ICP-10125 [TDK]

气压传感器;
ICP-10125
型号: ICP-10125
厂家: TDK ELECTRONICS    TDK ELECTRONICS
描述:

气压传感器

传感器
文件: 总30页 (文件大小:1143K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICP-10125 Datasheet  
High Accuracy, Low Power, 10atm Waterproof Barometric Pressure  
and Temperature Sensor IC  
GENERAL INFORMATION  
FEATURES  
The ICP-10125 pressure sensor is based on MEMS capacitive  
technology, which provides ultra-low noise at the lowest  
power, enabling industry leading relative accuracy, sensor  
throughput, and temperature stability. The pressure sensor  
can measure pressure differences with an accuracy of ±1 Pa,  
an accuracy enabling altitude measurement differentials as  
small as 8.5 cm, less than the height of a single stair step.  
Pressure operating range: 30 to 110 kPa  
Noise and current consumption  
o
o
o
0.4 Pa @ 10.4 µA (ULN mode)  
0.8 Pa @ 5.2 µA (LN mode)  
3.2 Pa @ 1.3 µA (LP mode)  
Pressure Sensor Relative Accuracy: ±1 Pa for any  
10 hPa change over 950 hPa-1050 hPa at 25C  
Pressure Sensor Absolute Accuracy: ±1 hPa over  
950 hPa-1050 hPa, 0C to 65C  
Pressure Sensor Temperature Coefficient Offset:  
±0.5 Pa/C over 25C to 45C at 100 kPa  
Temperature Sensor Absolute Accuracy: ±0.4C  
IPx8: Waterproof to 10 ATM  
Consuming only 1.3 µA @1 Hz, the device is available in a  
small footprint 3.55 mm x 3.55 mm x 1.45 mm chimney  
package with waterproofing gel providing IPx8 waterproofing  
to 10 ATM. The ICP-10125 is ideally suited for wearable  
fitness monitoring and battery powered IoT.  
The ICP-10125 offers an industry leading temperature  
coefficient offset of ±0.5 Pa/C. The combination of high  
accuracy, low power, temperature stability, waterproofing in  
a small footprint enables higher performance barometric  
pressure sensing for sports activity identification and mobile  
indoor/outdoor navigation.  
Temperature operating range: -40 °C to 85 °C  
Host Interface: I2C at up to 400 kHz  
Single Supply voltage: 1.8V ±5%  
RoHS and Green compliant  
TYPICAL OPERATING CIRCUIT  
DEVICE INFORMATION  
PART  
NUMBER  
PACKAGE  
LID OPENING  
Gel filled HTCC package with  
machined lid; IPx8  
waterproofing to 10 ATM  
3.55x3.55x1.45mm  
HTCC-10L  
ICP-10125  
Denotes RoHS and Green-Compliant Package  
BLOCK DIAGRAMS  
AP/HUB  
I2C  
ICP-10125  
APPLICATIONS  
Smart watches  
Leisure, Sports, and Fitness Activity Monitoring for  
Wearable Sensors  
Altimeters and barometers for portable devices  
Indoor/Outdoor Navigation (dead-reckoning,  
floor/elevator/step detection)  
Home and Building Automation  
Weather Forecasting  
InvenSense, Inc. reserves the right to change  
specifications and information herein without notice  
unless the product is in mass production and the  
datasheet has been designated by InvenSense in writing  
as subject to a specified Product / Process Change  
Notification Method regulation.  
InvenSense, a TDK Group Company  
1745 Technology Drive, San Jose, CA 95110 U.S.A  
Document Number: DS-000329  
Revision: 1.1  
Release Date: 04/09/2021  
+1(408) 9887339  
invensense.tdk.com  
 
 
 
 
 
 
ICP-10125  
TABLE OF CONTENTS  
GENERAL INFORMATION ..................................................................................................................................................1  
DEVICE INFORMATION .....................................................................................................................................................1  
BLOCK DIAGRAMS...........................................................................................................................................................1  
APPLICATIONS................................................................................................................................................................1  
FEATURES .....................................................................................................................................................................1  
TYPICAL OPERATING CIRCUIT ............................................................................................................................................1  
1
2
INTRODUCTION..............................................................................................................................................5  
1.1  
1.2  
PURPOSE AND SCOPE ..........................................................................................................................................5  
PRODUCT OVERVIEW...........................................................................................................................................5  
PRESSURE AND TEMPERATURE SENSOR SPECIFICATIONS ..............................................................................6  
2.1  
OPERATION RANGES ...........................................................................................................................................6  
OPERATION MODES ............................................................................................................................................6  
PRESSURE SENSOR SPECIFICATIONS ........................................................................................................................7  
TEMPERATURE SENSOR SPECIFICATIONS..................................................................................................................7  
RECOMMENDED OPERATION CONDITIONS...............................................................................................................7  
2.2  
2.3  
2.4  
2.5  
3
4
5
ELECTRICAL SPECIFICATIONS ..........................................................................................................................8  
3.1  
ELECTRICAL CHARACTERISTICS ...............................................................................................................................8  
ABSOLUTE MAXIMUM RATINGS.............................................................................................................................9  
SENSOR SYSTEM TIMING ......................................................................................................................................9  
I2C TIMING CHARACTERIZATION ..........................................................................................................................10  
3.2  
3.3  
3.4  
APPLICATIONS INFORMATION ..................................................................................................................... 11  
4.1  
INTERFACE SPECIFICATIONS.................................................................................................................................11  
PIN OUT DIAGRAM AND SIGNAL DESCRIPTION........................................................................................................11  
TYPICAL OPERATING CIRCUIT ..............................................................................................................................12  
BILL OF MATERIALS FOR EXTERNAL COMPONENTS...................................................................................................13  
4.2  
4.3  
4.4  
OPERATION AND COMMUNICATION............................................................................................................ 14  
5.1  
POWER-UP AND COMMUNICATION START ............................................................................................................14  
MEASUREMENT COMMANDS ..............................................................................................................................14  
STARTING A MEASUREMENT ...............................................................................................................................14  
SENSOR BEHAVIOR DURING MEASUREMENT..........................................................................................................14  
READOUT OF MEASUREMENT RESULTS .................................................................................................................15  
SOFT RESET .....................................................................................................................................................15  
READ-OUT OF ID REGISTER.................................................................................................................................15  
CHECKSUM CALCULATION ..................................................................................................................................16  
CONVERSION OF SIGNAL OUTPUT ........................................................................................................................16  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
5.10 READ-OUT OF CALIBRATION PARAMETERS .............................................................................................................18  
5.11 SAMPLE CODE: EXAMPLE C SYNTAX .....................................................................................................................18  
5.12 SAMPLE CODE: CONVERSION FORMULA (EXAMPLE PYTHON SYNTAX)..........................................................................20  
5.13 SAMPLE CODE: USING CONVERSION FORMULA (EXAMPLE PYTHON SYNTAX).................................................................21  
5.14 COMMUNICATION DATA SEQUENCES....................................................................................................................22  
6
ASSEMBLY.................................................................................................................................................... 23  
6.1  
IMPLEMENTATION AND USAGE RECOMMENDATIONS ...............................................................................................23  
6.1.1  
Soldering ..............................................................................................................................................23  
Document Number: DS-000329  
Revision: 1.1  
Page 2 of 30  
ICP-10125  
6.1.2  
Chemical Exposure and Sensor Protection...........................................................................................23  
7
PACKAGE DIMENSIONS ................................................................................................................................ 24  
TAPE AND REEL SPECIFICATION.................................................................................................................... 26  
ORDERING GUIDE......................................................................................................................................... 27  
REFERENCES ............................................................................................................................................. 28  
REVISION HISTORY ................................................................................................................................... 29  
8
9
10  
11  
Document Number: DS-000329  
Revision: 1.1  
Page 3 of 30  
ICP-10125  
LIST OF FIGURES  
Figure 1. Digital I/O Pads Timing ................................................................................................................10  
Figure 2. Pin Out Diagram for ICP-10125, 3.55mm x 3.55mm x 1.45mm HTCC.......................................11  
Figure 3. ICP-10125 Application Schematic ...............................................................................................12  
Figure 4. Typical Application Circuit............................................................................................................13  
Figure 5. Communication Data Sequences ................................................................................................22  
Figure 6. ICP-10125 Package Diagram......................................................................................................24  
Figure 7. ICP-10125 recommended PCB land pattern ...............................................................................25  
Figure 8. ICP-10125 Artwork.......................................................................................................................25  
Figure 9. ICP-10125 Tape Dimensions ...................................................................................................26  
Figure 10. Tape and Reel Orientation.........................................................................................................26  
LIST OF TABLES  
Table 1. Operation Ranges...........................................................................................................................6  
Table 2. Operation Modes.............................................................................................................................6  
Table 3. Pressure Sensor Specifications......................................................................................................7  
Table 4. Temperature Sensor Specifications................................................................................................7  
Table 5. Electrical Specifications ..................................................................................................................8  
Table 6. Absolute Maximum Ratings ............................................................................................................9  
Table 7. System Timing Specifications.........................................................................................................9  
Table 8. I2C Parameters Specification ........................................................................................................10  
Table 9. Signal Descriptions .......................................................................................................................11  
Table 10. Bill of Materials............................................................................................................................13  
Table 11. ICP-10125 I2C Device Address...................................................................................................14  
Table 12. Measurement Commands...........................................................................................................14  
Table 13. Soft Reset Command..................................................................................................................15  
Table 14. Read-Out Command of ID Register............................................................................................15  
Table 15. 16-bit ID Structure.......................................................................................................................16  
Table 16. ICP-10125 I2C CRC Properties...................................................................................................16  
Document Number: DS-000329  
Revision: 1.1  
Page 4 of 30  
ICP-10125  
1 INTRODUCTION  
1.1 PURPOSE AND SCOPE  
This document is a preliminary product specification, providing a description, specifications, and design related  
information for the ICP-10125 Pressure Sensor.  
Specifications are subject to change without notice. Final specifications will be updated based upon  
characterization of production silicon.  
1.2 PRODUCT OVERVIEW  
The ICP-10125 is an ultra-low power, low noise, digital output barometric pressure and temperature sensor IC. It is  
based on an innovative MEMS capacitive pressure sensor technology that can measure pressure differences with  
an accuracy of ±1 Pa at the industry’s lowest power. The high accuracy MEMS capacitive pressure sensor is capable  
of measuring altitude differentials down to 8.5 cm without the penalty of increased power consumption or  
reduced sensor throughput.  
The capacitive pressure sensor has a ±1 hPa absolute accuracy over its full range of 300 hPa -1100 hPa. The  
pressure sensor has an embedded temperature sensor and 400 kHz I2C bus for communication. For power-critical  
applications, the ICP-10125 features a low power mode of 1.3 µA at a noise of 3.2 Pa or for high performance  
applications, it features a low noise mode of 0.8 Pa while only consuming 5.2 µA.  
The device is available in a small footprint 3.55 mm x 3.55 mm x 1.45 mm chimney package with waterproofing gel  
providing IPx8 waterproofing to 10 ATM.  
The ICP-10125 also offers industry leading temperature stability of the pressure sensor with a temperature  
coefficient offset of ±0.5 Pa/C. The high accuracy, temperature stability, and market leading low power  
consumption of 1.3 µA @1 Hz offered by ICP-10125 makes it ideally suited for applications such as mobile phones,  
drone flight control and stabilization, indoor/outdoor navigation (elevator, floor, and stair step detection), sports  
and fitness activity monitoring, and battery-powered IoT.  
Document Number: DS-000329  
Revision: 1.1  
Page 5 of 30  
ICP-10125  
2 PRESSURE AND TEMPERATURE SENSOR SPECIFICATIONS  
2.1 OPERATION RANGES  
The sensor shows best performance when operated within the recommended temperature and pressure range  
(hereafter called normal conditions) of 0°C 45°C and 95 kPa 105 kPa, respectively. The following ranges are  
defined for the device:  
OPERATION RANGE  
Normal  
PRESSURE (KPA)  
TEMPERATURE (C)  
95 to 105  
0 to 45  
Extended  
Maximum  
30 to 110  
25 to 115  
-20 to 65  
-40 to 85  
Table 1. Operation Ranges  
2.2 OPERATION MODES  
The sensor can be operated in up to four different measurement modes to satisfy different requirements for  
power consumption vs. noise, accuracy, and measurement frequency. An overview of the operation modes is given  
in Table 2.  
PARAMETER  
CONDITIONS  
SENSOR MODE  
TYP  
MAX  
UNITS  
NOTES  
Low Power (LP)  
Normal (N)  
1.6  
5.6  
1.8  
6.3  
1
1
1
Time between sending last bit  
of measurement command,  
and sensor data ready for  
measurement  
Conversion Time  
ms  
Low Noise (LN)  
Ultra Low Noise  
(ULN)  
20.8  
23.8  
83.2  
94.5  
1
Low Power (LP)  
Normal (N)  
Low Noise (LN)  
Ultra Low Noise  
(ULN)  
Low Power (LP)  
Normal  
Low Noise (LN)  
Ultra Low Noise  
(ULN)  
1.3  
2.6  
5.2  
Current  
Consumption  
1 Hz ODR  
µA  
Pa  
10.4  
3.2  
1.6  
0.8  
Pressure RMS  
Noise  
Valid for P = 100 kPa, T = 25°C,  
and U = 1.8V  
0.4  
Table 2. Operation Modes  
Notes:  
1. Guaranteed by design.  
Low Power modes supports ODR greater than 500 Hz while the Low Noise mode provides industry leading RMS  
noise at a fast 40 Hz ODR. Further decrease in noise may be achieved by software oversampling and filtering  
through customer’s software implementation or custom TDK InvenSense operation modes available upon request.  
Document Number: DS-000329  
Revision: 1.1  
Page 6 of 30  
 
ICP-10125  
2.3 PRESSURE SENSOR SPECIFICATIONS  
Pressure sensor specifications are given in Table 3. Default conditions of 25 °C and 1.8V supply voltage apply, unless  
otherwise stated.  
PARAMETER  
Absolute Accuracy  
CONDITIONS  
Normal range  
Extended range  
TYP  
±1  
±1.5  
UNITS  
NOTES  
hPa  
1
Any step 1 kPa, 25 °C  
Any step 10 kPa, 25 °C  
±1  
±3  
Relative Accuracy  
Pa  
Long-term drift  
During 1 year  
Solder drift  
Normal range  
Extended range  
±35  
±40  
1.5  
Pa/y  
hPa  
1, 2  
P = 100 kPa  
25°C … 45°C  
Maximum range  
Temperature coefficient offset  
Resolution  
±0.5  
0.01  
Pa/°C  
Pa  
Table 3. Pressure Sensor Specifications  
Notes:  
1. Absolute accuracy may be improved through One Point Calibration  
2. Sensor accuracy post Solder reflow may be improved through One Point Calibration  
2.4 TEMPERATURE SENSOR SPECIFICATIONS  
Specifications of the temperature sensor are shown in Table 4.  
PARAMETER  
Absolute Accuracy  
Repeatability  
Resolution  
CONDITIONS  
Extended range  
Extended range  
Maximum range  
Normal range  
TYP  
±0.4  
±0.1  
0.01  
<0.04  
UNITS  
°C  
°C  
°C  
°C/y  
Long-term drift  
Table 4. Temperature Sensor Specifications  
2.5 RECOMMENDED OPERATION CONDITIONS  
The pressure sensor exhibits best performance when operated within the normal pressure and temperature  
range 0°C < T < 45°C and 95 kPa < P < 105 kPa.  
Injected photo current due to strong light sources can influence the sensor performance and should be avoided to  
guarantee best operation.  
The sensor should not be exposed to high mechanical stress, the resulting deformation of the package can alter  
internal dimensions and therefore falsify the sensor signal. Solder reflow may affect device performance. One-  
point calibration can improve the sensor accuracy post solder reflow.  
Document Number: DS-000329  
Revision: 1.1  
Page 7 of 30  
 
 
ICP-10125  
3 ELECTRICAL SPECIFICATIONS  
3.1 ELECTRICAL CHARACTERISTICS  
Default conditions of 25 °C and 1.8V supply voltage apply to values in Table 5, unless otherwise stated.  
PARAMETER  
Supply voltage  
SYMBOL  
VDD  
CONDITIONS  
MIN  
1.71  
1.0  
TYP  
1.8  
MAX  
1.89  
1.5  
UNITS  
COMMENTS  
V
V
Power-up/down level  
Supply Ramp Time  
VPOR  
Static power supply  
1.25  
Monotonic ramp. Ramp rate  
is 10% to 90% of the final  
value  
TRAMP  
0.01  
100  
ms  
Idle state  
-
-
1.0  
2.5  
µA  
µA  
Current consumption while  
sensor is measuring.  
Measurement  
210  
300  
Current consumption in  
µA continuous operation @ 1 Hz  
ODR in LP Mode  
Supply current  
IDD  
-
-
1.3  
5.2  
-
-
Average  
Current consumption in  
µA continuous operation @1 Hz  
ODR in LN Mode  
Low level input voltage  
High level input voltage  
Low level output voltage  
VIL  
VIH  
VOL  
0
0.7 VDD  
-
-
-
0.3 VDD  
V
V
VDD  
0 < IOL < 3 mA  
VOL = 0.4V  
-
0.2 VDD  
V
3.1  
4.1  
4.5  
-
-
mA  
mA  
Output Sink Current  
IOL  
VOL = 0.6V  
3.5  
Table 5. Electrical Specifications  
Document Number: DS-000329  
Revision: 1.1  
Page 8 of 30  
 
ICP-10125  
3.2 ABSOLUTE MAXIMUM RATINGS  
Stress levels beyond those listed in Table 6 may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these conditions cannot be guaranteed. Exposure to the absolute  
maximum rating conditions for extended periods may affect the reliability of the device.  
PARAMETER  
Supply voltage, VDD  
RATING  
-0.3V to 2.16V  
-0.3V to VDD 0.3V  
-40°C to 85°C  
-40°C to 125°C  
2.0 kV  
Supply Voltage, SCL & SDA  
Operating temperature range  
Storage temperature range  
ESD HBM  
ESD CDM  
250V  
Latch up, JESD78 Class II, 85°C  
Overpressure  
100 mA  
>600kPa  
Table 6. Absolute Maximum Ratings  
3.3 SENSOR SYSTEM TIMING  
Default conditions of 25°C and 1.8V supply voltage apply to typ. values listed in Table 7, unless otherwise stated.  
Max. values apply over the specified operating range of VDD and over the operating temperature range.  
PARAMETER  
Power-up time  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
COMMENTS  
Time between VDD reaching VPU  
and sensor entering idle state  
tPU  
After hard reset, VDD ≥ VPOR  
-
170  
-
-
µs  
µs  
Time between ACK of soft reset  
command and sensor entering  
idle state  
Soft reset time  
tSR  
After soft reset  
-
-
170  
Duration for a pressure and  
temperature measurement  
Measurement duration  
tMEAS LN Mode  
20.8  
23.8  
ms  
Table 7. System Timing Specifications  
Document Number: DS-000329  
Revision: 1.1  
Page 9 of 30  
 
 
ICP-10125  
3.4 I2C TIMING CHARACTERIZATION  
Default conditions of 25°C and 1.8V supply voltage apply to values in Table 8, unless otherwise stated.  
PARAMETER  
SCL clock frequency  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
fSCL  
0
-
400  
kHz  
After this period, the first  
clock pulse is generated  
Hold time (repeated) START condition  
tHD;STA  
0.6  
-
-
µs  
LOW period of the SCL clock  
HIGH period of the SCL clock  
tLOW  
tHIGH  
1.3  
0.6  
-
-
-
-
µs  
µs  
Set-up time for a repeated START  
condition  
tSU;STA  
0.6  
-
-
µs  
SDA hold time  
tHD;DAT  
tSU;DAT  
tR  
0
100  
20  
-
-
-
-
-
-
-
µs  
ns  
ns  
ns  
µs  
SDA set-up time  
SCL/SDA rise time  
SCL/SDA fall time  
SDA valid time  
-
300  
300  
0.9  
tF  
tVD;DAT  
-
Set-up time for STOP condition  
Capacitive load on bus line  
tSU;STO  
CB  
0.6  
-
-
-
-
µs  
pF  
400  
Table 8. I2C Parameters Specification  
1/fSC  
tHIGH  
tR  
tF  
tLOW  
70  
SCL  
30  
tSU;D  
tHD;DA  
DATA IN  
70  
30  
SDA  
tR  
tVD;DAT  
tF  
DATA OUT  
70  
30  
SDA  
Figure 1. Digital I/O Pads Timing  
Document Number: DS-000329  
Revision: 1.1  
Page 10 of 30  
 
ICP-10125  
4 APPLICATIONS INFORMATION  
4.1 INTERFACE SPECIFICATIONS  
The ICP-10125 supports I2C fast mode, SCL clock frequency from 0 to 400 kHz.  
4.2 PIN OUT DIAGRAM AND SIGNAL DESCRIPTION  
PIN NUMBER  
PIN NAME  
RESV  
SCL  
DESCRIPTION  
No Connect (NC) or Connect to GND  
I2C Serial Clock  
1
2
3
4
RESV  
SDA  
Connect to Ground  
I2C Serial Data  
5
VDD  
Power Supply VDD  
6
7
8
9
RESV  
RESV  
RESV  
VSS  
No Connect (NC) or Connect to GND  
No Connect (NC) or Connect to GND  
Connect to Ground  
Connect to Ground  
10  
RESV  
No Connect (NC) or Connect to GND  
Table 9. Signal Descriptions  
9
VSS  
10  
RESV  
8
RESV  
Pin 1 Indicator  
1
RESV  
7
RESV  
BOTTOM  
VIEW  
6
RESV  
2
SCL  
5
VDD  
4
SDA  
3
RESV  
Figure 2. Pin Out Diagram for ICP-10125, 3.55mm x 3.55mm x 1.45mm HTCC  
Document Number: DS-000329  
Revision: 1.1  
Page 11 of 30  
ICP-10125  
4.3 TYPICAL OPERATING CIRCUIT  
GND  
GND  
GND  
Pin 1 Indicator  
GND  
GND  
GND  
SCL  
VDD  
C1, 100nF  
GND  
SDA  
GND  
Figure 3. ICP-10125 Application Schematic  
Power supply pins supply voltage (VDD) and ground (VSS) must be decoupled with a 100 nF capacitor that shall be  
placed as close to the sensor as possible. Connections shown as dashed lines are recommended for mechanical  
stability of the sensor (see Figure 4).  
Document Number: DS-000329  
Revision: 1.1  
Page 12 of 30  
ICP-10125  
Connections shown as dashed lines are recommended for mechanical stability of the sensor  
Figure 4. Typical Application Circuit  
SCL is used to synchronize the communication between the microcontroller and the sensor. The master must keep  
the clock frequency within 0 to 400 kHz as specified in Table 8.  
The SDA pin is used to transfer data in and out of the sensor. For safe communication, the timing specifications  
defined in the I2C manual must be met.  
To avoid signal contention, the microcontroller must only drive SDA and SCL low. External pull-up resistors (i.e.  
10 kΩ) are required to pull the signal high. For dimensioning resistor sizes, user should also consider bus capacity  
requirements. It should be noted that pull-up resistors may be included in I/O circuits of microcontrollers.  
4.4 BILL OF MATERIALS FOR EXTERNAL COMPONENTS  
COMPONENT  
VDD Bypass Capacitor  
LABEL  
SPECIFICATION  
QUANTITY  
C1  
Ceramic, X7R, 100 nF ±10%  
1
Table 10. Bill of Materials  
Document Number: DS-000329  
Revision: 1.1  
Page 13 of 30  
ICP-10125  
5 OPERATION AND COMMUNICATION  
All commands and memory locations of the ICP-10125 are mapped to a 16-bit address space which can be accessed  
via the I2C protocol.  
ICP-10125  
BINARY  
DECIMAL  
HEXADECIMAL  
I2C address  
110’0011  
99  
0x63  
Table 11. ICP-10125 I2C Device Address  
5.1 POWER-UP AND COMMUNICATION START  
When VDD reaches the power-up voltage level VPOR, the ICP-10125 enters idle state after a duration of tPU. In idle  
state, the ICP-10125 is ready to receive commands from the master (microcontroller).  
Each transmission sequence begins with START condition (S) and ends with an (optional) STOP condition (P) as  
described in the I2C-bus specification. Whenever the sensor is powered up, but not performing a measurement or  
communicating, it automatically enters idle state for energy saving.  
5.2 MEASUREMENT COMMANDS  
The ICP-10125 provides the possibility to define the sensor behavior during measurement as well as the  
transmission sequence of measurement results. These characteristics are defined by the appropriate  
measurement command.  
Each measurement command triggers both a temperature and a pressure measurement.  
OPERATION MODE  
Low Power (LP)  
Normal (N)  
Low Noise (LN)  
Ultra-Low Noise (ULN)  
TRANSMIT T FIRST TRANSMIT P FIRST  
0x609C  
0x6825  
0x70DF  
0x7866  
0x401A  
0x48A3  
0x5059  
0x58E0  
Table 12. Measurement Commands  
5.3 STARTING A MEASUREMENT  
A measurement communication sequence consists of a START condition followed by the I2C header with the 7-bit  
I2C device address and a write bit (write W: ‘0’, 8-bit word including I2C header: 0xC6). The sensor indicates the  
proper reception of a byte by pulling the SDA pin low (ACK bit) after the falling edge of the 8th SCL clock. Then the  
sensor is ready to receive a 16-bit measurement command. Again, the ICP-10125 acknowledges the proper  
reception of each byte with ACK condition. A complete measurement cycle is presented in Figure 5.  
With the acknowledgement of the measurement command, the ICP-10125 starts measuring pressure and  
temperature.  
5.4 SENSOR BEHAVIOR DURING MEASUREMENT  
In general, the sensor does not respond to any I2C activity during measurement, i.e. I2C read and write headers are  
not acknowledged (NACK).  
Document Number: DS-000329  
Revision: 1.1  
Page 14 of 30  
 
ICP-10125  
5.5 READOUT OF MEASUREMENT RESULTS  
After a measurement command has been issued and the sensor has completed the measurement, the master can  
read the measurement results by sending a START condition followed by an I2C read header (8-bit word including  
I2C header: 0xC7). The sensor will acknowledge the reception of the read header and send the measured data in  
the specified order to the master. The MSB of the corresponding data is always transmitted first. Temperature  
data is transmitted in two 8-bit words and pressure data is transmitted in four 8-bit words. Regarding the pressure  
data, only the first three words MMSB, MLSB and LMSB contain information about the ADC pressure value p_dout.  
Therefore, for retrieving the ADC pressure value, LLSB must be disregarded:  
p_dout = MMSB 16 | MLSB 8| LMSB.  
Two bytes of data are always followed by one byte CRC checksum, for calculation see section 5.8. Each byte must  
be acknowledged by the microcontroller with an ACK condition for the sensor to continue sending data. If the ICP-  
10125 does not receive an ACK from the master after any byte of data, it will not continue sending data.  
Whether the sensor sends out pressure or temperature data first depends on the measurement command that  
was sent to the sensor to initiate the measurement (see Table 12).  
The I2C master can abort the read transfer with a NACK condition after any data byte if it is not interested in  
subsequent data, e.g. the CRC byte or the second measurement result, to save time.  
5.6 SOFT RESET  
The ICP-10125 provides a soft reset mechanism that forces the system into a well-defined state without removing  
the power supply. If the system is in idle state (i.e. if no measurement is in progress) the soft reset command will  
be accepted by ICP-10125. This triggers the sensor to reset all internal state machines and reload calibration data  
from the memory.  
COMMAND  
HEXADECIMAL CODE  
BINARY CODE  
Soft reset  
0x805D  
1000’0000’0101’1101  
Table 13. Soft Reset Command  
5.7 READ-OUT OF ID REGISTER  
The ICP-10125 has an ID register which contains a specific product code. The read-out of the ID register can be  
used to verify the presence of the sensor and proper communication. The command to read the ID register is  
shown in Table 14.  
COMMAND  
HEXADECIMAL CODE  
BINARY CODE  
Read ID register  
0xEFC8  
1110’1111’1100’1000  
Table 14. Read-Out Command of ID Register  
It needs to be sent to the ICP-10125 after an I2C write header. After the ICP-10125 has acknowledged the proper  
reception of the command, the master can send an I2C read header and the ICP-10125 will submit the 16-bit ID  
followed by 8 bits of CRC. The structure of the ID is described in Table 15. Bits 15:6 of the ID contain unspecified  
information (marked as “x”), which may vary from sensor to sensor, while bits 5:0 contain the ICP-10125 specific  
product code.  
Document Number: DS-000329  
Revision: 1.1  
Page 15 of 30  
 
 
ICP-10125  
16-bit ID  
xxxx'xxxx’xx 00’1000  
bits 5 to 0: ICP-10125-specific product code  
bits 15 to 6: unspecified information  
Table 15. 16-bit ID Structure  
5.8 CHECKSUM CALCULATION  
The 8-bit CRC checksum transmitted after each data word is generated by a CRC algorithm with the properties  
displayed in Table 16. The CRC covers the contents of the two previously transmitted data bytes.  
PROPERTY  
VALUE  
Name  
Width  
CRC-8  
8 bits  
Polynomial  
Initialization  
Reflect input  
Reflect output  
Final XOR  
0x31 (x8 + x5 + x4 + 1)  
0xFF  
false  
false  
0x00  
CRC(0x00) = 0xAC  
CRC(0xBEEF) = 0x92  
Examples  
Table 16. ICP-10125 I2C CRC Properties  
5.9 CONVERSION OF SIGNAL OUTPUT  
Pressure measurement data is always transferred as 4 8-bit words; temperature measurement data is always  
transferred as two 8-bit words. Please see section 5.5 for more details.  
Temperature measurement values t_dout are linearized by the ICP-10125 and must be calculated to °C by the user  
via the following formula:  
175°C  
T = - 45°C +  
× t_dout.  
16  
2
For retrieving physical pressure values in Pa the following conversion formula has to be used:  
B
P = A +  
,
C + pdout  
where p_dout is the sensor’s raw pressure output. The converted output is compensated for temperature effects  
via the temperature dependent functions A, B and C. Besides the raw temperature output t_dout, the calculation  
of A, B and C requires to access calibration parameters OTP0, OTP1, OTP2, OTP3 stored in the OTP of the sensor.  
Read-out of OTP parameters is described in section 5.10.  
Document Number: DS-000329  
Revision: 1.1  
Page 16 of 30  
 
ICP-10125  
Full sample code for calculating physical pressure values is given in section 5.11. The general workflow of the  
conversion is done by:  
1) Import class Invensense_pressure_conversion  
2) Read out values OTP0, …, OTP3 and save to c1, …, c4  
3) Create object name for an individual sensor with parameter values c1, …, c4  
name = Invensense_pressure_conversion  
([c1,c2,c3,c4])  
4) Get raw pressure p_dout and temperature t_dout data from the sensor as described in chapter 5.5.  
5) Call function get_pressure:  
name.get_pressure(p_dout, t_dout)  
The sample code from section 5.13 gives an example of this workflow.  
Document Number: DS-000329  
Revision: 1.1  
Page 17 of 30  
ICP-10125  
5.10 READ-OUT OF CALIBRATION PARAMETERS  
For converting raw pressure data to physical values, four calibration parameters have to be retrieved from the OTP  
of the sensor.  
Set up of OTP read:  
1) Send I2C write header 0xC6  
2) Send command 0xC595 (move pointer in address register)  
3) Send address parameter together with its CRC 0x00669C  
Steps 1) 3) can be executed on many platforms by a single I2C write of the value 0xC59500669C.  
Read out parameters:  
Repeat the following procedure 4 times:  
a) Send I2C write header 0xC6  
b) Send command 0xC7F7 (incremental read-out of OTP)  
c) Send I2C read header 0xC7  
d) Read 3B (2B of data and 1B of CRC)  
e) Decode data as 16bit big endian signed integer and store result into n-th calibration parameter cn.  
Steps a) to d) can be executed on many platforms by a single write 0xC7F7 to the chip address followed by a single  
read of 3 B from the chip address.  
5.11 SAMPLE CODE: EXAMPLE C SYNTAX  
/* data structure to hold pressure sensor related parameters */  
typedef struct inv_invpres  
{
struct inv_invpres_serif serif;  
uint32_t min_delay_us;  
uint8_t pressure_en;  
uint8_t temperature_en;  
float sensor_constants[4]; // OTP values  
float p_Pa_calib[3];  
float LUT_lower;  
float LUT_upper;  
float quadr_factor;  
float offst_factor;  
} inv_invpres_t;  
int inv_invpres_init(struct inv_invpres * s)  
{
short otp[4];  
read_otp_from_i2c(s, otp);  
init_base(s, otp);  
return 0;  
}
int read_otp_from_i2c(struct inv_invpres * s, short *out)  
{
unsigned char data_write[10];  
unsigned char data_read[10] = {0};  
int status;  
int i;  
// OTP Read mode  
Document Number: DS-000329  
Revision: 1.1  
Page 18 of 30  
ICP-10125  
data_write[0] = 0xC5;  
data_write[1] = 0x95;  
data_write[2] = 0x00;  
data_write[3] = 0x66;  
data_write[4] = 0x9C;  
status = inv_invpres_serif_write_reg(&s->serif, ICC_ADDR_PRS, data_write, 5);  
if (status)  
return status;  
// Read OTP values  
for (i = 0; i < 4; i++) {  
data_write[0] = 0xC7;  
data_write[1] = 0xF7;  
status = inv_invpres_serif_write_reg(&s->serif, ICC_ADDR_PRS, data_write, 2);  
if (status)  
return status;  
status = inv_invpres_serif_read_reg(&s->serif, ICC_ADDR_PRS, data_read, 3);  
if (status)  
return status;  
out[i] = data_read[0]<<8 | data_read[1];  
}
return 0;  
}
void init_base(struct inv_invpres * s, short *otp)  
{
int i;  
for(i = 0; i < 4; i++)  
s->sensor_constants[i] = (float)otp[i];  
s->p_Pa_calib[0] = 45000.0;  
s->p_Pa_calib[1] = 80000.0;  
s->p_Pa_calib[2] = 105000.0;  
s->LUT_lower = 3.5 * (1<<20);  
s->LUT_upper = 11.5 * (1<<20);  
s->quadr_factor = 1 / 16777216.0;  
s->offst_factor = 2048.0;  
}
// p_LSB -- Raw pressure data from sensor  
// T_LSB -- Raw temperature data from sensor  
int inv_invpres_process_data(struct inv_invpres * s, int p_LSB, int T_LSB,  
float * pressure, float * temperature)  
{
float t;  
float s1,s2,s3;  
float in[3];  
float out[3];  
float A,B,C;  
t = (float)(T_LSB - 32768);  
s1 = s->LUT_lower + (float)(s->sensor_constants[0] * t * t) * s->quadr_factor;  
s2 = s->offst_factor * s->sensor_constants[3] + (float)(s->sensor_constants[1] * t * t) * s->quadr_factor;  
s3 = s->LUT_upper + (float)(s->sensor_constants[2] * t * t) * s->quadr_factor;  
in[0] = s1;  
in[1] = s2;  
in[2] = s3;  
calculate_conversion_constants(s, s->p_Pa_calib, in, out);  
A = out[0];  
B = out[1];  
C = out[2];  
*pressure = A + B / (C + p_LSB);  
*temperature = -45.f + 175.f/65536.f * T_LSB;  
return 0;  
}
// p_Pa -- List of 3 values corresponding to applied pressure in Pa  
// p_LUT -- List of 3 values corresponding to the measured p_LUT values at the applied pressures.  
void calculate_conversion_constants(struct inv_invpres * s, float *p_Pa,  
float *p_LUT, float *out)  
Document Number: DS-000329  
Revision: 1.1  
Page 19 of 30  
ICP-10125  
{
float A,B,C;  
C = (p_LUT[0] * p_LUT[1] * (p_Pa[0] - p_Pa[1]) +  
p_LUT[1] * p_LUT[2] * (p_Pa[1] - p_Pa[2]) +  
p_LUT[2] * p_LUT[0] * (p_Pa[2] - p_Pa[0])) /  
(p_LUT[2] * (p_Pa[0] - p_Pa[1]) +  
p_LUT[0] * (p_Pa[1] - p_Pa[2]) +  
p_LUT[1] * (p_Pa[2] - p_Pa[0]));  
A = (p_Pa[0] * p_LUT[0] - p_Pa[1] * p_LUT[1] - (p_Pa[1] - p_Pa[0]) * C) / (p_LUT[0] - p_LUT[1]);  
B = (p_Pa[0] - A) * (p_LUT[0] + C);  
out[0] = A;  
out[1] = B;  
out[2] = C;  
}
5.12 SAMPLE CODE: CONVERSION FORMULA (EXAMPLE PYTHON SYNTAX)  
class InvensensePressureConversion:  
""" Class for conversion of the pressure and temperature output of the Invensense sensor"""  
def __init__(self, sensor_constants):  
""" Initialize customer formula  
Arguments:  
sensor_constants -- list of 4 integers: [c1, c2, c3, c4]  
"""  
self.sensor_constants = sensor_constants  
# configuration for ICP-10125 Samples  
self.p_Pa_calib = [45000.0, 80000.0, 105000.0]  
self.LUT_lower = 3.5 * (2**20)  
self.LUT_upper = 11.5 * (2**20)  
self.quadr_factor = 1 / 16777216.0  
self.offst_factor = 2048.0  
def calculate_conversion_constants(self, p_Pa, p_LUT):  
""" calculate temperature dependent constants  
Arguments:  
p_Pa -- List of 3 values corresponding to applied pressure in Pa  
p_LUT -- List of 3 values corresponding to the measured p_LUT values at the applied pressures.  
"""  
C = (p_LUT[0] * p_LUT[1] * (p_Pa[0] - p_Pa[1]) +  
p_LUT[1] * p_LUT[2] * (p_Pa[1] - p_Pa[2]) +  
p_LUT[2] * p_LUT[0] * (p_Pa[2] - p_Pa[0])) / \  
(p_LUT[2] * (p_Pa[0] - p_Pa[1]) +  
p_LUT[0] * (p_Pa[1] - p_Pa[2]) +  
p_LUT[1] * (p_Pa[2] - p_Pa[0]))  
A = (p_Pa[0] * p_LUT[0] - p_Pa[1] * p_LUT[1] - (p_Pa[1] - p_Pa[0]) * C) / (p_LUT[0] - p_LUT[1])  
Document Number: DS-000329  
Revision: 1.1  
Page 20 of 30  
ICP-10125  
B = (p_Pa[0] - A) * (p_LUT[0] + C)  
return [A, B, C]  
def get_pressure(self, p_LSB, T_LSB):  
""" Convert an output from a calibrated sensor to a pressure in Pa.  
Arguments:  
p_LSB -- Raw pressure data from sensor  
T_LSB -- Raw temperature data from sensor  
"""  
t = T_LSB - 32768.0  
s1 = self.LUT_lower + float(self.sensor_constants[0] * t * t) * self.quadr_factor  
s2 = self.offst_factor * self.sensor_constants[3] + float(self.sensor_constants[1] * t * t) * self.quadr_factor  
s3 = self.LUT_upper + float(self.sensor_constants[2] * t * t) * self.quadr_factor  
A, B, C = self.calculate_conversion_constants(self.p_Pa_calib, [s1, s2, s3])  
return A + B / (C + p_LSB)  
[end of the pseudocode]  
5.13 SAMPLE CODE: USING CONVERSION FORMULA (EXAMPLE PYTHON SYNTAX)  
def read_otp_from_i2c():  
# TODO: implement read from I2C  
# refer to data sheet for I2C commands to read OTP  
return 1000, 2000, 3000, 4000  
def read_raw_pressure_temp_from_i2c():  
# TODO: implement read from I2C  
# refer to data sheet for I2C commands to read pressure and temperature  
return 8000000, 32000  
# Sample code to read  
from Invensense_pressure_conversion import Invensense_pressure_conversion  
# -- initialization  
c1, c2, c3, c4 = read_otp_from_i2c()  
conversion = Invensense_pressure_conversion([c1, c2, c3, c4])  
# -- read raw pressure and temp data, calculate pressure  
p, T = read_raw_pressure_temp_from_i2c()  
pressure = conversion.get_pressure(p, T)  
print 'Pressure: %f' % pressure  
[end of the pseudocode]  
Document Number: DS-000329  
Revision: 1.1  
Page 21 of 30  
ICP-10125  
5.14 COMMUNICATION DATA SEQUENCES  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28  
P
ICP-10125 measuring  
S
1 1 0 0 0 1 1 0  
0 1 0 1 0 0 0 0  
0 1 0 1 1 0 0 1  
Measurement command  
MSB  
Measurement command  
LSB  
I2C address + write  
Measurement in progress  
29 30 31 32 33 34 35 36 37 38 39  
40 41 42 43 44 45 46 47 48 49  
ICP-10125  
measuring  
ICP-10125 in  
idle state  
S
P
S
1 1 0 0 0 1 1 1  
1 1 0 0 0 1 1 1  
repeated I2C address +  
read while meas. is in  
prog. (polling)  
measurement  
completed  
measurement  
I2C address + read  
cont’d  
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76  
1 0 1 0 0 0 0 1  
0 0 1 1 0 0 1 1  
0 0 0 1 1 1 0 0  
Pressure CRC  
checksum  
Pressure MMSB  
Pressure MLSB  
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103  
1 0 1 0 0 0 0 1  
0 0 1 1 0 0 1 1  
0 0 0 1 1 1 0 0  
Pressure CRC  
checksum  
Pressure LMSB  
Pressure LLSB  
104 105106 107108 109 110111 112 113 114 115 116 117118 119 120 121 122 123 124 125 126 127 128 129 130131  
P
0 1 1 0 0 1 0 0  
1 0 0 0 1 0 1 1  
1 1 0 0 0 1 1 1  
Temperature CRC  
checksum  
Temperature MSB  
Temperature LSB  
Figure 5. Communication Data Sequences  
Document Number: DS-000329  
Revision: 1.1  
Page 22 of 30  
ICP-10125  
6 ASSEMBLY  
This section provides general guidelines for assembling TDK-InvenSense Micro Electro-Mechanical Systems (MEMS)  
pressure sensors.  
6.1 IMPLEMENTATION AND USAGE RECOMMENDATIONS  
6.1.1 Soldering  
When soldering, use the standard soldering profile IPC/JEDEC J-STD-020 with peak temperatures of 260°C. ICP-  
10125 may exhibit a pressure offset after soldering, some settling time may be required depending on soldering  
properties, PCB properties, and ambient conditions.  
The ICP-10125 package consists of a chimney port that opens to the sensing element. Special care must be taken  
during soldering process to avoid contaminating the sensor through the open chimney.  
1. Solder the sensor as a second soldering operation, after other components have been soldered  
2. Use No-Clean solder paste  
3. Sensor must not be subjected to board washing of any kind (critical)  
6.1.2 Chemical Exposure and Sensor Protection  
The ICP-10125 must not be exposed to particulates or liquids. If any type of protective coating must be applied to  
the circuit board, the sensor must be protected during the coating process.  
For further information on assembly, please refer to AN-000140 TDK-InvenSense Pressure Sensor PCB  
Design Guidelines.  
Document Number: DS-000329  
Revision: 1.1  
Page 23 of 30  
ICP-10125  
7 PACKAGE DIMENSIONS  
Package dimensions for the ICP-10125:  
Top View  
Side & Bottom View  
Figure 6. ICP-10125 Package Diagram  
Document Number: DS-000329  
Revision: 1.1  
Page 24 of 30  
ICP-10125  
Recommended PCB land pattern for the ICP-10125:  
3.6mm  
1.4mm  
10  
9
8
Pin 1 Indicator  
1
7
6
0.7mm  
2
0.45mm  
3
4
5
0.6mm R  
0.75mm  
0.95mm  
Top View  
Figure 7. ICP-10125 recommended PCB land pattern  
Product artwork for the ICP-10125:  
Pin 1 Indicator  
Pin 1 corner marking (front view)  
Front View  
Back View  
Side View  
Figure 8. ICP-10125 Artwork  
Document Number: DS-000329  
Revision: 1.1  
Page 25 of 30  
ICP-10125  
8 TAPE AND REEL SPECIFICATION  
Figure 9. ICP-10125 Tape Dimensions  
Figure 10. Tape and Reel Orientation  
Document Number: DS-000329  
Revision: 1.1  
Page 26 of 30  
ICP-10125  
9 ORDERING GUIDE  
QUANTITY  
PACKAGING  
PART  
TEMP RANGE  
PACKAGE BODY  
ICP-10125†  
−40°C to +85°C  
3.55x3.55x1.45mm HTCC-10L  
3000  
13” Tape and Reel  
Denotes RoHS and Green-Compliant Package  
Document Number: DS-000329  
Revision: 1.1  
Page 27 of 30  
ICP-10125  
10 REFERENCES  
Please refer to “InvenSense MEMS Handling Application Note (AN-IVS-0002A-00)” for the following information:  
Manufacturing Recommendations  
o
o
o
o
Assembly Guidelines and Recommendations  
PCB Design Guidelines and Recommendations  
MEMS Handling Instructions  
ESD Considerations  
o
Reflow Specification  
o
Storage Specifications  
o
o
o
Package Marking Specification  
Tape & Reel Specification  
Reel & Pizza Box Label  
o
Packaging  
o
Representative Shipping Carton Label  
Compliance  
o
o
o
Environmental Compliance  
DRC Compliance  
Compliance Declaration Disclaimer  
Document Number: DS-000329  
Revision: 1.1  
Page 28 of 30  
ICP-10125  
11 REVISION HISTORY  
REVISION DATE  
REVISION  
DESCRIPTION  
09/04/2020  
04/09/2021  
1.0  
1.1  
Initial Release  
Formatting Updates; Updated Pressure Sensor Specs (Table 3); Added Tape and Reel  
Specification (Section 8)  
Document Number: DS-000329  
Revision: 1.1  
Page 29 of 30  
ICP-10125  
This information furnished by InvenSense or its affiliates (“TDK InvenSense”) is believed to be accurate and reliable. However, no responsibility is assumed by TDK  
InvenSense for its use, or for any infringements of patents or other rights of third parties that may result from its use. Specifications are subject to change without  
notice. TDK InvenSense reserves the right to make changes to this product, including its circuits and software, in order to improve its design and/or performance,  
without prior notice. TDK InvenSense makes no warranties, neither expressed nor implied, regarding the information and specifications contained in this document.  
TDK InvenSense assumes no responsibility for any claims or damages arising from information contained in this document, or from the use of products and services  
detailed therein. This includes, but is not limited to, claims or damages based on the infringement of patents, copyrights, mask work and/or other intellectual  
property rights.  
Certain intellectual property owned by InvenSense and described in this document is patent protected. No license is granted by implication or otherwise under any  
patent or patent rights of InvenSense. This publication supersedes and replaces all information previously supplied. Trademarks that are registered trademarks are  
the property of their respective companies. TDK InvenSense sensors should not be used or sold in the development, storage, production or utilization of any  
conventional or mass-destructive weapons or for any other weapons or life threatening applications, as well as in any other life critical applications such as medical  
equipment, transportation, aerospace and nuclear instruments, undersea equipment, power plant equipment, disaster prevention and crime prevention equipment.  
©20202021 InvenSense. All rights reserved. InvenSense, MotionTracking, MotionProcessing, MotionProcessor, MotionFusion, MotionApps, DMP, AAR, and the  
InvenSense logo are trademarks of InvenSense, Inc. The TDK logo is a trademark of TDK Corporation. Other company and product names may be trademarks of the  
respective companies with which they are associated.  
©20202021 InvenSense. All rights reserved.  
Document Number: DS-000329  
Revision: 1.1  
Page 30 of 30  

相关型号:

ICP-112-2

IC Socket, QFP112, 112 Contact(s)
YAMAICHI

ICP-120-2

IC Socket, QFP120, 120 Contact(s)
YAMAICHI

ICP-160-1

IC Socket, QFP160, 160 Contact(s)
YAMAICHI

ICP-2010

Exportable Voice Grade Channel Processor
ETC

ICP-20100

气压传感器
TDK

ICP-2020-01

Voice Grade Channel Processor
ETC

ICP-2020-02

Voice Grade Channel Processor
ETC

ICP-2020SERIES

Voice Grade Channel Processor
ETC

ICP-2120-01

Voice Grade Channel Processor
ETC

ICP-2120-02

Voice Grade Channel Processor
ETC

ICP-F15

Silicon Surge Protector
ROHM

ICP-F20

Silicon Surge Protector
ROHM