U4224B-CFLG3 [TEMIC]

Time Code Receiver; 时间码接收机
U4224B-CFLG3
型号: U4224B-CFLG3
厂家: TEMIC SEMICONDUCTORS    TEMIC SEMICONDUCTORS
描述:

Time Code Receiver
时间码接收机

消费电路 商用集成电路 电信集成电路 光电二极管 接收机
文件: 总17页 (文件大小:226K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
U4224B  
Time Code Receiver  
Description  
The U4224B is a bipolar integrated straight through receiver circuit in the frequency range of 40 to 80 kHz.  
The device is designed for radio controlled clock applications.  
Features  
Very low power consumption  
Only a few external components necessary  
Digitalized serial output signal  
AGC hold mode  
Very high sensitivity  
High selectivity by using two crystal filters  
Power down mode available  
Block Diagram  
PON  
15  
TCO  
93 7727 e  
16  
11  
3
GND  
FLB  
Decoder  
10  
Power Supply  
1
V
CC  
FLA  
9
DEC  
12  
AGC  
Amplifier  
Rectifier &  
Integrator  
SL  
2
IN  
4
5
6
13 14  
7
8
SB  
Q1A  
Q1B Q2A Q2B  
REC  
INT  
TELEFUNKEN Semiconductors  
1 (17)  
Rev. A3, 02-Apr-96  
U4224B  
Pin Description  
Pin  
Symbol  
Function  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
TCO  
PON  
Q2B  
Q2A  
SL  
V
CC  
SO 16 L  
IN  
1
2
V
CC  
Supply voltage  
IN  
Amplifier – Input  
Ground  
GND  
SB  
3
GND  
SB  
4
Bandwidth control  
Crystal filter 1  
Crystal filter 1  
Rectifier output  
Integrator output  
Decoder input  
U4224B  
5
Q1A  
Q1B  
REC  
INT  
DEC  
FLA  
FLB  
SL  
Q1A  
Q1B  
REC  
INT  
6
FLB  
FLA  
DEC  
7
8
9
10  
11  
12  
13  
14  
15  
16  
Low pass filter  
Low pass filter  
AGC hold mode  
Crystal filter 2  
Crystal filter 2  
Power ON/OFF control  
Time code output  
93 7729 e  
Q2A  
Q2B  
PON  
TCO  
IN  
SB  
A resistor R is connected between SB and GND. It con-  
trols the bandwidth of the crystal filters. It is  
A ferrite antenna is connected between IN and V . For  
SB  
CC  
high sensitivity the Q of the antenna circuit should be as  
high as possible, but a high Q often requires temperature  
compensation of the resonant frequency. Specifications  
are valid for Q > 30. An optimal signal to noise ratio will  
be achieved by a resonant resistance of 50 to 200 k .  
recommended: R = 0  
for DCF 77.5 kHz, R  
=
SB  
SB  
10 k for 60 kHz WWVB and R = open for JG2AS  
SB  
40 kHz.  
94 8381  
VCC  
IN  
SB  
GND  
94 8379  
2 (17)  
TELEFUNKEN Semiconductors  
Rev. A3, 02-Apr-96  
U4224B  
Q1A, Q1B  
SL  
In order to achieve a high selectivity, a crystal is con-  
nected between the pins Q1A and Q1B. It is used with the  
serial resonance frequency of the time code transmitter  
(e.g. 60 kHz WWVB, 77.5 kHz DCF or 40kHz JG2AS).  
AGC hold mode: SL high (V = V ) sets normal func-  
SL  
CC  
tion, SL low (V = 0) disconnects the rectifier and holds  
SL  
the voltage V  
at the integrator output and also the AGC  
INT  
amplifier gain.  
The equivalent parallel capacitor of the filter crystal is  
internally compensated. The compensated value is about  
0.7 pF. If the full sensitivity and selectivity is not needed,  
the crystal filter can be substituted by a capacitor of 10 pF  
for DCF and WWVB and 22 pF for JG2AS.  
V
CC  
SL  
94 8378  
Q1B  
Q1A  
GND  
94 8382  
INT  
Integrator output: The voltage V  
is the control voltage  
INT  
REC  
for the AGC. The capacitor C2 between INT and DEC  
defines the time constant of the integrator. The current  
through the capacitor is the input signal of the decoder.  
Rectifier output and integrator input: The capacitor C1  
between REC and INT is the lowpass filter of the rectifier  
and at the same time a damping element of the gain  
control.  
94 8375  
94 8374  
INT  
REC  
GND  
GND  
DEC  
FLA, FLB  
Decoder input: Senses the current through the integration  
capacitor C2. The dynamic input resistance has a value of  
about 420k and is low compared to the impedance of  
C2.  
Lowpass filter: A capacitor C3 connected between FLA  
and FLB supresses higher frequencies at the trigger  
circuit of the decoder.  
DEC  
FLB  
FLB  
GND  
94 8377  
94 8376  
TELEFUNKEN Semiconductors  
3 (17)  
Rev. A3, 02-Apr-96  
U4224B  
An additional improvement of the driving capability may  
be achieved by using a CMOS driver circuit or a NPN  
transistor with pull-up resistor connected to the collector  
(see figure KEIN MERKER). Using a CMOS driver this  
Q2A, Q2B  
According to Q1A, Q1B a crystal is connected between  
the pins Q2A and Q2B. It is used with the serial resonance  
frequency of the time code transmitter (e.g. 60 kHz  
WWVB, 77.5 kHz DCF or 40 kHz JG2AS). The equi-  
valent parallel capacitor of the filter crystal is internally  
compensated. The value of the compensation is about  
0.7 pF.  
circuit must be connected to V  
.
CC  
V
CC  
10 k  
100 k  
TCO  
pin16  
TCO  
94 8395 e  
Q2A  
Q2B  
Figure 1.  
GND  
94 8383  
Please note:  
The signals and voltages at the pins REC, INT, FLA, FLB,  
Q1A, Q1B, Q2A and Q2B cannot be measured by stan-  
dard measurement equipment due to very high internal  
impedances. For the same reason the PCB should be pro-  
tected against surface humidity.  
PON  
If PON is connected to GND the U 4224 B receiver IC  
will be activated. The set-up time is typical 0.5s after  
applying GND at this pin. If PON is connected to V , the  
receiver will go into power down mode.  
,
Design Hints for the Ferrite Antenna  
CC  
The bar antenna is a very critical device of the complete  
clock receiver. But by observing some basic RF design  
knowledge, no problem should arise with this part. The IC  
requires a resonance resistance of 50 k to 200 k . This  
can be achieved by a variation of the L/C-relation in the  
antenna circuit. But it is not easy to measure such high  
resistances in the RF region. It is much more convenient  
to distinguish the bandwidth of the antenna circuit and  
afterwards to calculate the resonance resistance.  
V
CC  
PON  
94 8373  
Thus the first step in designing the antenna circuit is to  
measure the bandwidth. Figure 4 shows an example for  
the test circuit. The RF signal is coupled into the bar  
antenna by inductive means, e.g. a wire loop. It can be  
measured by a simple oscilloscope using the 10:1 probe.  
The input capacitance of the probe, typically about 10 pF,  
should be taken into consideration. By varying the  
frequency of the signal generator, the resonance  
frequency can be determined.  
TCO  
The digitized serial signal of the time code transmitter can  
be directly decoded by a microcomputer. Details about  
the time code format of several transmitters are described  
separately.  
The output consists of a PNP NPN push-pull-stage. It  
should be taken into account that in the power down mode  
(PON = high) TCO will be high.  
RF - Signal  
Scope  
generator  
77.5 kHz  
V
CC  
Probe  
PON  
TCO  
10 : 1  
10 M  
C
res  
wire loop  
94 7907 e  
94 8380  
GND  
4 (17)  
TELEFUNKEN Semiconductors  
Rev. A3, 02-Apr-96  
U4224B  
Afterwards, the two frequencies where the voltage of the problem if the bandwidth of the antenna circuit is low  
rf signal at the probe drops 3 dB down can be measured. compared to the temperature variation of the resonance  
The difference between these two frequencies is called frequency. Of course, Q can also be reduced by a parallel  
the bandwidth BW of the antenna circuit. As the value resistor.  
A
of the capacitor C in the antenna circuit is well known,  
it is easy to compute the resonance resistance according  
to the following formula:  
res  
Temperature compensation of the resonance frequency is  
a must if the clock is used at different temperatures.  
Please ask your dealer of bar antenna material and of ca-  
pacitors for specified values of temperature coefficient.  
1
Rres  
2
BWA Cres  
Furthermore some critical parasitics have to be consid-  
ered. These are shortened loops (e.g. in the ground line of  
the PCB board) close to the antenna and undesired loops  
in the antenna circuit. Shortened loops decrease Q of the  
circuit. They have the same effect like conducting plates  
close to the antenna. To avoid undesired loops in the  
antenna circuit it is recommended to mount the capacitor  
whereas  
is the resonance resistance,  
R
res  
BW is the measured bandwidth (in Hz)  
A
C
res  
is the value of the capacitor in the antenna circuit  
(in Farad)  
If high inductance values and low capacitor values are  
used, the additional parasitic capacitances of the coil  
must be considered. It may reach up to about 20 pF. The  
Q-value of the capacitor should be no problem if a high  
Q-type is used. The Q-value of the coil is more or less  
distinguished by the simple DC-resistance of the wire.  
Skin effects can be observed but do not dominate.  
C
res  
as close as possible to the antenna coil or to use a  
twisted wire for the antenna coil connection. This twisted  
line is also necessary to reduce feedback of noise from the  
microprocessor to the IC input. Long connection lines  
must be shielded.  
A final adjustment of the time code receiver can be done  
Therefore it shouldn’t be a problem to achieve the recom- by pushing the coil along the bar antenna. The maximum  
mended values of resonance resistance. The use of thicker of the integrator output voltage V at pin INT indicates  
INT  
wire increases Q and accordingly reduces bandwidth. the resonant point. But attention: The load current should  
This is advantageous in order to improve reception in not exceed 1 nA, that means an input resistance 1 G  
noisy areas. On the other hand, temperature compen- of the measuring device is required. Therefore a special  
sation of the resonance frequency might become a DVM or an isolation amplifier is necessary.  
Absolute Maximum Ratings  
Parameters  
Symbol  
V
CC  
Value  
5.25  
Unit  
V
Supply voltage  
Ambient temperature range  
Storage temperature range  
Junction temperature  
T
R
T
–25 to +75  
–40 to +85  
125  
C
C
C
amb  
stg  
j
Electrostatic handling  
± V  
2000  
V
ESD  
(MIL Standard 883 D), excepted pins 5, 6, 13 and 14  
Thermal Resistance  
Parameters  
Symbol  
R
thJA  
Value  
70  
Unit  
K/W  
Thermal resistance  
TELEFUNKEN Semiconductors  
5 (17)  
Rev. A3, 02-Apr-96  
U4224B  
Electrical Characteristics  
V
CC  
= 3 V, reference point pin 3, input signal frequency 80 kHz, T  
= 25 C, unless otherwise specified  
amb  
Parameters  
Supply voltage range  
Supply current  
Test Conditions / Pin  
pin 1  
pin 1  
without reception signal  
with reception signal = 200 V  
OFF-mode  
Symbol  
Min.  
1.2  
Typ.  
Max.  
5.25  
Unit  
V
V
CC  
CC  
I
30  
25  
0.1  
A
A
A
15  
2
Set-up time after V ON  
V
CC  
= 1.5 V  
pin 2  
t
s
CC  
AGC AMPLIFIER INPUT; IN  
Reception frequency range  
f
V
V
C
40  
40  
80  
1.5  
kHz  
V
mV  
pF  
in  
Minimum input voltage  
Maximum input voltage  
Input capacitance to ground  
R
res  
= 100 k , Q > 30  
1
80  
1.5  
res  
in  
in  
in  
TIMING CODE OUTPUT; TCO  
pin 16  
Output voltage  
HIGH  
LOW  
R
LOAD  
R
LOAD  
= 870 k to GND  
V
V
V -0.4  
CC  
V
V
OH  
= 650 k to V  
0.4  
CC  
OL  
Output current  
HIGH  
LOW  
V
TCO  
V
TCO  
= V /2  
I
3
4
10  
12  
CC  
SOURCE  
= V /2  
I
CC  
SINK  
Decoding characteristics  
DCF77 based on the values of  
the application circuit  
page KEIN MERKER:  
TCO pulse width 100 ms  
TCO pulse width 200 ms  
t
t
60  
160  
90  
190  
130  
230  
ms  
ms  
100  
200  
Delay compared with the  
transient of the RF signal:  
t
30  
25  
60  
55  
ms  
ms  
s
drop down (start transition)  
rise for 100 ms pulse  
(end transition)  
t
e1  
t
e2  
10  
30  
ms  
rise for 200 ms pulse  
(end transition)  
Decoding characteristics  
WWVB based on the values of  
the application circuit  
page KEIN MERKER:  
TCO pulse width 200 ms  
TCO pulse width 500 ms  
TCO pulse width 800 ms  
t
t
t
140  
440  
740  
200  
500  
800  
ms  
ms  
ms  
200  
500  
800  
Delay compared with the  
transient of the RF signal:  
t
45  
20  
80  
45  
ms  
ms  
s
drop down (start transition)  
rise (end transition)  
t
e
6 (17)  
TELEFUNKEN Semiconductors  
Rev. A3, 02-Apr-96  
U4224B  
Parameters  
Test Conditions / Pin  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Decoding characteristics  
JG2AS based on the values of  
the application circuit  
page KEIN MERKER:  
TCO pulse width 200 ms  
TCO pulse width 500 ms  
TCO pulse width 800 ms  
t
t
t
240  
420  
720  
410  
490  
790  
ms  
ms  
ms  
200  
500  
800  
Delay compared with the  
transient of the RF signal:  
start transition (RF on)  
end transition (RF off)  
t
10  
30  
110  
220  
ms  
ms  
s
t
e
POWER ON/OFF CONTROL; PON pin 15  
Input voltage  
HIGH  
LOW  
Required I  
0.5 A  
IN  
V
V
-0.2  
V
V
A
A
A
CC  
V
-1.2  
CC  
2
Input current  
V
CC  
V
CC  
V
CC  
= 3V  
= 1.5 V  
= 5 V  
I
1.4  
1.7  
0.7  
3
IN  
Set-up time after PON  
AGC HOLD MODE; SL  
Input voltage  
HIGH  
LOW  
t
0.5  
2
s
pin 12  
Required I  
0.5 A  
IN  
-0.2  
V
V
CC  
V
CC  
-1.2  
Input current  
Vin = V  
Vin = GND  
0.1  
A
A
CC  
2.5  
Rejection of interference  
signals  
f – f = 625 Hz  
d
ud  
V = 3 V, f = 77.5 kHz  
d
d
using 2 crystal filters  
using 1 crystal filter  
a
f
a
f
43  
22  
dB  
dB  
TELEFUNKEN Semiconductors  
7 (17)  
Rev. A3, 02-Apr-96  
U4224B  
Test Circuit (for Fundamental Function)  
Test point: DVM with high and low input  
line for measuring of a voltage Vxx or a  
current lxx by conversion into a voltage.  
Ipon  
Vd  
1.657V  
300k  
Stco  
Spon  
1M  
1M  
82p  
Vtco  
Isl  
Ssl  
TCO  
Q2A  
PON  
Q2B  
U4224B  
SL  
10M  
100k  
Ivcc  
Sdec  
FLB  
V
STABILISATION  
CC  
DECODING  
RECTIFIER  
Iin  
Idec  
FLA  
DEC  
AGC-  
AMPLIFIER  
100M  
1M  
Vdec  
IN  
Q1A  
Q1B  
REC  
GND  
SB  
INT  
VCC  
3 V  
~
82p  
680p 3.3 n 420k  
Srec  
Vin  
Vrec  
Ssb  
Sint  
10M  
10M  
Irec  
Vsb  
Vint  
1M  
Vrec  
Vint  
Isb  
Iint  
94 8384 e  
8 (17)  
TELEFUNKEN Semiconductors  
Rev. A3, 02-Apr-96  
U4224B  
Application Circuit for DCF 77.5 kHz  
CONTROL LINES  
+ V  
CC  
Ferrite Antenna  
= 77.5 kHz  
1
2
3
4
5
16  
15  
f
res  
TCO  
MICROCOMPUTER  
3)  
PON  
14  
77.5 kHz  
13  
1)  
SL  
KEYBOARD  
U4224B  
12  
2)  
77.5 kHz  
DISPLAY  
11  
C
6
7
8
3
10 nF  
10  
C
1
1)  
If SL is not used, SL is connected to V  
77.5 kHz crystal can be replaced by 10 pF  
If IC is activated, PON is connected to GND  
CC  
2)  
3)  
9
6.8 nF  
C
2
33 nF  
94 8279 e  
Application Circuit for WWVB 60 kHz  
CONTROL LINES  
+ V  
CC  
Ferrite Antenna  
= 60 kHz  
1
2
3
4
5
16  
15  
f
res  
TCO  
MICROCOMPUTER  
3)  
PON  
14  
60 kHz  
13  
1)  
SL  
RSB  
10 k  
KEYBOARD  
U4224B  
12  
11  
10  
2)  
60 kHz  
DISPLAY  
6
7
8
C
3
10 nF  
C
1
1)  
2)  
3)  
If SL is not used, SL is connected to V  
60 kHz crystal can be replaced by 10 pF  
If IC is activated, PON is connected to GND  
CC  
9
15 nF  
C
2
47 nF  
94 8278 e  
TELEFUNKEN Semiconductors  
9 (17)  
Rev. A3, 02-Apr-96  
U4224B  
Application Circuit for JG2AS 40 kHz  
CONTROL LINES  
+ V  
CC  
Ferrite Antenna  
= 40 kHz  
1
2
3
4
5
16  
15  
f
res  
TCO  
MICROCOMPUTER  
3)  
PON  
14  
40 kHz  
1)  
SL  
13  
12  
11  
10  
KEYBOAR  
U4224B  
2)  
40 kHz  
DISPLAY  
6
7
8
C
3
10 nF  
C
1
1)  
2)  
3)  
If SL is not used, SL is connected to V  
40 kHz crystal can be replaced by 22 pF  
If IC is activated, PON is connected to GND  
CC  
C
2
680 pF  
1 M  
9
R
220 nF  
94 7724 e  
10 (17)  
TELEFUNKEN Semiconductors  
Rev. A3, 02-Apr-96  
U4224B  
PAD Coordinates  
The T4224B is the die version of the U4224B.  
DIE size:  
PAD size:  
2.26 x 2.09 mm  
100 x 100 m (contact window 88 x 88 m)  
Thickness: 300 m 20 m  
Symbol  
IN1  
x-axis/ m  
128  
y-axis/ m  
758  
Symbol  
FLA  
FLB  
SL  
x-axis/ m  
2044  
2044  
2044  
1980  
1634  
1322  
1008  
128  
y-axis/ m  
676  
IN  
128  
310  
1012  
1624  
1876  
1876  
1876  
1876  
1098  
GND  
SB  
354  
124  
698  
128  
Q2A  
Q2B  
PON  
TCO  
VCC  
Q1A  
Q1B  
REC  
INT  
1040  
1290  
1528  
1766  
2044  
128  
128  
128  
128  
DEC  
268  
The PAD coordinates are referred to the left bottom point  
of the contact window.  
PAD Layout  
Q2B  
Q2A  
SL  
TCO  
PON  
VCC  
IN1  
FLB  
FLA  
T4224B  
IN  
DEC  
y-axis  
GND  
REC  
Q1A  
Q1B  
INT  
SB  
94 8892  
x-axis  
Reference point (0/0)  
TELEFUNKEN Semiconductors  
11 (17)  
Rev. A3, 02-Apr-96  
U4224B  
Information Regarding German Transmitter  
Station: DCF 77,  
Location: Mainflingen/Germany,  
Frequency 77.5 kHz,  
Transmitting power 50 kW  
Geographical coordinates: 50  
Time of transmission: permanent  
0.1’N, 09  
00’E  
Time Frame 1 Minute  
Time Frame  
( index count 1 second )  
0
40  
55  
5
10  
20  
35  
45  
50  
10  
5
15  
25  
30  
0
calendar  
day  
coding  
when  
required  
minutes  
hours  
day month  
year  
of  
the  
week  
93 7527  
Example:19.35 h  
20  
2
8
10 20  
10  
40  
4
P2  
s
1
2
4
8
P1  
1
sec. 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35  
minutes  
hours  
Start Bit  
Parity Bit P1  
Parity Bit P2  
beginning of the 59th second to recognize the switch over  
to the next 1 minute time frame. A time frame contains  
BCD–coded information of minutes, hours, calendar day,  
day of the week, month and year between the 20th second  
and 58th second of the time frame, including the start bit  
S (200 ms) and parity bits P1, P2 and P3. Further there are  
5 additional bits R (transmission by reserve antenna), A1  
(announcement of change–over to the summer time), Z1  
(during the summer time 200 ms, otherwise 100 ms), Z2  
(during standard time 200 ms otherwise 100 ms) and A2  
(announcement of leap second) transmitted between the  
Modulation:  
The carrier amplitude is reduced to 25 % at the beginning  
of each second for 100 ms (binary zero) or 200 ms (binary  
one) duration, excepting the 59th second.  
Time Code Format: (based on in-  
formation of Deutsche Bundespost)  
It consists of 1 minute time frames. No modulation at the 15th second and 19th second of the time frame.  
12 (17)  
TELEFUNKEN Semiconductors  
Rev. A3, 02-Apr-96  
U4224B  
Information Regarding British Transmitter  
Station: MSF  
Frequency 60 kHz  
Transmitting power 50 kW  
Location: Teddington, Middlesex  
Geographical coordinates: 52  
22’N, 01 11’W  
Time of transmission: permanent, excepting the first tues-  
day of each month from 10.00 h to 14.00 h.  
TIME FRAME 1 MINUTE  
TIME FRAME  
10  
( index count 1 second)  
10  
35  
45  
50  
55  
0
5
15  
20  
25  
30  
40  
0
5
month day of  
month  
minute  
year  
hour  
minute  
day  
of  
week  
identifier  
switch over to  
the next time frame  
BST  
Parity  
check  
bits  
hour + minute  
day of week  
day + month  
year  
BST 7 GMT change  
impending  
1
0
500 ms 500 ms  
93 7528  
Example:  
March 1993  
8
40  
20  
8
4
2
10  
4
1
80  
10  
1
2
seconds 17  
19  
23  
27  
month  
21  
year  
25  
30  
18  
20  
22  
24  
26  
28  
29  
Modulation:  
Time Code Format:  
It consists of 1 minute time frames. A time frame contains  
BCD–coded information of year, month, calendar day,  
day of the week, hours and minutes. At the switch–over  
to the next time frame, the carrier amplitude is reduced for  
500 ms duration.  
The carrier amplitude is switched off at the beginning of  
each second for the time of 100 ms (binary zero) or 200  
ms (binary one).  
The prescence of the fast code during the first 500 ms at  
the beginning of the minute in not guaranteed. The trans-  
mission rate is 100 bits/s and the code contains  
information of hour, minute, day and month.  
TELEFUNKEN Semiconductors  
13 (17)  
Rev. A3, 02-Apr-96  
U4224B  
Information Regarding US Transmitter  
Station: WWVB  
Location: Fort Collins  
Frequency 60 kHz  
Geographical coordinates: 40  
40’N, 105  
03’W  
Transmitting power 10 kW  
Time of transmission: permanent.  
TIME FRAME 1 MINUTE  
TIME FRAME  
10  
( index count 1 second)  
35  
30  
5
10  
15  
20  
25  
40  
50  
55  
0
0
45  
5
daylight savings time bits  
leap second warning bit  
leap year indicator bit  
”0” = non leap year  
”1” = leap year  
days  
hours  
minutes  
UTI  
UTI  
year  
sign correction  
93 7529 e  
Example: UTC 18.42 h  
TIME FRAME  
P0  
40 20  
8
4
2
1
P1  
20 10  
8
4
2
1
P2  
10  
4
seconds0  
12  
16  
13 14 15 17 18 19 20  
1
3
5
8
9 11  
10  
2
6
7
minutes  
Frame reference marker  
hours  
Modulation:  
Time Code Format:  
It consists of 1 minute time frames. A time frame contains  
BCD–coded information of minutes, hours, days and  
year. In addition there are 6 position identifier markers  
(P0 thru P5) and 1 frame reference marker with reduced  
carrier amplitude of 800 ms duration.  
The carrier amplitude is reduced 10 dB at the beginning  
of each second and is restored in 500 ms (binary one) or  
in 200 ms (binary zero).  
14 (17)  
TELEFUNKEN Semiconductors  
Rev. A3, 02-Apr-96  
U4224B  
Information Regarding Japanese Transmitter  
Station: JG2AS  
Frequency 40 kHz  
Transmitting power 10 kW  
Location: Sanwa, Ibaraki  
Geographical coordinates: 36 11’ N, 139 51’ E  
Time of transmission: permanent  
Time Frame 1 Minute  
(index count 1 second)  
Time Frame  
10  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
0
5
minutes  
hours  
days  
code dut1  
Example: 18.42 h  
P0  
Time Frame  
8
P2  
1
40 20 10  
4
2
1
P1  
20 10  
8
4
2
sec.  
0
59  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
minutes  
hours  
frame reference marker (FRM)  
position identifier marker P0  
position identifier marker P1  
0.5 second: Binary one  
0.8 second: Binary zero  
0.2 second: Identifier markers P0...P5  
0.2 s  
”P”  
0.8 s  
”0”  
0.5 s  
93 7508 e  
”1”  
Modulation:  
Time Code Format:  
It consists of one minute time frame. A time frame con-  
tains BCD–coded information of minutes, hours and  
days. In addition there are 6 position identifier markers  
(P0 thruP5) and one frame reference markers (FRM) with  
reduced carrier amplitude of 800 ms duration.  
The carrier amplitude is 100% at the beginning of each se-  
cond and is switched off after 500 ms (binary one) or after  
800 ms (binary zero).  
Ordering and Package Information  
Extended type number  
Package  
Remarks  
U4224B-CFL  
U4224B-CFLG3  
T4224B-CF  
SO 16 L plastic  
SO 16 L plastic  
Taping according to IEC–286–3  
die on foil  
no  
no  
T4224B-CC  
die on tray  
TELEFUNKEN Semiconductors  
15 (17)  
Rev. A3, 02-Apr-96  
U4224B  
Dimensions in mm  
Package: SO 16 L  
94 8961  
16 (17)  
TELEFUNKEN Semiconductors  
Rev. A3, 02-Apr-96  
U4224B  
Ozone Depleting Substances Policy Statement  
It is the policy of TEMIC TELEFUNKEN microelectronic GmbH to  
1. Meet all present and future national and international statutory requirements.  
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems  
with respect to their impact on the health and safety of our employees and the public, as well as their impact on  
the environment.  
It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as  
ozone depleting substances (ODSs).  
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and  
forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban  
on these substances.  
TEMIC TELEFUNKEN microelectronic GmbH semiconductor division has been able to use its policy of  
continuous improvements to eliminate the use of ODSs listed in the following documents.  
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively  
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental  
Protection Agency (EPA) in the USA  
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.  
TEMIC can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain  
such substances.  
We reserve the right to make changes to improve technical design and may do so without further notice.  
Parameters can vary in different applications. All operating parameters must be validated for each customer  
application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized  
application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of,  
directly or indirectly, any claim of personal damage, injury or death associated with such unintended or  
unauthorized use.  
TEMIC TELEFUNKEN microelectronic GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany  
Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423  
TELEFUNKEN Semiconductors  
17 (17)  
Rev. A3, 02-Apr-96  

相关型号:

U4224B-FL

Consumer Circuit, PDSO16,
TEMIC

U4226B

TIME-CODE RECEIVER WITH TC OUTPUT
TEMIC

U4226B-FS

Consumer Circuit, PDSO20,
TEMIC

U4226B-MFS

Remote-Control Receiver/Decoder
ETC

U4226B-MFSG3

Remote-Control Receiver/Decoder
ETC

U422_PDIP

high input impedance Monolithic Dual N-Channel JFET
MICROSS

U422_SOIC

high input impedance Monolithic Dual N-Channel JFET
MICROSS

U422_TO-71

high input impedance Monolithic Dual N-Channel JFET
MICROSS

U422_TO-78

high input impedance Monolithic Dual N-Channel JFET
MICROSS

U423

N-Channel Dual JFET
CALOGIC

U423

Linear Systems replaces discontinued Siliconix U423
MICROSS

U423(8SOIC)

Transistor
MICROSS