IAM-20381 [TDK]

加速度传感器;
IAM-20381
型号: IAM-20381
厂家: TDK ELECTRONICS    TDK ELECTRONICS
描述:

加速度传感器

传感器
文件: 总44页 (文件大小:775K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IAM-20381  
High Performance 3-Axis MotionTracking Accelerometer  
GENERAL DESCRIPTION  
APPLICATIONS  
The IAM-20381 is a 3-axis MotionTracking accelerometer  
for Automotive applications in a small 3x3x0.75 mm (16-  
pin LGA) package. It also features a 512-byte FIFO that  
can lower the traffic on the serial bus interface and  
reduce power consumption by allowing the system  
processor to burst read sensor data and then go into a  
low-power mode. IAM-20381, with its 3-axis integration,  
enables manufacturers to eliminate the costly and  
complex selection, qualification, and system level  
integration of discrete devices, guaranteeing optimal  
motion performance.  
Navigation Systems Aids for Dead Reckoning  
Lift Gate Motion Detections  
Accurate Location for Vehicle to Vehicle and  
Infrastructure  
360º View Camera Stabilization  
Car Alarm  
Telematics  
Insurance Vehicle Tracking  
ORDERING INFORMATION  
PART  
AXES  
TEMP RANGE  
PACKAGE  
MSL*  
IAM-20381†  
X,Y,Z  
-40°C to +85°C  
16-Pin LGA  
3
The accelerometer has a user-programmable  
accelerometer full-scale range of ±2g, ±4g, ±8g, and  
±16g. Factory-calibrated initial sensitivity of both sensors  
reduces production-line calibration requirements.  
†Denotes RoHS and Green-compliant package  
* Moisture sensitivity level of the package  
FEATURES  
Other industry-leading features include on-chip 16-bit  
ADCs, programmable digital filters, an embedded  
temperature sensor, and programmable interrupts. The  
device features I2C and SPI serial interfaces, a VDD  
operating range of 1.71V to 3.6V, and a separate digital  
IO supply, VDDIO from 1.71V to 3.6V.  
Digital-output X-, Y-, and Z-axis accelerometer  
with a programmable full scale range of ±2g,  
±4g, ±8g, and ±16g and integrated 16-bit ADCs  
User-programmable digital filters for  
accelerometer, and temperature sensor  
Self-test  
Wake-on-motion interrupt for low power  
operation of applications processor  
Reliability testing performed per  
AEC–Q100  
BLOCK DIAGRAM  
IAM-20381  
INT  
Interrupt  
Status  
Register  
o
PPAP and qualification data available  
upon request  
CS  
Slave I2C and  
SA0 / SDO  
Self  
test  
SPI Serial  
Interface  
X Accel  
ADC  
ADC  
FIFO  
SCL / SPC  
SDA / SDI  
TYPICAL OPERATING CIRCUIT  
User & Config  
Registers  
Self  
test  
Y Accel  
Z Accel  
FSYNC  
Sensor  
Registers  
Self  
test  
1.8 – 3.3VDC  
ADC  
ADC  
VDD  
C2, 0.1 µF  
C4, 2.2 µF  
REGOUT  
16 15 14  
Temp Sensor  
C1, 0.47 µF  
GND  
VDDIO  
1.8 – 3.3 VDC  
C3, 10 nF  
13  
12  
11  
10  
9
1
2
3
4
5
RESV  
SCL/SPC  
SDA/SDI  
SCL  
SDA  
AD0  
RESV  
RESV  
IAM-20381  
SA0/SDO  
CS  
Bias & LDOs  
VDDIO  
RESV  
VDD  
GND  
REGOUT  
6
7
8
TDK Corporation  
1745 Technology Drive, San Jose, CA 95110 U.S.A  
+1(408) 988–7339  
Document Number: DS-000216  
Revision: 1.0  
Rev. Date: 03/29/2017  
InvenSense reserves the right to change the detail  
specifications as may be required to permit  
improvements in the design of its products.  
www.invensense.com  
 
 
 
 
 
 
IAM-20381  
TABLE OF CONTENTS  
General Description .............................................................................................................................................1  
Block Diagram ......................................................................................................................................................1  
Applications .........................................................................................................................................................1  
Ordering Information...........................................................................................................................................1  
Features ...............................................................................................................................................................1  
Typical Operating Circuit......................................................................................................................................1  
TABLE OF CONTENTS....................................................................................................................................................... 2  
LIST OF FIGURES.............................................................................................................................................................. 4  
LIST OF TABLES................................................................................................................................................................ 5  
1
Introduction......................................................................................................................................................... 6  
Purpose and Scope....................................................................................................................................6  
Product Overview......................................................................................................................................6  
Applications...............................................................................................................................................6  
Features ............................................................................................................................................................... 7  
Accelerometer Features............................................................................................................................7  
Additional Features...................................................................................................................................7  
Electrical Characteristics...................................................................................................................................... 8  
Accelerometer Specifications....................................................................................................................8  
Electrical Specifications.............................................................................................................................9  
I2C Timing Characterization.....................................................................................................................12  
SPI Timing Characterization ....................................................................................................................13  
Absolute Maximum Ratings ....................................................................................................................14  
Applications Information ................................................................................................................................... 15  
Pin Out Diagram and Signal Description .................................................................................................15  
Typical Operating Circuit.........................................................................................................................16  
Bill of Materials for External Components..............................................................................................16  
Block Diagram .........................................................................................................................................17  
Overview .................................................................................................................................................17  
Three-Axis MEMS Accelerometer with 16-bit ADCs and Signal Conditioning.........................................18  
I2C and SPI Serial Communications Interfaces ........................................................................................18  
Self-Test...................................................................................................................................................19  
Clocking...................................................................................................................................................19  
Sensor Data Registers .........................................................................................................................19  
FIFO.....................................................................................................................................................20  
Interrupts............................................................................................................................................20  
Digital-Output Temperature Sensor ...................................................................................................20  
Bias and LDOs .....................................................................................................................................20  
Charge Pump ......................................................................................................................................20  
Standard Power Modes ......................................................................................................................20  
2
3
4
Document Number: DS-000216  
Revision: 1.0  
Page 2 of 44  
 
IAM-20381  
5
6
Programmable Interrupts .................................................................................................................................. 21  
Wake-on-Motion Interrupt .....................................................................................................................21  
Digital Interface ................................................................................................................................................. 22  
I2C and SPI Serial Interfaces ....................................................................................................................22  
I2C Interface.............................................................................................................................................22  
IC Communications Protocol...................................................................................................................22  
I2C Terms .................................................................................................................................................24  
SPI Interface ............................................................................................................................................25  
Serial Interface Considerations.......................................................................................................................... 26  
IAM-20381 Supported Interfaces............................................................................................................26  
Register Map...................................................................................................................................................... 27  
Register Descriptions ......................................................................................................................................... 29  
Registers 13 to 15 – Accelerometer Self-Test Registers..........................................................................29  
Register 25 – Sample Rate Divider ..........................................................................................................29  
Register 26 – Configuration.....................................................................................................................29  
Register 28 – Accelerometer Configuration............................................................................................30  
Register 29 – Accelerometer Configuration 2.........................................................................................31  
Register 31 – Wake-on Motion Threshold (Accelerometer) ...................................................................32  
Register 35 – FIFO Enable........................................................................................................................32  
Register 54 – FSYNC Interrupt Status......................................................................................................32  
Register 55 – INT/DRDY Pin / Bypass Enable Configuration....................................................................32  
Register 56 – Interrupt Enable............................................................................................................33  
Register 58 – Interrupt Status.............................................................................................................33  
Registers 59 to 64 – Accelerometer Measurements ..........................................................................33  
Registers 65 and 66 – Temperature Measurement............................................................................34  
Register 104 – Signal Path Reset.........................................................................................................34  
Register 105 – Accelerometer Intelligence Control............................................................................34  
Register 106 – User Control................................................................................................................35  
Register 107 – Power Management 1 ................................................................................................35  
Register 108 – Power Management 2 ................................................................................................35  
Registers 114 and 115 – FIFO Count Registers ...................................................................................36  
Register 116 – FIFO Read Write..........................................................................................................36  
Register 117 – Who Am I ....................................................................................................................36  
Registers 119, 120, 122, 123, 125, 126 Accelerometer Offset Registers............................................37  
Assembly............................................................................................................................................................ 38  
Orientation of Axes.............................................................................................................................38  
Package Dimensions ...........................................................................................................................39  
Part Number Package Marking.......................................................................................................................... 41  
Reference........................................................................................................................................................... 42  
Revision History ................................................................................................................................................. 43  
7
8
9
10  
11  
12  
13  
Document Number: DS-000216  
Revision: 1.0  
Page 3 of 44  
IAM-20381  
LIST OF FIGURES  
Figure 1. I2C Bus Timing Diagram.............................................................................................................................................................12  
Figure 2. SPI Bus Timing Diagram.............................................................................................................................................................13  
Figure 3. Pin out Diagram for IAM-20381 3.0x3.0x0.75 mm LGA ............................................................................................................15  
Figure 4. IAM-20381 LGA Application Schematic ....................................................................................................................................16  
Figure 5. IAM-20381 Block Diagram ........................................................................................................................................................17  
Figure 6. IAM-20381 Solution Using I2C Interface....................................................................................................................................18  
Figure 7. IAM-20381 Solution Using SPI Interface ...................................................................................................................................19  
Figure 8. START and STOP Conditions......................................................................................................................................................22  
Figure 9. Acknowledge on the I2C Bus .....................................................................................................................................................23  
Figure 10. Complete I2C Data Transfer.....................................................................................................................................................23  
Figure 11. Typical SPI Master/Slave Configuration ..................................................................................................................................25  
Figure 12. I/O Levels and Connections.....................................................................................................................................................26  
Figure 13. Orientation of Axes of Sensitivity and Polarity of Rotation ....................................................................................................38  
Figure 14. Package Dimensions................................................................................................................................................................39  
Figure 15. Part Number Package Marking ...............................................................................................................................................41  
Document Number: DS-000216  
Revision: 1.0  
Page 4 of 44  
 
IAM-20381  
LIST OF TABLES  
Table 1. Accelerometer Specifications.......................................................................................................................................................8  
Table 2. D.C. Electrical Characteristics.......................................................................................................................................................9  
Table 3. A.C. Electrical Characteristics .....................................................................................................................................................11  
Table 4. Other Electrical Specifications....................................................................................................................................................11  
Table 5. I2C Timing Characteristics...........................................................................................................................................................12  
Table 6. SPI Timing Characteristics (8 MHz Operation) ...........................................................................................................................13  
Table 7. Absolute Maximum Ratings .......................................................................................................................................................14  
Table 8. Signal Descriptions .....................................................................................................................................................................15  
Table 9. Bill of Materials ..........................................................................................................................................................................16  
Table 10. Standard Power Modes for IAM-20381 ...................................................................................................................................20  
Table 11. Table of Interrupt Sources........................................................................................................................................................21  
Table 12. Serial Interface .........................................................................................................................................................................22  
Table 13. I2C Terms ..................................................................................................................................................................................24  
Table 14. Configuration............................................................................................................................................................................30  
Table 15. Accelerometer Data Rates and Bandwidths (Low Noise Mode) ..............................................................................................31  
Table 16. Accelerometer Filter Bandwidths, Noise, and Current Consumption (Low-Power Mode) ......................................................31  
Table 17. Package Dimensions.................................................................................................................................................................40  
Table 18. Part Number Package Marking ................................................................................................................................................41  
Document Number: DS-000216  
Revision: 1.0  
Page 5 of 44  
 
IAM-20381  
1 INTRODUCTION  
PURPOSE AND SCOPE  
This document is a product specification, providing description, specifications, and design related information on the IAM-20381  
Automotive MotionTracking device. The device is housed in a small 3x3x0.75 mm 16-pin LGA package.  
PRODUCT OVERVIEW  
The IAM-20381 is a 3-axis MotionTracking accelerometer for Automotive applications, in a small 3x3x0.75 mm (16-pin LGA) package.  
It also features a 512-byte FIFO that can lower the traffic on the serial bus interface and reduce power consumption by allowing the  
system processor to burst read sensor data and then go into a low-power mode. IAM-20381, with its 3-axis integration, enables  
manufacturers to eliminate the costly and complex selection, qualification, and system level integration of discrete devices,  
guaranteeing optimal motion performance.  
The accelerometer has a user-programmable accelerometer full-scale range of ±2g, ±4g, ±8g, and ±16g. Factory-calibrated initial  
sensitivity of both sensors reduces production-line calibration requirements.  
Other industry-leading features include on-chip 16-bit ADCs, programmable digital filters, an embedded temperature sensor, and  
programmable interrupts. The device features I2C and SPI serial interfaces, a VDD operating range of 1.71V to 3.6V, and a separate  
digital IO supply, VDDIO from 1.71V to 3.6V.  
Communication with all registers of the device is performed using either I2C at 400 kHz or SPI at 8 MHz.  
By leveraging its patented and volume-proven CMOS-MEMS fabrication platform, which integrates MEMS wafers with companion  
CMOS electronics through wafer-level bonding, InvenSense has driven the package size down to a footprint and thickness of  
3x3x0.75 mm (16-pin LGA), to provide a very small yet high-performance, low-cost package. The device provides high robustness by  
supporting 10,000g shock reliability.  
APPLICATIONS  
Navigation Systems Aids for Dead Reckoning  
Lift Gate Motion Detections  
Accurate Location for Vehicle to Vehicle and Infrastructure  
360º View Camera Stabilization  
Car Alarm  
Telematics  
Insurance Vehicle Tracking  
Document Number: DS-000216  
Revision: 1.0  
Page 6 of 44  
 
 
 
 
IAM-20381  
2 FEATURES  
ACCELEROMETER FEATURES  
The triple-axis MEMS accelerometer in IAM-20381 includes a wide range of features:  
Digital-output X-, Y-, and Z-axis accelerometer with a programmable full scale range of ±2g, ±4g, ±8g and ±16g and  
integrated 16-bit ADCs  
User-programmable interrupts  
Wake-on-motion interrupt for low power operation of applications processor  
Self-test  
ADDITIONAL FEATURES  
The IAM-20381 includes the following additional features:  
Smallest and thinnest LGA package for portable devices: 3x3x0.75 mm (16-pin LGA)  
512-byte FIFO buffer enables the applications processor to read the data in bursts  
Digital-output temperature sensor  
User-programmable digital filters for accelerometer, and temperature sensor  
10,000g shock tolerant  
400 kHz Fast Mode I2C for communicating with all registers  
8 MHz SPI serial interface for communicating with all registers  
MEMS structure hermetically sealed and bonded at wafer level  
RoHS and Green compliant  
Document Number: DS-000216  
Revision: 1.0  
Page 7 of 44  
 
 
 
IAM-20381  
3 ELECTRICAL CHARACTERISTICS  
ACCELEROMETER SPECIFICATIONS  
Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, TA = 25°C, unless otherwise noted.  
All Zero-g output, sensitivity, and noise specifications include board soldering effects.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
NOTES  
ACCELEROMETER SENSITIVITY  
AFS_SEL=0  
AFS_SEL=1  
AFS_SEL=2  
AFS_SEL=3  
Output in two’s complement format  
AFS_SEL=0  
AFS_SEL=1  
AFS_SEL=2  
AFS_SEL=3  
Best Fit Straight Line for 2g, 25°C  
25°C  
±2  
±4  
±8  
±16  
16  
16,384  
8,192  
4,096  
2,048  
g
g
g
3
3
3
3
3
3
3
3
3
1
1
Full-Scale Range  
g
ADC Word Length  
bits  
LSB/g  
LSB/g  
LSB/g  
LSB/g  
%
Sensitivity Scale Factor  
Nonlinearity  
Cross-Axis Sensitivity  
-0.25  
+0.25  
±5  
%
ZERO-G OUTPUT  
All axes, 25°C  
Zero-G Level Change vs. Temperature -40°C to +85°C  
Initial Tolerance  
±50  
±50  
mg  
mg  
1
1
NOISE PERFORMANCE  
Low noise mode, -40°C to +85°C  
Low noise mode, -40°C to +85°C, including  
lifetime drift  
135  
190  
µg/√Hz  
µg/√Hz  
1,4  
1,4  
Power Spectral Density  
Low Pass Filter Response  
Programmable Range  
From Sleep mode  
From Cold Start, 1ms VDD ramp  
Low power (duty-cycled)  
Low noise (active)  
5
218  
20  
30  
500  
4000  
Hz  
ms  
ms  
Hz  
Hz  
3
1
1
Accelerometer Startup Time  
0.24  
4
Output Data Rate  
1
Table 1. Accelerometer Specifications  
Please contact TDK for a datasheet with maximum and minimum performance values over temperature and lifetime.  
Notes:  
1. Derived from validation or characterization of parts, not guaranteed in production.  
2. Tested in production.  
3. Guaranteed by design.  
4. Calculated from Total RMS Noise.  
Document Number: DS-000216  
Revision: 1.0  
Page 8 of 44  
 
 
 
IAM-20381  
ELECTRICAL SPECIFICATIONS  
D.C. Electrical Characteristics  
Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, TA = 25°C, unless otherwise noted.  
PARAMETER  
CONDITIONS  
SUPPLY VOLTAGES  
MIN  
TYP  
MAX  
UNITS  
NOTES  
VDD  
VDDIO  
1.71  
1.71  
1.8  
1.8  
3.6  
3.6  
V
V
1
1
SUPPLY CURRENTS & BOOT TIME  
3-axis Accelerometer, 4 kHz ODR  
Normal Mode  
Accelerometer Low -Power Mode  
390  
57  
6
µA  
µA  
µA  
1
2
1
100 Hz ODR, 1x averaging  
Full-Chip Sleep Mode  
TEMPERATURE RANGE  
Specified Temperature Range  
Performance parameters are not applicable  
beyond Specified Temperature Range  
-40  
+85  
°C  
1
Table 2. D.C. Electrical Characteristics  
Notes:  
1. Derived from validation or characterization of parts, not guaranteed in production.  
2. Based on simulation.  
Document Number: DS-000216  
Revision: 1.0  
Page 9 of 44  
 
 
 
IAM-20381  
A.C. Electrical Characteristics  
Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, TA = 25°C, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
NOTES  
SUPPLIES  
Supply Ramp Time (TRAMP  
)
Monotonic ramp. Ramp  
rate is 10% to 90% of the  
final value  
0.01  
100  
ms  
1
TEMPERATURE SENSOR  
Operating Range  
Room Temperature Offset  
Sensitivity  
Ambient  
25°C  
Untrimmed  
-40  
85  
°C  
°C  
LSB/°C  
1
1
1
0
326.8  
POWER-ON RESET  
Supply Ramp Time (TRAMP  
)
Valid power-on RESET  
From power-up  
From sleep  
0.01  
100  
100  
5
ms  
ms  
ms  
1
1
1
11  
Start-up time for register read/write  
SA0 = 0  
SA0 = 1  
1101000  
1101001  
I2C ADDRESS  
DIGITAL INPUTS (FSYNC, SA0, SPC, SDI, CS)  
VIH, High Level Input Voltage  
VIL, Low Level Input Voltage  
CI, Input Capacitance  
0.7*VDDIO  
V
V
pF  
0.3*VDDIO  
1
1
< 10  
DIGITAL OUTPUT (SDO, INT)  
VOH, High Level Output Voltage  
VOL1, LOW-Level Output Voltage  
VOL.INT, INT Low-Level Output Voltage  
RLOAD=1 MΩ;  
0.9*VDDIO  
V
V
V
RLOAD=1 MΩ;  
OPEN=1, 0.3 mA sink  
Current  
0.1*VDDIO  
0.1  
Output Leakage Current  
tINT, INT Pulse Width  
OPEN=1  
LATCH_INT_EN=0  
100  
50  
nA  
µs  
I2C I/O (SCL, SDA)  
VIL, LOW Level Input Voltage  
VIH, HIGH-Level Input Voltage  
-0.5V  
0.7*VDDIO  
0.3*VDDIO  
VDDIO + 0.5  
V
V
V
Vhys, Hysteresis  
0.1*VDDIO  
V
VOL, LOW-Level Output Voltage  
IOL, LOW-Level Output Current  
3 mA sink current  
VOL=0.4V  
VOL=0.6V  
0
0.4  
V
1
3
6
100  
mA  
mA  
nA  
Output Leakage Current  
tof, Output Fall Time from VIHmax to  
VILmax  
Cb bus capacitance in pf  
20+0.1Cb  
300  
ns  
Document Number: DS-000216  
Revision: 1.0  
Page 10 of 44  
 
IAM-20381  
INTERNAL CLOCK SOURCE  
FCHOICE_B=1,2,3  
SMPLRT_DIV=0  
FCHOICE_B=0;  
DLPFCFG=0 or 7  
SMPLRT_DIV=0  
FCHOICE_B=0;  
32  
8
kHz  
kHz  
2
2
Sample Rate  
DLPFCFG=1,2,3,4,5,6;  
SMPLRT_DIV=0  
1
kHz  
2
CLK_SEL=0, 6; 25°C  
CLK_SEL=1,2,3,4,5; 25°C  
CLK_SEL=0,6  
-5  
-1  
-10  
-1  
+5  
+1  
+10  
+1  
%
%
%
%
1
1
1
1
Clock Frequency Initial Tolerance  
Frequency Variation over  
Temperature  
CLK_SEL=1,2,3,4,5  
Table 3. A.C. Electrical Characteristics  
Notes:  
1. Derived from validation or characterization of parts, not guaranteed in production.  
2. Guaranteed by design.  
Other Electrical Specifications  
Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, TA = 25°C, unless otherwise noted.  
PARAMETER  
CONDITIONS  
SERIAL INTERFACE  
MIN  
TYP  
MAX  
UNITS NOTES  
100  
±10%  
1
Low Speed Characterization  
High Speed Characterization  
kHz  
1
SPI Operating Frequency, All  
Registers Read/Write  
8
MHz  
1, 2  
Modes 0  
and 3  
SPI Modes  
All registers, Fast-mode  
All registers, Standard-mode  
400  
100  
kHz  
kHz  
1
1
I2C Operating Frequency  
Table 4. Other Electrical Specifications  
Notes:  
1. Derived from validation or characterization of parts, not guaranteed in production.  
2. SPI clock duty cycle between 45% and 55% should be used for 8-MHz operation.  
Document Number: DS-000216  
Revision: 1.0  
Page 11 of 44  
 
 
IAM-20381  
I2C TIMING CHARACTERIZATION  
Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, TA = 25°C, unless otherwise noted.  
PARAMETERS  
I2C TIMING  
CONDITIONS  
I2C FAST-MODE  
MIN  
TYP  
MAX  
UNITS  
NOTES  
fSCL, SCL Clock Frequency  
tHD.STA, (Repeated) START Condition Hold Time  
400  
kHz  
µs  
1
1
0.6  
tLOW, SCL Low Period  
tHIGH, SCL High Period  
tSU.STA, Repeated START Condition Setup Time  
tHD.DAT, SDA Data Hold Time  
tSU.DAT, SDA Data Setup Time  
tr, SDA and SCL Rise Time  
1.3  
0.6  
0.6  
0
100  
20+0.1Cb  
20+0.1Cb  
0.6  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
1
1
1
1
1
1
1
1
Cb bus cap. from 10 to 400 pF  
Cb bus cap. from 10 to 400 pF  
300  
300  
tf, SDA and SCL Fall Time  
tSU.STO, STOP Condition Setup Time  
tBUF, Bus Free Time Between STOP and START  
Condition  
1.3  
µs  
1
Cb, Capacitive Load for each Bus Line  
tVD.DAT, Data Valid Time  
tVD.ACK, Data Valid Acknowledge Time  
< 400  
pF  
µs  
µs  
1
1
1
0.9  
0.9  
Table 5. I2C Timing Characteristics  
Notes:  
1. Based on characterization of 5 parts over temperature and voltage as mounted on evaluation board or in sockets.  
t
f
tSU.DAT  
tr  
SDA  
SCL  
70%  
30%  
70%  
30%  
continued below at  
9th clock cycle  
A
tf  
t
r
tVD.DAT  
70%  
30%  
70%  
30%  
tHD.DAT  
tHD.STA  
1/fSCL  
t
LOW  
1st clock cycle  
S
tHIGH  
tBUF  
SDA  
SCL  
70%  
30%  
A
tSU.STO  
t
SU.STA  
tHD.STA  
tVD.ACK  
70%  
30%  
9th clock cycle  
S
P
Sr  
Figure 1. I2C Bus Timing Diagram  
Document Number: DS-000216  
Revision: 1.0  
Page 12 of 44  
 
 
 
IAM-20381  
SPI TIMING CHARACTERIZATION  
Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, TA = 25°C, unless otherwise noted.  
NOTES  
PARAMETERS  
SPI TIMING  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
fSPC, SPC Clock Frequency  
tLOW, SPC Low Period  
tHIGH, SPC High Period  
tSU.CS, CS Setup Time  
tHD.CS, CS Hold Time  
8
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
1
1
1
1
1
1
1
1
1
2
2
56  
56  
2
63  
3
tSU.SDI, SDI Setup Time  
tHD.SDI, SDI Hold Time  
tVD.SDO, SDO Valid Time  
tHD.SDO, SDO Hold Time  
tDIS.SDO, SDO Output Disable Time  
tFall, SCLK Fall Time  
7
Cload = 20 pF  
Cload = 20 pF  
40  
6
20  
6.5  
6.5  
tRise, SCLK Rise Time  
Table 6. SPI Timing Characteristics (8 MHz Operation)  
Notes:  
1. Based on characterization of 5 parts over temperature and voltage as mounted on evaluation board or in sockets  
2. Based on other parameter values  
CS  
70%  
30%  
tFall  
tRise  
tHD;CS  
tSU;CS  
t
HIGH  
1/fCLK  
SCLK  
70%  
30%  
tSU;SDI  
t
HD;SDI  
tLOW  
70%  
30%  
SDI  
LSB IN  
MSB IN  
t
DIS;SDO  
tVD;SDO  
t
HD;SDO  
70%  
30%  
SDO  
MSB OUT  
LSB OUT  
Figure 2. SPI Bus Timing Diagram  
Document Number: DS-000216  
Revision: 1.0  
Page 13 of 44  
 
 
 
IAM-20381  
ABSOLUTE MAXIMUM RATINGS  
Stress above those listed as “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only  
and functional operation of the device at these conditions is not implied. Exposure to the absolute maximum ratings conditions for  
extended periods may affect device reliability.  
PARAMETER  
RATING  
-0.5V to +4V  
Supply Voltage, VDD  
Supply Voltage, VDDIO  
REGOUT  
-0.5V to +4V  
-0.5V to 2V  
Input Voltage Level (SA0, FSYNC, SCL, SDA)  
Acceleration (Any Axis, unpowered)  
Operating Temperature Range  
-0.5V to VDDIO + 0.5V  
10,000g for 0.2 ms  
-40°C to +85°C  
-40°C to +125°C  
2 kV (HBM);  
250V (MM)  
JEDEC Class II (2),125°C  
±100 mA  
Storage Temperature Range  
Electrostatic Discharge (ESD) Protection  
Latch-up  
Table 7. Absolute Maximum Ratings  
Document Number: DS-000216  
Revision: 1.0  
Page 14 of 44  
 
 
IAM-20381  
4 APPLICATIONS INFORMATION  
PIN OUT DIAGRAM AND SIGNAL DESCRIPTION  
PIN NUMBER  
PIN NAME  
VDDIO  
SCL/SPC  
SDA/SDI  
SA0/SDO  
CS  
PIN DESCRIPTION  
Digital I/O supply voltage  
1
2
3
4
5
I2C serial clock (SCL); SPI serial clock (SPC)  
I2C serial data (SDA); SPI serial data input (SDI)  
I2C slave address LSB (SA0); SPI serial data output (SDO)  
Chip select (0 = SPI mode; 1 = I2C mode)  
Interrupt digital output (totem pole or open-drain)  
Reserved. Do not connect.  
6
7
INT  
RESV  
8
9
FSYNC  
RESV  
Synchronization digital input (optional). Connect to GND if unused.  
Reserved. Connect to GND.  
10  
11  
12  
13  
14  
15  
RESV  
RESV  
RESV  
GND  
REGOUT  
RESV  
Reserved. Connect to GND.  
Reserved. Connect to GND.  
Reserved. Connect to GND.  
Connect to GND  
Regulator filter capacitor connection  
Reserved. Connect to GND.  
16  
VDD  
Power Supply  
Table 8. Signal Descriptions  
Note: Power up with SCL/SPC and CS pins held low is not a supported use case. In case this power up approach is used, software reset is required using the  
PWR_MGMT_1 register, prior to initialization.  
16 15 14  
13  
12  
11  
10  
9
VDDIO  
SCL/SPC  
SDA/SDI  
SA0/SDO  
CS  
1
2
3
4
5
GND  
+Z  
RESV  
RESV  
RESV  
RESV  
IAM-20381  
IAM  
-
20381  
+Y  
+X  
6
7
8
LGA Package (Top View)  
16-pin, 3mm x 3mm x 0.75mm  
Typical Footprint and thickness  
Orientation of Axes of Sensitivity and Polarity of Rotation  
Figure 3. Pin out Diagram for IAM-20381 3.0x3.0x0.75 mm LGA  
Document Number: DS-000216  
Revision: 1.0  
Page 15 of 44  
 
 
 
 
IAM-20381  
TYPICAL OPERATING CIRCUIT  
1.8 – 3.3VDC  
VDD  
C4, 2.2 µF  
C2, 0.1 µF  
REGOUT  
16 15 14  
C1, 0.47 µF  
GND  
VDDIO  
1.8 – 3.3 VDC  
13  
12  
11  
10  
9
1
2
3
4
5
RESV  
C3, 10 nF  
SCL  
SCL/SPC  
SDA/SDI  
RESV  
RESV  
IAM-20381  
SDA  
SA0/SDO  
CS  
AD0  
VDDIO  
RESV  
6
7
8
Figure 4. IAM-20381 LGA Application Schematic  
Note: I2C lines are open drain and pullup resistors (e.g. 10 kΩ) are required.  
BILL OF MATERIALS FOR EXTERNAL COMPONENTS  
COMPONENT  
REGOUT Capacitor  
LABEL  
C1  
SPECIFICATION  
X7R, 0.47 µF ±10%  
QUANTITY  
1
1
1
1
C2  
X7R, 0.1 µF ±10%  
X7R, 2.2 µF ±10%  
X7R, 10 nF ±10%  
VDD Bypass Capacitors  
VDDIO Bypass Capacitor  
C4  
C3  
Table 9. Bill of Materials  
Document Number: DS-000216  
Revision: 1.0  
Page 16 of 44  
 
 
 
 
IAM-20381  
BLOCK DIAGRAM  
IAM-20381  
INT  
Interrupt  
Status  
Register  
CS  
Slave I2C and  
SPI Serial  
Interface  
SA0 / SDO  
SCL / SPC  
SDA / SDI  
Self  
test  
X Accel  
ADC  
FIFO  
User & Config  
Registers  
Self  
test  
Y Accel  
Z Accel  
ADC  
ADC  
ADC  
FSYNC  
Sensor  
Registers  
Self  
test  
Temp Sensor  
Bias & LDOs  
VDD  
GND  
REGOUT  
Figure 5. IAM-20381 Block Diagram  
OVERVIEW  
The IAM-20381 is comprised of the following key blocks and functions:  
Three-axis MEMS accelerometer sensor with 16-bit ADCs and signal conditioning  
Primary I2C and SPI serial communications interfaces  
Self-Test  
Clocking  
Sensor Data Registers  
FIFO  
Interrupts  
Digital-Output Temperature Sensor  
Bias and LDOs  
Charge Pump  
Standard Power Modes  
Document Number: DS-000216  
Revision: 1.0  
Page 17 of 44  
 
 
 
IAM-20381  
THREE-AXIS MEMS ACCELEROMETER WITH 16-BIT ADCS AND SIGNAL CONDITIONING  
The IAM-20381’s 3-Axis accelerometer uses separate proof masses for each axis. Acceleration along a particular axis induces  
displacement on the corresponding proof mass, and capacitive sensors detect the displacement differentially. The IAM-20381’s  
architecture reduces the accelerometers’ susceptibility to fabrication variations as well as to thermal drift. When the device is placed  
on a flat surface, it will measure 0g on the X- and Y-axes and +1g on the Z-axis. The accelerometers’ scale factor is calibrated at the  
factory and is nominally independent of supply voltage. Each sensor has a dedicated sigma-delta ADC for providing digital outputs.  
The full-scale range of the digital output can be adjusted to ±2g, ±4g, ±8g, or ±16g.  
I2C AND SPI SERIAL COMMUNICATIONS INTERFACES  
The IAM-20381 communicates to a system processor using either a SPI or an I2C serial interface. The IAM-20381 always acts as a  
slave when communicating to the system processor. The LSB of the I2C slave address is set by pin 4 (SA0).  
IAM-20381 Solution Using I2C Interface  
In Figure 6, the system processor is an I2C master to the IAM-20381.  
Interrupt  
Status  
Register  
I2C Processor Bus: for reading all  
sensor data from MPU  
INT  
IAM-20381  
SA0  
SCL  
VDDIO or GND  
Slave I2C  
or SPI  
SCL  
SDA  
System  
Processor  
Serial  
Interface  
SDA  
FIFO  
User & Config  
Registers  
Sensor  
Register  
Factory  
Calibration  
Bias & LDOs  
VDD  
GND  
REGOUT  
Figure 6. IAM-20381 Solution Using I2C Interface  
Document Number: DS-000216  
Revision: 1.0  
Page 18 of 44  
 
 
 
IAM-20381  
IAM-20381 Solution Using SPI Interface  
In Figure 7, the system processor is an SPI master to the IAM-20381. Pins 2, 3, 4, and 5 are used to support the SPC, SDI, SDO, and CS  
signals for SPI communications.  
Processor SPI Bus: for reading all  
data from MPU and for configuring  
MPU  
Interrupt  
Status  
Register  
INT  
nCS  
CS  
IAM-20381  
SDO  
SDI  
Slave I2C  
or SPI  
Serial  
Interface  
System  
Processor  
SPC  
SDI  
SPC  
SDO  
FIFO  
Config  
Register  
Sensor  
Register  
Factory  
Calibration  
Bias & LDOs  
VDD  
GND  
REGOUT  
Figure 7. IAM-20381 Solution Using SPI Interface  
SELF-TEST  
Self-test allows for the testing of the mechanical and electrical portions of the sensors. The self-test for each measurement axis can  
be activated by means of the accelerometer self-test register (register 28).  
When the self-test is activated, the electronics cause the sensors to be actuated and produce an output signal. The output signal is  
used to observe the self-test response.  
The self-test response is defined as follows:  
SELF-TEST RESPONSE = SENSOR OUTPUT WITH SELF-TEST ENABLED – SENSOR OUTPUT WITH SELF-TEST DISABLED  
When the value of the self-test response is within the specified min/max limits of the product specification, the part has passed self-  
test. When the self-test response exceeds the min/max values, the part is deemed to have failed self-test.  
CLOCKING  
The IAM-20381 has a flexible clocking scheme, allowing a variety of internal clock sources to be used for the internal synchronous  
circuitry. This synchronous circuitry includes the signal conditioning and ADCs, and various control circuits and registers. An on-chip  
PLL provides flexibility in the allowable inputs for generating this clock.  
Allowable internal sources for generating the internal clock are:  
a) An internal relaxation oscillator  
The only setting supporting specified performance in all modes is option b). It is recommended that option b) be used.  
SENSOR DATA REGISTERS  
The sensor data registers contain the latest accelerometer, and temperature measurement data. They are read-only registers, and  
are accessed via the serial interface. Data from these registers may be read anytime.  
Document Number: DS-000216  
Revision: 1.0  
Page 19 of 44  
 
 
 
 
IAM-20381  
FIFO  
The IAM-20381 contains a 512-byte FIFO register that is accessible via the Serial Interface. The FIFO configuration register  
determines which data are written into the FIFO. Possible choices include accelerometer data, temperature readings, and FSYNC  
input. A FIFO counter keeps track of how many bytes of valid data are contained in the FIFO. The FIFO register supports burst reads.  
The interrupt function may be used to determine when new data are available.  
The IAM-20381 allows FIFO read in low-power accelerometer mode.  
INTERRUPTS  
Interrupt functionality is configured via the Interrupt Configuration register. Items that are configurable include the INT pin  
configuration, the interrupt latching and clearing method, and triggers for the interrupt. Items that can trigger an interrupt are (1)  
Clock generator locked to new reference oscillator (used when switching clock sources); (2) new data are available to be read (from  
the FIFO and Data registers); (3) accelerometer event interrupts; (4) FIFO overflow. The interrupt status can be read from the  
Interrupt Status register.  
DIGITAL-OUTPUT TEMPERATURE SENSOR  
An on-chip temperature sensor and ADC are used to measure the IAM-20381 die temperature. The readings from the ADC can be  
read from the FIFO or the Sensor Data registers.  
BIAS AND LDOS  
The bias and LDO section generates the internal supply and the reference voltages and currents required by the IAM-20381. Its two  
inputs are an unregulated VDD and a VDDIO logic reference supply voltage. The LDO output is bypassed by a capacitor at REGOUT.  
For further details on the capacitor, please refer to the Bill of Materials for External Components.  
CHARGE PUMP  
An on-chip charge pump generates the high voltage required for the MEMS oscillator.  
STANDARD POWER MODES  
Table 10 lists the user-accessible power modes for IAM-20381.  
MODE  
NAME  
ACCEL  
Off  
Duty-Cycled  
On  
1
3
4
Sleep Mode  
Accelerometer Low-Power Mode  
Accelerometer Low-Noise Mode  
Table 10. Standard Power Modes for IAM-20381  
Notes:  
1. Power consumption for individual modes can be found in section 3.2.1.  
Document Number: DS-000216  
Revision: 1.0  
Page 20 of 44  
 
 
 
 
 
 
 
IAM-20381  
5 PROGRAMMABLE INTERRUPTS  
The IAM-20381 has a programmable interrupt system which can generate an interrupt signal on the INT pin. Status flags indicate the  
source of an interrupt. Interrupt sources may be enabled and disabled individually.  
INTERRUPT NAME  
Motion Detection  
MODULE  
Motion  
FIFO Overflow  
Data Ready  
FIFO  
Sensor Registers  
Table 11. Table of Interrupt Sources  
WAKE-ON-MOTION INTERRUPT  
The IAM-20381 provides motion detection capability. A qualifying motion sample is one where the high passed sample from any axis  
has an absolute value exceeding a user-programmable threshold. The following steps explain how to configure the Wake-on-Motion  
Interrupt.  
Step 1: Ensure that Accelerometer is running  
In PWR_MGMT_1 register (0x6B) set CYCLE = 0, SLEEP = 0  
In PWR_MGMT_2 register (0x6C) set STBY_XA = STBY_YA = STBY_ZA = 0  
Step 2: Accelerometer Configuration  
In ACCEL_CONFIG2 register (0x1D) set ACCEL_FCHOICE_B = 0 and A_DLPF_CFG[2:0] = 1 (b001)  
Step 3: Enable Motion Interrupt  
In INT_ENABLE register (0x38) set WOM_INT_EN = 111 to enable motion interrupt  
Step 4: Set Motion Threshold  
Set the motion threshold in ACCEL_WOM_THR register (0x1F)  
Step 5: Enable Accelerometer Hardware Intelligence  
In ACCEL_INTEL_CTRL register (0x69) set ACCEL_INTEL_EN = ACCEL_INTEL_MODE = 1; Ensure that bit 0 is set to 0.  
Step 6: Set Frequency of Wake-Up  
In SMPLRT_DIV register (0x19) set SMPLRT_DIV[7:0] = 3.9Hz – 500Hz  
Step 7: Enable Cycle Mode (Accelerometer Low-Power Mode)  
In PWR_MGMT_1 register (0x6B) set CYCLE = 1  
Document Number: DS-000216  
Revision: 1.0  
Page 21 of 44  
 
 
 
IAM-20381  
6 DIGITAL INTERFACE  
I2C AND SPI SERIAL INTERFACES  
The internal registers and memory of the IAM-20381 can be accessed using either I2C at 400 kHz or SPI at 8 MHz. SPI operates in  
four-wire mode.  
PIN NUMBER  
PIN NAME  
VDDIO  
PIN DESCRIPTION  
Digital I/O supply voltage.  
I2C Slave Address LSB (SA0); SPI serial data output (SDO)  
1
4
SA0 / SDO  
2
3
SCL / SPC  
SDA / SDI  
I2C serial clock (SCL); SPI serial clock (SPC)  
I2C serial data (SDA); SPI serial data input (SDI)  
Table 12. Serial Interface  
Note: To prevent switching into I2C mode when using SPI, the I2C interface should be disabled by setting the I2C_IF_DIS configuration bit. Setting this bit should be  
performed immediately after waiting for the time specified by the “Start-Up Time for Register Read/Write” in section 3.2.2.  
For further information regarding the I2C_IF_DIS bit, please refer to sections 8 and 9 of this document.  
I2C INTERFACE  
I2C is a two-wire interface comprised of the signals serial data (SDA) and serial clock (SCL). In general, the lines are open-drain and bi-  
directional. In a generalized I2C interface implementation, attached devices can be a master or a slave. The master device puts the  
slave address on the bus, and the slave device with the matching address acknowledges the master.  
The IAM-20381 always operates as a slave device when communicating to the system processor, which thus acts as the master. SDA  
and SCL lines typically need pull-up resistors to VDD. The maximum bus speed is 400 kHz.  
The slave address of the IAM-20381 is b110100X which is 7 bits long. The LSB bit of the 7-bit address is determined by the logic level  
on pin SA0. This allows two IAM-20381s to be connected to the same I2C bus. When used in this configuration, the address of one of  
the devices should be b1101000 (pin SA0 is logic low) and the address of the other should be b1101001 (pin SA0 is logic high).  
IC COMMUNICATIONS PROTOCOL  
START (S) and STOP (P) Conditions  
Communication on the I2C bus starts when the master puts the START condition (S) on the bus, which is defined as a HIGH-to-LOW  
transition of the SDA line while SCL line is HIGH (see figure below). The bus is considered to be busy until the master puts a STOP  
condition (P) on the bus, which is defined as a LOW to HIGH transition on the SDA line while SCL is HIGH (see Figure 8).  
Additionally, the bus remains busy if a repeated START (Sr) is generated instead of a STOP condition.  
SDA  
SCL  
S
P
START condition  
STOP condition  
Figure 8. START and STOP Conditions  
Data Format / Acknowledge  
I2C data bytes are defined to be 8-bits long. There is no restriction to the number of bytes transmitted per data transfer. Each byte  
transferred must be followed by an acknowledge (ACK) signal. The clock for the acknowledge signal is generated by the master,  
while the receiver generates the actual acknowledge signal by pulling down SDA and holding it low during the HIGH portion of the  
acknowledge clock pulse.  
Document Number: DS-000216  
Revision: 1.0  
Page 22 of 44  
 
 
 
 
 
 
IAM-20381  
If a slave is busy and cannot transmit or receive another byte of data until some other task has been performed, it can hold SCL  
LOW, thus forcing the master into a wait state. Normal data transfer resumes when the slave is ready, and releases the clock line  
(refer to Figure 9).  
DATA OUTPUT BY  
TRANSMITTER (SDA)  
not acknowledge  
DATA OUTPUT BY  
RECEIVER (SDA)  
acknowledge  
SCL FROM  
MASTER  
1
2
8
9
clock pulse for  
acknowledgement  
START  
condition  
Figure 9. Acknowledge on the I2C Bus  
Communications  
After beginning communications with the START condition (S), the master sends a 7-bit slave address followed by an 8th bit, the  
read/write bit. The read/write bit indicates whether the master is receiving data from or is writing to the slave device. Then, the  
master releases the SDA line and waits for the acknowledge signal (ACK) from the slave device. Each byte transferred must be  
followed by an acknowledge bit. To acknowledge, the slave device pulls the SDA line LOW and keeps it LOW for the high period of  
the SCL line. Data transmission is always terminated by the master with a STOP condition (P), thus freeing the communications line.  
However, the master can generate a repeated START condition (Sr), and address another slave without first generating a STOP  
condition (P). A LOW to HIGH transition on the SDA line while SCL is HIGH defines the stop condition. All SDA changes should take  
place when SCL is low, with the exception of start and stop conditions.  
SDA  
SCL  
1 – 7  
8
9
1 – 7  
8
9
1 – 7  
8
9
S
P
START  
STOP  
ADDRESS  
R/W  
ACK  
DATA  
ACK  
DATA  
ACK  
condition  
condition  
Figure 10. Complete I2C Data Transfer  
To write the internal IAM-20381 registers, the master transmits the start condition (S), followed by the I2C address and the write bit  
(0). At the 9th clock cycle (when the clock is high), the IAM-20381 acknowledges the transfer. Then the master puts the register  
address (RA) on the bus. After the IAM-20381 acknowledges the reception of the register address, the master puts the register data  
onto the bus. This is followed by the ACK signal, and data transfer may be concluded by the stop condition (P). To write multiple  
bytes after the last ACK signal, the master can continue outputting data rather than transmitting a stop signal. In this case, the IAM-  
20381 automatically increments the register address and loads the data to the appropriate register. The following figures show  
single and two-byte write sequences.  
Single-Byte Write Sequence  
Master  
Slave  
S
AD+W  
RA  
DATA  
P
ACK  
ACK  
ACK  
Document Number: DS-000216  
Revision: 1.0  
Page 23 of 44  
 
 
IAM-20381  
Burst Write Sequence  
Master  
Slave  
S
AD+W  
RA  
DATA  
DATA  
P
ACK  
ACK  
ACK  
ACK  
To read the internal IAM-20381 registers, the master sends a start condition, followed by the I2C address and a write bit, and then  
the register address that is going to be read. Upon receiving the ACK signal from the IAM-20381, the master transmits a start signal  
followed by the slave address and read bit. As a result, the IAM-20381 sends an ACK signal and the data. The communication ends  
with a not acknowledge (NACK) signal and a stop bit from master. The NACK condition is defined such that the SDA line remains high  
at the 9th clock cycle. The following figures show single and two-byte read sequences.  
Single-Byte Read Sequence  
Master  
Slave  
S
AD+W  
RA  
RA  
S
AD+R  
AD+R  
NACK  
P
ACK  
ACK  
ACK  
ACK  
ACK  
DATA  
Burst Read Sequence  
Master  
Slave  
S
AD+W  
S
ACK  
NACK  
P
ACK  
DATA  
DATA  
I2C TERMS  
SIGNAL  
S
DESCRIPTION  
Start Condition: SDA goes from high to low while SCL is high  
AD  
Slave I2C address  
W
Write bit (0)  
R
Read bit (1)  
ACK  
NACK  
RA  
Acknowledge: SDA line is low while the SCL line is high at the 9th clock cycle  
Not-Acknowledge: SDA line stays high at the 9th clock cycle  
IAM-20381 internal register address  
DATA  
P
Transmit or received data  
Stop condition: SDA going from low to high while SCL is high  
Table 13. I2C Terms  
Document Number: DS-000216  
Revision: 1.0  
Page 24 of 44  
 
 
IAM-20381  
SPI INTERFACE  
SPI is a 4-wire synchronous serial interface that uses two control lines and two data lines. The IAM-20381 always operates as a Slave  
device during standard Master-Slave SPI operation.  
With respect to the Master, the Serial Clock output (SPC), the Serial Data Output (SDO) and the Serial Data Input (SDI) are shared  
among the Slave devices. Each SPI slave device requires its own Chip Select (CS) line from the master.  
CS goes low (active) at the start of transmission and goes back high (inactive) at the end. Only one CS line is active at a time, ensuring  
that only one slave is selected at any given time. The CS lines of the non-selected slave devices are held high, causing their SDO lines  
to remain in a high-impedance (high-z) state so that they do not interfere with any active devices.  
SPI Operational Features  
1. Data are delivered MSB first and LSB last  
2. Data are latched on the rising edge of SPC  
3. Data should be transitioned on the falling edge of SPC  
4. The maximum frequency of SPC is 8 MHz  
5. SPI read and write operations are completed in 16 or more clock cycles (two or more bytes). The first byte contains the  
SPI Address, and the following byte(s) contain(s) the SPI data. The first bit of the first byte contains the Read/Write bit  
and indicates the Read (1) or Write (0) operation. The following 7 bits contain the Register Address. In cases of multiple-  
byte Read/Writes, data are two or more bytes:  
SPI Address format  
MSB  
LSB  
R/W A6 A5 A4 A3 A2 A1 A0  
SPI Data format  
MSB  
LSB  
D7  
D6 D5 D4 D3 D2 D1 D0  
6. Supports Single or Burst Read/Writes.  
SPC  
SDI  
SPI Master  
SPI Slave 1  
SDO  
CS  
CS1  
CS2  
SPC  
SDI  
SDO  
CS  
SPI Slave 2  
Figure 11. Typical SPI Master/Slave Configuration  
Document Number: DS-000216  
Revision: 1.0  
Page 25 of 44  
 
 
IAM-20381  
7 SERIAL INTERFACE CONSIDERATIONS  
IAM-20381 SUPPORTED INTERFACES  
The IAM-20381 supports I2C communications on its serial interface.  
The IAM-20381’s I/O logic levels are set to be VDDIO.  
Figure 12 depicts a sample circuit of IAM-20381. It shows the relevant logic levels and voltage connections.  
VDDIO  
VDD_IO  
(0V - VDDIO)  
SYSTEM BUS  
System  
Processor IO  
VDD  
VDDIO  
VDD  
(0V - VDDIO)  
INT  
SDA  
SCL  
(0V - VDDIO)  
(0V - VDDIO)  
(0V - VDDIO)  
SYNC  
VDDIO  
IAM-20381  
VDDIO  
(0V, VDDIO)  
SA0  
Figure 12. I/O Levels and Connections  
Document Number: DS-000216  
Revision: 1.0  
Page 26 of 44  
 
 
 
IAM-20381  
8 REGISTER MAP  
The following table lists the register map for the IAM-20381.  
Accessible  
Addr  
(Hex)  
Addr  
(Dec.)  
Serial  
I/F  
(writable)  
in Sleep  
Mode  
Register Name  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
0D  
0E  
0F  
19  
13  
14  
15  
25  
SELF_TEST_X_ACCEL  
SELF_TEST_Y_ACCEL  
SELF_TEST_Z_ACCEL  
SMPLRT_DIV  
R/W  
R/W  
R/W  
R/W  
N
N
N
N
N
XA_ST_DATA[7:0]  
YA_ST_DATA[7:0]  
ZA_ST_DATA[7:0]  
SMPLRT_DIV[7:0]  
FIFO_  
MODE  
1A  
1C  
1D  
1F  
23  
36  
26  
28  
29  
31  
35  
54  
CONFIG  
ACCEL_CONFIG  
ACCEL_CONFIG 2  
ACCEL_WOM_THR  
FIFO_EN  
R/W  
R/W  
R/W  
R/W  
R/W  
R/C  
-
EXT_SYNC_SET[2:0]  
ACCEL_FS_SEL[1:0]  
ACCEL_FCHOI  
DLPF_CFG[2:0]  
N
N
N
N
N
XA_ST  
YA_ST  
ZA_ST  
-
-
DEC2_CFG  
A_DLPF_CFG  
CE_B  
WOM_THR[7:0]  
TEMP  
_FIFO_EN  
ACCEL_FIFO_  
EN  
-
-
-
-
-
-
-
-
-
-
-
-
FSYNC_INT  
FSYNC_INT  
-
FSYNC  
_INT_MODE_  
EN  
LATCH  
_INT_EN  
INT_RD  
_CLEAR  
FSYNC_INT_L  
EVEL  
37  
38  
3A  
55  
56  
58  
INT_PIN_CFG  
INT_ENABLE  
INT_STATUS  
R/W  
R/W  
R/C  
Y
Y
INT_LEVEL  
INT_OPEN  
-
-
-
-
FIFO  
_OFLOW  
_EN  
DATA_RDY_I  
NT_EN  
WOM_INT_EN[7:5]  
WOM_INT[7:5]  
-
-
-
-
FIFO  
_OFLOW  
_INT  
DATA  
_RDY_INT  
N
3B  
3C  
3D  
3E  
3F  
40  
41  
42  
59  
60  
61  
62  
63  
64  
65  
66  
ACCEL_XOUT_H  
ACCEL_XOUT_L  
ACCEL_YOUT_H  
ACCEL_YOUT_L  
ACCEL_ZOUT_H  
ACCEL_ZOUT_L  
TEMP_OUT_H  
TEMP_OUT_L  
R
R
R
R
R
R
R
R
N
N
N
N
N
N
N
N
ACCEL_XOUT_H[15:8]  
ACCEL_XOUT_L[7:0]  
ACCEL_YOUT_H[15:8]  
ACCEL_YOUT_L[7:0]  
ACCEL_ZOUT_H[15:8]  
ACCEL_ZOUT_L[7:0]  
TEMP_OUT[15:8]  
TEMP_OUT[7:0]  
ACCEL  
_RST  
TEMP  
_RST  
68  
69  
6A  
6B  
104  
105  
106  
107  
SIGNAL_PATH_RESET  
ACCEL_INTEL_CTRL  
USER_CTRL  
R/W  
R/W  
R/W  
R/W  
N
N
N
Y
-
-
-
-
-
-
-
ACCEL_INTE  
L_EN  
ACCEL_INTEL  
_MODE  
-
I2C_IF  
_DIS  
FIFO  
_RST  
SIG_COND  
_RST  
-
FIFO_EN  
SLEEP  
-
-
DEVICE_RES  
ET  
PWR_MGMT_1  
ACCEL_CYCLE  
STBY_XA  
-
TEMP_DIS  
STBY_ZA  
CLKSEL[2:0]  
-
6C  
72  
73  
74  
75  
77  
78  
7A  
7B  
7D  
7E  
108  
114  
115  
116  
117  
119  
120  
122  
123  
125  
126  
PWR_MGMT_2  
FIFO_COUNTH  
FIFO_COUNTL  
FIFO_R_W  
R/W  
R
Y
FIFO_LP_EN  
-
-
STBY_YA  
-
-
N
N
N
N
N
N
N
N
N
N
FIFO_COUNT[12:8]  
R
FIFO_COUNT[7:0]  
R/W  
R
FIFO_DATA[7:0]  
WHOAMI[7:0]  
XA_OFFS [14:7]  
WHO_AM_I  
XA_OFFSET_H  
XA_OFFSET_L  
YA_OFFSET_H  
YA_OFFSET_L  
ZA_OFFSET_H  
ZA_OFFSET_L  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
XA_OFFS [6:0]  
YA_OFFS [14:7]  
YA_OFFS [6:0]  
ZA_OFFS [14:7]  
ZA_OFFS [6:0]  
-
-
-
Note: Register Names ending in _H and _L contain the high and low bytes, respectively, of an internal register value.  
Document Number: DS-000216  
Revision: 1.0  
Page 27 of 44  
 
IAM-20381  
In the detailed register tables that follow, register names are in capital letters, while register values are in capital letters and  
italicized. For example, the ACCEL_XOUT_H register (Register 59) contains the 8 most significant bits, ACCEL_XOUT[15:8], of the 16-  
bit X-Axis accelerometer measurement, ACCEL_XOUT.  
The reset value is 0x00 for all registers other than the registers below, also the self-test registers contain pre-programmed values  
and will not be 0x00 after reset.  
Register 107 (0x40) Power Management 1  
Register 117 (0xB6) WHO_AM_I  
Document Number: DS-000216  
Revision: 1.0  
Page 28 of 44  
IAM-20381  
9 REGISTER DESCRIPTIONS  
This section describes the function and contents of each register within the IAM-20381.  
Note: The device will come up in sleep mode upon power-up.  
REGISTERS 13 TO 15 – ACCELEROMETER SELF-TEST REGISTERS  
Register Name: SELF_TEST_X_ACCEL, SELF_TEST_Y_ACCEL, SELF_TEST_Z_ACCEL  
Type: READ/WRITE  
Register Address: 13, 14, 15 (Decimal); 0D, 0E, 0F (Hex)  
REGISTER  
BITS  
NAME  
FUNCTION  
The value in this register indicates the self-test output generated  
during manufacturing tests. This value is to be used to check against  
subsequent self-test outputs performed by the end user.  
SELF_TEST_X_ACCEL  
[7:0]  
XA_ST_DATA[7:0]  
The value in this register indicates the self-test output generated  
during manufacturing tests. This value is to be used to check against  
subsequent self-test outputs performed by the end user.  
The value in this register indicates the self-test output generated  
during manufacturing tests. This value is to be used to check against  
subsequent self-test outputs performed by the end user.  
SELF_TEST_Y_ACCEL  
SELF_TEST_Z_ACCEL  
[7:0]  
[7:0]  
YA_ST_DATA[7:0]  
ZA_ST_DATA[7:0]  
The equation to convert self-test codes in OTP to factory self-test measurement is:  
ST _OTP = (2620/ 2FS )*1.01(ST _code1) (lsb)  
where ST_OTP is the value that is stored in OTP of the device, FS is the Full Scale value, and ST_code is based on the Self-Test value  
(ST_ FAC) determined in InvenSense’s factory final test and calculated based on the following equation:  
log(ST _ FAC /(2620/ 2FS ))  
ST _ code = round(  
) +1  
log(1.01)  
REGISTER 25 – SAMPLE RATE DIVIDER  
Register Name: SMPLRT_DIV  
Register Type: READ/WRITE  
Register Address: 25 (Decimal); 19 (Hex)  
BIT  
NAME  
FUNCTION  
[7:0] SMPLRT_DIV[7:0]  
Divides the internal sample rate (see register CONFIG) to generate the sample rate that  
controls sensor data output rate, FIFO sample rate.  
Note: This register is only effective when FCHOICE_B register bits are 2’b00, and (0 < DLPF_CFG < 7).  
This is the update rate of the sensor register:  
SAMPLE_RATE = INTERNAL_SAMPLE_RATE / (1 + SMPLRT_DIV)  
Where INTERNAL_SAMPLE_RATE = 1 kHz  
REGISTER 26 – CONFIGURATION  
Register Name: CONFIG  
Register Type: READ/WRITE  
Register Address: 26 (Decimal); 1A (Hex)  
BIT  
[7]  
[6]  
NAME  
FUNCTION  
-
Always set to 0  
FIFO_MODE  
When set to ‘1’, when the FIFO is full, additional writes will not be written to FIFO.  
When set to ‘0’, when the FIFO is full, additional writes will be written to the FIFO, replacing  
the oldest data.  
Document Number: DS-000216  
Revision: 1.0  
Page 29 of 44  
 
 
 
 
IAM-20381  
BIT  
[5:3]  
NAME  
EXT_SYNC_SET[2:0]  
FUNCTION  
Enables the FSYNC pin data to be sampled.  
EXT_SYNC_SET  
FSYNC bit location  
function disabled  
TEMP_OUT_L[0]  
Reserved  
Reserved  
Reserved  
ACCEL_XOUT_L[0]  
ACCEL_YOUT_L[0]  
ACCEL_ZOUT_L[0]  
0
1
2
3
4
5
6
7
FSYNC will be latched to capture short strobes. This will be done such that if FSYNC toggles,  
the latched value toggles, but won’t toggle again until the new latched value is captured by  
the sample rate strobe.  
[2:0]  
DLPF_CFG[2:0]  
For the DLPF to be used, FCHOICE_B[1:0] is 2’b00.  
See Table 14.  
The DLPF is configured by DLPF_CFG, when FCHOICE_B [1:0] = 2b’00. The temperature sensor data is filtered according to the value  
of DLPF_CFG and FCHOICE_B as shown in the table below.  
Temperature  
FCHOICE_B  
Sensor  
DLPF_CFG  
<1>  
<0>  
3-dB BW (Hz)  
X
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
X
X
0
1
2
3
4
5
6
7
4000  
4000  
4000  
188  
98  
42  
20  
10  
5
4000  
Table 14. Configuration  
REGISTER 28 – ACCELEROMETER CONFIGURATION  
Register Name: ACCEL_CONFIG  
Register Type: READ/WRITE  
Register Address: 28 (Decimal); 1C (Hex)  
BIT  
[7]  
[6]  
[5]  
NAME  
FUNCTION  
XA_ST  
YA_ST  
ZA_ST  
X Accel self-test  
Y Accel self-test  
Z Accel self-test  
Accel Full Scale Select:  
±2g (00), ±4g (01), ±8g (10), ±16g (11)  
Reserved  
[4:3]  
[2:0]  
ACCEL_FS_SEL[1:0]  
-
Document Number: DS-000216  
Revision: 1.0  
Page 30 of 44  
 
 
IAM-20381  
REGISTER 29 – ACCELEROMETER CONFIGURATION 2  
Register Name: ACCEL_CONFIG2  
Register Type: READ/WRITE  
Register Address: 29 (Decimal); 1D (Hex)  
BIT  
NAME  
FUNCTION  
[7:6]  
-
Reserved  
Averaging filter settings for Low Power Accelerometer mode:  
0 = Average 4 samples  
1 = Average 8 samples  
[5:4]  
DEC2_CFG[1:0]  
2 = Average 16 samples  
3 = Average 32 samples  
[3]  
[2:0]  
ACCEL_FCHOICE_B  
A_DLPF_CFG  
Used to bypass DLPF as shown in the table below.  
Accelerometer low pass filter setting as shown in the table below.  
Accelerometer  
ACCEL_FCHOICE_B  
A_DLPF_CFG  
3-dB BW  
(Hz)  
Noise BW  
(Hz)  
Rate  
(kHz)  
1
0
0
0
0
0
0
0
0
X
0
1
2
3
4
5
6
7
1046.0  
218.1  
218.1  
99.0  
1100.0  
235.0  
235.0  
121.3  
61.5  
4
1
1
1
1
1
1
1
1
44.8  
21.2  
10.2  
31.0  
15.5  
5.1  
420.0  
7.8  
441.6  
Table 15. Accelerometer Data Rates and Bandwidths (Low Noise Mode)  
The data output rate of the DLPF filter block can be further reduced by a factor of 1/(1+SMPLRT_DIV), where SMPLRT_DIV is an 8-bit  
integer. Following is a small subset of ODRs that are configurable for the accelerometer in the low-noise mode in this manner (Hz):  
3.91, 7.81, 15.63, 31.25, 62.50, 125, 250, 500, 1K.  
The following table lists the accelerometer filter bandwidths, noise, and current consumption available in the low-power mode of  
operation. In the low-power mode of operation, the accelerometer is duty-cycled.  
ACCEL_FCHOICE_B  
A_DLPF_CFG  
1
x
0
7
0
7
0
7
0
7
DEC2_CFG  
x
0
1
2
3
Averages  
1x  
4x  
8x  
16x  
4.84  
121.3  
2.8  
32x  
8.84  
61.5  
2.0  
Ton (ms)  
Noise BW (Hz)  
1.084  
1100.0  
8.3  
1.84  
441.6  
5.3  
2.84  
235.4  
3.8  
Noise (mg) TYP based on 250 µg/Hz  
SMPLRT_DIV  
ODR (Hz)  
3.9  
Current Consumption (µA) TYP  
255  
127  
63  
31  
15  
7
8.4  
9.8  
9.4  
11.9  
17.0  
27.1  
47.2  
87.5  
168.1  
329.3  
10.8  
14.7  
22.5  
13.6  
20.3  
33.7  
19.2  
31.4  
55.9  
7.8  
15.6  
12.8  
18.7  
30.4  
57.4  
100.9  
194.9  
31.3  
62.5  
125.0  
250.0  
500.0  
38.2  
69.4  
132.0  
257.0  
60.4  
113.9  
220.9  
104.9  
202.8  
N/A  
3
1
N/A  
N/A  
Table 16. Accelerometer Filter Bandwidths, Noise, and Current Consumption (Low-Power Mode)  
Document Number: DS-000216  
Revision: 1.0  
Page 31 of 44  
 
 
 
IAM-20381  
REGISTER 31 – WAKE-ON MOTION THRESHOLD (ACCELEROMETER)  
Register Name: ACCEL_WOM_THR  
Register Type: READ/WRITE  
Register Address: 31 (Decimal); 1F (Hex)  
BIT  
[7:0]  
NAME  
WOM_THR[7:0]  
FUNCTION  
This register holds the threshold value for the Wake on Motion Interrupt for accelerometer.  
REGISTER 35 – FIFO ENABLE  
Register Name: FIFO_EN  
Register Type: READ/WRITE  
Register Address: 35 (Decimal); 23 (Hex)  
BIT  
NAME  
FUNCTION  
1 – Write TEMP_OUT_H and TEMP_OUT_L to the FIFO at the sample rate  
0 – Function is disabled.  
Reserved  
1 – Write ACCEL_XOUT_H, ACCEL_XOUT_L, ACCEL_YOUT_H, ACCEL_YOUT_L, ACCEL_ZOUT_H,  
and ACCEL_ZOUT_L to the FIFO at the sample rate;  
0 – Function is disabled.  
[7]  
TEMP_FIFO_EN  
-
[6:4]  
[3]  
ACCEL_FIFO_EN  
-
[2:0]  
Reserved.  
REGISTER 54 – FSYNC INTERRUPT STATUS  
Register Name: FSYNC_INT  
Register Type: READ to CLEAR  
Register Address: 54 (Decimal); 36 (Hex)  
BIT  
NAME  
FUNCTION  
This bit automatically sets to 1 when a FSYNC interrupt has been generated. The bit  
clears to 0 after the register has been read.  
[7]  
FSYNC_INT  
REGISTER 55 – INT/DRDY PIN / BYPASS ENABLE CONFIGURATION  
Register Name: INT_PIN_CFG  
Register Type: READ/WRITE  
Register Address: 55 (Decimal); 37 (Hex)  
BIT  
NAME  
FUNCTION  
1 – The logic level for INT/DRDY pin is active low.  
0 – The logic level for INT/DRDY pin is active high.  
1 – INT/DRDY pin is configured as open drain.  
[7]  
INT_LEVEL  
INT_OPEN  
[6]  
[5]  
[4]  
[3]  
0 – INT/DRDY pin is configured as push-pull.  
1 – INT/DRDY pin level held until interrupt status is cleared.  
0 – INT/DRDY pin indicates interrupt pulse’s width is 50 µs.  
1 – Interrupt status is cleared if any read operation is performed.  
0 – Interrupt status is cleared only by reading INT_STATUS register  
1 – The logic level for the FSYNC pin as an interrupt is active low.  
0 – The logic level for the FSYNC pin as an interrupt is active high.  
When this bit is equal to 1, the FSYNC pin will trigger an interrupt when it transitions to  
the level specified by FSYNC_INT_LEVEL. When this bit is equal to 0, the FSYNC pin is  
disabled from causing an interrupt.  
LATCH_INT_EN  
INT_RD_CLEAR  
FSYNC_INT_LEVEL  
[2]  
FSYNC_INT_MODE_EN  
[1]  
[0]  
-
-
Reserved.  
Always set to 0.  
Document Number: DS-000216  
Revision: 1.0  
Page 32 of 44  
 
 
 
 
IAM-20381  
REGISTER 56 – INTERRUPT ENABLE  
Register Name: INT_ENABLE  
Register Type: READ/WRITE  
Register Address: 56 (Decimal); 38 (Hex)  
BIT  
NAME  
FUNCTION  
111 – Enable WoM interrupt on accelerometer.  
000 – Disable WoM interrupt on accelerometer.  
[7:5]  
WOM_INT_EN[7:5]  
1 – Enables a FIFO buffer overflow to generate an interrupt.  
0 – Function is disabled.  
[4]  
FIFO_OFLOW_EN  
[3:1]  
[0]  
-
Reserved.  
Data ready interrupt enable.  
DATA_RDY_INT_EN  
REGISTER 58 – INTERRUPT STATUS  
Register Name: INT_STATUS  
Register Type: READ to CLEAR  
Register Address: 58 (Decimal); 3A (Hex)  
BIT  
NAME  
FUNCTION  
Accelerometer WoM interrupt status. Cleared on Read.  
111 – WoM interrupt on accelerometer  
[7:5]  
WOM_INT  
This bit automatically sets to 1 when a FIFO buffer overflow has been generated. The bit  
clears to 0 after the register has been read.  
[4]  
FIFO_OFLOW_INT  
[3:1]  
[0]  
-
Reserved.  
This bit automatically sets to 1 when a Data Ready interrupt is generated. The bit clears  
to 0 after the register has been read.  
DATA_RDY_INT  
REGISTERS 59 TO 64 – ACCELEROMETER MEASUREMENTS  
Register Name: ACCEL_XOUT_H  
Register Type: READ only  
Register Address: 59 (Decimal); 3B (Hex)  
BIT  
NAME  
FUNCTION  
[7:0]  
ACCEL_XOUT_H[15:8]  
High byte of accelerometer x-axis data.  
Register Name: ACCEL_XOUT_L  
Register Type: READ only  
Register Address: 60 (Decimal); 3C (Hex)  
BIT  
NAME  
FUNCTION  
[7:0]  
ACCEL_XOUT_L[7:0]  
Low byte of accelerometer x-axis data.  
Register Name: ACCEL_YOUT_H  
Register Type: READ only  
Register Address: 61 (Decimal); 3D (Hex)  
BIT  
NAME  
FUNCTION  
[7:0]  
ACCEL_YOUT_H[15:8]  
High byte of accelerometer y-axis data.  
Register Name: ACCEL_YOUT_L  
Register Type: READ only  
Register Address: 62 (Decimal); 3E (Hex)  
BIT  
[7:0]  
NAME  
ACCEL_YOUT_L[7:0]  
FUNCTION  
Low byte of accelerometer y-axis data.  
Register Name: ACCEL_ZOUT_H  
Register Type: READ only  
Register Address: 63 (Decimal); 3F (Hex)  
Document Number: DS-000216  
Revision: 1.0  
Page 33 of 44  
 
 
 
IAM-20381  
BIT  
NAME  
FUNCTION  
[7:0]  
ACCEL_ZOUT_H[15:8]  
High byte of accelerometer z-axis data.  
Register Name: ACCEL_ZOUT_L  
Register Type: READ only  
Register Address: 64 (Decimal); 40 (Hex)  
BIT  
[7:0]  
NAME  
ACCEL_ZOUT_L[7:0]  
FUNCTION  
Low byte of accelerometer z-axis data.  
REGISTERS 65 AND 66 – TEMPERATURE MEASUREMENT  
Register Name: TEMP_OUT_H  
Register Type: READ only  
Register Address: 65 (Decimal); 41 (Hex)  
BIT  
NAME  
FUNCTION  
[7:0]  
TEMP_OUT[15:8]  
High byte of the temperature sensor output  
Register Name: TEMP_OUT_L  
Register Type: READ only  
Register Address: 66 (Decimal); 42 (Hex)  
BIT  
NAME  
FUNCTION  
Low byte of the temperature sensor output  
TEMP_degC  
= ((TEMP_OUT –  
RoomTemp_Offset)/Temp_Sensitivity) + 25degC  
[7:0]  
TEMP_OUT[7:0]  
REGISTER 104 – SIGNAL PATH RESET  
Register Name: SIGNAL_PATH_RESET  
Register Type: READ/WRITE  
Register Address: 104 (Decimal); 68 (Hex)  
BIT  
NAME  
FUNCTION  
[7:2]  
Reserved  
-
Reset accel digital signal path.  
[1]  
[0]  
ACCEL_RST  
Note: Sensor registers are not cleared. Use SIG_COND_RST to clear sensor registers.  
Reset temp digital signal path.  
TEMP_RST  
Note: Sensor registers are not cleared. Use SIG_COND_RST to clear sensor registers.  
REGISTER 105 – ACCELEROMETER INTELLIGENCE CONTROL  
Register Name: ACCEL_INTEL_CTRL  
Register Type: READ/WRITE  
Register Address: 105 (Decimal); 69 (Hex)  
BIT  
[7]  
NAME  
ACCEL_INTEL_EN  
FUNCTION  
This bit enables the Wake-on-Motion detection logic.  
0 – Do not use.  
[6]  
ACCEL_INTEL_MODE  
1 – Compare the current sample with the previous sample.  
[5:0]  
Reserved.  
-
Document Number: DS-000216  
Revision: 1.0  
Page 34 of 44  
 
 
 
IAM-20381  
REGISTER 106 – USER CONTROL  
Register Name: USER_CTRL  
Register Type: READ/WRITE  
Register Address: 106 (Decimal); 6A (Hex)  
BIT  
[7]  
NAME  
FUNCTION  
Reserved.  
1 – Enable FIFO operation mode.  
-
[6]  
FIFO_EN  
0 – Disable FIFO access from serial interface. To disable FIFO writes by DMA, use FIFO_EN  
register.  
[5]  
[4]  
[3]  
-
Reserved.  
I2C_IF_DIS  
1 – Disable I2C Slave module and put the serial interface in SPI mode only.  
Reserved.  
-
1 – Reset FIFO module. Reset is asynchronous. This bit auto clears after one clock cycle of the  
internal 20 MHz clock.  
Reserved.  
1 – Reset all accel digital signal path, and temp digital signal path. This bit also clears all the  
sensor registers.  
[2]  
[1]  
[0]  
FIFO_RST  
-
SIG_COND_RST  
REGISTER 107 – POWER MANAGEMENT 1  
Register Name: PWR_MGMT_1  
Register Type: READ/WRITE  
Register Address: 107 (Decimal); 6B (Hex)  
BIT  
NAME  
FUNCTION  
1 – Reset the internal registers and restores the default settings. The bit automatically clears  
to 0 once the reset is done.  
[7]  
DEVICE_RESET  
When set to 1, the chip is set to sleep mode.  
[6]  
[5]  
SLEEP  
Note: The default value is 1, the chip comes up in Sleep mode.  
When set to 1, and SLEEP and STANDBY are not set to 1, the chip will cycle between sleep  
and taking a single accelerometer sample at a rate determined by SMPLRT_DIV  
Note: When all accelerometer axes are disabled via PWR_MGMT_2 register bits and cycle is enabled, the  
chip will wake up at the rate determined by the respective registers above, but will not take any  
samples.  
ACCEL_CYCLE  
[4]  
[3]  
-
Reserved.  
TEMP_DIS  
When set to 1, this bit disables the temperature sensor.  
Code Clock Source  
0
1
2
3
4
5
6
Internal 20 MHz oscillator.  
Auto selects the best available clock source – PLL if ready, else use the Internal oscillator  
Auto selects the best available clock source – PLL if ready, else use the Internal oscillator  
Auto selects the best available clock source – PLL if ready, else use the Internal oscillator  
Auto selects the best available clock source – PLL if ready, else use the Internal oscillator  
Auto selects the best available clock source – PLL if ready, else use the Internal oscillator  
Internal 20 MHz oscillator.  
[2:0]  
CLKSEL[2:0]  
7
Stops the clock and keeps timing generator in reset.  
Note: The default value of CLKSEL[2:0] is 000.  
REGISTER 108 – POWER MANAGEMENT 2  
Register Name: PWR_MGMT_2  
Register Type: READ/WRITE  
Register Address: 108 (Decimal); 6C (Hex)  
BIT  
[7]  
[6]  
NAME  
FIFO_LP_EN  
FUNCTION  
1 – Enable FIFO in low-power accelerometer mode. Default setting is 0.  
Reserved.  
1 – X accelerometer is disabled.  
0 – X accelerometer is on.  
-
[5]  
STBY_XA  
1 – Y accelerometer is disabled.  
0 – Y accelerometer is on.  
[4]  
STBY_YA  
Document Number: DS-000216  
Revision: 1.0  
Page 35 of 44  
 
 
 
IAM-20381  
BIT  
[3]  
[2:0]  
NAME  
FUNCTION  
1 – Z accelerometer is disabled.  
0 – Z accelerometer is on.  
Reserved.  
STBY_ZA  
-
REGISTERS 114 AND 115 – FIFO COUNT REGISTERS  
Register Name: FIFO_COUNTH  
Register Type: READ Only  
Register Address: 114 (Decimal); 72 (Hex)  
BIT  
NAME  
FUNCTION  
[7:5]  
Reserved.  
High Bits; count indicates the number of written bytes in the FIFO.  
Reading this byte latches the data for both FIFO_COUNTH, and FIFO_COUNTL.  
-
[4:0]  
FIFO_COUNT[12:8]  
Register Name: FIFO_COUNTL  
Register Type: READ Only  
Register Address: 115 (Decimal); 73 (Hex)  
BIT  
NAME  
FUNCTION  
Low Bits; count indicates the number of written bytes in the FIFO.  
Note: Must read FIFO_COUNTH to latch new data for both FIFO_COUNTH and FIFO_COUNTL.  
[7:0]  
FIFO_COUNT[7:0]  
REGISTER 116 – FIFO READ WRITE  
Register Name: FIFO_R_W  
Register Type: READ/WRITE  
Register Address: 116 (Decimal); 74 (Hex)  
BIT  
NAME  
FUNCTION  
[7:0]  
FIFO_DATA[7:0]  
Read/Write command provides Read or Write operation for the FIFO.  
Description:  
This register is used to read and write data from the FIFO buffer.  
Data are written to the FIFO in order of register number (from lowest to highest). If all the FIFO enable flags (see below) are enabled,  
the contents of registers 59 through 72 will be written in order at the Sample Rate.  
The contents of the sensor data registers (Registers 59 to 72) are written into the FIFO buffer when their corresponding FIFO enable  
flags are set to 1 in FIFO_EN (Register 35).  
If the FIFO buffer has overflowed, the status bit FIFO_OFLOW_INT is automatically set to 1. This bit is located in INT_STATUS  
(Register 58). When the FIFO buffer has overflowed, the oldest data will be lost and new data will be written to the FIFO unless  
register 26 CONFIG, bit[6] FIFO_MODE = 1.  
If the FIFO buffer is empty, reading register FIFO_DATA will return a unique value of 0xFF until new data are available. Normal data  
are precluded from ever indicating 0xFF, so 0xFF gives a trustworthy indication of FIFO empty.  
REGISTER 117 – WHO AM I  
Register Name: WHO_AM_I  
Register Type: READ only  
Register Address: 117 (Decimal); 75 (Hex)  
BIT  
NAME  
FUNCTION  
[7:0]  
WHOAMI  
Register to indicate to user which device is being accessed.  
This register is used to verify the identity of the device. The contents of WHOAMI is an 8-bit device ID. The default value of the  
register is 0xB6. This is different from the I2C address of the device as seen on the slave I2C controller by the applications processor.  
The I2C address of the IAM-20381 is 0x68 or 0x69 depending upon the value driven on AD0 pin.  
Document Number: DS-000216  
Revision: 1.0  
Page 36 of 44  
 
 
 
IAM-20381  
REGISTERS 119, 120, 122, 123, 125, 126 ACCELEROMETER OFFSET REGISTERS  
Register Name: XA_OFFSET_H  
Register Type: READ/WRITE  
Register Address: 119 (Decimal); 77 (Hex)  
BIT  
NAME  
FUNCTION  
Upper bits of the X accelerometer offset cancellation. ±16g Offset cancellation in all Full  
Scale modes, 15 bit 0.98-mg steps  
[7:0]  
XA_OFFS[14:7]  
Register Name: XA_OFFSET_L  
Register Type: READ/WRITE  
Register Address: 120 (Decimal); 78 (Hex)  
BIT  
NAME  
FUNCTION  
Lower bits of the X accelerometer offset cancellation. ±16g Offset cancellation in all Full  
Scale modes, 15 bit 0.98-mg steps  
[7:1]  
XA_OFFS[6:0]  
[0]  
Reserved.  
-
Register Name: YA_OFFSET_H  
Register Type: READ/WRITE  
Register Address: 122 (Decimal); 7A (Hex)  
BIT  
NAME  
FUNCTION  
Upper bits of the Y accelerometer offset cancellation. ±16g Offset cancellation in all Full  
Scale modes, 15 bit 0.98-mg steps  
[7:0]  
YA_OFFS[14:7]  
Register Name: YA_OFFSET_L  
Register Type: READ/WRITE  
Register Address: 123 (Decimal); 7B (Hex)  
BIT  
NAME  
FUNCTION  
Lower bits of the Y accelerometer offset cancellation. ±16g Offset cancellation in all Full  
Scale modes, 15 bit 0.98-mg steps  
[7:1]  
YA_OFFS[6:0]  
[0]  
Reserved.  
-
Register Name: ZA_OFFSET_H  
Register Type: READ/WRITE  
Register Address: 125 (Decimal); 7D (Hex)  
BIT  
NAME  
FUNCTION  
Upper bits of the Z accelerometer offset cancellation. ±16g Offset cancellation in all Full  
Scale modes, 15 bit 0.98-mg steps  
[7:0]  
ZA_OFFS[14:7]  
Register Name: ZA_OFFSET_L  
Register Type: READ/WRITE  
Register Address: 126 (Decimal); 7E (Hex)  
BIT  
[7:1]  
[0]  
NAME  
FUNCTION  
Lower bits of the Z accelerometer offset cancellation. ±16g Offset cancellation in all Full  
Scale modes, 15 bit 0.98-mg steps  
ZA_OFFS[6:0]  
Reserved.  
-
Document Number: DS-000216  
Revision: 1.0  
Page 37 of 44  
 
IAM-20381  
10 ASSEMBLY  
This section provides general guidelines for assembling InvenSense Micro Electro-Mechanical Systems (MEMS) devices packaged in  
LGA package.  
ORIENTATION OF AXES  
Figure 13 below shows the orientation of the axes of sensitivity and the polarity of rotation. Note the pin 1 identifier (•) in the figure.  
+Z  
+Y  
+Z  
IAM  
-
+Y  
20381  
+X  
+X  
Figure 13. Orientation of Axes of Sensitivity and Polarity of Rotation  
Document Number: DS-000216  
Revision: 1.0  
Page 38 of 44  
 
 
 
IAM-20381  
PACKAGE DIMENSIONS  
16 Lead LGA (3x3x0.75) mm NiAu pad finish  
Figure 14. Package Dimensions  
Document Number: DS-000216  
Revision: 1.0  
Page 39 of 44  
 
 
IAM-20381  
DIMENSIONS IN MILLIMETERS  
SYMBOLS  
MIN  
NOM  
MAX  
Total Thickness  
Substrate Thickness  
Mold Thickness  
A
A1  
A2  
0.7  
0.75  
0.8  
0.105  
0.63  
REF  
REF  
D
E
2.9  
2.9  
0.2  
0.3  
3
3
3.1  
3.1  
0.3  
0.4  
Body Size  
Lead Width  
Lead Length  
W
0.25  
0.35  
L
e
n
Lead Pitch  
Lead Count  
0.5  
BSC  
16  
D1  
E1  
SD  
SE  
b
2
1
BSC  
BSC  
BSC  
BSC  
Edge Ball Center to Center  
Body Center to Contact Ball  
---  
---  
Ball Width  
Ball Diameter  
Ball Opening  
Ball Pitch  
Ball Count  
---  
---  
---  
---  
---  
---  
---  
---  
---  
e1  
n1  
Pre-Solder  
---  
Package Edge Tolerance  
Mold Flatness  
aaa  
bbb  
ddd  
eee  
fff  
0.1  
0.2  
0.08  
---  
---  
0.06  
Coplanarity  
Ball Offset (Package)  
Ball Offset (Ball)  
Lead Edge to Package Edge  
M
0.01  
0.11  
Table 17. Package Dimensions  
Document Number: DS-000216  
Revision: 1.0  
Page 40 of 44  
 
IAM-20381  
11 PART NUMBER PACKAGE MARKING  
The part number package marking for IAM-20381 devices is summarized below:  
PART NUMBER  
IAM-20381  
PART NUMBER PACKAGE MARKING  
IA238  
Table 18. Part Number Package Marking  
TOP VIEW  
IA238  
XXXXXX  
YYWW  
Part Number  
Lot Traceability Code  
YY = Year Code  
WW = Work Week  
Figure 15. Part Number Package Marking  
Document Number: DS-000216  
Revision: 1.0  
Page 41 of 44  
 
 
 
IAM-20381  
12 REFERENCE  
Please refer to “InvenSense MEMS Handling Application Note (AN-IVS-0002A-00)” for the following information:  
• Manufacturing Recommendations  
o
o
o
o
o
o
o
o
o
o
o
Assembly Guidelines and Recommendations  
PCB Design Guidelines and Recommendations  
MEMS Handling Instructions  
ESD Considerations  
Reflow Specification  
Storage Specifications  
Package Marking Specification  
Tape & Reel Specification  
Reel & Pizza Box Label  
Packaging  
Representative Shipping Carton Label  
Compliance  
o
o
o
Environmental Compliance  
DRC Compliance  
Compliance Declaration Disclaimer  
Document Number: DS-000216  
Revision: 1.0  
Page 42 of 44  
 
IAM-20381  
13 REVISION HISTORY  
REVISION DATE  
REVISION  
DESCRIPTION  
03/29/2017  
1.0  
Initial release  
Document Number: DS-000216  
Revision: 1.0  
Page 43 of 44  
 
IAM-20381  
This information furnished by InvenSense, Inc. (“InvenSense”) is believed to be accurate and reliable. However, no responsibility is assumed by InvenSense for its use,  
or for any infringements of patents or other rights of third parties that may result from its use. Specifications are subject to change without notice. InvenSense reserves  
the right to make changes to this product, including its circuits and software, in order to improve its design and/or performance, without prior notice. InvenSense makes  
no warranties, neither expressed nor implied, regarding the information and specifications contained in this document. InvenSense assumes no responsibility for any  
claims or damages arising from information contained in this document, or from the use of products and services detailed therein. This includes, but is not limited to,  
claims or damages based on the infringement of patents, copyrights, mask work and/or other intellectual property rights.  
Certain intellectual property owned by InvenSense and described in this document is patent protected. No license is granted by implication or otherwise under any  
patent or patent rights of InvenSense. This publication supersedes and replaces all information previously supplied. Trademarks that are registered trademarks are the  
property of their respective companies. InvenSense sensors should not be used or sold in the development, storage, production or utilization of any conventional or  
mass-destructive weapons or for any other weapons or life threatening applications, as well as in any other life critical applications such as medical equipment,  
transportation, aerospace and nuclear instruments, undersea equipment, power plant equipment, disaster prevention and crime prevention equipment.  
©2017 InvenSense. All rights reserved. InvenSense, MotionTracking, MotionProcessing, MotionProcessor, MotionFusion, MotionApps, DMP, AAR, and the InvenSense  
logo are trademarks of InvenSense, Inc. The TDK logo is a trademark of TDK Corporation. Other company and product names may be trademarks of the respective  
companies with which they are associated.  
©2017 InvenSense. All rights reserved.  
Document Number: DS-000216  
Revision: 1.0  
Page 44 of 44  

相关型号:

IAM-20680

IMU (惯性测量设备)
TDK

IAM-20680HP

IMU (惯性测量设备)
TDK

IAM-20680HT

IMU (惯性测量设备)
TDK

IAM-81000-GP2

Double Balanced Mixer, 50MHz Min, 5000MHz Max, BIPolar
AGILENT

IAM-81000-GP4

Double Balanced Mixer, 50MHz Min, 5000MHz Max, BIPolar
AGILENT

IAM-81000-GP6

Double Balanced Mixer, 50MHz Min, 5000MHz Max, BIPolar
AGILENT

IAM-81008

Silicon Bipolar MMIC 5 GHz Active Double Balanced Mixer/IF Amp
AGILENT

IAM-81008-STR

IC-MIXER/IF AMP
ETC

IAM-81008-TR1

Silicon Bipolar MMIC 5? GHz Active Double Balanced Mixer/IF? Amp
AGILENT

IAM-81018

RF Mixer
ETC

IAM-81028

Silicon Bipolar MMIC 5 GHz Active Double Balanced Mixer/IF Amp
AGILENT

IAM-82008

Silicon Bipolar MMIC 5 GHz Active Double Balanced Mixer/ IF Amp
AGILENT