Internal ref. : MCD001-F  
 
 
 
 
Tronic’s Microsystems S.A.  
98 rue du Pré de l’Horme, 38920 Crolles, France  
Phone: +33 (0)4 76 97 29 50  
www.tronicsgroup.com  
GYPRO2300 Datasheet  
6.5. Advanced use of SPI registers  
SPI registers can also be used to access the System register or the MTP (Multi-Time-Programmable memory).  
6.5.1.  
R/W access to the System Registers  
IMPORTANT NOTE: Modifications to the system registers are reversible. Modified registers will not be restored after a RESET.  
There is no limitation to the number of times the system registers can be modified.  
Figure 24: Sequence of instructions to READ address 0xMM of the system registers  
Figure 25: Sequence of instructions to WRITE 0xXXXXXXXXto address ‘0xMMof the system registers  
6.5.2.  
R/W access to the MTP  
IMPORTANT NOTE: Modifications to the MTP are non-reversible. Modified parameters will be restored, even after a RESET, and  
previous values of the MTP cannot be accessed anymore. The maximum number of times the MTP can be written depends on the  
address:  
7 times for the angular rate calibration coefficients (see Section 7 for more details)  
Only 1 time for all the other coefficients, including the temperature sensor calibration coefficients.  
Figure 26 : Sequence of instructions to READ address 0xMM of the MTP  
Figure 27: Sequence of instructions to WRITE data 0xXXXXXXXXto address 0xMMof the MTP  
©Copyright 2021 Tronic’s Microsystems S.A.. All rights reserved.  
Internal ref. : MCD001-F  
Page 15  
Specification subject to change without notice.  
 
 
 
 
Tronic’s Microsystems S.A.  
98 rue du Pré de l’Horme, 38920 Crolles, France  
Phone: +33 (0)4 76 97 29 50  
www.tronicsgroup.com  
GYPRO2300 Datasheet  
6.5.3.  
Useful Sensor Parameters  
The instructions given in Sections 6.5.1 and 6.5.2 can be used to read and/or to modify the sensor’s useful parameters given in  
Table 8 below.  
Parameter  
Address M  
(System  
Bits  
Encoding  
Meaning  
Register &  
MTP)  
Sensor Identification  
UID 0x00  
[30:1]  
Tronics reserved Sensor ‘Unique Identification’ number  
Temperature output compensation  
TOUT_SEL  
0x09  
0x04  
0x04  
2*  
0 **  
1
0x000 **  
See section 8  
0x800 **  
See section 8  
Disable the calibrated temperature output  
Enable the calibrated temperature output  
Offset calibration of temperature sensor  
O
G
[27:16] *  
[13:2] *  
Gain calibration of temperature sensor  
Angular rate output compensation  
GOUT_SEL  
0x02  
27 *  
0**  
1
Enable the calibrated angular rate output  
Disable the calibrated angular rate output  
Scale Factor 2nd order coefficient (calibrated angular rate)  
Bias 2nd order coefficient (calibrated angular rate)  
Bias 1st order coefficient (calibrated angular rate)  
Bias constant coefficient (calibrated angular rate)  
Scale Factor 1st order coefficient (calibrated angular rate)  
Scale Factor constant coefficient (calibrated angular rate)  
Mid-temperature calibration point  
Unprogrammed part  
Programmed once, 7 slots remaining  
Programmed twice, 6 slots remaining  
SF2  
B2  
B1  
B0  
SF1  
SF0  
TMID  
MTPSLOTNB  
0x2E  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x02  
[31:16] *  
[15:0] *  
[29:0] *  
[29:0] *  
[29:0] *  
[29:0] *  
[19:0] *  
[15:8] *  
See Table 9  
See Table 9  
See Table 9  
See Table 9  
See Table 9  
See Table 9  
See Table 9  
0b00000000  
0b00000001 **  
0b00000011  
0b01111111  
0b11111111  
Programmed 7 times, 1 slot remaining  
Programmed 8 times, no slot remaining  
Table 8: Useful parameters information  
Notes:  
* The other bits at those addresses shall remain unchanged. Please make sure that you write them without modification!  
** Default Value  
©Copyright 2021 Tronic’s Microsystems S.A.. All rights reserved.  
Page 16  
Internal ref. : MCD001-F  
Specification subject to change without notice.  
 
Tronic’s Microsystems S.A.  
98 rue du Pré de l’Horme, 38920 Crolles, France  
Phone: +33 (0)4 76 97 29 50  
www.tronicsgroup.com  
GYPRO2300 Datasheet  
7. Angular rate calibration procedure  
7.1. Algorithm overview  
After filtering, the raw angular rate sensor output is temperature compensated based on the on-chip temperature sensor output  
and the stored temperature compensation parameters.  
7.1.1.  
Angular rate output calibration model  
7.1.2.  
Recommended procedure  
The formula below models the link between raw and 1. Set GOUT_SEL to 1 in the System Registers (disable the  
compensated angular rate outputs:  
calibration)  
[ ]  
RATEꢁꢂW LSB − 퐁퐈퐀퐒[LSB]  
RATECOMP[LSB]  
[
]
RATE °/s =  
=
2. Place the sensor on a rate table in a thermal chamber and  
implement temperature profile according to Figure 281  
퐒퐅[LSB °/s]  
SFꢀetting[LSB °/푠]  
where:  
3. Perform continuous acquisition of the angular rate output  
with the following pattern:  
RATE is the angular rate output converted in °/s;  
RATECOMP is the calibrated angular rate output;  
SFsetting is the constant conversion factor from LSB to  
°/s for the calibrated angular rate output. Default  
value for this parameter is SFsetting = 10 000;  
RATERAW is the raw data angular rate output;  
BIAS is a polynomial (2nd degree) temperature-  
varying coefficient to model the sensor’s bias  
temperature variations;  
Rest position (0°/s input) to evaluate the BIAS  
parameter  
+ 300°/s input then -300°/s input to evaluate the SF  
parameter2  
4. Calculate the coefficients of BIAS and SF polynomials:  
2
SF is a polynomial (2nd degree) temperature-varying  
coefficient to model the sensor’s Scale Factor  
temperature variations.  
(
)
BIAS = ∑ bTꢁꢂW TMꢃD  
푖ꢄ0  
2
(
)
푆퐹 = ∑ sfTꢁꢂW TMꢃD  
푖ꢄ0  
where  
TRAW is the raw output of the temperature sensor  
multiplied by 256;  
TMID is the mid-value of TRAW;  
b0 to b2 are the 3 coefficients of BIAS polynomial;  
sf0 to sf2 are the 3 coefficients of SF polynomial.  
5. Convert TMID, bi and sfi parameters to their binary values  
according to Table 9 below:  
Parameter Value (decimal)  
Format  
SF2  
SF1  
SF0  
B2  
B1  
B0  
sf2 . 255 / SFsetting  
sf1 . 246 / SFsetting  
sf0 . 227 / SFsetting  
b2 . 239  
signed 2’s comp  
signed 2’s comp  
signed 2’s comp  
signed 2’s comp  
signed 2’s comp  
signed 2’s comp  
unsigned  
Figure 28: Recommended Temperature profile for calibration  
b1 . 235  
b0  
TMID  
TMID  
Table 9: Angular rate calibration parameters  
_________________________________________________________________________________________________________  
1 Temperature profile can be adapted to be in line with customer applications  
2 Rate applied can be adapted to be in line with customer applications  
©Copyright 2021 Tronic’s Microsystems S.A.. All rights reserved.  
Internal ref. : MCD001-F  
Page 17  
Specification subject to change without notice.  
 
 
Tronic’s Microsystems S.A.  
98 rue du Pré de l’Horme, 38920 Crolles, France  
Phone: +33 (0)4 76 97 29 50  
www.tronicsgroup.com  
GYPRO2300 Datasheet  
9. Program B1 in the MTP  
7.2. Programming of the new coefficients  
10. Write B0 in the system register  
11. Program B0 in the MTP  
12. Write TMID in the system register  
13. Program TMID  
IMPORTANT NOTE: The following steps are non-reversible.  
The previous values of the coefficients will not be accessible  
anymore. The temperature compensation coefficients can be  
re-programmed up to 7 additional times on the IC.  
The detailed SPI commands are given in section 6.5. The  
detailed information about each coefficient is given in Table 8.  
The programming procedure consists in three major steps:  
Checking the available MTP slot status  
Programming the coefficients  
Updating the available MTP slot status  
An overview of the procedure is given in Figure 29.  
7.2.1.  
Checking the MTP slot status  
The first step is to check the number of remaining MTP slots  
(MTPSLOTNB), in other words, checking how many times the  
chip has been programmed before.  
The detailed information of MTPSLOTNB register content is  
given in Table 8. The sequence of instructions to read the  
register is given in Figure 26.  
The MTP slot number (MTPSLOTNB) re-programming  
iteration is given in the following table:  
Iteration  
Correspondence  
MTP number  
Value  
Binary  
0
1
2
3
4
5
6
7
8
Unprogrammed part  
Programmed once  
Programmed twice  
0
1*  
3
00000000  
00000001  
00000011  
00000111  
00001111  
00011111  
00111111  
01111111  
11111111  
7
Figure 29 Procedure to program new calibration parameters  
15  
31  
63  
127  
255  
7.2.3.  
Updating MTP slot status  
This section describes the procedure for programming the  
updated status of the MTP slots.  
Cannot be further  
programmed  
Table 10: MTPSLOTNB iterations  
If this step is not performed properly, the new compensation  
coefficients will not be effective.  
1. Read the MTPSLOTNB as described in section 6.5.2.  
2. Increment MTPSLOTNB according to Table 10.  
3. Write the updated MTPSLOTNB in the system register.  
4. Program the updated MTPSLOTNB in the MTP.  
5. After a reset, the new coefficients will be available.  
* Default value  
7.2.2.  
Programming the coefficients  
This step describes the procedure for programming the  
calculated coefficients (temperature compensation of angular  
rate output). The programming procedure is:  
7.3. Switch to uncompensated data output  
1. Write SF2 in the system register  
2. Write B2 in the system register  
3. Program SF2 & B2 in the MTP  
4. Write SF1 in the system register  
5. Program SF1 in the MTP  
To optimize the thermal compensation of the angular rate  
output, it is possible to disable the on-chip compensation and  
use the uncompensated (raw) output to perform an external  
thermal compensation.  
6. Write SF0 in the system register  
7. Program SF0 in the MTP  
8. Write B1 in the system register  
To switch the output to uncompensated data, the procedure  
is described on section 6.5, by modifying the GOUT register  
described on Table 8.  
©Copyright 2021 Tronic’s Microsystems S.A.. All rights reserved.  
Specification subject to change without notice.  
Page 18  
Internal ref. : MCD001-F  
 
 
Tronic’s Microsystems S.A.  
98 rue du Pré de l’Horme, 38920 Crolles, France  
Phone: +33 (0)4 76 97 29 50  
www.tronicsgroup.com  
GYPRO2300 Datasheet  
8. Temperature Sensor Calibration Procedure  
The temperature output of GYPRO2300 sensors is not factory-calibrated, since only the relative temperature output is needed  
to perform temperature compensation of the angular rate output. However, it is possible to perform a first-order polynomial  
calibration of the temperature sensor, in order to output the absolute temperature information.  
This section shows how to get and store temperature calibration parameters for the temperature output.  
3. Calculate the GAIN and OFFSET coefficients according to  
8.1. Temperature sensor calibration model  
formula above.  
The formula below models the link between raw and calib-  
rated temperature output:  
T1퐴퐵ꢇ[°ꢅ] − Tꢈ퐴퐵ꢇ[°ꢅ]  
GAIN = GAINꢆ푒푡푡푖푛푔  
.
[
]
T1푅퐴푊 LSB − 푇ꢈ푅퐴[LSB]  
[ ]  
퐆퐀퐈퐍 . TꢁꢂW LSB + 퐎퐅퐅퐒퐄퐓[LSB]  
TCOMP[LSB]  
[
]
T °ꢅ =  
=
GAINꢀetting[LSB °ꢅ]  
GAINꢀetting[LSB °ꢅ]  
[
]
[
]
ꢉFFSET = GAINꢆ푒푡푡푖푛푔 . T1퐴퐵ꢇ °ꢅ − GAIN . T1푅퐴푊 LSB  
where:  
where:  
T is the output temperature converted in °C;  
TCOMP is the calibrated temperature output;  
GAINsetting is the constant conversion factor from LSB  
to °C for the calibrated temperature output. This gain  
is set to 20LSB/°C to provide an output resolution of  
0,1°C;  
T1ABS is the absolute temperature of T1 in °C;  
T2ABS is the absolute temperature of T2 in °C;  
T1RAW is the raw output temperature of T1 in LSB;  
T2RAW is the raw output temperature of T2 in LSB;  
4. Convert GAIN and OFFSET to their binary values according  
to Table 11 below:  
TRAW is the raw data temperature output;  
OFFSET is a constant coefficient to tune the offset;  
GAIN is a constant coefficient to tune gain.  
Parameter Value (decimal)  
G
O
Format  
Unsigned  
Unsigned  
GAIN . 209  
OFFSET  
The OFFSET and GAIN parameters will be computed and  
written in the ASIC as per the following calibration procedure.  
Table 11: Temperature calibration parameters  
5. [ Optional step: Write GAIN and OFFSET into the System  
Registers and repeat step 2. to check the accuracy of the  
new calibration. ]  
8.2. Recommended Procedure  
1. Check that TOUT_SEL = 0. If not, set it to 0 in the System  
Registers.  
6. Write GAIN and OFFSET into the MTP according to  
instructions of Section 6.5.2. Meanwhile, set TOUT_SEL to  
1 during this step, so that the new calibration parameters  
are effective after a RESET.  
2. Measure the temperature output with at least  
temperature points T1 and T2.  
2
©Copyright 2021 Tronic’s Microsystems S.A.. All rights reserved.  
Internal ref. : MCD001-F  
Page 19  
Specification subject to change without notice.  
 
Tronic’s Microsystems S.A.  
98 rue du Pré de l’Horme, 38920 Crolles, France  
Phone: +33 (0)4 76 97 29 50  
www.tronicsgroup.com  
GYPRO2300 Datasheet  
9. Device Identification / Ordering information  
9.1. Device identification  
GYPRO2300 tracking information is accessible on the label, as shown in the next figure.  
Figure 30: GYPRO2300 label.  
9.2. Ordering information  
Figure 31 Ordering information  
* For second 2nd generation only  
** Custom version or specific requirement can be address upon request.  
Product  
GYPRO2300  
Ordering code  
3-G2300-A0  
GYPRO2300LD  
GYPRO3300  
GYPRO2300-EVB2  
GYPRO2300LD-EVB2  
GYPRO3300-EVB2  
3-G2310-A0  
3-G3300-A0  
4-G2300-A0  
4-G2310-A0  
4-G3300-A0  
©Copyright 2021 Tronic’s Microsystems S.A.. All rights reserved.  
Page 20  
Internal ref. : MCD001-F  
Specification subject to change without notice.  
Tronic’s Microsystems S.A.  
98 rue du Pré de l’Horme, 38920 Crolles, France  
Phone: +33 (0)4 76 97 29 50  
www.tronicsgroup.com  
GYPRO2300 Datasheet  
10.Internal construction and Theory of Operation  
2)  
Simplicity of hardware implementation. Oversampling  
concept allows significant design relaxation of the analog  
detection chain signal resolution. Additionally the voltage  
reference used for actuation force feedback is also of simple  
implementation as it is a 1-bit D/A converter, thus simplifying  
its design.  
3)  
Linearization of the electrostatic forces thanks to the  
Sigma-delta principle (through force averaging) furthermore  
reduces non-linearity overall and more importantly its even-  
order terms, which result in rectification error.  
Figure 32 : Inner view of the package, showing the MEMS and IC  
4)  
Sigma-Delta signal output is inherently a digital signal,  
GYPRO series is using the dominant architecture for high  
performance MEMS gyro, namely the “Tunning fork or dual  
massdesign.  
thus suppressing the need for costly high resolution A/D  
converter.  
The digital part implements digital drive and sense loops,  
demodulates, decimates and processes the gyro output based  
on the on-chip temperature sensor output. The system  
controller manages the interface between the SPI registers, the  
system register and the non-volatile memory (OTP). The non-  
volatile memory provides the gyro settings, in particular the  
coefficients for angular rate sensor temperature  
compensation. On power up, the gyro settings are transferred  
from the OTP to the system registers and output data are  
available in the SPI registers. The angular rate sensor output  
and the temperature sensor output are available in the SPI  
registers. The SPI registers are available through the SPI  
interface (SSB, SCLK, MOSI, MISO). The self-test is available on  
the external pins ST.  
In details, each sensor consists in a MEMS transducer and an  
integrated circuit (IC) packaged in a 30-pins Ceramic Leadless  
Chip Carrier Package.  
The sensing element (MEMS die), which is located on the left  
part of the Figure 32, is manufactured using Tronics’ wafer-  
level packaging technology based on micro-machined thick  
single crystal silicon. The MEMS consists of two coupled sub-  
structures subjected to linear anti-phase vibrations. The  
structures are vacuumed at the wafer-level providing high Q-  
factor in the drive mode. The drive system is decoupled from  
the sense system in order to reduce feedback from sense  
motion to drive electrodes. The drive anti phase vibration is  
sustained by electrostatic comb drives. The sense anti phase  
vibration resulting from Coriolis forces is counter balanced by  
electrostatic forces. Differential detection and actuation are  
used for both drive and sense systems and for each sub-  
structure, keeping two identical structures for efficient  
common mode rejection.  
The “References” block generates the required biasing  
currents and voltages for all blocks as well as the low-noise  
reference voltage for critical blocks.  
The “Power Management” block manages the power supply  
of the sensor from a single 5V supply between the VDD and  
GND pins. It includes a power on reset as well as an external  
reset pin (RSTB) to start or restart operation using default  
configuration. An enable pin (EN) with power-down capability  
is also available.  
The integrated circuit (IC), which is located on the right part  
of the Figure 32, is designed to interface the MEMS sensing  
element. It includes ultra-low noise capacitive to voltage  
converters (C2V) followed by high resolution voltage  
digitization (ADC) for both drive and sense paths. Excitation  
voltage required for capacitance sensing circuits is generated  
on the common electrode node. 1-bit force feedbacks (DAC)  
are used for both drive and sense system actuation.  
The sensor is powered with a single 5V DC power supply  
through pins VDD and GND. Although the sensor contains three  
separate VDD pins, the sensor is supplied by a single 5V voltage  
source. It is recommended to supply the three VDD pins in a  
star connection with appropriate decoupling capacitors.  
Regarding the sensor grounds, all the GND pins are internally  
shorted. The GND pins redundancy is used for multiple bonds  
in order to reduce the total ground inductance. It is therefore  
recommended to connect all the GND pins to the ground.  
The choice for the implemented close-loop architecture based  
on a Sigma-Delta principle is particularly well adapted as it  
brings the following key advantages:  
1)  
Sigma-Delta is well suited for low-frequency signals.  
Noise shaping principle rejects quantization noise in high  
frequency bands.  
©Copyright 2021 Tronic’s Microsystems S.A.. All rights reserved.  
Specification subject to change without notice.  
Internal ref. : MCD001-F  
Page 21  
 
Tronic’s Microsystems S.A.  
98 rue du Pré de l’Horme, 38920 Crolles, France  
Phone: +33 (0)4 76 97 29 50  
www.tronicsgroup.com  
GYPRO2300 Datasheet  
11.Available Tools and Resources  
The following tools and resources are available on the GYPRO® product page of our website or upon request.  
Item Description  
Documentation & technical notes  
GYPRO® product line - Flyer  
GYPRO® product Technical note  
External filtering for Gypro2300LD and Gypro3300  
GYPRO® product Technical note  
GYPRO MTBF Methodology  
Mechanical tools  
Evaluation kit  
GYPRO2300 3D model  
GYPRO2300-EVB2 Evaluation board  
Evaluation board for GYPRO2300, compatible with Arduino Yun_rev2  
Evaluation Board User manual  
Evaluation Kit Quick start guide  
Evaluation Tool Software user manual  
GYPRO® Evaluation Tool Tutorial  
Installation and programming of the Evaluation kit  
GYPRO® Evaluation Tool Tutorial  
Software  
Evaluation Tool Software  
Evaluation Tool Arduino Firmware  
©Copyright 2021 Tronic’s Microsystems S.A.. All rights reserved.  
Page 22  
Internal ref. : MCD001-F  
Specification subject to change without notice.  

相关型号:

GYPRO3300

陀螺仪
TDK

GYPRO4300

陀螺仪
TDK
TDK

GYRO-1123D

DAB/DAB-IP/T-DMB USB Dongle
ETC

GYXYY

150mA NanoPower™ LDO Linear Regulator
ANALOGICTECH

GZ0415YD104M600ZNT

Ceramic Capacitor, Multilayer, Ceramic, 16V, 20% +Tol, 20% -Tol, X5R, 15% TC, 0.1uF, Surface Mount, 0415, CHIP
KYOCERA AVX

GZ0415YD104M600ZNW

Ceramic Capacitor, Multilayer, Ceramic, 16V, 20% +Tol, 20% -Tol, X5R, 15% TC, 0.1uF, Surface Mount, 0415, CHIP
KYOCERA AVX

GZ0415ZD104M600ZNT

Ceramic Capacitor, Multilayer, Ceramic, 10V, 20% +Tol, 20% -Tol, X5R, 15% TC, 0.1uF, Surface Mount, 0415, CHIP
KYOCERA AVX

GZ11

Zener Diodes
VISHAY

GZ11A1

Zener Diodes
VISHAY

GZ11A1/D8

Zener Diode, 9.7V V(Z), 2.06%, 0.5W, Silicon, Unidirectional, DO-204AH, GLASS, DO-35, 2 PIN
VISHAY

GZ11A1D7

DIODE 9.7 V, 0.5 W, SILICON, UNIDIRECTIONAL VOLTAGE REGULATOR DIODE, DO-204AH, GLASS, DO-35, 2 PIN, Voltage Regulator Diode
VISHAY