HAL518SO-E [TDK]

Hall Effect Sensor, 3.8mT Min, 5mT Max, 0.13-2.80V, CMOS, Plastic/epoxy, Rectangular, 3 Pin, Surface Mount, PLASTIC, SOT-89A, 4 PIN;
HAL518SO-E
型号: HAL518SO-E
厂家: TDK ELECTRONICS    TDK ELECTRONICS
描述:

Hall Effect Sensor, 3.8mT Min, 5mT Max, 0.13-2.80V, CMOS, Plastic/epoxy, Rectangular, 3 Pin, Surface Mount, PLASTIC, SOT-89A, 4 PIN

文件: 总41页 (文件大小:327K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HAL501...506, 508, 509,  
HAL516...518  
Hall Effect Sensor Family  
Edition Aug. 11, 1999  
6251-485-1DS  
MICRONAS  
HAL5xx  
Contents  
Page  
Section  
Title  
3
3
3
4
4
4
4
1.  
Introduction  
1.1.  
1.2.  
1.3.  
1.4.  
1.5.  
1.6.  
Features  
Family Overview  
Marking Code  
Operating Junction Temperature Range  
Hall Sensor Package Codes  
Solderability  
5
2.  
Functional Description  
6
6
6
6
7
7
8
9
3.  
Specifications  
3.1.  
3.2.  
3.3.  
3.4.  
3.5.  
3.6.  
3.7.  
Outline Dimensions  
Dimensions of Sensitive Area  
Positions of Sensitive Areas  
Absolute Maximum Ratings  
Recommended Operating Conditions  
Electrical Characteristics  
Magnetic Characteristics Overview  
14  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
4.  
Type Descriptions  
HAL 501  
4.1.  
4.2.  
4.3.  
4.4.  
4.5.  
4.6.  
4.7.  
4.8.  
4.9.  
4.10.  
4.11.  
HAL 502  
HAL 503  
HAL 504  
HAL 505  
HAL 506  
HAL 508  
HAL 509  
HAL 516  
HAL 517  
HAL 518  
36  
36  
36  
36  
36  
5.  
Application Notes  
Ambient Temperature  
Extended Operating Conditions  
Start-up Behavior  
EMC  
5.1.  
5.2.  
5.3.  
5.4.  
40  
6.  
Data Sheet History  
2
MICRONAS INTERMETALL  
HAL5xx  
Hall Effect Sensor Family  
in CMOS technology  
– ideal sensor for applications in extreme automotive  
and industrial environments  
– EMC corresponding to DIN 40839  
Release Notes: Revision bars indicate significant  
changes to the previous edition.  
1.2. Family Overview  
1. Introduction  
The types differ according to the magnetic flux density  
values for the magnetic switching points, the tempera-  
ture behavior of the magnetic switching points, and the  
mode of switching.  
The HAL5xx family consists of different Hall switches  
produced in CMOS technology. All sensors include a  
temperature-compensated Hall plate with active offset  
compensation, a comparator, and an open-drain output  
transistor. The comparator compares the actual mag-  
netic flux through the Hall plate (Hall voltage) with the  
fixed reference values (switching points). Accordingly,  
the output transistor is switched on or off.  
Type  
Switching  
Behavior  
Sensitivity  
see  
Page  
501  
502  
503  
504  
505  
506  
508  
509  
516  
bipolar  
very high  
high  
14  
16  
18  
20  
22  
24  
26  
28  
30  
The sensors of this family differ in the switching behavior  
and the switching points.  
latching  
latching  
unipolar  
latching  
unipolar  
unipolar  
unipolar  
medium  
medium  
low  
The active offset compensation leads to constant mag-  
netic characteristics over supply voltage and tempera-  
ture range. In addition, the magnetic parameters are ro-  
bust against mechanical stress effects.  
high  
The sensors are designed for industrial and automotive  
applications and operate with supply voltages from  
3.8 V to 24 V in the ambient temperature range from  
–40 °C up to 150 °C.  
medium  
low  
All sensors are available in a SMD-package (SOT-89A)  
and in a leaded version (TO-92UA). The introduction of  
the additional SMD-package SOT-89B is planned for  
1999.  
unipolar with  
inverted output  
high  
517  
518  
unipolar with  
inverted output  
medium  
medium  
32  
34  
1.1. Features:  
unipolar with  
inverted output  
– switching offset compensation at typically 62 kHz  
– operates from 3.8 V to 24 V supply voltage  
– overvoltage protection at all pins  
Latching Sensors:  
– reverse-voltage protection at V -pin  
DD  
The output turns low with the magnetic south pole on the  
branded side of the package and turns high with the  
magnetic north pole on the branded side. The output  
does not change if the magnetic field is removed. For  
changing the output state, the opposite magnetic field  
polarity must be applied.  
– magnetic characteristics are robust against mechani-  
cal stress effects  
– short-circuit protected open-drain output by thermal  
shut down  
– operates with static magnetic fields and dynamic mag-  
netic fields up to 10 kHz  
Bipolar Switching Sensors:  
– constant switching points over a wide supply voltage  
range  
The output turns low with the magnetic south pole on the  
branded side of the package and turns high with the  
magnetic north pole on the branded side. The output  
state is not defined for all sensors if the magnetic field is  
removed again. Some sensors will change the output  
state and some sensors will not.  
– the decrease of magnetic flux density caused by rising  
temperature in the sensor system is compensated by  
a built-in negative temperature coefficient of the mag-  
netic characteristics  
MICRONAS INTERMETALL  
3
HAL5xx  
Unipolar Switching Sensors:  
1.4. Operating Junction Temperature Range  
A: T = –40 °C to +170 °C  
J
The output turns low with the magnetic south pole on the  
branded side of the package and turns high if the mag-  
netic field is removed. The sensor does not respond to  
the magnetic north pole on the branded side.  
K: T = –40 °C to +140 °C  
J
E: T = –40 °C to +100 °C  
J
C: T = 0 °C to +100 °C  
J
Unipolar Switching Sensors with Inverted Output:  
The Hall sensors from MICRONAS INTERMETALL are  
specified to the chip temperature (junction temperature  
T ).  
J
The output turns high with the magnetic south pole on  
the branded side of the package and turns low if the  
magnetic field is removed. The sensor does not respond  
to the magnetic north pole on the branded side.  
The relationship between ambient temperature (T ) and  
A
junction temperatureisexplainedinsection5.1. onpage  
36.  
1.3. Marking Code  
1.5. Hall Sensor Package Codes  
All Hall sensors have a marking on the package surface  
(branded side). This marking includes the name of the  
sensor and the temperature range.  
HALXXXPA-T  
Temperature Range: A, K, E, or C  
Package: SF for SOT-89B  
SO for SOT-89A  
Type  
Temperature Range  
UA for TO-92UA  
A
K
E
C
Type: 5xx  
HAL501  
HAL502  
HAL503  
HAL504  
HAL505  
HAL506  
HAL508  
HAL509  
HAL516  
HAL517  
HAL518  
501A  
502A  
503A  
504A  
505A  
506A  
508A  
509A  
516A  
517A  
518A  
501K  
502K  
503K  
504K  
505K  
506K  
508K  
509K  
516K  
517K  
518K  
501E  
502E  
503E  
504E  
505E  
506E  
508E  
509E  
516E  
517E  
518E  
501C  
502C  
503C  
504C  
505C  
506C  
508C  
509C  
516C  
517C  
518C  
Example: HAL505UA-E  
Type: 505  
Package: TO-92UA  
Temperature Range: T = –40 °C to +100 °C  
J
Hall sensors are available in a wide variety of packaging  
versions and quantities. For more detailed information,  
please refer to the brochure: “Ordering Codes for Hall  
Sensors”.  
1.6. Solderability  
all packages: according to IEC68-2-58  
V
DD  
1
OUT  
3
2
GND  
Fig. 1–1: Pin configuration  
4
MICRONAS INTERMETALL  
HAL5xx  
2. Functional Description  
L5xx  
Reverse  
V
Temperature  
Dependent  
Bias  
Short Circuit &  
Overvoltage  
Protection  
DD  
1
Hysteresis  
Control  
Voltage &  
Overvoltage  
Protection  
The HAL5xx sensors are monolithic integrated circuits  
which switch in response to magnetic fields. If a  
magnetic field with flux lines perpendicular to the  
sensitive area is applied to the sensor, the biased Hall  
plate forces a Hall voltage proportional to this field. The  
Hall voltage is compared with the actual threshold level  
in the comparator. The temperature-dependent bias  
increases the supply voltage of the Hall plates and  
adjusts the switching points to the decreasing induction  
of magnets at higher temperatures. If the magnetic field  
exceeds the threshold levels, the open drain output  
switches to the appropriate state. The built-in hysteresis  
eliminatesoscillationandprovidesswitchingbehaviorof  
output without bouncing.  
Hall Plate  
Comparator  
OUT  
Output  
3
Switch  
Clock  
GND  
2
Fig. 2–1: HAL5xx block diagram  
Magnetic offset caused by mechanical stress is com-  
pensated for by using the “switching offset compensa-  
tion technique”. Therefore, an internal oscillator pro-  
vides a two phase clock. The Hall voltage is sampled at  
the end of the first phase. At the end of the second  
phase, both sampled and actual Hall voltages are aver-  
agedandcomparedwiththeactualswitchingpoint. Sub-  
sequently, the open drain output switches to the ap-  
propriate state. The time from crossing the magnetic  
switching level to switching of output can vary between  
f
osc  
t
t
t
t
B
V
zero and 1/f  
.
osc  
B
ON  
Shunt protection devices clamp voltage peaks at the  
Output-Pin and V -Pin together with external series  
DD  
resistors. Reverse current is limited at the V -Pin by an  
OUT  
DD  
V
OH  
internal series resistor up to –15 V. No external reverse  
protection diode is needed at the V -Pin for reverse  
DD  
V
OL  
voltages ranging from 0 V to –15 V.  
I
DD  
t
f
1/f  
osc  
= 16 µs  
Fig. 2–2: Timing diagram  
MICRONAS INTERMETALL  
5
HAL5xx  
±0.1  
4.06  
x1  
±0.05  
1.5  
3. Specifications  
sensitive area  
x2  
0.3  
3.1. Outline Dimensions  
y
±0.1  
3.05  
±0.1  
4.55  
x1  
x2  
sensitive area  
0.125  
1.7  
0.48  
0.55  
0.7  
y
2
2
1
2
3
14.0  
min.  
±0.2  
4
±0.1  
2.6  
0.36  
min.  
0.25  
top view  
1
3
0.42  
0.4  
0.4  
±0.05  
1.53  
1.27 1.27  
(2.54)  
0.4  
3.0  
1.5  
branded side  
branded side  
45°  
0.8  
SPGS7002-7-A/2E  
±0.04  
0.06  
SPGS7001-7-A3/2E  
Fig. 3–3:  
Plastic Transistor Single Outline Package  
(TO-92UA)  
Weight approximately 0.12 g  
Dimensions in mm  
Fig. 3–1:  
Plastic Small Outline Transistor Package  
(SOT-89A)  
Weight approximately 0.04 g  
Dimensions in mm  
For all package diagrams, a mechanical tolerance of  
±50 µm applies to all dimensions where no tolerance is  
explicitly given.  
±0.1  
4.55  
x1  
x2  
sensitive area  
0.125  
1.7  
0.3  
y
2
2
3.2. Dimensions of Sensitive Area  
±0.2  
4
±0.1  
2.55  
0.25 mm x 0.12 mm  
min.  
0.25  
top view  
1
3
3.3. Positions of Sensitive Areas  
0.4  
0.4  
±0.05  
1.15  
0.4  
3.0  
SOT-89A  
SOT-89B  
TO-92UA  
1.5  
|x – x | / 2 < 0.2 mm  
2
1
y = 0.98 mm  
± 0.2 mm  
y = 0.95 mm  
± 0.2 mm  
y = 1.0 mm  
± 0.2 mm  
branded side  
±0.04  
0.06  
SPGS0022-3-A3/2E  
Fig. 3–2:  
Plastic Small Outline Transistor Package  
(SOT-89B)  
Weight approximately 0.035 g  
Dimensions in mm  
Note: This package will be introduced in 1999. Samples  
are available. Contact the sales offices for high volume  
delivery.  
6
MICRONAS INTERMETALL  
HAL5xx  
3.4. Absolute Maximum Ratings  
Symbol  
Parameter  
Pin No.  
Min.  
Max.  
Unit  
V
1)  
V
DD  
Supply Voltage  
1
1
1
1
–15  
28  
2)  
–V  
Test Voltage for Supply  
Reverse Supply Current  
–24  
V
P
1)  
–I  
DD  
50  
mA  
mA  
3)  
3)  
I
Supply Current through  
Protection Device  
–200  
200  
DDZ  
1)  
V
Output Voltage  
3
3
3
3
–0.3  
28  
V
O
1)  
I
I
I
Continuous Output On Current  
Peak Output On Current  
50  
mA  
mA  
mA  
O
3)  
250  
Omax  
OZ  
3)  
3)  
Output Current through  
Protection Device  
–200  
200  
T
T
Storage Temperature Range  
Junction Temperature Range  
–65  
150  
150  
°C  
°C  
S
J
–40  
–40  
4)  
170  
1)  
2)  
3)  
4)  
as long as T max is not exceeded  
with a 220 series resistance at pin 1 corresponding to test circuit 1  
t<2 ms  
t<1000h  
J
Stresses beyond those listed in the “Absolute Maximum Ratings” may cause permanent damage to the device. This  
is a stress rating only. Functional operation of the device at these or any other conditions beyond those indicated in the  
“Recommended Operating Conditions/Characteristics” of this specification is not implied. Exposure to absolute maxi-  
mum ratings conditions for extended periods may affect device reliability.  
3.5. Recommended Operating Conditions  
Symbol  
Parameter  
Pin No.  
Min.  
3.8  
0
Max.  
24  
Unit  
V
V
DD  
Supply Voltage  
1
3
3
I
O
Continuous Output On Current  
20  
mA  
V
V
O
Output Voltage  
0
24  
(output switched off)  
MICRONAS INTERMETALL  
7
HAL5xx  
3.6. Electrical Characteristics at T = –40 °C to +170 °C , V = 3.8 V to 24 V, as not otherwise specified in Conditions  
J
DD  
Typical Characteristics for T = 25 °C and V = 12 V  
J
DD  
Symbol  
Parameter  
Pin No.  
Min.  
2.3  
Typ.  
Max.  
4.2  
Unit  
mA  
mA  
Conditions  
T = 25 °C  
I
I
Supply Current  
1
1
3
3
DD  
DD  
J
Supply Current over  
Temperature Range  
1.6  
5.2  
V
V
Overvoltage Protection  
at Supply  
1
3
28.5  
28  
32  
32  
V
V
I
= 25 mA, T = 25 °C,  
DDZ  
OZ  
DD J  
t = 20 ms  
OvervoltageProtectionatOutput  
Output Voltage  
I
OH  
t = 20 ms  
= 25 mA, T = 25 °C,  
J
V
V
3
3
130  
130  
280  
400  
mV  
mV  
I
OL  
I
OL  
= 20 mA, T = 25 °C  
OL  
J
Output Voltage over  
Temperature Range  
= 20 mA  
OL  
I
I
f
f
t
t
t
Output Leakage Current  
3
3
1
3
3
0.06  
0.1  
10  
µA  
Output switched off,  
T = 25 °C, V = 3.8 to 24 V  
OH  
J
OH  
Output Leakage Current over  
Temperature Range  
µA  
Output switched off,  
T 150 °C, V = 3.8 to 24V  
OH  
osc  
osc  
en(O)  
r
J
OH  
Internal Oscillator  
Chopper Frequency  
49  
38  
62  
62  
30  
75  
50  
150  
kHz  
kHz  
µs  
T = 25 °C,  
J
V
DD  
= 4.5 V to 24 V  
Internal Oscillator Chopper Fre-  
quencyover TemperatureRange  
1)  
Enable Time of Output after  
70  
400  
400  
200  
V
V
= 12 V  
DD  
Setting of V  
DD  
Output Rise Time  
Output Fall Time  
ns  
= 12 V, R = 820 Ohm,  
L
DD  
C = 20 pF  
L
ns  
V = 12 V, R = 820 Ohm,  
DD L  
f
C = 20 pF  
L
R
case  
SOT-89A  
SOT-89B  
Thermal Resistance Junction  
to Substrate Backside  
K/W  
Fiberglass Substrate  
30 mm x 10 mm x 1.5mm,  
pad size see Fig. 3–4  
thJSB  
R
case  
Thermal Resistance Junction  
to Soldering Point  
150  
200  
K/W  
thJA  
TO-92UA  
1)  
B > B + 2 mT or B < B  
– 2 mT for HAL50x, B > B  
+ 2 mT or B < B – 2 mT for HAL51x  
OFF ON  
ON  
OFF  
5.0  
2.0  
2.0  
1.0  
Fig. 3–4: Recommended pad size SOT-89x  
Dimensions in mm  
8
MICRONAS INTERMETALL  
HAL5xx  
3.7. Magnetic Characteristics Overview at T = –40 °C to +170 °C, V = 3.8 V to 24 V,  
J
DD  
Typical Characteristics for V = 12 V  
DD  
Magnetic flux density values of switching points.  
Positive flux density values refer to the magnetic south pole at the branded side of the package.  
Sensor  
Parameter  
On point B  
Typ.  
Off point B  
Typ.  
Hysteresis B  
Typ.  
Unit  
ON  
OFF  
HYS  
Switching type  
T
J
Min.  
–0.8  
–0.5  
–1.5  
1
Max.  
2.5  
2.3  
3
Min.  
–2.5  
–2.3  
–2.5  
–5  
Max.  
0.8  
0.5  
2
Min.  
0.5  
0.5  
0.4  
4.5  
4.5  
3.5  
14.6  
13.6  
11  
Max.  
HAL 501  
–40 °C  
0.6  
0.5  
0.7  
2.8  
2.6  
2.3  
8.6  
8
–0.8  
–0.7  
–0.2  
–2.8  
–2.6  
–2.3  
–8.6  
–8  
1.4  
1.2  
0.9  
5.6  
5.2  
4.6  
17.2  
16  
2
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
mT  
bipolar  
25 °C  
170 °C  
–40 °C  
25 °C  
1.9  
1.8  
7.2  
7
HAL 502  
5
–1  
latching  
1
4.5  
4.3  
10.8  
10  
–4.5  
–4.3  
–10.8  
–10  
–8.9  
5.3  
–1  
170 °C  
–40 °C  
25 °C  
0.9  
6.4  
6
–0.9  
–6.4  
–6  
6.8  
20.6  
18  
HAL 503  
latching  
170 °C  
–40 °C  
25 °C  
4
6.4  
13  
8.9  
15.7  
14.5  
13.7  
18.3  
17  
–6  
–4  
12.4  
5.5  
5
16  
HAL 504  
10.3  
9.5  
8.5  
11.8  
11  
7.5  
9.6  
9
4.4  
4
6.5  
6.5  
6.4  
34  
unipolar  
12  
5
7
170 °C  
–40 °C  
25 °C  
10.2  
15  
4.2  
5.9  
8.5  
–11.8  
–11  
–9.4  
5.4  
5
3.2  
26  
4.3  
30  
HAL 505  
–18.3  
–17  
–16.1  
2.1  
–15  
–13.5  
–11.7  
3.8  
latching  
13.5  
11.7  
5.9  
5.5  
4.6  
19  
24  
27  
32  
170 °C  
–40 °C  
25 °C  
9.4  
4.3  
3.8  
3.2  
15.5  
15  
16.1  
7.7  
7.2  
6.8  
21.9  
20.7  
20  
20  
23.4  
2.1  
2
31.3  
2.8  
2.7  
2.6  
2.8  
2.7  
2.6  
3.9  
3.9  
3.8  
2.8  
2.7  
2.6  
3
HAL 506  
1.6  
1.5  
0.9  
1.6  
1.5  
1
unipolar  
2
3.5  
170 °C  
–40 °C  
25 °C  
1.7  
3
5.2  
20  
1.6  
2.3  
2
HAL 508  
14  
16.7  
16  
unipolar  
18  
13.5  
11.4  
19.9  
19.9  
18.3  
4.3  
19  
170 °C  
–40 °C  
25 °C  
12.7  
23.1  
23.1  
21.3  
2.1  
2
15.3  
27.4  
26.8  
25.4  
3.8  
3.5  
3
13.6  
23.8  
23.2  
22.1  
5.9  
18.3  
27.2  
26.6  
25.3  
7.7  
7.2  
6.8  
22.5  
20.7  
20  
1.7  
3.6  
3.5  
3.3  
2.1  
2
HAL 509  
31.1  
30.4  
28.9  
5.4  
5
2.9  
2.8  
2.5  
1.6  
1.5  
0.9  
1.6  
1.5  
0.8  
1.5  
1.4  
0.8  
unipolar  
170 °C  
–40 °C  
25 °C  
HAL 516  
unipolar  
inverted  
HAL 517  
unipolar  
inverted  
HAL 518  
unipolar  
inverted  
3.8  
5.5  
170 °C  
–40 °C  
25 °C  
1.7  
14  
5.2  
21.5  
19  
3.2  
4.6  
1.6  
2.5  
2.1  
1.4  
2.3  
2
17.1  
16.2  
12.3  
16.7  
16  
15.5  
15  
19.6  
18.3  
13.7  
19  
13.5  
9
2.7  
2.4  
3
170 °C  
–40 °C  
25 °C  
18  
10.5  
15.5  
15  
14  
20  
22  
13.5  
11  
19  
18  
20.7  
20  
2.8  
2.6  
170 °C  
13.6  
18.3  
12.2  
15.3  
1.7  
Note: For detailed descriptions of the individual types, see pages 14 and following.  
MICRONAS INTERMETALL  
9
HAL5xx  
mA  
25  
mA  
5
HAL5xx  
HAL5xx  
20  
I
I
DD  
4
3
2
1
0
DD  
T = –40 °C  
A
15  
10  
5
T = 25 °C  
A
V
= 24 V  
= 12 V  
DD  
T =170 °C  
A
V
DD  
0
V
DD  
= 3.8 V  
–5  
–10  
–15  
–15–10 –5  
0
5
10 15 20 25 30 35  
–50  
0
50  
100  
150  
200°C  
V
V
DD  
T
A
Fig. 3–5: Typical supply current  
Fig. 3–7: Typical supply current  
versus supply voltage  
versus ambient temperature  
mA  
5.0  
kHz  
100  
HAL5xx  
HAL5xx  
4.5  
90  
I
f
osc  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
DD  
T = –40 °C  
A
V
DD  
= 3.8 V  
T = 25 °C  
A
T = 100 °C  
A
V
DD  
= 4.5 V...24 V  
T = 170 °C  
A
1
2
3
4
5
6
7
8
–50  
0
50  
100  
150  
200°C  
V
V
DD  
T
A
Fig. 3–6: Typical supply current  
Fig. 3–8: Typ. internal chopper frequency  
versus supply voltage  
versus ambient temperature  
10  
MICRONAS INTERMETALL  
HAL5xx  
kHz  
100  
mV  
HAL5xx  
HAL5xx  
400  
I
O
= 20 mA  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
350  
300  
250  
200  
150  
100  
50  
f
V
OL  
osc  
T = 170 °C  
A
T = 25 °C  
A
T = –40 °C  
A
T = 100 °C  
A
T = 170 °C  
A
T = 25 °C  
A
T = –40 °C  
A
0
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
V
V
V
DD  
V
DD  
Fig. 3–9: Typ. Internal chopper frequency  
Fig. 3–11: Typical output low voltage  
versus supply voltage  
versus supply voltage  
kHz  
mV  
HAL5xx  
HAL5xx  
100  
600  
500  
400  
300  
200  
100  
0
I
= 20 mA  
O
90  
f
V
OL  
80  
70  
60  
50  
40  
30  
20  
10  
0
osc  
T =25 °C  
A
T = –40 °C  
A
T =170 °C  
A
T =170 °C  
A
T =100 °C  
A
T =25 °C  
A
T = –40 °C  
A
3
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
3
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
V
V
V
DD  
V
DD  
Fig. 3–10: Typ. internal chopper frequency  
Fig. 3–12: Typical output low voltage  
versus supply voltage  
versus supply voltage  
MICRONAS INTERMETALL  
11  
HAL5xx  
mV  
µA  
HAL5xx  
= 20 mA  
HAL5xx  
2
400  
10  
I
O
1
10  
V
DD  
= 3.8 V  
V
OL  
I
OH  
V
OH  
= 24 V  
300  
200  
100  
0
0
10  
V
V
= 4.5 V  
= 24 V  
DD  
DD  
–1  
10  
V
= 3.8 V  
OH  
–2  
10  
10  
10  
10  
–3  
–4  
–5  
–50  
0
50  
100  
150  
200°C  
–50  
0
50  
100  
150  
200°C  
T
A
T
A
Fig. 3–13: Typical output low voltage  
Fig. 3–15: Typicaloutputleakagecurrent  
versus ambient temperature  
versus ambient temperature  
mA  
10  
HAL5xx  
4
3
10  
10  
2
I
OH  
T =170 °C  
A
1
10  
T =150 °C  
A
0
10  
10  
T =100 °C  
A
–1  
–2  
10  
T =25 °C  
A
–3  
10  
10  
10  
–4  
T = –40 °C  
A
–5  
–6  
10  
15  
20  
25  
30  
35  
V
V
OH  
Fig. 3–14: Typical output high current  
versus output voltage  
12  
MICRONAS INTERMETALL  
HAL5xx  
dBµA  
dBµV  
HAL5xx  
= 12 V  
HAL5xx  
30  
80  
V
DD  
V = 12 V  
P
T = 25 °C  
Quasi-Peak-  
Measurement  
T = 25 °C  
A
A
70  
60  
50  
40  
30  
20  
10  
0
Quasi-Peak-  
Measurement  
test circuit 2  
20  
10  
I
V
DD  
DD  
max.spurious  
signals  
max.spurious  
signals  
0
–10  
–20  
–30  
0.01  
0.10  
11
10 100 1000  
0.01  
0.10  
11
10 100 1000  
1
1
MHz  
MHz  
f
f
Fig. 3–16: Typ. spectrum of supply current  
Fig. 3–17: Typ. spectrum at supply voltage  
MICRONAS INTERMETALL  
13  
HAL501  
4. Type Description  
4.1. HAL 501  
Applications  
The HAL 501 is the optimal sensor for all applications  
with alternating magnetic signals and weak magnetic  
amplitude at the sensor position such as:  
The HAL 501 is the most sensitive sensor of this family  
with bipolar switching behavior (see Fig. 4–1).  
– applications with large airgap or weak magnets,  
– rotating speed measurement,  
– CAM shaft sensors, and  
The output turns low with the magnetic south pole on the  
branded side of the package and turns high with the  
magnetic north pole on the branded side. The output  
state is not defined for all sensors if the magnetic field is  
removed again. Some sensors will change the output  
state and some sensors will not.  
– magnetic encoders.  
Output Voltage  
For correct functioning in the application, the sensor re-  
quires both magnetic polarities (north and south) on the  
branded side of the package.  
V
O
B
HYS  
Magnetic Features:  
V
OL  
– switching type: bipolar  
– very high sensitivity  
B
OFF  
0
B
ON  
B
– typical B : 0.5 mT at room temperature  
ON  
Fig. 4–1: Definition of magnetic switching points for  
the HAL501  
– typical B  
: –0.7 mT at room temperature  
OFF  
– operates with static magnetic fields and dynamic mag-  
netic fields up to 10 kHz  
Magnetic Characteristics at T = –40 °C to +170 °C, V = 3.8 V to 24 V,  
J
DD  
Typical Characteristics for V = 12 V  
DD  
Magnetic flux density values of switching points.  
Positive flux density values refer to the magnetic south pole at the branded side of the package.  
Parameter  
On point B  
Typ.  
Off point B  
Hysteresis B  
Magnetic Offset B  
Unit  
ON  
OFF  
HYS  
OFFSET  
T
J
Min.  
–0.8  
–0.5  
–0.9  
–1.2  
–1.5  
Max.  
2.5  
2.3  
2.5  
2.8  
3
Min.  
Typ.  
–0.8  
–0.7  
–0.6  
–0.5  
–0.2  
Max.  
0.8  
0.5  
0.9  
1.3  
2
Min.  
Typ.  
1.4  
1.2  
1.1  
1.1  
0.9  
Max.  
Min.  
Typ.  
–0.1  
–0.1  
0
Max.  
–40 °C  
0.6  
0.5  
0.5  
0.6  
0.7  
–2.5  
–2.3  
–2.5  
–2.5  
–2.5  
0.5  
0.5  
0.5  
0.5  
0.4  
2
mT  
mT  
mT  
mT  
mT  
25 °C  
100 °C  
140 °C  
170 °C  
1.9  
1.8  
1.8  
1.8  
–1.4  
1.4  
0
0.2  
The hysteresis is the difference between the switching points B  
= B – B  
ON OFF  
HYS  
The magnetic offset is the mean value of the switching points B  
= (B + B  
) / 2  
OFF  
OFFSET  
ON  
14  
MICRONAS INTERMETALL  
HAL501  
mT  
3
mT  
3
HAL501  
HAL501  
B
ON  
max  
max  
B
B
B
B
ON  
OFF  
ON  
OFF  
2
1
2
1
B
OFF  
B
B
ON  
B
ON  
typ  
0
0
B
OFF  
typ  
–1  
–2  
–3  
–1  
–2  
–3  
OFF  
T = –40 °C  
B
ON  
min  
A
V
= 3.8 V  
DD  
T = 25 °C  
A
V
= 4.5 V...24 V  
DD  
T = 100 °C  
A
B
OFF  
min  
T = 170 °C  
A
0
5
10  
15  
20  
25  
30  
–50  
0
50  
100  
150  
T , T  
200°C  
V
V
DD  
A
J
Fig. 4–2: Typ. magnetic switching points  
Fig. 4–4: Magnetic switching points  
versus supply voltage  
versus temperature  
Note: In the diagram “Magnetic switching points versus  
temperature” the curves for min, max,  
min, and B max refer to junction temperature,  
B
ON  
B
ON  
B
OFF  
OFF  
mT  
HAL501  
whereas typical curves refer to ambient temperature.  
3
B
B
ON  
OFF  
2
B
B
1
0
ON  
–1  
–2  
–3  
OFF  
T = –40 °C  
A
T = 25 °C  
A
T = 100 °C  
A
T = 170 °C  
A
3
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
V
V
DD  
Fig. 4–3: Typ. magnetic switching points  
versus supply voltage  
MICRONAS INTERMETALL  
15  
HAL502  
4.2. HAL 502  
Applications  
The HAL 502 is the most sensitive latching sensor of this  
family (see Fig. 4–5).  
The HAL 502 is the optimal sensor for all applications  
with alternating magnetic signals and weak magnetic  
amplitude at the sensor position such as:  
The output turns low with the magnetic south pole on the  
branded side of the package and turns high with the  
magnetic north pole on the branded side. The output  
does not change if the magnetic field is removed. For  
changing the output state, the opposite magnetic field  
polarity must be applied.  
– applications with large airgap or weak magnets,  
– rotating speed measurement,  
– commutation of brushless DC motors,  
– CAM shaft sensors, and  
– magnetic encoders.  
For correct functioning in the application, the sensor re-  
quires both magnetic polarities (north and south) on the  
branded side of the package.  
Output Voltage  
Magnetic Features:  
V
O
– switching type: latching  
– high sensitivity  
B
HYS  
– typical B : 2.6 mT at room temperature  
ON  
V
OL  
– typical B  
: –2.6 mT at room temperature  
OFF  
B
0
B
B
OFF  
ON  
– operates with static magnetic fields and dynamic mag-  
netic fields up to 10 kHz  
Fig. 4–5: Definition of magnetic switching points for  
– typical temperature coefficient of magnetic switching  
points is –1000 ppm/K  
the HAL502  
Magnetic Characteristics at T = –40 °C to +170 °C, V = 3.8 V to 24 V,  
J
DD  
Typical Characteristics for V = 12 V  
DD  
Magnetic flux density values of switching points.  
Positive flux density values refer to the magnetic south pole at the branded side of the package.  
Parameter  
On point B  
Typ.  
Off point B  
Hysteresis B  
HYS  
Magnetic Offset  
Unit  
ON  
OFF  
T
J
Min.  
1
Max.  
5
Min.  
Typ.  
–2.8  
–2.6  
–2.5  
–2.4  
–2.3  
Max.  
Min.  
Typ.  
5.6  
5.2  
5
Max.  
Min.  
Typ.  
Max.  
–40 °C  
2.8  
2.6  
2.5  
2.4  
2.3  
–5  
–1  
4.5  
4.5  
4
7.2  
7
0
0
0
0
0
mT  
mT  
mT  
mT  
mT  
25 °C  
100 °C  
140 °C  
170 °C  
1
4.5  
4.4  
4.3  
4.3  
–4.5  
–4.4  
–4.3  
–4.3  
–1  
–1.5  
1.5  
0.95  
0.9  
0.9  
–0.95  
–0.9  
–0.9  
6.8  
6.8  
6.8  
3.7  
3.5  
4.8  
4.6  
The hysteresis is the difference between the switching points B  
= B – B  
ON OFF  
HYS  
The magnetic offset is the mean value of the switching points B  
= (B + B  
) / 2  
OFF  
OFFSET  
ON  
16  
MICRONAS INTERMETALL  
HAL502  
mT  
6
mT  
6
HAL502  
HAL502  
B
max  
min  
ON  
B
B
B
B
ON  
OFF  
ON  
OFF  
4
2
4
2
B
ON  
B
ON  
typ  
B
ON  
T = –40 °C  
A
T = 25 °C  
V
V
= 3.8 V  
A
DD  
0
0
T = 100 °C  
A
= 4.5 V...24 V  
DD  
T = 170 °C  
A
B max  
OFF  
–2  
–4  
–6  
–2  
–4  
–6  
B
typ  
OFF  
B
OFF  
B
min  
OFF  
0
5
10  
15  
20  
25  
30  
–50  
0
50  
100  
150  
T , T  
200°C  
V
V
DD  
A
J
Fig. 4–6: Typ. magnetic switching points  
Fig. 4–8: Magnetic switching points  
versus supply voltage  
versus temperature  
Note: In the diagram “Magnetic switching points versus  
temperature” the curves for min, max,  
min, and B max refer to junction temperature,  
B
ON  
B
ON  
B
OFF  
OFF  
mT  
HAL502  
whereas typical curves refer to ambient temperature.  
6
B
B
ON  
OFF  
4
B
ON  
2
0
T = –40 °C  
A
T =25 °C  
A
T =100 °C  
A
T =170 °C  
A
–2  
–4  
–6  
B
OFF  
3
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
V
V
DD  
Fig. 4–7: Typ. magnetic switching points  
versus supply voltage  
MICRONAS INTERMETALL  
17  
HAL503  
4.3. HAL 503  
Applications  
The HAL 503 is a latching sensor (see Fig. 4–9).  
The HAL 503 is the optimal sensor for applications with  
alternating magnetic signals such as:  
The output turns low with the magnetic south pole on the  
branded side of the package and turns high with the  
magnetic north pole on the branded side. The output  
does not change if the magnetic field is removed. For  
changing the output state, the opposite magnetic field  
polarity must be applied.  
– multipole magnet applications,  
– rotating speed measurement,  
– commutation of brushless DC motors, and  
– window lifter.  
For correct functioning in the application, the sensor re-  
quires both magnetic polarities (north and south) on the  
branded side of the package.  
Output Voltage  
V
O
Magnetic Features:  
B
HYS  
– switching type: latching  
– medium sensitivity  
V
OL  
– typical B : 7.6 mT at room temperature  
ON  
B
OFF  
0
B
ON  
B
– typical B  
: –7.6 mT at room temperature  
OFF  
– operates with static magnetic fields and dynamic mag-  
netic fields up to 10 kHz  
Fig. 4–9: Definition of magnetic switching points for  
the HAL503  
– typical temperature coefficient of magnetic switching  
points is –1000 ppm/K  
Magnetic Characteristics at T = –40 °C to +170 °C, V = 3.8 V to 24 V,  
J
DD  
Typical Characteristics for V = 12 V  
DD  
Magnetic flux density values of switching points.  
Positive flux density values refer to the magnetic south pole at the branded side of the package.  
Parameter  
On point B  
Typ.  
Off point B  
Hysteresis B  
HYS  
Magnetic Offset  
Unit  
ON  
OFF  
T
J
Min.  
6.4  
6
Max.  
10.8  
10  
Min.  
Typ.  
–8.6  
–7.6  
–6.9  
–6.4  
–6  
Max.  
–6.4  
–6  
Min.  
Typ.  
Max.  
Min.  
Typ.  
–0.1  
0
Max.  
–40 °C  
8.4  
7.6  
7.1  
6.7  
6.4  
–10.8  
–10  
14.6  
13.6  
12.3  
11.5  
11  
17  
20.6  
18  
mT  
mT  
mT  
mT  
mT  
25 °C  
100 °C  
140 °C  
170 °C  
15.2  
14  
–1.5  
1.5  
4.8  
4.4  
4
9.5  
–9.5  
–9.2  
–8.9  
–4.8  
–4.4  
–4  
17  
0.1  
0.1  
0.2  
9.2  
13.1  
12.4  
16.5  
16  
8.9  
The hysteresis is the difference between the switching points B  
= B – B  
ON OFF  
HYS  
The magnetic offset is the mean value of the switching points B  
= (B + B  
) / 2  
OFF  
OFFSET  
ON  
18  
MICRONAS INTERMETALL  
HAL503  
mT  
12  
mT  
12  
HAL503  
HAL503  
B
B
max  
min  
ON  
B
ON  
B
B
B
B
ON  
OFF  
ON  
OFF  
8
4
8
4
B
ON  
typ  
ON  
T = –40 °C  
A
T = 25 °C  
V
V
= 3.8 V  
A
DD  
0
0
T = 100 °C  
A
= 4.5 V...24 V  
DD  
T = 170 °C  
A
–4  
–8  
–12  
–4  
–8  
–12  
B
B
max  
OFF  
B
typ  
OFF  
B
OFF  
min  
100  
OFF  
0
5
10  
15  
20  
25  
30  
–50  
0
50  
150  
T , T  
200°C  
V
V
DD  
A
J
Fig. 4–10: Typ. magnetic switching points  
Fig. 4–12: Magnetic switching points  
versus supply voltage  
versus temperature  
Note: In the diagram “Magnetic switching points versus  
ambient temperature” the curves for B min, B max,  
ON  
ON  
B
min, and B  
max refer to junction temperature,  
OFF  
OFF  
mT  
HAL503  
whereas typical curves refer to ambient temperature.  
12  
B
ON  
B
B
ON  
OFF  
8
4
T = –40 °C  
A
T = 25 °C  
A
0
T = 100 °C  
A
T = 170 °C  
A
–4  
–8  
–12  
B
OFF  
3
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
V
V
DD  
Fig. 4–11: Typ. magnetic switching points  
versus supply voltage  
MICRONAS INTERMETALL  
19  
HAL504  
4.4. HAL 504  
Applications  
The HAL 504 is a unipolar switching sensor (see  
Fig. 4–13).  
The HAL 504 is the optimal sensor for applications with  
one magnetic polarity such as:  
– solid state switches,  
The output turns low with the magnetic south pole on the  
branded side of the package and turns high if the mag-  
netic field is removed. The sensor does not respond to  
the magnetic north pole on the branded side.  
– contactless solution to replace micro switches,  
– position and end-point detection, and  
– rotating speed measurement.  
For correct functioning in the application, the sensor re-  
quires only the magnetic south pole on the branded side  
of the package.  
Output Voltage  
V
O
Magnetic Features:  
B
HYS  
– switching type: unipolar  
– medium sensitivity  
V
OL  
– typical B : 12 mT at room temperature  
ON  
– typical B  
: 7 mT at room temperature  
OFF  
0
B
OFF  
B
ON  
B
– operates with static magnetic fields and dynamic mag-  
netic fields up to 10 kHz  
Fig. 4–13: Definition of magnetic switching points for  
the HAL504  
– typical temperature coefficient of magnetic switching  
points is –1000 ppm/K  
Magnetic Characteristics at T = –40 °C to +170 °C, V = 3.8 V to 24 V,  
J
DD  
Typical Characteristics for V = 12 V  
DD  
Magnetic flux density values of switching points.  
Positive flux density values refer to the magnetic south pole at the branded side of the package.  
Parameter  
On point B  
Typ.  
Off point B  
Hysteresis B  
HYS  
Magnetic Offset  
Unit  
ON  
OFF  
T
J
Min.  
10.3  
9.5  
9
Max.  
15.7  
14.5  
14.1  
13.9  
13.7  
Min.  
Typ.  
7.5  
7
Max.  
9.6  
9
Min.  
Typ.  
5.5  
5
Max.  
Min.  
Typ.  
10.2  
9.5  
8.8  
8.4  
8
Max.  
–40 °C  
13  
5.3  
5
4.4  
4
6.5  
6.5  
6.4  
6.4  
6.4  
mT  
mT  
mT  
mT  
mT  
25 °C  
100 °C  
140 °C  
170 °C  
12  
7.2  
11.8  
11.1  
10.6  
10.2  
4.6  
4.4  
4.2  
6.4  
6.1  
5.9  
8.7  
8.6  
8.5  
3.6  
3.4  
3.2  
4.7  
4.5  
4.3  
8.7  
8.5  
The hysteresis is the difference between the switching points B  
= B – B  
ON OFF  
HYS  
The magnetic offset is the mean value of the switching points B  
= (B + B  
) / 2  
OFF  
OFFSET  
ON  
20  
MICRONAS INTERMETALL  
HAL504  
mT  
18  
mT  
18  
HAL504  
HAL504  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
B
B
B
B
ON  
OFF  
ON  
OFF  
B
max  
ON  
B
ON  
B
B
typ  
ON  
B
min  
ON  
B
max  
OFF  
typ  
OFF  
6
6
B
OFF  
T = –40 °C  
A
4
4
B min  
OFF  
T =25 °C  
A
V
V
= 3.8 V  
T =100 °C  
DD  
A
2
2
= 4.5 V...24 V  
T =170 °C  
A
DD  
0
0
0
5
10  
15  
20  
25  
30  
–50  
0
50  
100  
150  
T , T  
200°C  
V
V
DD  
A
J
Fig. 4–14: Typ. magnetic switching points  
Fig. 4–16: Magnetic switching points  
versus supply voltage  
versus temperature  
Note: In the diagram “Magnetic switching points versus  
temperature” the curves for min, max,  
min, and B max refer to junction temperature,  
B
ON  
B
ON  
B
OFF  
OFF  
mT  
HAL504  
whereas typical curves refer to ambient temperature.  
18  
16  
B
B
ON  
OFF  
14  
B
ON  
12  
10  
8
6
B
OFF  
T = –40 °C  
A
4
T =25 °C  
A
T = 100 °C  
A
2
T = 170 °C  
A
0
3
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
V
V
DD  
Fig. 4–15: Typ. magnetic switching points  
versus supply voltage  
MICRONAS INTERMETALL  
21  
HAL505  
4.5. HAL 505  
Applications  
The HAL 505 is a latching sensor (see Fig. 4–17).  
The HAL 505 is the optimal sensor for applications with  
alternating magnetic signals such as:  
The output turns low with the magnetic south pole on the  
branded side of the package and turns high with the  
magnetic north pole on the branded side. The output  
does not change if the magnetic field is removed. For  
changing the output state, the opposite magnetic field  
polarity must be applied.  
– multipole magnet applications,  
– rotating speed measurement,  
– commutation of brushless DC motors, and  
– window lifter.  
For correct functioning in the application, the sensor re-  
quires both magnetic polarities (north and south) on the  
branded side of the package.  
Output Voltage  
V
O
Magnetic Features:  
B
HYS  
– switching type: latching  
– low sensitivity  
V
OL  
– typical B : 13.5 mT at room temperature  
ON  
B
OFF  
0
B
ON  
B
– typical B  
: –13.5 mT at room temperature  
OFF  
– operates with static magnetic fields and dynamic mag-  
netic fields up to 10 kHz  
Fig. 4–17: Definition of magnetic switching points for  
the HAL505  
– typical temperature coefficient of magnetic switching  
points is –1000 ppm/K  
Magnetic Characteristics at T = –40 °C to +170 °C, V = 3.8 V to 24 V,  
J
DD  
Typical Characteristics for V = 12 V  
DD  
Magnetic flux density values of switching points.  
Positive flux density values refer to the magnetic south pole at the branded side of the package.  
Parameter  
On point B  
Typ.  
Off point B  
Hysteresis B  
HYS  
Magnetic Offset  
Unit  
ON  
OFF  
T
J
Min.  
11.8  
11  
Max.  
18.3  
17  
Min.  
Typ.  
Max.  
–11.8  
–11  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
–40 °C  
15  
–18.3  
–17  
–15  
26  
24  
22  
21  
20  
30  
34  
0
0
0
0
0
mT  
mT  
mT  
mT  
mT  
25 °C  
100 °C  
140 °C  
170 °C  
13.5  
12.4  
12  
–13.5  
–12.4  
–12  
27  
32  
–1.5  
1.5  
10.2  
9.7  
16.6  
16.3  
16.1  
–16.6  
–16.3  
–16.1  
–10.2  
–9.7  
–9.4  
24.8  
24.2  
23.4  
31.3  
31.3  
31.3  
9.4  
11.7  
–11.7  
The hysteresis is the difference between the switching points B  
= B – B  
ON OFF  
HYS  
The magnetic offset is the mean value of the switching points B  
= (B + B  
) / 2  
OFF  
OFFSET  
ON  
22  
MICRONAS INTERMETALL  
HAL505  
mT  
20  
mT  
20  
HAL505  
HAL505  
B
B
max  
min  
ON  
B
ON  
15  
10  
15  
10  
B
B
B
B
ON  
OFF  
ON  
OFF  
B
ON  
typ  
ON  
5
5
T = –40 °C  
V
V
= 3.8 V  
A
DD  
T = 25 °C  
A
= 4.5 V...24 V  
DD  
0
0
T = 100 °C  
A
T = 170 °C  
A
–5  
–5  
B
max  
min  
OFF  
B
OFF  
–10  
–15  
–20  
–10  
–15  
–20  
B typ  
OFF  
B
OFF  
0
5
10  
15  
20  
25  
30  
–50  
0
50  
100  
150  
T , T  
200°C  
V
V
DD  
A
J
Fig. 4–18: Typ. magnetic switching points  
Fig. 4–20: Magnetic switching points  
versus supply voltage  
versus temperature  
Note: In the diagram “Magnetic switching points versus  
ambient temperature” the curves for B min, B max,  
ON  
ON  
B
min, and B  
max refer to junction temperature,  
OFF  
OFF  
mT  
HAL505  
whereas typical curves refer to ambient temperature.  
20  
B
ON  
15  
10  
B
B
ON  
OFF  
5
T = –40 °C  
A
T = 25 °C  
A
0
T = 100 °C  
A
T = 170 °C  
A
–5  
B
OFF  
–10  
–15  
–20  
3
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
V
V
DD  
Fig. 4–19: Typ. magnetic switching points  
versus supply voltage  
MICRONAS INTERMETALL  
23  
HAL506  
4.6. HAL 506  
Applications  
The HAL 506 is the most sensitive unipolar switching  
sensor of this family (see Fig. 4–21).  
The HAL 506 is the optimal sensor for all applications  
with one magnetic polarity and weak magnetic ampli-  
tude at the sensor position such as:  
The output turns low with the magnetic south pole on the  
branded side of the package and turns high if the mag-  
netic field is removed. The sensor does not respond to  
the magnetic north pole on the branded side.  
– applications with large airgap or weak magnets,  
– solid state switches,  
– contactless solution to replace micro switches,  
– position and end point detection, and  
– rotating speed measurement.  
For correct functioning in the application, the sensor re-  
quires only the magnetic south pole on the branded side  
of the package.  
In the HAL5xx family, the HAL516 is a sensor with the  
same magnetic characteristics but with an inverted out-  
put characteristic.  
Output Voltage  
V
O
B
HYS  
Magnetic Features:  
– switching type: unipolar  
– high sensitivity  
V
OL  
– typical B : 5.5 mT at room temperature  
ON  
0
B
OFF  
B
ON  
B
– typical B  
: 3.5 mT at room temperature  
OFF  
Fig. 4–21: Definition of magnetic switching points for  
the HAL506  
– operates with static magnetic fields and dynamic mag-  
netic fields up to 10 kHz  
– typical temperature coefficient of magnetic switching  
points is –1000 ppm/K  
Magnetic Characteristics at T = –40 °C to +170 °C, V = 3.8 V to 24 V,  
J
DD  
Typical Characteristics for V = 12 V  
DD  
Magnetic flux density values of switching points.  
Positive flux density values refer to the magnetic south pole at the branded side of the package.  
Parameter  
On point B  
Typ.  
Off point B  
Hysteresis B  
HYS  
Magnetic Offset  
Unit  
ON  
OFF  
T
J
Min.  
4.3  
3.8  
3.6  
3.4  
3.2  
Max.  
7.7  
7.2  
7
Min.  
Typ.  
3.8  
3.5  
3.3  
3.1  
3
Max.  
5.4  
5
Min.  
Typ.  
2.1  
2
Max.  
Min.  
Typ.  
4.8  
4.5  
4.2  
4
Max.  
–40 °C  
5.9  
5.5  
5.1  
4.8  
4.6  
2.1  
2
1.6  
1.5  
1.2  
1
2.8  
2.7  
2.6  
2.6  
2.6  
mT  
mT  
mT  
mT  
mT  
25 °C  
100 °C  
140 °C  
170 °C  
3.8  
6.2  
1.9  
1.8  
1.7  
4.9  
5.1  
5.2  
1.8  
1.7  
1.6  
6.9  
6.8  
0.9  
3.8  
The hysteresis is the difference between the switching points B  
= B – B  
ON OFF  
HYS  
The magnetic offset is the mean value of the switching points B  
= (B + B  
) / 2  
OFF  
OFFSET  
ON  
24  
MICRONAS INTERMETALL  
HAL506  
mT  
8
mT  
8
HAL506  
HAL506  
B
max  
ON  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
B
B
B
B
ON  
OFF  
ON  
OFF  
B
ON  
B
B
typ  
ON  
B
B
max  
min  
OFF  
min  
ON  
typ  
OFF  
B
OFF  
T = –40 °C  
A
T =25 °C  
A
B
OFF  
T =100 °C  
A
V
V
= 3.8 V  
DD  
T =170 °C  
A
= 4.5 V...24 V  
DD  
0
5
10  
15  
20  
25  
30  
–50  
0
50  
100  
150  
T , T  
200°C  
V
V
DD  
A
J
Fig. 4–22: Typ. magnetic switching points  
Fig. 4–24: Magnetic switching points  
versus supply voltage  
versus temperature  
Note: In the diagram “Magnetic switching points versus  
temperature” the curves for min, max,  
min, and B max refer to junction temperature,  
B
ON  
B
ON  
B
OFF  
OFF  
mT  
HAL506  
whereas typical curves refer to ambient temperature.  
8
7
B
B
ON  
OFF  
B
ON  
6
5
4
3
2
1
0
B
OFF  
T = –40 °C  
A
T = 25 °C  
A
T = 100 °C  
A
T = 170 °C  
A
3
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
V
V
DD  
Fig. 4–23: Typ. magnetic switching points  
versus supply voltage  
MICRONAS INTERMETALL  
25  
HAL508  
4.7. HAL 508  
Applications  
The HAL 508 is a unipolar switching sensor (see  
Fig. 4–25).  
The HAL 508 is the optimal sensor for applications with  
one magnetic polarity such as:  
– solid state switches,  
The output turns low with the magnetic south pole on the  
branded side of the package and turns high if the mag-  
netic field is removed. The sensor does not respond to  
the magnetic north pole on the branded side.  
– contactless solution to replace micro switches,  
– position and end point detection, and  
– rotating speed measurement.  
For correct functioning in the application, the sensor re-  
quires only the magnetic south pole on the branded side  
of the package.  
Output Voltage  
V
O
In the HAL5xx family, the HAL518 is a sensor with the  
same magnetic characteristics but with an inverted out-  
put characteristic.  
B
HYS  
Magnetic Features:  
V
OL  
– switching type: unipolar  
– medium sensitivity  
0
B
OFF  
B
ON  
B
Fig. 4–25: Definition of magnetic switching points for  
the HAL508  
– typical B : 18 mT at room temperature  
ON  
– typical B  
: 16 mT at room temperature  
OFF  
– operates with static magnetic fields and dynamic mag-  
netic fields up to 10 kHz  
– typical temperature coefficient of magnetic switching  
points is –1000 ppm/K  
Magnetic Characteristics at T = –40 °C to +170 °C, V = 3.8 V to 24 V,  
J
DD  
Typical Characteristics for V = 12 V  
DD  
Magnetic flux density values of switching points.  
Positive flux density values refer to the magnetic south pole at the branded side of the package.  
Parameter  
On point B  
Typ.  
Off point B  
Hysteresis B  
HYS  
Magnetic Offset  
Unit  
ON  
OFF  
T
J
Min.  
15.5  
15  
Max.  
21.9  
20.7  
20.4  
20.2  
20  
Min.  
Typ.  
16.7  
16  
Max.  
Min.  
Typ.  
2.3  
2
Max.  
Min.  
Typ.  
17.8  
17  
Max.  
–40 °C  
19  
14  
20  
1.6  
1.5  
1.2  
1.1  
1
2.8  
2.7  
2.6  
2.6  
2.6  
mT  
mT  
mT  
mT  
mT  
25 °C  
100 °C  
140 °C  
170 °C  
18  
13.5  
12.5  
11.9  
11.4  
19  
14  
20  
13.9  
13.2  
12.7  
16.6  
15.8  
15.3  
14.8  
14.1  
13.6  
18.7  
18.5  
18.3  
1.8  
1.7  
1.7  
15.7  
15  
14.4  
The hysteresis is the difference between the switching points B  
= B – B  
ON OFF  
HYS  
The magnetic offset is the mean value of the switching points B  
= (B + B  
) / 2  
OFF  
OFFSET  
ON  
26  
MICRONAS INTERMETALL  
HAL508  
mT  
25  
mT  
25  
HAL508  
HAL508  
B
B
B
B
ON  
OFF  
ON  
OFF  
B
B
max  
ON  
B
ON  
20  
15  
10  
5
20  
15  
10  
5
max  
OFF  
B
ON  
typ  
B
B
typ  
OFF  
B
OFF  
min  
ON  
B
OFF  
min  
T = –40 °C  
A
T =25 °C  
A
V
V
= 3.8 V  
T =100 °C  
DD  
A
= 4.5 V...24 V  
T =170 °C  
DD  
A
0
0
0
5
10  
15  
20  
25  
30  
–50  
0
50  
100  
150  
T , T  
200°C  
V
V
DD  
A
J
Fig. 4–26: Typ. magnetic switching points  
Fig. 4–28: Magnetic switching points  
versus supply voltage  
versus temperature  
Note: In the diagram “Magnetic switching points versus  
temperature” the curves for min, max,  
min, and B max refer to junction temperature,  
B
ON  
B
ON  
B
OFF  
OFF  
mT  
HAL508  
whereas typical curves refer to ambient temperature.  
25  
B
B
ON  
OFF  
20  
15  
10  
5
B
ON  
B
OFF  
T = –40 °C  
A
T = 25 °C  
A
T = 100 °C  
A
T = 170 °C  
A
0
3
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
V
V
DD  
Fig. 4–27: Typ. magnetic switching points  
versus supply voltage  
MICRONAS INTERMETALL  
27  
HAL509  
4.8. HAL 509  
Applications  
The HAL 509 is the least sensitive unipolar switching  
sensor of this family (see Fig. 4–29).  
The HAL 509 is the optimal sensor for applications with  
one magnetic polarity and strong magnetic fields at the  
sensor position such as:  
The output turns low with the magnetic south pole on the  
branded side of the package and turns high if the mag-  
netic field is removed. The sensor does not respond to  
the magnetic north pole on the branded side.  
– solid state switches,  
– contactless solution to replace micro switches,  
– position and end point detection, and  
– rotating speed measurement.  
For correct functioning in the application, the sensor re-  
quires only the magnetic south pole on the branded side  
of the package.  
Output Voltage  
Magnetic Features:  
V
O
– switching type: unipolar  
– low sensitivity  
B
HYS  
– typical B : 26.8 mT at room temperature  
ON  
V
OL  
– typical B  
: 23.2 mT at room temperature  
OFF  
0
B
B
ON  
B
– operates with static magnetic fields and dynamic mag-  
netic fields up to 10 kHz  
OFF  
Fig. 4–29: Definition of magnetic switching points for  
the HAL509  
– typical temperature coefficient of magnetic switching  
points is –300 ppm/K  
Magnetic Characteristics at T = –40 °C to +170 °C, V = 3.8 V to 24 V,  
J
DD  
Typical Characteristics for V = 12 V  
DD  
Magnetic flux density values of switching points.  
Positive flux density values refer to the magnetic south pole at the branded side of the package.  
Parameter  
On point B  
Typ.  
Off point B  
Hysteresis B  
HYS  
Magnetic Offset  
Unit  
ON  
OFF  
T
J
Min.  
23.1  
23.1  
22.2  
21.7  
21.3  
Max.  
31.1  
30.4  
29.7  
29.2  
28.9  
Min.  
Typ.  
23.8  
23.2  
22.7  
22.4  
22.1  
Max.  
27.2  
26.6  
25.9  
25.6  
25.3  
Min.  
Typ.  
3.6  
3.5  
3.4  
3.3  
3.3  
Max.  
Min.  
Typ.  
25.6  
25  
Max.  
–40 °C  
27.4  
26.8  
26.1  
25.7  
25.4  
19.9  
19.9  
19.1  
18.6  
18.3  
2.9  
2.8  
2.7  
2.6  
2.5  
3.9  
3.9  
3.8  
3.8  
3.8  
mT  
mT  
mT  
mT  
mT  
25 °C  
100 °C  
140 °C  
170 °C  
21.5  
28.5  
24.4  
24  
23.7  
The hysteresis is the difference between the switching points B  
= B – B  
ON OFF  
HYS  
The magnetic offset is the mean value of the switching points B  
= (B + B  
) / 2  
OFF  
OFFSET  
ON  
28  
MICRONAS INTERMETALL  
HAL509  
mT  
35  
mT  
35  
HAL509  
HAL509  
B
ON  
max  
B
B
B
B
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
ON  
OFF  
ON  
OFF  
B
B max  
OFF  
B
typ  
ON  
ON  
B
typ  
OFF  
B
OFF  
B
min  
ON  
B
min  
OFF  
T = –40 °C  
A
T =25 °C  
A
V
= 3.8 V  
T =100 °C  
DD  
A
V
= 4.5 V...24 V  
T =170 °C  
DD  
A
0
0
0
5
10  
15  
20  
25  
30  
–50  
0
50  
100  
150  
T , T  
200°C  
V
V
DD  
A
J
Fig. 4–30: Typ. magnetic switching points  
Fig. 4–32: Magnetic switching points  
versus supply voltage  
versus temperature  
Note: In the diagram “Magnetic switching points versus  
temperature” the curves for min, max,  
min, and B max refer to junction temperature,  
B
ON  
B
ON  
B
OFF  
OFF  
mT  
HAL509  
whereas typical curves refer to ambient temperature.  
35  
B
B
30  
25  
20  
15  
10  
5
ON  
OFF  
B
ON  
B
OFF  
T = –40 °C  
A
T =25 °C  
A
T =100 °C  
A
T =170 °C  
A
0
3
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
V
V
DD  
Fig. 4–31: Typ. magnetic switching points  
versus supply voltage  
MICRONAS INTERMETALL  
29  
HAL516  
4.9. HAL 516  
Applications  
The HAL 516 is the most sensitive unipolar switching  
sensor with an inverted output of this family (see  
Fig. 4–33).  
The HAL 516 is the optimal sensor for all applications  
with one magnetic polarity and weak magnetic ampli-  
tude at the sensor position where an inverted output sig-  
nal is required such as:  
The output turns high with the magnetic south pole on  
the branded side of the package and turns low if the  
magnetic field is removed. The sensor does not respond  
to the magnetic north pole on the branded side.  
– applications with large airgap or weak magnets,  
– solid state switches,  
– contactless solution to replace micro switches,  
– position and end point detection, and  
– rotating speed measurement.  
For correct functioning in the application, the sensor re-  
quires only the magnetic south pole on the branded side  
of the package.  
In the HAL 5xx family, the HAL 506 is a sensor with the  
same magnetic characteristics but with a normal output  
characteristic.  
Output Voltage  
V
O
B
HYS  
Magnetic Features:  
– switching type: unipolar inverted  
– high sensitivity  
V
OL  
– typical B : 3.5 mT at room temperature  
ON  
0
B
ON  
B
OFF  
B
– typical B  
: 5.5 mT at room temperature  
OFF  
Fig. 4–33: Definition of magnetic switching points for  
the HAL516  
– operates with static magnetic fields and dynamic mag-  
netic fields up to 10 kHz  
– typical temperature coefficient of magnetic switching  
points is –1000 ppm/K  
Magnetic Characteristics at T = –40 °C to +170 °C, V = 3.8 V to 24 V,  
J
DD  
Typical Characteristics for V = 12 V  
DD  
Magnetic flux density values of switching points.  
Positive flux density values refer to the magnetic south pole at the branded side of the package.  
Parameter  
On point B  
Typ.  
Off point B  
Hysteresis B  
HYS  
Magnetic Offset  
Unit  
ON  
OFF  
T
J
Min.  
2.1  
2
Max.  
5.4  
5
Min.  
Typ.  
5.9  
5.5  
5.1  
4.8  
4.6  
Max.  
7.7  
7.2  
7
Min.  
Typ.  
2.1  
2
Max.  
Min.  
Typ.  
4.8  
4.5  
4.2  
4
Max.  
–40 °C  
3.8  
3.5  
3.3  
3.1  
3
4.3  
3.8  
3.6  
3.4  
3.2  
1.6  
1.5  
1.2  
1
2.8  
2.7  
2.6  
2.6  
2.6  
mT  
mT  
mT  
mT  
mT  
25 °C  
100 °C  
140 °C  
170 °C  
3.8  
6.2  
1.9  
1.8  
1.7  
4.9  
5.1  
5.2  
1.8  
1.7  
1.6  
6.9  
6.8  
0.9  
3.8  
The hysteresis is the difference between the switching points B  
= B  
– B  
OFF ON  
HYS  
The magnetic offset is the mean value of the switching points B  
= (B + B  
) / 2  
OFF  
OFFSET  
ON  
30  
MICRONAS INTERMETALL  
HAL516  
mT  
8
mT  
8
HAL516  
HAL516  
B
max  
OFF  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
B
B
B
B
ON  
OFF  
ON  
OFF  
B
OFF  
B
B
typ  
OFF  
B
B
max  
ON  
min  
OFF  
B
ON  
typ  
ON  
T = –40 °C  
A
B
ON  
min  
T =25 °C  
A
T =100 °C  
A
V
V
= 3.8 V  
DD  
T =170 °C  
A
= 4.5 V...24 V  
DD  
0
5
10  
15  
20  
25  
30  
–50  
0
50  
100  
150  
T , T  
200°C  
V
V
DD  
A
J
Fig. 4–34: Typ. magnetic switching points  
Fig. 4–36: Magnetic switching points  
versus supply voltage  
versus temperature  
Note: In the diagram “Magnetic switching points versus  
temperature” the curves for min, max,  
min, and B max refer to junction temperature,  
B
ON  
B
ON  
B
OFF  
OFF  
mT  
HAL516  
whereas typical curves refer to ambient temperature.  
8
7
B
B
ON  
OFF  
B
OFF  
6
5
4
3
2
1
0
B
ON  
T = –40 °C  
A
T = 25 °C  
A
T = 100 °C  
A
T = 170 °C  
A
3
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
V
V
DD  
Fig. 4–35: Typ. magnetic switching points  
versus supply voltage  
MICRONAS INTERMETALL  
31  
HAL517  
4.10. HAL 517  
Applications  
TheHAL517isaunipolarswitchingsensorwithinverted  
output (see Fig. 4–37).  
The HAL 517 is the optimal sensor for applications with  
one magnetic polarity where an inverted output signal is  
required such as:  
The output turns high with the magnetic south pole on  
the branded side of the package and turns low if the  
magnetic field is removed. The sensor does not respond  
to the magnetic north pole on the branded side.  
– solid state switches,  
– contactless solution to replace micro switches,  
– position and end point detection, and  
– rotating speed measurement.  
For correct functioning in the application, the sensor re-  
quires only the magnetic south pole on the branded side  
of the package.  
Output Voltage  
Magnetic Features:  
V
O
– switching type: unipolar inverted  
B
HYS  
– medium sensitivity  
– typical on point is 16.2 mT at room temperature  
– typical off point is 18.3 mT at room temperature  
V
OL  
0
B
B
OFF  
B
– operates with static magnetic fields and dynamic mag-  
netic fields up to 10 kHz  
ON  
Fig. 4–37: Definition of magnetic switching points for  
the HAL517  
– typical temperature coefficient of magnetic switching  
points is –1700 ppm/K  
Magnetic Characteristics at T = –40 °C to +170 °C, V = 3.8 V to 24 V,  
J
DD  
Typical Characteristics for V = 12 V  
DD  
Magnetic flux density values of switching points.  
Positive flux density values refer to the magnetic south pole at the branded side of the package.  
Parameter  
On point B  
Typ.  
Off point B  
Hysteresis B  
HYS  
Magnetic Offset  
Unit  
ON  
OFF  
T
J
Min.  
14  
Max.  
21.5  
19  
Min.  
Typ.  
19.6  
18.3  
16.1  
14.8  
13.7  
Max.  
22.5  
20.7  
20.4  
20.2  
20  
Min.  
Typ.  
2.5  
2.1  
1.8  
1.6  
1.4  
Max.  
Min.  
Typ.  
18.3  
17.2  
15.2  
14  
Max.  
–40 °C  
17.1  
16.2  
14.3  
13.2  
12.3  
15.5  
15  
1.6  
1.5  
1.2  
1
3
mT  
mT  
mT  
mT  
mT  
25 °C  
100 °C  
140 °C  
170 °C  
13.5  
11  
2.7  
2.6  
2.6  
2.4  
14  
20  
18.5  
18.2  
18  
12.8  
11.5  
10.5  
10  
9
0.8  
13  
The hysteresis is the difference between the switching points B  
= B  
– B  
OFF ON  
HYS  
The magnetic offset is the mean value of the switching points B  
= (B + B  
) / 2  
OFF  
OFFSET  
ON  
32  
MICRONAS INTERMETALL  
HAL517  
mT  
25  
mT  
25  
HAL517  
HAL517  
max  
B
B
B
B
ON  
OFF  
ON  
OFF  
B
OFF  
B
OFF  
20  
15  
10  
5
20  
15  
10  
5
B
ON  
max  
B typ  
OFF  
B
ON  
typ  
B
ON  
B min  
OFF  
B
ON  
min  
T = –40 °C  
A
T =25 °C  
A
V
V
= 3.8 V  
T =100 °C  
DD  
A
= 4.5 V...24 V  
T =170 °C  
DD  
A
0
0
0
5
10  
15  
20  
25  
30  
–50  
0
50  
100  
150  
T , T  
200°C  
V
V
DD  
A
J
Fig. 4–38: Typ. magnetic switching points  
Fig. 4–40: Magnetic switching points  
versus supply voltage  
versus temperature  
Note: In the diagram “Magnetic switching points versus  
ambient temperature” the curves for B min, B max,  
ON  
ON  
B
min, and B  
max refer to junction temperature,  
OFF  
OFF  
mT  
HAL517  
whereas typical curves refer to ambient temperature.  
25  
B
B
ON  
OFF  
B
OFF  
20  
15  
10  
5
B
ON  
T = –40 °C  
A
T =25 °C  
A
T =100 °C  
A
T =170 °C  
A
0
3
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
V
V
DD  
Fig. 4–39: Typ. magnetic switching points  
versus supply voltage  
MICRONAS INTERMETALL  
33  
HAL518  
4.11. HAL 518  
Applications  
TheHAL518isaunipolarswitchingsensorwithinverted  
output (see Fig. 4–41).  
The HAL 518 is the optimal sensor for applications with  
one magnetic polarity where an inverted output signal is  
required such as:  
The output turns high with the magnetic south pole on  
the branded side of the package and turns low if the  
magnetic field is removed. The sensor does not respond  
to the magnetic north pole on the branded side.  
– solid state switches,  
– contactless solution to replace micro switches,  
– position and end point detection, and  
– rotating speed measurement.  
For correct functioning in the application, the sensor re-  
quires only the magnetic south pole on the branded side  
of the package.  
Output Voltage  
In the HAL 5xx family, the HAL 508 is a sensor with the  
same magnetic characteristics but with a normal output  
characteristic.  
V
O
B
HYS  
Magnetic Features:  
V
OL  
– switching type: unipolar inverted  
– medium sensitivity  
0
B
ON  
B
OFF  
B
– typical B : 16 mT at room temperature  
ON  
Fig. 4–41: Definition of magnetic switching points for  
the HAL518  
– typical B  
: 18 mT at room temperature  
OFF  
– operates with static magnetic fields and dynamic mag-  
netic fields up to 10 kHz  
– typical temperature coefficient of magnetic switching  
points is –1000 ppm/K  
Magnetic Characteristics at T = –40 °C to +170 °C, V = 3.8 V to 24 V,  
J
DD  
Typical Characteristics for V = 12 V  
DD  
Magnetic flux density values of switching points.  
Positive flux density values refer to the magnetic south pole at the branded side of the package.  
Parameter  
On point B  
Typ.  
Off point B  
Hysteresis B  
HYS  
Magnetic Offset  
Unit  
ON  
OFF  
T
J
Min.  
14  
Max.  
20  
Min.  
Typ.  
Max.  
Min.  
Typ.  
2.3  
2
Max.  
Min.  
Typ.  
17.8  
17  
Max.  
–40 °C  
16.7  
16  
15.5  
15  
19  
22  
1.5  
1.4  
1
3
mT  
mT  
mT  
mT  
mT  
25 °C  
100 °C  
140 °C  
170 °C  
13.5  
12.5  
11.7  
11  
19  
18  
20.7  
20.4  
20.2  
20  
2.8  
2.7  
2.7  
2.6  
14  
20  
14.8  
14.1  
13.6  
18.7  
18.5  
18.3  
13.9  
13  
16.6  
15.8  
15.3  
1.8  
1.7  
1.7  
15.7  
15  
0.9  
0.8  
12.2  
14.4  
The hysteresis is the difference between the switching points B  
= B  
– B  
OFF ON  
HYS  
The magnetic offset is the mean value of the switching points B  
= (B + B  
) / 2  
OFF  
OFFSET  
ON  
34  
MICRONAS INTERMETALL  
HAL518  
mT  
25  
mT  
25  
HAL518  
HAL518  
B
B
B
B
ON  
OFF  
ON  
OFF  
B
B
max  
OFF  
B
OFF  
20  
15  
10  
5
20  
15  
10  
5
max  
ON  
B
typ  
typ  
OFF  
B
ON  
B
ON  
B min  
OFF  
B
min  
ON  
T = –40 °C  
A
T =25 °C  
A
V
= 3.8 V  
DD  
T =100 °C  
A
V
= 4.5 V...24 V  
T =170 °C  
DD  
A
0
0
0
5
10  
15  
20  
25  
30  
–50  
0
50  
100  
150  
T , T  
200°C  
V
V
DD  
A
J
Fig. 4–42: Typ. magnetic switching points  
Fig. 4–44: Magnetic switching points  
versus supply voltage  
versus temperature  
Note: In the diagram “Magnetic switching points versus  
temperature” the curves for min, max,  
min, and B max refer to junction temperature,  
B
ON  
B
ON  
B
OFF  
OFF  
mT  
HAL518  
whereas typical curves refer to ambient temperature.  
25  
B
B
ON  
OFF  
20  
15  
10  
5
B
OFF  
B
ON  
T = –40 °C  
A
T = 25 °C  
A
T = 100 °C  
A
T = 170 °C  
A
0
3
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
V
V
DD  
Fig. 4–43: Typ. magnetic switching points  
versus supply voltage  
MICRONAS INTERMETALL  
35  
HAL5xx  
5. Application Notes  
state, the applied magnetic field must be above B  
,
ONmax  
respectively, below B  
.
OFFmin  
5.1. Ambient Temperature  
5.4. EMC  
Due to the internal power dissipation, the temperature  
on the silicon chip (junction temperature T ) is higher  
thanthetemperatureoutsidethepackage(ambienttem-  
J
For applications with disturbances on the supply line or  
radiated disturbances, a series resistor and a capacitor  
are recommended (see figures 5–1 and 5–2).  
perature T ).  
A
T = T + T  
J
A
The series resistor and the capacitor should be placed  
as closely as possible to the HAL sensor.  
At static conditions, the following equation is valid:  
T = I * V * R  
DD  
DD  
th  
Test Circuits for Electromagnetic Compatibility  
For typical values, use the typical parameters. For worst  
case calculation, use the max. parameters for I and  
Test pulses V  
corresponding to DIN 40839.  
EMC  
DD  
R , and the max. value for V from the application.  
th  
DD  
Note: The international standard ISO 7637 is similar to  
the used product standard DIN 40839.  
For all sensors, the junction temperature range T is  
J
specified. The maximum ambient temperature T  
can be calculated as:  
Amax  
R
V
T
Amax  
= T  
T  
Jmax  
220 Ω  
R
680 Ω  
L
1
V
DD  
5.2. Extended Operating Conditions  
OUT  
3
V
EMC  
All sensors fulfill the electrical and magnetic characteris-  
tics when operated within the Recommended Operating  
Conditions (see page 7).  
4.7 nF  
2
GND  
Supply Voltage Below 3.8 V  
Fig. 5–1: Test circuit 1  
Typically, the sensors operate with supply voltages  
above 3 V, however, below 3.8 V some characteristics  
may be outside the specification.  
R
V
220 Ω  
Note: Thefunctionalityofthesensorbelow3.8Vhasnot  
been tested. For special test conditions, please contact  
MICRONAS INTERMETALL.  
R
1.2 kΩ  
L
1
V
DD  
V
V
EMC  
OUT  
3
P
5.3. Start-up Behavior  
4.7 nF  
20 pF  
Due to the active offset compensation, the sensors have  
2
an initialization time (enable time t ) after applying  
en(O)  
GND  
the supply voltage. The parameter t  
is specified in  
en(O)  
the Electrical Characteristics (see page 8).  
Fig. 5–2: Test circuit 2  
During the initialization time, the output state is not de-  
fined and the output can oscillate. After t  
, the output  
en(O)  
will be low if the applied magnetic field B is above B  
.
ON  
The output will be high if B is below B . In case of sen-  
OFF  
sors with an inverted switching behavior (HAL516 ...  
HAL518), theoutputstatewillbehighifB>B  
andlow  
OFF  
if B < B  
.
ON  
For magnetic fields between B  
and B , the output  
ON  
OFF  
state of the HAL sensor after applying V will be either  
DD  
low or high. In order to achieve a well-defined output  
36  
MICRONAS INTERMETALL  
HAL5xx  
Interferences conducted along supply lines in 12 V onboard systems  
Product standard: DIN 40839 part 1  
Pulse  
Level  
U in V  
s
Test  
circuit  
Pulses/  
Time  
Function  
Class  
Remarks  
1
IV  
IV  
IV  
IV  
IV  
IV  
–100  
100  
–150  
100  
–7  
1
1
2
2
2
1
5000  
5000  
1 h  
1h  
C
C
A
A
A
C
5 s pulse interval  
2
0.5 s pulse interval  
3a  
3b  
4
5
5
86.5  
10  
10 s pulse interval  
Electrical transient transmission by capacitive and inductive coupling via lines other than the supply lines  
Product standard: DIN 40839 part3  
Pulse  
Level  
U in V  
s
Test  
circuit  
Pulses/  
Time  
Function  
Class  
Remarks  
1
IV  
IV  
IV  
IV  
–30  
30  
2
2
2
2
500  
A
A
A
A
5 s pulse interval  
2
500  
0.5 s pulse interval  
3a  
3b  
–60  
40  
10 min  
10 min  
Radiated Disturbances  
Product standard: DIN 40839 part4  
Test Conditions  
Temperature:  
Room temperature (22...25 °C)  
– Supply voltage:  
13 V  
– Lab Equipment:  
TEM cell 220 MHz  
with adaptor board 455 mm, device 80 mm over ground  
– Frequency range: 5...220 MHz; 1 MHz steps  
Test circuit 2 with R = 1.2 kΩ  
L
– tested with static magnetic fields  
Tested Devices and Results  
Type  
Field Strength during test  
Modulation  
Result  
1)  
1)  
HAL 50x  
> 200 V/m  
> 200 V/m  
output voltage stable on the level high or low  
HAL 50x  
1 kHz 80 %  
output voltage stable on the level high or low  
1)  
low level < 0.4 V, high level > 90% of V  
DD  
MICRONAS INTERMETALL  
37  
HAL5xx  
38  
MICRONAS INTERMETALL  
HAL5xx  
MICRONAS INTERMETALL  
39  
HAL5xx  
6. Data Sheet History  
1. Final data sheet: “HAL501...506, 508, 509, 516...  
518, Hall Effect Sensor Family, Aug. 11, 1999,  
6251-485-1DS. First release of the final data sheet.  
Major changes to the previous edition “HAL501 ...  
HAL506, HAL 508”, Hall Effect Sensor ICs, May 5,  
1997, 6251-405-1DS:  
– additional types: HAL509, HAL516 ... HAL518  
– additional package SOT-89B  
– additional temperature range “K”  
– outline dimensions for SOT-89A and TO-92UA  
changed  
– absolute maximum ratings changed  
– electrical characteristics changed  
– magnetic characteristics for HAL 501, HAL 503,  
HAL 506, and HAL 509 changed  
MICRONAS INTERMETALL GmbH  
Hans-Bunte-Strasse 19  
D-79108 Freiburg (Germany)  
P.O. Box 840  
D-79008 Freiburg (Germany)  
Tel. +49-761-517-0  
Fax +49-761-517-2174  
All information and data contained in this data sheet are with-  
out any commitment, are not to be considered as an offer for  
conclusion of a contract nor shall they be construed as to  
create any liability. Any new issue of this data sheet invalidates  
previous issues. Product availability and delivery dates are ex-  
clusively subject to our respective order confirmation form; the  
same applies to orders based on development samples deliv-  
ered. By this publication, MICRONAS INTERMETALL GmbH  
does not assume responsibility for patent infringements or  
other rights of third parties which may result from its use.  
Reprinting is generally permitted, indicating the source. How-  
ever, our prior consent must be obtained in all cases.  
E-mail: docservice@intermetall.de  
Internet: http://www.intermetall.de  
Printed in Germany  
by Systemdruck+Verlags-GmbH, Freiburg (08/99)  
Order No. 6251-485-1DS  
40  
MICRONAS INTERMETALL  
The End  
Back  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY