HAL518SF-K [TDK]

Hall Effect Sensor, 3.8mT Min, 5mT Max, 0.13-0.28V, CMOS, Plastic/epoxy, Rectangular, 3 Pin, Surface Mount, PLASTIC, SOT-89B, 4 PIN;
HAL518SF-K
型号: HAL518SF-K
厂家: TDK ELECTRONICS    TDK ELECTRONICS
描述:

Hall Effect Sensor, 3.8mT Min, 5mT Max, 0.13-0.28V, CMOS, Plastic/epoxy, Rectangular, 3 Pin, Surface Mount, PLASTIC, SOT-89B, 4 PIN

传感器 换能器
文件: 总44页 (文件大小:312K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HAL501...506, 508, 509,  
HAL516...519, 523  
Hall Effect Sensor Family  
Edition Feb. 14, 2001  
MICRONAS  
6251-485-2DS  
HAL5xx  
Contents  
Page  
Section  
Title  
3
3
3
4
4
4
4
4
1.  
Introduction  
1.1.  
1.2.  
1.3.  
1.3.1.  
1.4.  
1.5.  
1.6.  
Features  
Family Overview  
Marking Code  
Special Marking of Prototype Parts  
Operating Junction Temperature Range  
Hall Sensor Package Codes  
Solderability  
5
2.  
Functional Description  
6
6
6
6
7
7
8
9
3.  
Specifications  
3.1.  
3.2.  
3.3.  
3.4.  
3.5.  
3.6.  
3.7.  
Outline Dimensions  
Dimensions of Sensitive Area  
Positions of Sensitive Areas  
Absolute Maximum Ratings  
Recommended Operating Conditions  
Electrical Characteristics  
Magnetic Characteristics Overview  
14  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
4.  
Type Descriptions  
HAL501  
HAL502  
HAL503  
HAL504  
HAL505  
HAL506  
HAL508  
HAL509  
HAL516  
HAL517  
HAL518  
HAL519  
HAL523  
4.1.  
4.2.  
4.3.  
4.4.  
4.5.  
4.6.  
4.7.  
4.8.  
4.9.  
4.10.  
4.11.  
4.12.  
4.13.  
40  
40  
40  
40  
40  
5.  
Application Notes  
Ambient Temperature  
Extended Operating Conditions  
Start-up Behavior  
EMC  
5.1.  
5.2.  
5.3.  
5.4.  
44  
6.  
Data Sheet History  
2
Micronas  
HAL5xx  
Hall Effect Sensor Family  
1.2. Family Overview  
in CMOS technology  
The types differ according to the magnetic flux density  
values for the magnetic switching points, the tempera-  
ture behavior of the magnetic switching points, and the  
mode of switching.  
Release Notes: Revision bars indicate significant  
changes to the previous edition.  
1. Introduction  
Type  
Switching  
Behavior  
Sensitivity  
see  
Page  
The HAL5xx family consists of different Hall switches  
produced in CMOS technology. All sensors include a  
temperature-compensated Hall plate with active offset  
compensation, a comparator, and an open-drain output  
transistor. The comparator compares the actual mag-  
netic flux through the Hall plate (Hall voltage) with the  
fixed reference values (switching points). Accordingly,  
the output transistor is switched on or off.  
501  
502  
503  
504  
505  
506  
508  
509  
516  
bipolar  
very high  
high  
14  
16  
18  
20  
22  
24  
26  
28  
30  
latching  
latching  
unipolar  
latching  
unipolar  
unipolar  
unipolar  
medium  
medium  
low  
The sensors of this family differ in the switching behavior  
and the switching points.  
high  
The active offset compensation leads to constant mag-  
netic characteristics over supply voltage and tempera-  
ture range. In addition, the magnetic parameters are ro-  
bust against mechanical stress effects.  
medium  
low  
The sensors are designed for industrial and automotive  
applications and operate with supply voltages from  
3.8 V to 24 V in the ambient temperature range from  
–40 °C up to 150 °C.  
unipolar with  
inverted output  
high  
517  
518  
519  
unipolar with  
inverted output  
medium  
medium  
high  
32  
34  
36  
All sensors are available in a SMD-package (SOT-89B)  
and in a leaded version (TO-92UA).  
unipolar with  
inverted output  
unipolar with  
inverted output  
(north polarity)  
1.1. Features:  
– switching offset compensation at typically 62 kHz  
– operates from 3.8 V to 24 V supply voltage  
– overvoltage protection at all pins  
523  
unipolar  
low  
38  
– reverse-voltage protection at V -pin  
DD  
– magnetic characteristics are robust against mechani-  
cal stress effects  
Latching Sensors:  
The output turns low with the magnetic south pole on the  
branded side of the package and turns high with the  
magnetic north pole on the branded side. The output  
does not change if the magnetic field is removed. For  
changing the output state, the opposite magnetic field  
polarity must be applied.  
– short-circuit protected open-drain output by thermal  
shut down  
– operates with static magnetic fields and dynamic mag-  
netic fields up to 10 kHz  
– constant switching points over a wide supply voltage  
range  
Bipolar Switching Sensors:  
– the decrease of magnetic flux density caused by rising  
temperature in the sensor system is compensated by  
a built-in negative temperature coefficient of the mag-  
netic characteristics  
The output turns low with the magnetic south pole on the  
branded side of the package and turns high with the  
magnetic north pole on the branded side. The output  
state is not defined for all sensors if the magnetic field is  
removed again. Some sensors will change the output  
state and some sensors will not.  
– ideal sensor for applications in extreme automotive  
and industrial environments  
– EMC corresponding to DIN 40839  
Micronas  
3
HAL5xx  
Unipolar Switching Sensors:  
for lab experiments and design-ins but are not intended to  
be used for qualification tests or as production parts.  
The output turns low with the magnetic south pole on the  
branded side of the package and turns high if the mag-  
netic field is removed. The sensor does not respond to  
the magnetic north pole on the branded side.  
1.4. Operating Junction Temperature Range  
A: T = 40 °C to +170 °C  
J
K: T = 40 °C to +140 °C  
J
Unipolar Switching Sensors with Inverted Output:  
E: T = 40 °C to +100 °C  
J
The output turns high with the magnetic south pole on  
the branded side of the package and turns low if the  
magnetic field is removed. The sensor does not respond  
to the magnetic north pole on the branded side.  
The Hall sensors from Micronas are specified to the chip  
temperature (junction temperature T ).  
J
The relationship between ambient temperature (T ) and  
A
junction temperature is explained in section 5.1. on page  
40.  
Unipolar Switching Sensors with Inverted Output  
Sensitive to North Pole:  
1.5. Hall Sensor Package Codes  
Theoutputturnshighwiththemagneticnorthpoleonthe  
brandedsideofthepackageandturnslowifthemagnet-  
ic field is removed. The sensor does not respond to the  
magnetic south pole on the branded side.  
HALXXXPA-T  
Temperature Range: A, K, or E  
Package: SF for SOT-89B  
UA for TO-92UA  
1.3. Marking Code  
Type: 5xx  
All Hall sensors have a marking on the package surface  
(branded side). This marking includes the name of the  
sensor and the temperature range.  
Example: HAL505UA-E  
Type: 505  
Package: TO-92UA  
Temperature Range: T = 40 °C to +100 °C  
J
Type  
Temperature Range  
K
A
E
Hall sensors are available in a wide variety of packaging  
versions and quantities. For more detailed information,  
please refer to the brochure: Ordering Codes for Hall  
Sensors.  
HAL501  
HAL502  
HAL503  
HAL504  
HAL505  
HAL506  
HAL508  
HAL509  
HAL516  
HAL517  
HAL518  
HAL519  
HAL523  
501A  
502A  
503A  
504A  
505A  
506A  
508A  
509A  
516A  
517A  
518A  
519A  
523A  
501K  
502K  
503K  
504K  
505K  
506K  
508K  
509K  
516K  
517K  
518K  
519K  
523K  
501E  
502E  
503E  
504E  
505E  
506E  
508E  
509E  
516E  
517E  
518E  
519E  
523E  
1.6. Solderability  
all packages: according to IEC68-2-58  
During soldering reflow processing and manual rework-  
ing, a component body temperature of 260 °C should  
not be exceeded.  
Components stored in the original packaging should  
provideashelflifeofatleast12months, startingfromthe  
date code printed on the labels, even in environments as  
extreme as 40 °C and 90% relative humidity.  
V
DD  
1
OUT  
3
1.3.1. Special Marking of Prototype Parts  
2
GND  
Prototype parts are coded with an underscore beneath the  
temperature range letter on each IC. They may be used  
Fig. 1–1: Pin configuration  
4
Micronas  
HAL5xx  
2. Functional Description  
L5xx  
Reverse  
V
Temperature  
Dependent  
Bias  
Short Circuit &  
Overvoltage  
Protection  
DD  
1
Hysteresis  
Control  
Voltage &  
Overvoltage  
Protection  
The HAL5xx sensors are monolithic integrated circuits  
which switch in response to magnetic fields. If a  
magnetic field with flux lines perpendicular to the  
sensitive area is applied to the sensor, the biased Hall  
plate forces a Hall voltage proportional to this field. The  
Hall voltage is compared with the actual threshold level  
in the comparator. The temperature-dependent bias  
increases the supply voltage of the Hall plates and  
adjusts the switching points to the decreasing induction  
of magnets at higher temperatures. If the magnetic field  
exceeds the threshold levels, the open drain output  
switches to the appropriate state. The built-in hysteresis  
eliminatesoscillationandprovidesswitchingbehaviorof  
output without bouncing.  
Hall Plate  
Comparator  
OUT  
Output  
3
Switch  
Clock  
GND  
2
Fig. 21: HAL5xx block diagram  
Magnetic offset caused by mechanical stress is com-  
pensated for by using the switching offset compensa-  
tion technique. Therefore, an internal oscillator pro-  
vides a two phase clock. The Hall voltage is sampled at  
the end of the first phase. At the end of the second  
phase, both sampled and actual Hall voltages are aver-  
agedandcomparedwiththeactualswitchingpoint. Sub-  
sequently, the open drain output switches to the ap-  
propriate state. The time from crossing the magnetic  
switching level to switching of output can vary between  
f
osc  
t
t
t
t
B
V
zero and 1/f  
.
osc  
B
ON  
Shunt protection devices clamp voltage peaks at the  
Output-Pin and V -Pin together with external series  
DD  
resistors. Reverse current is limited at the V -Pin by an  
OUT  
DD  
V
OH  
internal series resistor up to 15 V. No external reverse  
protection diode is needed at the V -Pin for reverse  
DD  
V
OL  
voltages ranging from 0 V to 15 V.  
I
DD  
t
f
1/f  
osc  
= 16 µs  
Fig. 22: Timing diagram  
Micronas  
5
HAL5xx  
3. Specifications  
3.1. Outline Dimensions  
sensitive area  
0.2  
sensitive area  
0.4  
±0.1  
1.5  
4.06  
4.55  
1.7  
0.15  
0.3  
0.3  
y
y
2
±0.1  
3.05  
±0.2  
4
2.55  
min.  
0.25  
0.48  
0.55  
top view  
1
2
3
1
2
3
0.4  
0.4  
1.15  
14.0  
min.  
0.36  
0.4  
3.0  
1.5  
0.42  
1.27 1.27  
2.54  
branded side  
±0.04  
0.06  
branded side  
SPGS0022-5-A3/2E  
45°  
Fig. 31:  
0.8  
Plastic Small Outline Transistor Package  
(SOT-89B)  
SPGS7002-9-A/2E  
Weight approximately 0.035 g  
Dimensions in mm  
Fig. 32:  
Plastic Transistor Single Outline Package  
(TO-92UA)  
Weight approximately 0.12 g  
Dimensions in mm  
3.2. Dimensions of Sensitive Area  
Note: For all package diagrams, a mechanical tolerance  
of ±0.05 mm applies to all dimensions where no tolerance  
is explicitly given.  
0.25 mm x 0.12 mm  
3.3. Positions of Sensitive Areas  
An improvement of the TO-92UA package with reduced  
tolerances will be introduced end of 2001.  
SOT-89B  
TO-92UA  
center of  
x
y
center of  
the package  
the package  
0.95 mm nominal  
1.0 mm nominal  
6
Micronas  
HAL5xx  
3.4. Absolute Maximum Ratings  
Symbol  
Parameter  
Pin No.  
Min.  
Max.  
Unit  
V
1)  
V
DD  
Supply Voltage  
1
1
1
1
15  
28  
2)  
V  
Test Voltage for Supply  
Reverse Supply Current  
24  
V
P
1)  
I  
DD  
50  
mA  
mA  
3)  
3)  
I
Supply Current through  
Protection Device  
200  
200  
DDZ  
1)  
V
Output Voltage  
3
3
3
3
0.3  
28  
V
O
1)  
I
I
I
Continuous Output On Current  
Peak Output On Current  
50  
mA  
mA  
mA  
O
3)  
250  
Omax  
OZ  
3)  
3)  
Output Current through  
Protection Device  
200  
200  
5)  
T
T
Storage Temperature Range  
65  
150  
150  
°C  
°C  
S
J
Junction Temperature Range  
40  
40  
4)  
170  
1)  
2)  
3)  
4)  
5)  
as long as T max is not exceeded  
with a 220 series resistance at pin 1 corresponding to the test circuit on page 40  
t<2 ms  
t<1000h  
J
Components stored in the original packaging should provide a shelf life of at least 12 months, starting from the  
date code printed on the labels, even in environments as extreme as 40 °C and 90% relative humidity.  
Stresses beyond those listed in the Absolute Maximum Ratingsmay cause permanent damage to the device. This  
is a stress rating only. Functional operation of the device at these or any other conditions beyond those indicated in the  
Recommended Operating Conditions/Characteristicsof this specification is not implied. Exposure to absolute maxi-  
mum ratings conditions for extended periods may affect device reliability.  
3.5. Recommended Operating Conditions  
Symbol  
Parameter  
Pin No.  
Min.  
3.8  
0
Max.  
24  
Unit  
V
V
DD  
Supply Voltage  
1
3
3
I
O
Continuous Output On Current  
20  
mA  
V
V
O
Output Voltage  
0
24  
(output switched off)  
Micronas  
7
HAL5xx  
3.6. Electrical Characteristics at T = 40 °C to +170 °C , V = 3.8 V to 24 V, as not otherwise specified in Conditions  
J
DD  
Typical Characteristics for T = 25 °C and V = 12 V  
J
DD  
Symbol  
Parameter  
Pin No.  
Min.  
2.3  
Typ.  
Max.  
4.2  
Unit  
mA  
mA  
Conditions  
T = 25 °C  
I
I
Supply Current  
1
1
3
3
DD  
DD  
J
Supply Current over  
Temperature Range  
1.6  
5.2  
V
V
Overvoltage Protection  
at Supply  
1
3
28.5  
28  
32  
32  
V
V
I
= 25 mA, T = 25 °C,  
DDZ  
OZ  
DD J  
t = 20 ms  
OvervoltageProtectionatOutput  
Output Voltage  
I
OH  
t = 20 ms  
= 25 mA, T = 25 °C,  
J
V
V
3
3
130  
130  
280  
400  
mV  
mV  
I
OL  
I
OL  
= 20 mA, T = 25 °C  
OL  
J
Output Voltage over  
Temperature Range  
= 20 mA  
OL  
I
I
f
f
t
t
t
Output Leakage Current  
3
3
1
3
3
0.06  
0.1  
10  
µA  
Output switched off,  
T = 25 °C, V = 3.8 to 24 V  
OH  
J
OH  
Output Leakage Current over  
Temperature Range  
µA  
Output switched off,  
T 150 °C, V = 3.8 to 24V  
OH  
osc  
osc  
en(O)  
r
J
OH  
Internal Oscillator  
Chopper Frequency  
49  
38  
62  
62  
30  
75  
50  
150  
kHz  
kHz  
µs  
T = 25 °C,  
J
V
DD  
= 4.5 V to 24 V  
Internal Oscillator Chopper Fre-  
quencyover TemperatureRange  
1)  
Enable Time of Output after  
70  
400  
400  
200  
V
V
= 12 V  
DD  
Setting of V  
DD  
Output Rise Time  
Output Fall Time  
ns  
= 12 V, R = 820 Ohm,  
L
DD  
C = 20 pF  
L
ns  
V = 12 V, R = 820 Ohm,  
DD L  
f
C = 20 pF  
L
R
case  
SOT-89B  
Thermal Resistance Junction  
to Substrate Backside  
K/W  
Fiberglass Substrate  
30 mm x 10 mm x 1.5mm,  
pad size see Fig. 33  
thJSB  
R
case  
Thermal Resistance Junction  
to Soldering Point  
150  
200  
K/W  
thJA  
TO-92UA  
1)  
B > B + 2 mT or B < B  
2 mT for HAL50x, B > B  
+ 2 mT or B < B 2 mT for HAL51x  
OFF ON  
ON  
OFF  
5.0  
2.0  
2.0  
1.0  
Fig. 33: Recommended pad size SOT-89B  
Dimensions in mm  
8
Micronas  
HAL5xx  
3.7. Magnetic Characteristics Overview at T = 40 °C to +170 °C, V = 3.8 V to 24 V,  
J
DD  
Typical Characteristics for V = 12 V  
DD  
Magnetic flux density values of switching points.  
Positive flux density values refer to the magnetic south pole at the branded side of the package.  
Sensor  
Parameter  
On point B  
Typ.  
Off point B  
Typ.  
Hysteresis B  
Typ.  
Unit  
ON  
OFF  
HYS  
Switching type  
T
J
Min.  
0.8  
0.5  
1.5  
1
Max.  
2.5  
2.3  
3
Min.  
2.5  
2.3  
2.5  
5  
Max.  
0.8  
0.5  
2
Min.  
0.5  
0.5  
0.4  
4.5  
4.5  
3.5  
14.6  
13.6  
11  
Max.  
HAL 501  
40 °C  
0.6  
0.5  
0.7  
2.8  
2.6  
2.3  
8.6  
8
0.8  
0.7  
0.2  
2.8  
2.6  
2.3  
8.6  
8  
1.4  
1.2  
0.9  
5.6  
5.2  
4.6  
17.2  
16  
2
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
bipolar  
25 °C  
170 °C  
40 °C  
25 °C  
1.9  
1.8  
7.2  
7
HAL 502  
5
1  
latching  
1
4.5  
4.3  
10.8  
10  
4.5  
4.3  
10.8  
10  
8.9  
5.3  
1  
170 °C  
40 °C  
25 °C  
0.9  
6.4  
6
0.9  
6.4  
6  
6.8  
20.6  
18  
HAL 503  
latching  
170 °C  
40 °C  
25 °C  
4
6.4  
13  
8.9  
15.7  
14.5  
13.7  
18.3  
17  
6  
4  
12.4  
5.5  
5
16  
HAL 504  
10.3  
9.5  
8.5  
11.8  
11  
7.5  
9.6  
9
4.4  
4
6.5  
6.5  
6.4  
34  
unipolar  
12  
5
7
170 °C  
40 °C  
25 °C  
10.2  
15  
4.2  
5.9  
8.5  
11.8  
11  
9.4  
5.4  
5
3.2  
26  
4.3  
30  
HAL 505  
18.3  
17  
16.1  
2.1  
15  
13.5  
11.7  
3.8  
latching  
13.5  
11.7  
5.9  
5.5  
4.6  
19  
24  
27  
32  
170 °C  
40 °C  
25 °C  
9.4  
4.3  
3.8  
3.2  
15.5  
15  
16.1  
7.7  
7.2  
6.8  
21.9  
20.7  
20  
20  
23.4  
2.1  
2
31.3  
2.8  
2.7  
2.6  
2.8  
2.7  
2.6  
3.9  
3.9  
3.8  
2.8  
2.7  
2.6  
3
HAL 506  
1.6  
1.5  
0.9  
1.6  
1.5  
1
unipolar  
2
3.5  
170 °C  
40 °C  
25 °C  
1.7  
3
5.2  
20  
1.6  
2.3  
2
HAL 508  
14  
16.7  
16  
unipolar  
18  
13.5  
11.4  
19.9  
19.9  
18.3  
4.3  
19  
170 °C  
40 °C  
25 °C  
12.7  
23.1  
23.1  
21.3  
2.1  
2
15.3  
27.4  
26.8  
25.4  
3.8  
3.5  
3
13.6  
23.8  
23.2  
22.1  
5.9  
18.3  
27.2  
26.6  
25.3  
7.7  
7.2  
6.8  
22.5  
20.7  
20  
1.7  
3.6  
3.5  
3.3  
2.1  
2
HAL 509  
31.1  
30.4  
28.9  
5.4  
5
2.9  
2.8  
2.5  
1.6  
1.5  
0.9  
1.6  
1.5  
0.8  
1.5  
1.4  
0.8  
unipolar  
170 °C  
40 °C  
25 °C  
HAL 516  
unipolar  
inverted  
HAL 517  
unipolar  
inverted  
HAL 518  
unipolar  
inverted  
3.8  
5.5  
170 °C  
40 °C  
25 °C  
1.7  
14  
5.2  
21.5  
19  
3.2  
4.6  
1.6  
2.5  
2.1  
1.4  
2.3  
2
17.1  
16.2  
12.3  
16.7  
16  
15.5  
15  
19.6  
18.3  
13.7  
19  
13.5  
9
2.7  
2.4  
3
170 °C  
40 °C  
25 °C  
18  
10.5  
15.5  
15  
14  
20  
22  
13.5  
11  
19  
18  
20.7  
20  
2.8  
2.6  
170 °C  
13.6  
18.3  
12.2  
15.3  
1.7  
Note: For detailed descriptions of the individual types, see pages 14 and following.  
Micronas  
9
HAL5xx  
Magnetic Characteristics Overview, continued  
Sensor  
Parameter  
On point B  
Typ.  
Off point B  
Typ.  
Hysteresis B  
Typ.  
Unit  
ON  
OFF  
HYS  
Switching type  
T
J
Min.  
5.4  
5  
Max.  
2.1  
2  
Min.  
7.7  
7.2  
6.8  
18  
Max.  
4.3  
3.8  
2.8  
30  
Min.  
1.6  
1.5  
0.9  
7
Max.  
HAL 519  
unipolar  
inverted  
HAL 523  
unipolar  
40 °C  
3.8  
3.6  
3.0  
34.5  
34.5  
34.5  
5.9  
5.5  
4.6  
24  
2.1  
2.8  
2.7  
2.6  
14  
mT  
mT  
mT  
mT  
mT  
mT  
25 °C  
170 °C  
40 °C  
25 °C  
1.9  
5.2  
28  
1.5  
42  
1.6  
10.5  
10.5  
10.5  
28  
42  
18  
24  
30  
7
14  
170 °C  
28  
42  
18  
24  
30  
7
14  
Note: For detailed descriptions of the individual types, see pages 14 and following.  
mA  
25  
mA  
5.0  
HAL5xx  
HAL5xx  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
20  
15  
10  
5
I
I
DD  
DD  
T = 40 °C  
A
T = 40 °C  
A
T = 25 °C  
A
T =170 °C  
A
T = 25 °C  
A
T = 100 °C  
A
T = 170 °C  
A
0
5  
10  
15  
1510 5  
0
5
10 15 20 25 30 35  
1
2
3
4
5
6
7
8
V
V
V
DD  
V
DD  
Fig. 34: Typical supply current  
Fig. 35: Typical supply current  
versus supply voltage  
versus supply voltage  
10  
Micronas  
HAL5xx  
mA  
5
kHz  
100  
HAL5xx  
HAL5xx  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
I
f
4
3
2
1
0
DD  
osc  
V
= 24 V  
= 12 V  
DD  
T = 25 °C  
A
V
DD  
T = 40 °C  
A
T = 170 °C  
A
V
DD  
= 3.8 V  
50  
0
50  
100  
150  
200°C  
0
5
10  
15  
20  
25  
30  
V
T
A
V
DD  
Fig. 36: Typical supply current  
Fig. 38: Typ. Internal chopper frequency  
versus ambient temperature  
versus supply voltage  
kHz  
100  
kHz  
HAL5xx  
HAL5xx  
100  
90  
90  
f
f
osc  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
osc  
V
= 3.8 V  
DD  
T =25 °C  
A
T = 40 °C  
A
V
= 4.5 V...24 V  
DD  
T =170 °C  
A
50  
0
50  
100  
150  
200°C  
3
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
V
T
A
V
DD  
Fig. 37: Typ. internal chopper frequency  
Fig. 39: Typ. internal chopper frequency  
versus ambient temperature  
versus supply voltage  
Micronas  
11  
HAL5xx  
mV  
mV  
HAL5xx  
= 20 mA  
HAL5xx  
I = 20 mA  
O
400  
400  
I
O
350  
V
DD  
= 3.8 V  
V
OL  
V
OL  
300  
250  
200  
150  
100  
50  
300  
200  
100  
0
V
V
= 4.5 V  
= 24 V  
DD  
T = 170 °C  
A
DD  
T = 100 °C  
A
T = 25 °C  
A
T = 40 °C  
A
0
0
5
10  
15  
20  
25  
30  
50  
0
50  
100  
150  
200°C  
V
V
DD  
T
A
Fig. 310: Typical output low voltage  
Fig. 312: Typical output low voltage  
versus supply voltage  
versus ambient temperature  
mV  
mA  
10  
HAL5xx  
HAL5xx  
4
600  
500  
400  
300  
200  
100  
0
I
= 20 mA  
O
3
10  
10  
2
V
OL  
I
OH  
T =170 °C  
A
1
10  
T =150 °C  
A
0
10  
10  
T =100 °C  
A
1  
T =170 °C  
A
2  
10  
T =100 °C  
A
T =25 °C  
A
3  
10  
10  
10  
T =25 °C  
A
4  
T = 40 °C  
A
T = 40 °C  
A
5  
6  
10  
3
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
15  
20  
25  
30  
35  
V
V
V
DD  
V
OH  
Fig. 311: Typical output low voltage  
Fig. 313: Typical output high current  
versus supply voltage  
versus output voltage  
12  
Micronas  
HAL5xx  
µA  
dBµV  
HAL5xx  
HAL5xx  
2
80  
10  
V
T
A
= 12 V  
= 25 °C  
P
70  
60  
50  
40  
30  
20  
10  
0
1
Quasi-Peak-  
Measurement  
test circuit 2  
10  
I
V
DD  
OH  
V
OH  
= 24 V  
0
10  
1  
max.spurious  
signals  
10  
V
OH  
= 3.8 V  
2  
10  
10  
10  
10  
3  
4  
5  
50  
0
50  
100  
150  
200°C  
0.01  
0.10  
11
10 100 1000  
1
MHz  
T
A
f
Fig. 314: Typicaloutputleakagecurrent  
Fig. 316: Typ. spectrum at supply voltage  
versus ambient temperature  
dBµA  
HAL5xx  
30  
V
T
A
= 12 V  
= 25 °C  
DD  
Quasi-Peak-  
Measurement  
20  
10  
I
DD  
max.spurious  
signals  
0
10  
20  
30  
0.01  
0.10  
11
10 100 1000  
1
MHz  
f
Fig. 315: Typ. spectrum of supply current  
Micronas  
13  
HAL501  
4. Type Description  
4.1. HAL501  
Applications  
The HAL501 is the optimal sensor for all applications  
with alternating magnetic signals and weak magnetic  
amplitude at the sensor position such as:  
The HAL501 is the most sensitive sensor of this family  
with bipolar switching behavior (see Fig. 41).  
applications with large airgap or weak magnets,  
rotating speed measurement,  
CAM shaft sensors, and  
The output turns low with the magnetic south pole on the  
branded side of the package and turns high with the  
magnetic north pole on the branded side. The output  
state is not defined for all sensors if the magnetic field is  
removed again. Some sensors will change the output  
state and some sensors will not.  
magnetic encoders.  
Output Voltage  
For correct functioning in the application, the sensor re-  
quires both magnetic polarities (north and south) on the  
branded side of the package.  
V
O
B
HYS  
Magnetic Features:  
V
OL  
switching type: bipolar  
very high sensitivity  
B
OFF  
0
B
ON  
B
typical B : 0.5 mT at room temperature  
ON  
Fig. 41: Definition of magnetic switching points for  
the HAL501  
typical B : 0.7 mT at room temperature  
OFF  
operates with static magnetic fields and dynamic mag-  
netic fields up to 10 kHz  
Magnetic Characteristics at T = 40 °C to +170 °C, V = 3.8 V to 24 V,  
J
DD  
Typical Characteristics for V = 12 V  
DD  
Magnetic flux density values of switching points.  
Positive flux density values refer to the magnetic south pole at the branded side of the package.  
Parameter  
On point B  
Typ.  
Off point B  
Hysteresis B  
Magnetic Offset B  
Unit  
ON  
OFF  
HYS  
OFFSET  
T
J
Min.  
0.8  
0.5  
0.9  
1.2  
1.5  
Max.  
2.5  
2.3  
2.5  
2.8  
3
Min.  
Typ.  
0.8  
0.7  
0.6  
0.5  
0.2  
Max.  
0.8  
0.5  
0.9  
1.3  
2
Min.  
Typ.  
1.4  
1.2  
1.1  
1.1  
0.9  
Max.  
Min.  
Typ.  
0.1  
0.1  
0
Max.  
40 °C  
0.6  
0.5  
0.5  
0.6  
0.7  
2.5  
2.3  
2.5  
2.5  
2.5  
0.5  
0.5  
0.5  
0.5  
0.4  
2
mT  
mT  
mT  
mT  
mT  
25 °C  
100 °C  
140 °C  
170 °C  
1.9  
1.8  
1.8  
1.8  
1.4  
1.4  
0
0.2  
The hysteresis is the difference between the switching points B  
= B B  
ON OFF  
HYS  
The magnetic offset is the mean value of the switching points B  
= (B + B  
) / 2  
OFF  
OFFSET  
ON  
14  
Micronas  
HAL501  
mT  
3
mT  
3
HAL501  
HAL501  
B
ON  
max  
max  
B
B
B
B
ON  
OFF  
ON  
OFF  
2
1
2
1
B
OFF  
B
B
ON  
B
ON  
typ  
0
0
B
OFF  
typ  
1  
2  
3  
1  
2  
3  
OFF  
T = 40 °C  
B
ON  
min  
A
V
= 3.8 V  
DD  
T = 25 °C  
A
V
= 4.5 V...24 V  
DD  
T = 100 °C  
A
B
OFF  
min  
T = 170 °C  
A
0
5
10  
15  
20  
25  
30  
50  
0
50  
100  
150  
T , T  
200°C  
V
V
DD  
A
J
Fig. 42: Typ. magnetic switching points  
Fig. 44: Magnetic switching points  
versus supply voltage  
versus temperature  
Note: In the diagram Magnetic switching points versus  
temperaturethe curves for min, max,  
min, and B max refer to junction temperature,  
B
ON  
B
ON  
B
OFF  
OFF  
mT  
HAL501  
whereas typical curves refer to ambient temperature.  
3
B
B
ON  
OFF  
2
B
B
1
0
ON  
1  
2  
3  
OFF  
T = 40 °C  
A
T = 25 °C  
A
T = 100 °C  
A
T = 170 °C  
A
3
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
V
V
DD  
Fig. 43: Typ. magnetic switching points  
versus supply voltage  
Micronas  
15  
HAL502  
4.2. HAL502  
Applications  
The HAL502 is the most sensitive latching sensor of this  
family (see Fig. 45).  
The HAL502 is the optimal sensor for all applications  
with alternating magnetic signals and weak magnetic  
amplitude at the sensor position such as:  
The output turns low with the magnetic south pole on the  
branded side of the package and turns high with the  
magnetic north pole on the branded side. The output  
does not change if the magnetic field is removed. For  
changing the output state, the opposite magnetic field  
polarity must be applied.  
applications with large airgap or weak magnets,  
rotating speed measurement,  
commutation of brushless DC motors,  
CAM shaft sensors, and  
magnetic encoders.  
For correct functioning in the application, the sensor re-  
quires both magnetic polarities (north and south) on the  
branded side of the package.  
Output Voltage  
Magnetic Features:  
V
O
switching type: latching  
high sensitivity  
B
HYS  
typical B : 2.6 mT at room temperature  
ON  
V
OL  
typical B : 2.6 mT at room temperature  
OFF  
B
OFF  
0
B
ON  
B
operates with static magnetic fields and dynamic mag-  
netic fields up to 10 kHz  
Fig. 45: Definition of magnetic switching points for  
the HAL502  
typical temperature coefficient of magnetic switching  
points is 1000 ppm/K  
Magnetic Characteristics at T = 40 °C to +170 °C, V = 3.8 V to 24 V,  
J
DD  
Typical Characteristics for V = 12 V  
DD  
Magnetic flux density values of switching points.  
Positive flux density values refer to the magnetic south pole at the branded side of the package.  
Parameter  
On point B  
Typ.  
Off point B  
Hysteresis B  
HYS  
Magnetic Offset  
Unit  
ON  
OFF  
T
J
Min.  
1
Max.  
5
Min.  
Typ.  
2.8  
2.6  
2.5  
2.4  
2.3  
Max.  
Min.  
Typ.  
5.6  
5.2  
5
Max.  
Min.  
Typ.  
Max.  
40 °C  
2.8  
2.6  
2.5  
2.4  
2.3  
5  
1  
4.5  
4.5  
4
7.2  
7
0
0
0
0
0
mT  
mT  
mT  
mT  
mT  
25 °C  
100 °C  
140 °C  
170 °C  
1
4.5  
4.4  
4.3  
4.3  
4.5  
4.4  
4.3  
4.3  
1  
1.5  
1.5  
0.95  
0.9  
0.9  
0.95  
0.9  
0.9  
6.8  
6.8  
6.8  
3.7  
3.5  
4.8  
4.6  
The hysteresis is the difference between the switching points B  
= B B  
ON OFF  
HYS  
The magnetic offset is the mean value of the switching points B  
= (B + B  
) / 2  
OFF  
OFFSET  
ON  
16  
Micronas  
HAL502  
mT  
6
mT  
6
HAL502  
HAL502  
B
max  
min  
ON  
B
B
B
B
ON  
OFF  
ON  
OFF  
4
2
4
2
B
ON  
B
ON  
typ  
B
ON  
T = 40 °C  
A
T = 25 °C  
V
V
= 3.8 V  
A
DD  
0
0
T = 100 °C  
A
= 4.5 V...24 V  
DD  
T = 170 °C  
A
B max  
OFF  
2  
4  
6  
2  
4  
6  
B
typ  
OFF  
B
OFF  
B
min  
OFF  
0
5
10  
15  
20  
25  
30  
50  
0
50  
100  
150  
T , T  
200°C  
V
V
DD  
A
J
Fig. 46: Typ. magnetic switching points  
Fig. 48: Magnetic switching points  
versus supply voltage  
versus temperature  
Note: In the diagram Magnetic switching points versus  
temperaturethe curves for min, max,  
min, and B max refer to junction temperature,  
B
ON  
B
ON  
B
OFF  
OFF  
mT  
HAL502  
whereas typical curves refer to ambient temperature.  
6
B
B
ON  
OFF  
4
B
ON  
2
0
T = 40 °C  
A
T =25 °C  
A
T =100 °C  
A
T =170 °C  
A
2  
4  
6  
B
OFF  
3
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
V
V
DD  
Fig. 47: Typ. magnetic switching points  
versus supply voltage  
Micronas  
17  
HAL503  
4.3. HAL503  
Applications  
The HAL503 is a latching sensor (see Fig. 49).  
The HAL503 is the optimal sensor for applications with  
alternating magnetic signals such as:  
The output turns low with the magnetic south pole on the  
branded side of the package and turns high with the  
magnetic north pole on the branded side. The output  
does not change if the magnetic field is removed. For  
changing the output state, the opposite magnetic field  
polarity must be applied.  
multipole magnet applications,  
rotating speed measurement,  
commutation of brushless DC motors, and  
window lifter.  
For correct functioning in the application, the sensor re-  
quires both magnetic polarities (north and south) on the  
branded side of the package.  
Output Voltage  
V
O
Magnetic Features:  
B
HYS  
switching type: latching  
medium sensitivity  
V
OL  
typical B : 7.6 mT at room temperature  
ON  
B
OFF  
0
B
ON  
B
typical B : 7.6 mT at room temperature  
OFF  
operates with static magnetic fields and dynamic mag-  
netic fields up to 10 kHz  
Fig. 49: Definition of magnetic switching points for  
the HAL503  
typical temperature coefficient of magnetic switching  
points is 1000 ppm/K  
Magnetic Characteristics at T = 40 °C to +170 °C, V = 3.8 V to 24 V,  
J
DD  
Typical Characteristics for V = 12 V  
DD  
Magnetic flux density values of switching points.  
Positive flux density values refer to the magnetic south pole at the branded side of the package.  
Parameter  
On point B  
Typ.  
Off point B  
Hysteresis B  
HYS  
Magnetic Offset  
Unit  
ON  
OFF  
T
J
Min.  
6.4  
6
Max.  
10.8  
10  
Min.  
Typ.  
8.6  
7.6  
6.9  
6.4  
6  
Max.  
6.4  
6  
Min.  
Typ.  
Max.  
Min.  
Typ.  
0.1  
0
Max.  
40 °C  
8.4  
7.6  
7.1  
6.7  
6.4  
10.8  
10  
14.6  
13.6  
12.3  
11.5  
11  
17  
20.6  
18  
mT  
mT  
mT  
mT  
mT  
25 °C  
100 °C  
140 °C  
170 °C  
15.2  
14  
1.5  
1.5  
4.8  
4.4  
4
9.5  
9.5  
9.2  
8.9  
4.8  
4.4  
4  
17  
0.1  
0.1  
0.2  
9.2  
13.1  
12.4  
16.5  
16  
8.9  
The hysteresis is the difference between the switching points B  
= B B  
ON OFF  
HYS  
The magnetic offset is the mean value of the switching points B  
= (B + B  
) / 2  
OFF  
OFFSET  
ON  
18  
Micronas  
HAL503  
mT  
12  
mT  
12  
HAL503  
HAL503  
B
B
max  
min  
ON  
B
ON  
B
B
B
B
ON  
OFF  
ON  
OFF  
8
4
8
4
B
ON  
typ  
ON  
T = 40 °C  
A
T = 25 °C  
V
V
= 3.8 V  
A
DD  
0
0
T = 100 °C  
A
= 4.5 V...24 V  
DD  
T = 170 °C  
A
4  
8  
12  
4  
8  
12  
B
B
max  
OFF  
B
typ  
OFF  
B
OFF  
min  
100  
OFF  
0
5
10  
15  
20  
25  
30  
50  
0
50  
150  
T , T  
200°C  
V
V
DD  
A
J
Fig. 410: Typ. magnetic switching points  
Fig. 412: Magnetic switching points  
versus supply voltage  
versus temperature  
Note: In the diagram Magnetic switching points versus  
ambient temperaturethe curves for B min, B max,  
ON  
ON  
B
min, and B  
max refer to junction temperature,  
OFF  
OFF  
mT  
HAL503  
whereas typical curves refer to ambient temperature.  
12  
B
ON  
B
B
ON  
OFF  
8
4
T = 40 °C  
A
T = 25 °C  
A
0
T = 100 °C  
A
T = 170 °C  
A
4  
8  
12  
B
OFF  
3
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
V
V
DD  
Fig. 411: Typ. magnetic switching points  
versus supply voltage  
Micronas  
19  
HAL504  
4.4. HAL504  
Applications  
The HAL504 is a unipolar switching sensor (see  
Fig. 413).  
The HAL504 is the optimal sensor for applications with  
one magnetic polarity such as:  
solid state switches,  
The output turns low with the magnetic south pole on the  
branded side of the package and turns high if the mag-  
netic field is removed. The sensor does not respond to  
the magnetic north pole on the branded side.  
contactless solution to replace micro switches,  
position and end-point detection, and  
rotating speed measurement.  
For correct functioning in the application, the sensor re-  
quires only the magnetic south pole on the branded side  
of the package.  
Output Voltage  
V
O
Magnetic Features:  
B
HYS  
switching type: unipolar  
medium sensitivity  
V
OL  
typical B : 12 mT at room temperature  
ON  
typical B : 7 mT at room temperature  
OFF  
0
B
OFF  
B
ON  
B
operates with static magnetic fields and dynamic mag-  
netic fields up to 10 kHz  
Fig. 413: Definition of magnetic switching points for  
the HAL504  
typical temperature coefficient of magnetic switching  
points is 1000 ppm/K  
Magnetic Characteristics at T = 40 °C to +170 °C, V = 3.8 V to 24 V,  
J
DD  
Typical Characteristics for V = 12 V  
DD  
Magnetic flux density values of switching points.  
Positive flux density values refer to the magnetic south pole at the branded side of the package.  
Parameter  
On point B  
Typ.  
Off point B  
Hysteresis B  
HYS  
Magnetic Offset  
Unit  
ON  
OFF  
T
J
Min.  
10.3  
9.5  
9
Max.  
15.7  
14.5  
14.1  
13.9  
13.7  
Min.  
Typ.  
7.5  
7
Max.  
9.6  
9
Min.  
Typ.  
5.5  
5
Max.  
Min.  
Typ.  
10.2  
9.5  
8.8  
8.4  
8
Max.  
40 °C  
13  
5.3  
5
4.4  
4
6.5  
6.5  
6.4  
6.4  
6.4  
mT  
mT  
mT  
mT  
mT  
25 °C  
100 °C  
140 °C  
170 °C  
12  
7.2  
11.8  
11.1  
10.6  
10.2  
4.6  
4.4  
4.2  
6.4  
6.1  
5.9  
8.7  
8.6  
8.5  
3.6  
3.4  
3.2  
4.7  
4.5  
4.3  
8.7  
8.5  
The hysteresis is the difference between the switching points B  
= B B  
ON OFF  
HYS  
The magnetic offset is the mean value of the switching points B  
= (B + B  
) / 2  
OFF  
OFFSET  
ON  
20  
Micronas  
HAL504  
mT  
18  
mT  
18  
HAL504  
HAL504  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
B
B
B
B
ON  
OFF  
ON  
OFF  
B
max  
ON  
B
ON  
B
B
typ  
ON  
B
min  
ON  
B
max  
OFF  
typ  
OFF  
6
6
B
OFF  
T = 40 °C  
A
4
4
B min  
OFF  
T =25 °C  
A
V
V
= 3.8 V  
T =100 °C  
DD  
A
2
2
= 4.5 V...24 V  
T =170 °C  
A
DD  
0
0
0
5
10  
15  
20  
25  
30  
50  
0
50  
100  
150  
T , T  
200°C  
V
V
DD  
A
J
Fig. 414: Typ. magnetic switching points  
Fig. 416: Magnetic switching points  
versus supply voltage  
versus temperature  
Note: In the diagram Magnetic switching points versus  
temperaturethe curves for min, max,  
min, and B max refer to junction temperature,  
B
ON  
B
ON  
B
OFF  
OFF  
mT  
HAL504  
whereas typical curves refer to ambient temperature.  
18  
16  
B
B
ON  
OFF  
14  
B
ON  
12  
10  
8
6
B
OFF  
T = 40 °C  
A
4
T =25 °C  
A
T = 100 °C  
A
2
T = 170 °C  
A
0
3
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
V
V
DD  
Fig. 415: Typ. magnetic switching points  
versus supply voltage  
Micronas  
21  
HAL505  
4.5. HAL505  
Applications  
The HAL505 is a latching sensor (see Fig. 417).  
The HAL505 is the optimal sensor for applications with  
alternating magnetic signals such as:  
The output turns low with the magnetic south pole on the  
branded side of the package and turns high with the  
magnetic north pole on the branded side. The output  
does not change if the magnetic field is removed. For  
changing the output state, the opposite magnetic field  
polarity must be applied.  
multipole magnet applications,  
rotating speed measurement,  
commutation of brushless DC motors, and  
window lifter.  
For correct functioning in the application, the sensor re-  
quires both magnetic polarities (north and south) on the  
branded side of the package.  
Output Voltage  
V
O
Magnetic Features:  
B
HYS  
switching type: latching  
low sensitivity  
V
OL  
typical B : 13.5 mT at room temperature  
ON  
B
OFF  
0
B
ON  
B
typical B : 13.5 mT at room temperature  
OFF  
operates with static magnetic fields and dynamic mag-  
netic fields up to 10 kHz  
Fig. 417: Definition of magnetic switching points for  
the HAL505  
typical temperature coefficient of magnetic switching  
points is 1000 ppm/K  
Magnetic Characteristics at T = 40 °C to +170 °C, V = 3.8 V to 24 V,  
J
DD  
Typical Characteristics for V = 12 V  
DD  
Magnetic flux density values of switching points.  
Positive flux density values refer to the magnetic south pole at the branded side of the package.  
Parameter  
On point B  
Typ.  
Off point B  
Hysteresis B  
HYS  
Magnetic Offset  
Unit  
ON  
OFF  
T
J
Min.  
11.8  
11  
Max.  
18.3  
17  
Min.  
Typ.  
Max.  
11.8  
11  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
40 °C  
15  
18.3  
17  
15  
26  
24  
22  
21  
20  
30  
34  
0
0
0
0
0
mT  
mT  
mT  
mT  
mT  
25 °C  
100 °C  
140 °C  
170 °C  
13.5  
12.4  
12  
13.5  
12.4  
12  
27  
32  
1.5  
1.5  
10.2  
9.7  
16.6  
16.3  
16.1  
16.6  
16.3  
16.1  
10.2  
9.7  
9.4  
24.8  
24.2  
23.4  
31.3  
31.3  
31.3  
9.4  
11.7  
11.7  
The hysteresis is the difference between the switching points B  
= B B  
ON OFF  
HYS  
The magnetic offset is the mean value of the switching points B  
= (B + B  
) / 2  
OFF  
OFFSET  
ON  
22  
Micronas  
HAL505  
mT  
20  
mT  
20  
HAL505  
HAL505  
B
B
max  
min  
ON  
B
ON  
15  
10  
15  
10  
B
B
B
B
ON  
OFF  
ON  
OFF  
B
ON  
typ  
ON  
5
5
T = 40 °C  
V
V
= 3.8 V  
A
DD  
T = 25 °C  
A
= 4.5 V...24 V  
DD  
0
0
T = 100 °C  
A
T = 170 °C  
A
5  
5  
B
max  
min  
OFF  
B
OFF  
10  
15  
20  
10  
15  
20  
B typ  
OFF  
B
OFF  
0
5
10  
15  
20  
25  
30  
50  
0
50  
100  
150  
T , T  
200°C  
V
V
DD  
A
J
Fig. 418: Typ. magnetic switching points  
Fig. 420: Magnetic switching points  
versus supply voltage  
versus temperature  
Note: In the diagram Magnetic switching points versus  
ambient temperaturethe curves for B min, B max,  
ON  
ON  
B
min, and B  
max refer to junction temperature,  
OFF  
OFF  
mT  
HAL505  
whereas typical curves refer to ambient temperature.  
20  
B
ON  
15  
10  
B
B
ON  
OFF  
5
T = 40 °C  
A
T = 25 °C  
A
0
T = 100 °C  
A
T = 170 °C  
A
5  
B
OFF  
10  
15  
20  
3
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
V
V
DD  
Fig. 419: Typ. magnetic switching points  
versus supply voltage  
Micronas  
23  
HAL506  
4.6. HAL506  
Applications  
The HAL506 is the most sensitive unipolar switching  
sensor of this family (see Fig. 421).  
The HAL506 is the optimal sensor for all applications  
with one magnetic polarity and weak magnetic ampli-  
tude at the sensor position such as:  
The output turns low with the magnetic south pole on the  
branded side of the package and turns high if the mag-  
netic field is removed. The sensor does not respond to  
the magnetic north pole on the branded side.  
applications with large airgap or weak magnets,  
solid state switches,  
contactless solution to replace micro switches,  
position and end point detection, and  
rotating speed measurement.  
For correct functioning in the application, the sensor re-  
quires only the magnetic south pole on the branded side  
of the package.  
In the HAL5xx family, the HAL516 is a sensor with the  
same magnetic characteristics but with an inverted out-  
put characteristic.  
Output Voltage  
V
O
B
HYS  
Magnetic Features:  
switching type: unipolar  
high sensitivity  
V
OL  
typical B : 5.5 mT at room temperature  
ON  
0
B
OFF  
B
ON  
B
typical B  
: 3.5 mT at room temperature  
OFF  
Fig. 421: Definition of magnetic switching points for  
the HAL506  
operates with static magnetic fields and dynamic mag-  
netic fields up to 10 kHz  
typical temperature coefficient of magnetic switching  
points is 1000 ppm/K  
Magnetic Characteristics at T = 40 °C to +170 °C, V = 3.8 V to 24 V,  
J
DD  
Typical Characteristics for V = 12 V  
DD  
Magnetic flux density values of switching points.  
Positive flux density values refer to the magnetic south pole at the branded side of the package.  
Parameter  
On point B  
Typ.  
Off point B  
Hysteresis B  
HYS  
Magnetic Offset  
Unit  
ON  
OFF  
T
J
Min.  
4.3  
3.8  
3.6  
3.4  
3.2  
Max.  
7.7  
7.2  
7
Min.  
Typ.  
3.8  
3.5  
3.3  
3.1  
3
Max.  
5.4  
5
Min.  
Typ.  
2.1  
2
Max.  
Min.  
Typ.  
4.8  
4.5  
4.2  
4
Max.  
40 °C  
5.9  
5.5  
5.1  
4.8  
4.6  
2.1  
2
1.6  
1.5  
1.2  
1
2.8  
2.7  
2.6  
2.6  
2.6  
mT  
mT  
mT  
mT  
mT  
25 °C  
100 °C  
140 °C  
170 °C  
3.8  
6.2  
1.9  
1.8  
1.7  
4.9  
5.1  
5.2  
1.8  
1.7  
1.6  
6.9  
6.8  
0.9  
3.8  
The hysteresis is the difference between the switching points B  
= B B  
ON OFF  
HYS  
The magnetic offset is the mean value of the switching points B  
= (B + B  
) / 2  
OFF  
OFFSET  
ON  
24  
Micronas  
HAL506  
mT  
8
mT  
8
HAL506  
HAL506  
B
max  
ON  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
B
B
B
B
ON  
OFF  
ON  
OFF  
B
ON  
B
B
typ  
ON  
B
B
max  
min  
OFF  
min  
ON  
typ  
OFF  
B
OFF  
T = 40 °C  
A
T =25 °C  
A
B
OFF  
T =100 °C  
A
V
V
= 3.8 V  
DD  
T =170 °C  
A
= 4.5 V...24 V  
DD  
0
5
10  
15  
20  
25  
30  
50  
0
50  
100  
150  
T , T  
200°C  
V
V
DD  
A
J
Fig. 422: Typ. magnetic switching points  
Fig. 424: Magnetic switching points  
versus supply voltage  
versus temperature  
Note: In the diagram Magnetic switching points versus  
temperaturethe curves for min, max,  
min, and B max refer to junction temperature,  
B
ON  
B
ON  
B
OFF  
OFF  
mT  
HAL506  
whereas typical curves refer to ambient temperature.  
8
7
B
B
ON  
OFF  
B
ON  
6
5
4
3
2
1
0
B
OFF  
T = 40 °C  
A
T = 25 °C  
A
T = 100 °C  
A
T = 170 °C  
A
3
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
V
V
DD  
Fig. 423: Typ. magnetic switching points  
versus supply voltage  
Micronas  
25  
HAL508  
4.7. HAL508  
Applications  
The HAL508 is a unipolar switching sensor (see  
Fig. 425).  
The HAL508 is the optimal sensor for applications with  
one magnetic polarity such as:  
solid state switches,  
The output turns low with the magnetic south pole on the  
branded side of the package and turns high if the mag-  
netic field is removed. The sensor does not respond to  
the magnetic north pole on the branded side.  
contactless solution to replace micro switches,  
position and end point detection, and  
rotating speed measurement.  
For correct functioning in the application, the sensor re-  
quires only the magnetic south pole on the branded side  
of the package.  
Output Voltage  
V
O
In the HAL5xx family, the HAL518 is a sensor with the  
same magnetic characteristics but with an inverted out-  
put characteristic.  
B
HYS  
Magnetic Features:  
V
OL  
switching type: unipolar  
medium sensitivity  
0
B
OFF  
B
ON  
B
Fig. 425: Definition of magnetic switching points for  
the HAL508  
typical B : 18 mT at room temperature  
ON  
typical B : 16 mT at room temperature  
OFF  
operates with static magnetic fields and dynamic mag-  
netic fields up to 10 kHz  
typical temperature coefficient of magnetic switching  
points is 1000 ppm/K  
Magnetic Characteristics at T = 40 °C to +170 °C, V = 3.8 V to 24 V,  
J
DD  
Typical Characteristics for V = 12 V  
DD  
Magnetic flux density values of switching points.  
Positive flux density values refer to the magnetic south pole at the branded side of the package.  
Parameter  
On point B  
Typ.  
Off point B  
Hysteresis B  
HYS  
Magnetic Offset  
Unit  
ON  
OFF  
T
J
Min.  
15.5  
15  
Max.  
21.9  
20.7  
20.4  
20.2  
20  
Min.  
Typ.  
16.7  
16  
Max.  
Min.  
Typ.  
2.3  
2
Max.  
Min.  
Typ.  
17.8  
17  
Max.  
40 °C  
19  
14  
20  
1.6  
1.5  
1.2  
1.1  
1
2.8  
2.7  
2.6  
2.6  
2.6  
mT  
mT  
mT  
mT  
mT  
25 °C  
100 °C  
140 °C  
170 °C  
18  
13.5  
12.5  
11.9  
11.4  
19  
14  
20  
13.9  
13.2  
12.7  
16.6  
15.8  
15.3  
14.8  
14.1  
13.6  
18.7  
18.5  
18.3  
1.8  
1.7  
1.7  
15.7  
15  
14.4  
The hysteresis is the difference between the switching points B  
= B B  
ON OFF  
HYS  
The magnetic offset is the mean value of the switching points B  
= (B + B  
) / 2  
OFF  
OFFSET  
ON  
26  
Micronas  
HAL508  
mT  
25  
mT  
25  
HAL508  
HAL508  
B
B
B
B
ON  
OFF  
ON  
OFF  
B
B
max  
ON  
B
ON  
20  
15  
10  
5
20  
15  
10  
5
max  
OFF  
B
ON  
typ  
B
B
typ  
OFF  
B
OFF  
min  
ON  
B
OFF  
min  
T = 40 °C  
A
T =25 °C  
A
V
V
= 3.8 V  
T =100 °C  
DD  
A
= 4.5 V...24 V  
T =170 °C  
DD  
A
0
0
0
5
10  
15  
20  
25  
30  
50  
0
50  
100  
150  
T , T  
200°C  
V
V
DD  
A
J
Fig. 426: Typ. magnetic switching points  
Fig. 428: Magnetic switching points  
versus supply voltage  
versus temperature  
Note: In the diagram Magnetic switching points versus  
temperaturethe curves for min, max,  
min, and B max refer to junction temperature,  
B
ON  
B
ON  
B
OFF  
OFF  
mT  
HAL508  
whereas typical curves refer to ambient temperature.  
25  
B
B
ON  
OFF  
20  
15  
10  
5
B
ON  
B
OFF  
T = 40 °C  
A
T = 25 °C  
A
T = 100 °C  
A
T = 170 °C  
A
0
3
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
V
V
DD  
Fig. 427: Typ. magnetic switching points  
versus supply voltage  
Micronas  
27  
HAL509  
4.8. HAL509  
Applications  
The HAL509 is a unipolar switching sensor (see  
Fig. 429).  
The HAL509 is the optimal sensor for applications with  
one magnetic polarity and strong magnetic fields at the  
sensor position such as:  
The output turns low with the magnetic south pole on the  
branded side of the package and turns high if the mag-  
netic field is removed. The sensor does not respond to  
the magnetic north pole on the branded side.  
solid state switches,  
contactless solution to replace micro switches,  
position and end point detection, and  
rotating speed measurement.  
For correct functioning in the application, the sensor re-  
quires only the magnetic south pole on the branded side  
of the package.  
Output Voltage  
Magnetic Features:  
V
O
switching type: unipolar  
low sensitivity  
B
HYS  
typical B : 26.8 mT at room temperature  
ON  
V
OL  
typical B : 23.2 mT at room temperature  
OFF  
0
B
OFF  
B
ON  
B
operates with static magnetic fields and dynamic mag-  
netic fields up to 10 kHz  
Fig. 429: Definition of magnetic switching points for  
the HAL509  
typical temperature coefficient of magnetic switching  
points is 300 ppm/K  
Magnetic Characteristics at T = 40 °C to +170 °C, V = 3.8 V to 24 V,  
J
DD  
Typical Characteristics for V = 12 V  
DD  
Magnetic flux density values of switching points.  
Positive flux density values refer to the magnetic south pole at the branded side of the package.  
Parameter  
On point B  
Typ.  
Off point B  
Hysteresis B  
HYS  
Magnetic Offset  
Unit  
ON  
OFF  
T
J
Min.  
23.1  
23.1  
22.2  
21.7  
21.3  
Max.  
31.1  
30.4  
29.7  
29.2  
28.9  
Min.  
Typ.  
23.8  
23.2  
22.7  
22.4  
22.1  
Max.  
27.2  
26.6  
25.9  
25.6  
25.3  
Min.  
Typ.  
3.6  
3.5  
3.4  
3.3  
3.3  
Max.  
Min.  
Typ.  
25.6  
25  
Max.  
40 °C  
27.4  
26.8  
26.1  
25.7  
25.4  
19.9  
19.9  
19.1  
18.6  
18.3  
2.9  
2.8  
2.7  
2.6  
2.5  
3.9  
3.9  
3.8  
3.8  
3.8  
mT  
mT  
mT  
mT  
mT  
25 °C  
100 °C  
140 °C  
170 °C  
21.5  
28.5  
24.4  
24  
23.7  
The hysteresis is the difference between the switching points B  
= B B  
ON OFF  
HYS  
The magnetic offset is the mean value of the switching points B  
= (B + B  
) / 2  
OFF  
OFFSET  
ON  
28  
Micronas  
HAL509  
mT  
35  
mT  
35  
HAL509  
HAL509  
B
ON  
max  
B
B
B
B
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
ON  
OFF  
ON  
OFF  
B
B max  
OFF  
B
typ  
ON  
ON  
B
typ  
OFF  
B
OFF  
B
min  
ON  
B
min  
OFF  
T = 40 °C  
A
T =25 °C  
A
V
= 3.8 V  
T =100 °C  
DD  
A
V
= 4.5 V...24 V  
T =170 °C  
DD  
A
0
0
0
5
10  
15  
20  
25  
30  
50  
0
50  
100  
150  
T , T  
200°C  
V
V
DD  
A
J
Fig. 430: Typ. magnetic switching points  
Fig. 432: Magnetic switching points  
versus supply voltage  
versus temperature  
Note: In the diagram Magnetic switching points versus  
temperaturethe curves for min, max,  
min, and B max refer to junction temperature,  
B
ON  
B
ON  
B
OFF  
OFF  
mT  
HAL509  
whereas typical curves refer to ambient temperature.  
35  
B
B
30  
25  
20  
15  
10  
5
ON  
OFF  
B
ON  
B
OFF  
T = 40 °C  
A
T =25 °C  
A
T =100 °C  
A
T =170 °C  
A
0
3
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
V
V
DD  
Fig. 431: Typ. magnetic switching points  
versus supply voltage  
Micronas  
29  
HAL516  
4.9. HAL516  
Applications  
The HAL516 is the most sensitive unipolar switching  
sensor with an inverted output of this family (see  
Fig. 433).  
The HAL516 is the optimal sensor for all applications  
with one magnetic polarity and weak magnetic ampli-  
tude at the sensor position where an inverted output sig-  
nal is required such as:  
The output turns high with the magnetic south pole on  
the branded side of the package and turns low if the  
magnetic field is removed. The sensor does not respond  
to the magnetic north pole on the branded side.  
applications with large airgap or weak magnets,  
solid state switches,  
contactless solution to replace micro switches,  
position and end point detection, and  
rotating speed measurement.  
For correct functioning in the application, the sensor re-  
quires only the magnetic south pole on the branded side  
of the package.  
In the HAL5xx family, the HAL506 is a sensor with the  
same magnetic characteristics but with a normal output  
characteristic.  
Output Voltage  
V
O
B
HYS  
Magnetic Features:  
switching type: unipolar inverted  
high sensitivity  
V
OL  
typical B : 3.5 mT at room temperature  
ON  
0
B
ON  
B
OFF  
B
typical B  
: 5.5 mT at room temperature  
OFF  
Fig. 433: Definition of magnetic switching points for  
the HAL516  
operates with static magnetic fields and dynamic mag-  
netic fields up to 10 kHz  
typical temperature coefficient of magnetic switching  
points is 1000 ppm/K  
Magnetic Characteristics at T = 40 °C to +170 °C, V = 3.8 V to 24 V,  
J
DD  
Typical Characteristics for V = 12 V  
DD  
Magnetic flux density values of switching points.  
Positive flux density values refer to the magnetic south pole at the branded side of the package.  
Parameter  
On point B  
Typ.  
Off point B  
Hysteresis B  
HYS  
Magnetic Offset  
Unit  
ON  
OFF  
T
J
Min.  
2.1  
2
Max.  
5.4  
5
Min.  
Typ.  
5.9  
5.5  
5.1  
4.8  
4.6  
Max.  
7.7  
7.2  
7
Min.  
Typ.  
2.1  
2
Max.  
Min.  
Typ.  
4.8  
4.5  
4.2  
4
Max.  
40 °C  
3.8  
3.5  
3.3  
3.1  
3
4.3  
3.8  
3.6  
3.4  
3.2  
1.6  
1.5  
1.2  
1
2.8  
2.7  
2.6  
2.6  
2.6  
mT  
mT  
mT  
mT  
mT  
25 °C  
100 °C  
140 °C  
170 °C  
3.8  
6.2  
1.9  
1.8  
1.7  
4.9  
5.1  
5.2  
1.8  
1.7  
1.6  
6.9  
6.8  
0.9  
3.8  
The hysteresis is the difference between the switching points B  
= B  
B  
OFF ON  
HYS  
The magnetic offset is the mean value of the switching points B  
= (B + B  
) / 2  
OFF  
OFFSET  
ON  
30  
Micronas  
HAL516  
mT  
8
mT  
8
HAL516  
HAL516  
B
max  
OFF  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
B
B
B
B
ON  
OFF  
ON  
OFF  
B
OFF  
B
B
typ  
OFF  
B
B
max  
ON  
min  
OFF  
B
ON  
typ  
ON  
T = 40 °C  
A
B
ON  
min  
T =25 °C  
A
T =100 °C  
A
V
V
= 3.8 V  
DD  
T =170 °C  
A
= 4.5 V...24 V  
DD  
0
5
10  
15  
20  
25  
30  
50  
0
50  
100  
150  
T , T  
200°C  
V
V
DD  
A
J
Fig. 434: Typ. magnetic switching points  
Fig. 436: Magnetic switching points  
versus supply voltage  
versus temperature  
Note: In the diagram Magnetic switching points versus  
temperaturethe curves for min, max,  
min, and B max refer to junction temperature,  
B
ON  
B
ON  
B
OFF  
OFF  
mT  
HAL516  
whereas typical curves refer to ambient temperature.  
8
7
B
B
ON  
OFF  
B
OFF  
6
5
4
3
2
1
0
B
ON  
T = 40 °C  
A
T = 25 °C  
A
T = 100 °C  
A
T = 170 °C  
A
3
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
V
V
DD  
Fig. 435: Typ. magnetic switching points  
versus supply voltage  
Micronas  
31  
HAL517  
4.10. HAL517  
Applications  
The HAL517 is a unipolar switching sensor with inverted  
output (see Fig. 437).  
The HAL517 is the optimal sensor for applications with  
one magnetic polarity where an inverted output signal is  
required such as:  
The output turns high with the magnetic south pole on  
the branded side of the package and turns low if the  
magnetic field is removed. The sensor does not respond  
to the magnetic north pole on the branded side.  
solid state switches,  
contactless solution to replace micro switches,  
position and end point detection, and  
rotating speed measurement.  
For correct functioning in the application, the sensor re-  
quires only the magnetic south pole on the branded side  
of the package.  
Output Voltage  
Magnetic Features:  
V
O
switching type: unipolar inverted  
B
HYS  
medium sensitivity  
typical on point is 16.2 mT at room temperature  
typical off point is 18.3 mT at room temperature  
V
OL  
0
B
ON  
B
OFF  
B
operates with static magnetic fields and dynamic mag-  
netic fields up to 10 kHz  
Fig. 437: Definition of magnetic switching points for  
the HAL517  
typical temperature coefficient of magnetic switching  
points is 1700 ppm/K  
Magnetic Characteristics at T = 40 °C to +170 °C, V = 3.8 V to 24 V,  
J
DD  
Typical Characteristics for V = 12 V  
DD  
Magnetic flux density values of switching points.  
Positive flux density values refer to the magnetic south pole at the branded side of the package.  
Parameter  
On point B  
Typ.  
Off point B  
Hysteresis B  
HYS  
Magnetic Offset  
Unit  
ON  
OFF  
T
J
Min.  
14  
Max.  
21.5  
19  
Min.  
Typ.  
19.6  
18.3  
16.1  
14.8  
13.7  
Max.  
22.5  
20.7  
20.4  
20.2  
20  
Min.  
Typ.  
2.5  
2.1  
1.8  
1.6  
1.4  
Max.  
Min.  
Typ.  
18.3  
17.2  
15.2  
14  
Max.  
40 °C  
17.1  
16.2  
14.3  
13.2  
12.3  
15.5  
15  
1.6  
1.5  
1.2  
1
3
mT  
mT  
mT  
mT  
mT  
25 °C  
100 °C  
140 °C  
170 °C  
13.5  
11  
2.7  
2.6  
2.6  
2.4  
14  
20  
18.5  
18.2  
18  
12.8  
11.5  
10.5  
10  
9
0.8  
13  
The hysteresis is the difference between the switching points B  
= B  
B  
OFF ON  
HYS  
The magnetic offset is the mean value of the switching points B  
= (B + B  
) / 2  
OFF  
OFFSET  
ON  
32  
Micronas  
HAL517  
mT  
25  
mT  
25  
HAL517  
HAL517  
max  
B
B
B
B
ON  
OFF  
ON  
OFF  
B
OFF  
B
OFF  
20  
15  
10  
5
20  
15  
10  
5
B
ON  
max  
B typ  
OFF  
B
ON  
typ  
B
ON  
B min  
OFF  
B
ON  
min  
T = 40 °C  
A
T =25 °C  
A
V
V
= 3.8 V  
T =100 °C  
DD  
A
= 4.5 V...24 V  
T =170 °C  
DD  
A
0
0
0
5
10  
15  
20  
25  
30  
50  
0
50  
100  
150  
T , T  
200°C  
V
V
DD  
A
J
Fig. 438: Typ. magnetic switching points  
Fig. 440: Magnetic switching points  
versus supply voltage  
versus temperature  
Note: In the diagram Magnetic switching points versus  
ambient temperaturethe curves for B min, B max,  
ON  
ON  
B
min, and B  
max refer to junction temperature,  
OFF  
OFF  
mT  
HAL517  
whereas typical curves refer to ambient temperature.  
25  
B
B
ON  
OFF  
B
OFF  
20  
15  
10  
5
B
ON  
T = 40 °C  
A
T =25 °C  
A
T =100 °C  
A
T =170 °C  
A
0
3
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
V
V
DD  
Fig. 439: Typ. magnetic switching points  
versus supply voltage  
Micronas  
33  
HAL518  
4.11. HAL518  
Applications  
The HAL518 is a unipolar switching sensor with inverted  
output (see Fig. 441).  
The HAL518 is the optimal sensor for applications with  
one magnetic polarity where an inverted output signal is  
required such as:  
The output turns high with the magnetic south pole on  
the branded side of the package and turns low if the  
magnetic field is removed. The sensor does not respond  
to the magnetic north pole on the branded side.  
solid state switches,  
contactless solution to replace micro switches,  
position and end point detection, and  
rotating speed measurement.  
For correct functioning in the application, the sensor re-  
quires only the magnetic south pole on the branded side  
of the package.  
Output Voltage  
In the HAL5xx family, the HAL508 is a sensor with the  
same magnetic characteristics but with a normal output  
characteristic.  
V
O
B
HYS  
Magnetic Features:  
V
OL  
switching type: unipolar inverted  
medium sensitivity  
0
B
ON  
B
OFF  
B
typical B : 16 mT at room temperature  
ON  
Fig. 441: Definition of magnetic switching points for  
the HAL518  
typical B : 18 mT at room temperature  
OFF  
operates with static magnetic fields and dynamic mag-  
netic fields up to 10 kHz  
typical temperature coefficient of magnetic switching  
points is 1000 ppm/K  
Magnetic Characteristics at T = 40 °C to +170 °C, V = 3.8 V to 24 V,  
J
DD  
Typical Characteristics for V = 12 V  
DD  
Magnetic flux density values of switching points.  
Positive flux density values refer to the magnetic south pole at the branded side of the package.  
Parameter  
On point B  
Typ.  
Off point B  
Hysteresis B  
HYS  
Magnetic Offset  
Unit  
ON  
OFF  
T
J
Min.  
14  
Max.  
20  
Min.  
Typ.  
Max.  
Min.  
Typ.  
2.3  
2
Max.  
Min.  
Typ.  
17.8  
17  
Max.  
40 °C  
16.7  
16  
15.5  
15  
19  
22  
1.5  
1.4  
1
3
mT  
mT  
mT  
mT  
mT  
25 °C  
100 °C  
140 °C  
170 °C  
13.5  
12.5  
11.7  
11  
19  
18  
20.7  
20.4  
20.2  
20  
2.8  
2.7  
2.7  
2.6  
14  
20  
14.8  
14.1  
13.6  
18.7  
18.5  
18.3  
13.9  
13  
16.6  
15.8  
15.3  
1.8  
1.7  
1.7  
15.7  
15  
0.9  
0.8  
12.2  
14.4  
The hysteresis is the difference between the switching points B  
= B  
B  
OFF ON  
HYS  
The magnetic offset is the mean value of the switching points B  
= (B + B  
) / 2  
OFF  
OFFSET  
ON  
34  
Micronas  
HAL518  
mT  
25  
mT  
25  
HAL518  
HAL518  
B
B
B
B
ON  
OFF  
ON  
OFF  
B
B
max  
OFF  
B
OFF  
20  
15  
10  
5
20  
15  
10  
5
max  
ON  
B
typ  
typ  
OFF  
B
ON  
B
ON  
B min  
OFF  
B
min  
ON  
T = 40 °C  
A
T =25 °C  
A
V
= 3.8 V  
DD  
T =100 °C  
A
V
= 4.5 V...24 V  
T =170 °C  
DD  
A
0
0
0
5
10  
15  
20  
25  
30  
50  
0
50  
100  
150  
T , T  
200°C  
V
V
DD  
A
J
Fig. 442: Typ. magnetic switching points  
Fig. 444: Magnetic switching points  
versus supply voltage  
versus temperature  
Note: In the diagram Magnetic switching points versus  
temperaturethe curves for min, max,  
min, and B max refer to junction temperature,  
B
ON  
B
ON  
B
OFF  
OFF  
mT  
HAL518  
whereas typical curves refer to ambient temperature.  
25  
B
B
ON  
OFF  
20  
15  
10  
5
B
OFF  
B
ON  
T = 40 °C  
A
T = 25 °C  
A
T = 100 °C  
A
T = 170 °C  
A
0
3
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
V
V
DD  
Fig. 443: Typ. magnetic switching points  
versus supply voltage  
Micronas  
35  
HAL519  
4.12. HAL519  
Applications  
The HAL519 is a very sensitive unipolar switching sen-  
sorwithaninvertedoutputsensitiveonlytothemagnetic  
north polarity. (see Fig. 445).  
The HAL519 is the optimal sensor for all applications  
with the north magnetic polarity and weak magnetic am-  
plitude at the sensor position where an inverted output  
signal is required such as:  
Theoutputturnshighwiththemagneticnorthpoleonthe  
brandedsideofthepackageandturnslowifthemagnet-  
ic field is removed. The sensor does not respond to the  
magnetic south pole on the branded side, the output re-  
mains low. For correct functioning in the application, the  
sensor requires only the magnetic north pole on the  
branded side of the package.  
solid state switches,  
contactless solution to replace micro switches,  
position and end point detection, and  
rotating speed measurement.  
Output Voltage  
Magnetic Features:  
V
O
switching type: unipolar inverted, north sensitive  
high sensitivity  
B
HYS  
typical B : 3.5 mT at room temperature  
ON  
V
OL  
typical B : 5.5 mT at room temperature  
OFF  
operates with static magnetic fields and dynamic mag-  
B
OFF  
B
ON  
0
B
netic fields up to 10 kHz  
Fig. 445: Definition of magnetic switching points for  
the HAL519  
typical temperature coefficient of magnetic switching  
points is 1000 ppm/K  
Magnetic Characteristics at T = 40 °C to +170 °C, V = 3.8 V to 24 V,  
J
DD  
Typical Characteristics for V = 12 V  
DD  
Magnetic flux density values of switching points.  
Positive flux density values refer to the magnetic south pole at the branded side of the package.  
Parameter  
On point B  
Typ.  
Off point B  
Hysteresis B  
HYS  
Magnetic Offset  
Unit  
ON  
OFF  
T
J
Min.  
5.4  
5  
Max.  
2.1  
2  
Min.  
Typ.  
5.9  
5.5  
5  
Max.  
4.3  
3.8  
3.4  
3.1  
2.8  
Min.  
Typ.  
2.1  
1.9  
1.7  
1.7  
1.6  
Max.  
Min.  
Typ.  
4.8  
4.5  
4.2  
4  
Max.  
40 °C  
3.8  
3.6  
3.3  
3.1  
3  
7.7  
7.2  
6.7  
6.8  
6.8  
1.6  
1.5  
1.2  
1
2.8  
2.7  
2.6  
2.6  
2.6  
mT  
mT  
mT  
mT  
mT  
25 °C  
100 °C  
140 °C  
170 °C  
6.2  
3.8  
4.9  
5.1  
5.2  
1.9  
1.7  
1.5  
4.8  
4.6  
0.9  
3.8  
The hysteresis is the difference between the switching points B  
= B B  
ON OFF  
HYS  
The magnetic offset is the mean value of the switching points B  
= (B + B  
) / 2  
OFF  
OFFSET  
ON  
36  
Micronas  
HAL519  
mT  
0
mT  
0
HAL519  
HAL519  
T = 40 °C  
V
V
= 3.8 V  
A
DD  
T = 25 °C  
A
= 4.5 V...24 V  
DD  
1  
2  
3  
4  
5  
6  
7  
8  
1  
2  
3  
4  
5  
6  
7  
8  
B
B
B
B
ON  
OFF  
ON  
OFF  
T = 100 °C  
A
B
max  
ON  
T = 170 °C  
A
B
B
B
typ  
ON  
ON  
B
B
max  
OFF  
min  
ON  
B
OFF  
typ  
OFF  
B
OFF  
min  
0
5
10  
15  
20  
25  
30  
50  
0
50  
100  
150  
T , T  
200°C  
V
V
DD  
A
J
Fig. 446: Typ. magnetic switching points  
Fig. 448: Magnetic switching points  
versus supply voltage  
versus temperature  
Note: In the diagram Magnetic switching points versus  
temperaturethe curves for min, max,  
min, and B max refer to junction temperature,  
B
ON  
B
ON  
B
OFF  
OFF  
mT  
HAL519  
whereas typical curves refer to ambient temperature.  
0
T = 40 °C  
A
T = 25 °C  
A
1  
2  
3  
4  
5  
6  
7  
8  
B
B
ON  
OFF  
T = 100 °C  
A
T = 170 °C  
A
B
ON  
B
OFF  
3
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
V
V
DD  
Fig. 447: Typ. magnetic switching points  
versus supply voltage  
Micronas  
37  
HAL523  
4.13. HAL523  
Applications  
The HAL523 is the least sensitive unipolar switching  
sensor of this family (see Fig. 449).  
The HAL523 is the optimal sensor for applications with  
one magnetic polarity and strong magnetic fields at the  
sensor position such as:  
The output turns low with the magnetic south pole on the  
branded side of the package and turns high if the mag-  
netic field is removed. The sensor does not respond to  
the magnetic north pole on the branded side.  
solid state switches,  
contactless solution to replace micro switches,  
position and end point detection, and  
rotating speed measurement.  
For correct functioning in the application, the sensor re-  
quires only the magnetic south pole on the branded side  
of the package.  
Output Voltage  
Magnetic Features:  
V
O
switching type: unipolar  
low sensitivity  
B
HYS  
typical B : 34.5 mT at room temperature  
ON  
V
OL  
typical B : 24 mT at room temperature  
OFF  
0
B
OFF  
B
ON  
B
operates with static magnetic fields and dynamic mag-  
netic fields up to 10 kHz  
Fig. 449: Definition of magnetic switching points for  
the HAL523  
Magnetic Characteristics at T = 40 °C to +170 °C, V = 3.8 V to 24 V,  
J
DD  
Typical Characteristics for V = 12 V  
DD  
Magnetic flux density values of switching points.  
Positive flux density values refer to the magnetic south pole at the branded side of the package.  
Parameter  
On point B  
Typ.  
Off point B  
Hysteresis B  
HYS  
Magnetic Offset  
Unit  
ON  
OFF  
T
J
Min.  
28  
Max.  
42  
Min.  
Typ.  
Max.  
Min.  
Typ.  
10.5  
10.5  
10.5  
10.5  
10.5  
Max.  
Min.  
Typ.  
29.3  
29.3  
29.3  
29.3  
29.3  
Max.  
40 °C  
34.5  
34.5  
34.5  
34.5  
34.5  
18  
18  
18  
18  
18  
24  
30  
7
7
7
7
7
14  
14  
14  
14  
14  
mT  
mT  
mT  
mT  
mT  
25 °C  
100 °C  
140 °C  
170 °C  
28  
42  
24  
30  
28  
42  
24  
30  
28  
42  
24  
30  
28  
42  
24  
30  
The hysteresis is the difference between the switching points B  
= B B  
ON OFF  
HYS  
The magnetic offset is the mean value of the switching points B  
= (B + B  
) / 2  
OFF  
OFFSET  
ON  
38  
Micronas  
HAL523  
mT  
45  
mT  
45  
HAL523  
HAL523  
B
ON  
max  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
B
B
B
B
ON  
OFF  
ON  
OFF  
B
ON  
B
typ  
ON  
B
B
max  
OFF  
min  
B
OFF  
ON  
B
typ  
OFF  
T = 40 °C  
A
B
OFF  
min  
T = 25 °C  
A
V
V
= 3.8 V  
DD  
T = 100 °C  
A
= 4.5 V...24 V  
DD  
T = 170 °C  
A
0
0
0
5
10  
15  
20  
25  
30  
50  
0
50  
100  
150  
T , T  
200°C  
V
V
DD  
A
J
Fig. 450: Typ. magnetic switching points  
Fig. 452: Magnetic switching points  
versus supply voltage  
versus temperature  
Note: In the diagram Magnetic switching points versus  
temperaturethe curves for min, max,  
min, and B max refer to junction temperature,  
B
ON  
B
ON  
B
OFF  
OFF  
mT  
HAL523  
whereas typical curves refer to ambient temperature.  
45  
40  
B
B
ON  
OFF  
B
ON  
35  
30  
25  
20  
15  
10  
5
B
OFF  
T = 40 °C  
A
T = 25 °C  
A
T = 100 °C  
A
T = 170 °C  
A
0
3
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
V
V
DD  
Fig. 451: Typ. magnetic switching points  
versus supply voltage  
Micronas  
39  
HAL5xx  
5. Application Notes  
5.4. EMC and ESD  
5.1. Ambient Temperature  
For applications with disturbances on the supply line or  
radiated disturbances, a series resistor and a capacitor  
are recommended (see figures 51). The series resistor  
and the capacitor should be placed as closely as pos-  
sible to the HAL sensor.  
Due to the internal power dissipation, the temperature  
on the silicon chip (junction temperature T ) is higher  
thanthetemperatureoutsidethepackage(ambienttem-  
J
perature T ).  
A
T = T + T  
Applications with this arrangement passed the EMC  
tests according to the product standards DIN 40839.  
J
A
At static conditions, the following equation is valid:  
T = I * V * R  
Note: The international standard ISO 7637 is similar to  
the used product standard DIN 40839.  
DD  
DD  
th  
For typical values, use the typical parameters. For worst  
case calculation, use the max. parameters for I and  
DD  
Please contact Micronas for the detailed investigation  
reports with the EMC and ESD results.  
R , and the max. value for V from the application.  
th  
DD  
For all sensors, the junction temperature range T is  
J
specified. The maximum ambient temperature T  
can be calculated as:  
Amax  
R
V
220 Ω  
T
Amax  
= T  
T  
Jmax  
R
1.2 kΩ  
L
1
V
DD  
5.2. Extended Operating Conditions  
V
V
OUT  
3
EMC  
P
All sensors fulfill the electrical and magnetic characteris-  
tics when operated within the Recommended Operating  
Conditions (see page 7).  
4.7 nF  
20 pF  
2
GND  
Supply Voltage Below 3.8 V  
Fig. 51: Test circuit for EMC investigations  
Typically, the sensors operate with supply voltages  
above 3 V, however, below 3.8 V some characteristics  
may be outside the specification.  
Note: Thefunctionalityofthesensorbelow3.8Vhasnot  
been tested. For special test conditions, please contact  
Micronas.  
5.3. Start-up Behavior  
Due to the active offset compensation, the sensors have  
an initialization time (enable time t ) after applying  
en(O)  
the supply voltage. The parameter t  
is specified in  
en(O)  
the Electrical Characteristics (see page 8).  
During the initialization time, the output state is not de-  
fined and the output can toggle. After t , the output  
en(O)  
will be low if the applied magnetic field B is above B  
.
ON  
The output will be high if B is below B . In case of sen-  
OFF  
sors with an inverted switching behavior (HAL516 ...  
HAL519), theoutputstatewillbehighifB>B  
andlow  
OFF  
if B < B  
.
ON  
For magnetic fields between B  
and B , the output  
ON  
OFF  
state of the HAL sensor after applying V will be either  
DD  
low or high. In order to achieve a well-defined output  
state, the applied magnetic field must be above B  
,
ONmax  
respectively, below B  
.
OFFmin  
40  
Micronas  
HAL5xx  
Micronas  
41  
HAL5xx  
42  
Micronas  
HAL5xx  
Micronas  
43  
HAL5xx  
6. Data Sheet History  
1. Final data sheet: HAL501...506, 508, 509, 516...  
518, Hall Effect Sensor Family, Aug. 11, 1999,  
6251-485-1DS. First release of the final data sheet.  
Major changes to the previous edition HAL501 ...  
HAL506, HAL 508, Hall Effect Sensor ICs, May 5,  
1997, 6251-405-1DS:  
additional types: HAL509, HAL516 ... HAL518  
additional package SOT-89B  
additional temperature range K”  
outline dimensions for SOT-89A and TO-92UA  
changed  
absolute maximum ratings changed  
electrical characteristics changed  
magnetic characteristics for HAL 501, HAL 503,  
HAL 506, and HAL 509 changed  
2. Final data sheet: HAL501...506, 508, 509, 516...  
519, 523, Hall Effect Sensor Family, Feb. 14, 2001,  
6251-485-2DS. Second release of the final data  
sheet. Major changes:  
additional types: HAL519, HAL523  
phased-out package SOT-89A removed  
temperature range Cremoved  
outline dimensions for SOT-89B: reduced toler-  
ances  
All information and data contained in this data sheet are without any  
commitment, are not to be considered as an offer for conclusion of a  
contract, nor shall they be construed as to create any liability. Any new  
issueofthisdatasheetinvalidatespreviousissues.Productavailability  
and delivery are exclusively subject to our respective order confirma-  
tion form; the same applies to orders based on development samples  
delivered. By this publication, Micronas GmbH does not assume re-  
sponsibility for patent infringements or other rights of third parties  
which may result from its use.  
Further, Micronas GmbH reserves the right to revise this publication  
and to make changes to its content, at any time, without obligation to  
notify any person or entity of such revisions or changes.  
No part of this publication may be reproduced, photocopied, stored on  
a retrieval system, or transmitted without the express written consent  
of Micronas GmbH.  
Micronas GmbH  
Hans-Bunte-Strasse 19  
D-79108 Freiburg (Germany)  
P.O. Box 840  
D-79008 Freiburg (Germany)  
Tel. +49-761-517-0  
Fax +49-761-517-2174  
E-mail: docservice@micronas.com  
Internet: www.micronas.com  
Printed in Germany  
by Systemdruck+Verlags-GmbH, Freiburg (02/01)  
Order No. 6251-485-2DS  
44  
Micronas  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY