ICS-51360 [TDK]

MEMS麦克风(麦克风);
ICS-51360
型号: ICS-51360
厂家: TDK ELECTRONICS    TDK ELECTRONICS
描述:

MEMS麦克风(麦克风)

商用集成电路
文件: 总22页 (文件大小:682K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS-51360  
Bottom Port PDM Digital Output Multi-Mode Microphone  
APPLICATIONS  
GENERAL DESCRIPTION  
Smartphones  
The ICS-51360 is a multi-mode, low noise digital MEMS  
microphone in a small package. The ICS-51360 consists of a  
MEMS microphone element and an impedance converter  
amplifier followed by a fourth-order Σ-Δ modulator. The digital  
interface allows the pulse density modulated (PDM) output of  
two microphones to be time multiplexed on a single data line  
using a single clock.  
Microphone Arrays  
Tablet Computers  
Cameras  
FEATURES  
SPEC  
STANDARD MODE  
LOW-POWER  
MODE  
26 dB FS ±1 dB  
65 dBA  
230 µA  
120 dB SPL  
768 kHz  
Sensitivity  
SNR  
Current  
AOP  
36 dB FS ±1 dB  
36 dB FS ±1 dB  
61 dBA  
510 µA  
130 dB SPL  
1.536 MHz  
The ICS-51360 has multiple modes of operation: Low-Power  
(AlwaysOn), Standard and Sleep. The ICS-51360 has high SNR  
in all operational modes. It has 130 dB SPL AOP in Standard  
Mode and 120 dB SPL AOP in Low-Power mode.  
62 dBA  
590 µA  
130 dB SPL  
2.4 MHz  
Clock  
The ICS-51360 is available in a standard 3.5 × 2.65 × 0.98 mm  
surface-mount package. It is reflow solder compatible with  
no sensitivity degradation.  
3.5 × 2.65 × 0.98 mm surface-mount package  
Extended frequency response from 50 Hz to >20 kHz  
Sleep Mode: 12 µA  
High power supply rejection (PSR): −98 dB FS  
Fourth-order Σ-Δ modulator  
Digital pulse density modulation (PDM) output  
Compatible with Sn/Pb and Pb-free solder processes  
RoHS/WEEE compliant  
FUNCTIONAL BLOCK DIAGRAM  
ORDERING INFORMATION  
PART  
ICS-51360  
TEMP RANGE  
−40°C to +85°C  
PACKAGING  
13” Tape and Reel  
ICS-51360  
CLK  
PDM  
ADC  
MODULATOR  
DATA  
POWER  
MANAGEMENT  
CHANNEL  
SELECT  
InvenSense Inc.  
1745 Technology Drive, San Jose, CA 95110 U.S.A  
+1(408) 9887339  
InvenSense reserves the right to change the detail  
specifications as may be required to permit  
improvements in the design of its products.  
Document Number: DS-000094  
Revision: 1.0  
Release Date: 9/23/2016  
www.invensense.com  
 
 
 
 
 
ICS-51360  
TABLE OF CONTENTS  
General Description ..................................................................................................................................................................... 1  
Applications ................................................................................................................................................................................. 1  
Features ....................................................................................................................................................................................... 1  
Functional Block Diagram ............................................................................................................................................................ 1  
Ordering Information................................................................................................................................................................... 1  
Table of Contents.................................................................................................................................................................................... 2  
Specifications .......................................................................................................................................................................................... 4  
Table 1. Acoustical/Electrical Characteristics General.............................................................................................................. 4  
Table 2. Acoustical/Electrical Characteristics Standard Mode (2.4 MHz)................................................................................. 4  
Table 3. Acoustical/Electrical Characteristics Standard Mode (1.536 MHz)............................................................................. 5  
Table 4. Acoustical/Electrical Characteristics Low-Power Mode.............................................................................................. 6  
Table 5. Digital Input/Output Characteristics .............................................................................................................................. 6  
Table 6. PDM Digital Input/Output.............................................................................................................................................. 7  
Timing Diagram............................................................................................................................................................................ 7  
Absolute Maximum Ratings.................................................................................................................................................................... 8  
Table 7. Absolute Maximum Ratings ........................................................................................................................................... 8  
ESD Caution ................................................................................................................................................................................. 8  
Soldering Profile........................................................................................................................................................................... 9  
Table 8. Recommended Soldering Profile*.................................................................................................................................. 9  
Pin Configurations And Function Descriptions ..................................................................................................................................... 10  
Table 9. Pin Function Descriptions............................................................................................................................................. 10  
Typical Performance Characteristics..................................................................................................................................................... 11  
Theory Of Operation ............................................................................................................................................................................. 12  
PDM Data Format ...................................................................................................................................................................... 12  
Table 10. ICS-51360 Channel Setting......................................................................................................................................... 12  
PDM Microphone Sensitivity ..................................................................................................................................................... 12  
Applications Information ...................................................................................................................................................................... 14  
Low Power Mode....................................................................................................................................................................... 14  
Dynamic Range Considerations ................................................................................................................................................. 14  
Connecting PDM Microphones.................................................................................................................................................. 14  
Sleep Mode................................................................................................................................................................................ 16  
Start-Up Time............................................................................................................................................................................. 16  
Supporting Documents ......................................................................................................................................................................... 17  
Application Notes General...................................................................................................................................................... 17  
PCB Design And Land Pattern Layout ................................................................................................................................................... 18  
PCB Material And Thickness ...................................................................................................................................................... 18  
Handling Instructions............................................................................................................................................................................ 19  
Page 2 of 22  
Document Number: DS-000094  
Revision: 1.0  
 
ICS-51360  
Pick And Place Equipment ......................................................................................................................................................... 19  
Reflow Solder............................................................................................................................................................................. 19  
Board Wash................................................................................................................................................................................ 19  
Outline Dimensions............................................................................................................................................................................... 20  
Ordering Guide .......................................................................................................................................................................... 20  
Revision History ......................................................................................................................................................................... 21  
Compliance Declaration Disclaimer ...................................................................................................................................................... 22  
Page 3 of 22  
Document Number: DS-000094  
Revision: 1.0  
ICS-51360  
SPECIFICATIONS  
TABLE 1. ACOUSTICAL/ELECTRICAL CHARACTERISTICS GENERAL  
TA = 25°C, VDD = 1.8 to 3.3 V, SCK = 1.536 MHz, 32× decimation, CLOAD = 30 pF unless otherwise noted. Typical specifications are not  
guaranteed.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
NOTES  
PERFORMANCE  
Directionality  
Output Polarity  
Omni  
Input acoustic pressure vs. output  
data  
Non-Inverted  
Supply Voltage (VDD  
)
1.65  
3.63  
V
Sleep Mode Current (IS)  
SCK < 200 kHz  
12  
µA  
TABLE 2. ACOUSTICAL/ELECTRICAL CHARACTERISTICS STANDARD MODE (2.4 MHZ)  
TA = 25°C, VDD = 1.8 to 3.3 V, SCK = 2.4 MHz, 50× decimation, CLOAD = 30 pF unless otherwise noted. Typical specifications are not  
guaranteed.  
PARAMETER  
Sensitivity  
Signal-to-Noise Ratio (SNR)  
Equivalent Input Noise (EIN)  
Acoustic Dynamic Range  
CONDITIONS  
1 kHz, 94 dB SPL  
20 kHz bandwidth, A-weighted  
20 kHz bandwidth, A-weighted  
Derived from EIN and acoustic  
overload point  
MIN  
−37  
TYP  
−36  
62  
MAX  
−35  
UNITS  
dB FS  
dBA  
NOTES  
1
32  
dBA SPL  
98  
dB  
%
Total Harmonic Distortion (THD)  
Power Supply Rejection (PSR)  
94 dB SPL  
0.2  
1
217 Hz, 100 mV p-p square wave  
superimposed on VDD = 1.8 V, A-  
weighted  
−98  
dB FS  
Power Supply RejectionSwept Sine  
Acoustic Overload Point  
Supply Current (IS)  
1 kHz sine wave  
10% THD  
VDD = 1.8 V, no load  
VDD = 1.8 V, 19 pF load  
−110  
130  
590  
670  
dB FS  
dB SPL  
µA  
650  
730  
µA  
Note 1: Sensitivity is relative to the RMS level of a sine wave with positive amplitude equal to 100% 1s density and negative amplitude equal to 0% 1s density.  
Note 2: The additional current in the loaded condition is independent of the microphone and can be calculated by ILOAD = CLOAD × VDD × fCLK  
.
Page 4 of 22  
Document Number: DS-000094  
Revision: 1.0  
ICS-51360  
TABLE 3. ACOUSTICAL/ELECTRICAL CHARACTERISTICS STANDARD MODE (1.536 MHZ)  
TA = 25°C, VDD = 1.8 to 3.3 V, SCK = 1.536 MHz, 32× decimation, CLOAD = 30 pF unless otherwise noted. Typical specifications are not  
guaranteed.  
PARAMETER  
Sensitivity  
Signal-to-Noise Ratio (SNR)  
Equivalent Input Noise (EIN)  
Acoustic Dynamic Range  
CONDITIONS  
1 kHz, 94 dB SPL  
20 kHz bandwidth, A-weighted  
20 kHz bandwidth, A-weighted  
Derived from EIN and acoustic  
overload point  
MIN  
37  
TYP  
−36  
61  
MAX  
35  
UNITS  
dB FS  
dBA  
NOTES  
1
33  
dBA SPL  
97  
dB  
%
Total Harmonic Distortion (THD)  
Power Supply Rejection (PSR)  
105 dBs SPL  
0.2  
1
217 Hz, 100 mV p-p square wave  
superimposed on VDD = 1.8 V, A-  
weighted  
−94  
dB FS  
Power Supply RejectionSwept Sine  
Acoustic Overload Point  
Supply Current (IS)  
1 kHz sine wave  
10% THD  
VDD = 1.8 V, no load  
VDD = 1.8 V, 19 pF load  
−112  
130  
510  
560  
dB FS  
dB SPL  
µA  
570  
620  
µA  
2
Note 1: Sensitivity is relative to the RMS level of a sine wave with positive amplitude equal to 100% 1s density and negative amplitude equal to 0% 1s density.  
Note 2: The additional current in the loaded condition is independent of the microphone and can be calculated by ILOAD = CLOAD × VDD × fCLK  
.
Page 5 of 22  
Document Number: DS-000094  
Revision: 1.0  
ICS-51360  
TABLE 4. ACOUSTICAL/ELECTRICAL CHARACTERISTICS LOW-POWER MODE  
TA = 25°C, VDD = 1.8 to 3.3 V, SCK = 768 kHz, 48× decimation, CLOAD = 30 pF unless otherwise noted. Typical specifications are not  
guaranteed.  
PARAMETER  
Sensitivity  
Signal-to-Noise Ratio (SNR)  
Equivalent Input Noise (EIN)  
Acoustic Dynamic Range  
CONDITIONS  
1 kHz, 94 dB SPL  
8 kHz bandwidth, A-weighted  
8 kHz bandwidth, A-weighted  
Derived from EIN and acoustic  
overload point  
MIN  
−27  
TYP  
−26  
65  
MAX  
−25  
UNITS  
dB FS  
dBA  
NOTES  
1
29  
dBA SPL  
91  
dB  
%
Total Harmonic Distortion (THD)  
Power Supply Rejection (PSR)  
105 dB SPL  
0.2  
1
217 Hz, 100 mV p-p square wave  
superimposed on VDD = 1.8 V, A-  
weighted  
−91  
dB FS  
Power Supply RejectionSwept Sine  
Acoustic Overload Point  
Supply Current (IS)  
1 kHz sine wave  
10% THD  
VDD = 1.8 V, no load  
VDD = 1.8 V, 19 pF load  
−102  
120  
230  
255  
dB FS  
dB SPL  
µA  
255  
280  
µA  
2
Note 1: Sensitivity is relative to the RMS level of a sine wave with positive amplitude equal to 100% 1s density and negative amplitude equal to 0% 1s density.  
Note 2: The additional current in the loaded condition is independent of the microphone and can be calculated by ILOAD = CLOAD × VDD × fCLK  
.
TABLE 5. DIGITAL INPUT/OUTPUT CHARACTERISTICS  
TA = 25°C, 1.8 V < VDD < 3.3 V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
NOTES  
Input Voltage High (VIH)  
0.65 × VDD  
V
Input Voltage Low (VIL)  
0.35 × VDD  
0.3 × VDD  
V
V
Output Voltage High (VOH  
)
ILOAD = 0.5 mA  
0.7 × VDD  
VDD  
0
Output Voltage Low (VOL)  
V
ILOAD = 0.5 mA  
Output DC Offset  
Latency  
Percent of full scale  
3
<30  
%
µs  
Page 6 of 22  
Document Number: DS-000094  
Revision: 1.0  
ICS-51360  
TABLE 6. PDM DIGITAL INPUT/OUTPUT  
TA = 25°C, 1.8 V < VDD < 3.3 V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
NOTES  
MODE SWITCHING  
Sleep Time  
Time from fCLK falling <200 kHz  
60  
20  
ms  
ms  
Wake-Up Time  
Standard mode, Sleep Mode to fCLK >1 MHz,  
output within 1 dB of final sensitivity, power  
on  
Wake-Up Time  
Low-Power Mode, Sleep Mode to fCLK >400  
kHz, output within 1 dB of final sensitivity,  
power on  
20  
10  
ms  
ms  
Switching time  
Between Low-Power and Standard Modes  
INPUT  
592  
1447  
200  
800  
4.8  
tCLKIN  
Input clock period  
Sleep Mode  
ns  
kHz  
kHz  
MHz  
690  
768  
1.536  
Clock Frequency (CLK)  
Low-Power Mode  
Standard Mode  
1.00  
fCLK < 2.65 MHz  
fCLK > 2.65 MHz  
CLK rise time (10% to 90% level)  
CLK fall time (90% to 10% level)  
40  
48  
60  
52  
40  
40  
%
%
ns  
ns  
Clock Duty Cycle  
tRISE  
tFALL  
1
1
OUTPUT  
t1OUTEN  
DATA1 (right) driven after falling clock edge  
DATA1 (right) disabled after rising clock  
edge  
DATA2 (left) driven after rising clock edge  
DATA2 (left) disabled after falling clock  
edge  
40  
10  
ns  
ns  
ns  
ns  
23  
23  
t1OUTDIS  
t2OUTEN  
40  
10  
t2OUTDIS  
Note 1: Guaranteed by design  
TIMING DIAGRAM  
tCLKIN  
CLK  
tFALL  
tRISE  
t1OUTEN  
t1OUTDIS  
DATA1  
DATA2  
t2OUTDIS  
t2OUTEN  
Figure 1. Pulse Density Modulated Output Timing  
Page 7 of 22  
Document Number: DS-000094  
Revision: 1.0  
 
ICS-51360  
ABSOLUTE MAXIMUM RATINGS  
Stress above those listed as Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only  
and functional operation of the device at these conditions is not implied. Exposure to the absolute maximum ratings conditions for  
extended periods may affect device reliability.  
TABLE 7. ABSOLUTE MAXIMUM RATINGS  
PARAMETER  
RATING  
0.3 V to +3.63 V  
Supply Voltage (VDD  
)
Digital Pin Input Voltage  
Sound Pressure Level  
0.3 V to VDD + 0.3 V or 3.63 V, whichever is less  
160 dB  
10,000 g  
Mechanical Shock  
Vibration  
Per MIL-STD-883 Method 2007, Test Condition B  
Temperature Range  
Biased  
Storage  
40°C to +85°C  
55°C to +150°C  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device.  
Charged devices and circuit boards can  
discharge without detection. Although this  
product features patented or proprietary  
protection circuitry, damage may occur on  
devices subjected to high energy ESD.  
Therefore proper ESD precautions should be  
taken to avoid performance degradation or  
loss of functionality.  
Page 8 of 22  
Document Number: DS-000094  
Revision: 1.0  
ICS-51360  
SOLDERING PROFILE  
CRITICAL ZONE  
TO T  
tP  
T
L
P
T
P
RAMP-UP  
T
L
tL  
T
SMAX  
T
SMIN  
tS  
RAMP-DOWN  
PREHEAT  
t25°C TO PEAK TEMPERATURE  
TIME  
Figure 2. Recommended Soldering Profile Limits  
TABLE 8. RECOMMENDED SOLDERING PROFILE*  
PROFILE FEATURE  
Sn63/Pb37  
Pb-Free  
Average Ramp Rate (TL to TP)  
1.25°C/sec max  
1.25°C/sec max  
Minimum Temperature  
(TSMIN  
Minimum Temperature  
(TSMIN  
Time (TSMIN to TSMAX), tS  
100°C  
100°C  
200°C  
)
Preheat  
150°C  
)
60 sec to 75 sec  
1.25°C/sec  
60 sec to 75 sec  
1.25°C/sec  
~50 sec  
Ramp-Up Rate (TSMAX to TL)  
Time Maintained Above Liquidous (tL)  
45 sec to 75 sec  
183°C  
Liquidous Temperature (TL)  
Peak Temperature (TP)  
217°C  
215°C +3°C/−3°C  
260°C +0°C/5°C  
Time Within +5°C of Actual Peak  
Temperature (tP)  
20 sec to 30 sec  
20 sec to 30 sec  
3°C/sec max  
5 min max  
Ramp-Down Rate  
3°C/sec max  
5 min max  
Time +25°C (t25°C) to Peak Temperature  
*The reflow profile in Table 8 is recommended for board manufacturing with InvenSense MEMS microphones. All microphones are  
also compatible with the J-STD-020 profile  
Page 9 of 22  
Document Number: DS-000094  
Revision: 1.0  
 
 
ICS-51360  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
Figure 3. Pin Configuration (Top View, Terminal Side Down)  
TABLE 9. PIN FUNCTION DESCRIPTIONS  
PIN NAME  
FUNCTION  
1
2
DATA  
Digital Output Signal (DATA1 or DATA2)  
Left Channel or Right Channel Select:  
DATA 1 (right): SELECT tied to GND  
DATA 2 (left): SELECT tied to VDD. In this setting, SELECT should be tied to the same voltage  
source as the VDD pin.  
SELECT  
3
4
GND  
CLK  
Ground  
Clock Input to Microphone  
Power Supply. For best performance and to avoid potential parasitic artifacts, place a 0.1 µF  
(100 nF) ceramic type X7R capacitor between Pin 5 (VDD) and ground. Place the capacitor as  
close to Pin 5 as possible.  
5
VDD  
Page 10 of 22  
Document Number: DS-000094  
Revision: 1.0  
ICS-51360  
TYPICAL PERFORMANCE CHARACTERISTICS  
30  
Low Power Mode  
Standard Mode  
20  
10  
0
10  
1
-10  
-20  
0.1  
100  
1000  
10000  
90  
100  
110  
120  
130  
FREQUENCY (Hz)  
INPUT AMPLITUDE (dB SPL)  
Figure 4. Typical Audio Frequency Response, Standard Mode  
Figure 5. THD + N vs. Input Level, Standard and Low-Power Modes  
0
-20  
-40  
-60  
-80  
-100  
-120  
100  
1000  
10000  
FREQUENCY (Hz)  
Figure 6. Power Supply Rejection (PSR) vs. Frequency, Standard  
Mode  
Page 11 of 22  
Document Number: DS-000094  
Revision: 1.0  
 
ICS-51360  
THEORY OF OPERATION  
PDM DATA FORMAT  
The output from the DATA pin of the ICS-51360 is in pulse density modulated (PDM) format. This data is the 1-bit output of a fourth-  
order Σ-Δ modulator. The data is encoded so that the left channel is clocked on the falling edge of CLK, and the right channel is clocked  
on the rising edge of CLK. After driving the DATA signal high or low in the appropriate half frame of the CLK signal, the DATA driver of  
the microphone tristates. In this way, two microphones, one set to the left channel and the other to the right, can drive a single DATA  
line. See Figure 1 for a timing diagram of the PDM data format; the DATA1 and DATA2 lines shown in this figure are two halves of the  
single physical DATA signal. Figure 7 shows a diagram of the two stereo channels sharing a common DATA line.  
CLK  
DATA2 (L)  
DATA1 (R)  
DATA2 (L)  
DATA1 (R)  
DATA  
Figure 7. Stereo PDM Format  
If only one microphone is connected to the DATA signal, the output is only clocked on a single edge (Figure 8). For example, a left  
channel microphone is never clocked on the rising edge of CLK. In a single microphone application, each bit of the DATA signal is  
typically held for the full CLK period until the next transition because the leakage of the DATA line is not enough to discharge the line  
while the driver is tristated.  
CLK  
DATA  
DATA1 (R)  
DATA1 (R)  
DATA1 (R)  
Figure 8. Mono PDM Format  
See Table 10 for the channel assignments according to the logic level on the SELECT pin. The setting on the SELECT pin is sampled at  
power-up and should not be changed during operation.  
TABLE 10. ICS-51360 CHANNEL SETTING  
SELECT Pin Setting  
Low (tie to GND)  
High (tie to VDD)  
Channel  
Right (DATA1)  
Left (DATA2)  
For PDM data, the density of the pulses indicates the signal amplitude. A high density of high pulses indicates a signal near positive  
full scale, and a high density of low pulses indicates a signal near negative full scale. A perfect zero (dc) audio signal shows an  
alternating pattern of high and low pulses.  
The output PDM data signal has a small dc offset of about 3% of full scale. A high-pass filter in the codec that is connected to the digital  
microphone and does not affect the performance of the microphone typically removes this dc signal.  
PDM MICROPHONE SENSITIVITY  
The sensitivity of a PDM output microphone is specified with the unit dB FS (decibels relative to digital full scale). A 0 dB FS sine  
wave is defined as a signal whose peak just touches the full-scale code of the digital word (see Figure 9). This measurement convention  
also means that signals with a different crest factor may have an RMS level higher than 0 dB FS. For example, a full-scale square wave  
has an RMS level of 3 dB FS.  
Page 12 of 22  
Document Number: DS-000094  
Revision: 1.0  
 
 
 
ICS-51360  
This definition of a 0 dB FS signal must be understood when measuring the sensitivity of the ICS-51360. A 1 kHz sine wave at a  
94 dB SPL acoustic input to the ICS-51360 results in an output signal with a −26 dB FS level (low power mode). The output digital  
word peaks at −26 dB below the digital full-scale level. A common misunderstanding is that the output has an RMS level of −29 dB FS;  
however, this is not true because of the definition of the 0 dB FS sine wave.  
1.0  
0.8  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
TIME (ms)  
Figure 9. 1 kHz, 0 dB FS Sine Wave  
There is not a commonly accepted unit of measurement to express the instantaneous level, as opposed to the RMS level of the  
signal, of a digital signal output from the microphone. Some measurement systems express the instantaneous level of an individual  
sample in units of D, where 1.0 D is digital full scale. In this case, a −26 dB FS sine wave has peaks at 0.05 D.  
Page 13 of 22  
Document Number: DS-000094  
Revision: 1.0  
ICS-51360  
APPLICATIONS INFORMATION  
LOW POWER MODE  
Low Power Mode (LPM) enables the ICS-51360 to be used in an AlwaysOn listening mode for keyword spotting and ambient sound  
analysis. The ICS-51360 will enter LPM when the frequency of SCK is 768 kHz. In this mode, the microphone consumes only 230 µA  
while retaining high electro-acoustic performance.  
When one microphone is in LPM for AlwaysOn listening, a second microphone sharing the same data line may be powered down. In  
this case, where one microphone is powered up and another is powered down by disabling the VDD supply or in sleep mode by  
reducing the frequency of a separate clock source, the disabled microphone does not present a load to the signal on the LPM  
microphone’s DATA pin.  
DYNAMIC RANGE CONSIDERATIONS  
The microphone clips (THD = 10%) at 120 dB SPL in Low Power Mode and at 130 dB SPL in Standard Mode (see Figure 5); however, it  
continues to output an increasingly distorted signal above that point. The peak output level, which is controlled by the modulator, limits  
at 0 dB FS.  
To fully use the 98 dB dynamic range of the output data of the ICS-51360 in a design, the digital signal processor (DSP), analog-to-digital  
converter (ADC), or codec circuit following it must be chosen carefully. The decimation filter that inputs the PDM signal from the ICS-  
51360 must have a dynamic range sufficiently better than the dynamic range of the microphone so that the overall noise  
performance of the system is not degraded. If the decimation filter has a dynamic range of 10 dB better than the microphone, the  
overall system noise only degrades by 0.4 dB. This 108 dB filter dynamic range requires the filter to have at least 18 bit resolution.  
CONNECTING PDM MICROPHONES  
A PDM output microphone is typically connected to a codec with a dedicated PDM input. This codec separately decodes the left and right  
channels and filters the high sample rate modulated data back to the audio frequency band. This codec also generates the clock for the  
PDM microphones or is synchronous with the source that is generating the clock. Figure 10 and Figure 11 show mono and stereo  
connections of the ICS-51360 to a codec. The mono connection shows an ICS-51360 set to output data on the right channel. To output  
on the left channel, tie the SELECT pin to VDD instead of tying it to GND.  
1.8V TO 3.3V  
0.1µF  
VDD  
CODEC  
CLOCK OUTPUT  
PDM  
CLK  
MICROPHONE  
SELECT  
DATA  
GND  
DATA INPUT  
Figure 10. Mono PDM Microphone (Right Channel) Connection to Codec  
Page 14 of 22  
Document Number: DS-000094  
Revision: 1.0  
 
ICS-51360  
1.8V TO 3.3V  
0.1µF  
VDD  
CODEC  
CLOCK OUTPUT  
CLK  
PDM  
MICROPHONE  
SELECT  
DATA  
GND  
DATA INPUT  
1.8V TO 3.3V  
0.1µF  
VDD  
CLK  
PDM  
MICROPHONE  
SELECT  
DATA  
GND  
Figure 11. Stereo PDM Microphone Connection to Codec  
Decouple the VDD pin of the ICS-51360 to GND with a 0.1 µF capacitor. Place this capacitor as close to VDD as the printed circuit board  
(PCB) layout allows.  
Do not use a pull-up or pull-down resistor on the PDM data signal line because it can pull the signal to an incorrect state during the period  
that the signal line is tristated.  
The DATA signal does not need to be buffered in normal use when the ICS-51360 microphone(s) is placed close to the codec on the PCB. If  
the DATA signal must be driven over a long cable (>15 cm) or other large capacitive load, a digital buffer may be required. Only use a signal  
buffer on the DATA line when one microphone is in use or after the point where two microphones are connected (see Figure 12). The  
DATA output of each microphone in a stereo configuration cannot be individually buffered because the two buffer outputs cannot  
drive a single signal line. If a buffer is used, take care to select one with low propagation delay so that the timing of the data  
connected to the codec is not corrupted.  
CODEC  
PDM MICROPHONE  
CLK  
CLOCK OUTPUT  
DATA  
DATA INPUT  
PDM MICROPHONE  
CLK  
DATA  
Figure 12. Buffered Connections Between Stereo ICS-51360s and a Codec  
Page 15 of 22  
Document Number: DS-000094  
Revision: 1.0  
 
ICS-51360  
When long wires are used to connect the codec to the ICS-51360, a source termination resistor can be used on the clock output of the  
codec instead of a buffer to minimize signal overshoot or ringing. Match the value of this resistor to the characteristic impedance of  
the CLK trace on the PCB. Depending on the drive capability of the codec clock output, a buffer may still be needed, as shown in Figure  
12.  
SLEEP MODE  
The microphone enters sleep mode when the clock frequency falls below 200 kHz. In this mode, the microphone data output is in a high  
impedance state. The current consumption in sleep mode is 12 µA.  
The microphone wakes up from sleep mode and begins to output data within 10 ms after the clock becomes active. The wake-up time  
indicates the time from when the clock is enabled to when the ICS-51360 outputs data within 1 dB of its settled sensitivity.  
START-UP TIME  
The start-up time of the ICS-51360 is less than 20 ms, measured by the time from when power and clock are enabled until sensitivity  
of the output signal is within 1 dB of its settled sensitivity.  
Page 16 of 22  
Document Number: DS-000094  
Revision: 1.0  
ICS-51360  
SUPPORTING DOCUMENTS  
For additional information, see the following documents.  
APPLICATION NOTES GENERAL  
AN-000048, PDM Digital Output MEMS Microphone Flex Evaluation Board User Guide  
AN-100, MEMS Microphone Handling and Assembly Guide  
AN-1003, Recommendations for Mounting and Connecting the Invensense, Bottom-Ported MEMS Microphones  
AN-1112, Microphone Specifications Explained  
AN-1124, Recommendations for Sealing InvenSense Bottom-Port MEMS Microphones from Dust and Liquid Ingress  
AN-1140, Microphone Array Beamforming  
Page 17 of 22  
Document Number: DS-000094  
Revision: 1.0  
ICS-51360  
PCB DESIGN AND LAND PATTERN LAYOUT  
The recommended PCB land pattern for the ICS-51360 is a 1:1 ratio of the solder pads on the microphone package, as shown in Figure  
13. Avoid applying solder paste to the sound hole in the PCB. A suggested solder paste stencil pattern layout is shown in Figure 14.  
The response of the ICS-51360 is not affected by the PCB hole size as long as the hole is not smaller than the sound port of the  
microphone (0.375 mm in diameter). A 0.5 mm to 1 mm diameter for the hole is recommended. Take care to align the hole in the  
microphone package with the hole in the PCB. The exact degree of the alignment does not affect the microphone performance as long  
as the holes are not partially or completely blocked.  
0.522x0.725(4X)  
Ø1.625  
Ø1.025  
1.675  
0.838  
0.822  
1.252  
Figure 13. Recommended PCB Land Pattern Layout  
0.422x0.625(4X)  
Ø1.625  
Ø1.125  
1.675  
0.1(4x)  
0.822  
1.252  
Figure 14. Suggested Solder Paste Stencil Pattern Layout  
PCB MATERIAL AND THICKNESS  
The performance of the ICS-51360 is not affected by PCB thickness. The ICS-51360 can be mounted on either a rigid or flexible PCB.  
A flexible PCB with the microphone can be attached directly to the device housing with an adhesive layer. This mounting method  
offers a reliable seal around the sound port while providing the shortest acoustic path for good sound quality.  
Page 18 of 22  
Document Number: DS-000094  
Revision: 1.0  
 
 
ICS-51360  
HANDLING INSTRUCTIONS  
PICK AND PLACE EQUIPMENT  
The MEMS microphone can be handled using standard pick-and-place and chip shooting equipment. Take care to avoid damage to the  
MEMS microphone structure as follows:  
Use a standard pickup tool to handle the microphone. Because the microphone hole is on the bottom of the package, the  
pickup tool can make contact with any part of the lid surface.  
Do not pick up the microphone with a vacuum tool that makes contact with the bottom side of the microphone.  
Do not pull air out of or blow air into the microphone port.  
Do not use excessive force to place the microphone on the PCB.  
REFLOW SOLDER  
For best results, the soldering profile must be in accordance with the recommendations of the manufacturer of the solder paste used to  
attach the MEMS microphone to the PCB. It is recommended that the solder reflow profile not exceed the limit conditions specified  
in Figure 2 and Table 8.  
BOARD WASH  
When washing the PCB, ensure that water does not make contact with the microphone port. Do not use blow-off procedures or  
ultrasonic cleaning.  
Page 19 of 22  
Document Number: DS-000094  
Revision: 1.0  
ICS-51360  
OUTLINE DIMENSIONS  
d
0.10  
(4X)  
0.522X0.725 (4x)  
j
0.10m C A B  
3.50  
A
PIN1  
CORNER  
PIN1  
CORNER  
0.82  
ø1.625  
ø1.025  
ø0.325  
1
5
2
4
(2.45)  
2.65  
1.68  
1.33  
3
0.300  
1.51  
B
(0.125) (0.125)  
(3.30)  
1.04  
BOTTOM VIEW  
TOP VIEW  
f
0.10 C  
0.98±0.10  
C
(0.254)  
SIDE VIEW  
Figure 15. 5-Terminal Chip Array Small Outline No Lead Cavity [LGA_CAV]  
3.5 mm × 2.65 mm × 0.98 mm Body  
Dimensions shown in millimeters  
Dimension tolerance is ±0.15 mm unless otherwise specified  
PART NUMBER  
PIN 1 INDICATION  
1360  
YYXXX  
DATECODE  
LOT TRACEABILITY CODE  
Figure 16. Package Marking Specification (Top View)  
ORDERING GUIDE  
PART  
TEMP RANGE  
−40°C to +85°C  
PACKAGE  
5-Terminal LGA_CAV  
QUANTITY  
10,000  
PACKAGING  
13” Tape and Reel  
ICS-51360  
Page 20 of 22  
Document Number: DS-000094  
Revision: 1.0  
ICS-51360  
REVISION HISTORY  
REVISION DATE  
REVISION  
DESCRIPTION  
9/23/2016  
1.0  
Initial version  
Page 21 of 22  
Document Number: DS-000094  
Revision: 1.0  
ICS-51360  
COMPLIANCE DECLARATION DISCLAIMER  
InvenSense believes the environmental and other compliance information given in this document to be correct but cannot  
guarantee accuracy or completeness. Conformity documents substantiating the specifications and component characteristics are on  
file. InvenSense subcontracts manufacturing, and the information contained herein is based on data received from vendors and  
suppliers, which has not been validated by InvenSense.  
This information furnished by InvenSense is believed to be accurate and reliable. However, no responsibility is assumed by  
InvenSense for its use, or for any infringements of patents or other rights of third parties that may result from its use. Specifications  
are subject to change without notice. InvenSense reserves the right to make changes to this product, including its circuits and  
software, in order to improve its design and/or performance, without prior notice. InvenSense makes no warranties, neither  
expressed nor implied, regarding the information and specifications contained in this document. InvenSense assumes no  
responsibility for any claims or damages arising from information contained in this document, or from the use of products and  
services detailed therein. This includes, but is not limited to, claims or damages based on the infringement of patents, copyrights,  
mask work and/or other intellectual property rights.  
Certain intellectual property owned by InvenSense and described in this document is patent protected. No license is granted by  
implication or otherwise under any patent or patent rights of InvenSense. This publication supersedes and replaces all information  
previously supplied. Trademarks that are registered trademarks are the property of their respective companies. InvenSense sensors  
should not be used or sold in the development, storage, production or utilization of any conventional or mass-destructive weapons  
or for any other weapons or life threatening applications, as well as in any other life critical applications such as medical equipment,  
transportation, aerospace and nuclear instruments, undersea equipment, power plant equipment, disaster prevention and crime  
prevention equipment.  
©2016 InvenSense, Inc. All rights reserved. InvenSense, MotionTracking, MotionProcessing, MotionProcessor, MotionFusion,  
MotionApps, DMP, AAR and the InvenSense logo are trademarks of InvenSense, Inc. Other company and product names may be  
trademarks of the respective companies with which they are associated.  
©2016 InvenSense, Inc. All rights reserved.  
Page 22 of 22  
Document Number: DS-000094  
Revision: 1.0  

相关型号:

ICS-52000

MEMS麦克风(麦克风)
TDK

ICS-610-A

IC Socket, DIP10, 10 Contact(s)
SAMTEC

ICS-610-AGG

IC Socket, DIP10, 10 Contact(s)
SAMTEC

ICS-610-AGT

IC Socket, DIP10, 10 Contact(s)
SAMTEC

ICS-610-ATT

IC Socket, DIP10, 10 Contact(s)
SAMTEC

ICS-610-EGG

IC Socket, DIP10, 10 Contact(s)
SAMTEC

ICS-610-HTT

IC Socket, DIP10, 10 Contact(s)
SAMTEC

ICS-610-KGG

IC Socket, DIP10, 10 Contact(s)
SAMTEC

ICS-610-KGT

IC Socket, DIP10, 10 Contact(s)
SAMTEC

ICS-610-S

IC Socket, DIP10, 10 Contact(s)
SAMTEC

ICS-610-SEE-L

IC Socket, DIP10, 10 Contact(s)
SAMTEC

ICS-610-SEG-L

IC Socket, DIP10, 10 Contact(s)
SAMTEC