5962R2021001V9A [TI]

TPS7H4002-SP Radiation-Hardness-Assured 3-V to 5.5-V Input, 3-A Synchronous Step Down Converter;
5962R2021001V9A
型号: 5962R2021001V9A
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TPS7H4002-SP Radiation-Hardness-Assured 3-V to 5.5-V Input, 3-A Synchronous Step Down Converter

文件: 总37页 (文件大小:2192K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AMC1350  
SBASAA6A – AUGUST 2021 – REVISED DECEMBER 2021  
AMC1350 Precision, ±5-V Input, Reinforced Isolated Amplifier  
1 Features  
3 Description  
Linear input voltage range: ±5 V  
High input impedance: 1.25 MΩ (typ)  
Fixed gain: 0.4 V/V  
The AMC1350 is a precision, isolated amplifier  
with an output separated from the input circuitry  
by an isolation barrier that is highly resistant to  
magnetic interference. This barrier is certified to  
provide reinforced galvanic isolation of up to 5 kVRMS  
according to VDE V 0884-11 and UL1577, and  
Low DC errors:  
– Offset error ±1.5 mV (max)  
– Offset drift: ±15 μV/°C (max)  
– Gain error: ±0.2% (max)  
supports a working voltage of up to 1.5 kVRMS  
.
– Gain drift: ±35 ppm/°C (max)  
– Nonlinearity ±0.02% (max)  
Operation on high-side and low-side: 3.3 V or 5 V  
High CMTI: 100 kV/μs (min)  
Fail-safe output  
Safety-related certifications:  
– 7070-VPK reinforced isolation per DIN VDE V  
0884-11: 2017-01  
– 5000-VRMS isolation for 1 minute per UL1577  
Fully specified over the extended industrial  
temperature range: –40°C to +125°C  
The isolation barrier separates parts of the system  
that operate on different common-mode voltage levels  
and protects the low-voltage side from potentially  
harmful voltages and damage.  
The high-impedance input of the AMC1350 is  
optimized for connection to high-impedance resistive  
dividers or other voltage signal sources with high  
output resistance. The excellent accuracy and low  
temperature drift supports accurate AC and DC  
voltage sensing in DC/DC converters, frequency  
inverters, AC motor, and servo-drive applications over  
the extended industrial temperature range from –40°C  
to +125°C.  
2 Applications  
Isolated AC voltage sensing in:  
Motor drives  
Device Information(1)  
Frequency inverters  
Protection relays  
Power supplies  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
AMC1350  
SOIC (8)  
5.85 mm × 7.50 mm  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
High-side supply  
(3.3 V or 5 V)  
Low-side supply  
(3.3 V or 5 V)  
VAC  
AMC1350  
VDD1  
INP  
VDD2  
OUTP  
+5.0 V  
0 V  
VCMout  
±2 V  
ADC  
–5.0 V  
INN  
OUTN  
GND2  
GND1  
Typical Application  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
AMC1350  
www.ti.com  
SBASAA6A – AUGUST 2021 – REVISED DECEMBER 2021  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Power Ratings.............................................................5  
6.6 Insulation Specifications............................................. 6  
6.7 Safety-Related Certifications...................................... 7  
6.8 Safety Limiting Values.................................................7  
6.9 Electrical Characteristics.............................................8  
6.10 Switching Characteristics........................................10  
6.11 Timing Diagram.......................................................10  
6.12 Insulation Characteristics Curves............................11  
6.13 Typical Characteristics............................................12  
7 Detailed Description......................................................19  
7.1 Overview...................................................................19  
7.2 Functional Block Diagram.........................................19  
7.3 Feature Description...................................................19  
7.4 Device Functional Modes..........................................21  
8 Application and Implementation..................................22  
8.1 Application Information............................................. 22  
8.2 Typical Application.................................................... 22  
8.3 What To Do and What Not To Do..............................27  
9 Power Supply Recommendations................................27  
10 Layout...........................................................................28  
10.1 Layout Guidelines................................................... 28  
10.2 Layout Example...................................................... 28  
11 Device and Documentation Support..........................29  
11.1 Documentation Support.......................................... 29  
11.2 Receiving Notification of Documentation Updates..29  
11.3 Support Resources................................................. 29  
11.4 Trademarks............................................................. 29  
11.5 Electrostatic Discharge Caution..............................29  
11.6 Glossary..................................................................29  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision * (August 2021) to Revision A (December 2021)  
Page  
Changed document status from Advanced Information to Production Data ......................................................1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: AMC1350  
 
AMC1350  
www.ti.com  
SBASAA6A – AUGUST 2021 – REVISED DECEMBER 2021  
5 Pin Configuration and Functions  
VDD1  
INP  
1
2
3
4
8
7
6
5
VDD2  
OUTP  
OUTN  
GND2  
INN  
GND1  
Not to scale  
Figure 5-1. DWV Package, 8-Pin SOIC, Top View  
Table 5-1. Pin Functions  
PIN  
NAME  
TYPE  
DESCRIPTION  
NO.  
1
2
VDD1  
INP  
High-side power  
Analog input  
High-side power supply(1)  
Noninverting analog input. Either INP or INN must have a DC current path to GND1  
to define the common-mode input voltage.(2)  
Inverting analog input. Either INP or INN must have a DC current path to GND1 to  
define the common-mode input voltage.(2)  
3
INN  
Analog input  
4
5
6
7
8
GND1  
GND2  
OUTN  
OUTP  
VDD2  
High-side ground  
Low-side ground  
Analog output  
High-side analog ground  
Low-side analog ground  
Inverting analog output  
Noninverting analog output  
Low-side power supply(1)  
Analog output  
Low-side power  
(1) See the Power Supply Recommendations section for power-supply decoupling recommendations.  
(2) See the Layout section for details.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: AMC1350  
 
 
 
AMC1350  
www.ti.com  
SBASAA6A – AUGUST 2021 – REVISED DECEMBER 2021  
6 Specifications  
6.1 Absolute Maximum Ratings  
see(1)  
MIN  
–0.3  
MAX  
UNIT  
High-side VDD1 to GND1  
Power-supply voltage  
6.5  
V
Low-side VDD2 to GND2  
–0.3  
6.5  
Analog input voltage  
Analog output voltage  
Input current  
INP, INN  
–15  
15  
VDD2 + 0.5  
10  
V
V
OUTP, OUTN  
GND2 – 0.5  
–10  
Continuous, any pin except power-supply pins  
mA  
Junction, TJ  
Storage, Tstg  
150  
Temperature  
°C  
–65  
150  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions.  
If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per per ANSI/ESDA/JEDEC JS-002(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
POWER SUPPLY  
VDD1  
VDD2  
High-side power-supply  
Low-side power-supply  
VDD1 to GND1  
VDD2 to GND2  
3
3
5
5.5  
5.5  
V
V
3.3  
ANALOG INPUT  
VClipping Input voltage before clipping output  
VFSR  
VIN = VINP – VINN  
VIN = VINP – VINN  
±6.25  
V
V
V
Specified linear full-scale voltage  
–5  
–4  
5
4
VCM  
Operating common-mode input voltage  
ANALOG OUTPUT  
On OUTP or OUTN to GND2  
OUTP to OUTN  
500  
250  
1
CLOAD Capacitive load  
pF  
kΩ  
RLOAD  
TEMPERATURE RANGE  
Operating ambient temperature  
Resistive load  
On OUTP or OUTN to GND2  
10  
–55  
–40  
125  
125  
TA  
°C  
Specified ambient temperature  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: AMC1350  
 
 
 
 
 
 
 
AMC1350  
www.ti.com  
SBASAA6A – AUGUST 2021 – REVISED DECEMBER 2021  
6.4 Thermal Information  
AMC1350  
THERMAL METRIC(1)  
DWV (SOIC)  
8 PINS  
84.6  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top) Junction-to-case (top) thermal resistance  
28.3  
RθJB  
ψJT  
Junction-to-board thermal resistance  
41.1  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
4.9  
ψJB  
39.1  
RθJC(bot) Junction-to-case (bottom) thermal resistance  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Power Ratings  
PARAMETER  
TEST CONDITIONS  
VALUE  
96  
UNIT  
PD  
Maximum power dissipation (both sides) VDD1 = VDD2 = 5.5 V  
mW  
VDD1 = 3.6 V  
Maximum power dissipation (high-side)  
VDD1 = 5.5 V  
29  
PD1  
mW  
mW  
51  
VDD2 = 3.6 V  
Maximum power dissipation (low-side)  
VDD2 = 5.5 V  
26  
PD2  
45  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: AMC1350  
 
 
 
AMC1350  
www.ti.com  
UNIT  
SBASAA6A – AUGUST 2021 – REVISED DECEMBER 2021  
6.6 Insulation Specifications  
over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VALUE  
GENERAL  
CLR  
External clearance(1)  
External creepage(1)  
Shortest pin-to-pin distance through air  
≥ 8.5  
≥ 8.5  
mm  
mm  
CPG  
Shortest pin-to-pin distance across the package surface  
Minimum internal gap (internal clearance) of the double  
insulation  
DTI  
CTI  
Distance through insulation  
≥ 0.021  
mm  
V
Comparative tracking index  
Material group  
DIN EN 60112 (VDE 0303-11); IEC 60112  
According to IEC 60664-1  
≥ 600  
I
Rated mains voltage ≤ 600 VRMS  
Rated mains voltage ≤ 1000 VRMS  
I-IV  
I-III  
Overvoltage category  
per IEC 60664-1  
DIN VDE V 0884-11 (VDE V 0884-11): 2017-01  
Maximum repetitive peak  
isolation voltage  
VIORM  
At AC voltage  
2120  
VPK  
At AC voltage (sine wave)  
1500  
2120  
7070  
8480  
VRMS  
VDC  
Maximum-rated isolation  
working voltage  
VIOWM  
At DC voltage  
VTEST = VIOTM, t = 60 s (qualification test)  
VTEST = 1.2 × VIOTM, t = 1 s (100% production test)  
Maximum transient  
isolation voltage  
VIOTM  
VPK  
VPK  
Maximum surge  
Test method per IEC 60065, 1.2/50-µs waveform,  
VTEST = 1.6 × VIOSM = 12800 VPK (qualification)  
VIOSM  
8000  
≤ 5  
isolation voltage(2)  
Method a, after input/output safety test subgroups 2 and 3,  
Vini = VIOTM, tini = 60 s, Vpd(m) = 1.2 × VIORM, tm = 10 s  
Method a, after environmental tests subgroup 1,  
Vini = VIOTM, tini = 60 s, Vpd(m) = 1.6 × VIORM, tm = 10 s  
≤ 5  
qpd  
Apparent charge(3)  
pC  
Method b1, at routine test (100% production) and  
preconditioning (type test), Vini = VIOTM, tini = 1 s, Vpd(m) = 1.875  
× VIORM, tm = 1 s  
≤ 5  
Barrier capacitance,  
input to output(4)  
CIO  
RIO  
VIO = 0.5 VPP at 1 MHz  
~1.5  
pF  
Ω
VIO = 500 V at TA = 25°C  
> 1012  
> 1011  
> 109  
Insulation resistance,  
input to output(4)  
VIO = 500 V at 100°C ≤ TA ≤ 125°C  
VIO = 500 V at TS = 150°C  
Pollution degree  
Climatic category  
2
55/125/21  
UL1577  
VTEST = VISO = 5000 VRMS or 7071 VDC, t = 60 s (qualification),  
VTEST = 1.2 × VISO = 6000 VRMS, t = 1 s (100% production test)  
VISO  
Withstand isolation voltage  
5000  
VRMS  
(1) Apply creepage and clearance requirements according to the specific equipment isolation standards of an application. Care must be  
taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the  
printed circuit board (PCB) do not reduce this distance. Creepage and clearance on a PCB become equal in certain cases. Techniques  
such as inserting grooves, ribs, or both on a PCB are used to help increase these specifications.  
(2) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.  
(3) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(4) All pins on each side of the barrier are tied together, creating a two-pin device.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: AMC1350  
 
 
 
 
 
AMC1350  
www.ti.com  
SBASAA6A – AUGUST 2021 – REVISED DECEMBER 2021  
6.7 Safety-Related Certifications  
VDE  
UL  
Certified according to DIN VDE V 0884-11 (VDE V 0884-11):  
2017-01,  
DIN EN 60950-1 (VDE 0805 Teil 1): 2014-08, and  
DIN EN 60065 (VDE 0860): 2005-11  
Recognized under 1577 component recognition  
Reinforced insulation  
Single protection  
Certificate number: pending  
File number: E181974  
6.8 Safety Limiting Values  
Safety limiting(1) intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry. A  
failure of the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to  
over-heat the die and damage the isolation barrier potentially leading to secondary system failures.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
RθJA = 84.6°C/W, VDDx = 5.5 V,  
TJ = 150°C, TA = 25°C  
270  
IS  
Safety input, output, or supply current  
mA  
RθJA = 84.6°C/W, VDDx = 3.6 V,  
TJ = 150°C, TA = 25°C  
410  
PS  
TS  
Safety input, output, or total power  
Maximum safety temperature  
RθJA = 84.6°C/W, TJ = 150°C, TA = 25°C  
1480  
150  
mW  
°C  
(1) The maximum safety temperature, TS, has the same value as the maximum junction temperature, TJ, specified for the device. The IS  
and PS parameters represent the safety current and safety power, respectively. Do not exceed the maximum limits of IS and PS. These  
limits vary with the ambient temperature, TA.  
The junction-to-air thermal resistance, RθJA, in the Thermal Information table is that of a device installed on a high-K test board for  
leaded surface-mount packages. Use these equations to calculate the value for each parameter:  
TJ = TA + RθJA × P, where P is the power dissipated in the device.  
TJ(max) = TS = TA + RθJA × PS, where TJ(max) is the maximum junction temperature.  
PS = IS × VDDmax, where VDDmax is the maximum supply voltage for high-side and low-side.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: AMC1350  
 
 
 
AMC1350  
www.ti.com  
SBASAA6A – AUGUST 2021 – REVISED DECEMBER 2021  
6.9 Electrical Characteristics  
minimum and maximum specifications apply from TA = –40°C to +125°C, VDD1 = 3.0 V to 5.5 V, VDD2 = 3.0 V to 5.5 V, INP  
= –5 V to +5 V, and INN = GND1 (unless otherwise noted); typical specifications are at TA = 25°C, VDD1 = 5 V, and VDD2 =  
3.3 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ANALOG INPUT  
TA = 25°C, INN = INP = GND1,  
4.5 V ≤ VDD1 ≤ 5.5 V(1)  
–1.5  
–2.5  
±0.3  
–0.8  
1.5  
mV  
2.5  
VOS  
Offset voltage(2)  
TA = 25°C, INN = INP = GND1,  
3.0 V ≤ VDD1 ≤ 5.5 V(3)  
ΔVOS  
Offset voltage long-term stability  
Offset voltage thermal drift(5)  
10 years at TA = 55  
0(7)  
±3  
mV  
TCVOS  
INN = INP = GND1  
–15  
15 µV/°C  
Offset voltage thermal drift  
long-term stability  
10 years at TA = 55,  
ΔTCVOS  
RIN  
0(7)  
mV/°C  
INN = INP = GND1  
Input resistance, differential  
Input resistance, single ended  
2
1
2.5  
1.25  
0(7)  
5
3
MΩ  
1.5  
INN = GND1  
ΔRIN  
TCRIN  
CIN  
Input resistance long-term stability 10 years at TA = 55℃  
ppm  
ppm/°C  
pF  
Input resistance thermal drift  
Single-ended input capacitance  
Differential input capacitance  
–40≤ TA ≤ 85℃  
INN = HGND, fIN = 275 kHz  
fIN = 275 kHz  
4
CIND  
2
pF  
ANALOG OUTPUT  
Nominal gain  
0.40  
±0.05%  
0(7)  
V/V  
EG  
Gain error(1)  
TA = 25℃  
–0.2%  
–35  
0.2%  
ΔEG  
TCEG  
Gain error long-term stability  
Gain error thermal drift(1) (6)  
10 years at TA = 55℃  
±10  
35 ppm/°C  
ppm/°C  
Gain error thermal drift  
long-term stability  
ΔTCEG  
10 years at TA = 55℃  
0(7)  
Nonlineartity(1)  
–0.02%  
±0.003%  
0.2  
0.02%  
Nonlinearity thermal drift  
ppm/°C  
VIN = 10 VPP, fIN = 10 kHz,  
BW = 100 kHz  
THD  
SNR  
Total harmonic distortion(4)  
Signal-to-noise ratio  
–87  
85  
dB  
VIN = 10 VPP, fIN = 1 kHz,  
BW = 10 kHz  
81  
dB  
VIN = 10 VPP, fIN = 10 kHz,  
BW = 100 kHz  
75  
Output noise  
INN = INP = GND1, BW = 100 kHz  
DC, INN = INP, VCM min ≤ VCM ≤ VCM max  
fIN = 10 kHz, INN = INP = 10 VPP  
PSRR vs VDD1, DC  
250  
–72  
–71  
–67  
–80  
µVrms  
dB  
CMRR  
PSRR  
Common-mode rejection ratio  
PSRR vs VDD2, DC  
Power-supply rejection ratio(2)  
dB  
PSRR vs VDD1 with 10-kHz,  
100-mV ripple  
–65  
PSRR vs VDD2 with 10-kHz,  
100-mV ripple  
–64  
1.44  
2.49  
VCMout  
Output common-mode voltage  
1.39  
275  
1.49  
–2.5  
V
V
VOUT = (VOUTP – VOUTN),  
VIN > VClipping  
VCLIPout  
Clipping differential output voltage  
VFail-safe  
BW  
Fail-safe differential output voltage VDD1 undervoltage or VDD1 missing  
Output bandwidth  
–2.57  
300  
V
kHz  
Ω
ROUT  
Output resistance  
On OUTP or OUTN  
< 0.2  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: AMC1350  
 
AMC1350  
www.ti.com  
SBASAA6A – AUGUST 2021 – REVISED DECEMBER 2021  
6.9 Electrical Characteristics (continued)  
minimum and maximum specifications apply from TA = –40°C to +125°C, VDD1 = 3.0 V to 5.5 V, VDD2 = 3.0 V to 5.5 V, INP  
= –5 V to +5 V, and INN = GND1 (unless otherwise noted); typical specifications are at TA = 25°C, VDD1 = 5 V, and VDD2 =  
3.3 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
On OUTP or OUTN, sourcing or sinking,  
INN = INP = GND1, outputs shorted to  
either GND or VDD2  
Output short-circuit current  
Common-mode transient immunity  
14  
mA  
CMTI  
POWER SUPPLY  
100  
150  
kV/µs  
VDD1 rising  
2.5  
2.4  
2.7  
2.6  
2.45  
2.0  
6.0  
7.0  
5.3  
5.9  
2.9  
V
VDD1 undervoltage detection  
threshold  
VDD1UV  
VDD2UV  
IDD1  
VDD1 falling  
2.8  
VDD2 rising  
2.2  
2.65  
V
2.2  
VDD2 undervoltage detection  
threshold  
VDD2 falling  
1.85  
3.0 V < VDD1 < 3.6 V  
4.5 V < VDD1 < 5.5 V  
3.0 V < VDD2 < 3.6 V  
4.5 V < VDD2 < 5.5 V  
8.1  
mA  
9.3  
High-side supply current  
Low-side supply current  
7.2  
mA  
8.1  
IDD2  
(1) The typical value includes one standard deviation (sigma) at nominal operating conditions.  
(2) This parameter is input referred.  
(3) The typical value is at VDD1 = 3.3 V.  
(4) THD is the ratio of the rms sum of the amplitues of first five higher harmonics to the amplitude of the fundamental.  
(5) Offset error temperature drift is calculated using the box method, as described by the following equation:  
TCVOS = (VOS,MAX - VOS,MIN) / TempRange where VOS,MAX and VOS,MIN refer to the maximum and minimum VOS values measured  
within the temperature range (–40 to 125).  
(6) Gain error temperature drift is calculated using the box method, as described by the following equation:  
TCEG (ppm) = ((EG,MAX - EG,MIN) / TempRange) x 104 where EG,MAX and EG,MIN refer to the maximum and minimum EG values (in %)  
measured within the temperature range (–40 to 125).  
(7) Value is below measurement capability.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: AMC1350  
 
 
 
 
 
 
 
AMC1350  
www.ti.com  
SBASAA6A – AUGUST 2021 – REVISED DECEMBER 2021  
6.10 Switching Characteristics  
over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
1.3  
1.3  
1
MAX  
UNIT  
µs  
tr  
tf  
Output signal rise time  
Output signal fall time  
µs  
IN to OUTx signal delay (50% – 10%)  
IN to OUTx signal delay (50% – 50%)  
IN to OUTx signal delay (50% – 90%)  
Unfiltered output  
Unfiltered output  
Unfiltered output  
1.5  
2.1  
3
µs  
1.6  
2.5  
µs  
µs  
VDD1 step to 3.0 V with VDD2 ≥ 3.0 V, to  
VOUTP and VOUTN valid, 0.1% settling  
tAS  
Analog settling time  
500  
800  
µs  
6.11 Timing Diagram  
5 V  
0
INP - INN  
– 5 V  
tf  
tr  
OUTN  
OUTP  
VCMout  
50% - 10%  
50% - 50%  
50% - 90%  
Figure 6-1. Rise, Fall, and Delay Time Definition  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: AMC1350  
 
 
AMC1350  
www.ti.com  
SBASAA6A – AUGUST 2021 – REVISED DECEMBER 2021  
6.12 Insulation Characteristics Curves  
600  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
VDD1 = VDD2 = 3.6 V  
VDD1 = VDD2 = 5.5 V  
500  
400  
300  
200  
100  
0
0
25  
50  
75  
TA (°C)  
100  
125  
150  
0
25  
50  
75  
TA (°C)  
100  
125  
150  
D070  
D069  
Figure 6-3. Thermal Derating Curve for Safety-Limiting Power  
per VDE  
Figure 6-2. Thermal Derating Curve for Safety-Limiting Current  
per VDE  
TA up to 150°C, stress-voltage frequency = 60 Hz, isolation working voltage = 1500 VRMS, operating lifetime = 135 years  
Figure 6-4. Reinforced Isolation Capacitor Lifetime Projection  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: AMC1350  
 
AMC1350  
www.ti.com  
SBASAA6A – AUGUST 2021 – REVISED DECEMBER 2021  
6.13 Typical Characteristics  
at VDD1 = 5 V, VDD2 = 3.3 V, INN = GND1, INP = –5 V to 5 V, and fIN = 10 kHz (unless otherwise noted)  
3
2.5  
2
0.1  
0.08  
0.06  
0.04  
0.02  
0
TA = -40 C  
TA = 25 C  
TA = 125 C  
VOUTP  
VOUTN  
1.5  
1
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
0.5  
0
-8  
-6  
-4  
-2  
0
2
4
6
8
-7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
7
(VINP - VINN) (V)  
D074  
(VINP - VINN) (V)  
D006  
Total uncalibrated output error is defined as:  
(VOUT – VIN × G) / (VClipping × G) where VIN = (VINP – VINN),  
G is the nominal gain of the device (0.4 V/V),  
and VClipping is 6.25 V  
Figure 6-6. Total Uncalibrated Output Error vs Input Voltage  
Figure 6-5. Output Voltage vs Input Voltage  
Device 1  
2.5  
2
2.5  
Device 1  
Device 2  
2
Device 2  
Device 3  
Device 3  
1.5  
1
1.5  
1
0.5  
0
0.5  
0
-0.5  
-1  
-0.5  
-1  
-1.5  
-2  
-1.5  
-2  
-2.5  
-2.5  
3
3.5  
4
4.5  
VDD1 (V)  
5
5.5  
3
3.5  
4
4.5  
VDD2 (V)  
5
5.5  
D027  
D027b  
Figure 6-7. Input Offset Voltage vs High-Side Supply Voltage  
Figure 6-8. Input Offset Voltage vs Low-Side Supply Voltage  
2.5  
2.5  
Device 1  
Device 2  
2
Device 3  
2.48  
2.46  
2.44  
2.42  
2.4  
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
-2  
-2.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Temperature (°C)  
D072  
D026  
Figure 6-10. Differential Input Impedance vs Temperature  
Figure 6-9. Input Offset Voltage vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: AMC1350  
 
AMC1350  
www.ti.com  
SBASAA6A – AUGUST 2021 – REVISED DECEMBER 2021  
6.13 Typical Characteristics (continued)  
at VDD1 = 5 V, VDD2 = 3.3 V, INN = GND1, INP = –5 V to 5 V, and fIN = 10 kHz (unless otherwise noted)  
1.25  
1.24  
1.23  
1.22  
1.21  
1.2  
0.3  
0.2  
0.1  
0
Device 1  
Device 2  
Device 3  
-0.1  
-0.2  
-0.3  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
3
3.5  
4
4.5  
VDD1 (V)  
5
5.5  
Temperature (°C)  
D073  
D020  
Figure 6-11. Single-Ended Input Impedance vs Temperature  
Figure 6-12. Gain Error vs High-Side Supply Voltage  
0.3  
0.3  
Device 1  
Device 2  
Device 3  
Device 1  
Device 2  
Device 3  
0.2  
0.1  
0
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.1  
-0.2  
-0.3  
3
3.5  
4
4.5  
VDD2 (V)  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D020b  
D021  
Figure 6-13. Gain Error vs Low-Side Supply Voltage  
Figure 6-14. Gain Error vs Temperature  
0.02  
0.015  
0.01  
0.02  
Device 1  
Device 2  
Device 3  
0.015  
0.01  
0.005  
0
0.005  
0
-0.005  
-0.01  
-0.015  
-0.02  
-0.005  
-0.01  
-0.015  
-0.02  
3
3.5  
4
4.5  
VDD1 (V)  
5
5.5  
-5  
-4  
-3  
-2  
-1  
0
1
2
3
4
5
(VINP - VINN) (V)  
D029  
D028  
Figure 6-16. Nonlinearity vs High-Side Supply Voltage  
Figure 6-15. Nonlinearity vs Input Voltage  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: AMC1350  
AMC1350  
www.ti.com  
SBASAA6A – AUGUST 2021 – REVISED DECEMBER 2021  
6.13 Typical Characteristics (continued)  
at VDD1 = 5 V, VDD2 = 3.3 V, INN = GND1, INP = –5 V to 5 V, and fIN = 10 kHz (unless otherwise noted)  
0.02  
Device 1  
Device 2  
Device 3  
0.015  
0.01  
0.005  
0
-0.005  
-0.01  
-0.015  
-0.02  
3
3.5  
4
4.5  
VDD2 (V)  
5
5.5  
D029b  
Figure 6-17. Nonlinearity vs Low-Side Supply Voltage  
Figure 6-18. Nonlinearity vs Temperature  
Device 1  
-70  
-70  
-75  
Device 1  
Device 2  
Device 3  
Device 2  
Device 3  
-75  
-80  
-80  
-85  
-85  
-90  
-90  
-95  
-95  
-100  
-100  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
3
3.5  
4
4.5  
VDD1 (V)  
5
5.5  
|VINP - VINN| (V)  
D049  
D056  
Figure 6-19. Total Harmonic Distortion vs Input Voltage  
Figure 6-20. Total Harmonic Distortion vs High-Side Supply  
Voltage  
-70  
Device 1  
Device 2  
Device 3  
-75  
-80  
-85  
-90  
-95  
-100  
3
3.5  
4
4.5  
VDD2 (V)  
5
5.5  
D056b  
Figure 6-21. Total Harmonic Distortion vs Low-Side Supply  
Voltage  
Figure 6-22. Total Harmonic Distortion vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: AMC1350  
AMC1350  
www.ti.com  
SBASAA6A – AUGUST 2021 – REVISED DECEMBER 2021  
6.13 Typical Characteristics (continued)  
at VDD1 = 5 V, VDD2 = 3.3 V, INN = GND1, INP = –5 V to 5 V, and fIN = 10 kHz (unless otherwise noted)  
80  
Device 1  
Device 2  
Device 3  
75  
70  
65  
60  
55  
50  
45  
40  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
|VINP - VINN| (V)  
D032  
Figure 6-23. Signal-to-Noise Ratio vs Input Voltage  
80  
Figure 6-24. Signal-to-Noise Ratio vs High-Side Supply Voltage  
80  
Device 1  
Device 2  
Device 3  
Device 1  
Device 2  
Device 3  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
3
3.5  
4
4.5  
VDD2 (V)  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D034b  
D035  
Figure 6-25. Signal-to-Noise Ratio vs Low-Side Supply Voltage  
Figure 6-26. Signal-to-Noise Ratio vs Temperature  
1000  
-66  
-68  
-70  
-72  
-74  
-76  
Device 1  
Device 2  
Device 3  
100  
10  
1
0.1  
0.1  
1
10  
100  
1000  
3
3.5  
4
4.5  
VDD1 (V)  
5
5.5  
Frequency (kHz)  
D017  
D037  
Figure 6-27. Input-Referred Noise Density vs Frequency  
Figure 6-28. Common-Mode Rejection Ratio vs Supply Voltage  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: AMC1350  
AMC1350  
www.ti.com  
SBASAA6A – AUGUST 2021 – REVISED DECEMBER 2021  
6.13 Typical Characteristics (continued)  
at VDD1 = 5 V, VDD2 = 3.3 V, INN = GND1, INP = –5 V to 5 V, and fIN = 10 kHz (unless otherwise noted)  
0
-66  
-68  
-70  
-72  
-74  
-76  
Device 1  
Device 2  
Device 3  
Device 1  
Device 2  
Device 3  
-20  
-40  
-60  
-80  
-100  
0.01  
0.1  
1
10  
100  
1000  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
fIN (kHz)  
D038  
Temperature (°C)  
D039  
fIN = 10 kHz  
Figure 6-29. Common-Mode Rejection Ratio vs Input Frequency  
Figure 6-30. Common-Mode Rejection Ratio vs Temperature  
0
0
VDD1  
VDD2  
-20  
-40  
-60  
-80  
-20  
-40  
-60  
-80  
VDD1  
VDD2  
-100  
0.01  
-100  
0.1  
1
10  
100  
1000  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ripple Frequency (kHz)  
Temperature (°C)  
D041  
D042  
fRipple = 10 kHz  
Figure 6-31. Power-Supply Rejection Ratio vs Ripple Frequency  
Figure 6-32. Power-Supply Rejection Ratio vs Temperature  
1.49  
1.48  
1.47  
1.46  
1.45  
1.44  
1.43  
1.42  
1.41  
1.4  
1.49  
1.48  
1.47  
1.46  
1.45  
1.44  
1.43  
1.42  
1.41  
1.4  
1.39  
1.39  
3
3.5  
4
4.5  
VDD2 (V)  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D009  
D010  
Figure 6-33. Common-Mode Output Voltage vs Supply Voltage  
Figure 6-34. Common-Mode Output Voltage vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: AMC1350  
AMC1350  
www.ti.com  
SBASAA6A – AUGUST 2021 – REVISED DECEMBER 2021  
6.13 Typical Characteristics (continued)  
at VDD1 = 5 V, VDD2 = 3.3 V, INN = GND1, INP = –5 V to 5 V, and fIN = 10 kHz (unless otherwise noted)  
5
0
0°  
-45°  
-5  
-90°  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-135°  
-180°  
-225°  
-270°  
-315°  
-360°  
1
10  
100  
1000  
1
10  
100  
1000  
fIN (kHz)  
D008  
fIN (kHz)  
D007  
Figure 6-36. Output Phase vs Input Frequency  
Figure 6-35. Normalized Gain vs Input Frequency  
320  
310  
300  
290  
280  
320  
310  
300  
290  
280  
Device 1  
Device 2  
Device 3  
Device 1  
Device 2  
Device 3  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
3
3.5  
4
4.5  
VDD1 (V)  
5
5.5  
Temperature (°C)  
D011  
D012  
Figure 6-37. Bandwidth vs Supply Voltage  
Figure 6-38. Bandwidth vs Temperature  
8
7.5  
7
8
7.5  
7
6.5  
6
6.5  
6
5.5  
5
5.5  
5
4.5  
4
4.5  
4
IDD1 vs VDD1  
IDD2 vs VDD2  
IDD1  
IDD2  
3
3.5  
4
4.5  
VDDx (V)  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D043  
D044  
Figure 6-39. Supply Current vs Supply Voltage  
Figure 6-40. Supply Current vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: AMC1350  
AMC1350  
www.ti.com  
SBASAA6A – AUGUST 2021 – REVISED DECEMBER 2021  
6.13 Typical Characteristics (continued)  
at VDD1 = 5 V, VDD2 = 3.3 V, INN = GND1, INP = –5 V to 5 V, and fIN = 10 kHz (unless otherwise noted)  
3
2.5  
2
3
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
3
3.5  
4
4.5  
VDD2 (V)  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D065  
D066  
Figure 6-41. Output Rise and Fall Time vs Supply Voltage  
Figure 6-42. Output Rise and Fall Time vs Temperature  
3.8  
3.8  
50% - 90%  
50% - 50%  
50% - 10%  
50% - 90%  
50% - 50%  
50% - 10%  
3.4  
3
3.4  
3
2.6  
2.2  
1.8  
1.4  
1
2.6  
2.2  
1.8  
1.4  
1
0.6  
0.2  
0.6  
0.2  
3
3.5  
4
4.5  
VDD2 (V)  
5
5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D067  
D068  
Figure 6-43. Input to Output Signal Delay vs Supply Voltage  
Figure 6-44. Input to Output Signal Delay vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: AMC1350  
AMC1350  
www.ti.com  
SBASAA6A – AUGUST 2021 – REVISED DECEMBER 2021  
7 Detailed Description  
7.1 Overview  
The AMC1350 is a fully differential, precision, isolated amplifier with high input impedance. The input stage  
of the device consists of a fully differential amplifier that drives a second-order, delta-sigma (ΔΣ) modulator.  
The modulator converts the analog input signal into a digital bitstream that is transferred across the isolation  
barrier that separates the high-side from the low-side. On the low-side, the received bitstream is processed by a  
fourth-order analog filter that outputs a differential signal at the OUTP and OUTN pins proportional to the input  
signal.  
The SiO2-based, capacitive isolation barrier supports a high level of magnetic field immunity, as described in the  
ISO72x Digital Isolator Magnetic-Field Immunity application report. The digital modulation used in the AMC1350  
to transmit data across the isolation barrier, and the isolation barrier characteristics itself, result in high reliability  
and common-mode transient immunity.  
7.2 Functional Block Diagram  
VDD1  
INP  
VDD2  
OUTP  
OUTN  
GND2  
Diagnostics  
Modulator  
Analog Filter  
INN  
AMC1350  
GND1  
7.3 Feature Description  
7.3.1 Analog Input  
The single-ended, high-impedance input stage of the AMC1350 feeds a second-order, switched-capacitor, feed-  
forward ΔΣ modulator. The modulator converts the analog signal into a bitstream that is transferred across the  
isolation barrier, as described in the Isolation Channel Signal Transmission section.  
There are two restrictions on the analog input signals INP and INN. First, if the input voltages VINP or VINN  
exceed the range specified in the Absolute Maximum Ratings table, the input currents must be limited to the  
absolute maximum value because the electrostatic discharge (ESD) protection turns on. In addition, the linearity  
and parametric performance of the device are ensured only when the analog input voltage remains within  
the linear full-scale range (VFSR) and within the common-mode input voltage range (VCM) as specified in the  
Recommended Operating Conditions table.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: AMC1350  
 
 
 
 
AMC1350  
www.ti.com  
SBASAA6A – AUGUST 2021 – REVISED DECEMBER 2021  
7.3.2 Isolation Channel Signal Transmission  
The AMC1350 uses an on-off keying (OOK) modulation scheme, as shown in Figure 7-1, to transmit the  
modulator output bitstream across the SiO2-based isolation barrier. The transmit driver (TX) shown in the  
Functional Block Diagram transmits an internally-generated, high-frequency carrier across the isolation barrier  
to represent a digital one and does not send a signal to represent a digital zero. The nominal frequency of the  
carrier used inside the AMC1350 is 480 MHz.  
The receiver (RX) on the other side of the isolation barrier recovers and demodulates the signal and provides  
the input to the fourth-order analog filter. The AMC1350 transmission channel is optimized to achieve the  
highest level of common-mode transient immunity (CMTI) and lowest level of radiated emissions caused by the  
high-frequency carrier and RX/TX buffer switching.  
Internal Clock  
Modulator Bitstream  
on High-side  
Signal Across Isolation Barrier  
Recovered Sigal  
on Low-side  
Figure 7-1. OOK-Based Modulation Scheme  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: AMC1350  
 
 
AMC1350  
www.ti.com  
SBASAA6A – AUGUST 2021 – REVISED DECEMBER 2021  
7.3.3 Analog Output  
The AMC1350 offers a differential analog output on the OUTP and OUTN pins. For differential input voltages  
(VINP – VINN) in the range from –5 V to +5 V, the device provides a linear response with a nominal gain of 0.4  
V/V. For example, for a differential input voltage of 5 V, the differential output voltage (VOUTP – VOUTN) is 2 V. At  
zero input (INP shorted to INN), both pins output the same common-mode output voltage VCMout, as specified in  
the Electrical Characteristics table. For absolute differential input voltages greater than 5 V but less than 5.75 V,  
the differential output voltage continues to increase in magnitude but with reduced linearity performance. The  
outputs saturate at a differential output voltage of VCLIPout, as shown in Figure 7-2, if the differential input voltage  
exceeds the VClipping value.  
Maximum input range before clipping (VClipping  
)
Linear input range (VFSR  
)
VOUTN  
VCLIPout  
VOUTP  
VFail-safe  
VCMout  
6.25 V  
6.25 V  
0
5 V  
5 V  
Differential Input Voltage (VINP – VINN  
)
Figure 7-2. Output Behavior of the AMC1350  
The AMC1350 output offers a fail-safe feature that simplifies diagnostics on a system level. Figure 7-2 shows the  
fail-safe condition, in which the AMC1350 outputs a negative differential output voltage that does not occur under  
normal operating conditions. The fail-safe output is active in two cases:  
When the high-side supply VDD1 of the AMC1350 device is missing  
When the high-side supply VDD1 falls below the undervoltage threshold VDD1UV  
Use the maximum VFail-safe voltage specified in the Electrical Characteristics table as a reference value for  
fail-safe detection on a system level.  
7.4 Device Functional Modes  
The AMC1350 is operational when the power supplies VDD1 and VDD2 are applied as specified in the  
Recommended Operating Conditions table.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: AMC1350  
 
 
AMC1350  
www.ti.com  
SBASAA6A – AUGUST 2021 – REVISED DECEMBER 2021  
8 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
The high input impedance, low input bias current, bipolar input voltage range, excellent accuracy, and low  
temperature drift make the AMC1350 a high-performance solution for industrial applications where isolated AC  
or DC voltage sensing is required.  
8.2 Typical Application  
Isolated amplifiers are widely used for voltage measurements in high-voltage applications that must be isolated  
from a low-voltage domain. Typical applications are AC line voltage measurements, either line-to-neutral or  
line-to-line in grid-connected equipment.  
Figure 8-1 illustrates a simplified schematic of a solar inverter application that uses three AMC1350 devices  
to measure the AC line voltage on each phase of a three-phase system. The AC line voltage is divided down  
to an approximate ±5-V level across the bottom resistor (RSNS) of a high-impedance resistive divider that is  
sensed by the AMC1350. The output of the AMC1350 is a differential analog output voltage proportional to the  
input voltage but is galvanically isolated from the high-side by a reinforced isolation barrier. A common high-side  
power supply (VDD1) for all three AMC1350 devices is generated from the low-side supply (VDD2) of the system  
by an isolated DC/DC converter circuit. A low-cost solution is based on the push-pull driver SN6501 and a  
transformer that supports the desired isolation voltage ratings.  
The high-impedance input, high input voltage range, and the high common-mode transient immunity (CMTI) of  
the AMC1350 ensure reliable and accurate operation even in high-noise environments.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: AMC1350  
 
 
 
AMC1350  
www.ti.com  
SBASAA6A – AUGUST 2021 – REVISED DECEMBER 2021  
Solar Panel Array  
DC-Link  
+ DC-Bus  
DC/DC  
EMI  
AC  
Contactor  
Filter  
SW  
L1  
L2  
L3  
SW  
SW  
R1  
R2  
Number of unit resistors  
depends on  
design requirements.  
RSNS  
SW  
N
DC  
DC-Bus  
N
Low-side supply  
(3.3 V or 5 V)  
100 nF 1 uF  
AMC1350  
VDD1  
VDD2  
OUTP  
OUTN  
GND2  
INP  
ADC  
ADC  
ADC  
INN  
GND1  
1 μF 100 nF  
1 μF 100 nF  
1 μF 100 nF  
100 nF 1 uF  
AMC1350  
VDD1  
VDD2  
OUTP  
OUTN  
GND2  
INP  
INN  
GND1  
100 nF 1 uF  
AMC1350  
VDD1  
VDD2  
OUTP  
OUTN  
GND2  
INP  
INN  
GND1  
TPS76350  
SN6501  
NC  
EN  
GND  
IN  
D1  
GND  
VCC  
D2  
VOUT = 5 V  
OUT  
GND  
10 μF 100 nF  
10 μF  
100 nF 4.7 μF  
Figure 8-1. Using the AMC1350 for AC Line-Voltage Sensing in a Solar Inverter Application  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: AMC1350  
 
AMC1350  
www.ti.com  
SBASAA6A – AUGUST 2021 – REVISED DECEMBER 2021  
8.2.1 Design Requirements  
Table 8-1 lists the parameters for this typical application.  
Table 8-1. Design Requirements  
PARAMETER  
120-VRMS LINE VOLTAGE  
120 V ±10%, 60 Hz  
3.3 V or 5 V  
230-VRMS LINE VOLTAGE  
System input voltage  
230 V ±10%, 50 Hz  
3.3 V or 5 V  
3.3 V or 5 V  
75 V  
High-side supply voltage  
Low-side supply voltage  
3.3 V or 5 V  
Maximum resistor operating voltage  
75 V  
Voltage drop across the sense resistor (RSNS) for a linear response  
Current through the resistive divider, ICROSS  
±5 V (maximum)  
100 μA  
±5 V (maximum)  
100 μA  
8.2.2 Detailed Design Procedure  
This discussion covers the 230-VRMS example. The procedure for calculating the resistive divider for the 120-  
VRMS use case is identical.  
The 100-μA, cross-current requirement at peak input voltage (360 V) determines that the total impedance of  
the resistive divider is 3.6 MΩ. The impedance of the resistive divider is dominated by the top resistors (shown  
exemplary as R1 and R2 in Figure 8-1) and the voltage drop across RSNS can be neglected for a short time.  
The maximum allowed voltage drop per unit resistor is specified as 75 V; therefore, the total minimum number of  
unit resistors in the top portion of the resistive divider is 360 V / 75 V = 5. The calculated unit value is 3.6 MΩ / 5  
= 720 kΩ and the next closest value from the E96 series is 715 kΩ.  
The effective sense resistor value RSNSEFF is the parallel combination of the external resistor RSNS and the  
input impedance of the AMC1350, RIN. RSNSEFF is sized such that the voltage drop across the impedance at  
maximum input voltage (360 V) equals the linear full-scale input voltage (VFSR) of the AMC1350 (that is, +5 V).  
RSNSEFF is calculated as RSNSEFF = VFSR / (VPeak – VFSR) × RTOP where RTOP is the total value of the top  
resistor string (5 × 715 kΩ = 3575 kΩ). The resulting value for RSNSEFF is 9.96 kΩ. In a final step, RSNS is  
calculated as RSNS = RIN × RSNSEFF / (RIN – RSNSEFF). With RIN = 1.25 MΩ (typical), RSNS equals 52.47 kΩ  
and the next closest value from the E96 series is 52.3 kΩ.  
Table 8-2 summarizes the design of the resistive divider.  
Table 8-2. Resistor Value Examples  
PARAMETER  
120-VRMS LINE VOLTAGE  
230-VRMS LINE VOLTAGE  
Peak voltage  
190 V  
634 kΩ  
3
360 V  
715 kΩ  
5
Unit resistor value, RTOP  
Number of unit resistors in RTOP  
Sense resistor value, RSNS  
53.6 kΩ  
1953.4 kΩ  
97.3 μA  
4.993 V  
6 mW  
52.3 kΩ  
3625.2 kΩ  
99.3 μA  
4.982 V  
7.1 mW  
35.7 mW  
Total resistance value (RTOP + RSNS)  
Resulting current through resistive divider, ICROSS  
Resulting full-scale voltage drop across sense resistor RSNS  
Peak power dissipated in RTOP unit resistor  
Total peak power dissipated in resistive divider  
18.5 mW  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: AMC1350  
 
 
AMC1350  
www.ti.com  
SBASAA6A – AUGUST 2021 – REVISED DECEMBER 2021  
8.2.2.1 Input Filter Design  
Placing an RC filter in front of the isolated amplifier improves signal-to-noise performance of the signal path. In  
practice, however, the impedance of the resistor divider is so high that adding a filter capacitor on the INN or INP  
pin limits the signal bandwidth to an unacceptable low limit, such that the filter capacitor is omitted. When used,  
design the input filter such that:  
The cutoff frequency of the filter is at least one order of magnitude lower than the sampling frequency  
(20 MHz) of the internal ΔΣ modulator  
The input bias current does not generate significant voltage drop across the DC impedance of the input filter  
Most voltage-sensing applications use high-impedance resistor dividers in front of the isolated amplifier to scale  
down the input voltage. In that case, no additional resistor is needed and a single capacitor (as shown in Figure  
8-2) is sufficient to filter the input signal.  
AMC1350  
VDD1  
VDD2  
OUTP  
OUTN  
GND2  
1 nF  
INP  
INN  
GND1  
Figure 8-2. Input Filter  
8.2.2.2 Differential to Single-Ended Output Conversion  
Figure 8-3 shows an example of a TLV6001-based signal conversion and filter circuit for systems using single-  
ended input ADCs to convert the analog output voltage into digital. With R1 = R2 = R3 = R4, the output voltage  
equals (VOUTP – VOUTN) + VREF. Tailor the bandwidth of this filter stage to the bandwidth requirement of the  
system and use NP0-type capacitors for best performance. For most applications, R1 = R2 = R3 = R4 = 3.3 kΩ  
and C1 = C2 = 330 pF yields good performance.  
C1  
AMC1350  
R2  
VDD1  
VDD2  
OUTP  
OUTN  
GND2  
R1  
R3  
INP  
+
ADC  
To MCU  
INN  
TLV6001  
GND1  
C2  
R4  
VREF  
Figure 8-3. Connecting the AMC1350 Output to a Single-Ended Input ADC  
For more information on the general procedure to design the filtering and driving stages of SAR ADCs, see  
the 18-Bit, 1MSPS Data Acquisition Block (DAQ) Optimized for Lowest Distortion and Noise and 18-Bit Data  
Acquisition Block (DAQ) Optimized for Lowest Power reference guides, available for download at www.ti.com.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: AMC1350  
 
 
AMC1350  
www.ti.com  
SBASAA6A – AUGUST 2021 – REVISED DECEMBER 2021  
8.2.3 Application Curve  
One important aspect of system design is the effective detection of an overvoltage condition to protect switching  
devices and passive components from damage. To power off the system quickly in the event of an overvoltage  
condition, a low delay caused by the isolated amplifier is required. Figure 8-4 shows the typical full-scale step  
response of the AMC1350.  
VOUTP  
VOUTN  
VIN  
Figure 8-4. Step Response of the AMC1350  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: AMC1350  
 
AMC1350  
www.ti.com  
SBASAA6A – AUGUST 2021 – REVISED DECEMBER 2021  
8.3 What To Do and What Not To Do  
Do not leave the inputs of the AMC1350 unconnected (floating) when the device is powered up. If the device  
inputs are left floating, the input bias current may drive the inputs to a positive or negative value that exceeds the  
operating common-mode input voltage and the device output is undetermined.  
Connect the high-side ground (GND1) to INN, either by a hard short or through a resistive path. A DC current  
path between INN and GND1 is required to define the input common-mode voltage. Take care not to exceed  
the input common-mode range as specified in the Recommended Operating Conditions table. For best accuracy,  
route the ground connection as a separate trace that connects directly to the sense resistor rather than shorting  
GND1 to INN directly at the input to the device. See the Layout section for more details.  
Do not connect protection diodes to the inputs (INP or INN) of the AMC1350. Diode leakage current can  
introduce significant measurement error especially at high temperatures. The input pin is protected against high  
voltages by its ESD protection circuit and the high impedance of the external restive divider.  
9 Power Supply Recommendations  
In a typical application, the high-side power supply (VDD1) for the AMC1350 is generated from the low-side  
supply (VDD2) by an isolated DC/DC converter. A low-cost solution is based on the push-pull driver SN6501 and  
a transformer that supports the desired isolation voltage ratings.  
The AMC1350 does not require any specific power-up sequencing. The high-side power supply (VDD1) is  
decoupled with a low-ESR, 100-nF capacitor (C1) parallel to a low-ESR, 1-μF capacitor (C2). The low-side  
power supply (VDD2) is equally decoupled with a low-ESR, 100-nF capacitor (C3) parallel to a low-ESR, 1-μF  
capacitor (C4). Place all four capacitors (C1, C2, C3, and C4) as close to the device as possible. Figure 9-1  
shows a decoupling diagram for the AMC1350.  
VAC  
R1  
VDD1  
VDD2  
C2 1 µF  
C4 1 µF  
AMC1350  
R2  
C1 100 nF  
C3 100 nF  
VDD1  
VDD2  
OUTP  
OUTN  
GND2  
INP  
to RC filter / ADC  
to RC filter / ADC  
RSNS  
INN  
GND1  
Figure 9-1. Decoupling of the AMC1350  
Capacitors must provide adequate effective capacitance under the applicable DC bias conditions they  
experience in the application. Multilayer ceramic capacitors (MLCC) typically exhibit only a fraction of their  
nominal capacitance under real-world conditions and this factor must be taken into consideration when selecting  
these capacitors. This problem is especially acute in low-profile capacitors, in which the dielectric field strength is  
higher than in taller components. Reputable capacitor manufacturers provide capacitance versus DC bias curves  
that greatly simplify component selection.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: AMC1350  
 
 
 
AMC1350  
www.ti.com  
SBASAA6A – AUGUST 2021 – REVISED DECEMBER 2021  
10 Layout  
10.1 Layout Guidelines  
Figure 10-1 shows a layout recommendation with the critical placement of the decoupling capacitors (as close as  
possible to the AMC1350 supply pins) and placement of the other components required by the device. For best  
performance, place the sense resistor close to the device input pin (IN).  
10.2 Layout Example  
Clearance area, to be  
kept free of any  
conductive materials.  
C2  
C1  
C4  
C3  
to RC filter / ADC  
to RC filter / ADC  
INP  
INN  
OUTP  
OUTN  
GND2  
AMC1350  
Top Metal  
Inner or Bottom Layer Metal  
Via  
Figure 10-1. Recommended Layout of the AMC1350  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: AMC1350  
 
 
 
 
AMC1350  
www.ti.com  
SBASAA6A – AUGUST 2021 – REVISED DECEMBER 2021  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, Isolation Glossary application report  
Texas Instruments, Semiconductor and IC Package Thermal Metrics application report  
Texas Instruments, ISO72x Digital Isolator Magnetic-Field Immunity application report  
Texas Instruments, TLV600x Low-Power, Rail-to-Rail In/Out, 1-MHz Operational Amplifier for Cost-Sensitive  
Systems data sheet  
Texas Instruments, TPS763 Low-Power, 150-mA, Low-Dropout Linear Regulator data sheet  
Texas Instrument, SN6501 Transformer Driver for Isolated Power Supplies data sheet  
Texas Instruments, 18-Bit, 1-MSPS Data Acquisition Block (DAQ) Optimized for Lowest Distortion and Noise  
reference guide  
Texas Instruments, 18-Bit, 1-MSPS Data Acquisition Block (DAQ) Optimized for Lowest Power reference  
guide  
Texas Instruments, Isolated Amplifier Voltage Sensing Excel Calculator design tool  
Texas Instruments, Best in Class Radiated Emissions EMI Performance with the AMC1300B-Q1 Isolated  
Amplifier technical white paper  
11.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
11.3 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.6 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: AMC1350  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
13-Dec-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
AMC1350DWV  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
DWV  
DWV  
8
8
64  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
AMC1350  
AMC1350  
AMC1350DWVR  
1000 RoHS & Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
13-Dec-2021  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Dec-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
AMC1350DWVR  
SOIC  
DWV  
8
1000  
330.0  
16.4  
12.05 6.15  
3.3  
16.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Dec-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOIC DWV  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
AMC1350DWVR  
8
1000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DWV0008A  
SOIC - 2.8 mm max height  
S
C
A
L
E
2
.
0
0
0
SOIC  
C
SEATING PLANE  
11.5 0.25  
TYP  
PIN 1 ID  
AREA  
0.1 C  
6X 1.27  
8
1
2X  
5.95  
5.75  
NOTE 3  
3.81  
4
5
0.51  
0.31  
8X  
7.6  
7.4  
0.25  
C A  
B
A
B
2.8 MAX  
NOTE 4  
0.33  
0.13  
TYP  
SEE DETAIL A  
(2.286)  
0.25  
GAGE PLANE  
0.46  
0.36  
0 -8  
1.0  
0.5  
DETAIL A  
TYPICAL  
(2)  
4218796/A 09/2013  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm, per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DWV0008A  
SOIC - 2.8 mm max height  
SOIC  
8X (1.8)  
SEE DETAILS  
SYMM  
SYMM  
8X (0.6)  
6X (1.27)  
(10.9)  
LAND PATTERN EXAMPLE  
9.1 mm NOMINAL CLEARANCE/CREEPAGE  
SCALE:6X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4218796/A 09/2013  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DWV0008A  
SOIC - 2.8 mm max height  
SOIC  
SYMM  
8X (1.8)  
8X (0.6)  
SYMM  
6X (1.27)  
(10.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:6X  
4218796/A 09/2013  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY