IAM-20380 [TDK]

陀螺仪;
IAM-20380
型号: IAM-20380
厂家: TDK ELECTRONICS    TDK ELECTRONICS
描述:

陀螺仪

文件: 总46页 (文件大小:622K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IAM-20380  
High Performance Gyroscope  
GENERAL DESCRIPTION  
APPLICATIONS  
The IAM-20380 is a 3-axis gyroscope in a small  
3x3x0.75mm (16-pin LGA) package. It also features a 512-  
byte FIFO that can lower the traffic on the serial bus  
interface and reduce power consumption by allowing the  
system processor to burst read sensor data and then go  
into a low-power mode. IAM-20380, with its 3-axis  
integration, enables manufacturers to eliminate the  
costly and complex selection, qualification, and system  
level integration of discrete devices, guaranteeing  
optimal motion performance.  
Navigation Systems Aids for Dead Reckoning  
Lift Gate Motion Detections  
Accurate Location for Vehicle to Vehicle and  
Infrastructure  
360º View Camera Stabilization  
Car Alarm  
Telematics  
Insurance Vehicle Tracking  
ORDERING INFORMATION  
PART  
IAM-20380†  
†Denotes RoHS and Green-compliant package  
* Moisture sensitivity level of the package  
AXES  
TEMP RANGE  
PACKAGE  
MSL*  
The gyroscope has a programmable full-scale range of  
±250 dps, ±500 dps, ±1000 dps, and ±2000 dps. Factory-  
calibrated initial sensitivity reduces production-line  
calibration requirements.  
X,Y,Z  
-40°C to +85°C  
16-Pin LGA  
3
FEATURES  
Other industry-leading features include on-chip 16-bit  
ADCs, programmable digital filters, an embedded  
temperature sensor, and programmable interrupts. The  
device features I2C and SPI serial interfaces, a VDD  
operating range of 1.71V to 3.6V, and a separate digital  
IO supply, VDDIO from 1.71V to 3.6V.  
Digital-output X-, Y-, and Z-axis angular rate  
sensors (gyroscopes) with a user-programmable  
full-scale range of ±250 dps, ±500 dps,  
±1000 dps, and ±2000 dps and integrated 16-bit  
ADCs  
User-programmable digital filters for gyroscope  
and temperature sensor  
BLOCK DIAGRAM  
Self-test  
IAM-20380  
INT  
Reliability testing performed according to  
AEC–Q100  
Interrupt  
Status  
Register  
NCS  
Self  
test  
o
PPAP and qualification data available  
upon request  
X Gyro  
Y Gyro  
Z Gyro  
ADC  
ADC  
ADC  
Slave I2C and  
SPI Serial  
Interface  
SDO  
SCLK  
SDI  
FIFO  
Self  
test  
User & Config  
Registers  
FSYNC  
TYPICAL OPERATING CIRCUIT  
Self  
test  
Sensor  
Registers  
Temp Sensor  
ADC  
1.8 – 3.3VDC  
VDD  
C2, 0.1 µF  
C4, 2.2 µF  
REGOUT  
Charge  
Pump  
16 15 14  
C1, 0.47 µF  
GND  
VDDIO  
1.8 – 3.3 VDC  
C3, 10 nF  
13  
12  
11  
10  
9
1
2
3
4
5
Bias & LDOs  
RESV  
SCL/SPC  
SDA/SDI  
SCL  
SDA  
AD0  
RESV  
RESV  
IAM-20380  
VDD  
GND  
REGOUT  
SA0/SDO  
CS  
VDDIO  
RESV  
6
7
8
InvenSense Inc.  
1745 Technology Drive, San Jose, CA 95110 U.S.A  
+1(408) 988–7339  
Document Number: DS-000195  
Revision: 1.0  
Rev. Date: 12/21/2016  
InvenSense reserves the right to change the detail  
specifications as may be required to permit  
improvements in the design of its products.  
www.invensense.com  
 
 
 
 
 
 
IAM-20380  
TABLE OF CONTENTS  
General Description .............................................................................................................................................1  
Block Diagram ......................................................................................................................................................1  
Applications .........................................................................................................................................................1  
Ordering Information...........................................................................................................................................1  
Features ...............................................................................................................................................................1  
Typical Operating Circuit......................................................................................................................................1  
TABLE OF CONTENTS....................................................................................................................................................... 2  
LIST OF FIGURES.............................................................................................................................................................. 5  
LIST OF TABLES................................................................................................................................................................ 6  
1
Introduction......................................................................................................................................................... 7  
1.1 Purpose and Scope....................................................................................................................................7  
1.2 Product Overview......................................................................................................................................7  
1.3 Applications...............................................................................................................................................7  
Features ............................................................................................................................................................... 8  
2.1 Gyroscope Features ..................................................................................................................................8  
2.2 Additional Features...................................................................................................................................8  
Electrical Characteristics...................................................................................................................................... 9  
3.1 Gyroscope Specifications ..........................................................................................................................9  
3.2 Electrical Specifications...........................................................................................................................10  
3.3 I2C Timing Characterization.....................................................................................................................13  
3.4 SPI Timing Characterization ....................................................................................................................14  
3.5 Absolute Maximum Ratings ....................................................................................................................15  
Applications Information ................................................................................................................................... 16  
4.1 Pin Out Diagram and Signal Description .................................................................................................16  
4.2 Typical Operating Circuit.........................................................................................................................17  
4.3 Bill of Materials for External Components..............................................................................................17  
4.4 Block Diagram .........................................................................................................................................18  
4.5 Overview .................................................................................................................................................18  
4.6 Three-Axis MEMS Gyroscope with 16-bit ADCs and Signal Conditioning ...............................................19  
4.7 I2C and SPI Serial Communications Interfaces ........................................................................................19  
4.8 Self-Test...................................................................................................................................................20  
4.9 Clocking...................................................................................................................................................20  
2
3
4
4.10  
4.11  
4.12  
4.13  
4.14  
4.15  
Sensor Data Registers .........................................................................................................................20  
FIFO.....................................................................................................................................................21  
Interrupts............................................................................................................................................21  
Digital-Output Temperature Sensor ...................................................................................................21  
Bias and LDOs .....................................................................................................................................21  
Charge Pump ......................................................................................................................................21  
Document Number: DS-000195  
Revision: 1.0  
Page 2 of 46  
 
IAM-20380  
Standard Power Modes ......................................................................................................................21  
4.16  
5
6
Programmable Interrupts .................................................................................................................................. 22  
Digital Interface ................................................................................................................................................. 23  
6.1 I2C and SPI Serial Interfaces ....................................................................................................................23  
6.2 I2C Interface.............................................................................................................................................23  
6.3 IC Communications Protocol...................................................................................................................23  
6.4 I2C Terms .................................................................................................................................................25  
6.5 SPI Interface ............................................................................................................................................26  
Serial Interface Considerations.......................................................................................................................... 27  
7.1 IAM-20380 Supported Interfaces............................................................................................................27  
Register Map...................................................................................................................................................... 28  
Register Descriptions ......................................................................................................................................... 30  
9.1 Registers 0 to 2 – Gyroscope Self-Test Registers ....................................................................................30  
9.2 Register 19 – Gyro Offset Adjustment Register ......................................................................................30  
9.3 Register 20 – Gyro Offset Adjustment Register ......................................................................................30  
9.4 Register 21 – Gyro Offset Adjustment Register ......................................................................................31  
9.5 RegistEr 22 – Gyro Offset Adjustment Register ......................................................................................31  
9.6 Register 23 – Gyro Offset Adjustment Register ......................................................................................31  
9.7 Register 24 – Gyro Offset Adjustment Register ......................................................................................31  
9.8 Register 25 – Sample Rate Divider ..........................................................................................................31  
9.9 Register 26 – Configuration.....................................................................................................................32  
7
8
9
9.10  
9.11  
9.12  
9.13  
9.14  
9.15  
9.16  
9.17  
9.18  
9.19  
9.20  
9.21  
9.22  
9.23  
9.24  
9.25  
Register 27 – Gyroscope Configuration..............................................................................................33  
Register 30 – Low Power Mode Configuration ...................................................................................33  
Register 35 – FIFO Enable ...................................................................................................................34  
Register 54 – FSYNC Interrupt Status..................................................................................................34  
Register 55 – INT/DRDY Pin / Bypass Enable Configuration ...............................................................34  
Register 56 – Interrupt Enable............................................................................................................35  
Register 58 – Interrupt Status.............................................................................................................35  
Registers 65 and 66 – Temperature Measurement............................................................................35  
Registers 67 to 72 – Gyroscope Measurements.................................................................................35  
Register 104 – Signal Path Reset.........................................................................................................36  
Register 106 – User Control................................................................................................................37  
Register 107 – Power Management 1 ................................................................................................37  
Register 108 – Power Management 2 ................................................................................................38  
Registers 114 and 115 – FIFO Count Registers ...................................................................................38  
Register 116 – FIFO Read Write..........................................................................................................38  
Register 117 – Who Am I ....................................................................................................................39  
10  
Assembly............................................................................................................................................................ 40  
10.1  
10.2  
Orientation of Axes.............................................................................................................................40  
Package Dimensions ...........................................................................................................................41  
Document Number: DS-000195  
Revision: 1.0  
Page 3 of 46  
IAM-20380  
11  
12  
13  
Part Number Package Marking.......................................................................................................................... 43  
Reference........................................................................................................................................................... 44  
Revision History ................................................................................................................................................. 45  
Document Number: DS-000195  
Revision: 1.0  
Page 4 of 46  
 
IAM-20380  
LIST OF FIGURES  
Figure 1. I2C Bus Timing Diagram.............................................................................................................................................................13  
Figure 2. SPI Bus Timing Diagram.............................................................................................................................................................14  
Figure 3. Pin out Diagram for IAM-20380 3.0x3.0x0.75mm LGA.............................................................................................................16  
Figure 4. IAM-20380 LGA Application Schematic ....................................................................................................................................17  
Figure 5. IAM-20380 Block Diagram ........................................................................................................................................................18  
Figure 6. IAM-20380 Solution Using I2C Interface....................................................................................................................................19  
Figure 7. IAM-20380 Solution Using SPI Interface ...................................................................................................................................20  
Figure 8. START and STOP Conditions......................................................................................................................................................23  
Figure 9. Acknowledge on the I2C Bus .....................................................................................................................................................24  
Figure 10. Complete I2C Data Transfer.....................................................................................................................................................24  
Figure 11. Typical SPI Master/Slave Configuration ..................................................................................................................................26  
Figure 12. I/O Levels and Connections.....................................................................................................................................................27  
Figure 13. Orientation of Axes of Sensitivity and Polarity of Rotation ....................................................................................................40  
Figure 14. Package Dimensions................................................................................................................................................................41  
Figure 15. Package Dimensions................................................................................................................................................................42  
Figure 16. Part Number Package Marking ...............................................................................................................................................43  
Document Number: DS-000195  
Revision: 1.0  
Page 5 of 46  
IAM-20380  
LIST OF TABLES  
Table 1. Gyroscope Specifications .............................................................................................................................................................9  
Table 2. D.C. Electrical Characteristics.....................................................................................................................................................10  
Table 3. A.C. Electrical Characteristics .....................................................................................................................................................12  
Table 4. Other Electrical Specifications....................................................................................................................................................12  
Table 5. I2C Timing Characteristics...........................................................................................................................................................13  
Table 6. SPI Timing Characteristics (8 MHz Operation) ...........................................................................................................................14  
Table 7. Absolute Maximum Ratings .......................................................................................................................................................15  
Table 8. Signal Descriptions .....................................................................................................................................................................16  
Table 9. Bill of Materials ..........................................................................................................................................................................17  
Table 10. Standard Power Modes for IAM-20380 ...................................................................................................................................21  
Table 11. Table of Interrupt Sources........................................................................................................................................................22  
Table 12. Serial Interface .........................................................................................................................................................................23  
Table 13. I2C Terms ..................................................................................................................................................................................25  
Table 14. Configuration............................................................................................................................................................................32  
Table 15. Example Configurations for Low Power Mode.........................................................................................................................33  
Table 16. Part Number Package Marking ................................................................................................................................................43  
Document Number: DS-000195  
Revision: 1.0  
Page 6 of 46  
 
IAM-20380  
1 INTRODUCTION  
1.1 PURPOSE AND SCOPE  
This document is a product specification, providing description, specifications, and design related information on the IAM-20380  
automotive gyroscope device. The device is housed in a small 3x3x0.75 mm 16-pin LGA package.  
1.2 PRODUCT OVERVIEW  
The IAM-20380 is a 3-axis gyroscope for Automotive applications that features a 3-axis gyroscope in a small 3x3x0.75 mm (16-pin  
LGA) package. It also features a 512-byte FIFO that can lower the traffic on the serial bus interface and reduce power consumption  
by allowing the system processor to burst read sensor data and then go into a low-power mode. IAM-20380, with its 3-axis  
integration, enables manufacturers to eliminate the costly and complex selection, qualification, and system level integration of  
discrete devices, guaranteeing optimal motion performance.  
The gyroscope has a programmable full-scale range of ±250 dps, ±500 dps, ±1000 dps, and ±2000 ds. Factory-calibrated initial  
sensitivity reduces production-line calibration requirements.  
Other industry-leading features include on-chip 16-bit ADCs, programmable digital filters, an embedded temperature sensor, and  
programmable interrupts. The device features I2C and SPI serial interfaces, a VDD operating range of 1.71V to 3.6V, and a separate  
digital IO supply, VDDIO from 1.71V to 3.6V.  
Communication with all registers of the device is performed using either I2C at 400 kHz or SPI at 8 MHz.  
By leveraging its patented and volume-proven CMOS-MEMS fabrication platform, which integrates MEMS wafers with companion  
CMOS electronics through wafer-level bonding, InvenSense has driven the package size down to a footprint and thickness of  
3x3x0.75 mm (16-pin LGA), to provide a very small yet high-performance, low-cost package. The device provides high robustness by  
supporting 10,000g shock reliability.  
1.3 APPLICATIONS  
Navigation Systems Aids for Dead Reckoning  
Lift Gate Motion Detections  
Accurate Location for Vehicle to Vehicle and Infrastructure  
360º View Camera Stabilization  
Car Alarm  
Telematics  
Insurance Vehicle Tracking  
Document Number: DS-000195  
Revision: 1.0  
Page 7 of 46  
 
 
 
 
IAM-20380  
2 FEATURES  
2.1 GYROSCOPE FEATURES  
The triple-axis MEMS gyroscope in the IAM-20380 includes a wide range of features:  
Digital-output X-, Y-, and Z-axis angular rate sensors (gyroscopes) with a user-programmable full-scale range of ±250 dps,  
±500 dps, ±1000 dps, and ±2000 dps and integrated 16-bit ADCs  
Digitally-programmable low-pass filter  
Low-power gyroscope operation  
Factory calibrated sensitivity scale factor  
Self-test  
2.2 ADDITIONAL FEATURES  
The IAM-20380 includes the following additional features:  
Smallest and thinnest LGA package for portable devices: 3x3x0.75 mm (16-pin LGA)  
512-byte FIFO buffer enables the applications processor to read the data in bursts  
Digital-output temperature sensor  
User-programmable digital filters for gyroscope and temperature sensor  
10,000g shock tolerant  
400 kHz Fast Mode I2C for communicating with all registers  
8 MHz SPI serial interface for communicating with all registers  
MEMS structure hermetically sealed and bonded at wafer level  
RoHS and Green compliant  
Document Number: DS-000195  
Revision: 1.0  
Page 8 of 46  
 
 
 
IAM-20380  
3 ELECTRICAL CHARACTERISTICS  
3.1 GYROSCOPE SPECIFICATIONS  
Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, TA = 25°C, unless otherwise noted.  
All Zero-rate output, sensitivity, and noise specifications include board soldering effects.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
NOTES  
GYROSCOPE SENSITIVITY  
Full-Scale Range  
FS_SEL=0  
±250  
±500  
±1000  
±2000  
16  
dps  
dps  
dps  
dps  
bits  
3
3
3
3
3
3
3
3
3
1
1
FS_SEL=1  
FS_SEL=2  
FS_SEL=3  
Gyroscope ADC Word Length  
Sensitivity Scale Factor  
FS_SEL=0  
FS_SEL=1  
FS_SEL=2  
FS_SEL=3  
Best fit straight line; 25°C  
25°C  
131  
LSB/(dps)  
LSB/(dps)  
LSB/(dps)  
LSB/(dps)  
%
65.5  
32.8  
16.4  
±0.1  
±5  
Nonlinearity  
Cross-Axis Sensitivity  
%
ZERO-RATE OUTPUT (ZRO)  
Initial ZRO Tolerance  
ZRO Variation Over Temperature  
25°C  
-40°C to +85°C  
-0.8  
±1  
dps  
dps  
2
1
GYROSCOPE NOISE PERFORMANCE (FS_SEL=0)  
-40°C to +85°C  
-40°C to +85°C, including  
lifetime drift  
25  
0.005  
0.010  
27  
dps/√Hz  
dps/√Hz  
1,4  
1,4  
Rate Noise Spectral Density  
Gyroscope Mechanical Frequencies  
Low Pass Filter Response  
Gyroscope Start Up Time  
29  
250  
KHz  
Hz  
ms  
2
3
1
Programmable Range  
From Sleep mode  
5
35  
Programmable, Normal  
(Filtered) mode  
Output Data Rate  
4
8000  
Hz  
1
Table 1. Gyroscope Specifications  
Please contact InvenSense for a datasheet with maximum and minimum performance values over temperature and lifetime.  
Notes:  
1. Derived from validation or characterization of parts, not guaranteed in production.  
2. Tested in production.  
3. Guaranteed by design.  
4. Calculated from Total RMS Noise.  
Document Number: DS-000195  
Revision: 1.0  
Page 9 of 46  
 
 
 
IAM-20380  
3.2 ELECTRICAL SPECIFICATIONS  
D.C. Electrical Characteristics  
Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, TA = 25°C, unless otherwise noted.  
PARAMETER  
CONDITIONS  
SUPPLY VOLTAGES  
MIN  
TYP  
MAX  
UNITS  
NOTES  
VDD  
VDDIO  
1.71  
1.71  
1.8  
1.8  
3.6  
3.6  
V
V
1
1
SUPPLY CURRENTS & BOOT TIME  
3-axis Gyroscope  
100 Hz ODR, 1x averaging  
Normal Mode  
Gyroscope Low-Power Mode  
Full-Chip Sleep Mode  
2.6  
1.6  
6
mA  
mA  
µA  
1
2
1
TEMPERATURE RANGE  
Specified Temperature Range  
Performance parameters are not applicable  
beyond Specified Temperature Range  
-40  
+85  
°C  
1
Table 2. D.C. Electrical Characteristics  
Notes:  
1. Derived from validation or characterization of parts, not guaranteed in production.  
2. Based on simulation.  
Document Number: DS-000195  
Revision: 1.0  
Page 10 of 46  
 
 
 
IAM-20380  
A.C. Electrical Characteristics  
Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, TA = 25°C, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
NOTES  
SUPPLIES  
Supply Ramp Time (TRAMP  
)
Monotonic ramp. Ramp  
rate is 10% to 90% of the  
final value  
0.01  
100  
ms  
1
TEMPERATURE SENSOR  
Operating Range  
Room Temperature Offset  
Sensitivity  
Ambient  
25°C  
Untrimmed  
-40  
85  
°C  
°C  
LSB/°C  
1
1
1
0
326.8  
POWER-ON RESET  
Supply Ramp Time (TRAMP  
)
Valid power-on RESET  
From power-up  
From sleep  
0.01  
100  
100  
5
ms  
ms  
ms  
1
1
1
11  
Start-up time for register read/write  
SA0 = 0  
SA0 = 1  
1101000  
1101001  
I2C ADDRESS  
DIGITAL INPUTS (FSYNC, SA0, SPC, SDI, CS)  
VIH, High Level Input Voltage  
VIL, Low Level Input Voltage  
CI, Input Capacitance  
0.7*VDDIO  
V
V
pF  
0.3*VDDIO  
1
1
< 10  
DIGITAL OUTPUT (SDO, INT)  
VOH, High Level Output Voltage  
VOL1, LOW-Level Output Voltage  
VOL.INT, INT Low-Level Output Voltage  
RLOAD=1 MΩ;  
RLOAD=1 MΩ;  
OPEN=1, 0.3 mA sink  
Current  
0.9*VDDIO  
V
V
V
0.1*VDDIO  
0.1  
Output Leakage Current  
tINT, INT Pulse Width  
OPEN=1  
LATCH_INT_EN=0  
100  
50  
nA  
µs  
I2C I/O (SCL, SDA)  
VIL, LOW Level Input Voltage  
VIH, HIGH-Level Input Voltage  
-0.5V  
0.7*VDDIO  
0.3*VDDIO  
VDDIO + 0.5  
V
V
V
Vhys, Hysteresis  
0.1*VDDIO  
V
VOL, LOW-Level Output Voltage  
IOL, LOW-Level Output Current  
3 mA sink current  
VOL=0.4V  
VOL=0.6V  
0
0.4  
V
1
3
6
100  
mA  
mA  
nA  
Output Leakage Current  
tof, Output Fall Time from VIHmax to  
VILmax  
Cb bus capacitance in pf  
20+0.1Cb  
300  
ns  
Document Number: DS-000195  
Revision: 1.0  
Page 11 of 46  
 
IAM-20380  
INTERNAL CLOCK SOURCE  
FCHOICE_B=1,2,3  
SMPLRT_DIV=0  
FCHOICE_B=0;  
DLPFCFG=0 or 7  
SMPLRT_DIV=0  
FCHOICE_B=0;  
32  
8
kHz  
kHz  
2
2
Sample Rate  
DLPFCFG=1,2,3,4,5,6;  
SMPLRT_DIV=0  
1
kHz  
2
CLK_SEL=0, 6 or gyro  
inactive; 25°C  
CLK_SEL=1,2,3,4,5 and gyro  
active; 25°C  
CLK_SEL=0,6 or gyro  
inactive  
CLK_SEL=1,2,3,4,5 and gyro  
active  
-5  
-1  
+5  
+1  
%
%
%
%
1
1
1
1
Clock Frequency Initial Tolerance  
-10  
-1  
+10  
+1  
Frequency Variation over  
Temperature  
Table 3. A.C. Electrical Characteristics  
Notes:  
1. Derived from validation or characterization of parts, not guaranteed in production.  
2. Guaranteed by design.  
Other Electrical Specifications  
Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, TA = 25°C, unless otherwise noted.  
PARAMETER  
CONDITIONS  
SERIAL INTERFACE  
MIN  
TYP  
MAX  
UNITS NOTES  
100  
±10%  
1
Low Speed Characterization  
High Speed Characterization  
kHz  
1
SPI Operating Frequency, All  
Registers Read/Write  
8
MHz  
1, 2  
Modes 0  
and 3  
SPI Modes  
All registers, Fast-mode  
All registers, Standard-mode  
400  
100  
kHz  
kHz  
1
1
I2C Operating Frequency  
Table 4. Other Electrical Specifications  
Notes:  
1. Derived from validation or characterization of parts, not guaranteed in production.  
2. SPI clock duty cycle between 45% and 55% should be used for 8 MHz operation.  
Document Number: DS-000195  
Revision: 1.0  
Page 12 of 46  
 
 
IAM-20380  
3.3 I2C TIMING CHARACTERIZATION  
Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, TA = 25°C, unless otherwise noted.  
PARAMETERS  
I2C TIMING  
CONDITIONS  
I2C FAST-MODE  
MIN  
TYP  
MAX  
UNITS  
NOTES  
fSCL, SCL Clock Frequency  
tHD.STA, (Repeated) START Condition Hold Time  
400  
kHz  
µs  
1
1
0.6  
tLOW, SCL Low Period  
tHIGH, SCL High Period  
tSU.STA, Repeated START Condition Setup Time  
tHD.DAT, SDA Data Hold Time  
tSU.DAT, SDA Data Setup Time  
tr, SDA and SCL Rise Time  
1.3  
0.6  
0.6  
0
100  
20+0.1Cb  
20+0.1Cb  
0.6  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
1
1
1
1
1
1
1
1
Cb bus cap. from 10 to 400 pF  
Cb bus cap. from 10 to 400 pF  
300  
300  
tf, SDA and SCL Fall Time  
tSU.STO, STOP Condition Setup Time  
tBUF, Bus Free Time Between STOP and START  
Condition  
1.3  
µs  
1
Cb, Capacitive Load for each Bus Line  
tVD.DAT, Data Valid Time  
tVD.ACK, Data Valid Acknowledge Time  
< 400  
pF  
µs  
µs  
1
1
1
0.9  
0.9  
Table 5. I2C Timing Characteristics  
Notes:  
1. Based on characterization of 5 parts over temperature and voltage as mounted on evaluation board or in sockets.  
t
f
tSU.DAT  
t
r
SDA  
SCL  
70%  
30%  
70%  
30%  
continued below at  
9th clock cycle  
A
t
f
tr  
t
VD.DAT  
70%  
30%  
70%  
30%  
t
HD.DAT  
t
HD.STA  
1/fSCL  
t
LOW  
1
st clock cycle  
S
t
HIGH  
t
BUF  
SDA  
SCL  
70%  
30%  
A
t
SU.STO  
t
SU.STA  
tHD.STA  
t
VD.ACK  
70%  
30%  
th clock cycle  
S
P
Sr  
9
Figure 1. I2C Bus Timing Diagram  
Document Number: DS-000195  
Revision: 1.0  
Page 13 of 46  
 
 
 
IAM-20380  
3.4 SPI TIMING CHARACTERIZATION  
Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, TA = 25°C, unless otherwise noted.  
NOTES  
PARAMETERS  
SPI TIMING  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
fSPC, SPC Clock Frequency  
tLOW, SPC Low Period  
tHIGH, SPC High Period  
tSU.CS, CS Setup Time  
tHD.CS, CS Hold Time  
8
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
1
1
1
1
1
1
1
1
1
2
2
56  
56  
2
63  
3
tSU.SDI, SDI Setup Time  
tHD.SDI, SDI Hold Time  
tVD.SDO, SDO Valid Time  
tHD.SDO, SDO Hold Time  
tDIS.SDO, SDO Output Disable Time  
tFall, SCLK Fall Time  
7
Cload = 20 pF  
Cload = 20 pF  
40  
6
20  
6.5  
6.5  
tRise, SCLK Rise Time  
Table 6. SPI Timing Characteristics (8 MHz Operation)  
Notes:  
1. Based on characterization of 5 parts over temperature and voltage as mounted on evaluation board or in sockets.  
2. Based on other parameter values.  
CS  
70%  
30%  
tFall  
tRise  
t
HD;CS  
t
SU;CS  
70%  
tHIGH  
1/fCLK  
SCLK  
30%  
t
SU;SDI  
t
HD;SDI  
tLOW  
70%  
30%  
SDI  
LSB IN  
MSB IN  
t
DIS;SDO  
t
VD;SDO  
t
HD;SDO  
70%  
30%  
SDO  
MSB OUT  
LSB OUT  
Figure 2. SPI Bus Timing Diagram  
Document Number: DS-000195  
Revision: 1.0  
Page 14 of 46  
 
 
 
IAM-20380  
3.5 ABSOLUTE MAXIMUM RATINGS  
Stress above those listed as “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only  
and functional operation of the device at these conditions is not implied. Exposure to the absolute maximum ratings conditions for  
extended periods may affect device reliability.  
PARAMETER  
RATING  
-0.5V to 4V  
Supply Voltage, VDD  
Supply Voltage, VDDIO  
REGOUT  
-0.5V to 4V  
-0.5V to 2V  
Input Voltage Level (SA0, FSYNC, SCL, SDA)  
Operating Temperature Range  
Storage Temperature Range  
-0.5V to VDDIO + 0.5V  
-40°C to +85°C  
-40°C to +125°C  
2 kV (HBM);  
250V (MM)  
JEDEC Class II (2),125°C  
±100 mA  
Electrostatic Discharge (ESD) Protection  
Latch-up  
Table 7. Absolute Maximum Ratings  
Document Number: DS-000195  
Revision: 1.0  
Page 15 of 46  
 
 
IAM-20380  
4 APPLICATIONS INFORMATION  
4.1 PIN OUT DIAGRAM AND SIGNAL DESCRIPTION  
PIN NUMBER  
PIN NAME  
VDDIO  
SCL/SPC  
SDA/SDI  
SA0/SDO  
CS  
PIN DESCRIPTION  
Digital I/O supply voltage  
1
2
3
4
5
I2C serial clock (SCL); SPI serial clock (SPC)  
I2C serial data (SDA); SPI serial data input (SDI)  
I2C slave address LSB (SA0); SPI serial data output (SDO)  
Chip select (0 = SPI mode; 1 = I2C mode)  
Interrupt digital output (totem pole or open-drain)  
Reserved. Do not connect.  
6
7
INT  
RESV  
8
9
FSYNC  
RESV  
Synchronization digital input (optional). Connect to GND if unused.  
Reserved. Connect to GND.  
10  
11  
12  
13  
14  
15  
RESV  
RESV  
RESV  
GND  
REGOUT  
RESV  
Reserved. Connect to GND.  
Reserved. Connect to GND.  
Reserved. Connect to GND.  
Connect to GND  
Regulator filter capacitor connection  
Reserved. Connect to GND.  
16  
VDD  
Power Supply  
Table 8. Signal Descriptions  
Note: Power up with SCL/SPC and CS pins held low is not a supported use case. In case this power up approach is used, software reset is required using the  
PWR_MGMT_1 register, prior to initialization.  
16 15 14  
13  
12  
11  
10  
9
VDDIO  
SCL/SPC  
SDA/SDI  
SA0/SDO  
CS  
1
2
3
4
5
GND  
+Z  
RESV  
RESV  
RESV  
RESV  
IAM-20380  
IAM  
-
20380  
+Y  
+X  
6
7
8
LGA Package (Top View)  
16-pin, 3mm x 3mm x 0.75mm  
Typical Footprint and thickness  
Orientation of Axes of Sensitivity and Polarity of Rotation  
Figure 3. Pin out Diagram for IAM-20380 3.0x3.0x0.75mm LGA  
Document Number: DS-000195  
Revision: 1.0  
Page 16 of 46  
 
 
 
 
IAM-20380  
4.2 TYPICAL OPERATING CIRCUIT  
1.8 – 3.3VDC  
VDD  
C4, 2.2 µF  
C2, 0.1 µF  
REGOUT  
16 15 14  
C1, 0.47 µF  
GND  
VDDIO  
1.8 – 3.3 VDC  
13  
12  
11  
10  
9
1
2
3
4
5
RESV  
C3, 10 nF  
SCL  
SCL/SPC  
SDA/SDI  
RESV  
RESV  
IAM-20380  
SDA  
SA0/SDO  
CS  
AD0  
VDDIO  
RESV  
6
7
8
Figure 4. IAM-20380 LGA Application Schematic  
Note: I2C lines are open drain and pullup resistors (e.g. 10 kΩ) are required.  
4.3 BILL OF MATERIALS FOR EXTERNAL COMPONENTS  
COMPONENT  
REGOUT Capacitor  
LABEL  
C1  
SPECIFICATION  
X7R, 0.47 µF ±10%  
QUANTITY  
1
1
1
1
C2  
X7R, 0.1 µF ±10%  
X7R, 2.2 µF ±10%  
X7R, 10 nF ±10%  
VDD Bypass Capacitors  
VDDIO Bypass Capacitor  
C4  
C3  
Table 9. Bill of Materials  
Document Number: DS-000195  
Revision: 1.0  
Page 17 of 46  
 
 
 
 
IAM-20380  
4.4 BLOCK DIAGRAM  
IAM-20380  
INT  
Interrupt  
Status  
Register  
CS  
Slave I2C and  
SPI Serial  
Interface  
SA0 / SDO  
SCL / SPC  
SDA / SDI  
Self  
test  
FIFO  
X Gyro  
Y Gyro  
Z Gyro  
ADC  
ADC  
ADC  
User & Config  
Registers  
Self  
test  
FSYNC  
Sensor  
Registers  
Self  
test  
Temp Sensor  
ADC  
Charge  
Pump  
Bias & LDOs  
VDD  
GND  
REGOUT  
Figure 5. IAM-20380 Block Diagram  
4.5 OVERVIEW  
The IAM-20380 is comprised of the following key blocks and functions:  
Three-axis MEMS rate gyroscope sensor with 16-bit ADCs and signal conditioning  
Primary I2C and SPI serial communications interfaces  
Self-Test  
Clocking  
Sensor Data Registers  
FIFO  
Interrupts  
Digital-Output Temperature Sensor  
Bias and LDOs  
Charge Pump  
Standard Power Modes  
Document Number: DS-000195  
Revision: 1.0  
Page 18 of 46  
 
 
 
IAM-20380  
4.6 THREE-AXIS MEMS GYROSCOPE WITH 16-BIT ADCS AND SIGNAL CONDITIONING  
The IAM-20380 consists of three independent vibratory MEMS rate gyroscopes, which detect rotation about the X-, Y-, and Z- Axes.  
When the gyros are rotated about any of the sense axes, the Coriolis Effect causes a vibration that is detected by a capacitive pickoff.  
The resulting signal is amplified, demodulated, and filtered to produce a voltage that is proportional to the angular rate. This voltage  
is digitized using individual on-chip 16-bit Analog-to-Digital Converters (ADCs) to sample each axis. The full-scale range of the gyro  
sensors may be digitally programmed to ±250, ±500, ±1000, or ±2000 degrees per second (dps). The ADC sample rate is  
programmable from 8,000 samples per second, down to 3.9 samples per second, and user-selectable low-pass filters enable a wide  
range of cut-off frequencies.  
4.7 I2C AND SPI SERIAL COMMUNICATIONS INTERFACES  
The IAM-20380 communicates to a system processor using either a SPI or an I2C serial interface. The IAM-20380 always acts as a  
slave when communicating to the system processor. The LSB of the I2C slave address is set by pin 4 (SA0).  
IAM-20380 Solution Using I2C Interface  
In Figure 6, the system processor is an I2C master to the IAM-20380.  
Interrupt  
Status  
Register  
I2C Processor Bus: for reading all  
sensor data from MPU  
INT  
IAM-20380  
SA0  
SCL  
VDDIO or GND  
Slave I2C  
or SPI  
SCL  
SDA  
System  
Processor  
Serial  
Interface  
SDA  
FIFO  
User & Config  
Registers  
Sensor  
Register  
Factory  
Calibration  
Bias & LDOs  
VDD  
GND  
REGOUT  
Figure 6. IAM-20380 Solution Using I2C Interface  
Document Number: DS-000195  
Revision: 1.0  
Page 19 of 46  
 
 
 
IAM-20380  
IAM-20380 Solution Using SPI Interface  
In Figure 7, the system processor is an SPI master to the IAM-20380. Pins 2, 3, 4, and 5 are used to support the SPC, SDI, SDO, and CS  
signals for SPI communications.  
Processor SPI Bus: for reading all  
data from MPU and for configuring  
MPU  
Interrupt  
Status  
Register  
INT  
nCS  
CS  
IAM-20380  
SDO  
SDI  
Slave I2C  
or SPI  
Serial  
Interface  
System  
Processor  
SPC  
SDI  
SPC  
SDO  
FIFO  
Config  
Register  
Sensor  
Register  
Factory  
Calibration  
Bias & LDOs  
VDD  
GND  
REGOUT  
Figure 7. IAM-20380 Solution Using SPI Interface  
4.8 SELF-TEST  
Self-test allows for the testing of the mechanical and electrical portions of the sensors. The self-test for each measurement axis can  
be activated by means of the gyroscope self-test register (register 27).  
When the self-test is activated, the electronics cause the sensors to be actuated and produce an output signal. The output signal is  
used to observe the self-test response.  
The self-test response is defined as follows:  
SELF-TEST RESPONSE = SENSOR OUTPUT WITH SELF-TEST ENABLED – SENSOR OUTPUT WITH SELF-TEST DISABLED  
When the value of the self-test response is within the specified min/max limits of the product specification, the part has passed self-  
test. When the self-test response exceeds the min/max values, the part is deemed to have failed self-test.  
4.9 CLOCKING  
The IAM-20380 has a flexible clocking scheme, allowing a variety of internal clock sources to be used for the internal synchronous  
circuitry. This synchronous circuitry includes the signal conditioning and ADCs, and various control circuits and registers. An on-chip  
PLL provides flexibility in the allowable inputs for generating this clock.  
Allowable internal sources for generating the internal clock are:  
a) An internal relaxation oscillator  
b) Auto-select between internal relaxation oscillator and gyroscope MEMS oscillator to use the best available source  
The only setting supporting specified performance in all modes is option b). It is recommended that option b) be used.  
4.10 SENSOR DATA REGISTERS  
The sensor data registers contain the latest gyroscope and temperature measurement data. They are read-only registers, and are  
accessed via the serial interface. Data from these registers may be read anytime.  
Document Number: DS-000195  
Revision: 1.0  
Page 20 of 46  
 
 
 
 
IAM-20380  
4.11 FIFO  
The IAM-20380 contains a 512-byte FIFO register that is accessible via the Serial Interface. The FIFO configuration register  
determines which data are written into the FIFO. Possible choices include gyro data, temperature readings, and FSYNC input. A FIFO  
counter keeps track of how many bytes of valid data are contained in the FIFO. The FIFO register supports burst reads. The interrupt  
function may be used to determine when new data are available.  
4.12 INTERRUPTS  
Interrupt functionality is configured via the Interrupt Configuration register. Items that are configurable include the INT pin  
configuration, the interrupt latching and clearing method, and triggers for the interrupt. Items that can trigger an interrupt are (1)  
Clock generator locked to new reference oscillator (used when switching clock sources); (2) new data are available to be read (from  
the FIFO and Data registers); (3) FIFO overflow. The interrupt status can be read from the Interrupt Status register.  
4.13 DIGITAL-OUTPUT TEMPERATURE SENSOR  
An on-chip temperature sensor and ADC are used to measure the IAM-20380 die temperature. The readings from the ADC can be  
read from the FIFO or the Sensor Data registers.  
4.14 BIAS AND LDOS  
The bias and LDO section generates the internal supply and the reference voltages and currents required by the IAM-20380. Its two  
inputs are an unregulated VDD and a VDDIO logic reference supply voltage. The LDO output is bypassed by a capacitor at REGOUT.  
For further details on the capacitor, please refer to the Bill of Materials for External Components.  
4.15 CHARGE PUMP  
An on-chip charge pump generates the high voltage required for the MEMS oscillator.  
4.16 STANDARD POWER MODES  
The following table lists the user-accessible power modes for IAM-20380.  
MODE  
NAME  
GYRO  
1
2
3
4
5
6
7
8
Sleep Mode  
Standby Mode  
Reserved  
Off  
Drive On  
Off  
Off  
Duty-Cycled  
On  
Reserved  
Low-Power Mode  
Low-Noise Mode  
Low-Noise Mode  
Low-Power Mode  
On  
Duty-Cycled  
Table 10. Standard Power Modes for IAM-20380  
Notes:  
1. Power consumption for individual modes can be found in section 3.2.1.  
Document Number: DS-000195  
Revision: 1.0  
Page 21 of 46  
 
 
 
 
 
 
 
IAM-20380  
5 PROGRAMMABLE INTERRUPTS  
The IAM-20380 has a programmable interrupt system which can generate an interrupt signal on the INT pin. Status flags indicate the  
source of an interrupt. Interrupt sources may be enabled and disabled individually.  
INTERRUPT NAME  
Motion Detection  
MODULE  
Motion  
FIFO Overflow  
Data Ready  
FIFO  
Sensor Registers  
Table 11. Table of Interrupt Sources  
Document Number: DS-000195  
Revision: 1.0  
Page 22 of 46  
 
 
IAM-20380  
6 DIGITAL INTERFACE  
6.1 I2C AND SPI SERIAL INTERFACES  
The internal registers and memory of the IAM-20380 can be accessed using either I2C at 400 kHz or SPI at 8 MHz. SPI operates in  
four-wire mode.  
PIN NUMBER  
PIN NAME  
VDDIO  
PIN DESCRIPTION  
Digital I/O supply voltage.  
1
4
2
3
SA0 / SDO  
SCL / SPC  
SDA / SDI  
I2C Slave Address LSB (SA0); SPI serial data output (SDO)  
I2C serial clock (SCL); SPI serial clock (SPC)  
I2C serial data (SDA); SPI serial data input (SDI)  
Table 12. Serial Interface  
Note: To prevent switching into I2C mode when using SPI, the I2C interface should be disabled by setting the I2C_IF_DIS configuration bit. Setting this bit should be  
performed immediately after waiting for the time specified by the “Start-Up Time for Register Read/Write” in section 3.2.2.  
For further information regarding the I2C_IF_DIS bit, please refer to sections 8 and 9 of this document.  
6.2 I2C INTERFACE  
I2C is a two-wire interface comprised of the signals serial data (SDA) and serial clock (SCL). In general, the lines are open-drain and bi-  
directional. In a generalized I2C interface implementation, attached devices can be a master or a slave. The master device puts the  
slave address on the bus, and the slave device with the matching address acknowledges the master.  
The IAM-20380 always operates as a slave device when communicating to the system processor, which thus acts as the master. SDA  
and SCL lines typically need pull-up resistors to VDD. The maximum bus speed is 400 kHz.  
The slave address of the IAM-20380 is b110100X which is 7 bits long. The LSB bit of the 7-bit address is determined by the logic level  
on pin SA0. This allows two IAM-20380s to be connected to the same I2C bus. When used in this configuration, the address of one of  
the devices should be b1101000 (pin SA0 is logic low) and the address of the other should be b1101001 (pin SA0 is logic high).  
6.3 IC COMMUNICATIONS PROTOCOL  
START (S) and STOP (P) Conditions  
Communication on the I2C bus starts when the master puts the START condition (S) on the bus, which is defined as a HIGH-to-LOW  
transition of the SDA line while SCL line is HIGH (see figure below). The bus is considered to be busy until the master puts a STOP  
condition (P) on the bus, which is defined as a LOW to HIGH transition on the SDA line while SCL is HIGH (see Figure 8).  
Additionally, the bus remains busy if a repeated START (Sr) is generated instead of a STOP condition.  
SDA  
SCL  
S
P
START condition  
STOP condition  
Figure 8. START and STOP Conditions  
Data Format / Acknowledge  
I2C data bytes are defined to be 8-bits long. There is no restriction to the number of bytes transmitted per data transfer. Each byte  
transferred must be followed by an acknowledge (ACK) signal. The clock for the acknowledge signal is generated by the master,  
while the receiver generates the actual acknowledge signal by pulling down SDA and holding it low during the HIGH portion of the  
acknowledge clock pulse.  
Document Number: DS-000195  
Revision: 1.0  
Page 23 of 46  
 
 
 
 
 
 
IAM-20380  
If a slave is busy and cannot transmit or receive another byte of data until some other task has been performed, it can hold SCL  
LOW, thus forcing the master into a wait state. Normal data transfer resumes when the slave is ready, and releases the clock line  
(refer to Figure 9).  
DATA OUTPUT BY  
TRANSMITTER (SDA)  
not acknowledge  
DATA OUTPUT BY  
RECEIVER (SDA)  
acknowledge  
SCL FROM  
MASTER  
1
2
8
9
clock pulse for  
acknowledgement  
START  
condition  
Figure 9. Acknowledge on the I2C Bus  
Communications  
After beginning communications with the START condition (S), the master sends a 7-bit slave address followed by an 8th bit, the  
read/write bit. The read/write bit indicates whether the master is receiving data from or is writing to the slave device. Then, the  
master releases the SDA line and waits for the acknowledge signal (ACK) from the slave device. Each byte transferred must be  
followed by an acknowledge bit. To acknowledge, the slave device pulls the SDA line LOW and keeps it LOW for the high period of  
the SCL line. Data transmission is always terminated by the master with a STOP condition (P), thus freeing the communications line.  
However, the master can generate a repeated START condition (Sr), and address another slave without first generating a STOP  
condition (P). A LOW to HIGH transition on the SDA line while SCL is HIGH defines the stop condition. All SDA changes should take  
place when SCL is low, with the exception of start and stop conditions.  
SDA  
SCL  
1 – 7  
8
9
1 – 7  
8
9
1 – 7  
8
9
S
P
START  
STOP  
ADDRESS  
R/W  
ACK  
DATA  
ACK  
DATA  
ACK  
condition  
condition  
Figure 10. Complete I2C Data Transfer  
To write the internal IAM-20380 registers, the master transmits the start condition (S), followed by the I2C address and the write bit  
(0). At the 9th clock cycle (when the clock is high), the IAM-20380 acknowledges the transfer. Then the master puts the register  
address (RA) on the bus. After the IAM-20380 acknowledges the reception of the register address, the master puts the register data  
onto the bus. This is followed by the ACK signal, and data transfer may be concluded by the stop condition (P). To write multiple  
bytes after the last ACK signal, the master can continue outputting data rather than transmitting a stop signal. In this case, the IAM-  
20380 automatically increments the register address and loads the data to the appropriate register. The following figures show  
single and two-byte write sequences.  
Document Number: DS-000195  
Revision: 1.0  
Page 24 of 46  
 
 
IAM-20380  
Single-Byte Write Sequence  
Master  
Slave  
S
AD+W  
RA  
DATA  
DATA  
P
ACK  
ACK  
ACK  
ACK  
Burst Write Sequence  
Master  
Slave  
S
AD+W  
RA  
DATA  
P
ACK  
ACK  
ACK  
To read the internal IAM-20380 registers, the master sends a start condition, followed by the I2C address and a write bit, and then  
the register address that is going to be read. Upon receiving the ACK signal from the IAM-20380, the master transmits a start signal  
followed by the slave address and read bit. As a result, the IAM-20380 sends an ACK signal and the data. The communication ends  
with a not acknowledge (NACK) signal and a stop bit from master. The NACK condition is defined such that the SDA line remains high  
at the 9th clock cycle. The following figures show single and two-byte read sequences.  
Single-Byte Read Sequence  
Master  
Slave  
S
AD+W  
RA  
RA  
S
AD+R  
AD+R  
NACK  
P
ACK  
ACK  
ACK  
ACK  
ACK  
DATA  
Burst Read Sequence  
Master  
Slave  
S
AD+W  
S
ACK  
NACK  
P
ACK  
DATA  
DATA  
6.4 I2C TERMS  
SIGNAL  
S
DESCRIPTION  
Start Condition: SDA goes from high to low while SCL is high  
AD  
Slave I2C address  
W
Write bit (0)  
R
Read bit (1)  
ACK  
NACK  
RA  
Acknowledge: SDA line is low while the SCL line is high at the 9th clock cycle  
Not-Acknowledge: SDA line stays high at the 9th clock cycle  
IAM-20380 internal register address  
DATA  
P
Transmit or received data  
Stop condition: SDA going from low to high while SCL is high  
Table 13. I2C Terms  
Document Number: DS-000195  
Revision: 1.0  
Page 25 of 46  
 
 
IAM-20380  
6.5 SPI INTERFACE  
SPI is a 4-wire synchronous serial interface that uses two control lines and two data lines. The IAM-20380 always operates as a Slave  
device during standard Master-Slave SPI operation.  
With respect to the Master, the Serial Clock output (SPC), the Serial Data Output (SDO) and the Serial Data Input (SDI) are shared  
among the Slave devices. Each SPI slave device requires its own Chip Select (CS) line from the master.  
CS goes low (active) at the start of transmission and goes back high (inactive) at the end. Only one CS line is active at a time, ensuring  
that only one slave is selected at any given time. The CS lines of the non-selected slave devices are held high, causing their SDO lines  
to remain in a high-impedance (high-z) state so that they do not interfere with any active devices.  
SPI Operational Features  
1. Data are delivered MSB first and LSB last  
2. Data are latched on the rising edge of SPC  
3. Data should be transitioned on the falling edge of SPC  
4. The maximum frequency of SPC is 8 MHz  
5. SPI read and write operations are completed in 16 or more clock cycles (two or more bytes). The first byte contains the  
SPI Address, and the following byte(s) contain(s) the SPI data. The first bit of the first byte contains the Read/Write bit  
and indicates the Read (1) or Write (0) operation. The following 7 bits contain the Register Address. In cases of multiple-  
byte Read/Writes, data are two or more bytes:  
SPI Address format  
MSB  
LSB  
R/W A6 A5 A4 A3 A2 A1 A0  
SPI Data format  
MSB  
LSB  
D7  
D6 D5 D4 D3 D2 D1 D0  
6. Supports Single or Burst Read/Writes.  
SPC  
SDI  
SPI Master  
SPI Slave 1  
SDO  
CS  
CS1  
CS2  
SPC  
SDI  
SDO  
CS  
SPI Slave 2  
Figure 11. Typical SPI Master/Slave Configuration  
Document Number: DS-000195  
Revision: 1.0  
Page 26 of 46  
 
 
IAM-20380  
7 SERIAL INTERFACE CONSIDERATIONS  
7.1 IAM-20380 SUPPORTED INTERFACES  
The IAM-20380 supports I2C communications on its serial interface.  
The IAM-20380’s I/O logic levels are set to be VDDIO.  
Figure 12 depicts a sample circuit of IAM-20380. It shows the relevant logic levels and voltage connections.  
VDDIO  
VDD_IO  
(0V - VDDIO)  
SYSTEM BUS  
System  
Processor IO  
VDD  
VDDIO  
VDD  
(0V - VDDIO)  
INT  
SDA  
SCL  
(0V - VDDIO)  
(0V - VDDIO)  
(0V - VDDIO)  
SYNC  
VDDIO  
IAM-20380  
VDDIO  
(0V, VDDIO)  
SA0  
Figure 12. I/O Levels and Connections  
Document Number: DS-000195  
Revision: 1.0  
Page 27 of 46  
 
 
 
IAM-20380  
8 REGISTER MAP  
The following table lists the register map for the IAM-20380.  
Accessible  
Addr  
(Hex)  
Addr  
(Dec.)  
Serial  
I/F  
(writable)  
in Sleep  
Mode  
Register Name  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
00  
01  
02  
13  
14  
15  
16  
17  
18  
19  
00  
01  
02  
19  
20  
21  
22  
23  
24  
25  
SELF_TEST_X_GYRO  
SELF_TEST_Y_GYRO  
SELF_TEST_Z_GYRO  
XG_OFFS_USRH  
XG_OFFS_USRL  
YG_OFFS_USRH  
YG_OFFS_USRL  
ZG_OFFS_USRH  
ZG_OFFS_USRL  
SMPLRT_DIV  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
N
N
N
N
N
N
N
N
N
N
N
XG_ST_DATA[7:0]  
YG_ST_DATA[7:0]  
ZG_ST_DATA[7:0]  
X_OFFS_USR [15:8]  
X_OFFS_USR [7:0]  
Y_OFFS_USR [15:8]  
Y_OFFS_USR [7:0]  
Z_OFFS_USR [15:8]  
Z_OFFS_USR [7:0]  
SMPLRT_DIV[7:0]  
FIFO_  
MODE  
1A  
1B  
1E  
26  
27  
30  
CONFIG  
R/W  
R/W  
R/W  
-
EXT_SYNC_SET[2:0]  
FS_SEL [1:0]  
DLPF_CFG[2:0]  
GYRO_CONFIG  
LP_MODE_CFG  
N
N
XG_ST  
YG_ST  
ZG_ST  
-
FCHOICE_B[1:0]  
GYRO_CYCL  
E
G_AVGCFG[2:0]  
-
TEMP  
_FIFO_EN  
23  
36  
35  
54  
FIFO_EN  
R/W  
R/C  
N
N
XG_FIFO_EN  
-
YG_FIFO_EN  
-
ZG_FIFO_EN  
-
-
-
-
-
-
-
-
FSYNC_INT  
FSYNC_INT  
INT_LEVEL  
-
FSYNC  
_INT_MODE_  
EN  
LATCH  
_INT_EN  
INT_RD  
_CLEAR  
FSYNC_INT_L  
EVEL  
37  
38  
3A  
55  
56  
58  
INT_PIN_CFG  
INT_ENABLE  
INT_STATUS  
R/W  
R/W  
R/C  
Y
Y
INT_OPEN  
-
-
-
-
FIFO  
_OFLOW  
_EN  
GDRIVE_INT_  
EN  
DATA_RDY_I  
NT_EN  
-
-
-
-
FIFO  
_OFLOW  
_INT  
DATA  
_RDY_INT  
N
GDRIVE_INT  
41  
42  
43  
44  
45  
46  
47  
48  
65  
66  
67  
68  
69  
70  
71  
72  
TEMP_OUT_H  
TEMP_OUT_L  
GYRO_XOUT_H  
GYRO_XOUT_L  
GYRO_YOUT_H  
GYRO_YOUT_L  
GYRO_ZOUT_H  
GYRO_ZOUT_L  
R
R
R
R
R
R
R
R
N
N
N
N
N
N
N
N
TEMP_OUT[15:8]  
TEMP_OUT[7:0]  
GYRO_XOUT[15:8]  
GYRO_XOUT[7:0]  
GYRO_YOUT[15:8]  
GYRO_YOUT[7:0]  
GYRO_ZOUT[15:8]  
GYRO_ZOUT[7:0]  
TEMP  
_RST  
68  
6A  
6B  
104  
106  
107  
SIGNAL_PATH_RESET  
USER_CTRL  
R/W  
R/W  
R/W  
N
N
Y
-
-
-
-
-
-
-
-
-
-
I2C_IF  
_DIS  
FIFO  
_RST  
SIG_COND  
_RST  
FIFO_EN  
SLEEP  
-
DEVICE_RES  
ET  
GYRO_  
STANDBY  
PWR_MGMT_1  
-
-
TEMP_DIS  
-
CLKSEL[2:0]  
STBY_YG  
6C  
72  
73  
74  
75  
108  
114  
115  
116  
117  
PWR_MGMT_2  
FIFO_COUNTH  
FIFO_COUNTL  
FIFO_R_W  
R/W  
R
Y
FIFO_LP_EN  
-
-
-
STBY_XG  
STBY_ZG  
N
N
N
N
FIFO_COUNT[12:8]  
R
FIFO_COUNT[7:0]  
R/W  
R
FIFO_DATA[7:0]  
WHOAMI[7:0]  
WHO_AM_I  
Note: Register Names ending in _H and _L contain the high and low bytes, respectively, of an internal register value.  
Document Number: DS-000195  
Revision: 1.0  
Page 28 of 46  
 
IAM-20380  
In the detailed register tables that follow, register names are in capital letters, while register values are in capital letters and  
italicized. For example, the GYRO_XOUT_H register (Register 67) contains the 8 most significant bits, GYRO_XOUT[15:8], of the 16-  
bit X-Axis gyroscope measurement, GYRO_XOUT.  
The reset value is 0x00 for all registers other than the registers below, also the self-test registers contain pre-programmed values  
and will not be 0x00 after reset.  
Register 107 (0x40) Power Management 1  
Register 117 (0xB5) WHO_AM_I  
Document Number: DS-000195  
Revision: 1.0  
Page 29 of 46  
IAM-20380  
9 REGISTER DESCRIPTIONS  
This section describes the function and contents of each register within the IAM-20380.  
Note: The device will come up in sleep mode upon power-up.  
9.1 REGISTERS 0 TO 2 – GYROSCOPE SELF-TEST REGISTERS  
Register Name: SELF_TEST_X_GYRO, SELF_TEST_Y_GYRO, SELF_TEST_Z_GYRO  
Type: READ/WRITE  
Register Address: 00, 01, 02 (Decimal); 00, 01, 02 (Hex)  
REGISTER  
BIT  
NAME  
FUNCTION  
The value in this register indicates the self-test output generated during  
manufacturing tests. This value is to be used to check against  
subsequent self-test outputs performed by the end user.  
SELF_TEST_X_GYRO  
[7:0]  
XG_ST_DATA[7:0]  
The value in this register indicates the self-test output generated during  
manufacturing tests. This value is to be used to check against  
subsequent self-test outputs performed by the end user.  
The value in this register indicates the self-test output generated during  
manufacturing tests. This value is to be used to check against  
subsequent self-test outputs performed by the end user.  
SELF_TEST_Y_GYRO  
SELF_TEST_Z_GYRO  
[7:0]  
[7:0]  
YG_ST_DATA[7:0]  
ZG_ST_DATA[7:0]  
The equation to convert self-test codes in OTP to factory self-test measurement is:  
ST _OTP = (2620/ 2FS )*1.01(ST _code1) (lsb)  
where ST_OTP is the value that is stored in OTP of the device, FS is the Full Scale value, and ST_code is based on the Self-Test value  
(ST_ FAC) determined in InvenSense’s factory final test and calculated based on the following equation:  
log(ST _ FAC /(2620/ 2FS ))  
ST _ code = round(  
) +1  
log(1.01)  
9.2 REGISTER 19 – GYRO OFFSET ADJUSTMENT REGISTER  
Register Name: XG_OFFS_USRH  
Register Type: READ/WRITE  
Register Address: 19 (Decimal); 13 (Hex)  
BIT  
NAME  
FUNCTION  
Bits 15 to 8 of the 16-bit offset of X gyroscope (2’s complement). This register is  
used to remove DC bias from the sensor output. The value in this register is  
added to the gyroscope sensor value before going into the sensor register.  
[7:0]  
X_OFFS_USR[15:8]  
9.3 REGISTER 20 – GYRO OFFSET ADJUSTMENT REGISTER  
Register Name: XG_OFFS_USRL  
Register Type: READ/WRITE  
Register Address: 20 (Decimal); 14 (Hex)  
BIT  
NAME  
FUNCTION  
Bits 7 to 0 of the 16-bit offset of X gyroscope (2’s complement). This register is  
used to remove DC bias from the sensor output. The value in this register is  
added to the gyroscope sensor value before going into the sensor register.  
[7:0]  
X_OFFS_USR[7:0]  
Document Number: DS-000195  
Revision: 1.0  
Page 30 of 46  
 
 
 
 
IAM-20380  
9.4 REGISTER 21 – GYRO OFFSET ADJUSTMENT REGISTER  
Register Name: YG_OFFS_USRH  
Register Type: READ/WRITE  
Register Address: 21 (Decimal); 15 (Hex)  
BIT  
NAME  
FUNCTION  
Bits 15 to 8 of the 16-bit offset of Y gyroscope (2’s complement). This register is  
used to remove DC bias from the sensor output. The value in this register is  
added to the gyroscope sensor value before going into the sensor register.  
[7:0]  
Y_OFFS_USR[15:8]  
9.5 REGISTER 22 – GYRO OFFSET ADJUSTMENT REGISTER  
Register Name: YG_OFFS_USRL  
Register Type: READ/WRITE  
Register Address: 22 (Decimal); 16 (Hex)  
BIT  
NAME  
FUNCTION  
Bits 7 to 0 of the 16-bit offset of Y gyroscope (2’s complement). This register is  
used to remove DC bias from the sensor output. The value in this register is  
added to the gyroscope sensor value before going into the sensor register.  
[7:0]  
Y_OFFS_USR[7:0]  
9.6 REGISTER 23 – GYRO OFFSET ADJUSTMENT REGISTER  
Register Name: ZG_OFFS_USRH  
Register Type: READ/WRITE  
Register Address: 23 (Decimal); 17 (Hex)  
BIT  
NAME  
FUNCTION  
Bits 15 to 8 of the 16-bit offset of Z gyroscope (2’s complement). This register is  
used to remove DC bias from the sensor output. The value in this register is  
added to the gyroscope sensor value before going into the sensor register.  
[7:0]  
Z_OFFS_USR[15:8]  
9.7 REGISTER 24 – GYRO OFFSET ADJUSTMENT REGISTER  
Register Name: ZG_OFFS_USRL  
Register Type: READ/WRITE  
Register Address: 24 (Decimal); 18 (Hex)  
BIT  
NAME  
FUNCTION  
Bits 7 to 0 of the 16-bit offset of Z gyroscope (2’s complement). This register is  
used to remove DC bias from the sensor output. The value in this register is  
added to the gyroscope sensor value before going into the sensor register.  
[7:0]  
Z_OFFS_USR[7:0]  
9.8 REGISTER 25 – SAMPLE RATE DIVIDER  
Register Name: SMPLRT_DIV  
Register Type: READ/WRITE  
Register Address: 25 (Decimal); 19 (Hex)  
BIT  
NAME  
FUNCTION  
[7:0] SMPLRT_DIV[7:0]  
Divides the internal sample rate (see register CONFIG) to generate the sample rate that  
controls sensor data output rate, FIFO sample rate.  
Note: This register is only effective when FCHOICE_B register bits are 2’b00, and (0 < DLPF_CFG < 7).  
This is the update rate of the sensor register:  
SAMPLE_RATE = INTERNAL_SAMPLE_RATE / (1 + SMPLRT_DIV)  
Where INTERNAL_SAMPLE_RATE = 1 kHz  
Document Number: DS-000195  
Revision: 1.0  
Page 31 of 46  
 
 
 
 
 
IAM-20380  
9.9 REGISTER 26 – CONFIGURATION  
Register Name: CONFIG  
Register Type: READ/WRITE  
Register Address: 26 (Decimal); 1A (Hex)  
BIT  
[7]  
NAME  
FUNCTION  
-
Always set to 0  
[6]  
FIFO_MODE  
When set to ‘1’, when the FIFO is full, additional writes will not be written to FIFO.  
When set to ‘0’, when the FIFO is full, additional writes will be written to the FIFO, replacing  
the oldest data.  
[5:3]  
EXT_SYNC_SET[2:0]  
Enables the FSYNC pin data to be sampled.  
EXT_SYNC_SET  
FSYNC bit location  
function disabled  
TEMP_OUT_L[0]  
GYRO_XOUT_L[0]  
GYRO_YOUT_L[0]  
GYRO_ZOUT_L[0]  
RESERVED  
0
1
2
3
4
5
6
7
RESERVED  
RESERVED  
FSYNC will be latched to capture short strobes. This will be done such that if FSYNC toggles,  
the latched value toggles, but won’t toggle again until the new latched value is captured by  
the sample rate strobe.  
[2:0]  
DLPF_CFG[2:0]  
For the DLPF to be used, FCHOICE_B[1:0] is 2’b00.  
See Table 14.  
The DLPF is configured by DLPF_CFG, when FCHOICE_B [1:0] = 2b’00. The gyroscope and temperature sensor are filtered according  
to the value of DLPF_CFG and FCHOICE_B as shown in Table 14.  
Temperature  
FCHOICE_B  
<0>  
Gyroscope  
Sensor  
DLPF_CFG  
3-dB BW  
(Hz)  
Noise BW  
(Hz)  
Rate  
(kHz)  
<1>  
3-dB BW (Hz)  
X
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
X
X
0
1
2
3
4
5
6
7
8173  
3281  
250  
176  
92  
8595.1  
32  
4000  
4000  
4000  
188  
98  
3451.0  
306.6  
177.0  
108.6  
59.0  
32  
8
1
1
1
41  
42  
20  
10  
5
30.5  
15.6  
8.0  
20  
10  
5
1
1
1
8
3281  
3451.0  
4000  
Table 14. Configuration  
Document Number: DS-000195  
Revision: 1.0  
Page 32 of 46  
 
 
IAM-20380  
9.10 REGISTER 27 – GYROSCOPE CONFIGURATION  
Register Name: GYRO_CONFIG  
Register Type: READ/WRITE  
Register Address: 27 (Decimal); 1B (Hex)  
BIT  
[7]  
[6]  
[5]  
NAME  
FUNCTION  
XG_ST  
YG_ST  
ZG_ST  
X Gyro self-test  
Y Gyro self-test  
Z Gyro self-test  
Gyro Full Scale Select:  
00 = ±250 dps  
01= ±500 dps  
[4:3]  
FS_SEL[1:0]  
10 = ±1000 dps  
11 = ±2000 dps  
Reserved.  
[2]  
-
[1:0]  
FCHOICE_B[1:0]  
Used to bypass DLPF as shown in Table 14 above.  
9.11 REGISTER 30 – LOW POWER MODE CONFIGURATION  
Register Name: LP_MODE_CFG  
Register Type: READ/WRITE  
Register Address: 30 (Decimal); 1E (Hex)  
BIT  
[7]  
NAME  
GYRO_CYCLE  
FUNCTION  
When set to ‘1’ low-power gyroscope mode is enabled. Default setting is ‘0’  
Averaging filter configuration for low-power gyroscope mode. Default  
setting is ‘000’  
[6:4]  
[3:0]  
G_AVGCFG[2:0]  
-
Reserved.  
To operate in low-power mode, GYRO_CYCLE should be set to ‘1.’ Gyroscope filter configuration is determined by G_AVGCFG[2:0]  
that sets the averaging filter configuration. It is not dependent on DLPF_CFG[2:0].  
Table 15 shows some example configurations for low power mode.  
FCHOICE_B  
G_AVGCFG  
Averages  
Ton (ms)  
0
0
1x  
0
1
2x  
0
2
4x  
0
3
8x  
0
4
16x  
9.23  
60.2  
0
5
0
6
0
7
32x  
17.23  
30.6  
64x  
33.23  
15.6  
128x  
65.23  
8.0  
1.73  
650.8  
2.23  
407.1  
3.23  
224.2  
5.23  
117.4  
Noise BW (Hz)  
Noise (dps) TYP based on  
0.008º/s/Hz  
0.20  
0.16  
0.12  
0.09  
0.06  
0.04  
0.03  
0.02  
SMPLRT_DIV  
ODR (Hz)  
3.9  
Current Consumption (mA) TYP  
255  
99  
64  
32  
19  
9
1.3  
1.3  
1.4  
1.4  
1.5  
1.6  
1.7  
1.9  
2.1  
2.3  
2.9  
1.3  
1.3  
1.4  
1.4  
1.5  
1.7  
1.8  
2.1  
2.3  
2.6  
1.3  
1.4  
1.4  
1.5  
1.6  
1.9  
2.0  
2.5  
2.7  
1.3  
1.4  
1.5  
1.6  
1.8  
2.2  
2.5  
1.4  
1.5  
1.6  
1.8  
2.1  
3.0  
1.4  
1.6  
1.8  
2.2  
2.8  
1.5  
1.9  
2.2  
1.8  
2.5  
N/A  
10.0  
15.4  
30.3  
50.0  
N/A  
100.0  
125.0  
200.0  
250.0  
333.3  
500.0  
N/A  
7
4
N/A  
N/A  
3
2
1
N/A  
N/A  
Table 15. Example Configurations for Low Power Mode  
Document Number: DS-000195  
Revision: 1.0  
Page 33 of 46  
 
 
 
IAM-20380  
9.12 REGISTER 35 – FIFO ENABLE  
Register Name: FIFO_EN  
Register Type: READ/WRITE  
Register Address: 35 (Decimal); 23 (Hex)  
BIT  
NAME  
FUNCTION  
1 – Write TEMP_OUT_H and TEMP_OUT_L to the FIFO at the sample rate; If enabled,  
buffering of data occurs even if data path is in standby.  
0 – Function is disabled.  
[7]  
TEMP_FIFO_EN  
1 – Write GYRO_XOUT_H and GYRO_XOUT_L to the FIFO at the sample rate; If enabled,  
buffering of data occurs even if data path is in standby.  
0 – Function is disabled.  
1 – Write GYRO_YOUT_H and GYRO_YOUT_L to the FIFO at the sample rate; If enabled,  
buffering of data occurs even if data path is in standby.  
0 – Function is disabled.  
[6]  
[5]  
XG_FIFO_EN  
YG_FIFO_EN  
Note: Enabling any one of the bits corresponding to the Gyros or Temp data paths, data are buffered into  
the FIFO even though that data path is not enabled.  
1 – Write GYRO_ZOUT_H and GYRO_ZOUT_L to the FIFO at the sample rate; If enabled,  
buffering of data occurs even if data path is in standby.  
0 – Function is disabled.  
[4]  
ZG_FIFO_EN  
-
[3:0]  
Reserved.  
9.13 REGISTER 54 – FSYNC INTERRUPT STATUS  
Register Name: FSYNC_INT  
Register Type: READ to CLEAR  
Register Address: 54 (Decimal); 36 (Hex)  
BIT  
NAME  
FUNCTION  
This bit automatically sets to 1 when a FSYNC interrupt has been generated. The bit  
clears to 0 after the register has been read.  
[7]  
FSYNC_INT  
9.14 REGISTER 55 – INT/DRDY PIN / BYPASS ENABLE CONFIGURATION  
Register Name: INT_PIN_CFG  
Register Type: READ/WRITE  
Register Address: 55 (Decimal); 37 (Hex)  
BIT  
NAME  
FUNCTION  
1 – The logic level for INT/DRDY pin is active low.  
0 – The logic level for INT/DRDY pin is active high.  
1 – INT/DRDY pin is configured as open drain.  
[7]  
INT_LEVEL  
INT_OPEN  
[6]  
[5]  
[4]  
[3]  
0 – INT/DRDY pin is configured as push-pull.  
1 – INT/DRDY pin level held until interrupt status is cleared.  
0 – INT/DRDY pin indicates interrupt pulse’s width is 50 µs.  
1 – Interrupt status is cleared if any read operation is performed.  
0 – Interrupt status is cleared only by reading INT_STATUS register  
1 – The logic level for the FSYNC pin as an interrupt is active low.  
0 – The logic level for the FSYNC pin as an interrupt is active high.  
When this bit is equal to 1, the FSYNC pin will trigger an interrupt when it transitions to  
the level specified by FSYNC_INT_LEVEL. When this bit is equal to 0, the FSYNC pin is  
disabled from causing an interrupt.  
LATCH_INT_EN  
INT_RD_CLEAR  
FSYNC_INT_LEVEL  
[2]  
FSYNC_INT_MODE_EN  
[1]  
[0]  
-
-
Reserved.  
Always set to 0.  
Document Number: DS-000195  
Revision: 1.0  
Page 34 of 46  
 
 
 
IAM-20380  
9.15 REGISTER 56 – INTERRUPT ENABLE  
Register Name: INT_ENABLE  
Register Type: READ/WRITE  
Register Address: 56 (Decimal); 38 (Hex)  
BIT  
NAME  
FUNCTION  
[7:5]  
-
Reserved.  
1 – Enables a FIFO buffer overflow to generate an interrupt.  
0 – Function is disabled.  
[4]  
FIFO_OFLOW_EN  
[3]  
[2]  
[1]  
[0]  
-
Reserved.  
GDRIVE_INT_EN  
-
DATA_RDY_INT_EN  
Gyroscope Drive System Ready interrupt enable.  
Reserved.  
Data ready interrupt enable.  
9.16 REGISTER 58 – INTERRUPT STATUS  
Register Name: INT_STATUS  
Register Type: READ to CLEAR  
Register Address: 58 (Decimal); 3A (Hex)  
BIT  
NAME  
FUNCTION  
[7:5]  
-
Reserved.  
This bit automatically sets to 1 when a FIFO buffer overflow has been generated. The bit  
clears to 0 after the register has been read.  
[4]  
FIFO_OFLOW_INT  
[3]  
[2]  
[1]  
-
Reserved.  
GDRIVE_INT  
-
Gyroscope Drive System Ready interrupt  
Reserved.  
This bit automatically sets to 1 when a Data Ready interrupt is generated. The bit clears  
to 0 after the register has been read.  
[0]  
DATA_RDY_INT  
9.17 REGISTERS 65 AND 66 – TEMPERATURE MEASUREMENT  
Register Name: TEMP_OUT_H  
Register Type: READ only  
Register Address: 65 (Decimal); 41 (Hex)  
BIT  
NAME  
FUNCTION  
[7:0]  
TEMP_OUT[15:8]  
High byte of the temperature sensor output  
Register Name: TEMP_OUT_L  
Register Type: READ only  
Register Address: 66 (Decimal); 42 (Hex)  
BIT  
NAME  
FUNCTION  
Low byte of the temperature sensor output  
TEMP_degC  
= ((TEMP_OUT –  
RoomTemp_Offset)/Temp_Sensitivity) + 25degC  
[7:0]  
TEMP_OUT[7:0]  
9.18 REGISTERS 67 TO 72 – GYROSCOPE MEASUREMENTS  
Register Name: GYRO_XOUT_H  
Register Type: READ only  
Register Address: 67 (Decimal); 43 (Hex)  
BIT  
NAME  
FUNCTION  
[7:0]  
GYRO_XOUT[15:8]  
High byte of the X-Axis gyroscope output.  
Document Number: DS-000195  
Revision: 1.0  
Page 35 of 46  
 
 
 
 
IAM-20380  
Register Name: GYRO_XOUT_L  
Register Type: READ only  
Register Address: 68 (Decimal); 44 (Hex)  
BIT  
NAME  
FUNCTION  
Low byte of the X-Axis gyroscope output  
GYRO_XOUT = Gyro_Sensitivity * X_angular_rate  
[7:0]  
GYRO_XOUT[7:0]  
Nominal  
FS_SEL = 0  
Conditions  
Gyro_Sensitivity = 131 LSB/(dps)  
Register Name: GYRO_YOUT_H  
Register Type: READ only  
Register Address: 69 (Decimal); 45 (Hex)  
BIT  
NAME  
FUNCTION  
[7:0]  
GYRO_YOUT[15:8]  
High byte of the Y-Axis gyroscope output.  
Register Name: GYRO_YOUT_L  
Register Type: READ only  
Register Address: 70 (Decimal); 46 (Hex)  
BIT  
NAME  
FUNCTION  
Low byte of the Y-Axis gyroscope output  
GYRO_YOUT = Gyro_Sensitivity * Y_angular_rate  
[7:0]  
GYRO_YOUT[7:0]  
Nominal  
FS_SEL = 0  
Conditions  
Gyro_Sensitivity = 131 LSB/(dps)  
Register Name: GYRO_ZOUT_H  
Register Type: READ only  
Register Address: 71 (Decimal); 47 (Hex)  
BIT  
NAME  
FUNCTION  
[7:0]  
GYRO_ZOUT[15:8]  
High byte of the Z-Axis gyroscope output.  
Register Name: GYRO_ZOUT_L  
Register Type: READ only  
Register Address: 72 (Decimal); 48 (Hex)  
BIT  
NAME  
FUNCTION  
[7:0]  
GYRO_YOUT[7:0]  
Low byte of the Z-Axis gyroscope output  
GYRO_ZOUT =  
Gyro_Sensitivity * Z_angular_rate  
Nominal  
Conditions  
FS_SEL = 0  
Gyro_Sensitivity = 131 LSB/(dps)  
9.19 REGISTER 104 – SIGNAL PATH RESET  
Register Name: SIGNAL_PATH_RESET  
Register Type: READ/WRITE  
Register Address: 104 (Decimal); 68 (Hex)  
BIT  
NAME  
FUNCTION  
[7:1]  
Reserved.  
Reset temp digital signal path.  
Note: Sensor registers are not cleared. Use SIG_COND_RST to clear sensor registers.  
-
[0]  
TEMP_RST  
Document Number: DS-000195  
Revision: 1.0  
Page 36 of 46  
 
IAM-20380  
9.20 REGISTER 106 – USER CONTROL  
Register Name: USER_CTRL  
Register Type: READ/WRITE  
Register Address: 106 (Decimal); 6A (Hex)  
BIT  
[7]  
NAME  
FUNCTION  
Reserved.  
1 – Enable FIFO operation mode.  
-
[6]  
FIFO_EN  
0 – Disable FIFO access from serial interface. To disable FIFO writes by DMA, use FIFO_EN  
register.  
[5]  
[4]  
-
Reserved.  
I2C_IF_DIS  
1 – Disable I2C Slave module and put the serial interface in SPI mode only.  
[3]  
Reserved.  
-
1 – Reset FIFO module. Reset is asynchronous. This bit auto clears after one clock cycle of the  
internal 20 MHz clock.  
Reserved  
1 – Reset all gyro digital signal path and temperature digital signal path. This bit also clears all  
the sensor registers.  
[2]  
[1]  
[0]  
FIFO_RST  
-
SIG_COND_RST  
9.21 REGISTER 107 – POWER MANAGEMENT 1  
Register Name: PWR_MGMT_1  
Register Type: READ/WRITE  
Register Address: 107 (Decimal); 6B (Hex)  
BIT  
NAME  
FUNCTION  
1 – Reset the internal registers and restores the default settings. The bit automatically clears  
to 0 once the reset is done.  
[7]  
DEVICE_RESET  
When set to 1, the chip is set to sleep mode.  
Note: The default value is 1, the chip comes up in Sleep mode.  
[6]  
[5]  
SLEEP  
RESERVED  
When set, the gyro drive and pll circuitry are enabled, but the sense paths are disabled. This  
is a low power mode that allows quick enabling of the gyros.  
When set to 1, this bit disables the temperature sensor.  
Code Clock Source  
[4]  
[3]  
GYRO_STANDBY  
TEMP_DIS  
0
1
2
3
4
5
6
7
Internal 20 MHz oscillator.  
Auto selects the best available clock source – PLL if ready, else use the Internal oscillator  
Auto selects the best available clock source – PLL if ready, else use the Internal oscillator  
Auto selects the best available clock source – PLL if ready, else use the Internal oscillator  
Auto selects the best available clock source – PLL if ready, else use the Internal oscillator  
Auto selects the best available clock source – PLL if ready, else use the Internal oscillator  
Internal 20.MHz oscillator.  
[2:0]  
CLKSEL[2:0]  
Stops the clock and keeps timing generator in reset.  
Note: The default value of CLKSEL[2:0] is 000. It is required that CLKSEL[2:0] be set to 001 to achieve full gyroscope performance.  
Document Number: DS-000195  
Revision: 1.0  
Page 37 of 46  
 
 
IAM-20380  
9.22 REGISTER 108 – POWER MANAGEMENT 2  
Register Name: PWR_MGMT_2  
Register Type: READ/WRITE  
Register Address: 108 (Decimal); 6C (Hex)  
BIT  
NAME  
FUNCTION  
[7:3]  
Reserved.  
-
1 – X gyro is disabled.  
0 – X gyro is on.  
1 – Y gyro is disabled.  
0 – Y gyro is on.  
1 – Z gyro is disabled.  
0 – Z gyro is on.  
[2]  
[1]  
[0]  
STBY_XG  
STBY_YG  
STBY_ZG  
9.23 REGISTERS 114 AND 115 – FIFO COUNT REGISTERS  
Register Name: FIFO_COUNTH  
Register Type: READ Only  
Register Address: 114 (Decimal); 72 (Hex)  
BIT  
NAME  
FUNCTION  
[7:5]  
Reserved.  
High Bits; count indicates the number of written bytes in the FIFO.  
Reading this byte latches the data for both FIFO_COUNTH, and FIFO_COUNTL.  
-
[4:0]  
FIFO_COUNT[12:8]  
Register Name: FIFO_COUNTL  
Register Type: READ Only  
Register Address: 115 (Decimal); 73 (Hex)  
BIT  
NAME  
FUNCTION  
Low Bits; count indicates the number of written bytes in the FIFO.  
NOTE: Must read FIFO_COUNTH to latch new data for both  
FIFO_COUNTH and FIFO_COUNTL.  
[7:0]  
FIFO_COUNT[7:0]  
9.24 REGISTER 116 – FIFO READ WRITE  
Register Name: FIFO_R_W  
Register Type: READ/WRITE  
Register Address: 116 (Decimal); 74 (Hex)  
BIT  
NAME  
FUNCTION  
[7:0]  
FIFO_DATA[7:0]  
Read/Write command provides Read or Write operation for the FIFO.  
Description:  
This register is used to read and write data from the FIFO buffer.  
Data are written to the FIFO in order of register number (from lowest to highest). If all the FIFO enable flags (see below) are enabled,  
the contents of registers 59 through 72 will be written in order at the Sample Rate.  
The contents of the sensor data registers (Registers 59 to 72) are written into the FIFO buffer when their corresponding FIFO enable  
flags are set to 1 in FIFO_EN (Register 35).  
If the FIFO buffer has overflowed, the status bit FIFO_OFLOW_INT is automatically set to 1. This bit is located in INT_STATUS  
(Register 58). When the FIFO buffer has overflowed, the oldest data will be lost and new data will be written to the FIFO unless  
register 26 CONFIG, bit[6] FIFO_MODE = 1.  
If the FIFO buffer is empty, reading register FIFO_DATA will return a unique value of 0xFF until new data are available. Normal data  
are precluded from ever indicating 0xFF, so 0xFF gives a trustworthy indication of FIFO empty.  
Document Number: DS-000195  
Revision: 1.0  
Page 38 of 46  
 
 
 
 
IAM-20380  
9.25 REGISTER 117 – WHO AM I  
Register Name: WHO_AM_I  
Register Type: READ only  
Register Address: 117 (Decimal); 75 (Hex)  
BIT  
NAME  
FUNCTION  
[7:0]  
WHOAMI  
Register to indicate to user which device is being accessed.  
This register is used to verify the identity of the device. The contents of WHOAMI is an 8-bit device ID. The default value of the  
register is 0xB5. This is different from the I2C address of the device as seen on the slave I2C controller by the applications processor.  
The I2C address of the IAM-20380 is 0x68 or 0x69 depending upon the value driven on AD0 pin.  
Document Number: DS-000195  
Revision: 1.0  
Page 39 of 46  
IAM-20380  
10 ASSEMBLY  
This section provides general guidelines for assembling InvenSense Micro Electro-Mechanical Systems (MEMS) gyros packaged in  
LGA package.  
10.1 ORIENTATION OF AXES  
Figure 13 shows the orientation of the axes of sensitivity and the polarity of rotation. Note the pin 1 identifier (•) in the figure.  
+Z  
+Y  
+Z  
IAM  
-
+Y  
20380  
+X  
+X  
Figure 13. Orientation of Axes of Sensitivity and Polarity of Rotation  
Document Number: DS-000195  
Revision: 1.0  
Page 40 of 46  
 
 
 
IAM-20380  
10.2 PACKAGE DIMENSIONS  
16 Lead LGA (3x3x0.75) mm NiAu pad finish  
Figure 14. Package Dimensions  
Document Number: DS-000195  
Revision: 1.0  
Page 41 of 46  
 
 
IAM-20380  
DIMENSIONS IN MILLIMETERS  
SYMBOLS  
MIN  
NOM  
MAX  
Total Thickness  
Substrate Thickness  
Mold Thickness  
A
A1  
A2  
0.7  
0.75  
0.8  
0.105  
0.63  
REF  
REF  
D
E
W
2.9  
2.9  
0.2  
0.3  
3
3.1  
3.1  
0.3  
0.4  
Body Size  
3
0.25  
0.35  
Lead Width  
Lead Length  
Lead Pitch  
Lead Count  
L
e
n
0.5  
BSC  
16  
D1  
E1  
SD  
2
BSC  
BSC  
BSC  
BSC  
Edge Ball Center to Center  
Body Center to Contact Ball  
1
---  
---  
SE  
b
Ball Width  
Ball Diameter  
Ball Opening  
Ball Pitch  
Ball Count  
---  
---  
---  
---  
---  
---  
---  
---  
---  
e1  
n1  
Pre-Solder  
---  
Package Edge Tolerance  
Mold Flatness  
aaa  
bbb  
ddd  
eee  
fff  
0.1  
0.2  
0.08  
---  
---  
0.06  
Coplanarity  
Ball Offset (Package)  
Ball Offset (Ball)  
Lead Edge to Package Edge  
M
0.01  
0.11  
Figure 15. Package Dimensions  
Document Number: DS-000195  
Revision: 1.0  
Page 42 of 46  
 
IAM-20380  
11 PART NUMBER PACKAGE MARKING  
The part number package marking for IAM-20380 devices is summarized below:  
PART NUMBER  
IAM-20380  
PART NUMBER PACKAGE MARKING  
IA238  
Table 16. Part Number Package Marking  
TOP VIEW  
IA238  
XXXXXX  
YYWW  
Part Number  
Lot Traceability Code  
YY = Year Code  
WW = Work Week  
Figure 16. Part Number Package Marking  
Document Number: DS-000195  
Revision: 1.0  
Page 43 of 46  
 
 
 
IAM-20380  
12 REFERENCE  
Please refer to “InvenSense MEMS Handling Application Note (AN-IVS-0002A-00)” for the following information:  
• Manufacturing Recommendations  
o
o
o
o
o
o
o
o
o
o
o
Assembly Guidelines and Recommendations  
PCB Design Guidelines and Recommendations  
MEMS Handling Instructions  
ESD Considerations  
Reflow Specification  
Storage Specifications  
Package Marking Specification  
Tape & Reel Specification  
Reel & Pizza Box Label  
Packaging  
Representative Shipping Carton Label  
Compliance  
o
o
o
Environmental Compliance  
DRC Compliance  
Compliance Declaration Disclaimer  
Document Number: DS-000195  
Revision: 1.0  
Page 44 of 46  
 
IAM-20380  
13 REVISION HISTORY  
REVISION DATE  
REVISION  
DESCRIPTION  
12/21/2016  
1.0  
Initial Release  
Document Number: DS-000195  
Revision: 1.0  
Page 45 of 46  
 
IAM-20380  
This information furnished by InvenSense is believed to be accurate and reliable. However, no responsibility is assumed by InvenSense for its use, or for any  
infringements of patents or other rights of third parties that may result from its use. Specifications are subject to change without notice. InvenSense reserves the  
right to make changes to this product, including its circuits and software, in order to improve its design and/or performance, without prior notice. InvenSense makes  
no warranties, neither expressed nor implied, regarding the information and specifications contained in this document. InvenSense assumes no responsibility for any  
claims or damages arising from information contained in this document, or from the use of products and services detailed therein. This includes, but is not limited to,  
claims or damages based on the infringement of patents, copyrights, mask work and/or other intellectual property rights.  
Certain intellectual property owned by InvenSense and described in this document is patent protected. No license is granted by implication or otherwise under any  
patent or patent rights of InvenSense. This publication supersedes and replaces all information previously supplied. Trademarks that are registered trademarks are  
the property of their respective companies. InvenSense sensors should not be used or sold in the development, storage, production or utilization of any conventional  
or mass-destructive weapons or for any other weapons or life threatening applications, as well as in any other life critical applications such as medical equipment,  
transportation, aerospace and nuclear instruments, undersea equipment, power plant equipment, disaster prevention and crime prevention equipment.  
©2016—2017 InvenSense, Inc. All rights reserved. InvenSense, Sensing Everything, MotionTracking, MotionProcessing, MotionProcessor, MotionFusion, MotionApps,  
Digital Motion Processor, and the InvenSense logo are trademarks of InvenSense, Inc. Other company and product names may be trademarks of the respective  
companies with which they are associated.  
©2016—2017 InvenSense, Inc. All rights reserved.  
Document Number: DS-000195  
Revision: 1.0  
Page 46 of 46  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY