5962-9153202Q2A [TI]

DUAL MICROPOWER LinCMOS VOLTAGE COMPARATORS; 双通道,微路LinCMOS电压比较器
5962-9153202Q2A
型号: 5962-9153202Q2A
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

DUAL MICROPOWER LinCMOS VOLTAGE COMPARATORS
双通道,微路LinCMOS电压比较器

比较器 放大器 放大器电路
文件: 总36页 (文件大小:1139K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLC3702  
DUAL MICROPOWER LinCMOSVOLTAGE COMPARATORS  
SLCS013E NOVEMBER 1986 REVISED MARCH 2012  
D, JG, OR P PACKAGE  
D Push-Pull CMOS Output Drives Capacitive  
(TOP VIEW)  
Loads Without Pullup Resistor,  
I = 8 mA  
O
1OUT  
1IN  
1IN+  
GND  
VDD  
1
2
3
4
8
7
6
5
D Very Low Power . . . 100 μW Typ at 5 V  
2OUT  
2IN−  
2IN+  
D Fast Response Time . . . t  
= 2.7 μs Typ  
PLH  
With 5-mV Overdrive  
D Single-Supply Operation . . . 3 V to 16 V  
TLC3702M . . . 4 V to 16 V  
FK PACKAGE  
(TOP VIEW)  
D On-Chip ESD Protection  
description  
The TLC3702 consists of two independent  
micropower voltage comparators designed to  
operate from a single supply and be compatible  
with modern HCMOS logic systems. They are  
functionally similar to the LM339 but use one-  
twentieth of the power for similar response times.  
The push-pull CMOS output stage drives  
capacitive loads directly without a power-  
consuming pullup resistor to achieve the stated  
response time. Eliminating the pullup resistor not  
only reduces power dissipation, but also saves  
board space and component cost. The output  
stage is also fully compatible with TTL  
requirements.  
3
2
1
20 19  
18  
NC  
2OUT  
NC  
2IN−  
NC  
NC  
1IN−  
NC  
1IN+  
NC  
4
5
6
7
8
17  
16  
15  
14  
9 10 11 12 13  
NC No internal connection  
symbol (each comparator)  
Texas Instruments LinCMOSprocess offers  
superior analog performance to standard CMOS  
processes. Along with the standard CMOS  
advantages of low power without sacrificing  
speed, high input impedance, and low bias  
currents, the LinCMOSprocess offers  
extremely stable input offset voltages with large  
differential input voltages. This characteristic  
makes it possible to build reliable CMOS  
comparators.  
IN+  
OUT  
IN  
The TLC3702C is characterized for operation over the commercial temperature range of 0°C to 70°C. The  
TLC3702I is characterized for operation over the extended industrial temperature range of 40°C to 85°C. The  
TLC3702M is characterized for operation over the full military temperature range of 55°C to 125°C.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
LinCMOS is a trademark of Texas Instruments Incorporated.  
Copyright © 1998, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3702  
DUAL MICROPOWER LinCMOSVOLTAGE COMPARATORS  
SLCS013E NOVEMBER 1986 REVISED MARCH 2012  
AVAILABLE OPTIONS  
PACKAGES  
V
max  
IO  
T
A
SMALL OUTLINE  
(D)  
CERAMIC  
(FK)  
CERAMIC DIP  
(JG)  
PLASTIC DIP  
(P)  
at 25°C  
0°C to 70°C  
40°C to 85°C  
55°C to 125°C  
5 mV  
5 mV  
5 mV  
TLC3702CD  
TLC3702ID  
TLC3702MD  
TLC3702CP  
TLC3702IP  
TLC3702MFK  
TLC3702MJG  
The D package is available taped and reeled. Add R suffix to the device type (e.g., TLC3702CDR).  
functional block diagram (each comparator)  
V
DD  
IN+  
Differential  
Input  
Circuits  
OUT  
IN−  
GND  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†  
Supply voltage range, V (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 18 V  
DD  
Differential input voltage, V (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V  
ID  
Input voltage range, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to V  
I
DD  
Output voltage range, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to V  
O
DD  
Input current, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 mA  
I
Output current, I (each output) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
O
Total supply current into V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 mA  
DD  
Total current out of GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 mA  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature range, T : TLC3702C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
TLC3702I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
TLC3702M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55°C to 125°C  
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
Case temperature for 60 seconds: FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package . . . . . . . . . . . . . . . . . 260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package . . . . . . . . . . . . . . . . . . . . 300°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.  
2. Differential voltages are at IN+ with respect to IN.  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3702  
DUAL MICROPOWER LinCMOSVOLTAGE COMPARATORS  
SLCS013E NOVEMBER 1986 REVISED MARCH 2012  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T
= 70°C  
T
= 85°C  
T = 125°C  
A
POWER RATING  
A
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING  
POWER RATING  
A
D
FK  
JG  
P
725 mW  
5.8 mW/°C  
11.0 mW/°C  
8.4 mW/°C  
8.0 mW/°C  
464 mW  
377 mW  
145 mW  
1375 mW  
880 mW  
715 mW  
275 mW  
1050 mW  
672 mW  
546 mW  
210 mW  
1000 mW  
640 mW  
520 mW  
N/A  
recommended operating conditions  
TLC3702C  
MIN NOM  
UNIT  
MAX  
Supply voltage, V  
3
5
16  
V
V
DD  
Common-mode input voltage, V  
0.2  
V
1.5  
DD  
IC  
High-level output current, I  
20  
mA  
mA  
°C  
OH  
OL  
Low-level output current, I  
20  
70  
Operating free-air temperature, T  
0
A
electrical characteristics at specified operating free-air temperature, VDD = 5 V (unless otherwise  
noted)  
TLC3702C  
PARAMETER  
T
A
UNIT  
TEST CONDITIONS  
MIN  
TYP  
MAX  
V
V
= 5 V to 10 V,  
25°C  
1.2  
5
DD  
= V min,  
V
Input offset voltage  
mV  
IC  
ICR  
IO  
0°C to 70°C  
6.5  
See Note 3  
25°C  
70°C  
1
5
pA  
nA  
pA  
nA  
I
I
Input offset current  
V
V
= 2.5 V  
= 2.5 V  
IO  
IC  
IC  
0.3  
0.6  
25°C  
Input bias current  
IB  
70°C  
25°C  
0 to V 1  
DD  
V
Common-mode input voltage range  
V
ICR  
0°C to 70°C  
25°C  
0 to V 1.5  
DD  
84  
84  
84  
85  
85  
85  
4.7  
70°C  
CMRR Common-mode rejection ratio  
V
= V min  
dB  
IC  
ICR  
0°C  
25°C  
70°C  
k
Supply-voltage rejection ratio  
V
V
= 5 V to 10 V  
dB  
SVR  
DD  
0°C  
25°C  
4.5  
4.3  
= 1 V,  
= 4 mA  
ID  
V
V
High-level output voltage  
V
OH  
OL  
I
OH  
70°C  
25°C  
210  
18  
300  
375  
40  
V
= 1 V,  
= 4 mA  
ID  
Low-level output voltage  
mV  
μA  
I
OH  
70°C  
25°C  
I
Supply current (both comparators)  
Outputs low, No load  
DD  
0°C to 70°C  
50  
All characteristics are measured with zero common-mode voltage unless otherwise noted.  
NOTE 3: The offset voltage limits given are the maximum values required to drive the output up to 4.5 V or down to 0.3 V.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3702  
DUAL MICROPOWER LinCMOSVOLTAGE COMPARATORS  
SLCS013E NOVEMBER 1986 REVISED MARCH 2012  
recommended operating conditions  
TLC3702I  
MIN NOM  
UNIT  
MAX  
Supply voltage, V  
3
5
16  
V
V
DD  
Common-mode input voltage, V  
0.2  
V
1.5  
DD  
IC  
High-level output current, I  
20  
mA  
mA  
°C  
OH  
OL  
Low-level output current, I  
20  
85  
Operating free-air temperature, T  
40  
A
electrical characteristics at specified operating free-air temperature, VDD = 5 V (unless otherwise  
noted)  
TLC3702I  
PARAMETER  
Input offset voltage  
Input offset current  
Input bias current  
T
UNIT  
TEST CONDITIONS  
A
MIN  
TYP  
MAX  
25°C  
40°C to 85°C  
25°C  
1.2  
5
7
V
V
= 5 V to 10 V,  
DD  
V
mV  
IO  
= V min, See Note 3  
IC  
ICR  
1
5
pA  
nA  
pA  
nA  
I
I
V
V
= 2.5 V  
= 2.5 V  
IO  
IC  
85°C  
1
2
25°C  
IB  
IC  
85°C  
0 to  
25°C  
V
1  
DD  
V
Common-mode input voltage range  
V
ICR  
0 to  
40°C to 85°C  
V
1.5  
DD  
25°C  
85°C  
84  
84  
83  
85  
85  
83  
4.7  
CMRR Common-mode rejection ratio  
V
V
= V min  
dB  
dB  
IC  
ICR  
40°C  
25°C  
85°C  
k
Supply-voltage rejection ratio  
= 5 V to 10 V  
DD  
SVR  
40°C  
25°C  
4.5  
4.3  
V
V
High-level output voltage  
V
V
= 1 V,  
I
I
= 4 mA  
= 4 mA  
V
OH  
OL  
ID  
ID  
OH  
OH  
85°C  
25°C  
210  
18  
300  
400  
40  
Low-level output voltage  
= 1 V,  
mV  
μA  
85°C  
25°C  
I
Supply current (both comparators)  
Outputs low, No load  
DD  
40°C to 85°C  
65  
All characteristics are measured with zero common-mode voltage unless otherwise noted.  
NOTE 3. The offset voltage limits given are the maximum values required to drive the output up to 4.5 V or down to 0.3 V.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3702  
DUAL MICROPOWER LinCMOSVOLTAGE COMPARATORS  
SLCS013E NOVEMBER 1986 REVISED MARCH 2012  
recommended operating conditions  
TLC3702M  
MIN NOM MAX  
UNIT  
Supply voltage, V  
4
0
5
16  
V
V
DD  
Common-mode input voltage, V  
V
1.5  
DD  
IC  
High-level output current, I  
20  
20  
125  
mA  
mA  
°C  
OH  
OL  
Low-level output current, I  
Operating free-air temperature, T  
55  
A
electrical characteristics at specified operating free-air temperature, VDD = 5 V (unless otherwise  
noted)  
TLC3702M  
PARAMETER  
Input offset voltage  
Input offset current  
Input bias current  
T
UNIT  
TEST CONDITIONS  
A
MIN  
TYP  
MAX  
5
25°C  
55°C to 125°C  
25°C  
1.2  
V
V
= 5 V to 10 V,  
DD  
V
mV  
IO  
= V min, See Note 3  
10  
IC  
ICR  
1
5
pA  
nA  
pA  
nA  
I
I
V
V
= 2.5 V  
= 2.5 V  
IO  
IC  
125°C  
15  
30  
25°C  
IB  
IC  
125°C  
0 to  
25°C  
V
1  
DD  
V
Common-mode input voltage range  
V
ICR  
0 to  
55°C to 125°C  
V
1.5  
DD  
25°C  
125°C  
84  
83  
82  
85  
85  
82  
4.7  
CMRR Common-mode rejection ratio  
V
V
= V min  
dB  
dB  
IC  
ICR  
55°C  
25°C  
125°C  
k
Supply-voltage rejection ratio  
= 5 V to 10 V  
DD  
SVR  
55°C  
25°C  
4.5  
4.2  
V
V
High-level output voltage  
V
V
= 1 V,  
I
I
= 4 mA  
= 4 mA  
V
OH  
OL  
ID  
ID  
OH  
OH  
125°C  
25°C  
210  
18  
300  
500  
40  
Low-level output voltage  
= 1 V,  
mV  
μA  
125°C  
25°C  
I
Supply current (both comparators)  
Outputs low, No load  
DD  
55°C to 125°C  
90  
All characteristics are measured with zero common-mode voltage unless otherwise noted.  
NOTE 3. The offset voltage limits given are the maximum values required to drive the output up to 4.5 V or down to 0.3 V.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3702  
DUAL MICROPOWER LinCMOSVOLTAGE COMPARATORS  
SLCS013E NOVEMBER 1986 REVISED MARCH 2012  
switching characteristics, VDD = 5 V, TA = 25°C  
TLC3702C, TLC3702I  
TLC3702M  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
4.5  
2.7  
1.9  
1.4  
1.1  
1.1  
4
MAX  
Overdrive = 2 mV  
Overdrive = 5 mV  
f = 10 kHz,  
C = 50 pF  
Overdrive = 10 mV  
Overdrive = 20 mV  
Overdrive = 40 mV  
t
t
Propagation delay time, low-to-high-level output  
μs  
PLH  
L
V = 1.4 V step at IN+  
I
Overdrive = 2 mV  
Overdrive = 5 mV  
Overdrive = 10 mV  
Overdrive = 20 mV  
Overdrive = 40 mV  
2.3  
1.5  
0.95  
0.65  
0.15  
f = 10 kHz,  
C = 50 pF  
Propagation delay time, high-to-low-level output  
μs  
PHL  
L
V = 1.4 V step at IN+  
I
f = 10 kHz,  
C = 50 pF  
L
t
t
Fall time  
Overdrive = 50 mV  
Overdrive = 50 mV  
50  
ns  
ns  
f
f = 10 kHz,  
C = 50 pF  
L
Rise time  
125  
r
Simultaneous switching of inputs causes degradation in output response.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3702  
DUAL MICROPOWER LinCMOSVOLTAGE COMPARATORS  
SLCS013E NOVEMBER 1986 REVISED MARCH 2012  
PRINCIPLES OF OPERATION  
LinCMOSprocess  
The LinCMOSprocess is a linear polysilicon-gate CMOS process. Primarily designed for single-supply  
applications, LinCMOSproducts facilitate the design of a wide range of high-performance analog functions  
from operational amplifiers to complex mixed-mode converters.  
While digital designers are experienced with CMOS, MOS technologies are relatively new for analog designers.  
This short guide is intended to answer the most frequently asked questions related to the quality and reliability  
of LinCMOSproducts. Further questions should be directed to the nearest TI field sales office.  
electrostatic discharge  
CMOS circuits are prone to gate oxide breakdown when exposed to high voltages even if the exposure is only  
for very short periods of time. Electrostatic discharge (ESD) is one of the most common causes of damage to  
CMOS devices. It can occur when a device is handled without proper consideration for environmental  
electrostatic charges, e.g., during board assembly. If a circuit in which one amplifier from a dual op amp is being  
used and the unused pins are left open, high voltages tend to develop. If there is no provision for ESD protection,  
these voltages may eventually punch through the gate oxide and cause the device to fail. To prevent voltage  
buildup, each pin is protected by internal circuitry.  
Standard ESD-protection circuits safely shunt the ESD current by providing a mechanism whereby one or more  
transistors break down at voltages higher than the normal operating voltages but lower than the breakdown  
voltage of the input gate. This type of protection scheme is limited by leakage currents which flow through the  
shunting transistors during normal operation after an ESD voltage has occurred. Although these currents are  
small, on the order of tens of nanoamps, CMOS amplifiers are often specified to draw input currents as low as  
tens of picoamps.  
To overcome this limitation, TI design engineers developed the patented ESD-protection circuit shown in  
Figure 1. This circuit can withstand several successive 2-kV ESD pulses, while reducing or eliminating leakage  
currents that may be drawn through the input pins. A more detailed discussion of the operation of the TI  
ESD-protection circuit is presented on the next page.  
All input and output pins on LinCMOSand Advanced LinCMOSproducts have associated ESD-protection  
circuitry that undergoes qualification testing to withstand 2000 V discharged from a 100-pF capacitor through  
a 1500-Ω resistor (human body model) and 200 V from a 100-pF capacitor with no current-limiting resistor  
(charged device model). These tests simulate both operator and machine handling of devices during normal  
test and assembly operations.  
V
DD  
R1  
Input  
To Protect Circuit  
R2  
Q1  
Q2  
D1  
D2  
D3  
GND  
Figure 1. LinCMOSESD-Protection Schematic  
LinCMOS and Advanced LinCMOS are trademarks of Texas Instruments Incorporated.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3702  
DUAL MICROPOWER LinCMOSVOLTAGE COMPARATORS  
SLCS013E NOVEMBER 1986 REVISED MARCH 2012  
PRINCIPLES OF OPERATION  
input protection circuit operation  
Texas Instruments patented protection circuitry allows for both positive- and negative-going ESD transients.  
These transients are characterized by extremely fast rise times and usually low energies, and can occur both  
when the device has all pins open and when it is installed in a circuit.  
positive ESD transients  
Initial positive charged energy is shunted through Q1 to V . Q1 turns on when the voltage at the input rises  
SS  
above the voltage on the V pin by a value equal to the V of Q1. The base current increases through R2  
DD  
BE  
with input current as Q1 saturates. The base current through R2 forces the voltage at the drain and gate of Q2  
to exceed its threshold level (V 22 to 26 V) and turn Q2 on. The shunted input current through Q1 to V is  
T
SS  
now shunted through the n-channel enhancement-type MOSFET Q2 to V . If the voltage on the input pin  
SS  
continues to rise, the breakdown voltage of the zener diode D3 is exceeded and all remaining energy is  
dissipated in R1 and D3. The breakdown voltage of D3 is designed to be 24 V to 27 V, which is well below the  
gate-oxide voltage of the circuit to be protected.  
negative ESD transients  
The negative charged ESD transients are shunted directly through D1. Additional energy is dissipated in R1  
and D2 as D2 becomes forward biased. The voltage seen by the protected circuit is 0.3 V to 1 V (the forward  
voltage of D1 and D2).  
circuit-design considerations  
LinCMOSproducts are being used in actual circuit environments that have input voltages that exceed the  
recommended common-mode input voltage range and activate the input protection circuit. Even under normal  
operation, these conditions occur during circuit power up or power down, and in many cases, when the device  
is being used for a signal conditioning function. The input voltages can exceed V  
and not damage the device  
ICR  
only if the inputs are current limited. The recommended current limit shown on most product data sheets is  
5 mA. Figure 2 and Figure 3 show typical characteristics for input voltage versus input current.  
Normal operation and correct output state can be expected even when the input voltage exceeds the positive  
supply voltage. Again, the input current should be externally limited even though internal positive current limiting  
is achieved in the input protection circuit by the action of Q1. When Q1 is on, it saturates and limits the current  
to approximately 5-mA collector current by design. When saturated, Q1 base current increases with input  
current. This base current is forced into the V pin and into the device I  
or the V supply through R2  
DD  
DD  
DD  
producing the current limiting effects shown in Figure 2. This internal limiting lasts only as long as the input  
voltage is below the V of Q2.  
T
When the input voltage exceeds the negative supply voltage, normal operation is affected and output voltage  
states may not be correct. Also, the isolation between channels of multiple devices (duals and quads) can be  
severely affected. External current limiting must be used since this current is directly shunted by D1 and D2 and  
no internal limiting is achieved. If normal output voltage states are required, an external input voltage clamp is  
required (see Figure 4).  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3702  
DUAL MICROPOWER LinCMOSVOLTAGE COMPARATORS  
SLCS013E NOVEMBER 1986 REVISED MARCH 2012  
PRINCIPLES OF OPERATION  
circuit-design considerations (continued)  
INPUT CURRENT  
vs  
POSITIVE INPUT VOLTAGE  
INPUT CURRENT  
vs  
NEGATIVE INPUT VOLTAGE  
8
7
10  
9  
T
A
= 25° C  
T = 25° C  
A
8  
7  
6
5
6  
5  
4
3
2
1
0
4  
3  
2  
1  
0  
V
V
+ 4  
V
+ 8  
V + 12  
DD  
0.3  
0.5  
0.7  
0.9  
DD  
DD  
DD  
V Input Voltage V  
I
V Input Voltage V  
I
Figure 2  
Figure 3  
V
DD  
R
I
Positive Voltage Input Current Limit :  
V
+
I
1/2  
VI * VDD * 0.3 V  
TLC3702  
RI  
+
5 mA  
V
ref  
Negative Voltage Input Current Limit :  
* VI * VDD * (* 0.3 V)  
RI  
+
5 mA  
See Note A  
NOTE A: If the correct input state is required when the negative input exceeds GND, a Schottky clamp is required.  
Figure 4. Typical Input Current-Limiting Configuration for a LinCMOSComparator  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3702  
DUAL MICROPOWER LinCMOSVOLTAGE COMPARATORS  
SLCS013E NOVEMBER 1986 REVISED MARCH 2012  
PARAMETER MEASUREMENT INFORMATION  
The TLC3702 contains a digital output stage which, if held in the linear region of the transfer curve, can cause  
damage to the device. Conventional operational amplifier/comparator testing incorporates the use of a servo  
loop which is designed to force the device output to a level within this linear region. Since the servo-loop method  
of testing cannot be used, we offer the following alternatives for measuring parameters such as input offset  
voltage, common-mode rejection, etc.  
To verify that the input offset voltage falls within the limits specified, the limit value is applied to the input as shown  
in Figure 5(a). With the noninverting input positive with respect to the inverting input, the output should be high.  
With the input polarity reversed, the output should be low.  
A similar test can be made to verify the input offset voltage at the common-mode extremes. The supply voltages  
can be slewed to provide greater accuracy, as shown in Figure 5(b) for the V  
of changing the input voltages.  
test. This slewing is done instead  
ICR  
A close approximation of the input offset voltage can be obtained by using a binary search method to vary the  
differential input voltage while monitoring the output state. When the applied input voltage differential is equal,  
but opposite in polarity, to the input offset voltage, the output changes states.  
Figure 6 illustrates a practical circuit for direct dc measurement of input offset voltage that does not bias the  
comparator in the linear region. The circuit consists of a switching mode servo loop in which IC1a generates  
a triangular waveform of approximately 20-mV amplitude. IC1b acts as a buffer, with C2 and R4 removing any  
residual dc offset. The signal is then applied to the inverting input of the comparator under test, while the  
noninverting input is driven by the output of the integrator formed by IC1c through the voltage divider formed  
by R8 and R9. The loop reaches a stable operating point when the output of the comparator under test has a  
duty cycle of exactly 50%, which can only occur when the incoming triangle wave is sliced symmetrically or when  
the voltage at the noninverting input exactly equals the input offset voltage.  
Voltage dividers R8 and R9 provide an increase in input offset voltage by a factor of 100 to make measurement  
easier. The values of R5, R7, R8, and R9 can significantly influence the accuracy of the reading; therefore, it  
is suggested that their tolerance level be one percent or lower.  
Measuring the extremely low values of input current requires isolation from all other sources of leakage current  
and compensation for the leakage of the test socket and board. With a good picoammeter, the socket and board  
leakage can be measured with no device in the socket. Subsequently, this open socket leakage value can be  
subtracted from the measurement obtained with a device in the socket to obtain the actual input current of the  
device.  
5 V  
1 V  
+
+
Applied V  
Applied V  
IO  
IO  
Limit  
Limit  
V
V
O
O
4 V  
(a) V WITH V = 0 V  
(b) V WITH V = 4 V  
IO IC  
IO  
IC  
Figure 5. Method for Verifying That Input Offset Voltage Is Within Specified Limits  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3702  
DUAL MICROPOWER LinCMOSVOLTAGE COMPARATORS  
SLCS013E NOVEMBER 1986 REVISED MARCH 2012  
PARAMETER MEASUREMENT INFORMATION  
V
DD  
C3  
0.68 μF  
R5  
1.8 kΩ 1%  
IC1a  
1/4 TLC274CN  
C2  
1 μF  
IC1c  
Buffer  
+
1/4 TLC274CN  
R6  
1 MΩ  
DUT  
V
IO  
+
R4  
47 kΩ  
(X100)  
+
Integrator  
R7  
1.8 kΩ 1%  
R1  
240 kΩ  
IC1b  
1/4 TLC274CN  
C4  
0.1 μF  
C1  
0.1 μF  
+
Triangle  
Generator  
R8  
10 kΩ 1%  
R9  
100 Ω 1%  
R2  
10 kΩ  
R3  
100 Ω  
Figure 6. Circuit for Input Offset Voltage Measurement  
Response time is defined as the interval between the application of an input step function and the instant when  
the output reaches 50% of its maximum value. Response time for the low-to-high-level output is measured from  
the leading edge of the input pulse, while response time for the high-to-low-level output is measured from the  
trailing edge of the input pulse. Response time measurement at low input signal levels can be greatly affected  
by the input offset voltage. The offset voltage should be balanced by the adjustment at the inverting input as  
shown in Figure 7, so that the circuit is just at the transition point. A low signal, for example 105-mV or 5-mV  
overdrive, causes the output to change state.  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3702  
DUAL MICROPOWER LinCMOSVOLTAGE COMPARATORS  
SLCS013E NOVEMBER 1986 REVISED MARCH 2012  
PARAMETER MEASUREMENT INFORMATION  
V
DD  
Pulse  
Generator  
μ
F
1
Ω
50  
+
1 V  
DUT  
10 Ω  
C
L
10-Turn  
Potentiometer  
(see Note A)  
1 kΩ  
μ
F
0.1  
1 V  
TEST CIRCUIT  
Overdrive  
Overdrive  
Input  
100 mV  
Input  
100 mV  
90%  
50%  
10%  
90%  
50%  
10%  
Low-to-High  
Level Output  
High-to-Low  
Level Output  
t
r
t
f
t
t
PHL  
PLH  
VOLTAGE WAVEFORMS  
NOTE A: C includes probe and jig capacitance.  
L
Figure 7. Response, Rise, and Fall Times Circuit and Voltage Waveforms  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3702  
DUAL MICROPOWER LinCMOSVOLTAGE COMPARATORS  
SLCS013E NOVEMBER 1986 REVISED MARCH 2012  
TYPICAL CHARACTERISTICS†  
Table of Graphs  
FIGURE  
V
Input offset voltage  
Input bias current  
Distribution  
8
9
IO  
I
vs Free-air temperature  
vs Free-air temperature  
vs Free-air temperature  
IB  
CMRR Common-mode rejection ratio  
10  
11  
k
Supply-voltage rejection ratio  
SVR  
vs Free-air temperature  
vs High-level output current  
12  
13  
V
V
High-level output current  
OH  
OL  
vs Low-level output current  
vs Free-air temperature  
14  
15  
Low-level output voltage  
t
Transition time  
vs Load capacitance  
16  
17  
18  
19  
20  
21  
t
Supply current response  
Low-to-high-level output response  
High-to-low level output response  
vs Time  
Low-to-high level output propagation delay time  
High-to-low level output propagation delay time  
t
t
Low-to-high level output propagation delay time vs Supply voltage  
High-to-low level output propagation delay time vs Supply voltage  
vs Frequency  
PLH  
PHL  
22  
23  
24  
vs Supply voltage  
vs Free-air temperature  
I
Supply current  
DD  
INPUT BIAS CURRENT  
vs  
FREE-AIR TEMPERATURE  
DISTRIBUTION OF INPUT  
OFFSET VOLTAGE  
200  
180  
160  
140  
10  
V
V
= 5 V  
DD  
V
V
= 5 V  
DD  
IC  
= 2.5 V  
IC  
= 2.5 V  
T
= 25° C  
A
698 Units Tested  
From 4 Wafer Lots  
1
0.1  
120  
100  
80  
60  
40  
20  
0.01  
0.001  
0
5 4 3 2 1  
0
1
2
3
4
5
25  
50  
75  
100  
125  
V
Input Offset Voltage mV  
T
A
Free-Air Temperature °C  
IO  
Figure 8  
Figure 9  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3702  
DUAL MICROPOWER LinCMOSVOLTAGE COMPARATORS  
SLCS013E NOVEMBER 1986 REVISED MARCH 2012  
TYPICAL CHARACTERISTICS†  
SUPPLY VOLTAGE REJECTION RATIO  
COMMON-MODE REJECTION RATIO  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
90  
88  
86  
84  
82  
90  
88  
86  
84  
82  
80  
78  
76  
V
= 5 V to 10 V  
V
= 5 V  
DD  
DD  
80  
78  
76  
74  
72  
70  
74  
72  
70  
75 50 25  
0
25  
50  
75  
100 125  
75 50 25  
0
25  
50  
75  
100 125  
T
A
Free-Air Temperature °C  
T
A
Free-Air Temperature °C  
Figure 10  
Figure 11  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
5
4.95  
4.9  
V
DD  
V
OH  
= 5 V  
DD  
I
= 4 mA  
V
= 16 V  
10 V  
0.25  
DD  
0.5  
4.85  
4.8  
0.75  
4.75  
1  
5 V  
4.7  
1.25  
4.65  
4 V  
1.5  
4.6  
4.55  
4.5  
3 V  
1.75  
2  
T
A
= 25° C  
0
2.5 5 7.5 10 12.5 15 17.5 20  
75 50 25  
0
25  
50  
75  
100  
125  
I
High-Level Output Current mA  
T
A
Free-Air Temperature °C  
OH  
Figure 12  
Figure 13  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3702  
DUAL MICROPOWER LinCMOSVOLTAGE COMPARATORS  
SLCS013E NOVEMBER 1986 REVISED MARCH 2012  
TYPICAL CHARACTERISTICS†  
LOW-LEVEL OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
vs  
LOW-LEVEL OUTPUT CURRENT  
FREE-AIR TEMPERATURE  
1.5  
400  
350  
300  
250  
200  
150  
100  
T
A
= 25°C  
V
I
= 5 V  
DD  
3 V  
= 4 mA  
4 V  
OL  
1.25  
5 V  
1
0.75  
10 V  
0.5  
0.25  
V
= 16 V  
DD  
50  
0
0
0
2
4
6
8
10 12 14 16 18  
20  
75 50 25  
0
25  
50  
75  
100 125  
I
Low-Level Output Current mA  
OL  
T
A
Free-Air Temperature °C  
Figure 14  
Figure 15  
OUTPUT TRANSITION TIME  
vs  
SUPPLY CURRENT RESPONSE  
TO AN OUTPUT VOLTAGE TRANSITION  
LOAD CAPACITANCE  
250  
225  
200  
V
C
= 5 V  
= 50 pF  
DD  
V
T
A
= 5 V  
= 25°C  
DD  
L
f = 10 kHz  
10  
Rise Time  
175  
150  
125  
100  
75  
5
0
5
0
Fall Time  
50  
25  
0
0
200  
400  
600  
800  
1000  
t Time  
C
L
Load Capacitance pF  
Figure 16  
Figure 17  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3702  
DUAL MICROPOWER LinCMOSVOLTAGE COMPARATORS  
SLCS013E NOVEMBER 1986 REVISED MARCH 2012  
TYPICAL CHARACTERISTICS  
LOW-TO-HIGH-LEVEL OUTPUT RESPONSE  
FOR VARIOUS INPUT OVERDRIVES  
HIGH-TO-LOW-LEVEL OUTPUT RESPONSE  
FOR VARIOUS INPUT OVERDRIVES  
5
5
40 mV  
20 mV  
10 mV  
5 mV  
40 mV  
20 mV  
10 mV  
5 mV  
2 mV  
2 mV  
0
100  
0
0
100  
0
V
T
C
= 5 V  
= 25° C  
= 50 pF  
DD  
A
L
V
= 5 V  
= 25°C  
= 50 pF  
DD  
T
A
C
L
0
1
2
3
4
5
0
1
2
3
4
5
t
Low-to-High-Level Output  
Response Time μs  
t
High-to-Low-Level Output  
Response Time μs  
PLH  
PHL  
Figure 18  
Figure 19  
LOW-TO-HIGH-LEVEL  
HIGH-TO-LOW-LEVEL  
OUTPUT RESPONSE TIME  
vs  
OUTPUT RESPONSE TIME  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
6
5
6
5
C
= 50 pF  
= 25°C  
L
C
= 50 pF  
= 25°C  
L
T
A
T
A
Overdrive = 2 mV  
Overdrive = 2 mV  
4
3
2
1
0
4
3
5 mV  
10 mV  
5 mV  
2
10 mV  
20 mV  
20 mV  
40 mV  
1
0
40 mV  
6
0
2
4
6
8
10  
12  
14  
16  
0
2
4
8
10  
12  
14  
16  
V
Supply Voltage V  
DD  
V
Supply Voltage V  
DD  
Figure 20  
Figure 21  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3702  
DUAL MICROPOWER LinCMOSVOLTAGE COMPARATORS  
SLCS013E NOVEMBER 1986 REVISED MARCH 2012  
TYPICAL CHARACTERISTICS†  
AVERAGE SUPPLY CURRENT  
SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
(PER COMPARATOR)  
vs  
FREQUENCY  
40  
35  
10000  
1000  
Outputs Low  
No Loads  
T
= 55°C  
A
T
C
= 25°C  
= 50 pF  
A
T = 40°C  
A
L
V
= 16 V  
DD  
30  
25  
20  
15  
10  
T
= 25°C  
10 V  
A
5 V  
100  
10  
T
= 125°C  
A
4 V  
T
= 85°C  
A
5
0
3 V  
0
1
2
3
4
5
6
7
8
0.01  
0.1  
1
10  
100  
f Frequency kHz  
V
Supply Voltage V  
DD  
Figure 22  
Figure 23  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
30  
25  
20  
15  
V
= 5 V  
DD  
No Load  
Outputs Low  
Outputs High  
10  
5
0
75 50 25  
0
25  
50  
75  
100 125  
T
A
Free-Air Temperature °C  
Figure 24  
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3702  
DUAL MICROPOWER LinCMOSVOLTAGE COMPARATORS  
SLCS013E NOVEMBER 1986 REVISED MARCH 2012  
APPLICATION INFORMATION  
The inputs should always remain within the supply rails in order to avoid forward biasing the diodes in the  
electrostatic discharge (ESD) protection structure. If either input exceeds this range, the device is not damaged  
as long as the input is limited to less than 5 mA. To maintain the expected output state, the inputs must remain  
within the common-mode range. For example, at 25°C with V  
0.2 V and 4 V to ensure proper device operation.  
= 5 V, both inputs must remain between  
DD  
To ensure reliable operation, the supply should be decoupled with a capacitor (0.1 μF) that is positioned as close  
to the device as possible.  
The TLC3702 has internal ESD-protection circuits that prevent functional failures at voltages up to 2000 V as  
tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling these devices as  
exposure to ESD may result in the degradation of the device parametric performance.  
Table of Applications  
FIGURE  
Pulse-width-modulated motor speed controller  
Enhanced supply supervisor  
25  
26  
27  
28  
Two-phase nonoverlapping clock generator  
Micropower switching regulator  
12 V  
SN75603  
Half-H Driver  
DIR  
EN  
5 V  
1/2 TLC3702  
+
See  
Note A  
100 kΩ  
+
10 kΩ  
5 V  
Motor  
10 kΩ  
C1  
1/2 TLC3704  
0.01 μF  
12 V  
(see Note B)  
SN75604  
Half-H Driver  
DIR  
EN  
10 kΩ  
5 V  
10 kΩ  
Motor Speed Control  
Potentiometer  
5 V  
Direction  
Control  
S1  
SPDT  
NOTES: A. The recommended minimum capacitance is 10 μF to eliminate common ground switching noise.  
B. Adjust C1 for change in oscillator frequency.  
Figure 25. Pulse-Width-Modulated Motor Speed Controller  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3702  
DUAL MICROPOWER LinCMOSVOLTAGE COMPARATORS  
SLCS013E NOVEMBER 1986 REVISED MARCH 2012  
APPLICATION INFORMATION  
5 V  
5 V  
V
SENSE  
CC  
12 V  
1/2 TLC3702  
3.3 kΩ  
10 kΩ  
To μP  
12-V  
Sense  
+
TL7705A  
Reset  
RESIN  
REF  
RESET  
GND  
1 kΩ  
C
T
2.5 V  
1 μF  
C
T
(see Note B)  
1/2 TLC3702  
+
To μP Interrupt  
Early Power Fail  
R1  
V
(UNREG)  
(see Note A)  
R2  
Monitors 5 VDC Rail  
Monitors 12 VDC Rail  
Early Power Fail Warning  
(R1 +R2)  
R2  
NOTES: A.  
V(UNREG) + 2.5  
B. The value of C determines the time delay of reset.  
T
Figure 26. Enhanced Supply Supervisor  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3702  
DUAL MICROPOWER LinCMOSVOLTAGE COMPARATORS  
SLCS013E NOVEMBER 1986 REVISED MARCH 2012  
APPLICATION INFORMATION  
12 V  
R1  
12 V  
100 kΩ  
12 V  
(see Note B)  
1/2 TLC3702  
1OUT  
2OUT  
R2  
5 kΩ  
+
1/2 TLC3702  
100 kΩ  
(see Note C)  
+
1/2 TLC3702  
22 kΩ  
C1  
0.01 μF  
(see Note A)  
+
100 kΩ  
100 kΩ  
R3  
100 kΩ  
(see Note B)  
12 V  
1OUT  
2OUT  
NOTES: A. Adjust C1 for a change in oscillator frequency where:  
1/f = 1.85(100 kΩ)C1  
B. Adjust R1 and R3 to change duty cycle  
C. Adjust R2 to change deadtime  
Figure 27. Two-Phase Nonoverlapping Clock Generator  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TLC3702  
DUAL MICROPOWER LinCMOSVOLTAGE COMPARATORS  
SLCS013E NOVEMBER 1986 REVISED MARCH 2012  
APPLICATION INFORMATION  
V
I
+ 6 V to 16 V  
I
+ 0.01 mA to 0.25 mA  
L
(R1 ) R2)  
V
+ 2.5  
O
R2  
1/2 TLC3702  
V
SK9504  
(see Note C)  
I
1/2 TLC3702  
+
100 kΩ  
G
S
V
I
100 kΩ  
+
47 μF  
V
I
Tantalum  
D
100 kΩ  
+
C1  
IN5818  
180 μF  
(see Note A)  
100 kΩ  
R = 6 Ω  
L = 1 mH  
(see Note D)  
R1  
V
O
100 kΩ  
TLC271  
(see Note B)  
V
I
R
L
470 μF  
+
R2  
100 kΩ  
C2  
100 pF  
100 kΩ  
270 kΩ  
V
I
LM385  
2.5 V  
NOTES: A. Adjust C1 for a change in oscillator frequency  
B. TLC271 Tie pin 8 to pin 7 for low bias operation  
C. SK9504 VDS = 40 V  
IDS = 1 A  
D. To achieve microampere current drive, the inductance of the circuit must be increased.  
Figure 28. Micropower Switching Regulator  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Sep-2013  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
5962-9153201Q2A  
ACTIVE  
LCCC  
FK  
20  
1
TBD  
POST-PLATE  
N / A for Pkg Type  
-55 to 125  
5962-  
9153201Q2A  
TLC3702  
MFKB  
5962-9153201QHA  
5962-9153202Q2A  
5962-9153202QPA  
TLC3702CD  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
CDIP  
LCCC  
CDIP  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
JG  
FK  
JG  
D
8
20  
8
1
1
TBD  
TBD  
TBD  
A42  
N / A for Pkg Type  
N / A for Pkg Type  
N / A for Pkg Type  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
N / A for Pkg Type  
-55 to 125  
-55 to 125  
-55 to 125  
0 to 70  
9153201QPA  
TLC3702M  
POST-PLATE  
A42  
5962-  
9153202Q2A  
1
5962-  
9153202QPA  
8
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
3702C  
TLC3702CDG4  
TLC3702CDR  
D
8
75  
Green (RoHS  
& no Sb/Br)  
0 to 70  
3702C  
D
8
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
0 to 70  
3702C  
TLC3702CDRG4  
TLC3702CP  
D
8
Green (RoHS  
& no Sb/Br)  
0 to 70  
3702C  
P
8
Pb-Free  
(RoHS)  
0 to 70  
TLC3702CP  
TLC3702CP  
TLC3702CPE4  
P
8
50  
Pb-Free  
(RoHS)  
0 to 70  
TLC3702CPSLE  
TLC3702CPSR  
OBSOLETE  
ACTIVE  
SO  
SO  
PS  
PS  
8
8
TBD  
Call TI  
Call TI  
0 to 70  
0 to 70  
2000  
2000  
150  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
P3702  
P3702  
P3702  
P3702  
TLC3702CPSRG4  
TLC3702CPW  
ACTIVE  
ACTIVE  
ACTIVE  
SO  
PS  
PW  
PW  
8
8
8
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
0 to 70  
0 to 70  
0 to 70  
TSSOP  
TSSOP  
Green (RoHS  
& no Sb/Br)  
TLC3702CPWG4  
150  
Green (RoHS  
& no Sb/Br)  
TLC3702CPWLE  
TLC3702CPWR  
OBSOLETE  
ACTIVE  
TSSOP  
TSSOP  
PW  
PW  
8
8
TBD  
Call TI  
Call TI  
0 to 70  
0 to 70  
2000  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
P3702  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Sep-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
0 to 70  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
TLC3702CPWRG4  
TLC3702ID  
ACTIVE  
TSSOP  
SOIC  
PW  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
20  
2000  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
POST-PLATE  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
P3702  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
D
D
75  
75  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
3702I  
TLC3702IDG4  
TLC3702IDR  
SOIC  
Green (RoHS  
& no Sb/Br)  
3702I  
SOIC  
D
2500  
2500  
50  
Green (RoHS  
& no Sb/Br)  
3702I  
TLC3702IDRG4  
TLC3702IP  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
3702I  
PDIP  
P
Pb-Free  
(RoHS)  
TLC3702IP  
TLC3702IP  
P3702I  
P3702I  
P3702I  
P3702I  
3702M  
3702M  
3702M  
3702M  
TLC3702IPE4  
TLC3702IPW  
PDIP  
P
50  
Pb-Free  
(RoHS)  
N / A for Pkg Type  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
SOIC  
PW  
PW  
PW  
PW  
D
150  
150  
2000  
2000  
75  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
N / A for Pkg Type  
TLC3702IPWG4  
TLC3702IPWR  
TLC3702IPWRG4  
TLC3702MD  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
TLC3702MDG4  
TLC3702MDR  
TLC3702MDRG4  
TLC3702MFKB  
SOIC  
D
75  
Green (RoHS  
& no Sb/Br)  
SOIC  
D
2500  
2500  
1
Green (RoHS  
& no Sb/Br)  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
LCCC  
FK  
TBD  
5962-  
9153201Q2A  
TLC3702  
MFKB  
TLC3702MJG  
ACTIVE  
CDIP  
JG  
8
1
TBD  
A42  
N / A for Pkg Type  
-55 to 125  
TLC3702MJG  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Sep-2013  
Orderable Device  
TLC3702MJGB  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
ACTIVE  
CDIP  
JG  
8
1
TBD  
A42  
N / A for Pkg Type  
-55 to 125  
9153201QPA  
TLC3702M  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TLC3702, TLC3702M :  
Catalog: TLC3702  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Sep-2013  
Automotive: TLC3702-Q1, TLC3702-Q1  
Enhanced Product: TLC3702-EP, TLC3702-EP  
Military: TLC3702M  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Enhanced Product - Supports Defense, Aerospace and Medical Applications  
Military - QML certified for Military and Defense Applications  
Addendum-Page 4  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Jul-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLC3702CDR  
TLC3702CPSR  
TLC3702IDR  
SOIC  
SO  
D
PS  
D
8
8
8
8
8
8
2500  
2000  
2500  
2000  
2500  
2500  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
12.4  
16.4  
12.4  
12.4  
12.4  
12.4  
6.4  
8.2  
6.4  
7.0  
6.4  
6.4  
5.2  
6.6  
5.2  
3.6  
5.2  
5.2  
2.1  
2.5  
2.1  
1.6  
2.1  
2.1  
8.0  
12.0  
8.0  
8.0  
8.0  
8.0  
12.0  
16.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
SOIC  
TSSOP  
SOIC  
SOIC  
TLC3702IPWR  
TLC3702MDR  
TLC3702MDRG4  
PW  
D
D
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Jul-2013  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TLC3702CDR  
TLC3702CPSR  
TLC3702IDR  
SOIC  
SO  
D
PS  
D
8
8
8
8
8
8
2500  
2000  
2500  
2000  
2500  
2500  
340.5  
367.0  
340.5  
367.0  
367.0  
367.0  
338.1  
367.0  
338.1  
367.0  
367.0  
367.0  
20.6  
38.0  
20.6  
35.0  
35.0  
35.0  
SOIC  
TSSOP  
SOIC  
SOIC  
TLC3702IPWR  
TLC3702MDR  
TLC3702MDRG4  
PW  
D
D
Pack Materials-Page 2  
MECHANICAL DATA  
MCER001A – JANUARY 1995 – REVISED JANUARY 1997  
JG (R-GDIP-T8)  
CERAMIC DUAL-IN-LINE  
0.400 (10,16)  
0.355 (9,00)  
8
5
0.280 (7,11)  
0.245 (6,22)  
1
4
0.065 (1,65)  
0.045 (1,14)  
0.310 (7,87)  
0.290 (7,37)  
0.063 (1,60)  
0.015 (0,38)  
0.020 (0,51) MIN  
0.200 (5,08) MAX  
0.130 (3,30) MIN  
Seating Plane  
0.023 (0,58)  
0.015 (0,38)  
0°–15°  
0.100 (2,54)  
0.014 (0,36)  
0.008 (0,20)  
4040107/C 08/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a ceramic lid using glass frit.  
D. Index point is provided on cap for terminal identification.  
E. Falls within MIL STD 1835 GDIP1-T8  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

5962-9153202QHA

Analog Comparator
ETC

5962-9153202QPA

DUAL MICROPOWER LinCMOS VOLTAGE COMPARATORS
TI

5962-9153301M2A

IC BUTTERWORTH, LOWPASS, DIP, Active Filter
WEDC

5962-9153301M2X

Analog Filter
ETC

5962-9153301MRA

IC DUAL SWITCHED CAPACITOR FILTER, RESISTOR PROGRAMMABLE, UNIVERSAL, CDIP20, Active Filter
WEDC

5962-9153301MRX

Analog Filter
ETC

5962-9153401M2A

Analog Buffer/Voltage Follower
ETC

5962-9153401M2X

Buffer Amplifier, 1 Func, BIPolar, 0.358 X 0.358 INCH, 0.100 INCH HEIGHT, LCC-20
WEDC

5962-9153401MPA

Analog Buffer/Voltage Follower
ETC

5962-9153401MPX

IC BUFFER AMPLIFIER, DIP8, 0.405 X 0.310 INCH, 0.200 INCH HEIGHT, DIP-8, Buffer Amplifier
WEDC

5962-9153402M2A

Analog Buffer/Voltage Follower
ETC

5962-9153402MPA

Analog Buffer/Voltage Follower
ETC