5962R8768106VYC [TI]

耐辐射 QMLV、30V 输入、2A 双输出 1MHz PWM 控制器 | HKT | 16 | -55 to 125;
5962R8768106VYC
型号: 5962R8768106VYC
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

耐辐射 QMLV、30V 输入、2A 双输出 1MHz PWM 控制器 | HKT | 16 | -55 to 125

控制器
文件: 总34页 (文件大小:1374K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
UC1825B-SP  
ZHCSJJ9A APRIL 2019 REVISED DECEMBER 2020  
UC1825B-SP V 类耐辐射高PWM 控制器  
1 特性  
3 说明  
• 符QML-V 标准SMD 5962-8768106  
5962R8768106VYC:  
– 耐辐射加固保(RHA) 能力高100krad(Si) 总  
电离剂(TID) 1  
• 与电压或电流模式拓扑兼容  
• 实际工作开关频率高1MHz  
50ns 传播延迟到输出  
• 大电流双图腾柱输出2A 峰值)  
• 宽带宽误差放大器  
• 带有双脉冲抑制功能的全锁存逻辑  
• 逐脉冲电流限制  
• 软启动/最大占空比控制  
• 带有迟滞功能的欠压锁定  
• 低启动电(1.1mA)  
UC1825B-SP PWM 控制器件针对高频开关模式电源应  
用进行了优化。对在大大增加误差放大器的带宽和转换  
率的同时大大减小通过比较器和逻辑电路的传播延迟  
给与了特别关注。这个控制器设计用于电流模式或电压  
模式系统此系统具有输出电压前馈功能。  
保护电路包括一个阈值电压为 1V 的电流限制比较器、  
一个 TTL 兼容关断端口和一个软启动引脚此引脚可  
对折为一个最大占空比钳位。此逻辑被完全锁存以提供  
无抖动运行并且抑制了输出上的多脉冲。一个具有  
800mV 滞后的欠压闭锁部分可确保低启动电流。欠压  
闭锁期间输出为高阻抗。  
这个器件特有推挽式输出此输出被设计用来拉、灌来  
自电容负载诸如一个功率金属氧化物半导体场效应晶  
体管 (MOSFET) 的栅极的高峰值电流。导通状态设  
计为高电平。  
2 应用  
• 耐辐射直流/直流转换器  
• 卫星总线和有效载荷  
通信负载  
光学成像有效载荷  
雷达成像有效载荷  
• 太空运载火箭  
器件信息  
等级(2)  
器件型号(1)  
封装  
CFP (16)  
飞行等QMLV-  
RHA 100krad(Si)  
5962R8768106VYC  
UC1825BHKT/EM  
10.16mm x 7.10mm  
工程样片(3)  
飞行等QMLV-  
RHA KGD  
100krad(Si)  
• 支持多种拓扑结构:  
– 反激、正激、降压、升压  
5962R8768106V9A  
裸片  
– 推挽、半桥、全桥采用外部接口电路时)  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
CLOCK  
R
4
5
T
(2) 有关器件等级的其他信息请查SLYB235。  
(3) 这些器件仅适用于工程评估。器件按照不合规的流程进行加工  
处理。这些器件不适用于鉴定、生产、辐射测试或飞行用途。  
这些零器件无法55°C 125°C 的完MIL 额定温度范围  
内或运行寿命中保证其性能。  
OSC  
PWM Latch  
(Set Dom.)  
C
6
T
1.25 V  
R
RAMP  
7
S
E/A Out  
3
Wide Bandwidth  
Error Amp.  
V
IN  
2
1
NI  
+
Error  
Amp  
INV  
Inhibit  
9 µA  
Toggler F/F  
T
Vc  
13  
11  
Out A  
Soft Start  
8
9
I
LIM  
CPRTR  
14 Out B  
12  
1 V  
Shutdown  
CPRTR  
Pwr GND  
I
/ SD  
LIM  
1.4 V  
Output  
Inhibit  
V
15  
CC  
Internal  
Bias  
9 V  
UVLO  
4 V  
V
Good  
REF  
GND 10  
REF  
Gen  
V
REF  
Gate  
16  
V
Good  
CC  
VDG−92032−2  
方框图  
1
辐射耐受性是基于初始器件认证剂量= 10mrad(Si)/s获得的典型值。提供辐射批次验收测- 详细信息请联系厂家。  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSDD5  
 
 
 
 
 
 
 
UC1825B-SP  
ZHCSJJ9A APRIL 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
Table of Contents  
8 Application and Implementation..................................15  
8.1 Application Information............................................. 15  
8.2 Typical Application.................................................... 16  
8.3 Application Curves....................................................22  
9 Power Supply Recommendations................................26  
10 Layout...........................................................................26  
10.1 Layout Guidelines................................................... 26  
10.2 Layout Example...................................................... 27  
11 Device and Documentation Support..........................28  
11.1 Documentation Support.......................................... 28  
11.2 接收文档更新通知................................................... 28  
11.3 支持资源..................................................................28  
11.4 Trademarks............................................................. 28  
11.5 静电放电警告...........................................................28  
11.6 术语表..................................................................... 28  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 6  
6.1 Absolute Maximum Ratings........................................ 6  
6.2 ESD Ratings............................................................... 6  
6.3 Recommended Operating Conditions.........................6  
6.4 Thermal Information....................................................7  
6.5 Electrical Characteristics.............................................7  
6.6 Typical Characteristics................................................9  
7 Detailed Description......................................................10  
7.1 Overview...................................................................10  
7.2 Functional Block Diagram.........................................10  
7.3 Feature Description...................................................10  
7.4 Device Functional Modes..........................................14  
Information.................................................................... 29  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (April 2019) to Revision A (December 2020)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
Added Bare Die Information table to Pin Configuration and Functions section..................................................3  
Added UC1825B-SP Bare Die Pin Number Locations figure to Pin Configuration and Functions section.........3  
Added Bond Pad Coordinates in Microns table to Pin Configuration and Functions section............................. 3  
Updated Synchronization section......................................................................................................................11  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDD5  
2
Submit Document Feedback  
Product Folder Links: UC1825B-SP  
 
UC1825B-SP  
ZHCSJJ9A APRIL 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
5 Pin Configuration and Functions  
5-1. HKT Package  
16-Pin CFP  
Top View  
5-1. Pin Functions  
NAME  
NO.  
I/O  
DESCRIPTION  
CLK  
4
O
Output of the internal oscillator.  
Timing capacitor connection pin for oscillator frequency programming. The timing  
capacitor should be connected to the device ground using minimal trace length.  
CT  
6
I
EAOUT  
GND  
3
10  
9
O
Output of the error amplifier for compensation.  
Analog ground return pin.  
I
ILIM/SD  
INV  
Input to the current limit comparator and the shutdown comparator.  
Inverting input to the error amplifier.  
1
I
NI  
2
I
Non-inverting input to the error amplifier.  
OUTA  
OUTB  
PGND  
11  
14  
12  
O
O
High-current totem pole output A of the on-chip drive stage.  
High-current totem pole output B of the on-chip drive stage.  
Ground return pin for the output driver stage.  
Non-inverting input to the PWM comparator with 1.25-V internal input offset. In voltage  
mode operation this serves as the input voltage feed-forward function by using the CT  
ramp. In peak current mode operation, this serves as the slope compensation input.  
RAMP  
7
I
RT  
SS  
5
8
I
I
Timing resistor connection pin for oscillator frequency programming.  
Soft-start input pin which also doubles as the maximum duty cycle clamp.  
Power supply pin for the output stage. This pin should be bypassed with a 0.1-μF  
monolithic ceramic low ESL capacitor with minimal trace lengths.  
VC  
13  
15  
16  
O
Power supply pin for the device. This pin should be bypassed with a 0.1-μF monolithic  
ceramic low ESL capacitor with minimal trace lengths.  
VCC  
VREF  
5.1-V reference. For stability, the reference should be bypassed with a 0.1-μF monolithic  
ceramic low ESL capacitor and minimal trace length to the ground plane.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: UC1825B-SP  
English Data Sheet: SLUSDD5  
 
 
UC1825B-SP  
ZHCSJJ9A APRIL 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
5-2. Bare Die Information  
BACKSIDE POTENTIAL  
GND  
BOND PAD  
METALLIZATION  
COMPOSITION  
DIE THICKNESS  
BACKSIDE FINISH  
BOND PAD THICKNESS  
15 mils  
Backgrind Si - Finish  
AlCu  
2000 nm  
5-2. UC1825B-SP Bare Die Pin Number Locations  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDD5  
4
Submit Document Feedback  
Product Folder Links: UC1825B-SP  
UC1825B-SP  
ZHCSJJ9A APRIL 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
5-3. Bond Pad Coordinates in Microns  
DESCRIPTION  
PAD NUMBER  
X MIN  
962.66  
754.38  
147.32  
Y MIN  
2933.7  
2938.78  
2451.1  
X MAX  
1064.26  
855.98  
248.92  
Y MAX  
3035.3  
3040.38  
2552.7  
INV  
NI  
1
2
3
EAOUT  
CLK  
4
124.46  
165.1  
2052.32  
1244.6  
708.66  
167.64  
167.64  
307.34  
66.04  
226.06  
266.7  
2153.92  
1346.2  
810.26  
269.24  
269.24  
408.94  
167.64  
853.44  
1564.64  
1562.1  
2273.3  
3035.3  
3116.58  
RT  
9
CT  
10  
11  
12  
13  
15  
16  
17  
18  
19  
20  
21  
134.62  
429.26  
594.36  
1681.48  
2225.04  
1879.6  
2153.92  
1564.64  
1889.76  
2207.26  
1874.52  
236.22  
530.86  
695.96  
1783.08  
2326.64  
1981.2  
2255.52  
1666.24  
1991.36  
2308.86  
1976.12  
RAMP  
SS  
ILIM/SD  
GND  
OUTA  
PGND  
VC  
751.84  
1463.04  
1460.5  
2171.7  
2933.7  
3014.98  
OUTB  
VCC  
RAMP  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: UC1825B-SP  
English Data Sheet: SLUSDD5  
UC1825B-SP  
ZHCSJJ9A APRIL 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
MAX  
UNIT  
Supply voltage  
VC, VCC  
DC  
30  
0.5  
2.0  
7
V
Output current, source or sink, OUTA, OUTB  
A
V
Pulse (0.5 μs)  
INV, NI, RAMP  
SS, ILIM/SD  
CLK  
0.3  
0.3  
Analog inputs  
6
Clock output current  
mA  
mA  
mA  
mA  
W
5  
5
Error amplifier output current  
Soft-start sink current  
EAOUT  
SS  
20  
Oscillator charging current  
Power dissipation  
RT  
5  
1
Lead temperature (soldering, 10 seconds)  
Storage temperature  
300  
150  
°C  
Tstg  
°C  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltages are with respect to GND; all currents are positive into, negative out of part; pin numbers refer to CFP-16 package.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±1000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±1500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (TA = TJ = 55°C to 125°C), unless otherwise noted.  
MIN  
10  
0
MAX  
UNIT  
V
VCC  
Supply voltage  
30  
100  
10  
Sink/source output current (continuous or time average)  
Reference load current  
mA  
mA  
0
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDD5  
6
Submit Document Feedback  
Product Folder Links: UC1825B-SP  
 
 
 
 
 
 
 
 
UC1825B-SP  
ZHCSJJ9A APRIL 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
6.4 Thermal Information  
UC1825B-SP  
THERMAL METRIC(1)  
HKT (CFP)  
16 PINS  
32.2  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
13.8  
15.2  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
7
ψJT  
14.6  
ψJB  
RθJC(bot)  
5
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
Unless otherwise stated, these specifications apply for RT = 3.65 k, CT = 1 nF, VCC = 15 V, 55°C < TA < 125°C, TA = TJ  
PARAMETERS  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
REFERENCE  
Output voltage  
Line regulation  
TJ = 25°C, IO = 1 mA  
5.024  
5.1  
2
5.176  
20  
V
10 V < VCC < 30 V  
1 mA < IO < 10 mA  
Line, load, temperature  
10 Hz < f < 10 kHz  
VREF = 0 V  
mV  
mV  
V
Load regulation  
5
20  
Total output variation  
Output noise voltage  
Short-circuit current  
OSCILLATOR SECTION  
Initial accuracy  
5
5.2  
50  
μV  
mA  
15  
50  
100  
TJ = 25°C  
360  
400  
0.2%  
5%  
440  
2%  
kHz  
Voltage stability  
10 V < VCC < 30 V  
TMIN < TA < TMAX  
Line, Temperature  
Temperature stability  
Total variation  
16%  
460  
340  
3.9  
kHz  
V
Clock out high  
4.5  
2.3  
2.8  
1
Clock out low  
2.9  
3
V
Ramp peak(1)  
2.6  
0.7  
1.6  
V
Ramp valley(1)  
1.25  
2.1  
V
Ramp valley to peak(1)  
ERROR AMPLIFIER  
Input offset voltage  
Input bias current  
Input offset current  
Open-loop gain  
1.8  
V
10  
3
mV  
μA  
μA  
dB  
0.6  
0.1  
95  
1
1 V < VO < 4 V  
1.5 V < VCM < 5.5 V  
10 V < VCC < 30 V  
VE/AOut= 1 V  
60  
CMRR  
75  
95  
dB  
PSRR  
85  
110  
2.5  
1.3  
4.7  
0.5  
10.5  
9
dB  
Output sink current  
Output source current  
Output high voltage  
Output low voltage  
Gain bandwidth product(1)  
Slew rate(1)  
1
mA  
mA  
V
VE/AOut = 4 V  
0.5  
4
0
5
4
5.  
1
IE/AOut = 0.5 mA  
IE/AOut = 1 mA  
f = 200 kHz  
V
MHz  
V/μs  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: UC1825B-SP  
English Data Sheet: SLUSDD5  
 
 
 
UC1825B-SP  
ZHCSJJ9A APRIL 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
Unless otherwise stated, these specifications apply for RT = 3.65 k, CT = 1 nF, VCC = 15 V, 55°C < TA < 125°C, TA = TJ  
PARAMETERS  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
PWM COMPARATOR  
Ramp bias current  
Duty cycle range  
VRamp = 0 V  
VRamp = 0 V  
1  
5  
μA  
0%  
1.1  
80%  
E/A out zero dc threshold  
Delay to output(1)  
1.25  
50  
V
80  
20  
ns  
SOFT-START  
Charge current  
VSoft Start = 0.5 V  
VSoft Start = 1 V  
3
1
9
μA  
Discharge current  
mA  
CURRENT LIMIT/SHUTDOWN  
Current limit/shutdown bias current  
Current limit threshold  
Shutdown threshold  
Delay to output(1)  
0 < VILIM/SD < 4 V  
15  
1.1  
μA  
V
0.9  
1
1.4  
50  
1.25  
1.55  
80  
V
ns  
OUTPUT  
IOUT = 20 mA  
IOUT = 200 mA  
IOUT = 20 mA  
IOUT = 200 mA  
VC = 30 V  
0.25  
1.2  
13.5  
13  
0.4  
2.2  
Low-level output voltage  
High-level output voltage  
V
V
13  
12  
Collector leakage  
Rise/fall time(1)  
10  
500  
75  
μA  
CL = 1 nF  
30  
ns  
UNDERVOLTAGE LOCKOUT  
Start threshold  
8.8  
0.4  
9.2  
0.8  
9.6  
1.2  
V
V
UVLO hysteresis  
SUPPLY CURRENT SECTION  
Startup current  
VCC = 8 V  
1.1  
22  
2.5  
33  
mA  
mA  
ICC  
VINV = VRamp = VILIM/SD = 0 V, VNI = 1 V  
(1) Parameters ensured by design and/or characterization, if not production tested.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDD5  
8
Submit Document Feedback  
Product Folder Links: UC1825B-SP  
 
UC1825B-SP  
ZHCSJJ9A APRIL 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
6.6 Typical Characteristics  
Light  
Full  
130  
120  
110  
100  
90  
130  
Gain-Light Load  
Gain-Full Load  
120  
110  
100  
90  
80  
70  
80  
70  
60  
50  
60  
50  
40  
40  
30  
20  
10  
0
-10  
-20  
-30  
30  
20  
10  
0
-10  
-20  
-30  
CTL–  
Outpu Light Load  
CTL–  
Output Full Load  
100  
101  
102  
103  
104  
105  
106  
107  
100  
101  
102  
103  
104  
105  
106  
107  
Frequency (Hz)  
Frequency (Hz)  
0
0
Phase  
Phase  
-90  
-90  
180  
180  
6-1. Gain: Light Load  
6-2. Gain: Full Load  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: UC1825B-SP  
English Data Sheet: SLUSDD5  
 
UC1825B-SP  
ZHCSJJ9A APRIL 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
UC1825B-SP PWM controller is a radiation hardened version of the standard UC1825 family. Error amplifier gain  
bandwidth product is 10.5 MHz. Protection circuitry includes a current limit comparator with a 1-V threshold, a  
TTL compatible shutdown port, and a soft start pin which will double as a maximum duty-cycle clamp. The logic  
is fully latched to provide jitter-free operation and prohibit multiple pulses at an output. An undervoltage lockout  
section with 800 mV of hysteresis assures low start up current. During undervoltage lockout, the outputs are high  
impedance. This device features totem pole outputs designed to source and sink high peak currents from  
capacitive loads, such as the gate of a power MOSFET. The on state is designed as a high level.  
7.2 Functional Block Diagram  
CLOCK  
R
4
5
T
OSC  
PWM Latch  
(Set Dom.)  
C
T
6
1.25 V  
R
RAMP  
7
S
E/A Out  
3
Wide Bandwidth  
Error Amp.  
V
IN  
2
1
NI  
+
Error  
Amp  
INV  
Inhibit  
9 µA  
Toggler F/F  
T
Vc  
13  
11  
Out A  
Soft Start  
8
9
I
LIM  
CPRTR  
Out B  
14  
12  
1 V  
Shutdown  
CPRTR  
Pwr GND  
I
/ SD  
LIM  
1.4 V  
Output  
Inhibit  
15  
10  
V
CC  
Internal  
Bias  
9 V  
UVLO  
4 V  
V
Good  
REF  
GND  
REF  
Gen  
V
Gate  
16  
REF  
V
Good  
CC  
VDG−92032−2  
7.3 Feature Description  
UC1825B-SP can be configured as current mode controller, used to support various topologies such as forward,  
flyback, buck, boost and using an external interface circuit will also support half-bridge, full bridge, and push-pull  
configurations.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDD5  
10  
Submit Document Feedback  
Product Folder Links: UC1825B-SP  
 
 
 
 
UC1825B-SP  
ZHCSJJ9A APRIL 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
7.3.1 Control Methods  
7-1 shows the control methods.  
Voltage Mode  
Current Mode  
ISWITCH  
6
7
Oscillator  
6
7
Oscillator  
CT  
CT  
CT  
1.25 V  
1.25 V  
RAMP  
RAMP  
RSENSE  
CT  
from E/A  
from E/A  
UDG-95110  
7-1. Control Methods  
7.3.2 Synchronization  
The oscillator can be synchronized by an external pulse inserted in series with the timing capacitor (see 7-2).  
Program the free running frequency of the oscillator to be 10% to 15% slower than the desired synchronous  
frequency. The pulse width must be greater than 10 ns and less than half the discharge time of the oscillator. 图  
7-3 shows how to synchronize two ICs, with one as primary and one as secondary. 7-4 shows the waveforms  
in a primary and secondary configuration.  
RT  
5
VSYNC  
CT  
RT  
39 Ω  
6
10 Ω  
50-Ω  
External  
Clock  
UDG-95111  
7-2. General Oscillator Synchronization  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: UC1825B-SP  
English Data Sheet: SLUSDD5  
 
 
 
UC1825B-SP  
ZHCSJJ9A APRIL 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
4
39 pF 120  
CT  
6
4.7 kΩ  
22 Ω  
Primary  
Secondary  
CT  
RT  
6
5
1.5 × RT  
5
7-3. Two Unit Interface  
VSYNC  
VCT  
UDG-95112  
7-4. Operational Waveforms  
7.3.3 High Current Outputs  
Each totem pole output of the UC1825B-SP can deliver a 2-A peak current into a capacitive load. The output can  
slew a 1000-pF capacitor by 15 V in approximately 20 ns. Separate collector supply (VC) and power ground  
(PGND) pins help decouple the analog circuitry of the device from the high-power gate drive noise. The use of  
3-A Schottky diodes (1N5120, USD245, or equivalent) as shown in the 10-1 from each output to both VC and  
PGND are recommended. The diodes clamp the output swing to the supply rails, necessary with any type of  
inductive or capacitive load, typical of a MOSFET gate, as shown in 7-5. Schottky diodes must be used  
because a low forward voltage drop is required.  
备注  
Do not use standard silicon diodes.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDD5  
12  
Submit Document Feedback  
Product Folder Links: UC1825B-SP  
 
 
UC1825B-SP  
ZHCSJJ9A APRIL 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
VC  
VCC  
1 nF  
10 μF  
D1  
OUT  
6.8 Ω  
D2  
PGND  
GND  
D1. D2 = 1N5820  
UDG-95114  
7-5. Power MOSFET Drive Circuit  
7.3.4 Open Loop Test Circuit  
This test fixture is useful for exercising many functions of this device family and measuring their specifications  
(see 7-6). As with any wideband circuit, careful grounding and bypass procedures must be followed. TI highly  
recommends using a ground plane.  
UC1825  
4
5
6
7
Clock  
V
15  
13  
15 V  
CC  
0.1 mF  
0.1 mF  
R
3.65 kW  
T
Oscillator  
R
C
L
V
15 V  
C
1 nF  
C
T
T
10 mF  
Ramp  
11  
14  
Out A  
Out B  
50 W  
E/A Out  
3
27 kW  
4.7 kW  
2 x 1N5820  
68 kW  
Error  
Amp  
22 kW  
Pwr Gnd 12  
Gnd 10  
2
1
8
Non INV  
INV  
10 kW  
27 kW  
4.7 kW  
10 mF  
Soft Start  
0.1 mF  
V
REF  
5.1 V 16  
10 kW  
9
I
Shutdown  
LIM  
3.3 kW  
VDG−92032−2  
7-6. Open Loop Test Circuit Schematic  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: UC1825B-SP  
English Data Sheet: SLUSDD5  
 
 
UC1825B-SP  
ZHCSJJ9A APRIL 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
7.4 Device Functional Modes  
The UC1825B-SP is compatible with voltage-mode or current-mode topologies. The UC1825B-SP uses fixed  
frequency, peak current mode control. An internal oscillator initiates the turn-on of the driver to high-side power  
switch. The external power switch current is sensed through an external resistor and is compared through  
internal comparator. The voltage generated at the COMP pin is stepped down through internal resistors. When  
the sensed current reaches the stepped down COMP voltage, the high-side power switch is turned off.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDD5  
14  
Submit Document Feedback  
Product Folder Links: UC1825B-SP  
 
UC1825B-SP  
ZHCSJJ9A APRIL 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The oscillator of the UC1825B-SP is a saw tooth (see 8-1). The rising edge is governed by a current  
controlled by the RT pin and value of capacitance at the CT pin (CCT). The falling edge of the sawtooth sets  
dead time for the outputs. Selection of RT must be done first, based on desired maximum duty cycle (see 图  
8-3). CT can then be chosen based on the desired frequency (RT) and DMAX (see 8-2). 方程式 1 shows the  
design equations.  
ǒ1.6   D  
Ǔ
MAX  
3 V  
10 mA   ǒ1 * D  
R +  
C +  
T
T
Ǔ
ǒR   fǓ  
T
(
)
MAX  
(1)  
Recommended values for RT range from 1 kto 100 k. Control of DMAX less than 70% is not recommended.  
IR  
RT  
5
3 V  
IC = IR  
CT  
6
CLK  
ID = 10 mA  
4
R
C
LEB  
VTH  
UDG-95102  
8-1. Oscillator  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: UC1825B-SP  
English Data Sheet: SLUSDD5  
 
 
 
 
UC1825B-SP  
ZHCSJJ9A APRIL 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
10M  
100  
95  
90  
85  
80  
75  
70  
1M  
100k  
10k  
10k  
1k  
100k  
1k  
10k  
100k  
Timing Resistance (Ω)  
Timing Resistance (Ω)  
8-2. Oscillator Frequency vs Timing Resistance  
8-3. Maximum Duty Cycle vs Timing Resistance  
8.2 Typical Application  
The UC1825B-SP as a dual output controller that has integrated drivers for a push-pull topology and can be  
used for half bridge and full bridge applications by using external high side drivers. While the UC1825B-SP  
originally supported voltage mode topologies, the device with minimal external components can support current  
mode topologies as well. The RAMP pin is used for the input current sense and the ILIM pin is used as the  
current limit pin. External components are needed to ensure slope compensation is implemented.  
8-4. Typical Application  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDD5  
16  
Submit Document Feedback  
Product Folder Links: UC1825B-SP  
 
 
 
UC1825B-SP  
ZHCSJJ9A APRIL 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
8-1. Design Parameters  
PARAMETER  
SPECIFICATIONS  
Input Power Supply  
Output Voltage  
22 to 48 VDC  
5 VDC  
0 to 10 A  
0.5 mA  
25°C  
Output Current  
Output Current Pre-load  
Operating Temperature  
Switching Frequency of UC1825B-SP  
Peak Input Current Limit  
Bandwidth  
215 kHz  
7 A  
~5 kHz  
~80°  
Phase Margin  
8.2.1 System Design Theory  
8.2.1.1 Switching Frequency  
Choosing a switching frequency has a trade off between efficiency and bandwidth. Higher switching frequencies  
will have larger bandwidth, but a lower efficiency than lower switching frequencies. A switching frequency of 215  
kHz was chosen as a trade off between bandwidth and efficiency. Using 方程式 2 for the UC1825B-SP, RT and  
CT were chosen to be 10 kΩand 680 pF, respectively.  
1 . 46  
f
(2)  
(3)  
osc  
osc  
R × C  
t
t
1 . 46  
×
f
= 215 kHz  
680 pF  
7 . 15 kΩ  
8.2.1.2 Transformer  
The transformer of the design consists of two major values, turns ratio and primary side inductance. There is no  
minimum limit to the turns ratio of the transformer, just a maximum limit. The equation below will give the turns  
ratio as a function of duty cycle which if the maximum duty cycle of the converter is used will give you a  
maximum turns ratio. The UC1825B-SP design targeted a duty cycle of 30%. Since this design is for a dual  
output device the duty cycle must stay below 50%. If both outputs were running above 50% duty cycle they  
would have to overlap which is not possible for the topology. The equation of the turns ratio of the transformer is  
方程4.  
2 × V  
× D  
lim  
inMIN  
+ V  
N
=
=
(4)  
(5)  
psMAX  
psMAX  
V
out  
Diode  
2 × 22 V × 0 . 3  
N
= 2 . 31  
5
V + 0 . 7 V  
Often the turns ratio will slightly change in design due to how the transformer is manufactured. For the  
UC1825B-SP design a turns ratio of 2.2 was used. Another turns ratio that is important is the turns ratio of the  
auxiliary winding. The auxiliary winding is found by figuring out what positive voltage is needed from the auxiliary  
winding. Selecting this voltage lets one pick the turns ratio from the secondary to the auxiliary winding, which in  
turn allows for the turns ratio from primary to auxiliary to be found. The equation for the turns ratio is 方程6.  
N
× V  
aux  
ps  
V
N
=
=
(6)  
(7)  
as  
as  
inMIN  
2 . 2 × 15  
22  
V
N
= 1 . 5  
V
An auxiliary winding of 1.5 was used for the UC1825B-SP design. The primary inductance of the transformer is  
found from picking an appropriate magnetizing current. The magnetizing current of the transformer is the amount  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: UC1825B-SP  
English Data Sheet: SLUSDD5  
 
 
 
UC1825B-SP  
ZHCSJJ9A APRIL 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
of current drawn through the windings of the transformer when the output is open circuited. Decreasing the  
magnetizing current will increase the inductance of the transformer, perhaps to unreasonable values. Increasing  
the magnetizing current will cause efficiency to decrease. It is desirable to keep the magnetizing current low,  
thus 6% was picked for the design value. The equation for the auxiliary winding turns ratio is 方程8.  
N
× V  
inMAX  
× D  
× I  
ps  
MIN  
out  
L =  
(8)  
(9)  
p
f
× %  
osc  
mag  
2 . 2 × 48 × 0 . 13  
215 kHz × 0 . 06 × 10  
L =  
= 106 μH  
p
There are quite a few physical limitations when making transformers that will affect the inductance value. For the  
UC1825B-SP design a primary inductance of 120 µH was used. The output inductor was then picked based on  
the output inductor ripple current with 方程10.  
V
inMAX  
− V − V  
out  
× D  
MIN  
f
N
ps  
L
=
=
(10)  
(11)  
inductor  
f
× I × %  
out ripple  
osc  
48  
2 . 2  
215 kHz × 10 A × 0 . 45  
V
0 . 7 V − 5  
V × 0 . 13  
L
= 2 . 14 μH  
inductor  
In the final design, a 2.2-μH inductor was used. The peak and primary currents of the transformer are also  
generally useful for figuring out the physical structure of the transformer, so equations are listed below. Note  
these equations are only true for continuous conduction mode. Peak currents are higher at the maximum input  
voltage while the RMS current is highest at the minimum input voltage. These are also idea values and don't  
take into account efficiency. Final designs needs to be optimized depending on the specific application  
requirements. Equations that show how to calculate these for this design are below:  
I
= I  
+ 0 . 5 × %  
× I  
out  
(12)  
(13)  
secMAX  
secMAX  
out  
ripple  
I
= 10 A  
+
0 . 5 × 0 . 445 × 10 A  
=
12 . 23 A  
I
+ 0 . 5 × %  
× I  
mag  
secMAX  
out  
I
=
=
(14)  
(15)  
priMAX  
priMAX  
N
ps  
12 . 23 A + 0 . 5 × 0 . 06 × 10  
A
I
= 5 . 7 A  
2 . 2  
V
inMIN  
D
×
V
+ V  
f
MAX  
out  
× L  
inductor  
N
ps  
I
= I  
+
(16)  
secMAX VinMIN  
out  
2 × f  
osc  
22  
2 . 2  
V
0 . 285 ×  
5 V + 0 . 7 V  
I
I
I
= 10 A +  
= 11 . 3 A  
(17)  
(18)  
(19)  
secMAX VinMIN  
priMAX VinMIN  
priMIN VinMIN  
2 × 215 kHz × 2 . 2 μH  
I
+ 0 . 5 × %  
× I  
secMAX VinMIN  
mag out  
=
=
N
ps  
11 . 3  
A
+ 0 . 5 × 0 . 06 × 10  
2 . 2  
= 5 . 27 A  
V
inMIN  
D
×
V
+ V  
f
MAX  
out  
× L  
inductor  
N
ps  
I
I
= I  
(20)  
(21)  
secMIN VinMIN  
out  
2 × f  
osc  
22  
2 . 2  
V
0 . 285 ×  
5 V + 0 . 7 V  
= 10 A −  
= 8 . 7 A  
secMIN VinMIN  
2 × 215 kHz × 2 . 2 μH  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDD5  
18  
Submit Document Feedback  
Product Folder Links: UC1825B-SP  
 
 
UC1825B-SP  
ZHCSJJ9A APRIL 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
I
0 . 5 × %  
× I  
mag out  
secMIN VinMIN  
I
I
=
=
(22)  
(23)  
priMIN VinMIN  
N
ps  
8 . 7  
A
0 . 5 × 0 . 06 × 10  
= 3 . 82 A  
priMIN VinMIN  
2 . 2  
V
+ V × N  
out  
f
ps  
t
t
=
=
(24)  
(25)  
(26)  
(27)  
onMAX  
2 × f  
× V  
osc  
inMIN  
5
V + 0 . 7 V × 2 . 2  
= 1 . 33 μs  
V
onMAX  
2 × 215 kHz × 22  
I
− I  
priMAX VinMIN  
t
priMIN VinMIN  
m
m
=
=
pri  
onMAX  
5 . 27 3 . 82  
1 . 33 μs  
= 1090226 A/s  
pri  
2
m
× t  
onMAX  
3
m
pri  
2
pri  
2
I
=
=
D
×
+
× I  
× t  
+ I  
priMIN VinMIN  
(28)  
priRMS  
priRMS  
MIN  
priMIN VinMIN  
onMAX  
2
2
1090226 A/s × 1 . 33 μs  
1090226 A/s  
I
0 . 285 ×  
+
× 3 . 82 A × 1 . 33 μs + 3 . 82 A  
= 2 . 27 A  
(29)  
3
2
8.2.1.3 RCD and Diode Clamp  
For the UC1825BEVM-CVAL a resistor and capacitor in combination with a diode was used to clamp the voltage  
of the switch node. The resistor and capacitor is generally a value that is found through testing, but starting  
values can be obtained. To figure out the resistor and capacitor needed for the RCD clamp, one must first decide  
how much the node is allowed to overshoot. The equation for finding the voltage of the clamp is 方程30.  
V
= K  
× N × V  
+ V  
Diode  
(30)  
clamp  
clamp  
ps  
out  
Note that Kclamp is recommended to be 1.5 as this will allow for only around 50% overshoot. Knowing the  
parasitic inductance of the transformer and how much the RCD clamp voltage is allowed to change over the  
switching cycle, can allow one to figuring out starting values for the resistor and capacitor using 方程式 31 and  
方程32.  
2
V
clamp  
R
=
=
(31)  
(32)  
clamp  
V
clamp  
1
2
2
× L  
× I  
×
× f  
osc  
leakage  
PriPeak  
V
− N × V  
+ V  
Diode  
clamp  
ps out  
V
clamp  
× R  
C
clamp  
ΔV  
clamp  
× V  
× f  
clamp osc  
clamp  
A starting value of 10% is generally used for ΔVclamp  
.
8.2.1.4 Output Diode  
The voltage stress by the converter on the diode can be found with 方程33.  
V
inMAX  
V
= V  
+
(33)  
(34)  
DiodeStress  
DiodeStress  
out  
N
ps  
48  
2 . 2  
V
V
= 5 V +  
= 26 . 8 V  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: UC1825B-SP  
English Data Sheet: SLUSDD5  
 
 
 
 
UC1825B-SP  
ZHCSJJ9A APRIL 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
Note that any diode picked should have a voltage rating of well above this value as it does not include parasitic  
spikes in the equation. The UC1825-SP diode was picked to have a voltage rating of 60 V.  
8.2.1.5 Main Switching MOSFETs  
Each switch applies the input voltage across the transformer and the voltage is then divided down by the turns  
ratio and applied to the secondary side. Since the magnitude of the voltage across the windings is the input  
voltage, when the switch is off the primary switching MOSFETs will see twice the input voltage as the voltage  
stress plus some amount of ringing. This means the MOSFETs chosen for a push-pull topology should have a  
voltage rating of about 2.5 to 3 times higher than the input voltage.  
8.2.1.6 Output Filter and Capacitance  
For most designs, a ripple voltage is picked and the output capacitance is figured out from that value. The output  
capacitance value needs to be able to withstand a full output current step as well as keep the voltage ripple of  
the output low. The UC1825B-SP design started similar to that using the equations for voltage ripple and load  
step with 方程35 and 方程37.  
I
× 2 × D  
MAX  
out  
V
C
C
C
C
>
>
>
>
(35)  
(36)  
(37)  
(38)  
out  
out  
out  
out  
× f  
Ripple  
osc  
10 A × 2 × 0 . 3  
= 600 μF  
50 mV × 200 kHz  
ΔI  
step  
2π × ΔV  
× f  
out  
co  
10  
A
= 1060 μ F  
2π × 0 . 3 V × 5 kHz  
A value of around 1145 µF was chosen to keep output voltage ripple low. Note that the output voltage ripple in  
the design was further decreased by adding an output filter and by adding an inductor after a small portion of the  
output capacitance. This was done in order to keep output voltage ripple as low as possible. Six ceramic  
capacitors were picked to be placed before the output filter and then the large tantalum capacitors with some  
small ceramics were added to be part of the output filter. The initial ceramics will help with the initial current  
ripple, but have a very large output voltage ripple. This voltage ripple will be attenuated by the inductor and  
capacitor combination placed between the ceramic capacitors and the output. The equations below allow for  
finding the amount of attenuation that will come from a specific output filter inductance. An inductance of 500 nH  
was chosen to attenuate the output voltage ripple. The value was chosen to put the resonant frequency pole well  
before the switching frequency of the design as well as the zero from the ESR of the bulk capacitors to provide  
more attenuation.  
1
F
=
=
(39)  
resonant  
2π ×  
L
× C  
oBulk  
Filter  
1
F
F
F
= 6 . 7 kHz  
(40)  
(41)  
(42)  
(43)  
(44)  
resonant  
2π × 0 . 5 nH × 1127 μF  
1
Zero =  
Zero =  
2π × C  
× ESR  
oBulk  
oBulk  
1
= 15 . 69 kHz  
Ω
2π × 1127 μF × 0 . 009  
f
f
osc  
osc  
Attenuation  
Attenuation  
= 40 × log  
20 × log  
10  
f
fsw  
fsw  
10  
10  
f
resonant  
zero  
200 kHz  
6 . 7 kHz  
200 kHz  
15 . 69 kHz  
= 40 × log  
20 × log  
= 36 . 88 dB  
10  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDD5  
20  
Submit Document Feedback  
Product Folder Links: UC1825B-SP  
 
 
UC1825B-SP  
ZHCSJJ9A APRIL 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
Sometimes the output filter can cause peaking at high frequencies. This can be damped by adding a resistor in  
parallel with the inductor which will decrease efficiency. For the UC1825B-SP design 0.5 Ω was used as a very  
conservative value. The resistance needed to damp the peaking can be calculated using the following equations:  
2 C  
+ C  
oCerm  
× C  
oBulk  
ω =  
(45)  
(46)  
o
L
× C  
Filter  
oCerm  
oBulk  
2 19 μF + 1127 μF  
500 nH × 19 μF × 1127 μF  
ω =  
= 463 kHz  
o
L
Filter  
R
× L  
Filter  
×
C
+ C  
oBulk  
o
oCerm  
+ C  
oBulk  
ω
o
R
R
=
=
(47)  
(48)  
Filter  
Filter  
R
× C  
oCerm  
o
− L  
Filter  
× C  
oCerm  
ω
o
500 nH  
463 kHz  
0 . 5 × 500 nH × 19 μF + 1127 μF  
0 . 5 × 19 μF + 1127 μF  
= 0 . 232 Ω  
500 nH × 19 μF  
463 kHz  
8.2.1.7 Compensation  
Type IIB compensation was picked for the topology, adding a pole and a zero to the frequency response. The  
location of where the pole and zero should be placed will depend on the desired crossover frequency and the  
ESR zero of the output capacitors. The zero in compensation should be placed at least a decade before the  
crossover frequency for the maximum phase boost. Note that compensation values were picked with a crossover  
frequency of 5 kHz in mind for this design. The pole from the compensation should be placed at the zero created  
by the ESR of the output capacitor.  
1
1
f
f
f
=
=
= 15 . 43 kHz  
(49)  
(50)  
(51)  
zESR  
2π × C  
× ESR  
2π × 1146 μF × 0 . 009 Ω  
out  
1
1
=
=
=
= 15 . 23 kHz  
pCOMP  
zCOMP  
2π × R  
× C  
2π × 4 . 75 × 2200 pF  
COMP  
HF  
1
1
=
= 279 Hz  
2π × R  
× C  
2π × 4 . 75 × 0 . 12 μF  
COMP  
COMP  
The zero from compensation was placed well before the 500-Hz mark which is appropriate. The pole from  
compensation was optimized while the circuit was tested and thus it was found that placing the pole a little bit  
earlier smoothed out the frequency response.  
8.2.1.8 Sense Resistor  
The sense resistor is used to sense the ripple current from the transformer as well as shutdown the switching  
cycle if the peak current of the converter is over the current limit set. The voltage threshold of the CS pin is  
around 1 V and the shutdown current should be above the max current you expect. The max current limit will  
depend on the specific design. The equation used to find the max current limit is 方程52.  
V
CS Tresold  
R
=
(52)  
(53)  
cs  
I
limit  
1
V
R
=
= 0 . 15 Ω  
CS  
6 . 66  
A
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: UC1825B-SP  
English Data Sheet: SLUSDD5  
 
UC1825B-SP  
ZHCSJJ9A APRIL 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
8.3 Application Curves  
VGS(Q1) Æ  
IG(Q1) Æ  
VGS(Q2) Æ  
IG(Q2) Æ  
2 ´ VCC  
VDS(Q1)  
VDS(Q2)  
VCC  
2 ´ VCC  
VCC  
VSAT  
IPRI Æ  
V
SEC Æ  
VD1 Æ  
IO  
ID1  
IO/2  
Æ
ISEC  
IO  
Æ
8-5. Basic Push-Pull Waveforms  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDD5  
22  
Submit Document Feedback  
Product Folder Links: UC1825B-SP  
 
UC1825B-SP  
ZHCSJJ9A APRIL 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
8-6. Voltage Stress Across Main Switching MOSFETS Q1 and Q2  
The test in 8-6 was done with 48-V input and a 10-A output load.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: UC1825B-SP  
English Data Sheet: SLUSDD5  
 
UC1825B-SP  
ZHCSJJ9A APRIL 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
8-7. Output Voltage Ripple With 48 VIN  
Output voltage ripple test in 8-7 was done with 48-V input and 10-A output current.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDD5  
24  
Submit Document Feedback  
Product Folder Links: UC1825B-SP  
 
UC1825B-SP  
ZHCSJJ9A APRIL 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
8-8. Full Output Voltage Transient With 48 VIN  
Full step up transient in 8-8 was done with 48-V input and output current was stepped from 0 A to 10 A.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: UC1825B-SP  
English Data Sheet: SLUSDD5  
 
UC1825B-SP  
ZHCSJJ9A APRIL 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
9 Power Supply Recommendations  
The UC182B-SP is designed to operate from an input voltage supply range between 10 V and 30 V. This input  
supply should be well regulated. If the input supply is located more than few inches from the UC1825B-SP  
converter, additional bulk capacitance may be required in addition to the ceramic bypass capacitors. A tantalum  
capacitor with a value of 100 μF is a typical choice; however, this may vary depending upon the output power  
being delivered.  
The UC1825B-SP controller can be used to convert power efficiently using any of several standard topologies  
such as push-pull, forward, half-bridge, or full bridge. Design tradeoffs of cost, size, and performance narrow the  
field to the one that is most appropriate. For a typical application, such as in 8.2, push-pull converter topology  
is highlighted.  
10 Layout  
10.1 Layout Guidelines  
Always use a low EMI inductor with a ferrite-type closed core. Some examples would be toroid and encased E  
core inductors. Open core can be used if they have low EMI characteristics and are located a bit more away  
from the low power traces and components. Make the poles perpendicular to the PCB as well if using an open  
core. Stick cores usually emit the most unwanted noise.  
10.1.1 Feedback Traces  
Run the feedback trace as far from the inductor and noisy power traces as possible. The feedback trace should  
be as direct as possible and somewhat thick, which sometimes involves a trade-off, but keeping the feedback  
trace away from inductor EMI and other noise sources is more critical. Run the feedback trace on the side of the  
PCB opposite of the inductor with a ground plane separating the two.  
10.1.2 Input/Output Capacitors  
When using a low-value ceramic input filter capacitor, it must be located as close as possible to the VIN pin of  
the IC. This will eliminate as much trace inductance effects as possible and give the internal IC rail a cleaner  
voltage supply. Some designs require the use of a feed-forward capacitor connected from the output to the  
feedback pin as well, usually for stability reasons. In this case, it must also be positioned as close as possible to  
the IC. Using surface-mount capacitors also reduces lead length and lessens the chance of noise coupling into  
the effective antenna created by through-hole components.  
10.1.3 Compensation Components  
External compensation components for stability must also be placed close to the IC. Surface mount components  
are recommended here as well for the same reasons discussed for the filter capacitors. Locate the surface-  
mount components away from the inductor.  
10.1.4 Traces and Ground Planes  
Make all of the power (high current) traces as short, direct, and thick as possible. It is good practice on a  
standard PCB board to make the traces an absolute minimum of 15 mils (0.381 mm) per Ampere. The inductor,  
output capacitors, and output diode must be as close as possible to each other. This helps reduce the EMI  
radiated by the power traces due to the high switching currents through them. This will also reduce lead  
inductance and resistance as well, which in turn reduces noise spikes, ringing, and resistive losses that produce  
voltage errors. The grounds of the IC, input capacitors, output capacitors, and output diode (if applicable) must  
be connected close together directly to a ground plane. It would also be a good idea to have a ground plane on  
both sides of the PCB. This will reduce noise as well by reducing ground loop errors as well as by absorbing  
more of the EMI radiated by the inductor. For multilayer boards with more than two layers, a ground plane can be  
used to separate the power plane (where the power traces and components are) and the signal plane (where the  
feedback, compensation, and components are) for improved performance. On multilayer boards, the use of vias  
will be required to connect traces and different planes. It is good practice to use one standard via per  
200 mA of current if the trace must conduct a significant amount of current from one plane to the other. Arrange  
the components so that the switching current loops curl in the same direction. Due to the way switching  
regulators operate, there are two power states. One state when the switch is on and one state when the switch is  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: UC1825B-SP  
English Data Sheet: SLUSDD5  
 
 
 
UC1825B-SP  
ZHCSJJ9A APRIL 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
off. During each state there will be a current loop made by the power components that are currently conducting.  
Place the power components so that during each of the two states the current loop is conducting in the same  
direction. This prevents magnetic field reversal caused by the traces between the two half-cycles and reduces  
radiated EMI.  
10.1.5 Ground Planes  
Each output driver of these devices is capable of 2-A peak currents. Careful layout is essential for correct  
operation of the chip. A ground plane must be employed. A unique section of the ground plane must be  
designated for high di/dt currents associated with the output stages. This point is the power ground to which the  
PGND pin is connected. Power ground can be separated from the rest of the ground plane and connected at a  
single point, although this is not necessary if the high di/dt paths are well understood and accounted for. VCC  
must be bypassed directly to power ground with a good high frequency capacitor. The sources of the power  
MOSFET must connect to power ground as must the return connection for input power to the system and the  
bulk input capacitor. The output must be clamped with a high current Schottky diode to both VCC and PGND.  
Nothing else should be connected to power ground.  
VREF must be bypassed directly to the signal portion of the ground plane with a good high frequency capacitor.  
TI recommends low ESR/ESL ceramic 1-mF capacitors for both VCC and VREF. All analog circuitry must  
likewise be bypassed to the signal ground plane. See 10-1.  
10.2 Layout Example  
VIN  
VC  
VCC  
To Analog Circuitry  
+
Power Stage  
VCC  
OUT  
+
CBULK  
CT  
VREF  
GND  
PGND  
RTN  
Signal Ground  
Power Ground  
UDG-95115  
10-1. Ground Planes Diagram  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: UC1825B-SP  
English Data Sheet: SLUSDD5  
 
 
UC1825B-SP  
ZHCSJJ9A APRIL 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation see the following:  
Unitrode Application Note U-93, SLUA075  
Unitrode Application Note U-97, SLUA101  
Unitrode Application Note U-110, SLUA053  
11.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSDD5  
28  
Submit Document Feedback  
Product Folder Links: UC1825B-SP  
 
 
 
 
 
 
 
UC1825B-SP  
ZHCSJJ9A APRIL 2019 REVISED DECEMBER 2020  
www.ti.com.cn  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: UC1825B-SP  
English Data Sheet: SLUSDD5  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Jun-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
5962R8768106V9A  
5962R8768106VYC  
ACTIVE  
ACTIVE  
XCEPT  
CFP  
KGD  
HKT  
0
25  
1
RoHS & Green  
Call TI  
N / A for Pkg Type  
N / A for Pkg Type  
-55 to 125  
-55 to 125  
Samples  
Samples  
16  
RoHS-Exempt  
& Green  
Call TI  
5962R8768106VY  
C
UC1825BHKT-SP  
UC1825BHKT/EM  
ACTIVE  
CFP  
HKT  
16  
1
RoHS-Exempt  
& Green  
Call TI  
N / A for Pkg Type  
25 to 25  
UC1825BHKT/EM  
EVAL ONLY  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Jun-2022  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
5962R8768106VYC  
UC1825BHKT/EM  
HKT  
HKT  
CFP (HSL)  
CFP (HSL)  
16  
16  
1
1
506.98  
506.98  
26.16  
26.16  
6220  
6220  
NA  
NA  
Pack Materials-Page 1  
PACKAGE OUTLINE  
HKT0016A  
CFP - 2.13 mm max height  
S
C
A
L
E
0
.
7
0
0
CERAMIC DUAL FLATPACK  
7.442  
7.137  
B
A
14X 1.27  
16  
1
10.414  
9.652  
2X 8.89  
8
9
0.482  
16X  
0.382  
0.2  
C A  
B
0.177  
0.097  
C
2.13 MAX  
5.36  
5.06  
0.432  
0.254  
25.400  
24.384  
(5.21)  
9
8
(10.03)  
1
16  
PIN 1 ID  
4221021/B 06/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This package is hermetically sealed with a metal lid. Lid and cavity are electrically isolated  
4. The terminals are gold plated.  
5. Falls within MIL-STD-1835 CDFP-F11A.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY