5962-1722001VXC [TI]

耐辐射 QMLV、1.5V 至 7V 输入、6A 负载开关/电子保险丝 | HKR | 16 | -55 to 125;
5962-1722001VXC
型号: 5962-1722001VXC
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

耐辐射 QMLV、1.5V 至 7V 输入、6A 负载开关/电子保险丝 | HKR | 16 | -55 to 125

电子 开关
文件: 总40页 (文件大小:1804K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS7H2201-SP  
ZHCSIS8B SEPTEMBER 2018REVISED MAY 2019  
TPS7H2201-SP 耐辐射 1.5V 7V6A 负载开关  
1 特性  
3 说明  
1
辐射性能:  
TPS7H2201-SP 是一款单通道负载开关,可提供用于  
最大限度地降低浪涌电流的可配置上升时间和反向电流  
保护。此器件包括一个 P 沟道 MOSFET,可在 1.5V  
7V 的输入电压范围内运行并可支持 6A 的最大持续  
电流。此开关由一个开关输入 (EN) 控制,该输入能够  
直接连接至低电压控制信号。  
抗辐射加固保障 (RHA) 高达 100krad (Si) TID  
单粒子锁定 (SEL)、单粒子烧毁 (SEB) 和单粒  
子栅穿 (SEGR) 对于 LET 的抗扰度 = 75MeV-  
cm2/mg  
SEFI/SET 对于  
LET 的额定值 = 75MeV-cm2/mg  
TPS7H2201-SP 采用具有集成式散热垫的陶瓷封装,  
从而支持高功率耗散。该器件在自然通风环境下的额定  
运行温度范围为 –55°C 125°C。  
集成型单通道负载开关  
输入电压范围:1.5V 7V  
低导通电阻 (RON),在温度为 25°C 和输入电压为  
5V 时具有 35mΩ 的最大值  
器件信息(1)  
6A 最大持续开关电流  
器件型号  
等级  
封装  
低控制输入阈值支持使用  
1.2V1.8V2.5V 3.3V 逻辑器件  
可配置上升时间(软启动)  
反向电流保护  
耐辐射等级 RHA  
100krad(Si)  
16 引脚 CDFP  
11.00 × 9.60mm  
5962R1722001VXC  
5962-1722001VXC  
TPS7H2201HKR/EM  
耐辐射等级 QMLV 重量:  
工程样片(2)  
1.56g(3)  
TPS7H2201EVM-CVAL 陶瓷评估板  
EVM  
可编程和内部电流限制  
(快速跳变)  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
可编程故障计时器(电流限制和  
重试模式)  
(2) 这些部件仅适用于工程评估。部件按照不合规的流程进行加工  
处理。这些部件不适用于质检、生产、辐射测试或飞行。这些  
零部件无法在 –55°C 125°C 的完整 MIL 额定温度范围内或  
运行寿命中保证其性能。  
热关断  
带散热垫的陶瓷封装  
(3) 重量误差在 ±10% 以内。  
2 应用  
航天卫星电源管理和配电  
耐辐射电源树 应用  
支持军用(–55°C 125°C)温度范围  
简化原理图  
VIN  
VOUT  
CSS  
SS  
CS  
ON  
TPS7H2201-SP  
EN  
RTIMER  
OFF  
CRTIMER  
ILTIMER  
IL  
OVP  
GND  
CILTIMER  
RIL  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSDO0  
 
 
 
 
 
 
TPS7H2201-SP  
ZHCSIS8B SEPTEMBER 2018REVISED MAY 2019  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 17  
8.4 Device Functional Modes ....................................... 25  
Application and Implementation ........................ 26  
9.1 Application Information............................................ 26  
9.2 Typical Applications ................................................ 26  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 7  
6.1 Absolute Maximum Ratings ...................................... 7  
6.2 ESD Ratings.............................................................. 7  
6.3 Recommended Operating Conditions....................... 7  
6.4 Thermal Information.................................................. 8  
6.5 Electrical Characteristics........................................... 8  
6.6 Switching Characteristics........................................ 10  
6.7 Quality Conformance Inspection............................. 10  
6.8 Typical Characteristics............................................ 11  
Parameter Measurement Information ................ 14  
Detailed Description ............................................ 16  
8.1 Overview ................................................................. 16  
8.2 Functional Block Diagram ....................................... 16  
9
10 Power Supply Recommendations ..................... 31  
11 Layout................................................................... 31  
11.1 Layout Guidelines ................................................. 31  
11.2 Layout Example .................................................... 31  
12 器件和文档支持 ..................................................... 32  
12.1 文档支持................................................................ 32  
12.2 接收文档更新通知 ................................................. 32  
12.3 社区资源................................................................ 32  
12.4 ....................................................................... 32  
12.5 静电放电警告......................................................... 32  
12.6 Glossary................................................................ 32  
13 机械、封装和可订购信息....................................... 33  
7
8
4 修订历史记录  
Changes from Revision A (January 2019) to Revision B  
Page  
Added Bare Die Information table in Pin Configuration and Functions section ..................................................................... 4  
Added Bond Pad Coordinates in Microns table in Pin Configuration and Functions section................................................. 5  
Added after TID specification for ISD VIN................................................................................................................................ 8  
已添加 Quality Conformance Inspection table to Specifications section.............................................................................. 10  
Changes from Original (September 2018) to Revision A  
Page  
已更改 将器件状态从高级信息 更改为生产数据...................................................................................................................... 1  
2
Copyright © 2018–2019, Texas Instruments Incorporated  
 
TPS7H2201-SP  
www.ti.com.cn  
ZHCSIS8B SEPTEMBER 2018REVISED MAY 2019  
5 Pin Configuration and Functions  
HKR Package  
16-Pin CFP With Thermal Pad  
Top View  
VIN  
VIN  
VIN  
VIN  
CS  
1
16  
15  
14  
13  
12  
11  
10  
9
VOUT  
VOUT  
VOUT  
VOUT  
SS  
2
3
4
5
6
7
8
Thermal  
Pad  
EN  
ILTIMER  
IL  
OVP  
GND  
RTIMER  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
1
NAME  
2
VIN  
I
Switch input. Input bypass capacitor recommended for minimizing VIN dip.  
3
4
5
CS  
EN  
O
I
Current sense pin proportional to output current. Connect a resistor to GND.  
Active high switch control input. Do not leave floating.  
6
Overvoltage protection. Programmable using an external resistor divider. If no OVP is  
desired, this pin should be connected to GND.  
Device ground.(1)  
7
8
OVP  
GND  
I
Capacitor programmed fault timer control during disabled and retry mode. Connecting this  
pin to GND holds the switch disabled until the EN pin is cycled. Do not float this pin or  
connect it to VIN.  
9
RTIMER  
IL  
I/O  
I/O  
10  
Current limiter control. Programmable using an external resistor to GND. Do not float this pin.  
Capacitor programmed fault timer control during current limiting mode. Connecting this pin to  
VIN uses the internal current limit timer and connecting this pin to GND disables the internal  
timer functionality for the ILTIMER as well as retry mode. In this case, the device will remain  
at programmed current limit indefinitely in the event of a short without going intro retry mode.  
Do not float this pin.  
11  
ILTIMER  
SS  
I
12  
13  
14  
15  
16  
I/O  
Switch slew rate control. See the Adjustable Rise Time section for more information.  
VOUT  
O
Switch output. A minimum 10-µF output capacitor is recommended.  
Thermal pad (exposed center pad) for heat dissipation purposes. Thermal pad is internally  
connected to seal ring and GND.  
Thermal Pad  
(1) Thermal pad is internally connected to the seal ring and GND.  
Copyright © 2018–2019, Texas Instruments Incorporated  
3
TPS7H2201-SP  
ZHCSIS8B SEPTEMBER 2018REVISED MAY 2019  
www.ti.com.cn  
Table 1. Bare Die Information  
BACKSIDE  
POTENTIAL  
BOND PAD METALLIZATION  
DIE THICKNESS  
BACKSIDE FINISH  
BOND PAD THICKNESS  
COMPOSITION  
15 mils  
Silicon with backgrind  
Ground  
ALCU  
1050 nm  
4
Copyright © 2018–2019, Texas Instruments Incorporated  
TPS7H2201-SP  
www.ti.com.cn  
ZHCSIS8B SEPTEMBER 2018REVISED MAY 2019  
Table 2. Bond Pad Coordinates in Microns  
DESCRIPTION  
PAD NUMBER  
X MIN  
679.75  
286.85  
286.85  
679.75  
286.85  
679.75  
286.85  
679.75  
286.85  
679.75  
286.85  
679.75  
286.85  
679.75  
286.85  
679.75  
286.85  
679.75  
286.85  
679.75  
61.1  
Y MIN  
5529  
X MAX  
835.25  
442.35  
442.35  
835.25  
442.35  
835.25  
442.35  
835.25  
442.35  
835.25  
442.35  
835.25  
442.35  
835.25  
442.35  
835.25  
442.35  
835.25  
442.35  
835.25  
216.6  
Y MAX  
5684.5  
5684.5  
5499  
VIN  
VIN  
1
2
5529  
VIN  
3
5343.5  
5343.5  
5157.1  
5157.1  
4970.65  
4970.65  
4053  
VIN  
4
5499  
VIN  
5
5312.6  
5312.6  
5126.15  
5126.15  
4208.5  
4208.5  
4023  
VIN  
6
VIN  
7
VIN  
8
VIN  
9
VIN  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
4053  
VIN  
3867.5  
3867.5  
3681.1  
3681.1  
3494.65  
3494.65  
2572.85  
2572.85  
2384.85  
2384.85  
2046.7  
1857.2  
1645.3  
1080.75  
451.4  
VIN  
4023  
VIN  
3836.6  
3836.6  
3650.15  
3650.15  
2728.35  
2728.35  
2540.35  
2540.35  
2202.2  
2012.7  
1800.8  
1236.25  
606.9  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
AVDD  
AVDD  
CS  
61.1  
216.6  
61.1  
216.6  
EN  
61.1  
216.6  
OVP  
GND  
GND  
RTIMER  
IL  
61.1  
216.6  
452.45  
641.95  
3103.2  
3683.4  
3683.4  
3683.4  
3457.4  
3064.5  
3457.4  
3064.5  
3457.4  
3064.5  
3457.4  
3064.5  
3457.4  
3064.5  
3457.4  
3064.5  
3457.4  
3064.5  
3457.4  
3064.5  
61.1  
607.95  
797.45  
3258.7  
3838.9  
3838.9  
3838.9  
3612.9  
3220  
216.6  
61.1  
216.6  
61.1  
216.6  
652.7  
808.2  
ILTIMER  
SS  
1221.4  
1715.65  
2384.85  
2384.85  
2572.85  
2572.85  
3494.65  
3494.65  
3681.1  
3681.1  
3867.5  
3867.5  
4053  
1376.9  
1871.15  
2540.35  
2540.35  
2728.35  
2728.35  
3650.15  
3650.15  
3836.6  
3836.6  
4023  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
3612.9  
3220  
3612.9  
3220  
3612.9  
3220  
3612.9  
3220  
4023  
3612.9  
3220  
4208.5  
4208.5  
5126.15  
5126.15  
5312.6  
5312.6  
4053  
4970.65  
4970.65  
5157.1  
5157.1  
3612.9  
3220  
3612.9  
3220  
Copyright © 2018–2019, Texas Instruments Incorporated  
5
TPS7H2201-SP  
ZHCSIS8B SEPTEMBER 2018REVISED MAY 2019  
www.ti.com.cn  
Table 2. Bond Pad Coordinates in Microns (continued)  
DESCRIPTION  
VOUT  
PAD NUMBER  
X MIN  
3457.4  
3064.5  
3457.4  
3064.5  
Y MIN  
5343.5  
5343.5  
5529  
X MAX  
3612.9  
3220  
Y MAX  
5499  
48  
49  
50  
51  
VOUT  
5499  
VOUT  
3612.9  
3220  
5684.5  
5684.5  
VOUT  
5529  
6
Copyright © 2018–2019, Texas Instruments Incorporated  
TPS7H2201-SP  
www.ti.com.cn  
ZHCSIS8B SEPTEMBER 2018REVISED MAY 2019  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
MAX UNIT  
VIN  
Input voltage  
7.5  
7.5  
V
V
VOUT  
EN, OVP  
Output voltage  
Enable and over voltage protection pins  
7.5  
V
CS, ILTIMER, RTIMER, IL, SS Current sense, current limit timer, retry timer, current limit and soft start pins  
VIN + 0.3  
9
V
IMAX  
IPLS  
TJ  
Maximum continuous switch current  
Maximum pulsed switch current (t5µs)  
Maximum junction temperature  
Storage temperature  
A
45  
A
–55  
–65  
150  
°C  
°C  
Tstg  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground pin.  
6.2 ESD Ratings  
VALUE  
±4000  
±750  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
7
UNIT  
V
VIN  
Input voltage  
1.5  
SRVIN  
VOUT  
IMAX  
TJ  
Input voltage slew rate  
Output voltage  
0.01  
VIN  
6
V/µs  
V
0
Maximum continuous switch current  
Operating junction temperature(1)  
A
–55  
125  
°C  
(1) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may  
have to be derated. Maximum ambient temperature [TA(max)] is dependent on the maximum operating junction temperature [TJ(max)], the  
maximum power dissipation of the device in the application [PD(max)], and the junction-to-ambient thermal resistance of the part/package  
in the application (θJA), as given by the equation: TA(max) = TJ(max) – (θJA × PD(max)).  
Copyright © 2018–2019, Texas Instruments Incorporated  
7
TPS7H2201-SP  
ZHCSIS8B SEPTEMBER 2018REVISED MAY 2019  
www.ti.com.cn  
6.4 Thermal Information  
TPS7H2201-SP  
HKR (CFP)  
16 PINS  
THERMAL METRIC  
UNIT  
RθJC(bot)  
Junction-to-case (bottom) thermal resistance  
0.6  
°C/W  
6.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SUBGROUP(1)  
MIN  
TYP  
MAX UNIT  
POWER SUPPLIES AND CURRENTS  
VINHUVLO  
VINLUVLO  
Internal VIN UVLO voltage, rising  
1.32  
1.23  
V
V
Internal VIN UVLO voltage,  
falling  
HYSTVIN-  
Internal VIN UVLO hysteresis  
Quiescent current  
92  
mV  
UVLO  
IOUT = 0 mA,  
IQ  
IF  
1, 2, 3  
1, 2, 3  
2.4  
6.5  
3
mA  
mA  
VIN = EN = 5 V, CS resistor of 20 kto GND  
EN = VOUT = GND, measured VOUT current  
VIN = 5 V  
VIN to VOUT forward leakage  
current  
1, 2, 3  
1, 2, 3  
1, 2, 3  
0.4  
0.3  
0.2  
3
3
3
VIN = 3.3 V  
EN = GND,  
IOUT = 0 mA, measured VIN  
VIN = 1.8 V  
ISD VIN  
VIN off-state supply current  
mA  
mA  
current  
After TID = 100  
krad, VIN = 1.8,  
3.3, and 5 V  
1
3.1  
EN = 0 V, VIN = 0 to 7 V,  
VOUT = 0 to 7 V for VOUT > VIN  
Reverse current protection  
leakage current  
IRCP  
1, 2, 3  
0.45  
2.5  
EN = 7 V, VIN = 0 V,  
VOUT = 0 to 7 V  
SOFT START  
ISS  
Soft start charge current  
Soft start slew rate  
1 V on SS pin  
1, 2, 3  
65  
83  
µA  
SRSS  
SS pin floating, COUT = 10 µF  
295  
mV/µs  
ENABLE AND UNDERVOLTAGE LOCKOUT (EN/UVLO) INPUT  
EN/UVLO threshold voltage,  
VIHEN  
rising  
1, 2, 3  
1, 2, 3  
0.56  
0.47  
0.61  
0.65  
V
V
EN/UVLO threshold voltage,  
falling  
VILEN  
0.51  
93  
0.55  
124  
HYSTEN  
tLOW  
EN/UVLO hysteresis voltage  
1, 2, 3  
9, 10, 11  
4, 5, 6  
1, 2, 3  
mV  
µs  
EN signal low time during cycling RTIMER = GND, IL = 1 A, IVOUT = 2 A  
VIN percentage for enable  
20  
VINEN  
IEN  
75%  
EN pin input leakage current  
EN = VIN = 5 V  
12  
nA  
OVERVOLTAGE PROTECTION (OVP)  
VOVPR  
VOVPF  
HYSTOVP  
IOVP  
OVPR thresold voltage, rising  
OVPF threshold voltage, falling  
OVP hysteresis voltage  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
0.52  
0.5  
0.57  
0.55  
20  
0.63  
0.59  
55  
V
V
1.6 V < VIN < 7 V  
mV  
nA  
OVP pin input leakage current  
15  
CURRENT LIMIT AND CURRENT SENSE  
Time for valid CS output after  
enable  
tCSEN  
CSS = 120 nF  
9, 10, 11  
1, 2, 3  
5
ms  
mA  
µs  
Minimum VOUT current for valid CS output  
750  
VOUT current change to CS change delay  
time  
0.5-A rising step, 100 mA/µs, 1.5 V VIN 7 V  
9, 10, 11  
16  
16  
74  
VOUT current change to CS change delay  
time  
0.5-A falling step, 100 mA/µs, 1.5 V VIN 7 V  
0.75 A IVOUT 7.5 A  
9, 10, 11  
4, 5, 6  
73  
µs  
V
CS pin accuracy  
CS pin voltage  
–10%  
10%  
VIN –  
0.4  
0.75 A IVOUT 7.5 A, no OCP  
1, 2, 3  
(1) For subgroup definitions, see Quality Conformance Inspection table.  
8
Copyright © 2018–2019, Texas Instruments Incorporated  
 
TPS7H2201-SP  
www.ti.com.cn  
ZHCSIS8B SEPTEMBER 2018REVISED MAY 2019  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SUBGROUP(1)  
1, 2, 3  
MIN  
TYP  
MAX UNIT  
IVOUT  
+
IVOUT 1 A  
0.5  
Current limit setting, IIL  
1A < IVOUT 3 A  
1, 2, 3  
IVOUT + 1  
A
IVOUT  
+
IVOUT > 3 A  
1, 2, 3  
1.5  
Programmable current limit accuracy  
Fast trip off current limit  
1.5 V VIN 7 V  
4, 5, 6  
–20%  
20%  
A
VIN = 5 V, 10-mshort in 10 µs  
VIN = 5 V, CSS = 2.7 nF  
22  
61  
Fast trip off off-time  
9, 10, 11  
9, 10, 11  
158  
35  
µs  
µs  
Internal current limit timer (fast trip off current  
limit)  
VIN = 5 V, IVOUT = 3 A, IL = 6 A, ILTIMER = VIN,  
10-mshort in 10 µs  
15  
TIMERS  
IILTIMER  
ILTIMER charge current  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
0.7  
0.7  
1
38  
1
1.38  
153  
1.38  
153  
µA  
ILTIMER internal pull-down  
resistance  
PDILTIMER  
IRTIMER  
40 mV on ILTIMER pin  
40 mV on RTIMER pin  
RTIMER charge current  
µA  
RTIMER internal pull-down  
resistance  
PDRTIMER  
38  
THERMAL SHUTDOWN  
Thermal shutdown  
VIN = 5 V  
VIN = 5 V  
175  
20  
°C  
°C  
Thermal shutdown hysteresis  
RESISTANCE CHARACTERISTICS  
–55°C  
–40°C  
24  
26  
34  
40  
45  
26  
27  
35  
42  
47  
28  
30  
38  
46  
52  
36  
39  
51  
62  
70  
44  
48  
63  
77  
87  
VIN = 7 V, IIL = 7.5 A  
VIN = 5 V, IIL = 7.5 A  
VIN = 3.3 V, IIL = 7.5 A  
VIN = 1.8 V, IIL = 7.5 A  
VIN = 1.5 V, IIL = 7.5 A  
25°C  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
31  
37  
41  
85°C  
125°C  
–55°C  
–40°C  
25°C  
32  
39  
43  
85°C  
125°C  
–55°C  
–40°C  
25°C  
ON-state resistance, lead length  
= 2.5 mm  
RON  
35  
42  
47  
mΩ  
85°C  
125°C  
–55°C  
–40°C  
25°C  
45  
55  
61  
85°C  
125°C  
–55°C  
–40°C  
25°C  
52  
63  
70  
85°C  
125°C  
Copyright © 2018–2019, Texas Instruments Incorporated  
9
TPS7H2201-SP  
ZHCSIS8B SEPTEMBER 2018REVISED MAY 2019  
www.ti.com.cn  
6.6 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN = EN = 5 V, TA = 25°C (unless otherwise noted)  
tON  
Turn-on time  
RL = 10 Ω, CL = 10 µF, CSS = 1000 pF  
RL = 10 Ω, CL = 10 µF, CSS = 1000 pF  
RL = 10 Ω, CL = 10 µF, CSS = 1000 pF  
RL = 10 Ω, CL = 10 µF, CSS = 1000 pF  
RL = 10 Ω, CL = 10 µF, CSS = 1000 pF  
208  
60  
µs  
µs  
µs  
µs  
µs  
tOFF  
Turn-off time  
tF  
VOUT fall time  
OVP assert time  
OVP deassert time  
90  
tASSERT  
tDEASSERT  
4.5  
9.6  
VIN = EN = 1.5 V, TA = 25°C (unless otherwise noted)  
tON  
Turn-on time  
RL = 10 Ω, CL = 10 µF, CSS = 1000 pF  
RL = 10 Ω, CL = 10 µF, CSS = 1000 pF  
RL = 10 Ω, CL = 10 µF, CSS = 1000 pF  
RL = 10 Ω, CL = 10 µF, CSS = 1000 pF  
RL = 10 Ω, CL = 10 µF, CSS = 1000 pF  
173  
64  
µs  
µs  
µs  
µs  
µs  
tOFF  
Turn-off time  
tF  
VOUT fall time  
OVP assert time  
OVP deassert time  
70  
tASSERT  
tDEASSERT  
2.65  
6.56  
6.7 Quality Conformance Inspection  
MIL-STD-883, Method 5005 - Group A  
SUBGROUP  
DESCRIPTION  
Static tests at  
TEMP (°C)  
25  
1
2
Static tests at  
125  
–55  
25  
3
Static tests at  
4
Dynamic tests at  
Dynamic tests at  
Dynamic tests at  
Functional tests at  
Functional tests at  
Functional tests at  
Switching tests at  
Switching tests at  
Switching tests at  
5
125  
–55  
25  
6
7
8A  
8B  
9
125  
–55  
25  
10  
11  
125  
–55  
10  
版权 © 2018–2019, Texas Instruments Incorporated  
TPS7H2201-SP  
www.ti.com.cn  
ZHCSIS8B SEPTEMBER 2018REVISED MAY 2019  
6.8 Typical Characteristics  
0.085  
1 A  
0.045  
0.042  
0.039  
0.036  
0.033  
0.03  
1 A  
3 A  
6 A  
0.08  
3 A  
6 A  
0.075  
0.07  
0.065  
0.06  
0.055  
0.05  
0.027  
0.024  
0.021  
0.045  
0.04  
0.035  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
Temperature (èC)  
Temperature (èC)  
D001  
D002  
IIL = 7.5 A  
IIL = 7.5 A  
1. On-Resistance vs Temperature Across Loads at VIN =  
2. On-Resistance vs Temperature Across Loads at VIN =  
1.5 V  
5 V  
0.0425  
1 A  
85  
1.5 V  
1.8 V  
3.3 V  
5 V  
7 V  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
0.04  
0.0375  
0.035  
0.0325  
0.03  
3 A  
6 A  
0.0275  
0.025  
0.0225  
0.02  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
Temperature (èC)  
Temperature (èC)  
D003  
D004  
IIL = 7.5 A  
3. On-Resistance vs Temperature Across Loads at VIN =  
4. RTIMER Pull-Down Resistance vs Temperature Across  
7 V  
VIN  
0.004  
85  
1.5 V  
1.8 V  
3.3 V  
5 V  
7 V  
1.5 V  
1.8 V  
3.3 V  
5 V  
7 V  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
0.0035  
0.003  
0.0025  
0.002  
0.0015  
0.001  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
Temperature (èC)  
Temperature (èC)  
D005  
D006  
5. ILTIMER Pull-Down Resistance vs Temperature Across  
6. IQ vs Temperature Across VIN  
VIN  
版权 © 2018–2019, Texas Instruments Incorporated  
11  
TPS7H2201-SP  
ZHCSIS8B SEPTEMBER 2018REVISED MAY 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
0.002  
0.002  
0.0018  
0.0016  
0.0014  
0.0012  
0.001  
VOUT(1.5 V) - VIN(0 V) = 1.5 V  
VOUT(1.5 V) - VIN(0 V) = 1.5 V  
VOUT(1.8 V) - VIN(0 V) = 1.8 V  
VOUT(3.3 V) - VIN(0 V) = 3.3 V  
VOUT(5 V) - VIN(0 V) = 5 V  
VOUT(7 V) - VIN(0 V) = 7 V  
0.0018  
VOUT(1.8 V) - VIN(0 V) = 1.8 V  
VOUT(3.3 V) - VIN(0 V) = 3.3 V  
0.0016  
VOUT(5 V) - VIN(0 V) = 5 V  
VOUT(7 V) - VIN(0 V) = 7 V  
0.0014  
0.0012  
0.001  
0.0008  
0.0006  
0.0004  
0.0002  
0
0.0008  
0.0006  
0.0004  
0.0002  
0
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
Temperature (èC)  
Temperature (èC)  
D007  
D008  
7. IRCP vs Temperature With EN = 7 V  
8. IRCP vs Temperature With EN = GND  
0.00055  
0.0005  
0.00045  
0.0004  
0.00035  
0.0003  
0.00025  
0.0002  
0.00015  
0.0001  
1.14E-6  
1.12E-6  
1.1E-6  
1.08E-6  
1.06E-6  
1.04E-6  
1.02E-6  
1E-6  
1.8 V  
3.3 V  
5 V  
1.5 V  
1.8 V  
3.3 V  
5 V  
7 V  
9.8E-7  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
Temperature (èC)  
Temperature (èC)  
D009  
D010  
9. ISD VIN vs Temperature Across VIN  
10. ILTIMER Charge Current vs Temperature Across VIN  
7.2E-5  
1.12E-6  
1.1E-6  
1.08E-6  
1.06E-6  
1.04E-6  
1.02E-6  
1E-6  
1.5 V  
1.8 V  
3.3 V  
5 V  
7 V  
1.5 V  
1.8 V  
3.3 V  
5 V  
7 V  
7.1E-5  
7E-5  
6.9E-5  
6.8E-5  
6.7E-5  
6.6E-5  
6.5E-5  
6.4E-5  
6.3E-5  
6.2E-5  
9.8E-7  
9.6E-7  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
Temperature (èC)  
Temperature (èC)  
D011  
D012  
11. RTIMER Charge Current vs Temperature Across VIN  
12. SS Charge Current vs Temperature Across VIN  
版权 © 2018–2019, Texas Instruments Incorporated  
12  
TPS7H2201-SP  
www.ti.com.cn  
ZHCSIS8B SEPTEMBER 2018REVISED MAY 2019  
Typical Characteristics (接下页)  
0.66  
0.55  
0.54  
0.53  
0.52  
0.51  
0.5  
1.5 V  
1.8 V  
3.3 V  
5 V  
7 V  
1.5 V  
1.8 V  
3.3 V  
5 V  
7 V  
0.65  
0.64  
0.63  
0.62  
0.61  
0.6  
0.59  
0.58  
0.57  
0.49  
0.48  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
Temperature (èC)  
Temperature (èC)  
D013  
D014  
EN pin driven directly  
EN pin driven directly  
13. VIHEN vs Temperature Across VIN  
14. VILEN vs Temperature Across VIN  
0.62  
0.61  
0.6  
0.61  
0.6  
1.5 V  
1.8 V  
3.3 V  
5 V  
7 V  
1.5 V  
1.8 V  
3.3 V  
5 V  
7 V  
0.59  
0.58  
0.57  
0.56  
0.55  
0.54  
0.53  
0.52  
0.59  
0.58  
0.57  
0.56  
0.55  
0.54  
0.53  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
Temperature (èC)  
Temperature (èC)  
D015  
D016  
OVP pin driven directly  
OVP pin driven directly  
15. VOVPR vs Temperature Across VIN  
16. VOVPF vs Temperature Across VIN  
8
7.5  
7
6.5  
6
5.5  
5
4.5  
4
1800  
1600  
1400  
1200  
1000  
800  
Current Limit at 25èC, 1.5 V to 3 V  
Current Limit at -55èC, 1.5 V to 3 V  
Current Limit at 125èC, 1.5 V to 3 V  
Current Limit at 25èC, 3 V to 7 V  
Current Limit at -55èC, 3 V to 7 V  
Current Limit at 125èC, 3 V to 7 V  
Slew Rate 1.5 V, 6 A, 25èC  
Slew Rate 1.5 V, 6 A, -55èC  
Slew Rate 1.5 V, 6 A, 125èC  
Slew Rate 7 V, 6 A, 25èC  
Slew Rate 7 V, 6 A, -55èC  
Slew Rate 7 V, 6 A, 125èC  
3.5  
3
600  
2.5  
2
400  
1.5  
1
200  
0.5  
0
0
20000  
40000  
60000  
80000  
100000  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
1
RIL (kW)  
SS Capacitor (mF)  
D017  
D018  
17. IIL vs RIL Across Temperature  
18. SS Slew Rate vs SS Capacitor Across Temperature  
版权 © 2018–2019, Texas Instruments Incorporated  
13  
TPS7H2201-SP  
ZHCSIS8B SEPTEMBER 2018REVISED MAY 2019  
www.ti.com.cn  
7 Parameter Measurement Information  
50%  
EN  
tF  
tOFF  
90%  
tON  
50%  
50%  
VOUT  
10%  
19. tON/tOFF Waveforms  
0.63 V  
0.50 V  
0.61 V  
OVP  
0.52 V  
tASSERT  
VOUT  
tDEASSERT  
90% VOUT  
10% VOUT  
20. tASSERT/tDEASSERT Waveforms  
VIN  
0.65 V  
EN  
20% IOUT  
IOUT  
tCSEN  
90% of 0.2*IOUT/41500  
21. tCSEN Waveforms  
CS  
14  
版权 © 2018–2019, Texas Instruments Incorporated  
TPS7H2201-SP  
www.ti.com.cn  
ZHCSIS8B SEPTEMBER 2018REVISED MAY 2019  
Internal ILTIMER  
IL  
IOUT  
0.5 V  
RTIMER  
22. Internal ILTIMER Waveforms  
0.8*0.5 A + IOUT  
100 mA/µs  
100 mA/µs  
0.5 A  
IOUT  
0.2*0.5 A + IOUT  
IOUT to CS  
change rising  
(0.8*0.5 A + IOUT) / 41500  
IOUT to CS  
change falling  
(0.2*0.5 A + IOUT) / 41500  
CS  
23. VOUT Current to CS Change Delay Time  
版权 © 2018–2019, Texas Instruments Incorporated  
15  
 
TPS7H2201-SP  
ZHCSIS8B SEPTEMBER 2018REVISED MAY 2019  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS7H2201-SP device is a single channel, 6-A load switch with a programmable slew rate for applications  
that require specific rise-time as well as programmable current limit for protection purposes. In addition, the  
TPS7H2201-SP features a reverse current protection capability for power distribution applications.  
8.2 Functional Block Diagram  
VIN  
Overcurrent  
Protection  
IL  
CS  
VREF  
+
EN  
+
0.65 V  
0.47 V  
-
STARTUP  
CONTROL  
LOGIC  
+
OVP  
0.63 V  
0.50 V  
-
VOUT  
Thermal  
Shutdown  
RAMP CONTROL  
ILTIMER  
SS  
RTIMER  
GND  
16  
版权 © 2018–2019, Texas Instruments Incorporated  
TPS7H2201-SP  
www.ti.com.cn  
ZHCSIS8B SEPTEMBER 2018REVISED MAY 2019  
8.3 Feature Description  
8.3.1 Enable, Undervoltage, and Overvoltage Protection  
24 shows how resistor dividers from VIN connected to the EN and OVP pins can be used to set the UVLO  
and OVP trip voltages. The EN pin controls the ON and OFF state of the internal FET. A voltage at this pin  
greater than VIHEN turns on the FET and a voltage less than VILEN turns it off. The addition of an external resistor  
divider from VIN allows the EN pin to configure a different enable rising voltage or an undervoltage monitor  
(UVLO) based on the VIHEN and VILEN specifications respectively. Typically, applications are optimized to either  
configure the enable rising voltage or the UVLO threshold. As an example, 公式 1 can be used to calculate the  
UVLO trip point fixing RTOP_EN = 100 kΩ.  
In a similar way to the EN pin, the overvoltage protection (OVP) feature of the device can be configured using a  
resistor divider from VIN connected to the OVP pin. The trip voltage for the OVP has to be less than the absolute  
maximum VIN voltage. A voltage at the OVP pin greater than VOVPR will trip the OVP feature and will turn off the  
FET and a voltage less than VOVPF will keep the FET on. If this feature is not desired, the OVP pin should be  
grounded. 公式 2 can be used to calculated the rising OVP trip point fixing RTOP_OVP = 100 kΩ.  
TPS7H2201-SP  
VIN  
RTOP_OVP  
EN  
RTOP_EN  
EN  
ON  
+
OFF  
0.65 V  
0.47 V  
-
OVP  
OVP  
+
0.63 V  
0.50 V  
-
RBOT_EN  
RBOT_OVP  
GND  
24. UVLO and OVP Thresholds Set by Resistor Dividers  
47  
:
;
RBOT _EN ´À Q  
VUVLO _TRIP (V) F 0.47  
63  
(1)  
(2)  
:
;
RBOT _OVP ´À R  
VOVP _TRIP (V) F 0.63  
8.3.2 Adjustable Rise Time  
An external capacitor, CSS, connected between the VOUT and SS pins sets the slew rate. The desired slew rate  
VOUTSR is determined by tr, the rise time in seconds, and ΔV, the change in VOUT voltage in Volts as shown in  
公式 3.  
¿VOUT (V)  
:
;
VOUTSR V/s =  
tr(s)  
(3)  
In order to avoid false trips due to the programmable current limit, the desired slew rate must be less than  
VOUTSR,MAX as shown in 公式 4, where IL is the programmed current limit, IVOUT is the normal operation current  
flowing through the switch, and COUT is the output capacitor.  
: ;  
0.8 × IL A F 0.95 × IVOUT (A)  
:
;
VOUTSR,MAX V/s <  
COUT (F)  
(4)  
17  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
 
TPS7H2201-SP  
ZHCSIS8B SEPTEMBER 2018REVISED MAY 2019  
www.ti.com.cn  
Feature Description (接下页)  
Once the slew rate has been calculated and meeting the constraint in 公式 4, the CSS capacitor is then calculated  
using 公式 5 for VIN < 3-V and IOUT 3-A applications. For all other applications, use 公式 6.  
45  
:
;
CSS µF =  
:
;
VOUTSR V/s  
for VIN < 3 V and IOUT 3 A  
(5)  
(6)  
65  
:
;
CSS µF =  
:
;
VOUTSR V/s  
for all other conditions  
8.3.3 Programmable Current Limiting  
A current limit can be programmed using an external resistor connected from the IL pin to GND. This  
programmed current limit (±20% accurate) refers to the continuous current through the device and therefore,  
when operated at its maximum current rating (6 A), the programmed current limit needs to be set 20% higher. As  
shown in 25, a current limit event of this nature is defined as a soft short. The resistor value RIL, can be  
calculated using 公式 7 for VIN 3 V, and 公式 8 for VIN > 3 V, where IL is the programmed current limit value in  
amperes. This programmable current limiting feature is different from the internal current limiting activated during  
fast trip mode as shown in 26. A current limit event in this case is defined as a hard short and this current limit  
(typical of 22 A) cannot be programmed.  
45500  
: ;  
IL A  
RIL(À) =  
for VIN 3 V  
(7)  
(8)  
49000  
: ;  
IL A  
RIL(À) =  
for VIN > 3 V  
8.3.4 Programmable Fault Timer  
A capacitor connected from the ILTIMER pin to GND determines the programmable current limit fault time  
duration. The ILTIMER pin will charge the capacitor to 0.5 V during an overload condition and will discharge it  
otherwise through an internal pull down resistance. The time that the device will be in current limit before turning  
off is configured by CILTIMER and the time can be calculated using 公式 9. Connecting this pin to VIN will cause  
the device to be disabled once the internal current limit timer expires as shown in 22. However, connecting it  
to GND will disable the internal timer functionality completely and therefore, in the case of a short, the device will  
remain at the programmed current limit indefinitely. When using the internal timer, only the fast trip off current  
limit is active.  
C(pF)  
: ;  
t µs =  
2
(9)  
The time that the device remains disabled after the current limit timer expires is configurable through a capacitor  
connected from the RTIMER pin to GND. The RTIMER pin will charge the capacitor to 0.5 V after the switch is  
turned off and will discharge it otherwise. The time can be calculated using 公式 9. Connecting this pin to GND  
will keep the device disabled and it will require the device to be enabled by cycling the EN pin. The behavior of  
the ILTIMER and RTIMER pins for a soft short, hard short and internal timer conditions are shown in 25, 图  
26, and 27, respectively. Please notice that 25 and 26 assume the fault is not present after the switch  
has been disabled and enabled again (retry mode). If the fault is present after the retry mode, the device will go  
into current limit mode and this cycle will repeat until the fault is no longer present.  
18  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
 
 
TPS7H2201-SP  
www.ti.com.cn  
ZHCSIS8B SEPTEMBER 2018REVISED MAY 2019  
Feature Description (接下页)  
tILTIMER  
Programmable IL  
tSS  
Fault is not present anymore  
tRTIMER  
TIME  
Current  
limit mode  
Normal operation  
Disable and retry mode  
tSS  
tILTIMER  
tRTIMER  
TIME  
Current  
limit mode  
Normal operation  
Disable and retry mode  
0.5 V  
TIME  
Current  
limit mode  
Normal operation  
Disable and retry mode  
25. Soft Short Programmable Fault Timer Operation Connecting Capacitors to ILTIMER and RTIMER  
Pins  
版权 © 2018–2019, Texas Instruments Incorporated  
19  
TPS7H2201-SP  
ZHCSIS8B SEPTEMBER 2018REVISED MAY 2019  
www.ti.com.cn  
Feature Description (接下页)  
Internal IL t 22 A (typ)  
Fault is not  
present anymore  
tSS  
tILTIMER  
Programmable IL  
tSS  
Fast trip  
mode  
tRTIMER  
TIME  
Current  
limit mode  
Normal operation  
Disable and retry mode  
tSS  
tSS  
tILTIMER  
Fast trip  
mode  
tRTIMER  
TIME  
Current  
limit mode  
Normal operation  
Disable and retry mode  
0.5 V  
TIME  
Current  
limit mode  
Fast trip  
mode  
Normal operation  
Disable and retry mode  
26. Hard Short Programmable Fault Timer Operation Connecting Capacitors to ILTIMER and RTIMER  
Pins  
20  
版权 © 2018–2019, Texas Instruments Incorporated  
TPS7H2201-SP  
www.ti.com.cn  
ZHCSIS8B SEPTEMBER 2018REVISED MAY 2019  
Feature Description (接下页)  
Internal IL t 22 A (typ)  
Internal timer  
Programmable IL  
Current limit behavior is gone and switch returned to  
normal operation before internal current limit expired  
Fast trip  
mode  
Switch disabled as internal current limit timer expired  
TIME  
Internal timer  
tSS  
Current limit behavior is gone and switch returned to  
normal operation before internal current limit expired  
Switch disabled as internal current limit timer expired  
Fast trip  
mode  
TIME  
VIN  
GND  
TIME  
Fast trip  
mode  
Normal operation  
Disabled mode  
Current  
limit mode  
27. Programmable Fault Timer Operation Using the Internal Current Limit Timer and Disabling the  
Retry Mode  
版权 © 2018–2019, Texas Instruments Incorporated  
21  
TPS7H2201-SP  
ZHCSIS8B SEPTEMBER 2018REVISED MAY 2019  
www.ti.com.cn  
Feature Description (接下页)  
The programmable fault timers, ILTIMER and RTIMER, should be set in such a way that the capacitor for one  
timer is discharged before the other timer expires to ensure proper operation. In the specific case of using the  
internal ILTIMER, the RTIMER capacitor should be sized such that it is discharged before the internal ILTIMER  
expires, assuming the fault is still present. 28 shows a situation where this constraint is not met as the  
RTIMER is much larger than the ILTIMER and therefore, the CRTIMER is not discharged before the CILTIMER  
reaches 0.5 V, which is when the ILTIMER will expire. In order to avoid this situation, the constraint shown in 公  
10 must be met. Using this equation, once a capacitor for a timer has been selected (C1 in 公式 10), the  
maximum value for the capacitor of the second timer can be determined. The internal pull-down resistance for  
each of the timers can be found in the Electrical Characteristics table. For the situation shown in 28, C1 and  
RPD1 in 公式 10 correspond to the RTIMER.  
Fault is still present  
tILTIMER  
Programmable IL  
Disable and retry mode  
tRTIMER  
TIME  
Normal operation  
Current limit mode  
Retry timer  
0.5 V  
Timer capacitor must be discharged  
before other timer expires  
TIME  
Normal operation  
Current limit timer  
28. Programmable Fault Timer Capacitors Constraint  
C2(pF)  
:
;
C1 µF <  
8 × RPD1(À)  
(10)  
22  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
TPS7H2201-SP  
www.ti.com.cn  
ZHCSIS8B SEPTEMBER 2018REVISED MAY 2019  
Feature Description (接下页)  
8.3.5 Current Sense  
This pin will output a current proportional to the output current of the switch for current sensing applications. A  
resistor to GND will convert this current to voltage for current sensing purposes. The output current will be the  
switch current divided by 41,500. The CS pin will have a valid output 5 ms after the device has been enabled.  
8.3.6 Parallel Operation  
The TPS7H2201-SP can be configured in parallel operation either to increase the current capability, up to 12 A,  
or to reduce the on-state resistance. In this case, all pins are shared as shown in 29, except the current limit  
resistor (RIL) for proper operation of the internal current limit loop. The current limiting resistors must be sized as  
described in the Programmable Current Limiting section.  
版权 © 2018–2019, Texas Instruments Incorporated  
23  
TPS7H2201-SP  
ZHCSIS8B SEPTEMBER 2018REVISED MAY 2019  
www.ti.com.cn  
Feature Description (接下页)  
VIN  
VOUT  
VIN  
VOUT  
CSS  
SS-MASTER  
CS-MASTER  
SS  
CS  
RTIMER-MASTER  
EN-MASTER  
TPS7H2201-SP  
RTIMER  
EN  
CRTIMER  
ILTIMER-MASTER  
OVP-MASTER  
ILTIMER  
IL  
OVP  
GND  
CILTIMER  
RIL  
VIN  
VOUT  
CS-MASTER  
SS-MASTER  
SS  
CS  
RTIMER-MASTER  
EN-MASTER  
TPS7H2201-SP  
RTIMER  
EN  
OVP-MASTER  
ILTIMER-MASTER  
ILTIMER  
IL  
OVP  
GND  
RIL  
29. Parallel Configuration to Reduce Resistance or Increase Current Capability  
24  
版权 © 2018–2019, Texas Instruments Incorporated  
TPS7H2201-SP  
www.ti.com.cn  
ZHCSIS8B SEPTEMBER 2018REVISED MAY 2019  
8.4 Device Functional Modes  
3 lists the VOUT pin states as determined by the EN pin.  
3. VOUT Connection  
EN PIN  
< VILEN  
> VIHEN  
TPS7H2201-SP  
Open  
VIN  
版权 © 2018–2019, Texas Instruments Incorporated  
25  
 
TPS7H2201-SP  
ZHCSIS8B SEPTEMBER 2018REVISED MAY 2019  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TPS7H2201-SP device is a single channel, 6-A load switch with multiple programmable features such as  
current limit, undervoltage and overvoltage, current limit and retry timers, and soft start. In addition, the  
TPS7H2201-SP features a reverse current protection capability for power distribution applications and current  
sensing for load monitoring purpose. The TPS7H2201-SP user's guide is available on the TI website,  
TPS7H2201EVM-CVAL Evaluation Module (EVM) User's Guide. The guide highlights standard EVM  
configurations, test results, schematic, and BOM for reference.  
9.2 Typical Applications  
In addition to the standard power management applications where a power switch can be used, there are 2 main  
applications in which the TPS7H2201-SP can be used in space power applications:  
Redundancy for primary and secondary voltage rails common in satellite applications  
Protection for critical or SEL sensitive loads  
9.2.1 Redundancy  
In applications where primary and secondary (redundant) power rails are present, the TPS7H2201-SP is ideal to  
implement redundancy because of its reverse current blocking capability. In this case, since the load switch is  
placed at the input of the point of load regulator, the on-resistance of the switch is not as critical.  
26  
版权 © 2018–2019, Texas Instruments Incorporated  
TPS7H2201-SP  
www.ti.com.cn  
ZHCSIS8B SEPTEMBER 2018REVISED MAY 2019  
Typical Applications (接下页)  
5 V  
5 V Primary  
VOUT  
2.5 V  
VIN  
VOUT  
CSS  
SS  
CS  
EN Primary  
TPS7H2201-SP  
EN  
RTIMER  
ON  
OFF  
CRTIMER  
TPS50601A-SP  
(PoL REGULATOR)  
ILTIMER  
IL  
OVP  
GND  
CILTIMER  
RIL  
5 V Secondary  
VIN  
VOUT  
CSS  
SS  
CS  
EN Secondary  
TPS7H2201-SP  
EN  
RTIMER  
ON  
OFF  
CRTIMER  
ILTIMER  
IL  
OVP  
GND  
CILTIMER  
30. Redundancy Example Using the TPS7H2201-SP  
9.2.2 Protection  
The protection features of the TPS7H2201-SP can also be used for SEL sensitive loads. In such case, the on-  
resistance of the switch might be more relevant as it is placed after the point of load regulator but in such case,  
two load switches can be placed in parallel to reduce the on-resistance if needed. The main advantages of using  
the load switch at this location is faster response to SEL events and automatic recovery due to the retry mode of  
the programmable fault timer.  
版权 © 2018–2019, Texas Instruments Incorporated  
27  
TPS7H2201-SP  
ZHCSIS8B SEPTEMBER 2018REVISED MAY 2019  
www.ti.com.cn  
Typical Applications (接下页)  
2.5 V  
5 V  
VIN  
VIN  
VOUT  
POINT OF LOAD  
REGULATOR  
LATCHUP SENSITIVE  
DEVICE  
Current sense flag  
Device restart  
SS  
CS  
TPS7H2201-SP  
RTIMER  
EN  
ILTIMER  
IL  
OVP  
GND  
RIL  
31. Protection Example Using the TPS7H2201-SP  
9.2.3 Design Requirements  
32 shows a typical application schematic that is applicable to both the redundancy and the protection  
applications previously discussed.  
VIN=5 V  
VIN  
VOUT  
340 µF  
340 µF  
CSS  
REN_TOP  
ROVP_TOP  
SS  
CS  
RCS  
TPS7H2201-SP  
RTIMER  
EN  
REN_BOT  
CRTIMER  
ILTIMER  
IL  
OVP  
GND  
ROVP_BOT  
CILTIMER  
RIL  
32. Typical Application Schematic  
4 shows the design parameters.  
28  
版权 © 2018–2019, Texas Instruments Incorporated  
 
TPS7H2201-SP  
www.ti.com.cn  
ZHCSIS8B SEPTEMBER 2018REVISED MAY 2019  
4. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
VIN  
5 V  
3.5 V  
6.5 V  
6 A  
Undervoltage lockout set point  
Overvoltage protection set point  
Output current  
Current limit  
7.5 A  
1 ms  
1 ms  
9 ms  
340 µF  
Current limit timer  
Retry timer  
Soft start time  
Input and output capacitors  
9.2.4 Detailed Design Procedure  
9.2.4.1 Undervoltage Lockout  
The undervoltage lockout set point is configured using the resistor divider, REN_TOP and REN_BOT connected to the  
EN pin. Set the REN_TOP = 100 kΩ and, using 公式 1, calculate the value for REN_BOT. For an UVLO = 3.5 V,  
REN_BOT = 15.5 kΩ. When choosing the UVLO set point, the resistor divider must ensure that the device will still  
get enabled for the VIN used in the application. This is achieved by making sure that the VIHEN requirement is still  
met with the chosen resistor divider and that the VIN needed to meet the requirement is smaller than the VIN  
used in the application. 公式 11 shows this VIN and VIHEN requirement to set the UVLO point. For this particular  
application, the requirement is met as the result is 4.84 V.  
REN_TOP + REN_BOT  
V
IHEN  
×
Q VIN  
REN_BOT  
(11)  
9.2.4.2 Overvoltage Protection  
In a similar way to the UVLO set point, the overvoltage protection set point is configured using the resistor  
divider, ROVP_TOP and ROVP_BOT connected to the OVP pin. Set the ROVP_TOP = 100 kΩ and, using 公式 2,  
calculate the value for ROVP_BOT. For an OVP = 6.5 V, ROVP_BOT = 10.7 kΩ. When choosing the OVP set point,  
the resistor divider must ensure that the device will still get enabled for the VIN used in the application. This is  
achieved by making sure that the VOVPF requirement is still met with the chosen resistor divider and that the VIN  
needed to meet the requirement is larger than the VIN used in the application. 公式 12 shows this VIN and VOVPF  
requirement to set the OVP point. For this particular application, the requirement is met as the result is 5.16 V.  
ROVP _TOP + ROVP _BOT  
VOVPF  
×
R VIN  
ROVP _BOT  
(12)  
9.2.4.3 Current Limit  
The current limit is configured using RIL. Based on the output current for this design, the minimum current limit  
that can be programmed is IOUT + 1.5 A for a total of 7.5 A. As a result, using 公式 8, the resistor value is 6.53  
kΩ.  
9.2.4.4 Programmable Fault Timers  
The programmable fault timers are configured using the CILTIMER and the CRTIMER capacitors. For this particular  
design, both timers are set to 1 ms. Therefore, using 公式 9, the value for each capacitor is 2000 pF. These  
capacitor values meet the requirement in 公式 10.  
版权 © 2018–2019, Texas Instruments Incorporated  
29  
 
 
TPS7H2201-SP  
ZHCSIS8B SEPTEMBER 2018REVISED MAY 2019  
www.ti.com.cn  
9.2.4.5 Soft Start Time  
The soft start time is configured using the CSS capacitor. In order to calculate the value of the capacitor, the  
VOUT slew rate needs to be calculated using 公式 3 to make sure the maximum VOUT slew rate requirement  
shown in 公式 4 is satisfied. This requirement is particularly important for space applications where large output  
capacitance is typically used, which translates to a lower maximum allowable VOUT slew rate. For this particular  
design, the VOUT slew rate is 555 V/s which is less than the maximum VOUT slew rate of 882 V/s, meeting the  
requirement from 公式 4. Now, the soft start capacitor value can be calculated as 117 nF using 公式 6, since VIN  
= 5 V for this application.  
9.2.5 Application Curves  
The power-up behavior of this design example is shown in 33 and the current limit behavior is shown in 34.  
VIN  
ILTIMER  
RTIMER  
EN  
VOUT  
IOUT  
IOUT  
33. Power-up Behavior of the TPS7H2201-SP  
34. ILTIMER and RTIMER Waveforms When IL is Set to  
7.5 A  
30  
版权 © 2018–2019, Texas Instruments Incorporated  
 
TPS7H2201-SP  
www.ti.com.cn  
ZHCSIS8B SEPTEMBER 2018REVISED MAY 2019  
10 Power Supply Recommendations  
The TPS7H2201-SP is designed to operate from an input voltage supply range between 1.5 V to 7 V. This  
supply voltage must be well regulated and proper local bypass capacitors should be used for proper electrical  
performance from VIN to GND. Due to stringent requirements for space applications, typically numerous input  
bypass capacitors are used and the total capacitance is much larger than for commercial applications. The  
TPS7H2201-SP Evaluation Module uses one 330-µF tantalum capacitor in parallel with one 10-µF and one 0.1-  
µF ceramic capacitor.  
11 Layout  
11.1 Layout Guidelines  
For best performance, all traces should be as short as possible. To be most effective, the input and output  
capacitors should be placed close to the device to minimize the effects that parasitic trace inductances may have  
on normal operation. Using wide traces for VIN, VOUT, and GND helps minimize the parasitic electrical effects.  
In general, the components should be placed close to the device such that traces remain as short as possible to  
avoid parasitic capacitance. In addition, due to the possibility of large power dissipation in fault conditions (short  
at VOUT), thermal vias should be placed in the PCB for the thermal pad.  
11.2 Layout Example  
16  
15  
14  
13  
1
2
3
4
VOUT  
VOUT  
VOUT  
VOUT  
SS  
VIN  
VIN  
VIN  
VIN  
CS  
As close to the  
device as possible  
TPS7H2201-SP  
12  
11  
5
6
ILTIMER  
IL  
EN  
Short  
traces  
10  
9
7
8
OVP  
GND  
RTIMER  
Thermal  
vias  
35. Layout Recommendation  
版权 © 2018–2019, Texas Instruments Incorporated  
31  
TPS7H2201-SP  
ZHCSIS8B SEPTEMBER 2018REVISED MAY 2019  
www.ti.com.cn  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)TPS7H2201EVM-CVAL 评估模块 (EVM) 用户指南》  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
32  
版权 © 2018–2019, Texas Instruments Incorporated  
TPS7H2201-SP  
www.ti.com.cn  
ZHCSIS8B SEPTEMBER 2018REVISED MAY 2019  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2018–2019, Texas Instruments Incorporated  
33  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Jun-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
5962-1722001VXC  
ACTIVE  
CFP  
HKR  
16  
1
RoHS-Exempt  
& Green  
NIAU  
N / A for Pkg Type  
-55 to 125  
5962-1722001VXC  
TPS7H2201MHKRV  
Samples  
5962R1722001V9A  
5962R1722001VXC  
ACTIVE  
ACTIVE  
XCEPT  
CFP  
KGD  
HKR  
0
25  
1
RoHS & Green  
Call TI  
NIAU  
N / A for Pkg Type  
N / A for Pkg Type  
-55 to 125  
-55 to 125  
Samples  
Samples  
16  
RoHS-Exempt  
& Green  
5962R1722001VXC  
TPS7H2201MHKRV  
TPS7H2201HKR/EM  
TPS7H2201Y/EM  
ACTIVE  
ACTIVE  
CFP  
HKR  
KGD  
16  
0
1
5
RoHS-Exempt  
& Green  
NIAU  
N / A for Pkg Type  
N / A for Pkg Type  
25 to 25  
25 to 25  
TPS7H2201HKREM  
Samples  
Samples  
XCEPT  
RoHS & Green  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Jun-2022  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-May-2022  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
5962-1722001VXC  
5962R1722001VXC  
TPS7H2201HKR/EM  
HKR  
HKR  
HKR  
CFP  
CFP  
CFP  
16  
16  
16  
1
1
1
506.98  
506.98  
506.98  
26.16  
26.16  
26.16  
6220  
6220  
6220  
NA  
NA  
NA  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-May-2022  
TRAY  
L - Outer tray length without tabs  
KO -  
Outer  
tray  
height  
W -  
Outer  
tray  
width  
Text  
P1 - Tray unit pocket pitch  
CW - Measurement for tray edge (Y direction) to corner pocket center  
CL - Measurement for tray edge (X direction) to corner pocket center  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
TPS7H2201Y/EM  
KGD  
XCEPT  
0
5
5 x 5  
70  
6.35  
3.81  
610  
1.3  
8.89  
8.13  
Pack Materials-Page 2  
PACKAGE OUTLINE  
HKR0016A  
CFP - 2.416 mm max height  
S
C
A
L
E
0
.
7
0
0
CERAMIC DUAL FLATPACK  
9.88  
9.38  
B
METAL LID  
A
PIN 1 ID  
14X 1.27  
16  
1
11.26  
10.76  
(10.41)  
2X 8.89  
8
9
0.482  
16X  
0.382  
(9.14)  
0.2  
C A B  
METAL LID  
C
2.416  
1.850  
0.177  
0.097  
(6.59)  
1.04  
0.84  
25.142  
24.642  
HEATSINK  
8
9
8.95  
8.65  
16  
1
6.74  
6.44  
PIN 1 ID  
4226020/C 08/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This package is hermetically sealed with a metal lid. Lid is connected to Heatsink.  
4. The terminals are gold plated.  
5. Falls within MIL-STD-1835 CDFP-F11A.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
HKR0016A  
CFP - 2.416 mm max height  
CERAMIC DUAL FLATPACK  
(6.59)  
(1.2) TYP  
(0.6)  
(1.2) TYP  
(0.6)  
(8.8)  
PKG  
(
0.2) TYP  
(R0.05) TYP  
PKG  
HEATSINK LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:10X  
4226020/C 08/2022  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY