U4256BM-NFSG3 [TEMIC]

PLL Frequency Synthesizer, BICMOS, PDSO20, SSOP-20;
U4256BM-NFSG3
型号: U4256BM-NFSG3
厂家: TEMIC SEMICONDUCTORS    TEMIC SEMICONDUCTORS
描述:

PLL Frequency Synthesizer, BICMOS, PDSO20, SSOP-20

ATM 异步传输模式 信息通信管理 光电二极管
文件: 总14页 (文件大小:149K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
U4256BM  
Frequency Synthesizer for Radio Tuning  
Description  
The U4256BM is a synthesizer IC for FM receiver and an recommended also for RDS (Radio Data System)  
AM up-convertion system in BICMOS technology. applications. It is controlled by 3-wire bus and contains also  
Together with the AM/FM IC U4255BM, it performs a switches and Digital to Analog Converters (DACs) for soft-  
complete AM/FM car radio front end, which is ware controlled alignment of the AM/FM tuner.  
FD eRaetfuerreencse oscillator up to 15 MHz (tuned)  
D Four programmable switching outputs (open drain)  
D Three DACs for software controlled tuner alignment  
D Low power consumption  
D Oscillator buffer output (for AM up/down conversion)  
D Two programmable 16-bit dividers  
D Fine-tuning steps possible  
D High S/N ratio  
D Fast response time due to integrated loop push-pull stage  
D 3-wire bus (enable, clock and data; 3 V and 5 V micro- D Integrated band gap * only one supply voltage  
controllers acceptable)  
necessary  
Block Diagram  
SWO1 SWO2 SWO3 SWO4  
7
8
9
10  
Tuning  
13  
OSCIN  
Oscillator  
Switching outputs  
12  
DAC3  
3–bit  
OSCOUT  
5
DAC3  
V
15  
Ref  
OSC  
buffer  
MX2LO  
DAC2  
DAC1  
4
3
DAC2  
DAC1  
17  
16  
18  
CLK  
DATA  
EN  
3W–  
bus  
interface  
R–  
divider  
DAC  
AM/FM  
V
Ref  
1
2
19  
FM–  
preamp  
N–  
divider  
Phase  
Current  
sources  
FMOSCIN  
PDO  
PD  
detector  
Band-gap  
6
20  
14  
11  
GNDan  
V5  
GND  
VS  
Figure 1. Block diagram  
Ordering Information  
Extended Type Number  
U4256BM-NFS  
Package  
SSO20  
SSO20  
Remarks  
Tube  
Taped and reeled  
U4256BM-NFSG3  
Rev. A5, 06-Oct-00  
1 (14)  
Preliminary Information  
U4256BM  
Pin Description  
Pin  
1
Symbol  
PDO  
Function  
1
20  
19  
18  
17  
16  
15  
GNDan  
FMOSCIN  
EN  
PDO  
Phase detector output  
Pulsed current output  
Digital-to-analog converter 1  
Digital-to-analog converter 2  
Digital-to-analog converter 3  
Supply voltage analog part  
Switching output 1  
2
PD  
2
3
DAC1  
DAC2  
DAC3  
VS  
PD  
4
5
3
4
DAC1  
DAC2  
DAC3  
VS  
6
7
SWO1  
SWO2  
SWO3  
SWO4  
GND  
CLK  
8
Switching output 2  
9
Switching output 3  
5
6
DATA  
MX2LO  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
Switching output 4  
U4256BM  
Ground, digital part  
OSCOUT Reference oscillator output  
OSCIN  
V5  
Reference oscillator input  
Capacitor band gap  
14  
13  
12  
11  
7
SWO1  
SWO2  
SWO3  
V5  
MX2LO Oscillator buffer output  
8
OSCIN  
DATA  
CLK  
EN  
Data input  
Clock  
9
Enable  
OSCOUT  
GND  
FMOSCIN FM-oscillator input  
GNDan Ground, analog part  
10  
SWO4  
Figure 2. Pinning  
If this oscillator tuning feature is not used, the internal  
capacities have to be switched off and the oscillator has  
to be operated with high-quality external capacities to  
ensure that the operational frequency is exactly  
10.250 MHz.  
Functional Description  
For a tuned FM – broadcast receiver, the following parts  
are needed:  
– voltage-controlled oscillator (VCO)  
– antenna amplifier tuned circuit  
– RF amplifier tuned circuit  
When dimensioning the oscillator circuit, it is important  
that the additional capacities enable the oscillator to  
Typical modern receivers with electronic tuning are tuned operate through its complete tracking range. The oscillat-  
to the desired FM frequency by the frequency synthesizer  
IC U4256BM. The special design allows to build  
software-controlled tuner alignment systems. Two pro-  
grammable DACs (Digital-to-Analog Converter) support  
the computer-controlled alignment. The output of the  
PLL is a tuning voltage which is connected to the VCO  
of the receiver IC. The output of the VCO is equal to the  
desired station frequency plus the IF (10.7 MHz). The RF  
and the oscillator signal (VCO) are both input to the mixer  
that translates the desired FM channel signal to the fixed  
IF signal. For FM, the double-conversion system of the  
receiver requires exactly 10.7 MHz for the first IF  
ing ability depends very strongly on the used crystal  
oscillator. Initializing the oscillator should be established  
without switching any additional capacities to guarantee  
that the oscillator starts to operate properly. Due to the  
lower quality of the integrated capacities compared to  
discrete capacities, the amount of the switched integrated  
capacities should always be minimized. (if necessary re-  
duce tracking range or use another crystal oscillator)  
The U4256BM has a very fast response time of maximum  
800 ms (at 2 mA, fref = 100 kHz, measured on MPX  
signal). It performs a high signal to noise ratio.  
frequency, which determines the center frequency of the Only one supply voltage is necessary, due to a  
software-controlled integrated second IF filter. integrated band gap.  
2 (14)  
Rev. A5, 06-Oct-00  
Preliminary Information  
U4256BM  
Absolute Maximum Ratings  
All voltages are referred to GND (Pin 11)  
Parameters  
Symbol  
Value  
Unit  
V
Analog supply voltage  
Input voltage BUS  
Pin 6  
V
S
8 to 15  
–0.3 to +12  
–1 to +5  
Pins 16, 17 and 18  
Pins 7, 8, 9 and 10  
V
I
V
Output current switches  
(see figure 10)  
I
mA  
O
Drain voltage switches  
Ambient temperature range  
Storage temperature range  
Junction temperature  
Pins 7, 8, 9 and 10  
V
15  
–40 to +85  
–40 to +125  
125  
V
°C  
°C  
°C  
V
OD  
T
amb  
T
stg  
T
j
Electrostatic handling  
V
ESD  
t.b.d.  
Thermal Resistance  
Parameters  
Symbol  
Value  
140  
Unit  
K/W  
Junction ambient  
when soldered to PCB  
R
thJA  
Operating Range  
All voltages are referred to GND (Pin 11)  
Parameter  
Symbol  
Min.  
8
Typ.  
8.5  
Max.  
14  
Unit  
Supply voltage range  
Pin 6  
V
S
V
°C  
Ambient temperature  
Tamb  
–40  
70  
+85  
160  
65535  
15  
Input frequency FMOSCIN  
Programmable N, R divider  
Crystal reference oscillator  
Pin 19  
f
MHz  
in  
SF  
2
Pins 12 and 13  
fXTAL  
0.1  
MHz  
Electrical Characteristics  
Test conditions (unless otherwise specified): V = +8.5 V, T  
= +25°C  
S
amb  
Parameters  
Supply voltage  
Test Conditions / Pins  
Symbol  
Min.  
Typ.  
8.5  
10  
Max.  
12  
Unit  
V
Pin 6  
Analog supply voltage  
Supply current  
Analog supply current  
OSCIN  
V
S
8
Pin 20  
I
4.5  
100  
20  
mA  
S
Pin 13  
f = 0.1 to 15 MHz  
Pin 15  
Input voltage  
OSC  
mV  
rms  
OSC buffer (MX2LO)  
Output AC voltage  
Output DC voltage  
FMOSCIN  
At Pin15: 47 pF and 1 kW  
v
80  
120  
1.9  
200  
2.1  
mV  
V
MX2LO  
pp  
V
MX2LO  
1.6  
Pin 19  
Input voltage  
f = 70 to 120 MHz  
f = 120 to 160 MHz  
FMOSC  
FMOSC  
40  
150  
mV  
mV  
rms  
rms  
Rev. A5, 06-Oct-00  
3 (14)  
Preliminary Information  
U4256BM  
Electrical Characteristics (continued)  
Test conditions (unless otherwise specified): V = +8.5 V, T  
= +25°C  
S
amb  
Parameters  
Pulsed current output PD  
Output current Bit 71, 70 = ‘00’  
Output current Bit 71, 70 = ‘001’  
Output current Bit 71, 70 = ‘10’  
Output current Bit 71, 70 = ‘11’  
Leakage current  
Test Conditions / Pins  
Pin 2  
PD = 2.5 V  
Symbol  
Min.  
Typ.  
Max.  
Unit  
± IPD  
20  
80  
25  
100  
500  
2000  
30  
120  
600  
2400  
20  
µA  
µA  
µA  
µA  
nA  
400  
1600  
PD = 2.5 V  
Pin 1  
± IPDL  
PDO  
Saturation voltage HIGH  
LOW  
I = 15 mA  
V
V
V – 0.5  
V
V
PDOH  
S
0.1  
0.2  
0.4  
PDOL  
SWO1, SWO2, SWO3, SWO4 (open drain) Pins 7, 8, 9 and 10  
Output leakage current  
HIGH  
LOW  
V7,8,9,10 = 8.5 V  
I
100  
400  
nA  
SWOH  
Output voltage  
DAC1, DAC2  
Output current  
Output voltage  
I = 1 mA  
V
100  
mV  
SWOL  
Pins 3 and 4  
I
± 1  
mA  
V
DAC1, 2  
V
DAC1, 2  
0.3  
0.6  
V – 0.5  
S
Gain range (resolution 256 steps)  
Offset range (resolution 24 steps)  
DAC 3  
2.3  
0.7  
–0.6  
V
Pin 5  
Output current  
I
± 1  
mA  
V
DAC3  
Output voltage (resolution 16 steps)  
V
0.25  
6
DAC3  
3-Wire Bus Description  
16-bit command  
EN  
DATA  
CLK  
LSB  
BYTE 1  
MSB LSB  
BYTE 2  
MSB  
24-bit command  
EN  
DATA  
CLK  
LSB  
MSB  
LSB  
BYTE 1  
BYTE 2  
MSB LSB  
BYTE 3  
MSB  
e.g., Divider  
IPD  
25  
27 28  
26  
R–Divider  
211  
21  
24  
29 210  
212  
0
20  
22 23  
213 214 215  
0
0
1
2
OSCB  
P–2 P–2 P–2  
DAC3  
Status 0  
Addr.  
Figure 3. Pulse diagram  
4 (14)  
Rev. A5, 06-Oct-00  
Preliminary Information  
U4256BM  
Data Transfer  
A
MSB  
Byte 3  
STATUS 0  
LSB MSB  
BYTE 2  
LSB MSB  
BYTE 1  
LSB  
ADDR  
DAC3  
1
R – DIVIDER  
2
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
IPD  
OSCB  
P–2 P–2 P–2  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
0 = on,  
1 = off  
B71 B70  
B69  
B68 B67 B66 B65 B64 B63 B62 B61 B60 B59 B58 B57 B56 B55 B54 B53 B52 B51 B50  
B
MSB  
Byte 3  
LSB MSB  
BYTE 2  
LSB MSB  
BYTE 1  
LSB  
ADDR  
STATUS 1  
N – DIVIDER  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
AM=1 SWO4 SWO3 SWO2 SWO1  
0
1
0
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
FM=0 1=off,  
1=off,  
0=on  
1=off,  
0=on  
1=off,  
0=on  
DAC  
0=on  
B35 B34  
B33  
B32  
B31  
B30 B29 B28 B27 B25 B24 B23 B22 B22 B21 B20 B19 B18 B17 B16 B15 B14  
C
MSB  
BYTE 2  
LSB MSB  
BYTE 1  
LSB  
ADDR  
DAC1 OFFSET  
DAC1 GAIN  
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
0
O–2  
O–2  
O–2  
O–2  
B46  
O–2  
O–2  
G–2  
G–2  
G–2  
G–2  
B40  
G–2  
B39  
G–2  
G–2  
G–2  
B49  
B48  
B47  
B45  
B44  
B43  
B42  
B41  
B38  
B37  
B36  
D
MSB  
BYTE 2  
LSB MSB  
BYTE 1  
DAC2 GAIN  
LSB  
ADDR  
DAC2 OFFSET  
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
1
O–2  
O–2  
O–2  
O–2  
B10  
O–2  
O–2  
B8  
G–2  
B7  
G–2  
B6  
G–2  
B5  
G–2  
B4  
G–2  
B3  
G–2  
B2  
G–2  
B1  
G–2  
B13  
B12  
B11  
B9  
B0  
E
MSB  
BYTE 2  
LSB MSB  
BYTE 1  
Not used  
LSB  
X
ADDR  
Oscillator tuning function  
8pF 32pF 16pF 8pF 4pF  
B85 B84 B83 B82 B81 B80  
1
0
2pF  
1pF 0.5pF  
B79 B78  
X
X
X
X
X
B77 B76 B75 B74 B73 B72  
Rev. A5, 06-Oct-00  
5 (14)  
Preliminary Information  
U4256BM  
Timing Information  
Parameters  
Test Conditions / Pins  
Symbol  
Min.  
2.0  
Typ.  
Max.  
Unit  
3-wire bus, ENABLE, DATA, CLOCK  
Pins 16, 17, 18  
Input voltage  
HIGH  
LOW  
V
BUSH  
V
V
MHz  
V
BUSL  
1.0  
1.0  
Clock frequency  
Period of CLK  
HIGH  
LOW  
t
250  
250  
ns  
ns  
ns  
H
t
L
Rise time EN, DATA, CLK  
Fall time EN, DATA, CLK  
Set-up time  
t
400  
100  
r
f
s
t
ns  
ns  
ns  
ns  
t
100  
250  
0
Hold time EN  
t
HEN  
HDA  
Hold time DATA  
t
Bus Timing  
t
R
t
F
Enable  
Data  
t
t
HEN  
S
t
F
t
R
tHDA  
t
S
t
R
t
F
Clock  
t
H
t
L
Figure 4. Bus timing  
6 (14)  
Rev. A5, 06-Oct-00  
Preliminary Information  
U4256BM  
Bus Control  
The charge-pump current can be choosen by setting the The gains of DAC1 and DAC2 have a range of  
0.7 x V(PDO) to 2.15 x V(PDO). V(PDO) is the PLL  
tuning voltage output. This range is divided into 256  
Bits 71 and 70 as following:  
IPD (µA)  
25  
B71  
0
B70  
0
steps.  
So  
one  
step  
is  
approximately  
(2.15–0.7)/256 = 5.664 m. The gain can be controlled by  
0
7
100  
0
1
the Bits 36 to 43 (G–2 to G–2 ) as following:  
500  
1
0
Gain DAC1  
Approx.  
Gain DAC2  
Approx.  
B43 B42 B41 B40 B39 B38 B37 B36  
B7 B6 B5 B4 B3 B2 B1 B0  
2000  
1
1
0.7  
0.70566  
0.71133  
0.71699  
...  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
The oscillator buffer output can be switched by the OSCB  
Bit as following (Bit 69):  
0
...  
0
0
...  
0
0
...  
1
0
...  
1
0
...  
0
0
...  
1
1
...  
0
1
...  
1
MX2LO AC Voltage  
B69  
0
ON  
1.00019  
...  
2.1386  
2.14434  
2.15  
OFF  
1
...  
1
...  
1
...  
1
...  
1
...  
1
...  
1
...  
0
...  
1
1
1
1
1
1
1
1
0
The DAC3 output voltage can be controlled by the  
1
1
1
1
1
1
1
1
0
2
Bits P-2 to P-2 (Bits 66 to 68) as following:  
The offset of DAC1 has a range of 0.5 V to –0.6 V. This  
range is divided into 64 steps. So one step is approxi-  
mately 1.1V/63 = 17.2 m. The offset can be controlled by  
DAC3 Offset Approx.  
B68  
0
B67  
0
B66  
0
0.5 V  
1.1 V  
1.8 V  
2.4 V  
3.1 V  
3.7 V  
4.4 V  
5.0 V  
0
0
1
0
5
the Bits 44 to 49 (O–2 to O–2 ) as following:  
0
1
0
Offset DAC1 B49 B48 B47 B46 B45  
Approx. [V]  
B44  
B8  
0
1
1
Offset DAC2 B13 B12 B11 B10  
Approx. [V]  
B9  
1
0
0
1
0
1
0.5  
0.4828  
0.4656  
0.4484  
...  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
1
1
1
0
0
0
0
0
0
0
0
1
1
0
1
...  
0
...  
1
...  
1
...  
1
...  
1
...  
1
...  
1
...  
1
...  
1
...  
0
...  
0
...  
1
The switching output SWO1 to SWO4 can be controlled  
as following (Bits 30 to 33):  
–0.0156  
...  
0.5656  
–0.5828  
–0.6  
Switch Output  
B29 + X  
0
1
1
1
1
1
0
SWOx = ON  
(switch to GND)  
SWOx = OFF  
1
1
1
1
1
1
1
The tuning capacity for the crystal oscillator has a range  
of 0.5 pF to 71.5 pF. The values are coded binary. The  
tuning can be controlled by the Bits 78 to 85 as following:  
The DAC mode can be controlled by setting the Bit 34 as  
following:  
B85=0 B85=1 B84 B83 B82 B81 B80 B79 B78  
pF  
pF  
DAC Mode  
FM  
B34  
0
0
8.0  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
0
1
0.5  
1.0  
1.5  
...  
63.0  
63.5  
8.5  
9.0  
AM  
1
19.5  
...  
71.0  
71.5  
1
1
1
1
1
0
0
...  
0
...  
0
...  
0
...  
0
...  
0
...  
0
...  
0
0
0
0
0
0
0
0
Rev. A5, 06-Oct-00  
7 (14)  
Preliminary Information  
U4256BM  
The gain of DAC2 has a range of 0.7 x V(PDO) to The offset of DAC2 has a range of 0.5 to –0.6. This range  
2.15 x V(PDO). V(PDO) is the PLL tuning voltage is divided into 64 steps. So one step is approximately  
output. This range is divided into 256 steps. So one step 1.1V/63 = 17.2 m. The offset can be controlled by the  
0
5
is approximately (2.15–0.7)/256 = 5.664 m. The gain can Bits 8 to 13 (O–2 to O–2 ) as following:  
0
7
be controlled by the bits 0 to 7 (G–2 to G–2 ) as  
following:  
Offset DAC2 B13 B12 B11 B10  
Approx.  
B9  
B8  
0.5  
0.4828  
0.4656  
0.4484  
...  
0
0
0
0
0
0
0
0
0
0
0
1
Gain  
DAC2  
Approx.  
B7 B6 B5 B4 B3 B2 B1 B0  
0
0
0
0
1
0
0.7  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
0.70566  
0.71133  
0.71699  
...  
...  
0
...  
1
...  
1
...  
1
...  
1
...  
0
0
0
0
0
0
0
1
0
–0.0156  
...  
0
0
0
0
0
0
1
1
...  
1
...  
1
...  
1
...  
1
...  
0
...  
1
...  
0
...  
0
...  
1
...  
1
...  
0
...  
1
...  
0
...  
1
0.5656  
–0.5828  
–0.6  
1.00019  
...  
1
1
1
1
1
0
...  
1
...  
1
...  
1
...  
1
...  
1
...  
1
...  
0
...  
1
1
1
1
1
1
1
2.1386  
2.14434  
2.15 m  
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
Input / Output Interface Circuits  
PDO  
PD  
PD is the current charge pump output of the PLL. The  
current can be controlled by setting the Bits. The loop  
filter has to be designed corresponding to the choosen  
pump current and the internal reference frequency. A  
recommendation can be found in the application circuit.  
PDO is the loop amplifier output of the PLL. The bipolar  
output stage is a rail-to-rail amplifier.  
V5  
C
PDO  
PD  
Figure 5.  
8 (14)  
Rev. A5, 06-Oct-00  
Preliminary Information  
U4256BM  
FMOSCIN  
FMOSCIN is the preamplifier input for the FM oscillator signal.  
V
S
FMOSCIN  
Figure 6.  
MX2LO  
EN, DATA, CLK  
MX2LO is the buffered output of the crystal oscillator.  
This signal can be used as a reference frequency for  
U4255BM.  
All functions can be controlled via a 3-wire bus consisting  
of ENABLE, DATA and CLOCK. The bus is designed for  
microcontrollers which operate with 3 V supply voltage.  
Details of the data transfer protocol are shown in the table  
‘Data Transfer’.  
V5  
V5  
VS  
EN  
DATA  
CLK  
OSCIN  
MX2LO  
Figure 9.  
Figure 7.  
SWO1, 2, 3 and 4  
DAC 1, 2 and 3  
DAC 1 to 3 are the outputs for automatic tuner alignment.  
VS  
All switching outputs are ‘open drain’ and can be set and  
reset by software control. Details are described in the data  
transfer protocol.  
SWO1  
I
SWO2  
SWO3  
SWO4  
DAC1  
Figure 8.  
Figure 10.  
Rev. A5, 06-Oct-00  
9 (14)  
Preliminary Information  
U4256BM  
OSCIN, OSCOUT  
A crystal resonator (up to 15 MHz) is connected between  
OSCIN and OSCOUT in order to generate the reference  
frequency. By using the U4256BM in connection with  
U4255BM the crystal frequency must be 10.25 MHz. The  
complete application circuit is shown in figure 15. If a  
reference is available, it can be applied at OSCIN. The  
minimum voltage should be 100mVrms. In this case, pin  
OSCOUT has to be open.  
VS  
OSCIN  
VS  
OSCOUT  
Figure 11.  
Application Information  
Function of DAC1, 2 in FM Mode  
Function of DAC1, 2 in AM Mode  
If Bit 94 = 1, the DAC1, 2 can be used as standard DAC  
converters. The resolution of 8 bit is controlled via the  
gain bits in a range of approximately 0.5 V to 7 V,  
depending on the offset value.  
For automatic tuner alignment, the DAC1 and 2 of the  
U4256BM can be controlled by setting gain of VPDO and  
offset values. The following figure shows the principle of  
the operation. The gain is in the range of 0.7 to 2.15. The  
offset range is +0.5 V to –0.6 V. For alignment, DAC1  
and 2 are connected to the varicaps of the preselection  
filters. For alignment, offset and gain is set for having the  
best tuner tracking.  
FMOSCIN Sensitivity  
Vi (mV on 50 W)  
rms  
150  
Bit 34  
100  
50  
PDO (FM)  
DAC1,2  
Gain  
+/–  
Vref (AM)  
Offset  
0
0
20  
40  
60  
80  
100  
120 140  
160  
Frequency (MHz)  
Figure 12.  
Figure 13.  
10 (14)  
Rev. A5, 06-Oct-00  
Preliminary Information  
U4256BM  
Oscillator Tuning Function Schematic  
Cx1  
Cx2  
INV  
32p  
16p  
0.5p  
0.5p  
16p  
32p  
B78  
B84  
B85  
Figure 14.  
DATA  
Application Circuit  
EN  
CLK  
GND  
C12  
100 nF  
C9  
*)  
R5  
*)  
5.1 k   
*) depends on  
crystal  
C8  
47 pF  
10.25 MHz  
12  
20  
19  
18  
17  
16  
15  
14  
13  
11  
C1  
R2  
BUS  
OSC  
600 Ω  
10 pF  
LOGIC  
f
OSC  
FM  
VCO  
DAC’s  
4
Switches  
1
2
3
5
6
7
8
9
10  
V
tune  
C16  
C5  
C6  
330 pF  
C7  
R4  
C 15  
C4  
10 k Ω  
10 nF  
100 nF  
10 nF  
C14  
10 nF  
100 µF  
R3  
10 nF  
100 Ω  
DAC1 DAC2  
DAC3  
VS  
8 ... 12 V  
SWO1 SWO2 SWO3 SWO4  
Figure 15. Application circuit  
Rev. A5, 06-Oct-00  
11 (14)  
Preliminary Information  
U4256BM  
Application Board Schematic  
Figure 16. Application board schematic  
12 (14)  
Rev. A5, 06-Oct-00  
Preliminary Information  
U4256BM  
Package Information  
Package SSO20  
Dimensions in mm  
5.7  
5.3  
6.75  
6.50  
4.5  
4.3  
1.30  
0.15  
0.15  
0.05  
0.25  
0.65  
6.6  
6.3  
5.85  
20  
11  
technical drawings  
according to DIN  
specifications  
13007  
1
10  
Rev. A5, 06-Oct-00  
13 (14)  
Preliminary Information  
U4256BM  
Ozone Depleting Substances Policy Statement  
It is the policy of Atmel Germany GmbH to  
1. Meet all present and future national and international statutory requirements.  
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems  
with respect to their impact on the health and safety of our employees and the public, as well as their impact on  
the environment.  
It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as  
ozone depleting substances (ODSs).  
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid  
their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these  
substances.  
Atmel Germany GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed  
in the following documents.  
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively  
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental  
Protection Agency (EPA) in the USA  
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.  
Atmel Germany GmbH can certify that our semiconductors are not manufactured with ozone depleting substances  
and do not contain such substances.  
1.  
We reserve the right to make changes to improve technical design and may do so without further notice.  
Parameters can vary in different applications. All operating parameters must be validated for each customer  
application by the customer. Should the buyer use Atmel Wireless & Microcontrollers products for any unintended  
or unauthorized application, the buyer shall indemnify Atmel Wireless & Microcontrollers against all claims,  
costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death  
associated with such unintended or unauthorized use.  
Data sheets can also be retrieved from the Internet:  
http://www.atmel–wm.com  
Atmel Germany GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany  
Telephone: 49 (0)7131 67 2594, Fax number: 49 (0)7131 67 2423  
14 (14)  
Rev. A5, 06-Oct-00  
Preliminary Information  

相关型号:

U4256BM-R

Frequency Synthesizer for Radio Tuning
ATMEL

U4256BM-RFS

Frequency Synthesizer for Radio Tuning
ATMEL

U4256BM-RFSY

Consumer Circuit, BICMOS, PDSO20, SSO-20
ATMEL

U4256BM-RSG3

Frequency Synthesizer for Radio Tuning
ATMEL

U425_PDIP

a high input impedance Monolithic Dual N-Channel JFET
MICROSS

U425_SOIC

a high input impedance Monolithic Dual N-Channel JFET
MICROSS

U425_TO-71

a high input impedance Monolithic Dual N-Channel JFET
MICROSS

U425_TO-78

a high input impedance Monolithic Dual N-Channel JFET
MICROSS

U426

Linear Systems replaces discontinued Siliconix U426
MICROSS

U426

N-Channel Dual JFET
CALOGIC

U426(8PDIP)

Transistor
MICROSS

U426(TO-78)

Transistor
MICROSS