HAL1566SU [TDK]

霍尔开关;
HAL1566SU
型号: HAL1566SU
厂家: TDK ELECTRONICS    TDK ELECTRONICS
描述:

霍尔开关

开关
文件: 总34页 (文件大小:468K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Hardware  
Documentation  
Data Sheet  
APdrevlaimncinearInyfDoramtaatSiohneet  
HAL® 156y  
Hall-Effect Switches  
with Current Interface (2-wire)  
in SOT23 Package  
Edition March 30, 2022  
Edition Sept. 285, 2015  
DSH000194_004EN  
APID000000118844__000011EEN  
DATA SHEET  
HAL 156y  
Copyright, Warranty, and Limitation of Liability  
The information and data contained in this document are believed to be accurate and reli-  
able. The software and proprietary information contained therein may be protected by  
copyright, patent, trademark and/or other intellectual property rights of TDK-Micronas. All  
rights not expressly granted remain reserved by TDK-Micronas.  
TDK-Micronas assumes no liability for errors and gives no warranty representation or  
guarantee regarding the suitability of its products for any particular purpose due to these  
specifications.  
By this publication, TDK-Micronas does not assume responsibility for patent infringe-  
ments or other rights of third parties which may result from its use. Commercial condi-  
tions, product availability and delivery are exclusively subject to the respective order con-  
firmation.  
Any information and data which may be provided in the document can and do vary in dif-  
ferent applications, and actual performance may vary over time.  
All operating parameters must be validated for each customer application by customers’  
technical experts. Any mention of target applications for our products is made without a  
claim for fit for purpose as this has to be checked at system level.  
Any new issue of this document invalidates previous issues. TDK-Micronas reserves the  
right to review this document and to make changes to the document’s content at any time  
without obligation to notify any person or entity of such revision or changes. For further  
advice please contact us directly.  
Do not use our products in life-supporting systems, military, aviation, or aerospace appli-  
cations! Unless explicitly agreed to otherwise in writing between the parties, TDK-Micro-  
nas’ products are not designed, intended or authorized for use as components in systems  
intended for surgical implants into the body, or other applications intended to support or  
sustain life, or for any other application in which the failure of the product could create a  
situation where personal injury or death could occur.  
No part of this publication may be reproduced, photocopied, stored on a retrieval system  
or transmitted without the express written consent of TDK-Micronas.  
TDK-Micronas Trademarks  
– HAL  
Third-Party Trademarks  
All other brand and product names or company names may be trademarks of their  
respective companies.  
TDK-Micronas GmbH  
March 30, 2022; DSH000194_004EN  
2
DATA SHEET  
HAL 156y  
Contents  
Page  
Section  
Title  
4
1.  
Introduction  
5
1.1.  
Features of HAL 156y  
6
2.  
Ordering Information  
6
2.1.  
Device-Specific Ordering Codes  
8
9
9
3.  
3.1.  
3.1.1.  
Functional Description of HAL 156y  
Functional Safety According to ISO 26262  
Diagnostic Features  
10  
10  
12  
12  
13  
14  
14  
15  
15  
15  
16  
18  
20  
22  
24  
26  
28  
4.  
4.1.  
4.2.  
4.2.1.  
4.3.  
Specifications  
Outline Dimensions  
Soldering, Welding and Assembly  
SOT23 Footprint for Reflow and Wave Soldering  
Pin Connections (from Top Side, example HAL 1564) and Short Descriptions  
Dimension and Position of Sensitive Area  
Absolute Maximum Ratings  
4.4.  
4.5.  
4.6.  
4.7.  
4.8.  
ESD and Latch-up  
Storage and Shelf Life  
Recommended Operating Conditions  
Electrical Characteristics  
HAL 1561 Magnetic Characteristics  
HAL 1562 Magnetic Characteristics  
HAL 1563 Magnetic Characteristics  
HAL 1564 Magnetic Characteristics  
HAL 1565 Magnetic Characteristics  
HAL 1566 Magnetic Characteristics  
4.9.  
4.10.  
4.11.  
4.12.  
4.13.  
4.14.  
4.15.  
30  
30  
31  
32  
33  
33  
5.  
Application Notes  
Application Circuits  
5.1.  
5.1.1.  
5.2.  
5.3.  
5.4.  
ESD System Level Application Circuit (ISO10605-2008)  
Ambient Temperature  
Start-Up Behavior  
EMC and ESD  
34  
6.  
Document History  
TDK-Micronas GmbH  
March 30, 2022; DSH000194_004EN  
3
DATA SHEET  
HAL 156y  
Hall-Effect Switches with Current Interface (2-wire) in SOT23 Package  
Release Note: Revision bars indicate significant changes to the previous edition.  
1. Introduction  
The HAL 156y Hall-switch family members produced in CMOS technology as 2-wire  
devices with current interface include a temperature-compensated Hall plate with active  
offset compensation, a comparator, and a current source.  
The comparator compares the actual magnetic flux through the Hall plate (Hall voltage)  
with the fixed reference values (switching points). Accordingly the current source is  
switched on or off.  
The active offset compensation leads to constant magnetic characteristics over supply  
voltage and temperature range. In addition, the magnetic parameters are robust against  
mechanical stress effects.  
The sensors are designed for industrial and automotive applications and operate with  
supply voltages from 3 V to 24 V in the junction temperature range from 40 C up to  
170 C.  
HAL 156y is available in a JEDEC TO236-compliant SMD-package 3-lead SOT23.  
TDK-Micronas GmbH  
March 30, 2022; DSH000194_004EN  
4
DATA SHEET  
HAL 156y  
1.1. Features of HAL 156y  
– SOT23-3L JEDEC TO236-compliant package  
– ISO 26262 compliant as ASIL B ready device  
– Current interface  
– Operates from 3 V to 24 V supply voltage  
– Overvoltage protection capability up to 40 V  
– Reverse-voltage protected VSUP-pin (18 V)  
– High ESD performance up to 8 kV (HBM)  
– Thermal shutdown  
– Sample frequency of 500 kHz, 2 µs output refresh time  
– Operates with static and dynamic magnetic fields up to 12 kHz  
– High resistance to mechanical stress by active offset compensation  
– Constant switching points over a wide supply voltage and temperature range  
– Wide junction temperature range from 40 °C to 170 °C  
– Built-in temperature coefficient  
– Optimized for applications in extreme automotive and industrial environments  
– Qualified according to AEC-Q100 test standard for automotive electronics industry to  
provide high-quality performance  
– Robust EMC performance, corresponding to different standards, such as ISO 7637,  
ISO 16750, IEC 61967, ISO 11452, and ISO 62132  
TDK-Micronas GmbH  
March 30, 2022; DSH000194_004EN  
5
DATA SHEET  
HAL 156y  
2. Ordering Information  
A Micronas device is available in a variety of delivery forms. They are distinguished by a  
specific ordering code:  
XXXNNNNPA-T-C-P-Q-SP  
Further Code Elements  
Temperature Range  
Package  
Product Type  
Product Group  
Fig. 2–1: Ordering Code Principle  
For a detailed information, please refer to the brochure:  
“Sensors and Controllers: Ordering Codes, Packaging, Handling”.  
2.1. Device-Specific Ordering Codes  
HAL 156y is available in the following package and temperature range.  
Table 2–1: Available packages  
Package Code (PA)  
Package Type  
SU  
SOT23  
Table 2–2: Available temperature ranges  
Temperature Code (T)  
Temperature Range  
T = 40 °C to 170 °C  
A
J
The relationship between ambient temperature (TA) and junction temperature (TJ) is  
explained in Section 5.2. on page 32.  
For available variants for Configuration (C), Packaging (P), Quantity (Q) and Special  
Procedure (SP) please contact TDK-Micronas.  
TDK-Micronas GmbH  
March 30, 2022; DSH000194_004EN  
6
DATA SHEET  
HAL 156y  
Table 2–3: Available ordering codes  
Available Ordering Codes  
HAL1561SU-A-[C-P-Q-SP]  
HAL1562SU-A-[C-P-Q-SP]  
HAL1563SU-A-[C-P-Q-SP]  
HAL1564SU-A-[C-P-Q-SP]  
HAL1565SU-A-[C-P-Q-SP]  
HAL1566SU-A-[C-P-Q-SP]  
This data sheet is valid for HAL 156y derivatives with an underlined trace code, as shown in  
the example below.  
Table 2–4: Example for Product Marking  
Package Top Surface Marking  
Package Bottom Surface Marking  
1561  
0001  
1561 = Product Type  
0001 = Trace Code  
TDK-Micronas GmbH  
March 30, 2022; DSH000194_004EN  
7
DATA SHEET  
HAL 156y  
3. Functional Description of HAL 156y  
The HAL 156y sensors are monolithic integrated circuits which switch in response to  
magnetic fields. If a magnetic field with flux lines perpendicular to the sensitive area is  
applied to the sensor, the biased Hall plate forces a Hall voltage proportional to this  
field. The Hall voltage is compared with the actual threshold level in the comparator. If  
the magnetic field exceeds the threshold levels, the current source is switched to the  
appropriate state.  
The built-in hysteresis eliminates oscillation and provides switching behavior without  
bouncing.  
Offsets caused by mechanical stress are compensated by using the “switching offset  
compensation technique”.  
A diode on the supply line is not required thanks to the built-in reverse voltage protection.  
The current source is forced to a safe, error current level (ISUP), in any of the following fault  
conditions: overtemperature and functional safety related diagnoses (see Section 3.1.).  
The device is able to withstand a maximum supply voltage of 24 V over lifetime and  
features overvoltage capability (40 V load dump).  
Reverse  
Voltage &  
ESD  
Temperature  
Dependent  
Bias  
Overtemperature  
Protection  
Hysteresis  
Control  
VSUP  
Protection  
Hall Plate  
Comparator  
Current  
Source  
Switch  
AUX  
Functional  
Safety  
Features  
GND  
Fig. 3–1: HAL 156y block diagram  
TDK-Micronas GmbH  
March 30, 2022; DSH000194_004EN  
8
DATA SHEET  
HAL 156y  
3.1. Functional Safety According to ISO 26262  
The HAL 156y is ISO 26262 compliant as an ASIL B ready device.  
Magnetic and switching performance is defined as hardware safety requirement.  
The safe state is defined as error current level and is specified in Section 4.9. on page 16.  
3.1.1. Diagnostic Features  
Internal states are monitored and in an error condition flagged as error current:  
– Internal voltage regulator: overvoltage detection  
– Monitoring of internal bias and current levels  
– Monitoring of the internal reference voltage  
– Monitoring of the Hall plate voltage  
Note  
For further documentation regarding functional safety please contact  
TDK-Micronas.  
TDK-Micronas GmbH  
March 30, 2022; DSH000194_004EN  
9
DATA SHEET  
HAL 156y  
4. Specifications  
4.1. Outline Dimensions  
D
A
H
x
Bd  
c
Center of sensitive area  
3
B
1
2
3x b  
0
e
0.25  
e1  
BASE METAL  
SECTION "B-B"  
0.10 C 3x  
b1  
b
SEATING PLANE  
WITH PLATING  
C
0
1.25  
2.5mm  
physical dimensions do not include moldflash.  
scale  
A4, Bd, x, y= these dimensions are different for each sensor type and are specified in the data  
sheet.  
b
UNIT  
A
A1  
A2  
A3  
b1  
c
c1  
D
E
E1  
e
e1  
L
L1  
0
0.3  
0.48  
1.10  
max.  
0.05  
0.10  
0.88  
1.02  
0.3  
0.45  
0.1  
0.18  
0.1  
0.15  
2.8  
3.0  
2.1  
2.5  
1.2  
1.4  
0.4  
0.6  
0°  
8°  
mm  
0.5  
0.95  
1.9  
0.55  
JEDEC STANDARD  
ISSUE DATE  
YY-MM-DD  
ANSI  
DRAWING-NO.  
ZG-NO.  
ISSUE  
-
ITEM NO.  
ZG001101_Ver.01  
TO-236  
13-05-10  
06902.0001.4  
© Copyright 2007 Micronas GmbH, all rights reserved  
Fig. 4–1:  
SOT23: Plastic Small Outline Transistor package, 3 leads  
Ordering code: SU  
Weight approximately is 0.01094 g  
TDK-Micronas GmbH  
March 30, 2022; DSH000194_004EN  
10  
DATA SHEET  
HAL 156y  
4
2
3.15  
4
user direction of feed  
1.25  
18.2 max  
Devices per Reel:10000  
12 min  
IEC STANDARD  
ISSUE DATE  
YY-MM-DD  
ANSI  
DRAWING-NO.  
ZG-NO.  
ISSUE  
4th  
ITEM NO.  
60286-3  
ZG002042_Ver.02  
15-09-23  
06839.0001.4 Bl.1  
© Copyright 2015 TDK-Micronas GmbH, all rights reserved  
Fig. 4–2:  
SOT23: Tape & Reel Finishing  
TDK-Micronas GmbH  
March 30, 2022; DSH000194_004EN  
11  
DATA SHEET  
HAL 156y  
4.2. Soldering, Welding and Assembly  
Information related to solderability, welding, assembly, and second-level packaging is  
included in the document “Guidelines for the Assembly of Micronas Packages”.  
It is available on the TDK-Micronas website (http://www.micronas.com/en/service-center/  
downloads) or on the service portal (http://service.micronas.com).  
4.2.1. SOT23 Footprint for Reflow and Wave Soldering  
0.8  
0.8  
1.2  
0.8  
Fig. 4–3: SOT23 footprint for reflow soldering  
0.8  
0.8  
1.2  
0.8  
Transport Direction  
Fig. 4–4: SOT23 footprint for wave soldering  
All dimensions in mm.  
TDK-Micronas GmbH  
March 30, 2022; DSH000194_004EN  
12  
DATA SHEET  
HAL 156y  
4.3. Pin Connections (from Top Side, example HAL 1564) and Short  
Descriptions  
GND  
3
1564  
1
2
AUX  
VSUP  
1 VSUP  
AUX  
2
3
GND  
Fig. 4–5: Pin configuration  
Table 4–1: Pin assignment.  
Pin number  
Name  
VSUP  
AUX1)  
GND  
Function  
1
2
3
Supply and output  
Functional test pin  
Ground  
1) connection to ground is recommended  
TDK-Micronas GmbH  
March 30, 2022; DSH000194_004EN  
13  
DATA SHEET  
HAL 156y  
4.4. Dimension and Position of Sensitive Area  
Parameter  
Min.  
Typ.  
Max.  
Unit  
µm2  
mm  
Dimension of sensitive area  
100 x 100  
0.27  
A4 (denotes the distance of die to top package  
surface in Z-direction)  
0.24  
0.37  
x (denotes the nominal distance of the center of the  
Bd circle to the package border in x-direction)  
1.45  
0.65  
mm  
mm  
mm  
y (denotes the nominal distance of the center of the  
Bd circle to the package border in y-direction)  
Bd (denotes the diameter of the circuit in which the  
center of the sensitive area is located)  
0.23  
4.5. Absolute Maximum Ratings  
Stresses beyond those listed in the “Absolute Maximum Ratings” may cause permanent  
damage to the device. This is a stress rating only. Functional operation of the device at  
these conditions is not implied. Exposure to absolute maximum rating conditions for  
extended periods will affect device reliability.  
This device contains circuitry to protect the inputs and outputs against damage due to  
high static voltages or electric fields; however, it is advised that normal precautions  
must be taken to avoid application of any voltage higher than absolute maximum-rated  
voltages to this circuit.  
All voltages listed are referenced to ground (GND).  
Symbol Parameter  
TJ  
Pin No Min.  
Max.  
Unit  
Conditions  
Junction temperature   
range A  
40  
190  
°C  
t < 96 h1)  
Tstorage Transportation/  
Short-Term Storage  
Temperature  
55  
150  
°C  
Device only without pack-  
ing material.  
VSUP  
Supply voltage  
1
18  
28  
32  
40  
V
V
V
t < 96 h1)  
t < 5 min1)  
t < 10 x 400 ms “Load-  
Dump”1) with series  
resistor RV > 100 .  
1) No cumulative stress  
TDK-Micronas GmbH  
March 30, 2022; DSH000194_004EN  
14  
DATA SHEET  
HAL 156y  
4.6. ESD and Latch-up  
Symbol  
Parameter  
Min. Max. Unit  
Ilatch  
Maximum latch-up free current at any pin  
100 100  
mA  
(measurement according to AEC Q100-004), class 1  
1)  
VHBM  
Human body model (according to AEC Q100-002)  
Human body model (according to AEC Q100-002)  
8  
6  
8
kV  
kV  
kV  
kV  
2)  
VHBM  
6
VCDM  
Charged device model (according to AEC Q100-011) 1  
1
VSYSTEM_LEVEL  
Unpowered Gun Test (150 pF/330 or 330 pF/2 k) 15  
15  
according to ISO 10605-20081)3)4)  
1) VSUP-pin and GND-pin  
2) AUX-pin  
3) Only valid with ESD System Level Application Circuit (see Fig. 5–2 on page 31)  
4) Based on 3-wire HAL 15xy test results  
4.7. Storage and Shelf Life  
Information related to storage conditions of Micronas sensors is included in the  
document “Guidelines for the Assembly of Micronas Packages”. It gives  
recommendations linked to moisture sensitivity level and long-term storage.  
It is available on the TDK-Micronas website (http://www.micronas.com/en/service-  
center/downloads) or on the service portal (http://service.micronas.com).  
4.8. Recommended Operating Conditions  
Functional operation of the device beyond those indicated in the “Recommended Oper-  
ating Conditions” of this specification is not implied, may result in unpredictable behavior  
of the device, and may reduce reliability and lifetime.  
All voltages listed are referenced to ground (GND).  
Symbol  
VSUP  
TJ  
Parameter  
Pin  
No.  
Min.  
3
Typ.  
Max. Unit Conditions  
Supply voltage  
1
24  
V
Junction temperature  
range A1)  
40  
170  
150  
125  
°C  
t < 1000 h2)  
t < 2500 h2)  
t < 8000 h2)  
1)  
Depends on the temperature profile of the application. Please contact TDK-Micronas for life time calculations.  
No cumulative stress  
2)  
TDK-Micronas GmbH  
March 30, 2022; DSH000194_004EN  
15  
DATA SHEET  
HAL 156y  
4.9. Electrical Characteristics  
at T = 40 C to 170 C, V  
= 3.0 V to 24.0 V,  
J
SUP  
at Recommended Operating Conditions if not otherwise specified in the column “Conditions”.  
Typical Characteristics for T = 25 C and V = 12.0 V  
J
SUP  
Symbol Parameter  
Supply  
Pin Min. Typ. Max. Unit Conditions  
No.  
VUV  
Undervoltage threshold 1  
2.0  
2.5  
3.0  
5
V
ISUPlo  
Low supply current 1  
1
mA valid for:  
HAL 1564 and HAL 1565  
ISUPlo  
Low supply current 2  
1
5
7
mA valid for:  
HAL 1561, HAL 1562,  
HAL 1563, and HAL 1566  
ISUP  
Error current  
1
0.8  
0.8  
1.9  
2.2  
mA valid for:  
HAL 1564 and HAL 1565  
mA valid for:  
HAL 1561, HAL 1562,  
HAL 1563, and HAL 1566  
ISUPhi  
ISUPR  
Port Output  
Bnoise Effective noise of  
High supply current  
1
1
12  
17  
mA  
mA for VSUP = 18 V  
Reverse current  
0.6  
72  
µT  
For square wave signal with  
magnetic switching  
12 kHz  
points (RMS)2)  
tj  
Output jitter (RMS)1)  
0.58 0.72 µs  
For square wave signal with  
1 kHz. Jitter is evenly dis-  
tributed between 1 µs and  
+1 µs  
td  
Delay time2)3)  
16  
2.2  
50  
21  
3.0  
60  
µs  
µs  
µs  
tsamp  
ten  
Output refresh period2)  
1.6  
20  
Enable time of output  
after exceeding of VUV  
VSUP = 12 V  
B > Bon + 2 mT or  
B < Boff 2 mT  
1)  
Characterized on small sample size, not tested  
Guaranteed by design  
Systematic delay between magnetic threshold reached and output switching  
2)  
3)  
TDK-Micronas GmbH  
March 30, 2022; DSH000194_004EN  
16  
DATA SHEET  
HAL 156y  
Symbol Parameter  
Package  
Pin Min. Typ. Max. Unit Conditions  
No.  
Rthja  
Thermal Resistance  
junction to air  
300  
250  
210  
30  
K/W Determined with a 1s0p  
board  
K/W Determined with a 1s1p  
board  
K/W Determined with a 2s2p  
board  
Rthjc  
Thermal Resistance  
junction to case  
K/W Determined with a 1s0p  
board  
50  
K/W Determined with a 1s1p  
board  
40  
K/W Determined with a 2s2p  
board  
TDK-Micronas GmbH  
March 30, 2022; DSH000194_004EN  
17  
DATA SHEET  
HAL 156y  
4.10. HAL 1561 Magnetic Characteristics  
The HAL 1561 Hall-latch provides high sensitivity (see Fig. 4–6 on page 18).  
The output turns to low current consumption (ISUPlo) with the magnetic north pole on the  
top side of the package and turns to high current consumption (ISUPhi) with the magnetic  
south pole on the top side. The output does not change if the magnetic field is removed.  
For changing the output state, the opposite magnetic field polarity must be applied.  
For correct functioning in the application, the sensor requires both magnetic polarities  
(north and south) on the top side of the package.  
Magnetic Features:  
– switching type: latching  
– high sensitivity  
– typical BON: 4.0 mT at room temperature  
– typical BOFF: 4.0 mT at room temperature  
– operates with static magnetic fields and dynamic magnetic fields up to 12 kHz  
– typical temperature coefficient of magnetic switching points is 0 ppm/K  
Applications  
The HAL 1561 is the optimal sensor for applications with alternating magnetic fields,  
such as:  
– seat position detection  
– break-by-wire  
– electric sunroof  
– window lifter  
– motor commutation  
Current consumption  
I
SUPhi  
B
HYS  
I
SUPlo  
B
B
0
B
ON  
OFF  
Fig. 4–6: Definition of magnetic switching points for the HAL 1561  
TDK-Micronas GmbH  
March 30, 2022; DSH000194_004EN  
18  
DATA SHEET  
HAL 156y  
Magnetic Characteristics  
at TJ = 40 C to 170 C, VSUP = 3.0 V to 24.0 V,  
Typical Characteristics for VSUP = 12.0 V  
Magnetic flux density values of switching points:  
Positive flux density values refer to the magnetic south pole at the top side of the package.  
Parameter  
TJ  
On point BON  
Off point BOFF  
Hysteresis BHYS  
Unit  
Min.  
2.0  
Typ.  
4.0  
Max. Min.  
Typ.  
4.0  
4.0  
4.0  
Max. Min.  
Typ.  
8.0  
Max.  
40 C  
25 C  
7.0  
7.0  
7.0  
7.0  
7.0  
7.0  
2.0  
2.0  
2.0  
mT  
mT  
mT  
2.0  
4.0  
8.0  
170 C  
2.0  
4.0  
8.0  
The hysteresis is the difference between the switching points BHYS = BON BOFF  
Note  
Regarding switching points, temperature coefficients and B-field switching  
frequency, customized derivatives via mask option are possible. For more  
information contact TDK-Micronas.  
TDK-Micronas GmbH  
March 30, 2022; DSH000194_004EN  
19  
DATA SHEET  
HAL 156y  
4.11. HAL 1562 Magnetic Characteristics  
The HAL 1562 Hall-latch provides medium sensitivity (see Fig. 4–7 on page 20).  
The output turns to low current consumption (ISUPlo) with the magnetic north pole on the  
top side of the package and turns to high current consumption (ISUPhi) with the mag-  
netic south pole on the top side. The output does not change if the magnetic field is  
removed. For changing the output state, the opposite magnetic field polarity must be  
applied.  
For correct functioning in the application, the sensor requires both magnetic polarities  
(north and south) on the top side of the package.  
Magnetic Features:  
– switching type: latching  
– medium sensitivity  
– typical BON: 12.0 mT at room temperature  
– typical BOFF: 12.0 mT at room temperature  
– operates with static magnetic fields and dynamic magnetic fields up to 12 kHz  
– typical temperature coefficient of magnetic switching points is 0 ppm/K  
Applications  
The HAL 1562 is the optimal sensor for applications with alternating magnetic fields,  
such as:  
– seat position detection  
– break-by-wire  
– electric sunroof  
– window lifter  
Current consumption  
I
SUPhi  
B
HYS  
I
SUPlo  
B
B
0
B
ON  
OFF  
Fig. 4–7: Definition of magnetic switching points for the HAL 1562  
TDK-Micronas GmbH  
March 30, 2022; DSH000194_004EN  
20  
DATA SHEET  
HAL 156y  
Magnetic Characteristics  
at TJ = 40 C to 170 C, VSUP = 3.0 V to 24.0 V,  
Typical Characteristics for VSUP = 12.0 V  
Magnetic flux density values of switching points:  
Positive flux density values refer to the magnetic south pole at the top side of the package.  
Parameter  
TJ  
On point BON  
Off point BOFF  
Hysteresis BHYS  
Unit  
Min.  
7.0  
Typ.  
12.0  
12.0  
12.0  
Max. Min.  
Typ.  
Max. Min.  
Typ.  
24.0  
24.0  
24.0  
Max.  
40 C  
25 C  
17.0  
17.0  
17.0  
17.0 12.0 7.0  
17.0 12.0 7.0  
17.0 12.0 7.0  
mT  
mT  
mT  
7.0  
170 C  
7.0  
The hysteresis is the difference between the switching points BHYS = BON BOFF  
Note  
Regarding switching points, temperature coefficients and B-field switching  
frequency, customized derivatives via mask option are possible. For more  
information contact TDK-Micronas.  
TDK-Micronas GmbH  
March 30, 2022; DSH000194_004EN  
21  
DATA SHEET  
HAL 156y  
4.12. HAL 1563 Magnetic Characteristics  
The unipolar inverted HAL 1563 Hall-switch provides high sensitivity (see Fig. 4–8 on  
page 22).  
The sensor turns to low current consumption (ISUPlo) with the magnetic south pole on  
the top side of the package and turns to high current consumption (ISUPhi) if the mag-  
netic field is removed. It does not respond to the magnetic north pole on the top side of  
the package.  
For correct functioning in the application, the sensor requires only the magnetic south  
pole on the top side of the package.  
Magnetic Features:  
– switching type: unipolar inverted  
– high sensitivity  
– typical BON: 7.6 mT at room temperature  
– typical BOFF: 9.4 mT at room temperature  
– operates with static magnetic fields and dynamic magnetic fields up to 12 kHz  
– typical temperature coefficient of magnetic switching points is 0 ppm/K  
Applications  
The HAL 1563 is the optimal sensor for all applications with one magnetic polarity and  
weak magnetic amplitude at the sensor position where an inverted output signal is  
required, such as:  
– applications with large air gap or weak magnets  
– brake pedal position detection (brake light switch)  
– seat belt presence detection  
– seat position detection,  
– break fluid level switch  
Current consumption  
I
SUPhigh  
B
HYS  
I
SUPlow  
0
B
B
B
ON  
OFF  
Fig. 4–8: Definition of magnetic switching points for the HAL 1563  
TDK-Micronas GmbH  
March 30, 2022; DSH000194_004EN  
22  
DATA SHEET  
HAL 156y  
Magnetic Characteristics  
at TJ = 40 C to 170 C, VSUP = 3.0 V to 24.0 V,  
Typical Characteristics for VSUP = 12.0 V  
Magnetic flux density values of switching points:  
Positive flux density values refer to the magnetic south pole at the top side of the package.  
Parameter  
TJ  
On point BON  
Off point BOFF  
Hysteresis BHYS  
Unit  
Min.  
5.5  
Typ.  
7.6  
Max. Min.  
Typ.  
9.4  
Max. Min.  
Typ.  
1.8  
Max.  
40 C  
25 C  
10.5  
10.0  
10.5  
7.0  
7.0  
7.0  
12.0  
11.5  
12.0  
mT  
mT  
mT  
5.8  
7.6  
9.4  
1.8  
170 C  
5.5  
7.6  
9.4  
1.8  
The hysteresis is the difference between the switching points BHYS = BON BOFF  
Note  
Regarding switching points, temperature coefficients and B-field switching  
frequency, customized derivatives via mask option are possible. For more  
information contact TDK-Micronas.  
TDK-Micronas GmbH  
March 30, 2022; DSH000194_004EN  
23  
DATA SHEET  
HAL 156y  
4.13. HAL 1564 Magnetic Characteristics  
The unipolar inverted HAL 1564 Hall-switch provides high sensitivity (see Fig. 4–9 on  
page 24).  
The sensor turns to low current consumption (ISUPlo) with the magnetic south pole on  
the top side of the package and turns to high current consumption (ISUPhi) if the mag-  
netic field is removed. It does not respond to the magnetic north pole on the top side of  
the package.  
For correct functioning in the application, the sensor requires only the magnetic south  
pole on the top side of the package.  
Magnetic Features:  
– switching type: unipolar inverted  
– high sensitivity  
– typical BON: 4.1 mT at room temperature  
– typical BOFF: 6.0 mT at room temperature  
– operates with static magnetic fields and dynamic magnetic fields up to 12 kHz  
– typical temperature coefficient of magnetic switching points is 1000 ppm/K  
Applications  
The HAL 1564 is the optimal sensor for all applications with one magnetic polarity and  
weak magnetic amplitude at the sensor position where an inverted output signal is  
required, such as:  
– applications with large air gap or weak magnets  
– brake pedal position detection (brake light switch)  
– seat belt presence detection  
– seat position detection  
– break fluid level switch  
Current consumption  
I
SUPhigh  
B
HYS  
I
SUPlow  
0
B
B
B
ON  
OFF  
Fig. 4–9: Definition of magnetic switching points for the HAL 1564  
TDK-Micronas GmbH  
March 30, 2022; DSH000194_004EN  
24  
DATA SHEET  
HAL 156y  
Magnetic Characteristics  
at TJ = 40 C to 170 C, VSUP = 3.0 V to 24 V,  
Typical Characteristics for VSUP = 12.0 V  
Magnetic flux density values of switching points:  
Positive flux density values refer to the magnetic south pole at the top side of the package.  
Parameter  
TJ  
On point BON  
Off point BOFF  
Hysteresis BHYS  
Unit  
Min.  
3.2  
Typ.  
4.5  
Max. Min.  
Typ.  
6.4  
Max. Min.  
Typ.  
1.9  
Max.  
40 C  
25 C  
6.7  
6.1  
6.4  
5.0  
4.3  
3.7  
8.5  
7.7  
7.7  
mT  
mT  
mT  
2.9  
4.1  
6.0  
1.9  
170 C  
2.4  
4.0  
5.6  
1.6  
The hysteresis is the difference between the switching points BHYS = BON BOFF  
Note  
Regarding switching points, temperature coefficients and B-field switching  
frequency, customized derivatives via mask option are possible. For more  
information contact TDK-Micronas.  
TDK-Micronas GmbH  
March 30, 2022; DSH000194_004EN  
25  
DATA SHEET  
HAL 156y  
4.14. HAL 1565 Magnetic Characteristics  
The unipolar HAL 1565 is a high-sensitive unipolar switching sensor (see Fig. 4–10 on  
page 26).  
The sensor turns to high current consumption (ISUPhi) with the magnetic south pole on  
the top side of the package and turns to low current consumption (ISUPlo) if the magnetic  
field is removed. It does not respond to the magnetic north pole on the top side of the  
package.  
For correct functioning in the application, the sensor requires only the magnetic south  
pole on the top side of the package.  
Magnetic Features:  
– switching type: unipolar  
– high sensitivity  
– typical BON: 6.0 mT at room temperature  
– typical BOFF: 4.1 mT at room temperature  
– operates with static magnetic fields and dynamic magnetic fields up to 12 kHz  
– typical temperature coefficient of magnetic switching points is 1000 ppm/K  
Applications  
The HAL 1565 is the optimal sensor for all applications with one magnetic polarity and  
weak magnetic amplitude at the sensor position, such as:  
– seat belt presence detection  
– flow measurement  
– door lock  
– roof top open/close  
Current Consumption  
ISUPhi  
BHYS  
ISUPlo  
0
BOFF  
BON  
B
Fig. 4–10: Definition of magnetic switching points for the HAL 1565  
TDK-Micronas GmbH  
March 30, 2022; DSH000194_004EN  
26  
DATA SHEET  
HAL 156y  
Magnetic Characteristics  
at TJ = 40 C to 170 C, VSUP = 3.0 V to 24.0 V,  
Typical Characteristics for VSUP = 12.0 V  
Magnetic flux density values of switching points:  
Positive flux density values refer to the magnetic south pole at the top side of the package.  
Parameter  
TJ  
On point BON  
Off point BOFF  
Hysteresis BHYS  
Unit  
Min.  
5.0  
Typ.  
6.4  
Max. Min.  
Typ.  
4.5  
Max. Min.  
Typ.  
1.9  
Max.  
40 C  
25 C  
8.5  
7.7  
7.7  
3.2  
2.9  
2.4  
6.7  
6.1  
6.4  
mT  
mT  
mT  
4.3  
6.0  
4.1  
1.9  
170 C  
3.7  
5.6  
4.0  
1.9  
The hysteresis is the difference between the switching points BHYS = BON BOFF  
Note  
Regarding switching points, temperature coefficients and B-field switching  
frequency, customized derivatives via mask option are possible. For more  
information contact TDK-Micronas.  
TDK-Micronas GmbH  
March 30, 2022; DSH000194_004EN  
27  
DATA SHEET  
HAL 156y  
4.15. HAL 1566 Magnetic Characteristics  
The unipolar HAL 1566 is a high-sensitive unipolar switching sensor (see Fig. 4–11 on  
page 28).  
The sensor turns to high current consumption (ISUPhi) with the magnetic south pole on  
the top side of the package and turns to low current consumption (ISUPlo) if the magnetic  
field is removed. It does not respond to the magnetic north pole on the top side of the  
package.  
For correct functioning in the application, the sensor requires only the magnetic south  
pole on the top side of the package.  
Magnetic Features:  
– switching type: unipolar  
– high sensitivity  
– typical BON: 9.4 mT at room temperature  
– typical BOFF: 7.6 mT at room temperature  
– operates with static magnetic fields and dynamic magnetic fields up to 12 kHz  
– typical temperature coefficient of magnetic switching points is 0 ppm/K  
Applications  
The HAL 1566 is the optimal sensor for all applications with one magnetic polarity and  
weak magnetic amplitude at the sensor position, such as:  
– seat belt presence detection  
– seat position  
– electric sun roof  
– gear shift lever  
Current Consumption  
I
SUPhi  
B
HYS  
I
SUPlo  
0
B
B
B
OFF  
ON  
Fig. 4–11: Definition of magnetic switching points for the HAL 1566  
TDK-Micronas GmbH  
March 30, 2022; DSH000194_004EN  
28  
DATA SHEET  
HAL 156y  
Magnetic Characteristics  
at TJ = 40 C to 170 C, VSUP = 3.0 V to 24.0 V,  
Typical Characteristics for VSUP = 12.0 V  
Magnetic flux density values of switching points:  
Positive flux density values refer to the magnetic south pole at the top side of the package.  
Parameter  
TJ  
On point BON  
Off point BOFF  
Hysteresis BHYS  
Unit  
Min.  
7.0  
Typ.  
9.4  
Max. Min.  
Typ.  
7.6  
Max. Min.  
Typ.  
1.8  
Max.  
40 C  
25 C  
12.0  
11.5  
12.0  
5.5  
5.8  
5.5  
10.5  
10.0  
10.5  
mT  
mT  
mT  
7.3  
9.4  
7.6  
1.8  
170 C  
7.0  
9.4  
7.6  
1.8  
The hysteresis is the difference between the switching points BHYS = BON BOFF  
Note  
Regarding switching points, temperature coefficients and B-field switching  
frequency, customized derivatives via mask option are possible. For more  
information contact TDK-Micronas.  
TDK-Micronas GmbH  
March 30, 2022; DSH000194_004EN  
29  
DATA SHEET  
HAL 156y  
5. Application Notes  
5.1. Application Circuits  
For applications with disturbances on the supply line or radiated disturbances, a series  
resistor RV and a capacitor CP both placed close to the sensor are recommended (see  
Fig. 5–1). In this case, the maximum RL can be calculated as:  
VBATTmin VSUPmin  
------------------------------------------------  
RV  
RLmax  
=
ISUPhimax  
For example: RV =100 and CP = 47 nF  
R
V
V
SUP  
V
BATT  
V
SIG  
C
P
R
L
Fig. 5–1: Example application circuit  
TDK-Micronas GmbH  
March 30, 2022; DSH000194_004EN  
30  
DATA SHEET  
HAL 156y  
5.1.1. ESD System Level Application Circuit (ISO10605-2008)  
For an ESD system level application circuit according to ISO10605-2008 a 100 nF  
capacitor at VSUP is necessary.  
V
SUP  
1)  
R =100   
V
C = 100 nF  
P
GND  
required for 40 V load dump capability  
1)  
Fig. 5–2: Application circuit with external resistor  
TDK-Micronas GmbH  
March 30, 2022; DSH000194_004EN  
31  
DATA SHEET  
HAL 156y  
5.2. Ambient Temperature  
Due to the internal power dissipation, the temperature on the silicon chip (junction temper-  
ature TJ) is higher than the temperature outside the package (ambient temperature TA).  
TJ = TA + T  
Under static conditions and continuous operation, the following equation applies:  
thigh  
tlow  
--------------  
tperiod  
--------------  
tperiod  
T = ISUPhi  
+ ISUPlo t  
VSUP Rthja  
For all sensors, the junction temperature range TJ is specified. The maximum ambient  
temperature TAmax can be calculated as:  
TAmax = TJmax T  
For typical values, use the typical parameters. For worst case calculation, use the max.  
parameters according to the application conditions.  
Example calculation for T with ISUPhi=17 mA (thigh=20%), ISUPlo=7 mA (tlow=80%),  
V
SUP=5 V, Rth=300 K/W  
T= 0.017 A 0,2+ 0.007 A 0,8  5 V 300 K/W= 13.5 K  
TAmax = 170 °C 13.5 °C= 156.5 °C  
For 2-wire devices self-heating can be critical due to the range of ISUPhi. The junction  
temperature can be reduced with pulsed supply voltage. For supply times (ton) of e.g.  
120 s, the following equation can be used:  
ton  
-------------------  
T = ISUPhi VSUP Rthja  
toff + ton  
TDK-Micronas GmbH  
March 30, 2022; DSH000194_004EN  
32  
DATA SHEET  
HAL 156y  
5.3. Start-Up Behavior  
For supply voltages below the undervoltage threshold VUV, the current consumption is  
undefined. After exceeding VUV, the sensor has an enable time (ten). During the enable  
time, the current consumption is defined as error current (ISUP).  
After ten, the current consumption will be ISUPhi if the applied magnetic field B is above  
BON. The current consumption will be ISUPlo if B is below BOFF. In case of sensors with an  
inverted switching behavior, the current consumption will be ISUPlow if B > BOFF and ISUPhi  
if B < BON.  
After ten and magnetic fields between BOFF and BON, the current consumption of the  
HAL 156y sensor will be either ISUPhi or ISUPlo. Any transition of magnetic switching points  
above BON, respectively, below BOFF will change the corresponding current consumption.  
5.4. EMC and ESD  
For applications with disturbances on the supply line or radiated disturbances, a series  
resistor and a capacitor are recommended. The series resistor and the capacitor should  
be placed as closely as possible to the HAL sensor.  
Special application arrangements were evaluated to pass EMC tests according to differ-  
ent standards, such as ISO 7637, ISO 16750, IEC 61967, ISO 11452 and ISO 62132.  
TDK-Micronas GmbH  
March 30, 2022; DSH000194_004EN  
33  
DATA SHEET  
HAL 156y  
6. Document History  
1. Data Sheet: “HAL 156y, Hall-Effect Switches with Current Interface (2-wire) in SOT23 Package,  
Feb. 27, 2018; DSH000194_001EN. First release of the Data Sheet.  
2. Data Sheet: “HAL 156y, Hall-Effect Switches with Current Interface (2-wire) in SOT23 Package”,  
Sept. 6, 2018; DSH000194_002EN. Second release of the Data Sheet.  
Major change:  
Table 2–4 on page 7: ‘Example for Product Marking’ updated  
3. Data Sheet: “HAL 156y, Hall-Effect Switches with Current Interface (2-wire) in SOT23 Package”,  
May 4, 2020; DSH000194_003EN. Third release of the Data Sheet.  
Major changes:  
– Disclaimer updated  
– Section 4.9 Characteristics:  
Error current ISUP: Max value changed to 1.9 mA for HAL 1564 and HAL 1565  
4. Data Sheet: “HAL 156y, Hall-Effect Switches with Current Interface (2-wire) in SOT23 Package”,  
March 30, 2022; DSH000194_004EN. Fourth release of the Data Sheet.  
Major changes:  
– ASIL A to ASIL B changed  
Tape & Reel Finishing (see Fig. 4–2 on page 11) updated  
TDK-Micronas GmbH  
Hans-Bunte-Strasse 19 D-79108 Freiburg P.O. Box 840 D-79008 Freiburg, Germany  
Tel. +49-761-517-0 Fax +49-761-517-2174 www.micronas.tdk.com  
TDK-Micronas GmbH  
March 30, 2022; DSH000194_004EN  
34  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY