U4065B [TEMIC]

FM Receiver; FM接收器
U4065B
型号: U4065B
厂家: TEMIC SEMICONDUCTORS    TEMIC SEMICONDUCTORS
描述:

FM Receiver
FM接收器

文件: 总23页 (文件大小:288K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
U4065B  
FM Receiver  
Description  
The IC U4065B is a bipolar integrated FM-frontend device is designed for high performance car radio and  
circuit. It contains a mixer, an oscillator, two IF home receiver applications.  
preamplifiers and an unique interference sensor. The  
Features  
All frontend functions of a high performance FM-  
receiver, except the RF preamplifier, are integrated  
Easy cascading of three IF filters (ceramic) by use of  
two on-chip IF preamplifiers  
Improved dynamic range by high current double  
balanced mixer design and a new AGC conception  
with 3 loops on chip  
On-chip control functions are available for system  
gain adjust (dB linear vs. dc current)  
Low noise LO design  
ESD protected  
Improved blocking and intermod behavior by use of  
an unique “interference” sensor controlling the AGC  
Block Diagram  
V
S
V
S
IF gain adjust  
ANT  
IF BPF  
IF tank  
IF BPF  
IF outp  
IF BPF  
19  
18  
21  
7
3
4
5
20  
RF tank  
16  
14  
15  
2
PIN  
ATT  
Mixer  
IF 1  
IF 2  
AGC  
13  
wide band  
& IF  
Inter-  
ference  
mixer  
AGC adjust  
(wide band)  
RF  
RF tank  
D.N.C.  
12  
V
ref  
= 4 V  
I F &  
detector  
LO tank  
23  
24  
17  
Voltage  
reg.  
Local  
oscill.  
11  
22  
1
8
10  
6
9
+
Interference  
IF BPF  
V
S
LO output  
V
tune  
V
S
94 8768  
AGC level  
Rev. A3, 15-Oct-98  
1 (23)  
U4065B  
Pin Description  
Pin  
1
Symbol  
Function  
Pin  
13  
Symbol  
Function  
LOBUFF Buffered local oscillator output  
AGCWB Threshold adjustment of the  
wideband AGC  
2
GND1  
Ground of the second IF ampli-  
fier  
14  
15  
GND3  
Mixer ground  
3
4
IF2OUT  
Output of the second IF ampli-  
fier  
MIXIN1  
Input 1 of the double balanced  
mixer  
GAINIF1 Gain control of the first  
IF amplifier  
16  
MIXIN2  
Input 2 of the double balanced  
mixer  
5
6
7
8
9
IF2IN  
VS  
Input of the second IF amplifier  
17  
18  
19  
20  
VREF  
Reference voltage output  
Supply voltage  
MIXOUT1 Mixer output 1  
MIXOUT2 Mixer output 2  
IF1OUT  
GND2  
IMIFIN  
Output of the first IF amplifier  
Ground  
GND4  
Ground of the first  
IF amplifier  
Input of the amplifier for the  
IM-sensor  
21  
22  
23  
24  
IF1IN  
GND5  
LOE  
Input of the first amplifier  
Oscillator ground  
10  
AGCOUT Output of the automatic gain  
control  
Local oscillator (emitter)  
Local oscillator (base)  
11 IMMIXOUT Output of the intermodulation  
mixer  
LOB  
12  
D.N.C.  
Do not connect  
LOBUFF  
GND1  
+
94 8769  
94 8770  
23  
50  
1
ESD  
1 V  
8
ESD  
2
Buffered local oscillator output:  
It drives the FM-input of the PLL circuit (for example  
Ground of the second IF amplifier:  
U428xBM-family). The typical parallel output resistance There is no internal connection to the other ground pins.  
at 100 MHz is 70 , the parallel output capacitance is  
about 10 pF. When using an external load of 500  
/
10 pF, the oscillator swing is about 100 mV. The second  
harmonic of the oscillator frequency is less than  
– 15 dBc.  
2 (23)  
Rev. A3, 15-Oct-98  
U4065B  
The parallel input resistance is 330 . The parallel input  
capacitance is about 12 pF. No dc current is allowed. To  
avoid overload of this stage an internal detector watches  
the input level and causes current at the AGCOUT pin.  
IF2OUT  
3
ESD  
V
S
IF1OUT  
V
S
V
ref  
ESD  
94 8771  
330  
Output of the second IF amplifier:  
The parallel output capacitance to ground is about 7 pF.  
7
The external load resistance is to connect to V . The dc  
S
current into the pin is typically 3 mA.  
Note: Supply voltage V has to be protected against  
S
IF-distortion  
94 8774  
GAINIF1  
V
ref  
17  
Output of the first IF amplifier:  
The parallel output resistance is 330 which allows the  
use of a standard ceramic BPF. The parallel output capa-  
citance is about 7 pF. The dc voltage at the pin is 0.5 V  
2 k  
less than V .  
S
ESD  
Gain control of the first IF amplifier:  
4
94 8772  
IMIFIN  
The gain of the first IF amplifier can be adjusted by a re-  
sistor to ground. This is useful for example to com-  
pensate the insertion loss tolerances of the ceramic BPF’s.  
Please ensure that the output current of the pin does not  
exceed 150 A in any case. Linear increasing in the cur-  
rent out of GAINIF1 effects dB linear increasing of the  
gain (0.15 dB/ A).  
94 8775  
9
I4 = 0  
G= Gmin = 2 dB  
ESD  
I4 = 140 A G = Gmax = 22 dB  
IF2IN  
94 8773  
V
ref  
Input of the IF amplifier for the IM-sensor:  
5
The parallel input resistance is 330 . The amplifier is ex-  
tremely sensitive to ac signals. A few hundred V of  
IF-signal at this pin will cause current at the AGC output.  
Therefore pay attention when connecting the standard ce-  
ramic filter used between IMOUT and this pin. The  
reference point of the filter has to be free of any ac signal.  
Please avoid dc current at this pin.  
ESD  
Input of the second IF amplifier:  
Rev. A3, 15-Oct-98  
3 (23)  
U4065B  
AGCOUT  
MIXIN1  
V
ref  
94 8776  
10  
2.5 k  
15  
ESD  
1 k  
ESD  
1 V  
94 8779  
Input 1 of the double balanced mixer:  
Output of the automatic gain control:  
The parallel input resistance is 1.2 k . The parallel input  
capacitance is about 9 pF. When using the mixer unbal-  
anced this pin is to be grounded for RF-signals by an  
external capacitance of a few nF. DC current is not allowed.  
The AGC output is an open collector output. The current  
of the pin diode is this current multiplied by the current  
gain of the external PNP transistor. The dc voltage at the  
pin may vary from 2 V to V , therefore you can easily use  
S
this pin as an indicator of the AGC regulation state.  
MIXIN2  
IMMIXOUT  
V
ref  
V
S
2.5 k  
16  
ESD  
300  
11  
ESD  
94 8780  
1 V  
Input 2 of the double balanced mixer:  
94 8777  
The parallel input resistance is 1.6 k . The parallel input  
capacitance is about 7 pF. The double sideband noise fig-  
ure of the unbalanced mixer is about 7 dB. In the balanced  
case the noise figure will be reduced by about 0.8 dB.  
Output of the intermodulation mixer:  
The parallel output resistance is 330 which allows the  
use of a standard ceramic BPF without any further match-  
ing network. Please ensure that the ground-pin of the filter  
is free of ac signals.  
VREF  
94 8781  
AGCWB  
V
S
200  
V
ref  
25 k  
4.6 V  
17  
ESD  
32 k  
13  
ESD  
94 8778  
Reference voltage:  
The internal temperature compensated reference voltage  
is 3.9 V. It is used as bias voltage for most blocks, so the  
Threshold adjustment of the wideband AGC:  
The threshold of the wideband AGC can be adjusted by electrical characteristics of the U4065B are widely inde-  
an external resistor to ground. The setting range is 10 dB. pendent of the supply voltage. The internal output  
For minimum blocking this pin is connected to ground. In resistance of the reference voltage is less than 10 . To  
order to set the threshold to smaller levels the resistance avoid internal coupling across this pin external capacitors  
value should be up to a few hundred k .  
are required. The maximum output current is I = 5 mA.  
ref  
4 (23)  
Rev. A3, 15-Oct-98  
U4065B  
MIXOUT1, MIXOUT2  
LOE  
ESD  
18  
19  
23  
ESD  
94 8785  
94 8782  
Mixer output 1, 2:  
Emitter of the local oscillator:  
The mixer output is an open collector of a bipolar transis- An external capacitor is connected between LOE and  
tor. The minimum voltage at this pins is 5 V (V -voltage ground. The ground pin of this capacitor is to connect to  
S
swing). The dc current into this pins is typically 9 mA. the pin GND5. GND5 is the chip internal ground of the  
Good LO- and RF suppression at the mixer output can be local oscillator.  
achieved by symmetrical load conditions at the pins MIX-  
OUT1 and MIXOUT2.  
LOB  
IF1IN  
24  
ESD  
21  
V
ref  
330  
94 8786  
ESD  
Input of the first IF amplifier:  
Base of the local oscillator:  
94 8784  
The tank of the local oscillator is connected at pin LOB.  
The ground pin of this tank is to connect to the pin GND5.  
The typical input resistance is 330 . The dc voltage is GND5 is the chip internal ground into pin 24 of the local  
nearly the same one as the reference voltage. Please avoid oscillator. The resonant resistance of the tank should be  
dc current at this pin.  
about 250 . Minimum Q of the unloaded tank is 50.  
Rev. A3, 15-Oct-98  
5 (23)  
U4065B  
Functional Description  
The U4065B FM-frontend IC is the dedicated solution for hand two or more strong out of channel signals may inter-  
high end car radios. A new design philosophy enables to fere and generate an intermodulation signal on the desired  
build up tuners with superior behavior. This philosophy frequency. By introducing input attenuation, the level of  
is based on the fact that the sensitivity of state of the art the intermod signal decreases by a higher order, whereas  
designs is at the physical border and cannot be enhanced the level of the desired signal shows only a linear depen-  
any more. On the other hand, the spectral power density dency on the input attenuation. Therefore input  
in the FM-band increases. An improvement of reception attenuation by pin diodes may keep up reception in the  
can only be achieved by increasing the dynamic range of presence of strong signals.  
the receiver. This description is to give the designer an  
The standard solution to generate the pin diode current is  
introduction to get familiar with this new product and its  
to pick up the RF-signal in front of the mixer. Because the  
philosophy.  
bandwidth at that point is about 1.5 MHz, this is called  
wideband AGC. The threshold of AGC start is a critical  
1. The Signal Path  
parameter. A low threshold does not allow any intermo-  
The U4065B offers the complete signal path of an FM-  
dulation but has the disadvantage of blocking if there is  
frontend including a highly linear mixer and two IF  
only one strong station on the band or if the intermod sig-  
preamplifiers. The mixer is a double balanced high cur-  
nals do not cover the desired channel. A higher AGC  
rent Gilbert Cell. A high transit frequency of the internal  
threshold may tolerate a certain ground floor of intermo-  
transistors enables the use of the emitter grounded circuit  
dulation. This avoids blocking, but it has the  
with its favorable noise behavior. The full balanced out-  
disadvantage, that no reception is possible, if the interfer-  
put offers LO carrier reduction.  
ing signals do generate an intermod signal inside the  
desired channel. This contradiction could not be over-  
come in the past.  
The following IF preamplifier has a dB-linear gain adjust-  
ment by dc means. Thus different ceramic filter losses can  
be compensated and the overall tuner gain can be adapted  
to the individual requirements. The low noise design sup-  
presses post stage noise in the signal path. Input- and  
output resistance is 330 to support standard ceramic fil-  
ters. This was achieved without feedback, which would  
cause different input impedances when varying the output  
impedance.  
With the new U4065B IC, a unique access to this problem  
appears. This product has an interference sensor on chip.  
Thus an input signal attenuation is only performed, if the  
interfering signals do generate an intermod signal inside  
the desired channel. If they do not, the still existing wide-  
band AGC is yet active but at up to 20 dB higher levels.  
The optimum AGC state is always generated.  
The second IF preamplifier enables the use of three ce-  
The figures 1 to 4 illustrate the situation. In figure 1 the  
AGC threshold of a standard tuner is high to avoid block-  
ing. But then the intermod signal suppresses the desired  
signal. The interference sensor of the U4065B takes care  
that in this case the AGC threshold is kept low as illus-  
trated in figure 2.  
ramic filters with real 330  
input- and output  
termination. Feedthrough of signals is kept low. The high  
level of output compression is necessary to keep up a high  
dynamic range.  
Beneath the signal path the local oscillator part and the  
AGC signal generation can be found on chip. The local  
oscillator uses the collector grounded colpitts type. A low  
phase noise is achieved with this access. A mutual cou-  
pling in the oscillator coil is not necessary.  
In figure 3 the situation is vice versa. The AGC threshold  
of a standard tuner is kept low to avoid intermod prob-  
lems. But then blocking makes the desired signal level  
drop below the necessary stereo level. In this case, the  
higher wideband AGC level of the U4065B enables per-  
fect stereo reception.  
2. The AGC Concept  
Special care was taken to design a unique AGC concept.  
It offers 3 AGC loops for different kinds of reception  
conditions. The most important loop is the interference  
sensor part.  
By principle, this interference sensor is an element with  
a third order characteristic. For input levels of zero, the  
output level is zero, too. With increasing input level, the  
output level is increased with the power of three, thus pre-  
ferring intermod signals compared to linear signals. At  
the same time, a down conversion to the IF level of  
10.7 MHz is performed. If a corresponding 10.7 MHz IF  
filter selects the intermod signals, an output is only gener-  
ated, if an intermod signal inside the 10.7 MHz channel  
is present.  
In today’s high end car radios, the FM AGC is state of the  
art. It is necessary to reduce the influence of 3rd and  
higher order intermodulation to sustain reception in the  
presence of strong signals in the band. On one hand, it  
makes a sense to reduce the desired signal level by AGC  
as few as possible to keep up stereo reception, on the other  
6 (23)  
Rev. A3, 15-Oct-98  
U4065B  
The circuit blocks interference sensor and IF & detector this unique feature.  
build up a second IF chain. In an FM system, the max  
deviation of a 3rd order intermod signal is the triple max A further narrow band AGC avoids overriding the second  
deviation of the desired signal. Therefore the ceramic IF IF amplifier. The amplitude information of the channel is  
BPF between Pin 11 and Pin 9 may be a large bandwidth not compressed in order to maintain multipath detection  
type. This external part is the only additional amount for in the IF part of the receiver.  
94 8821  
Level  
Level  
94 8820  
Interfering signals  
Interfering signals  
Intermod signal  
Intermod signal  
Desired  
signal  
Desired  
signal  
Stereo-level  
Noise floor  
Stereo-level  
Noise floor  
Intermod signal  
Intermod signal  
Desired  
frequency  
Desired  
frequency  
Frequency  
Frequency  
Figure 1 A high AGC threshold causes the intermod  
signal to suppress the desired signal  
Figure 2 The correct AGC threshold of the U4065B  
provides optimum reception  
94 8822  
94 8823  
Level  
Level  
Strong signal  
Strong signal  
Desired  
signal  
Stereo-level  
Stereo-level  
Desired  
signal  
Noise floor  
Noise floor  
Desired  
frequency  
Desired  
frequency  
Frequency  
Frequency  
Figure 3 A low AGC threshold causes the blocking  
signal to suppress the desired signal  
Figure 4 The correct AGC threshold of the U4065B  
provides optimum reception  
Rev. A3, 15-Oct-98  
7 (23)  
U4065B  
Absolute Maximum Ratings  
Reference point is ground (Pins 2, 8, 14, 20 and 22)  
Parameters  
Symbol  
Value  
10  
Unit  
V
Supply voltage  
V
S
Power dissipation at T  
Junction temperature  
= 85°C  
P
470  
mW  
°C  
°C  
°C  
V
amb  
tot  
T
125  
j
Ambient temperature range  
Storage temperature range  
T
amb  
– 30 to + 85  
– 50 to + 125  
2000  
T
stg  
Electrostatic handling:  
V
ESD  
Human body model (HBM),  
all I/O pins tested against the supply pins.  
Thermal Resistance  
Parameters  
Symbol  
Maximum  
90  
Unit  
K/W  
Thermal resistance  
R
thJA  
Electrical Characteristics  
V = 8.0 V, f = 98 MHz, f  
108.7 MHz, f = f  
– f = 10.7 MHz  
OSC RF  
S
RF  
OSC  
IF  
Reference point ground (Pins 2, 8, 14, 20 and 22),T  
= 25 C, unless otherwise specified  
amb  
Parameters  
Supply voltage  
Test Conditions / Pins  
Symbol  
Min.  
7
Typ.  
8
Max.  
10  
Unit  
Pins 3, 6, 10, 18 and 19  
Pins 3+6+10+18+19  
V
S
V
Supply current  
I
37  
47  
mA  
tot  
Oscillator  
(GND5 has to be connected to external oscillator components)  
R
g24  
= 220 , unloaded Q  
of L  
= 70, R = 520  
L1  
OSC  
Pin 24  
Pin 23  
Pin 1  
Pin 1  
Pin 1  
V
V
160  
100  
90  
LOB  
LOE  
Oscillator voltage  
mV  
dBc  
V
70  
220  
–15  
LOBUFF  
Harmonics  
Output resistance  
Voltage gain  
Mixer  
R
70  
LO  
Between pins 1 and 23  
(GND3 has to be separated from GND1, GND2 and GND4)  
0.9  
Conversion power gain  
3rd order input intercept  
Conversion transconductance  
Noise figure  
Source impedance:  
= 200  
G
5
4
7
6
10  
14  
dB  
dBm  
mA/V  
dB  
k
C
R
G15,16  
IP  
3
Load impedance:  
= 200  
g
C
8
R
L18,19  
NF  
7
DSB  
ignd15  
ignd15  
ignd16  
ignd16  
ii15,16  
ii15,16  
Input resistance to ground  
Input capacitance to ground  
Input resistance to ground  
Input capacitance to ground  
Input-input resistance  
Pin 15  
f = 100 MHz  
R
C
R
C
R
C
1.2  
9
pF  
Pin 16  
f = 100 MHz  
1.6  
7
k
pF  
Between Pin 15 and Pin 16  
Between Pin 15 and Pin 16  
1.6  
5
k
Input-input capacitance  
pF  
Output capacitance to GND Pin 18 and Pin 19  
First IF preamplifier (IF 1)  
C
9
pF  
ignd18,19  
Gain control deviation by I4 Pin 4  
Gain control slope  
17  
20  
24  
dB  
dG /dI  
0.15  
dB/ A  
IF1  
4
8 (23)  
Rev. A3, 15-Oct-98  
U4065B  
Electrical Characteristics (continued)  
V = 8.0 V, f = 98 MHz, f  
108.7 MHz, f = f  
– f = 10.7 MHz  
OSC RF  
S
RF  
OSC  
IF  
Reference point ground (Pins 2, 8, 14, 20 and 22),T  
= 25 C, unless otherwise specified  
amb  
Parameters  
Test Conditions / Pins  
Symbol  
Min.  
Typ.  
Max.  
Unit  
A
External control current to  
ground at G  
at G  
I
0
70  
140  
min  
nom  
max  
4min  
I
4nom  
at G  
I
4max  
Power gain  
at I  
at I  
at I  
Between pins 21 and 7  
Source impedance:  
G
G
G
–2.5  
11  
19  
2
12  
22  
2.5  
16  
28  
4min  
4nom  
4max  
min  
nom  
max  
dB  
R
= 200 ,  
G21  
Noise figure  
at G  
at G  
at G  
NF  
NF  
NF  
7
9
15  
max  
nom  
min  
min  
nom  
max  
Load impedance:  
dB  
R
L7  
= 200  
Temperature coefficient of  
the gain at G  
TKnom  
+0.045  
dB/K  
nom  
1 dB compression at G  
–3 dB cutoff freq. at G  
Input resistance  
Pin 7  
Pin 7  
V
70  
50  
330  
5
mV  
nom  
cnom  
f
MHz  
nom  
cnom  
Pin 21  
f = 10 MHz  
R
C
270  
270  
400  
400  
iIF1  
iIF1  
oIF1  
oIF1  
Input capacitance  
Output resistance  
pF  
pF  
dB  
Pin 7  
f = 10 MHz  
R
C
330  
7
Output capacitance  
Second IF preamplifier (IF 2)  
Power gain  
etween pins 5 and 3  
Source impedance:  
G
15  
18  
19  
IF2  
R
G5  
= 200  
Load impedance:  
=200  
R
L3  
Noise figure  
NF  
7
500  
50  
330  
12  
50  
7
dB  
mV  
IF2  
1 dB compression  
Pin 3  
Pin 3  
V
comp  
–3 dB cutoff frequency  
Parallel input resistance  
Parallel input capacitance  
Parallel output resistance  
Parallel output capacitance  
Voltage regulator  
f
MHz  
c
Pin 5  
f = 10 MHz  
R
270  
400  
iIF2  
iIF2  
oIF2  
oIF2  
C
pF  
k
Pin 3  
f = 10 MHz  
R
C
pF  
Regulated voltage  
Pin 17  
Pin 17  
Pin 17  
V
3.7  
5
3.9  
7
4.9  
50  
V
ref  
Maximum output current  
I
mA  
ref  
Internal differential  
resistance,  
r
d17  
dc /di when I = 0  
17 17  
17  
Power supply suppression  
f = 50 Hz, Pin 17  
psrr  
36  
50  
dB  
AGC input voltage thresholds (AGC threshold current is 10 A at Pin 10)  
IF2 input  
Pin 5  
V
85  
42  
86  
43  
92  
48  
dB V  
dB V  
thIF2  
IF & detector  
Pin 9  
V
thIFD  
Mixer input level of  
wideband sensor  
Between Pins 15 and 16  
f
= 100 MHz  
iRF  
V at pin 13 = 0 V  
I through pin 13 = 0 A  
V
thWB1  
V
thWB2  
95  
85  
98  
87  
100  
90  
dB V  
dB V  
Rev. A3, 15-Oct-98  
9 (23)  
U4065B  
Test Circuit  
4.7n  
vo IF  
4.7n  
vi IF  
50  
6
2
1
5
1
6
2
Gain IF 1  
0 to 140 A  
50  
5
I4  
4
RG5  
RL7  
vi IF  
50  
7
20  
5
2
50  
1
vo IF  
I3  
5
2
1
6
5
2
21  
3
6
Vs  
RG21  
4.7n  
RL3  
IF 1  
IF 2  
I18,19  
Vs  
vo IF  
V
I10  
10  
13  
18  
AGC  
block  
2
6
5
1
50  
I13 R13  
AGC adjust  
RL18,19  
19  
14  
(wide band)  
Mixer  
4.7n  
15  
16  
2
6
6
5
Voltage  
Vs  
RG15,16  
regulator  
I6  
50  
1
4.7n  
1
Vref = 4 V  
RG9  
Interference  
mixer  
vi RF  
17  
8 p  
Rg24  
24  
23  
4.7n  
Local  
Interference  
amplifier  
9
2
6
47p  
33p  
oscillator  
fosc  
Cosc  
Losc  
1
5
50  
8
11  
1
12  
22  
vi IF  
RLOBUFF  
470p  
RG11  
Z/Ohm  
50 200  
vo IF  
1
2
1
2
4
RF Transformers MCL  
Type TMO 4 – 1  
IL = 0.7 dB  
50  
vLOBUFF  
fLOBUFF  
6
5
RL1  
94 8829  
4.7n  
0
0
5
6
10 (23)  
Rev. A3, 15-Oct-98  
U4065B  
Local Oscillator  
R
g24  
v
OSC24  
24  
23  
Local  
oscillator  
47p  
33p  
f
OSC  
Oscillator  
output  
v
, f  
OSC1 OSC  
1
buffer  
520  
T
amb  
94 9410  
Free running oscillator frequency f  
110 MHz, v  
= 160 mV, R =220 , Q = 70  
OSC24 g24 L  
OSC  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
–30  
–10  
10  
30  
50  
( °C )  
70  
90  
94 9411  
T
amb  
Oscillator swing versus temperature  
Rev. A3, 15-Oct-98  
11 (23)  
U4065B  
Mixer  
f
= 110.7 MHz, v  
160 mV, f = 10.7 MHz  
OSC  
OSC24  
IF  
voIF  
IL2  
50  
18  
19  
14  
IL1  
2viRF1  
fRF1  
2viRF2  
fRF2  
1
5
2
1
5
2
6
Mixer  
6
50  
15  
Rg24  
24  
23  
Local  
VS  
oscillator  
47p  
22p  
fOSC  
Tamb  
Conversion power gain GC = 20 log (voIF/viRF) + IL1 (dB) + IL2 (dB)  
IL1, IL2 insertion loss of the RF transformers  
120  
Conversion  
characteristic  
100  
3rd order  
IM-characteristic  
80  
60  
40  
20  
0
0
20  
40  
60  
80  
100  
120  
94 9413  
vi , vi  
( dB V )  
RF2  
RF1  
Characteristic of the mixer  
12 (23)  
Rev. A3, 15-Oct-98  
U4065B  
8
7
6
5
4
3
2
1
0
11.0  
10.7  
10.4  
10.1  
9.8  
9.5  
9.2  
8.9  
8.6  
8.3  
8.0  
–30  
–10  
10  
30  
50  
( °C )  
70  
90  
–30  
–10  
10  
30  
50  
( °C )  
70  
90  
94 9414  
T
94 9415  
T
amb  
amb  
Conversion power gain of the mixer stage  
versus temperature  
Current of the mixer stage versus temperature  
1st IF Preamplifier  
2 : 1  
IL2  
voIF  
50  
voIF7  
1 : 2  
IL1  
viIF21 21  
Rg21 = 200  
7
IF  
RL7 = 200  
2
2
6
1
1
5
50  
Tamb  
V(PIN4)  
I4  
4
fIF  
2viIF  
6
5
94 9416  
Power gain GIF = 20 log (voIF/viIF) + IL1 (dB) + IL2 (dB)  
IL1, IL2 = insertion loss of the RF transformers  
Rev. A3, 15-Oct-98  
13 (23)  
U4065B  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
G
max  
T = 90°C  
G
nom  
T = -30°C  
G
min  
0
0
–5  
–10  
T = 30°C  
–5  
0
20  
40  
60  
80 100 120 140  
10 20 30 40 50 60 70 80 90 100  
f ( MHz )  
94 9417  
I ( A )  
94 9418  
4
Power gain of the first IF amplifier versus I4  
Power gain of the first IF amplifier versus frequency  
3.8  
3.6  
3.4  
T = 90°C  
3.2  
3.0  
T = –30°C  
2.8  
T = 30°C  
2.6  
2.4  
2.2  
2
0
20  
40  
60  
80 100 120 140  
94 9419  
I ( A )  
4
V (Pin 4) versus I  
4
14 (23)  
Rev. A3, 15-Oct-98  
U4065B  
2nd IF Preamplifier  
VS  
330  
2 : 1  
IL2  
3
voIF3  
RL3 = 200  
voIF  
5
1 : 2  
viIF5  
Rg5 = 200  
IF  
IL1  
1
5
2
2
6
1
5
50  
50  
fIF  
Tamb  
6
2viIF  
Power gain GIF = 20 log (voIF/viIF) + IL1 (dB) + IL2 (dB)  
IL1; IL2 = insertion loss of the RF transformers  
94 9420  
18.5  
18.0  
17.5  
17.0  
16.5  
16.0  
15.5  
20  
18  
16  
14  
12  
10  
8
6
4
2
15  
0
–30–20–10 0 10 20 30 40 50 60 70 80 90  
10 20 30 40 50 60 70 80 90 100  
f ( MHz )  
94 9421  
T
amb  
( °C )  
94 9422  
Power gain of the second IF amplifier versus tempera-  
ture  
Power gain of the second IF amplifier versus frequency  
Rev. A3, 15-Oct-98  
15 (23)  
U4065B  
87.0  
86.8  
86.6  
86.4  
86.2  
86.0  
10000.00  
1000.00  
100.00  
10.00  
1.00  
I10 (–30°C ) /  
I10 (30°C ) /  
I10 (90°C ) /  
A
A
A
0.10  
0.01  
–30  
–10  
10  
30  
50  
( °C )  
70  
90  
80  
85  
90  
95  
100  
105  
94 9423  
T
94 9424  
vi ( dB A )  
amb  
IF  
AGC threshold (I10 = 1 A) of the second IF amplifier  
versus temperature  
AGC characteristic of the second IF amplifier input  
Interference Sensor (Mixer)  
50  
15  
16  
IL1  
RL11 = 200  
11  
2viRF1  
fiRF1  
Interference  
mixer  
2
6
1
5
Rg15/16  
=200  
IL2  
voIF  
2viRF2  
fiRF2  
fIF  
1
5
2
6
50  
fLO  
Local  
oscillator  
VS  
IL1=IL2=0.7dB  
94 9425  
Test conditions for characteristic voIF versus viRF1  
LO = 100 MHz, fRF1 = 89.3 MHz, viRF2 = 0, fIF = fLO – fRF1 = 10.7 MHz  
Test conditions for 3rd order IM-characteristic voIF versus viRF1, viRF2  
LO = 100 MHz. fRF1 =89.4 MHz, fRF2 = 89.5 MHz, fIF = fLO – (2 fRF1 –1 fRF2) = 10.7 MHz  
IL1, IL2 = insertion loss of the RF transformer  
:
f
:
f
16 (23)  
Rev. A3, 15-Oct-98  
U4065B  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
Conversion  
characteristic  
–30°C  
30°C  
90°C  
3rd order  
IM-characteristic  
60 65 70 75 80 85 90 95 100  
70 75 80 85 90 95 100 105 110 115  
vi ( dB V )  
94 9426  
vi ( dB V )  
RF  
94 9428  
RF  
Characteristic of the interference sensor (mixer)  
Conversion characteristic of the interference sensor  
(mixer)  
80  
70  
60  
50  
–30°C  
40  
30°C  
90°C  
30  
20  
70 75 80 85 90 95 100 105 110 115  
94 9427  
vi , vi  
( dB V )  
RF1  
RF2  
Third order interference characteristic of the interfer-  
ence sensor (mixer)  
Interference Sensor (Amplifier)  
viIF9  
10  
9
1 : 2  
IL1  
VS  
IF  
I10  
Rg9 = 200  
2
6
1
5
50  
Tamb  
fIF  
2viIF  
94 9429  
IL1=0.7dB  
Rev. A3, 15-Oct-98  
17 (23)  
U4065B  
AGC Thresholds  
45.0  
44.5  
44.0  
43.5  
43.0  
42.5  
42.0  
41.5  
41.0  
105  
100  
95  
88 MHz  
90  
98 MHz  
108 MHz  
85  
–30–20–10 0 10 20 30 40 50 60 70 80 90  
( °C )  
0
5
10 15 20 25 30 35 40 45 50 55  
94 9430  
T
amb  
94 9433  
I
13  
( A )  
AGC threshold of the interference IF amplifier versus  
temperature  
Wideband AGC threshold (I = 1 A) versus I  
10  
13  
100  
U13 = 0 V  
98  
96  
94  
I13 = 30  
A
92  
90  
88  
86  
84  
82  
80  
I13 = 0 A  
–30–20–10 0 10 20 30 40 50 60 70 80 90  
94 9432  
T
amb  
( °C )  
Wideband AGC threshold (I = 1 A)  
10  
versus temperature  
18 (23)  
Rev. A3, 15-Oct-98  
U4065B  
AGC Characteristics  
10000.00  
1000.00  
100.00  
10.00  
1.00  
10000.00  
1000.00  
100.00  
10.00  
1.00  
–30°C  
30°C  
90°C  
–30°C  
30°C  
90°C  
0.10  
0.10  
0.01  
0.01  
35  
45  
55  
65  
75  
85  
95  
80 85 90 95 100 105 110 115 120  
94 9431  
vi ( dB V )  
IF  
94 9435  
vi ( dB V )  
RF  
AGC characteristic of the interference IF & detector  
block  
Characteristic of the wideband AGC  
(I13 = 0 V)  
10000.00  
1000.00  
100.00  
10.00  
–30°C  
1.00  
30°C  
0.10  
90°C  
0.01  
90  
95  
100  
105  
110  
115  
120  
94 9434  
vi ( dB V )  
RF  
Characteristic of the wideband AGC (V13 = 0 V)  
Rev. A3, 15-Oct-98  
19 (23)  
U4065B  
DC Characteristics  
18  
16  
14  
12  
10  
8
3.88  
3.87  
3.86  
3.85  
3.84  
3.83  
3.82  
3.81  
I6  
I18, I19  
6
4
2
I3  
0
6
6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0  
( V )  
–30–20–10 0 10 20 30 40 50 60 70 80 90  
94 9436  
V
94 9438  
T
amb  
( °C )  
S
Supply currents versus supply voltage  
Reference voltage versus temperature  
40  
4.00  
35  
30  
25  
20  
15  
10  
5
I3 + I6 + I18 + I19  
3.95  
3.90  
3.85  
3.80  
3.75  
I6  
I18, I19  
I3  
0
–30  
–10  
10  
30  
50  
( °C )  
70  
90  
–10  
–8  
–6  
–4  
–2  
0
2
94 9437  
T
94 9439  
I
17  
( mA )  
amb  
Supply currents versus temperature  
Reference voltage versus I  
17  
20 (23)  
Rev. A3, 15-Oct-98  
(Tracking adj.)  
R10  
1.5k  
94 9440  
C21  
1n  
appr. 8mA  
R7  
56k  
R19  
10k  
R16  
15  
R4  
470  
R13  
C12  
18p  
1n  
120k  
C7  
1
2
6
R6  
R11  
56k  
IF  
C18  
R14  
160k  
47k  
L5  
L2  
2.2uH  
OSC  
L6  
R17  
470  
3
D4  
4
C8  
1n  
C13  
D5  
100p  
820  
CF3  
10p  
R5  
L4  
C22  
6.8p  
C17  
22  
1p5  
C10  
C16  
C14  
C20 C23  
22p 47p  
C26  
150n  
1n 6.8p  
4.7p  
Q1  
13  
24  
C1  
BFR93A  
D2  
U4065B  
3
1
2p7  
S391D  
4
6
R1  
C2  
1n  
R3  
56k  
C11  
10n  
1
12  
L3  
D3  
22  
R2  
100  
C5  
D1  
10n  
CF1  
CF2  
S392D  
C3  
R20  
22k  
R18  
330  
R15  
22  
10n  
100k  
R21  
C4  
1n  
C24  
Q2  
BC858  
C19  
22n  
CF4  
R12  
330k  
1n  
L1  
Gain adj.  
220nH  
C15  
100n  
R9  
220  
C25  
27p  
470n C9  
C6  
1n  
Vs=8.5V  
VAGC  
ANT  
75 OHM  
IF OUT  
LO OUT  
VTUN  
1.7–6.5V  
U4065B  
Part List  
Item  
Q1  
Description  
BFR93AR (BFR93A)  
BC858  
Item  
L4  
Description  
TOKO 7KL–type  
# 291ENS 2341IB  
Q2  
L5  
L6  
TOKO 7KL–type  
# M600BCS-1397N  
D1  
S392D  
D2  
S391D  
TOKO 7KL–type  
# 291ENS 2054IB  
D3, 4, 5  
L1  
BB804  
CF1  
TOKO type SKM 2  
(230 KHZ)  
11 turns, 0.35 mm wire, 3 mm  
diameter (approx. 220 nH)  
CF2, 3, 4  
TOKO type SKM 3  
(180 KHZ)  
L2  
L3  
2.2 H (high Q type)  
TOKO 7KL–type  
# 600ENF-7251x  
Ordering and Package Information  
Extended type number  
Package  
Remarks  
U4065B-AFL  
SO 24 plastic  
SO 24 plastic  
U4065B-AFLG3  
Taping according ICE-286-3  
Dimensions in mm  
9.15  
8.65  
Package SO24  
Dimensions in mm  
15.55  
15.30  
7.5  
7.3  
2.35  
0.25  
0.10  
0.25  
0.4  
10.50  
10.20  
1.27  
13.97  
24  
13  
technical drawings  
according to DIN  
specifications  
13037  
1
12  
22 (23)  
Rev. A3, 15-Oct-98  
U4065B  
Ozone Depleting Substances Policy Statement  
It is the policy of TEMIC Semiconductor GmbH to  
1. Meet all present and future national and international statutory requirements.  
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems  
with respect to their impact on the health and safety of our employees and the public, as well as their impact on  
the environment.  
It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as  
ozone depleting substances (ODSs).  
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and  
forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban  
on these substances.  
TEMIC Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of  
ODSs listed in the following documents.  
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively  
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental  
Protection Agency (EPA) in the USA  
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.  
TEMIC Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting  
substances and do not contain such substances.  
We reserve the right to make changes to improve technical design and may do so without further notice.  
Parameters can vary in different applications. All operating parameters must be validated for each customer  
application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized  
application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of,  
directly or indirectly, any claim of personal damage, injury or death associated with such unintended or  
unauthorized use.  
TEMIC Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany  
Telephone: 49 (0)7131 67 2594, Fax number: 49 (0)7131 67 2423  
Rev. A3, 15-Oct-98  
23 (23)  

相关型号:

U4065B-AFL

FM Receiver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TEMIC

U4065B-AFL

FM Receiver IC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ATMEL

U4065B-AFL3

FM Receiver IC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ATMEL

U4065B-AFLG3

FM Receiver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TEMIC

U406NL

Small Signal Field-Effect Transistor, N-Channel, Junction FET

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

U406NL-E3

Small Signal Field-Effect Transistor, N-Channel, Junction FET

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

U406_TO-71

Low Noise, Low Drift, Monolithic Dual N-Channel JFET

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROSS

U406_TO-78

Low Noise, Low Drift, Monolithic Dual N-Channel JFET

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROSS

U4070B-FP

Tone Ringer Interface

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TEMIC

U4071B

Telecommunication IC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

U4072B

Telecom IC,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

U4074B

Tone Ringer Interface

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TEMIC