HAL1880UA [TDK]

线性霍尔传感器;
HAL1880UA
型号: HAL1880UA
厂家: TDK ELECTRONICS    TDK ELECTRONICS
描述:

线性霍尔传感器

传感器
文件: 总35页 (文件大小:553K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Hardware  
Documentation  
Data Sheet  
®
HAL 1880  
Programmable Linear Hall-Effect  
Sensor in TO92 Package  
Edition Sept. 8, 2020  
DSH000198_003EN  
DATA SHEET  
HAL 1880  
Copyright, Warranty, and Limitation of Liability  
The information and data contained in this document are believed to be accurate and reli-  
able. The software and proprietary information contained therein may be protected by  
copyright, patent, trademark and/or other intellectual property rights of TDK-Micronas. All  
rights not expressly granted remain reserved by TDK-Micronas.  
TDK-Micronas assumes no liability for errors and gives no warranty representation or  
guarantee regarding the suitability of its products for any particular purpose due to  
these specifications.  
By this publication, TDK-Micronas does not assume responsibility for patent infringements  
or other rights of third parties which may result from its use. Commercial conditions, prod-  
uct availability and delivery are exclusively subject to the respective order confirmation.  
Any information and data which may be provided in the document can and do vary in  
different applications, and actual performance may vary over time.  
All operating parameters must be validated for each customer application by customers’  
technical experts. Any mention of target applications for our products is made without a  
claim for fit for purpose as this has to be checked at system level.  
Any new issue of this document invalidates previous issues. TDK-Micronas reserves  
the right to review this document and to make changes to the document’s content at any  
time without obligation to notify any person or entity of such revision or changes. For  
further advice please contact us directly.  
Do not use our products in life-supporting systems, military, aviation, or aerospace  
applications! Unless explicitly agreed to otherwise in writing between the parties,  
TDK-Micronas’ products are not designed, intended or authorized for use as compo-  
nents in systems intended for surgical implants into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the  
product could create a situation where personal injury or death could occur.  
No part of this publication may be reproduced, photocopied, stored on a retrieval sys-  
tem or transmitted without the express written consent of TDK-Micronas.  
TDK-Micronas Trademarks  
– HAL  
Third-Party Trademarks  
All other brand and product names or company names may be trademarks of their  
respective companies.  
TDK-Micronas GmbH  
Sept. 8, 2020; DSH000198_003EN  
2
DATA SHEET  
HAL 1880  
Contents  
Page  
Section  
Title  
4
5
5
1.  
1.1.  
1.2.  
Introduction  
Major Applications  
Features  
6
2.  
Ordering Information  
6
2.1.  
Device-Specific Ordering Codes  
7
3.  
Functional Description  
7
3.1.  
General Function  
8
9
9
3.2.  
Digital Signal Processing and EEPROM  
Digital Output Register  
Output Scaling Register  
3.2.1.  
3.2.2.  
3.2.3.  
3.2.4.  
3.2.5.  
3.2.6.  
3.3.  
10  
10  
12  
13  
14  
15  
15  
15  
Micronas ID Number Registers  
Customer Setup 1 Registers  
Customer Setup 2 Register  
Signal Path  
On-Board Diagnostic Features  
Sensor Calibration  
3.4.  
3.4.1.  
3.4.2.  
General Procedure for Development or Evaluation Purposes  
Locking the Sensor  
16  
16  
20  
20  
20  
20  
21  
22  
22  
23  
26  
27  
27  
28  
29  
4.  
4.1.  
4.2.  
4.3.  
Specifications  
Outline Dimensions  
Soldering, Welding and Assembly  
Pin Connections and Short Descriptions  
Dimensions of Sensitive Area  
Output/Magnetic-Field Polarity  
Absolute Maximum Ratings  
Storage and Shelf Life  
4.4.  
4.5.  
4.6.  
4.7.  
4.8.  
4.9.  
Recommended Operating Conditions  
Characteristics  
4.9.1.  
4.10.  
4.11.  
4.12.  
4.12.1.  
Definition of t  
POD  
Power-On Reset / Undervoltage Detection  
Output Voltage in Case of Error Detection  
Magnetic Characteristics  
Definition of Sensitivity Error ES  
30  
30  
30  
31  
32  
5.  
Application Notes  
Ambient Temperature  
EMC  
Application Circuit  
Temperature Compensation  
5.1.  
5.2.  
5.3.  
5.4.  
33  
33  
34  
34  
6.  
Programming of the Sensor  
Programming Interface  
Programming Environment and Tools  
Programming Information  
6.1.  
6.2.  
6.3.  
35  
7.  
Document History  
TDK-Micronas GmbH  
Sept. 8, 2020; DSH000198_003EN  
3
DATA SHEET  
HAL 1880  
Release Note:  
Revision bars indicate significant changes to the previous edition.  
Programmable Linear Hall-Effect Sensor in TO92 Package  
1. Introduction  
The HAL 1880 is a universal programmable Hall-effect sensor with a ratiometric, linear  
analog output proportional to the magnetic flux density applied to the sensor surface.  
The sensor can be used for magnetic-field measurements such as current measure-  
ments and detection of mechanical movement, like for small-angle or distance mea-  
surements. The sensor is robust and can be used in harsh electrical and mechanical  
environments.  
Major characteristics like magnetic-field range, sensitivity, offset (output voltage at zero  
magnetic field) and the temperature coefficients are programmable in a non-volatile  
memory. Several output signal clamping levels can be programmed. Diagnostic fea-  
tures are implemented to indicate various fault conditions like undervoltage, under-/  
overflow or overtemperature.  
The HAL 1880 is programmable by modulating the supply voltage with a serial telegram on  
the sensor’s output pin or supply pin. No additional programming pin is needed. Several  
sensors on the same supply line can be programmed individually (communication through  
OUT pins). This programmability allows a 2-point calibration by adjusting the output signal  
directly to the input signal, such as mechanical angle, distance or current.  
Individual adjustment of each sensor during the customer’s manufacturing process is  
possible. With this calibration procedure, the tolerance of the sensor, the magnet and  
the mechanical positioning can be compensated in the final assembly.  
The spinning-current offset compensation leads to stable magnetic characteristics over  
supply voltage and temperature. Furthermore, the first and seconds order temperature  
coefficients of the sensor sensitivity can be used to compensate the temperature drift of  
all common magnetic materials. This enables operation over the full temperature range  
with high accuracy.  
The calculation of the individual sensor characteristics and the programming of the  
EEPROM memory can easily be done with a PC and the application kit from  
TDK-Micronas.  
The sensor is designed for industrial and automotive applications, is AEC-Q100 quali-  
fied, and operates in the junction temperature range from –40 °C up to 170 °C. The  
HAL 1880 is available in the very small leaded package TO92UA-1 and TO92UA-2.  
TDK-Micronas GmbH  
Sept. 8, 2020; DSH000198_003EN  
4
DATA SHEET  
HAL 1880  
1.1. Major Applications  
Thanks to the sensor's robust and cost-effective design, the HAL 1880 is the optimal  
system solution for applications such as:  
– Small-angle or linear position measurements  
– Gear position detection in transmission application  
– Current sensing for battery management  
– Rotary selector  
1.2. Features  
– Ratiometric linear output proportional to the magnetic field  
– Digital signal processing  
– Continuous measurement ranges from 20 mT to 160 mT  
– Selectable clamping levels with selectable diagnosis  
– Comprehensive diagnostic feature set  
– Lock function and built-in redundancy for EEPROM memory  
– Programmable temperature characteristics for matching all common magnetic materials  
– Programming via output pin or supply voltage modulation  
– On-chip temperature compensation  
– Active offset compensation  
– Operates from 40 °C up to 170 °C junction temperature  
– Operates from 4.5 V up to 5.5 V supply voltage in specification  
– Operates with static and dynamic magnetic fields up to 5 kHz  
– Selectable sampling frequency (8 kHz or 16 kHz)  
– Overvoltage and reverse-voltage protection at VSUP pin  
– Magnetic characteristics extremely robust against mechanical stress  
– Short-circuit protected push-pull output  
– EMC and ESD optimized design  
– AEC-Q100 qualified  
TDK-Micronas GmbH  
Sept. 8, 2020; DSH000198_003EN  
5
DATA SHEET  
HAL 1880  
2. Ordering Information  
A Micronas device is available in a variety of delivery forms. They are distinguished by a  
specific ordering code:  
XXXNNNNPA-T-C-P-Q-SP  
Further Code Elements  
Temperature Range  
Package  
Product Type  
Product Group  
Fig. 2–1: Ordering code principle  
For a detailed information, please refer to the brochure: “Sensors and Controllers:  
Ordering Codes, Packaging, Handling”.  
2.1. Device-Specific Ordering Codes  
HAL 1880 is available in the following package and temperature variants.  
Table 2–1: Available packages  
Package Code (PA)  
Package Type  
UA  
TO92UA  
Table 2–2: Available temperature ranges  
Temperature Code (T)  
Temperature Range  
T = 40 °C to 170 °C  
A
J
The relationship between ambient temperature (TA) and junction temperature (TJ) is  
explained in Section 5.1. on page 30.  
For available variants for Configuration (C), Packaging (P), Quantity (Q), and Special  
Procedure (SP) please contact TDK-Micronas.  
Table 2–3: Available ordering codes and corresponding package marking  
Available Ordering Codes  
Package Marking  
HAL 1880UA-A-[C-P-Q-SP]  
1880A  
TDK-Micronas GmbH  
Sept. 8, 2020; DSH000198_003EN  
6
DATA SHEET  
HAL 1880  
3. Functional Description  
3.1. General Function  
The HAL1880 is a monolithic integrated circuit (IC) which provides an output voltage  
proportional to the magnetic flux through the Hall plate and proportional to the supply  
voltage (ratiometric behavior).  
The Hall IC is sensitive to magnetic north and south polarity. This Hall voltage is converted  
to a digital value, processed in the Digital Signal Processing unit (DSP) according to the  
settings of the EEPROM registers, converted back to an analog voltage by a D/A converter  
(DAC) and buffered by a push-pull output stage. Selectable clamping levels for the output  
voltage as well as diagnostic features are available. The function and the parameter for the  
DSP are explained in Section 3.2. on page 8. Internal temperature compensation circuitry  
and spinning-current offset compensation enable operation over the full temperature range  
with minimal degradation in accuracy and offset. The circuitry also rejects offset shifts due  
to mechanical stress from the package. In addition, the sensor IC is equipped with devices  
for overvoltage and reverse polarity protection at supply pin.  
VSUP  
Internally  
stabilized  
Supply and  
Protection  
Devices  
Temperature  
Dependent  
Bias  
Protection  
Devices  
Overtemperature  
Detection  
Undervoltage  
Detection  
Oscillator  
50  
Digital  
Signal  
Processing  
OUT  
Switched  
Hall Plate  
A/D  
Converter  
D/A  
Converter  
Analog  
Output  
Clamping  
Programming  
Interface  
EEPROM Memory  
Diagnosis  
Lock Control  
GND  
Fig. 3–1: HAL1880 block diagram  
The IC can be programmed via supply or output pin voltage modulation. After detecting  
a command, the sensor reads or writes the memory and answers with a digital signal on  
the output pin. As long as the LOCK register is not set, the output characteristic can be  
adjusted by programming the EEPROM registers. The LOCK register disables the pro-  
gramming of the EEPROM memory. This register cannot be reset.  
Furthermore, HAL1880 features an internal error detection. The following error modes  
can be detected: over-/underflow in adder or multiplier, over-/underflow in A/D converter  
(ADC) and overtemperature.  
TDK-Micronas GmbH  
Sept. 8, 2020; DSH000198_003EN  
7
DATA SHEET  
HAL 1880  
3.2. Digital Signal Processing and EEPROM  
Hall Plate  
DIAGNOSIS  
DSP  
Output Controller  
VOUT  
D/A  
Converter  
A/D Converter  
TC  
TCSQ  
OFFSET  
OFFSET_ALIGN  
CLAM P_SP  
CLEVEL  
EN_ERC_HI  
CLAM P_ERC  
DSDOUBLE M AG_RANGE  
SENSITIVITY  
Customer Programmable Parameters  
Fig. 3–2: Details of Programming Parameter and Digital Signal Processing  
Table 3–1: Cross reference table for EEPROM register and sensor parameter  
EEPROM-Register  
Parameter  
Data Function  
Bits  
Customer Setup 1  
DSDOUBLE  
CLEVEL  
1
2
1
1
1
1
1
Sampling frequency  
Output clamping values selection  
Enables High and Low error band  
EN_ERC_HI  
TC_FINE  
LOCK  
Fine adjustment of linear temperature coefficient  
Customer lock  
Customer Setup 2  
CLAMP_SP  
Activates unbalanced clamping levels  
OFFSET_  
ALIGN  
Magnetic offset alignment bit (MSB or LSB  
aligned)  
TCSQ  
5
Quadratic temperature coefficient  
Linear temperature coefficient  
Available magnetic ranges  
TC  
5
MAG_RANGE  
SENSITIVITY  
OFFSET  
MIC_ID_1  
MIC_ID_2  
3
Output Scaling  
8
Magnetic sensitivity  
8
Magnetic offset  
Micronas ID1  
Micronas ID2  
16  
16  
Micronas production information (read only)  
Micronas production information (read only)  
Note  
For more information on the registers and the memory map of the HAL1880,  
please refer to the application note “HAL1880/HAL 1890 User Manual”.  
TDK-Micronas GmbH  
Sept. 8, 2020; DSH000198_003EN  
8
DATA SHEET  
HAL 1880  
The DSP is a key function of this sensor and performs the signal conditioning. The  
parameters for the DSP are stored in the EEPROM registers. Details are shown in  
Fig. 3–2 on page 8.  
The measurement data can be readout from the digital output register MDATA.  
3.2.1. Digital Output Register  
MDATA register  
This 16-bit register delivers the actual digital value of the applied magnetic field after the  
signal processing. This register can only be read out, and it is the basis for the calibra-  
tion procedure of the sensor in the customer application. Only 10 bits of the register  
contain valid data. The MDATA range is from 512 to 511.  
The area in the EEPROM accessible to the customer consists of registers with a size of  
16 bits each.  
For SENSITIVITY = 1 the MDATA value will increase for negative magnetic fields (north  
pole) on the branded side of the package (positive MDATA values).  
Note  
During application design, it shall be taken into consideration that the  
MDATA value should not saturate in the full operational range of the specific  
application.  
3.2.2. Output Scaling Register  
The Output Scaling register contains the bits for magnetic sensitivity (SENSITIVITY)  
and magnetic offset (OFFSET).  
SENSITIVITY  
The SENSITIVITY bits define the parameter for the multiplier in the DSP and is program-  
mable between [2...2] in steps of 0.0156. SENSITIVITY = 1 (at Offset = 0) corresponds  
to full-scale (FS) of the output signal if the A/D converter value has reached the full-scale  
value. The SENSITIVITY register has a resolution of 8 bits.  
OFFSET  
The OFFSET bits define the parameter for the adder in the DSP.  
The customer can decide if the offset is MSB aligned or LSB aligned. The MSB or LSB  
alignment is enabled by an additional offset alignment bit (OFFSET_ALIGN). In case this  
bit is set to 1, the offset is programmable from 25% up to 25% of VSUP. If the  
OFFSET_ALIGN bit is set to zero, then the offset covers only 1/8 of the full-scale (6.25%  
up to 6.25% of VSUP) but with finer step size. The customer can adjust the offset  
symmetrically around 50% of VSUP. The OFFSET register can be set with 8-bit resolution.  
TDK-Micronas GmbH  
Sept. 8, 2020; DSH000198_003EN  
9
DATA SHEET  
HAL 1880  
3.2.3. Micronas ID Number Registers  
Micronas ID Number registers contain 16 bits each. TDK-Micronas will use the registers  
to store production information like wafer position, wafer number and production lot  
number. These two registers can be read by the customer.  
3.2.4. Customer Setup 1 Registers  
The Customer Setup 1 register contains the bits to select the sampling frequency, to  
enable/disable the High Error Band for error indication, and to define the output signal  
clamping levels.  
DSDOUBLE  
The bit DSDOUBLE allows to double the sampling frequency. The permitted values are  
8 kHz and 16 kHz, corresponding to a bandwidth of 2.5 kHz and 5 kHz.  
CLEVEL  
The 2-bit CLEVEL together with CLAMP_SP select the clamping levels, i.e. the maxi-  
mum and minimum output voltage levels of the analog output. The following choices are  
available {CLAMP_SP:CLEVEL}:  
Table 3–2: Clamping level definition  
CLAMP_SP CLEVEL  
Clamping Level (%VSUP)  
low  
VOUTL  
5
high  
VOUTH  
95  
0
0
0
0
1
1
1
1
00  
01  
10  
11  
00  
01  
10  
11  
10  
90  
15  
85  
5
90  
10  
95  
20  
90  
10  
80  
TDK-Micronas GmbH  
Sept. 8, 2020; DSH000198_003EN  
10  
DATA SHEET  
HAL 1880  
Clamping is normally not considered as an error. However, the user is able to activate  
the clamping error code by setting the CLAMP_ERC bit of the Customer Setup 1 register.  
In that case the output will be forced to the Low Error Band (VDIAG_L) or High Error  
Band (VDIAG_H), as soon as the output signal reaches the programmed clamping levels.  
The upper error band is realized by setting the MDATA register to maximum value. The  
resulting clamping behavior therefore depends on the selection of the clamping levels,  
the setting of the CLAMP_ERC bit, and the setting of the EN_ERC_HI bit (Error Code  
Selection). All possible clamping variations are shown in Fig. 3–3.  
Output Voltage  
VDIAG_H  
High Error Band  
High  
Clamping Level  
No Clamping Levels selected  
Clamping Levels selected:  
CLAMP_ERC = 0  
CLAMP_ERC = 1 & DIS_ER_LOW = 0  
CLAMP_ERC = 1 & DIS_ER_LOW = 1  
Low  
Clamping Level  
Low Error Band  
VDIAG_L  
Magnetic Field Amplitude  
Fig. 3–3: HAL1880 clamping behavior  
TDK-Micronas GmbH  
Sept. 8, 2020; DSH000198_003EN  
11  
DATA SHEET  
HAL 1880  
3.2.5. Customer Setup 2 Register  
Customer Setup 2 register contains the bits for magnetic range (MAG_RANGE), linear  
and quadratic temperature coefficients (TC and TCSQ), magnetic offset alignment  
(OFFSET_ALIGN), unbalanced clamping levels (CLAMP_SP) and the customer lock bit.  
MAG_RANGE  
The MAG_RANGE bits are used to set the magnetic measurement range. The following  
eight measurement ranges are available:  
Table 3–3: MAG_RANGE bit definition  
Magnetic-Field Range  
20 mT...20 mT  
Bit Setting Comment  
0
1
2
3
4
5
6
7
40 mT...40 mT  
60 mT...60 mT  
80 mT...80 mT  
100 mT...100 mT  
120 mT...120 mT  
140 mT...140 mT  
160 mT...160 mT  
TC and TCSQ  
The temperature dependence of the magnetic sensitivity can be adapted to different  
magnetic materials in order to compensate for the change of the magnetic strength with  
temperature. The adaption is done by programming the TC (linear temperature coeffi-  
cient) and the TCSQ registers (quadratic temperature coefficient). Thereby, the slope  
and the curvature of the temperature dependence of the magnetic sensitivity can be  
matched to the magnet and the sensor assembly. As a result, the output signal charac-  
teristic can be fixed over the full temperature range. The sensor can compensate for lin-  
ear temperature coefficients ranging from about 3100 ppm/K up to 2550 ppm/K and  
quadratic coefficients from about  
7 ppm/K2 to 15 ppm/K2 (typical range). Min. and max. values for the quadratic temper-  
ature coefficient depend on the linear temperature coefficient. Please refer to  
Section 5.4. on page 32 for the recommended settings for different linear temperature  
coefficients.  
Magnetic Offset Alignment Bit (OFFSET_ALIGN)  
Please refer to Section 3.2.2. on page 9 (OFFSET).  
TDK-Micronas GmbH  
Sept. 8, 2020; DSH000198_003EN  
12  
DATA SHEET  
HAL 1880  
LOCK  
By setting this 1-bit register, all registers will be locked, and the EEPROM content can  
not be changed anymore. The LOCK bit is active after the first power-off and power-on  
sequence after setting the LOCK bit.  
Warning This register cannot be reset!  
3.2.6. Signal Path  
BIN (mT)  
ADCOUT (LSB)  
VOUT (V)  
MDATA (LSB)  
5 V  
100 %FS  
511 LSB  
+BRANGE  
90 %VSUP  
BCP1  
BCP2  
10% VSUP  
0 V  
0 %FS  
-512 LSB  
-BRANGE  
MAG_RANGE  
TC & TCSQ  
Clamping Level  
OFFSET & OFFSET_ALIGN  
SENSITIVITY  
CLEVEL & CLAMP_SP  
BIN  
: Magnetic Field Input  
BRANGE : Magnetic Range  
BCP1/2 : Magnetic Field at Calibration Point 1/2  
ADCOUT: Output of Analog/Digital-Converter  
%FS : Percentage of Full Scale  
Fig. 3–4: Signal path of HAL1880 (example with 10 %FS / 90 %FS)  
Fig. 3–4 shows the signal path and signal processing of HAL1880. The measurement  
output value MDATA is calculated with the output value of the ADC by the following  
equation.  
MDATA = SENSITIVITY  ADCOUT + OFFSET  
The parameters OFFSET and SENSITIVITY are two’s complement encoded 8-bit values  
(see Section 3.2.5. on page 12).  
TDK-Micronas GmbH  
Sept. 8, 2020; DSH000198_003EN  
13  
DATA SHEET  
HAL 1880  
3.3. On-Board Diagnostic Features  
The HAL1880 features following diagnostic functions:  
– Thermal supervision of the output stage (overcurrent, short circuit, etc.)  
The sensor switches the output to tristate if overtemperature is detected by the ther-  
mal supervision.  
– Undervoltage detection with internal reset  
The occurrence of an undervoltage is indicated immediately by switching the output to  
VDIAG_L. The output will be kept at VDIAG_L after the end of an undervoltage detection  
event until a correct measurement value is available. This delay time depends on the  
selected sampling frequency.  
– Magnetic signal amplitude out of range (overflow or underflow in ADC)  
– Over-/underflow in adder or multiplier  
These faults are visible at the output as long as present and will force the output to the  
Low Error Band or High Error Band (see VDIAG_L and VDIAG_H in Section 4.11. on  
page 27), depending on the source of the faults, and the customer parameter set-  
tings, such as the sign of the sensitivity and the Error Code Selection bit (see Table 3–  
4).  
Table 3–4: Error code source and settings combinations  
Settings  
Source  
Sign of  
EN_ERC_HI A/D Converter  
Adder  
Multiplier  
SENSITIVITY  
Underflow Overflow Underflow Overflow Underflow Overflow  
VDIAG_L VDIAG_H VDIAG_L VDIAG_H VDIAG_L VDIAG_H  
VDIAG_H VDIAG_L VDIAG_H VDIAG_L  
VDIAG_L VDIAG_L  
+
1
0
VDIAG_L  
TDK-Micronas GmbH  
Sept. 8, 2020; DSH000198_003EN  
14  
DATA SHEET  
HAL 1880  
3.4. Sensor Calibration  
3.4.1. General Procedure for Development or Evaluation Purposes  
For calibration of the sensor in the customer application, the development tool kit from  
TDK-Micronas is recommended. It contains the hardware for the generation of the serial  
telegram during programming and the corresponding software to program the various  
register values of register values.  
For the individual calibration of each sensor in the final customer application, a two-  
point adjustment is recommended. Please refer to “HAL 1880 / HAL 1890 User Manual”  
for further details on calibration procedure.  
3.4.2. Locking the Sensor  
For qualification and production purpose the device has to be locked in order to guaran-  
tee its functionality.  
The last programming step activates the memory lock function by setting the LOCK bit.  
Please note that the memory lock function becomes effective after power-down and  
power-up of the Hall IC. The sensors EEPROM is then locked and its content can not  
be changed nor read anymore.  
Warning This register cannot be reset!  
TDK-Micronas GmbH  
Sept. 8, 2020; DSH000198_003EN  
15  
DATA SHEET  
HAL 1880  
4. Specifications  
4.1. Outline Dimensions  
Product  
long lead  
short lead  
HAL 187x ,8x, 9x  
210.2 optional  
15.70.2 standard  
r
gate remain  
d
L
L
Y
A
D
1.0  
0.2950.09  
0.2  
weight  
0.106 g  
0.05  
4.06  
0.05  
1.5  
0.7  
connected to PIN 2  
1+0.2  
connected to PIN 2  
D
center of  
sensitive area  
Y
5
.
1
.
x
5
a
0
.
0
m
A
2
.
5
3
0
.
3
2
.
0
0.5 +- 0.1  
1
3
2
0.08  
d
1
ejector pin Ø1.5  
dambar cut,  
not Sn plated (6x)  
a
e
L
r
a
g
n
i
d
l
e
w
r
o
r
e
0.05  
0.36  
d
l
o
Sn plated  
s
5
.
0
-
0
0.05  
0.43  
Sn plated  
0.4  
0.4  
1.27  
1.27  
2.54  
lead length cut  
not Sn plated (3x)  
0
2.5  
5 mm  
scale  
Dimensions are in mm.  
Physical dimensions do not include moldflash.  
BACK VIEW  
FRONT VIEW  
Sn-thickness might be reduced by mechanical handling.  
JEDEC STANDARD  
SPECIFICATION  
ISSUE DATE  
REVISION DATE  
PACKAGE  
TO92UA-2  
ANSI  
REV.NO.  
2
DRAWING-NO.  
(YY-MM-DD)  
(YY-MM-DD)  
ITEM NO. ISSUE  
TYPE  
NO.  
18-09-24  
20-04-07  
CUAI00031033.1  
ZG  
2101_Ver.02  
c
Copyright 2018 TDK-Micronas GmbH, all rights reserved  
Fig. 4–1:  
TO92UA-2 Plastic Transistor Standard UA package, 3 leads, non-spread  
TDK-Micronas GmbH  
Sept. 8, 2020; DSH000198_003EN  
16  
DATA SHEET  
HAL 1880  
Product  
long lead  
short lead  
HAL 187x, 8x, 9x  
21 0.2  
optional  
0.2 standard  
o
gate remain  
L
15.7  
1.0  
L
Y
A
D
0.295  
0.2  
0.09  
weight  
0.106 g  
0.05  
4.06  
0.05  
1.5  
0.7  
connected to PIN 2  
1+0.2  
connected to PIN 2  
D
center of  
sensitive area  
Y
5
.
1
.
5
x
0
.
a
0
m
A
5
2
.
0
.
3
3
r
2
.
0.5 +- 0.1  
0.08  
0
u
1
2
3
d
1
dambar cut,  
not Sn plated (6x)  
6
4
2
7
.
.
0
0
ejector pin Ø1.5  
-
+
4
7
.
3
a
e
r
a
L
g
n
i
d
l
e
w
r
o
r
e
d
l
o
0.05  
0.36  
s
5
.
Sn plated  
0
-
0
0.05  
0.43  
Sn plated  
0.4  
0.4  
2.54  
2.54  
lead length cut  
not Sn plated (3x)  
0
2.5  
5 mm  
scale  
Dimensions are in mm.  
Physical dimensions do not include moldflash.  
Sn-thickness might be reduced by mechanical handling.  
BACK VIEW  
FRONT VIEW  
JEDEC STANDARD  
SPECIFICATION  
ISSUE DATE  
REVISION DATE  
PACKAGE  
TO92UA-1  
ANSI  
REV.NO.  
2
DRAWING-NO.  
(YY-MM-DD)  
(YY-MM-DD)  
ITEM NO. ISSUE  
TYPE  
NO.  
18-09-24  
20-04-07  
CUAS00031034.1  
ZG  
2102_Ver.02  
c
Copyright 2018 TDK-Micronas GmbH, all rights reserved  
Fig. 4–2:  
TO92UA-1 Plastic Transistor Standard UA package, 3 leads, spread  
TDK-Micronas GmbH  
Sept. 8, 2020; DSH000198_003EN  
17  
DATA SHEET  
HAL 1880  
Δp  
Δp  
Δh  
Δh  
B
A
D0  
F2  
P2  
F1  
feed direction  
P0  
view A-B  
H
H1  
all dimensions in mm  
TO92UA TO92UT  
other dimensions see drawing of bulk  
max. allowed tolerance over 20 hole spacings 1.0  
Short leads 18 - 20 21 - 23.1  
22 - 24.1  
Long leads 24 - 26  
27 - 29.1  
28 - 30.1  
Δp  
UNIT  
D0  
4.0  
F1  
F2  
Δh  
L
P0  
P2  
T
T1  
W
W0  
W1  
W2  
1.47  
1.07  
1.47  
1.07  
11.0  
max  
13.2  
12.2  
7.05  
5.65  
mm  
1.0  
1.0  
0.5  
0.9  
18.0  
6.0  
9.0  
0.3  
STANDARD  
ISSUE DATE  
YY-MM-DD  
ANSI  
DRAWING-NO.  
ZG-NO.  
ISSUE  
-
ITEM NO.  
ZG001031_Ver.05  
IEC 60286-2  
16-07-18  
06631.0001.4  
© Copyright 2007 Micronas GmbH, all rights reserved  
Fig. 4–3:  
TO92UA: Dimensions ammopack inline, not spread, standard lead length  
TDK-Micronas GmbH  
Sept. 8, 2020; DSH000198_003EN  
18  
DATA SHEET  
HAL 1880  
Δp  
Δp  
Δh  
Δh  
B
A
D0  
F2  
P2  
F1  
feed direction  
P0  
view A-B  
H
H1  
all dimensions in mm  
TO92UA TO92UT  
21 - 23.1 22 - 24.1  
other dimensions see drawing of bulk  
max. allowed tolerance over 20 hole spacings 1.0  
Short leads  
Long leads  
18 - 20  
24 - 26  
28 - 30.1  
27 - 29.1  
Δp  
UNIT  
mm  
D0  
4.0  
F1  
F2  
Δh  
L
P0  
P2  
T
T1  
W
W0  
6.0  
W1  
9.0  
W2  
0.3  
2.74  
2.34  
2.74  
2.34  
11.0  
max  
13.2  
12.2  
7.05  
5.65  
1.0  
1.0  
0.5  
0.9  
18.0  
JEDEC STANDARD  
ISSUE DATE  
YY-MM-DD  
ANSI  
DRAWING-NO.  
06632.0001.4  
ZG-NO.  
ISSUE  
-
ITEM NO.  
ICE 60286-2  
ZG001032_Ver.06  
16-07-18  
© Copyright 2007 Micronas GmbH, all rights reserved  
Fig. 4–4:  
TO92UA: Dimensions ammopack inline, spread, standard lead length  
TDK-Micronas GmbH  
Sept. 8, 2020; DSH000198_003EN  
19  
DATA SHEET  
HAL 1880  
4.2. Soldering, Welding and Assembly  
Information related to solderability, welding, assembly, and second-level packaging is  
included in the document “Guidelines for the Assembly of Micronas Packages”.  
It is available on the TDK-Micronas website (https://www.micronas.com/en/service-  
center/downloads) or on the service portal (https://service.micronas.com).  
4.3. Pin Connections and Short Descriptions  
Pin No. Pin Name  
Short Description  
Supply Voltage Pin  
Ground  
VSUP  
GND  
OUT  
1
2
3
Push-Pull Output  
1
VSUP  
OUT  
3
2
GND  
Fig. 4–5: Pin configuration  
4.4. Dimensions of Sensitive Area  
Hall plate area = 0.2 mm 0.1 mm  
See Fig. 4–1 on page 16 for more information on the Hall plate position.  
4.5. Output/Magnetic-Field Polarity  
Applying a south-pole magnetic field perpendicular to the branded side of the package  
will increase the output voltage (for SENSITIVITY <0) from the quiescent (offset) volt-  
age towards the supply voltage. A north-pole magnetic field will decrease the output  
voltage. The output logic will be inverted for a SENSITIVITY setting >0.  
TDK-Micronas GmbH  
Sept. 8, 2020; DSH000198_003EN  
20  
DATA SHEET  
HAL 1880  
4.6. Absolute Maximum Ratings  
Stresses beyond those listed in the “Absolute Maximum Ratings” may cause permanent  
damage to the device. This is a stress rating only. Functional operation of the device at  
these conditions is not implied. Exposure to absolute maximum rating conditions for  
extended periods will affect device reliability.  
This device contains circuitry to protect the inputs and outputs against damage due to  
high static voltages or electric fields; however, it is advised that normal precautions  
must be taken to avoid application of any voltage higher than absolute maximum-rated  
voltages to this circuit.  
All voltages listed are referenced to ground (GND).  
Symbol  
Parameter  
Pin  
No.  
Min.  
Max. Unit Notes  
VSUP  
Supply Voltage  
1
8.5  
14.4  
15  
8.5  
14.4  
16  
V
V
t < 96 h2)  
t < 10 min2)3)  
t < 1 min2)3)  
VOUT  
Output Voltage  
3
0.51)  
0.51)  
0.51)  
8.5  
14.4  
16  
t < 96 h2)  
t < 10 min2)  
t < 1 min2)  
VOUTVSUP Excess of Output Voltage  
1, 3  
3
0.5  
V
over Supply Voltage  
IOUT  
Continuous Output  
Current  
5  
5
mA  
min  
°C  
°C  
tsh  
Output Short Circuit  
Duration  
3
10  
4)  
TJ  
Junction Temperature  
under Bias  
40  
55  
190  
150  
TSTORAGE  
Transportation/Short-Term  
Storage Temperature  
Device only with-  
out packing  
material  
VESD  
ESD Protection at VSUP5)  
ESD Protection at OUT5)  
1
3
4.0  
8.0  
4.0  
8.0  
kV  
kV  
1) Internal protection resistor = 50   
2) No cumulated stress  
3) As long as TJmax is not exceeded  
4) For 96 h - Please contact TDK-Micronas for other temperature requirements  
5) AEC-Q100-002 (100 pF and 1.5 k  
TDK-Micronas GmbH  
Sept. 8, 2020; DSH000198_003EN  
21  
DATA SHEET  
HAL 1880  
4.7. Storage and Shelf Life  
Information related to storage conditions of Micronas sensors is included in the document  
“Guidelines for the Assembly of Micronas Packages”. It gives recommendations linked to  
moisture sensitivity level and long-term storage.  
It is available on the TDK-Micronas website (https://www.micronas.com/en/service-  
center/downloads) or on the service portal (https://service.micronas.com).  
4.8. Recommended Operating Conditions  
Functional operation of the device beyond those indicated in the “Recommended Oper-  
ating Conditions/Characteristics” is not implied and may result in unpredictable behavior  
of the device and may reduce reliability and lifetime.  
All voltages listed are referenced to ground (GND).  
Symbol Parameter  
VSUP Supply Voltage  
Pin No. Min.  
Typ. Max.  
Unit Notes  
1
4.5  
5.7  
5
6
5.5  
8.0  
V
Normal operation  
During programming  
IOUT  
Continuous Output  
Current  
3
1  
1
mA  
RL  
Load Resistor  
3
3
5.5  
0.33  
10  
k  
nF  
CL  
Load Capacitance  
47  
100  
NPRG  
Number of EEPROM  
Programming Cycles  
0 °C < Tamb < 55 °C  
TJ  
Junction Operating  
Temperature1)  
40  
40  
40  
125  
150  
170  
°C  
for 8000 h2)  
for 2000 h2)  
for 1000 h2)  
1) Depends on the temperature profile of the application. Please contact TDK-Micronas for life time  
calculations.  
2) Time values are not cumulative.  
TDK-Micronas GmbH  
Sept. 8, 2020; DSH000198_003EN  
22  
DATA SHEET  
HAL 1880  
4.9. Characteristics  
at TJ = 40 °C to 170 °C, VSUP = 4.5 V to 5.5 V, GND = 0 V, after programming the sensor  
and locking the EEPROM, at Recommended Operation Conditions if not otherwise speci-  
fied in the column “Notes”. Typical characteristics for TJ = 25 °C and VSUP = 5 V.  
Symbol Parameter  
Pin Min. Typ. Max. Unit  
No.  
Notes  
ISUP  
Supply Current over  
1
5
6.75 8.5  
mA  
Temperature Range  
Signal  
Resolution  
3
10  
Bit  
fs  
Sampling Frequency  
8
kHz  
kHz  
DSDOUBLE = 0  
DSDOUBLE = 1  
16  
INL  
ER  
Non-Linearity of  
Output Voltage  
3
1.0  
0
0
1.0  
%
% of Supply Voltage  
(Linear regression)  
TJ = 25 °C  
over Temperature2)  
Ratiometric Error of  
Output  
3
1.0  
1.0  
%
over Temperature  
(Error in VOUT/VSUP)  
VOUTH  
VOUTL  
BW  
Analog Output  
High Voltage limit of  
linear range output  
3
3
3
4.7  
4.9  
0.1  
V
V
VSUP = 5 V,  
IOUT = 1 mA  
Analog Output  
Low Voltage limit of  
linear range output  
0.3  
VSUP = 5 V,  
IOUT = 1 mA  
Small Signal Band-  
2.25 2.5  
4.5  
kHz  
kHz  
BAC <10 mT, fs = 8 kHz  
fs = 16 kHz  
width (3 dB)2)  
5
1) Guaranteed by design  
2) Characterized on small sample size, not tested  
TDK-Micronas GmbH  
Sept. 8, 2020; DSH000198_003EN  
23  
DATA SHEET  
HAL 1880  
Symbol Parameter  
Pin Min. Typ. Max. Unit  
No.  
Notes  
CLAMPL Clamp Low1)  
%VSUP CLAMP_SP CLEVEL  
3
0
0
0
0
0
1
1
1
1
00  
01  
10  
10  
00  
01  
10  
11  
5
10  
15  
5
10  
20  
10  
CLAMPH Clamp High1)  
%VSUP CLAMP_SP CLEVEL  
3
100  
95  
90  
85  
90  
95  
90  
80  
0
0
0
0
1
1
1
1
00  
01  
10  
10  
00  
01  
10  
11  
Output Pin  
tr(O)  
Response Time of  
Output2)  
3
68  
180  
s  
With DSDOUBLE=1  
(fs = 16 kHz)  
CL = 10 nF, time from  
10% to 90% of final out-  
put voltage for a mag-  
netic input signal step  
from 0 mT to more than  
50% of the magnetic  
range of the device.  
With DSDOUBLE=0  
(fs = 8 kHz)  
125  
360  
s  
CL = 10 nF, time from  
10% to 90% of final out-  
put voltage for a mag-  
netic input signal step  
from 0 mT to more than  
50% of the magnetic  
range of the device.  
1) Guaranteed by design  
2) Characterized on small sample size, not tested  
TDK-Micronas GmbH  
Sept. 8, 2020; DSH000198_003EN  
24  
DATA SHEET  
HAL 1880  
Symbol Parameter  
Pin Min. Typ. Max. Unit  
No.  
Notes  
tPOD  
Power-Up Time  
400  
500  
s  
CL = 10 nF, 90% of VOUT  
with DSDOUBLE = 0  
fs = 8 kHz  
(time to reach stabi-  
lized output voltage,  
10mV)2)  
CL = 10 nF, 90% of VOUT  
with DSDOUBLE = 1  
fs = 16 kHz  
200  
1.2  
300  
3.0  
s  
VOUTn  
Output RMS Noise2)  
3
mV  
B = 5% to 95% of  
RANGE  
fs = 8 kHz  
2.7  
60  
8.2  
mV  
B = 5% to 95% of  
RANGE  
fs = 16 kHz  
ROUT  
ESD Protection  
Resistance1)  
3
TO92UA Package  
Thermal Resistance  
Determined with a  
1s0p board  
Rthja  
Rthjc  
Junction to Air  
250  
70  
K/W  
K/W  
Junction to Case  
1) Guaranteed by design  
2) Characterized on small sample size, not tested  
TDK-Micronas GmbH  
Sept. 8, 2020; DSH000198_003EN  
25  
DATA SHEET  
HAL 1880  
4.9.1. Definition of tPOD  
tPOD is the power-up time to reach a stabilized output (10 mV).  
Voltage  
5 V  
VPORLH  
VSUP  
~2 V  
0 V  
5 V  
VOUT  
0 V  
tPOD  
time  
Fig. 4–6: Definition of tPOD  
TDK-Micronas GmbH  
Sept. 8, 2020; DSH000198_003EN  
26  
DATA SHEET  
HAL 1880  
4.10. Power-On Reset / Undervoltage Detection  
at TJ = 40 °C to 170 °C, GND=0 V, typical characteristics for TJ = 25 °C, after pro-  
gramming and locking.  
Symbol  
Parameter  
Pin  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
VPOR_LH  
Undervoltage  
1
4.15  
4.3  
4.45  
V
Detection Level  
(Power-On Reset,  
Rising Supply)1)  
VPOR_HL  
Undervoltage  
Detection Level  
1
1
3.9  
4.05  
225  
4.2  
V
(Power-On Reset,  
Falling Supply)1)  
VPOR_HYS  
Undervoltage/POR  
Detection Level  
Hysteresis1)  
150  
300  
mV  
1) Characterized on small sample size, not tested  
4.11. Output Voltage in Case of Error Detection  
at TJ = 40 °C to 170 °C, typical characteristics for TJ = 25 °C, after programming and  
locking.  
Symbol  
Parameter  
Pin  
Min.  
Typ.  
Max.  
Unit  
Notes  
VDIAG_L  
Output Voltage in  
case of Error Detec-  
tion  
3
0
0.02  
0.1  
V
VSUP = 5 V  
RL = 5 k  
pull-up  
VDIAG_H  
Output Voltage in  
case of Error Detec-  
tion  
3
4.7  
4.9  
5
V
VSUP = 5 V  
RL = 5 k  
pull-down  
TDK-Micronas GmbH  
Sept. 8, 2020; DSH000198_003EN  
27  
DATA SHEET  
HAL 1880  
4.12. Magnetic Characteristics  
at Recommended Operating Conditions if not otherwise specified in the column ’Notes’,  
TJ = 40 °C to 170 °C, VSUP = 4.5 V to 5.5 V, after programming the sensor and locking  
the EEPROM. Typical Characteristics for TA = 25 °C and VSUP = 5 V.  
Symbol  
Parameter  
Pin  
No.  
Values  
Min.  
80  
Unit Notes  
Typ.  
Max.  
RANGEABS Absolute Magnetic  
Range of A/D Con-  
100  
120  
%
% of nominal  
RANGE  
verter over temperature  
RANGE  
SENS  
Magnetic-field range  
Sensitivity  
20  
10  
80  
160  
55  
mT  
3
mV/ Depending on mag-  
mT netic-field range 1)  
and SENSIVITY reg-  
ister content  
Senstrim  
Trim Step for Absolute  
Sensitivity  
3
3
0.3  
1
mV/ At min. sensitivity  
mT At max. sensitivity  
Offsettrim OffseT Trim  
2.5  
10  
312  
mV OALN = 0  
OALN = 1  
1250  
ES  
Sensitivity Error over  
3
6  
0
0
6
%
Part to part variation  
for certain combina-  
tions of TC and  
TCSQ  
Temperature Range1)  
(see Section 4.12.1.)  
BOFFSET  
Magnetic Offset  
3
3
2  
2
mT B = 0 mT, TA = 25 °C  
BOFFSET  
Magnetic Offset Drift  
over temperature  
range1)  
600 0  
600  
µT  
B = 0 mT,  
RANGE = 40 mT,  
Sens = 100 mV/mT  
BOFFSET(T) BOFFSET  
(25 °C)  
BHysteresis  
Magnetic Hysteresis1)  
3
20  
0
20  
µT  
Range = 40 mT  
1) Characterized on small sample size, not tested  
TDK-Micronas GmbH  
Sept. 8, 2020; DSH000198_003EN  
28  
DATA SHEET  
HAL 1880  
4.12.1. Definition of Sensitivity Error ES  
ES is the maximum of the absolute value of the quotient of the normalized measured  
value1) over the normalized ideal linear value2) minus 1:  
meas  
ideal  
  
  
-----------  
ES = max abs  
1  
Tmin, Tmax  
In the example shown in Fig. 4–7 the maximum error occurs at 10 °C:  
1,001  
0,993  
------------  
ES =  
1 = 0.8%  
1) normalized to achieve a least-square-fit straight-line that has a value of 1 at 25 °C  
2) normalized to achieve a value of 1 at 25 °C  
ideal 200 ppm/k  
1.03  
least-squares method straight line  
of normalized measured data  
measurement example of real  
1.02  
1.01  
1.00  
0.99  
0.98  
sensor, normalized to achieve a  
value of 1 of its least-squares  
method straight line at 25 °C  
1.001  
0.993  
-25 -10  
150  
175  
0
25  
temperature [°C]  
125  
-50  
50  
75 100  
Fig. 4–7: Definition of Sensitivity Error ES  
TDK-Micronas GmbH  
Sept. 8, 2020; DSH000198_003EN  
29  
DATA SHEET  
HAL 1880  
5. Application Notes  
5.1. Ambient Temperature  
Due to the internal power dissipation, the temperature on the silicon chip (junction temper-  
ature TJ) is higher than the temperature outside the package (ambient temperature TA).  
TJ = TA + T  
At static conditions and continuous operation, the following equation applies:  
T = ISUP * VSUP * RthjX  
The X represents junction to air or to case.  
In order to estimate the temperature difference T between the junction and the respec-  
tive reference (e.g. air, case, or solder point) use the max. parameters for ISUP, RthX,  
and the max. value for VSUP from the application.  
The following example shows the result for junction to air conditions. VSUP = 5.5 V,  
Rthja = 250 K/W and ISUP = 10 mA the temperature difference T = 13.75 K.  
The junction temperature TJ is specified. The maximum ambient temperature TAmax can  
be estimated as:  
TAmax = TJmax T  
Note  
The calculated self-heating of the devices is only valid for the Rth test  
boards. Depending on the application setup the final results in an applica-  
tion environment might deviate from these values.  
5.2. EMC  
HAL 1880 is designed for a stabilized 5 V supply. Interferences and disturbances  
conducted along the 12 V onboard system (product standard ISO 7637 part 1) are not  
relevant for these applications.  
For applications with disturbances by capacitive or inductive coupling on the supply line  
or radiated disturbances, the application circuit shown in Fig. 5–1 on page 31 is recom-  
mended. Applications with this arrangement should pass the EMC tests according to  
the product standards ISO 7637 part 3 (electrical transient transmission by capacitive or  
inductive coupling).  
TDK-Micronas GmbH  
Sept. 8, 2020; DSH000198_003EN  
30  
DATA SHEET  
HAL 1880  
5.3. Application Circuit  
For EMC protection, it is recommended to connect a 47 nF capacitor between ground  
and output voltage pin as well as a 100 nF capacitor between supply and ground as  
shown in Fig. 5–1.  
VSUP  
10 k  
OUT  
HAL1880  
100 nF  
47 nF  
GND  
Fig. 5–1: Recommended application circuit  
TDK-Micronas GmbH  
Sept. 8, 2020; DSH000198_003EN  
31  
DATA SHEET  
HAL 1880  
5.4. Temperature Compensation  
The relationship between the temperature coefficient of the magnet and the corresponding  
TC and TCSQ codes for linear compensation is given in the following table. In addition to  
the linear change of the magnetic field with temperature, the curvature can be adjusted as  
well. For this purpose, other TC and TCSQ combinations are required which are not shown  
in the table. Please contact TDK-Micronas for more detailed information on this higher  
order temperature compensation.  
Temperature Coefficient  
TC  
TCSQ  
of Magnet System (ppm/K)  
2100  
1800  
1500  
1200  
900  
5
7
9  
8  
8  
6  
5  
5  
4  
4  
3  
3  
2  
2  
2  
0
10  
13  
16  
20  
23  
25  
28  
29  
32  
34  
39  
45  
51  
500  
150  
0
300  
500  
750  
1000  
1500  
2100  
2700  
1
Note  
For development or evaluation purposes TDK-Micronas recommends to  
use the HAL 1880 / HAL 1890 Programming Environment to find optimal  
settings for temperature coefficients. Please contact TDK-Micronas for  
more detailed information.  
TDK-Micronas GmbH  
Sept. 8, 2020; DSH000198_003EN  
32  
DATA SHEET  
HAL 1880  
6. Programming of the Sensor  
HAL1880 features two different operating modes. In Application Mode the sensor pro-  
vides a ratiometric analog output voltage. In Programming Mode it is possible to change  
the register settings of the sensor.  
After power-up the sensor is always operating in the Application Mode. As long as the  
sensor is not locked it can be switched to the Programming Mode by voltage pulse on  
the sensor OUT pin.  
6.1. Programming Interface  
In Programming Mode the sensor is addressed by modulating a serial telegram on the  
sensor’s output pin or on the sensor’s supply voltage. The sensor answers with a mod-  
ulation of the output voltage.  
A logical “0” is coded as no level change within the bit time. A logical “1” is coded as a level  
change of typically 50% of the bit time. After each bit, a level change occurs (see Fig. 6–1).  
The serial telegram is used to transmit the EEPROM content, error codes and digital  
values of the magnetic field from and to the sensor.  
tr  
tf  
VSUPH  
tp0  
tp0  
logical 0  
or  
or  
VSUPL  
tp1  
VSUPH  
tp0  
tp0  
logical 1  
tp1  
VSUPL  
Fig. 6–1: Definition of logical 0 and 1 bit  
A description of the communication protocol and the programming of the sensor is avail-  
able in a separate document (Application Note “HAL 1880 / HAL 1890 Programming  
Guide”).  
TDK-Micronas GmbH  
Sept. 8, 2020; DSH000198_003EN  
33  
DATA SHEET  
HAL 1880  
Table 6–1: Telegram parameters for host (All voltages are referenced to GND.)  
Symbol  
Parameter  
Pin  
No.  
Limit Values  
Unit  
Min.  
Typ.  
Max.  
VSUPL  
Supply Voltage for Low level dur-  
ing programming through sensor  
VSUP pin  
1
1
5
6
V
V
VSUPH  
Supply Voltage for High level dur-  
ing programming through sensor  
VSUP pin  
8
9
VSUPProgram  
Supply Voltage for EEPROM pro-  
gramming  
1
5.7  
6
6.5  
V
tp0  
Bit time if command send to the  
sensor  
1, 3  
1024  
µs  
tp1  
BiPhase half bit time  
1, 3  
3
0.5  
tp0  
µs  
tpOUT  
Bit time for sensor answer  
1024  
6.2. Programming Environment and Tools  
For the programming of HAL1880 during product development a programming tool  
including hardware and software is available on request. It is recommended to use the  
TDK MSP V1.x Magnetic Sensor Programmer or TDK-Micronas’ tool kit (HAL USB-Kit  
and LabViewTM programming environment) in order to ease the product development.  
The details of programming sequences can be found in the “HAL 1880/ HAL 1890 User  
Manual” and in the “HAL 1880 / HAL1890 Programming Guide”.  
6.3. Programming Information  
For production and qualification tests, it is mandatory to set the LOCK bit after final adjust-  
ment and programming of HAL1880. The lock function is active after the next power-up of  
the sensor.  
The success of the lock process shall be checked by reading the status of the LOCK bit  
after locking and by a negative communication test after power-on reset.  
HAL 1880 features a diagnostic register to check the success and quality of the pro-  
gramming process. Detailed information about programming the sensor can be found in  
the “HAL 1880 / HAL 1890 User Manual” and in the “HAL 1880 / HAL1890 Program-  
ming Guide”.  
EMI (Electromagnetic Interference) may disturb the programming pulses. Please take  
precautions against EMI.  
TDK-Micronas GmbH  
Sept. 8, 2020; DSH000198_003EN  
34  
DATA SHEET  
HAL 1880  
7. Document History  
1. Advance Information: “HAL 1880 Programmable Linear Hall-Effect Sensor in TO92  
Package”, Aug. 1, 2018, AI000208_001EN. First release of the advance information.  
2. Data Sheet: “HAL 1880 Programmable Linear Hall-Effect Sensor in TO92 Package”,  
March 31, 2020, DSH000198_001EN. First release of the data sheet.  
3. Data Sheet: “HAL 1880 Programmable Linear Hall-Effect Sensor in TO92 Package”,  
July 7, 2020, DSH000198_002EN. Second release of the data sheet.  
Major Changes:  
– Fig. 4.1 and 4.2: TO92UA package drawings updated  
– Characteristics: Response Time of Output tr(O) updated  
4. Data Sheet: “HAL 1880 Programmable Linear Hall-Effect Sensor in TO92 Package”,  
Sept. 8, 2020, DSH000198_003EN. Third release of the data sheet.  
Major Changes:  
– Features: Range Value updated  
– Customer Setup 2 Register: MAG_RANGE comment removed  
– Magnetic Characteristics: Range Value updated  
TDK-Micronas GmbH  
Hans-Bunte-Strasse 19 D-79108 Freiburg P.O. Box 840 D-79008 Freiburg, Germany  
Tel. +49-761-517-0 Fax +49-761-517-2174 www.micronas.com  
TDK-Micronas GmbH  
Sept. 8, 2020; DSH000198_003EN  
35  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY