74SSTUB32868_15 [TI]

28-BIT TO 56-BIT REGISTERED BUFFER WITH ADDRESS-PARITY TEST;
74SSTUB32868_15
型号: 74SSTUB32868_15
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

28-BIT TO 56-BIT REGISTERED BUFFER WITH ADDRESS-PARITY TEST

双倍数据速率
文件: 总23页 (文件大小:434K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
74SSTUB32868  
www.ti.com ......................................................................................................................................................... SCAS835CJUNE 2007REVISED MARCH 2009  
28-BIT TO 56-BIT REGISTERED BUFFER WITH ADDRESS-PARITY TEST  
1
FEATURES  
Supports LVCMOS Switching Levels on the  
Chip-Select Gate-Enable, Control, and RESET  
Inputs  
2
Member of the Texas Instruments  
Widebus+ ™Family  
Checks Parity on DIMM-Independent Data  
Inputs  
Pinout Optimizes DDR2 DIMM PCB Layout  
1-to-2 Outputs Supports Stacked DDR2 DIMMs  
One Device Per DIMM Required  
Supports Industrial Temperature Range  
(-40°C to 85°C)  
Chip-Select Inputs Gate the Data Outputs from  
Changing State and Minimizes System Power  
Consumption  
RESET Input Disables Differential Input  
Receivers, Resets All Registers, and Forces  
All Outputs Low, Except QERR  
Output Edge-Control Circuitry Minimizes  
Switching Noise in an Unterminated Line  
APPLICATIONS  
Supports SSTL_18 Data Inputs  
DDR2 registered DIMM  
Differential Clock (CLK and CLK) Inputs  
DESCRIPTION  
This 28-bit 1:2 configurable registered buffer is designed for 1.7-V to 1.9-V VCC operation. One device per DIMM  
is required to drive up to 18 SDRAM loads or two devices per DIMM are required to drive up to 36 SDRAM  
loads.  
All inputs are SSTL_18, except the chip-select gate-enable (CSGEN), control (C), and reset (RESET) inputs,  
which are LVCMOS. All outputs are edge-controlled circuits optimized for unterminated DIMM loads, and meet  
SSTL_18 specifications, except the open-drain error (QERR) output.  
The 74SSTUB32868 operates from a differential clock (CLK and CLK). Data are registered at the crossing of  
CLK going high and CLK going low.  
The 74SSTUB32868 accepts a parity bit from the memory controller on the parity bit (PAR_IN) input, compares it  
with the data received on the DIMM-independent D-inputs (D1D5, D7, D9D12, D17D28 when C = 0; or  
D1D12, D17D20, D22, D24D28 when C = 1) and indicates whether a parity error has occurred on the  
open-drain QERR pin (active low). The convention is even parity, i.e., valid parity is defined as an even number  
of ones across the DIMM-independent data inputs combined with the parity input bit. To calculate parity, all  
DIMM-independent D-inputs must be tied to a known logic state.  
The 74SSTUB32868 includes a parity checking function. Parity, which arrives one cycle after the data input to  
which it applies, is checked on the PAR_IN input of the device. Two clock cycles after the data are registered,  
the corresponding QERR signal is generated.  
ORDERING INFORMATION  
ORDERABLE PART  
TA  
PACKAGE(1)  
Tape and Reel  
TOP-SIDE MARKING  
NUMBER  
-40°C to 85°C  
TFBGA-ZRH  
74SSTUB32868ZRHR  
SB868  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
website at www.ti.com.  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
Widebus+ is a trademark of Texas Instruments.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2007–2009, Texas Instruments Incorporated  
74SSTUB32868  
SCAS835CJUNE 2007REVISED MARCH 2009 ......................................................................................................................................................... www.ti.com  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
DESCRIPTION (CONTINUED)  
If an error occurs and the QERR output is driven low, it stays latched low for a minimum of two clock cycles or  
until RESET is driven low. If two or more consecutive parity errors occur, the QERR output is driven low and  
latched low for a clock duration equal to the parity error duration or until RESET is driven low. If a parity error  
occurs on the clock cycle before the device enters the lowpower mode (LPM) and the QERR output is driven  
low, it stays latched low for the LPM duration plus two clock cycles or until RESET is driven low. The  
DIMM-dependent signals (DCKE0, DCKE1, DODT0, DODT1, DCS0 and DCS1) are not included in the parity  
check computation.  
The C input controls the pinout configuration from register-A configuration (when low) to register-B configuration  
(when high). The C input should not be switched during normal operation. It should be hard-wired to a valid low  
or high level to configure the register in the desired mode.  
In the DDR2 RDIMM application, RESET is specified to be completely asynchronous with respect to CLK and  
CLK. Therefore, no timing relationship can be ensured between the two. When entering reset, the register is  
cleared and the data outputs is driven low quickly, relative to the time to disable the differential input receivers.  
However, when coming out of reset, the register becomes active quickly, relative to the time to enable the  
differential input receivers. As long as the data inputs are low, and the clock is stable during the time from the  
low-to-high transition of RESET until the input receivers are fully enabled, the design of the 74SSTUB32868 must  
ensure that the outputs remain low, thus ensuring no glitches on the output.  
To ensure defined outputs from the register before a stable clock has been supplied, RESET must be held in the  
low state during power up.  
The device supports low-power standby operation. When RESET is low, the differential input receivers are  
disabled, and undriven (floating) data, clock, and reference voltage (VREF) inputs are allowed. In addition, when  
RESET is low, all registers are reset and all outputs are forced low except QERR. The LVCMOS RESET and C  
inputs always must be held at a valid logic high or low level.  
The device also supports low-power active operation by monitoring both system chip select (DCS0 and DCS1)  
and CSGEN inputs and will gate the Qn outputs from changing states when CSGEN, DCS0, and DCS1 inputs  
are high. If CSGEN, DCS0 or DCS1 input is low, the Qn outputs function normally. Also, if both DCS0 and DCS1  
inputs are high, the device will gate the QERR output from changing states. If either DCS0 or DCS1 is low, the  
QERR output functions normally. The RESET input has priority over the DCS0 and DCS1 control and when  
driven low forces the Qn outputs low, and the QERR output high. If the chip-select control functionality is not  
desired, then the CSGEN input can be hard-wired to ground, in which case, the setup-time requirement for DCS0  
and DCS1 would be the same as for the other D data inputs. To control the low-power mode with DCS0 and  
DCS1 only, then the CSGEN input should be pulled up to VCC through a pullup resistor.  
The two VREF pins (A5 and AB5) are connected together internally by approximately 150 . However, it is  
necessary to connect only one of the two VREF pins to the external VREF power supply. An unused VREF pin  
should be terminated with a VREF coupling capacitor.  
2
Submit Documentation Feedback  
Copyright © 2007–2009, Texas Instruments Incorporated  
Product Folder Link(s): 74SSTUB32868  
74SSTUB32868  
www.ti.com ......................................................................................................................................................... SCAS835CJUNE 2007REVISED MARCH 2009  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)(1)  
VALUE  
–0.5 to 2.5  
–0.5 to VCC + 0.5  
–0.5 to VCC + 0.5  
±50  
UNIT  
V
VCC  
VI  
Supply voltage range  
Input voltage range (see notes (2) and  
Output voltage range (see notes (2) and  
(3)  
)
V
(3)  
VO  
IIK  
)
V
Input clamp current (VI < 0, VI > VCC  
Output clamp current (VI < 0, VO > VCC  
Continuous output current (VO = 0 to VCC  
)
mA  
mA  
mA  
mA  
IOK  
IO  
)
±50  
)
±50  
ICC  
Continuous current through each VCC or GND  
±100  
No airflow  
Airflow 200 ft/min  
No airflow  
46.8  
(4)  
RθJA  
Thermal resistance, junctiontoambient (see note  
)
42.9  
k/W  
°C  
(4)  
RθJC  
Tstg  
Thermal resistance, junctiontocase (see note  
)
17.9  
Storage temperature range  
-65 to 150  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The input and output negative voltage ratings may be exceeded if the input and output clamp-current ratings are observed.  
(3) This value is limited to 2.5 V maximum.  
(4) The package thermal impedance is calculated in accordance with JESD 51-7.  
RECOMMENDED OPERATING CONDITIONS  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
NOM  
MAX  
UNIT  
SUPPLY VOLTAGES, CURRENTS AND TEMPERATURE RANGE  
VCC  
VREF  
VTT  
VI  
Supply voltage  
1.7  
0.49 x VCC  
VREF - 40 mV  
0
1.9  
V
V
V
V
V
V
V
V
V
V
Reference voltage  
0.5 x VCC  
0.51 x VCC  
Termination voltage  
VREF VREF + 40 mV  
VCC  
Input voltage  
VIH  
VIL  
AC high-level input voltage  
AC low-level input voltage  
DC high-level input voltage  
DC low-level input voltage  
High-level input voltage  
Low-level input voltage  
Data inputs, DCSn, PAR_IN  
Data inputs, DCSn, PAR_IN  
Data inputs, DCSn, PAR_IN  
Data inputs, DCSn, PAR_IN  
RESET, CSGEN, C  
VREF + 250 mV  
VREF - 250 mV  
VREF - 125 mV  
VIH  
VIL  
VREF + 125 mV  
0.65 x VCC  
VIH  
VIL  
RESET, CSGEN, C  
0.35 x VCC  
1.125  
Common-mode input voltage  
range  
VICR  
CLK, CLK  
0.675  
0.6  
V
VI(PP)  
IOH  
Peak-to-peak input voltage  
High-level output current  
CLK, CLK  
Q outputs  
Q outputs  
QERR output  
V
-8  
8
mA  
IOL  
TA  
Low-level output current  
mA  
°C  
30  
Operating free-air temperature  
-40  
85  
(1) The RESET and Cn inputs of the device must be held at valid logic voltage levels (not floating) to ensure proper device operation. The  
differential inputs must not be floating unless RESET is low. See the TI application report, Implications of Slow or Floating CMOS Inputs,  
literature number SCBA004.  
Copyright © 2007–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): 74SSTUB32868  
74SSTUB32868  
SCAS835CJUNE 2007REVISED MARCH 2009 ......................................................................................................................................................... www.ti.com  
ELECTRICAL CHARACTERISTICS  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
IOH = -100 µA  
VCC  
1.7 V to 1.9 V  
1.7 V  
MIN  
VCC - 0.2  
1.2  
TYP(1)  
MAX  
UNIT  
VOH  
Q outputs  
V
IOH = -6 mA  
IOL = 100 µA  
IOL = 6 mA  
1.7 V to 1.9 V  
1.7 V  
0.2  
0.5  
0.5  
-5  
Q outputs  
QERR  
VOL  
V
IOL = 25 mA  
VI = GND  
1.7 V  
PAR_IN  
II  
VI = VCC  
1.9 V  
25  
±5  
µA  
All other inputs(2)  
QERR outputs  
Static standby(3)  
VI = VCC or GND  
VO = VCC or GND  
RESET = GND  
IOZ  
ICC  
1.9 V  
1.9 V  
±10  
µA  
µA  
(3)  
200  
IO = 0  
RESET = VCC, VI = VIH(AC) or  
VIL(AC)  
Static operating  
80  
mA  
RESET = VCC, VI = VIH(AC) or  
VIL(AC),CLK and CLK switching  
50% duty cycle  
Dynamic operating −  
clock only  
64  
37  
µA/MHz  
RESET = VCC, VI = VIH(AC) or  
VIL(AC), CLK and CLK switching  
50% duty cycle, One data input  
switching at one half clock  
frequency, 50% duty cycle  
ICC(D)  
IO = 0  
1.8 V  
µA/clock  
MHz/  
D inputs  
Dynamic operating −  
per each data input  
Chip-select-enabled RESET = VCC, VI = VIH(AC) or  
low-power active  
mode clock only  
VIL(AC),CLK and CLK switching  
50% duty cycle  
68  
µA/MHz  
RESET = VCC, VI = VIH(AC) or  
Chip-select-enabled VIL(AC), CLK and CLK switching  
ICC(DLP)  
IO = 0  
1.8 V  
1.8 V  
µA/clock  
MHz/  
low-power active  
mode  
50% duty cycle, One data input  
switching at one half clock  
frequency, 50% duty cycle  
2.7  
D inputs  
Data inputs, DCSn,  
PAR_IN, CSGEN  
VI = VREF ±250 mV  
2
2
2.5  
4
3
3
CI  
pF  
CLK, CLK  
RESET  
VICR = 0.9 V, VI(PP) = 600 mV  
VI = VCC or GND  
(1) All typical values are at VCC = 1.8 V, TA = 25°C.  
(2) Each VREF pin (A5 or AB5) should be tested independently, with the other (untested) pin open.  
(3) The maximum static standby current ICC is 100 µA if the device is exposed to commercial temperature range (0°C to 70°C) only. For  
industrial temperature range (-40°C to 85°C), the static ICC is 200 µA.  
4
Submit Documentation Feedback  
Copyright © 2007–2009, Texas Instruments Incorporated  
Product Folder Link(s): 74SSTUB32868  
74SSTUB32868  
www.ti.com ......................................................................................................................................................... SCAS835CJUNE 2007REVISED MARCH 2009  
PACKAGE  
(TOP VIEW)  
Terminal Assignment for Register-A (C = 0)  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
V
Q1A  
Q2A  
Q1B  
Q2B  
A
B
D2  
D4  
D1  
D3  
C
GND  
GND  
REF  
A
B
C
D
V
V
V
V
CC  
CC  
CC  
CC  
D6  
(DCKE1)  
Q3A  
Q4A  
Q5A  
Q3B  
Q4B  
Q5B  
C
D
E
D5  
D7  
GND  
GND  
GND  
GND  
D8  
(DCKE0)  
V
V
V
V
CC  
CC  
CC  
CC  
E
F
G
H
J
Q6A  
(QCKE1A)  
D9  
GND  
GND  
GND  
GND  
Q8A  
(QCKE0A)  
Q6B  
(QCKE1B)  
V
V
V
V
Q7A  
F
G
H
D10  
D11  
D12  
CC  
CC  
CC  
CC  
Q10A  
Q12A  
Q9A  
Q7B  
GND  
GND  
GND  
GND  
Q8B  
(QCKE0B)  
K
L
V
V
V
V
Q11A  
CC  
CC  
CC  
CC  
D13  
(DCS1)  
Q13A  
(QCS1A)  
Q10B  
Q9B  
J
GND  
GND  
GND  
GND  
M
N
P
R
T
D14  
(DCS0)  
Q14A  
(QCS0A)  
V
V
V
V
Q12B  
Q14B  
(QCS0B) (QCS1B)  
Q15B Q16B  
(QODT0B) (QODT1B)  
Q11B  
Q13B  
K
L
CC  
CC  
CC  
CC  
PAR_IN  
QERR  
GND  
CLK  
CSGEN  
GND  
GND  
GND  
V
V
V
M
CLK  
D15  
RESET  
Q15A  
CC  
CC  
CC  
U
V
Q17B  
Q19B  
Q18B  
Q20B  
N
P
GND  
GND  
GND  
(DODT0) (QODT0A)  
W
Y
D16 Q16A  
(DODT1) (QODT1A)  
V
V
V
V
CC  
CC  
CC  
CC  
Q17A  
Q19A  
Q21A  
Q18A  
Q20A  
Q22A  
Q21B  
Q22B  
Q23B  
R
T
D17  
D18  
D19  
GND  
GND  
GND  
GND  
AA  
AB  
V
V
V
V
CC  
CC  
CC  
CC  
U
GND  
GND  
GND  
GND  
V
V
V
V
Q23A  
D22  
Q24A  
Q25A  
Q24B  
Q25B  
V
D20  
D21  
CC  
CC  
CC  
CC  
W
GND  
GND  
GND  
GND  
V
V
V
V
Q26A  
Q27A  
Q28A  
Q26B  
Q27B  
Y
D23  
D25  
D24  
D26  
CC  
CC  
CC  
CC  
AA  
GND  
NC  
GND  
GND  
GND  
V
V
V
Q28B  
AB  
D27  
D28  
CC  
REF  
CC  
A. Each pin name in parentheses indicates the DDR2 DIMM signal name.  
B. NC - No internal connection.  
Copyright © 2007–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): 74SSTUB32868  
74SSTUB32868  
SCAS835CJUNE 2007REVISED MARCH 2009 ......................................................................................................................................................... www.ti.com  
Logic Diagram for Register-A Configuration (Positive Logic); C = 0  
M2  
RESET  
L1  
CLK  
M1  
CLK  
A5, AB5  
V
REF  
D1, C1  
F2, E2  
H8, F8  
DCKE0,  
DCKE1  
2
QCKE0A,  
QCKE1A  
2
D
R
2
2
2
CLK  
Q
QCKE0B,  
QCKE1B  
N1, P1  
N2, P2  
M7, M8  
DODT0,  
DODT1  
2
QODT0A,  
QODT1A  
2
D
R
2
2
2
CLK  
Q
QODT0B,  
QODT1B  
K1  
K2  
L7  
DCS0  
QCS0A  
QCS0B  
D
R
CLK  
Q
L2  
J1  
CSGEN  
DCS1  
J2  
L8  
QCS1A  
QCS1B  
D
R
CLK  
Q
One of 22 Channels  
A2  
D1  
A7  
A8  
CE  
Q1A  
Q1B  
D
R
Q
CLK  
To 21 Other Channels  
(D2−D5, D7, D9−D12, D17−D28)  
6
Submit Documentation Feedback  
Copyright © 2007–2009, Texas Instruments Incorporated  
Product Folder Link(s): 74SSTUB32868  
74SSTUB32868  
www.ti.com ......................................................................................................................................................... SCAS835CJUNE 2007REVISED MARCH 2009  
Parity Logic Diagram for Register-A Configuration (Positive Logic); C = 0  
M2  
RESET  
L1  
CLK  
M1  
CLK  
D1−D5,  
Q1A−Q5A,  
Q7A,  
D1−D5, D7,  
D9−D12,  
D17−D28  
D7,  
D9−D12,  
D17−D28  
D1−D5, D7,  
D9−D12,  
D17−D28  
22  
22  
22  
Q9A−Q12A,  
Q17A−Q28A  
A5, AB5  
D
R
V
22  
REF  
Q
CLK  
CE  
22  
Q1B−Q5B,  
Q7B,  
D1−D5, D7,  
D9−D12,  
D17−D28  
Q9B−Q12B,  
Q17B−Q28B  
22  
L3  
PAR_IN  
D
R
Parity Generator  
and  
Error Check  
M3  
Q
QERR  
CLK  
CE  
K1  
K2  
L7  
DCS0  
QCS0A  
QCS0B  
D
CLK  
Q
R
L2  
J1  
CSGEN  
DCS1  
J2  
L8  
QCS1A  
QCS1B  
D
R
CLK  
Q
Copyright © 2007–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): 74SSTUB32868  
74SSTUB32868  
SCAS835CJUNE 2007REVISED MARCH 2009 ......................................................................................................................................................... www.ti.com  
PACKAGE  
(TOP VIEW)  
Terminal Assignment for Register-B (C = 1)  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
V
Q1A  
Q2A  
Q1B  
Q2B  
A
B
C
D2  
D4  
D1  
D3  
C
GND  
GND  
REF  
A
B
C
D
V
V
V
V
CC  
CC  
CC  
CC  
Q3A  
Q4A  
Q5A  
Q7A  
Q3B  
Q4B  
Q5B  
Q6B  
D6  
D5  
GND  
GND  
GND  
GND  
V
V
V
V
D8  
D7  
D
E
F
CC  
CC  
CC  
CC  
Q6A  
Q8A  
D9  
GND  
GND  
GND  
GND  
E
F
G
H
J
V
V
V
V
D10  
CC  
CC  
CC  
CC  
Q10A  
Q12A  
Q13A  
Q9A  
Q7B  
Q8B  
G
H
D11  
D12  
D13  
GND  
GND  
GND  
GND  
V
V
V
V
Q11A  
CC  
CC  
CC  
CC  
Q10B  
Q9B  
J
K
L
GND  
GND  
GND  
GND  
K
L
(DODT1) (DODT1A)  
D14  
Q14A  
(DODT0) (QODT0A)  
V
V
V
V
Q12B  
Q14B  
Q11B  
Q13B  
CC  
CC  
CC  
CC  
M
N
P
R
T
PAR_IN  
QERR  
GND  
CLK  
CLK  
CSGEN  
RESET  
GND  
GND  
GND  
(QODT0B) (QODT1B)  
Q15B Q16B  
(QCS0B) (QCS1B)  
V
V
V
M
N
P
CC  
CC  
CC  
D15  
(DCS0)  
Q15A  
(QCS0A)  
Q17B  
Q19B  
Q18A  
Q18B  
Q20B  
GND  
GND  
GND  
U
V
D16  
(DCS1)  
Q16A  
(QCS1A)  
V
V
V
V
CC  
CC  
CC  
CC  
W
Y
Q21B  
(QCKE0B)  
Q17A  
R
D17  
GND  
GND  
GND  
GND  
V
V
V
V
Q19A  
Q20A  
Q22A  
Q22B  
T
D18  
D19  
AA  
AB  
CC  
CC  
CC  
CC  
Q21A  
(QCKE0A)  
Q23B  
(QCKE1B)  
U
GND  
GND  
GND  
GND  
Q23A  
(QCKE1A)  
V
V
V
V
Q24A  
Q25A  
Q26A  
Q24B  
Q25B  
Q26B  
V
W
Y
D20  
CC  
CC  
CC  
CC  
D21  
(DCKE0)  
D22  
D24  
GND  
GND  
GND  
GND  
D23  
(DCKE1)  
V
V
V
V
CC  
CC  
CC  
CC  
Q27A  
Q28A  
Q27B  
Q28B  
AA  
AB  
D25  
D27  
D26  
D28  
GND  
NC  
GND  
GND  
GND  
V
V
V
CC  
REF  
CC  
8
Submit Documentation Feedback  
Copyright © 2007–2009, Texas Instruments Incorporated  
Product Folder Link(s): 74SSTUB32868  
74SSTUB32868  
www.ti.com ......................................................................................................................................................... SCAS835CJUNE 2007REVISED MARCH 2009  
Logic Diagram for Register-B Configuration (Positive Logic); C = 1  
M2  
RESET  
L1  
CLK  
M1  
CLK  
A5, AB5  
V
REF  
W1, Y1  
U2, V2  
R8, U8  
DCKE0,  
DCKE1  
2
QCKE0A,  
QCKE1A  
2
D
R
2
2
2
CLK  
Q
QCKE0B,  
QCKE1B  
K1, J1  
K2, J2  
L7, L8  
DODT0,  
DODT1  
2
QODT0A,  
QODT1A  
2
D
R
2
2
2
CLK  
Q
QODT0B,  
QODT1B  
N1  
N2  
M7  
DCS0  
QCS0A  
QCS0B  
D
R
CLK  
Q
L2  
P1  
CSGEN  
DCS1  
P2  
QCS1A  
QCS1B  
D
R
CLK  
Q
M8  
One of 22 Channels  
A2  
D1  
A7  
A8  
CE  
Q1A  
Q1B  
D
R
Q
CLK  
To 21 Other Channels  
(D2−D12, D17−D20, D22, D24−D28)  
Copyright © 2007–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): 74SSTUB32868  
74SSTUB32868  
SCAS835CJUNE 2007REVISED MARCH 2009 ......................................................................................................................................................... www.ti.com  
Parity Logic Diagram for Register-B Configuration (Positive Logic); C = 1  
M2  
RESET  
L1  
CLK  
M1  
CLK  
D1−D12,  
Q1A−Q12A,  
Q17A−Q20A,  
Q22A,  
D1−D12,  
D17−D20,  
D22,  
D17−D20, D22,  
D24−D28  
D1−D12,  
22  
22  
22  
D24−D28  
D17−D20, D22,  
D24−D28  
Q24A−Q28A  
A5, AB5  
D
R
V
22  
REF  
Q
CLK  
CE  
22  
Q1B−Q12B,  
Q17B−Q20B,  
Q22B,  
D1−D12,  
22  
D17−D20, D22,  
D24−D28  
Q24B−Q28B  
L3  
PAR_IN  
D
R
Parity Generator  
and  
Error Check  
M3  
Q
CLK  
CE  
QERR  
N1  
N2  
M7  
DCS0  
QCS0A  
QCS0B  
D
CLK  
Q
R
L2  
P1  
CSGEN  
DCS1  
P2  
QCS1A  
QCS1B  
D
R
CLK  
Q
M8  
10  
Submit Documentation Feedback  
Copyright © 2007–2009, Texas Instruments Incorporated  
Product Folder Link(s): 74SSTUB32868  
74SSTUB32868  
www.ti.com ......................................................................................................................................................... SCAS835CJUNE 2007REVISED MARCH 2009  
Timing Diagram for 74SSTUB32868 During Start-Up (RESET Switches From L to H)  
RESET  
CSGEN  
DCS0  
DCS1  
n
n + 1  
n + 2  
n + 3  
n + 4  
CLK  
CLK  
t
t
t
act  
su  
h
Dn, DODTn,  
DCKEn  
(see Note A)  
t
t
pdm, pdmss  
CLK to Q  
Qn, QODTn,  
QCKEn  
t
t
su  
h
PAR_IN  
(see Note A)  
t
t
t
PHL, PLH  
PHL  
CLK to QERR  
CLK to QERR  
QERR  
(see Note B)  
Data to QERR Latency  
H, L, or X  
H or L  
A. After RESET is switched from low to high, all data and PAR_IN input signals must be set and held low for a minimum  
time of tact max, to avoid a false error.  
B. If the data is clocked in on the n-clock pulse, the QERR output signal is generated on the n + 2 clock pulse, and it is  
valid on the n + 3 clock pulse.  
Copyright © 2007–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): 74SSTUB32868  
74SSTUB32868  
SCAS835CJUNE 2007REVISED MARCH 2009 ......................................................................................................................................................... www.ti.com  
Timing Diagram for 74SSTUB32868 During Normal Operation (RESET = H)  
RESET  
CSGEN  
DCS0  
DCS1  
n
n + 1  
n + 2  
n + 3  
n + 4  
CLK  
CLK  
t
t
su  
h
Dn, DODTn,  
DCKEn  
t
t
pdm’ pdmss  
CLK to Q  
Qn, QODTn,  
QCKEn  
t
t
su  
h
PAR_IN  
t
t
PHL’ PLH  
CLK to QERR  
QERR  
(see Note A)  
Data to QERR Latency  
Output signal is dependent on  
the prior unknown input event  
Unknown input  
event  
H or L  
A. If the data is clocked in on the n-clock pulse, the QERR output signal is generated on the n + 2 clock pulse, and it is  
valid on the n + 3 clock pulse. If an error occurs and the QERR output is driven low, it stays latched low for a  
minimum of two clock cycles or until RESET is driven low.  
12  
Submit Documentation Feedback  
Copyright © 2007–2009, Texas Instruments Incorporated  
Product Folder Link(s): 74SSTUB32868  
74SSTUB32868  
www.ti.com ......................................................................................................................................................... SCAS835CJUNE 2007REVISED MARCH 2009  
Timing Diagram for 74SSTUB32868 During Shut-Down (RESET Switches From H to L)  
RESET  
t
inact  
CSGEN  
(see Note A)  
DCS0  
(see Note A)  
DCS1  
(see Note A)  
CLK  
(see Note A)  
CLK  
(see Note A)  
Dn, DODTn,  
DCKEn  
(see Note A)  
t
RPHL  
RESET to Q  
Qn, QODTn,  
QCKEn  
PAR_IN  
(see Note A)  
QERR  
t
RPHL  
RESET to QERR  
H, L, or X  
H or L  
A. After RESET is switched from high to low, all data and clock input signals must be held at logic levels (not floating) for  
a minimum time of tinact max, to avoid a false error.  
Copyright © 2007–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): 74SSTUB32868  
74SSTUB32868  
SCAS835CJUNE 2007REVISED MARCH 2009 ......................................................................................................................................................... www.ti.com  
TERMINAL FUNCTIONS  
ELECTRICAL  
CHARACTERISTICS  
TERMINAL NAME  
GND  
DESCRIPTION  
Ground  
Ground input  
VCC  
VREF  
CLK  
CLK  
C
Power supply voltage  
Input reference voltage  
Positive master clock input  
Negative master clock input  
1.8 V nominal  
0.9 V nominal  
Differential input  
Differential input  
LVCMOS input  
Configuration control input - Register A or Register B  
Asynchronous reset input resets registers and disables VREF, data and clock  
differential-input receivers. When RESET is low, all the Q outputs are forced low and  
the QERR output is forced high.  
RESET  
LVCMOS input  
Chip select gate enable When high, D1D28(1) inputs are latched only when at least  
one chip select input is low during the rising edge of the clock. When low, the  
D1D28(1) inputs are latched and redriven on every rising edge of the clock.  
CSGEN  
D1-D28  
LVCMOS input  
SSTL_18 input  
Data input clocked in on the crossing of the rising edge of CLK and the falling edge  
of CLK  
Chip select inputs These pins initiate DRAM address/command decodes, and as  
such at least one will be low when a valid address/command is present. The Register  
can be programmed to redrive all D inputs (CSGEN high) only when at least one chip  
select input is low. If CSGEN, DCS0, and DCS1 inputs are high, D1D28(2) inputs will  
be disabled.  
DCS0, DCS1  
SSTL_18 input  
DODT0, DODT1  
DCKE0, DEKE1  
The outputs of this register bit will not be suspended by the DCS0 and DCS1 control.  
The outputs of this register bit will not be suspended by the DCS0 and DCS1 control.  
SSTL_18 input  
SSTL_18 input  
Parity input arrives one clock cycle after the corresponding data input. Pulldown  
resistor of typical 150kto GND.  
SSTL_18 input with  
pulldown  
PAR_IN  
Q1-Q28(3)  
Data outputs that are suspended by the DCS0 and DCS1 control.  
Data output that will not be suspended by the DCS0 and DCS1 control.  
Data output that will not be suspended by the DCS0 and DCS1 control.  
Data output that will not be suspended by the DCS0 and DCS1 control.  
1.8 V CMOS output  
1.8 V CMOS output  
1.8 V CMOS output  
1.8 V CMOS output  
QCS0, QCS1  
QODT0, QODT1  
QCKE0, QEKE1  
Output error bit generated two clock cycles after the corresponding data is  
registered.  
QERR  
NC  
Open-drain output  
No internal connection  
(1) Data inputs = D1D5, D7, D9D12, D17D28 when C = 0.  
Data inputs = D1D12, D17D20, D22, D24D28 when C = 1.  
(2) Data inputs = D1D5, D7, D9D12, D17D28 when C = 0.  
Data inputs = D1D12, D17D20, D22, D24D28 when C = 1.  
(3) Data outputs = Q1Q5, Q7, Q9Q12, Q17Q28 when C = 0.  
Data outputs = Q1Q12, Q17Q20, Q22, Q24Q28 when C = 1.  
14  
Submit Documentation Feedback  
Copyright © 2007–2009, Texas Instruments Incorporated  
Product Folder Link(s): 74SSTUB32868  
74SSTUB32868  
www.ti.com ......................................................................................................................................................... SCAS835CJUNE 2007REVISED MARCH 2009  
FUNCTION TABLE  
INPUTS  
CSGEN  
OUTPUTS  
RESET  
DCS0  
DCS1  
CLK  
CLK  
dn,  
DODTn,  
DCKEn  
Qn  
QCS0  
QCS1  
QODT,  
QCKE  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
L
L
L
L
X
X
X
X
X
X
X
X
X
L
L
H
X
L
L
H
L
L
L
L
L
H
L
L
L or H  
L or H  
Q0  
L
Q0  
L
Q0  
H
Q0  
L
L
H
H
H
L
L
H
X
L
H
L
H
H
L
L or H  
L or H  
Q0  
L
Q0  
H
Q0  
L
Q0  
L
H
H
H
H
H
H
H
H
H
L
H
X
L
H
H
L
H
L
L or H  
L or H  
Q0  
L
Q0  
H
Q0  
H
Q0  
L
H
H
H
H
H
H
L
L or H  
L or H  
H
X
L
H
H
H
H
L
Q0  
Q0  
Q0  
Q0  
L
Q0  
H
Q0  
H
Q0  
L
H
H
H
H
X
L
H
H
H
L or H  
L or H  
Q0  
L
Q0  
L
Q0  
L
X or  
X or  
X or  
X or  
X or  
floating  
floating  
floating  
floating  
floating  
PARITY AND STANDBY FUNCTION  
INPUTS  
OUTPUTS  
(2)  
RESET  
CLK  
CLK  
DCS0  
DCS1  
Σ OF INPUTS = H  
PAR_IN(1)  
QERR  
D1 - D22  
H
H
H
H
H
H
H
H
H
H
L
L
X
Even  
Odd  
Even  
Odd  
Even  
Odd  
Even  
Odd  
X
L
L
H
L
L
X
L
X
H
H
L
L
L
X
H
H
L
X
L
X
L
L
X
L
H
H
X
X
L
X
L
H
(3)  
H
X
H
X
QERR 0  
L or H  
X or floating  
L or H  
X or floating  
X
QERR 0  
H
X or floating  
X or floating  
X
X or floating  
(1) PAR_IN arrives one clock cycle after the data to which it applies.  
(2) This transition assumes that QERR is high at the crossing of CLK going high and CLK going low. If QERR goes low, it stays latched low  
for a minimum of two clock cycles or until RESET is driven low. If two or more consecutive errors occur, the QERR output is driven low  
and latched low for a clock duration equal to the parity error duration or until RESET is driven low. For QERR computation, CSGEN is a  
“don’t care”.  
(3) If DCS0, DCS1 and CSGEN are driven high, the device is placed in a lowpower mode (LPM). If a parity error occurs on the clock cycle  
before the device enters the LPM and the QERR output is driven low, it stays latched low for the LPM duration plus two clock cycles or  
until RESET is driven low.  
Copyright © 2007–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): 74SSTUB32868  
74SSTUB32868  
SCAS835CJUNE 2007REVISED MARCH 2009 ......................................................................................................................................................... www.ti.com  
TIMING REQUIREMENTS  
over recommended ranges of supply voltage, load, and operating free-air temperature (see Figure 1 and Note  
(1)  
)
VCC = 1.8 V ±0.1 V  
MIN  
MAX  
UNIT  
MHz  
ns  
f(clock)  
tw  
Clock frequency  
410  
Pulse duration, CLK, CLK high or low  
Differential inputs active time (see Note  
Differential inputs inactive time (see Note  
1
(2)  
tact  
)
10  
15  
ns  
(3)  
tinact  
)
ns  
DCSn before CLK, CLK, CSGEN high  
DCSn before CLK, CLK, CSGEN low  
DODTn, DCKEn, and Data before CLK, CLK↓  
PAR_IN before CLK, CLK↓  
600  
500  
500  
500  
400  
400  
tsu  
Setup time  
Hold time  
ps  
ps  
DCSn, DODTn, DCKEn, and Data after CLK, CLK↓  
PAR_IN after CLK, CLK↓  
th  
(1) All inputs slew rate is 1 V/ns ±20%  
(2) VREF must be held at a valid input level and data inputs must be held low for a minimum time of tact max, after RESET is taken high.  
(3) VREF, data, and clock inputs must be held at valid voltage levels (not floating) for a minimum time of tinact max, after RESET is taken low.  
SWITCHING CHARACTERISTICS  
over recommended ranges of supply voltage, load, and operating free-air temperature (unless otherwise noted)  
VCC = 1.8 V ±0.1 V  
PARAMETER  
fmax (see Figure 2)  
tpdm (1) (production test, see Figure 1)  
FROM (INPUT)  
TO (OUTPUT)  
MIN  
410  
0.5  
1.2  
1
MAX  
UNIT  
MHz  
ns  
CLK and CLK  
CLK and CLK  
Q
1.0  
3
tPLH (see Figure 4)  
ns  
QERR  
tPHL (see Figure 4)  
tRPHL(2) (see Figure 2)  
2.4  
3
RESET  
RESET  
Q
ns  
ns  
tRPLH (see Figure 4)  
QERR  
3
(1) The typical difference between min and max does not exceed 400 ps.  
(2) Includes 350-ps test-load transmission line delay.  
OUTPUT SLEW RATES  
over operating free-air temperature range (unless otherwise noted) (see Figure 3)  
VCC = 1.8 V ±0.1 V  
PARAMETER  
dV/dt_r  
FROM  
20%  
TO (OUTPUT)  
80%  
MIN  
1
MAX  
UNIT  
V/ns  
V/ns  
V/ns  
5
5
1
dV/dt_f  
dV/dt_Δ(1)  
80%  
20%  
1
20% to 80%  
20% to 80%  
(1) The difference between dV/dr_r (rising edge rate) and dV/dt_f (falling edge).  
16  
Submit Documentation Feedback  
Copyright © 2007–2009, Texas Instruments Incorporated  
Product Folder Link(s): 74SSTUB32868  
74SSTUB32868  
www.ti.com ......................................................................................................................................................... SCAS835CJUNE 2007REVISED MARCH 2009  
PARAMETER MEASUREMENT INFORMATION  
V
/2  
CC  
Test  
DUT  
CLK  
Z
= 50 W  
O
Point  
R
= 50 W  
L
Test  
Point  
Clock Inputs  
Out  
Z
= 50 W  
O
CLK  
Test  
Z
= 50 W  
O
Point  
LOAD CIRCUIT  
V
I(PP)  
Timing  
Inputs  
V
/2  
V
/2  
CC  
CC  
t
t
PLH  
PHL  
/2  
V
V
OH  
OL  
Output  
V
/2  
V
CC  
CC  
VOLTAGE WAVEFORMS  
PROPAGATION DELAY TIMES  
Figure 1. Output Load Circuit for Production Test  
Propagation Delay (Design Goal as per JEDEC Specification)  
VCC = 1.8 V ±0.1 V  
PARAMETER  
FROM (INPUT)  
CLK and CLK  
CLK and CLK  
TO (OUTPUT)  
MIN  
MAX  
1.5  
UNIT  
ns  
(1)  
tpdm  
Q
Q
1.1  
(1)  
tpdmss  
1.6  
ns  
(1) Includes 350-ps test-load transmission line delay.  
Copyright © 2007–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): 74SSTUB32868  
74SSTUB32868  
SCAS835CJUNE 2007REVISED MARCH 2009 ......................................................................................................................................................... www.ti.com  
V
CC  
Z
t
= 50 W,  
O
Test  
DUT  
CLK  
= 350 ps  
R
= 1 kW  
Point  
D
L
Output  
Out  
Clock Inputs  
R
= 100 W  
L
Test Point  
C
= 30 pF  
Z
t
= 50 W,  
L
(see Note A)  
O
CLK  
R
= 1 kW  
L
= 350 ps  
Test  
D
Z
t
= 50 W,  
O
Point  
= 350 ps  
D
LOAD CIRCUIT  
t
w
V
V
IH  
IL  
V
V
REF  
Input  
REF  
V
CC  
LVCMOS  
V
/2  
V
/2  
CC  
CC  
RESET  
Input  
VOLTAGE WAVEFORMS  
PULSE DURATION  
0 V  
V
I(PP)  
t
t
act  
inact  
Timing  
Inputs  
V
V
ICR  
I
ICR  
CC  
(see Note B)  
I
I
(operating)  
CC  
90%  
10%  
(standby)  
CC  
t
t
PLH  
PHL  
/2  
VOLTAGE AND CURRENT WAVEFORMS  
INPUTS ACTIVE AND INACTIVE TIMES  
V
OH  
V
/2  
V
Output  
CC  
CC  
V
OL  
VOLTAGE WAVEFORMS  
PROPAGATION DELAY TIMES  
V
I(PP)  
V
V
Timing  
Inputs  
IH  
LVCMOS  
RESET  
Input  
V
V
/2  
ICR  
CC  
IL  
t
PHL  
t
su  
t
h
V
V
V
OH  
IH  
V
/2  
Output  
Input  
V
V
REF  
CC  
REF  
V
OL  
IL  
VOLTAGE WAVEFORMS  
VOLTAGE WAVEFORMS  
SETUP AND HOLD TIMES  
PROPAGATION DELAY TIMES  
A. CL includes probe and jig capacitance.  
B. ICC tested with clock and data inputs held at VCC or GND, and IO = 0 mA.  
C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , input slew  
rate = 1 V/ns ±20% (unless otherwise noted).  
D. The outputs are measured one at a time with one transition per measurement.  
E. VREF = VCC/2  
F. VIH = VREF + 250 mV (ac voltage levels) for differential inputs. VIH = VCC for LVCMOS input.  
G. VIL = VREF - 250 mV (ac voltage levels) for differential inputs. VIL = GND for LVCMOS input.  
H. VI(PP) = 600 mV.  
I.  
tPLH and tPHL are the same as tpd.  
Figure 2. Data Output Load Circuit and Voltage Waveforms  
18  
Submit Documentation Feedback  
Copyright © 2007–2009, Texas Instruments Incorporated  
Product Folder Link(s): 74SSTUB32868  
74SSTUB32868  
www.ti.com ......................................................................................................................................................... SCAS835CJUNE 2007REVISED MARCH 2009  
V
CC  
DUT  
R
= 50 W  
L
V
V
Output  
OH  
Out  
Test Point  
80%  
C
= 10 pF  
20%  
L
(see Note A)  
OL  
dV_f  
dt_f  
LOAD CIRCUIT  
VOLTAGE WAVEFORMS  
HIGH-TO-LOW SLEW-RATE MEASUREMENT  
HIGH-TO-LOW SLEW-RATE MEASUREMENT  
DUT  
dt_r  
dV_r  
Out  
Test Point  
V
OH  
OL  
80%  
C
= 10 pF  
R
= 50 W  
L
(see Note A)  
L
20%  
V
Output  
LOAD CIRCUIT  
VOLTAGE WAVEFORMS  
LOW-TO-HIGH SLEW-RATE MEASUREMENT  
LOW-TO-HIGH SLEW-RATE MEASUREMENT  
A. CL includes probe and jig capacitance.  
B. All  
input  
pulses  
are  
supplied  
by  
generators  
having  
the  
following  
characteristics:  
PRR 10 MHz, ZO = 50 , input slew rate = 1 V/ns ±20% (unless otherwise specified).  
Figure 3. Data Output Slew-Rate Measurement Information  
Copyright © 2007–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): 74SSTUB32868  
74SSTUB32868  
SCAS835CJUNE 2007REVISED MARCH 2009 ......................................................................................................................................................... www.ti.com  
V
V
CC  
I(PP)  
Timing  
Inputs  
DUT  
V
V
ICR  
ICR  
R = 1 kW  
L
t
PHL  
Out  
Test Point  
Output  
V
CC  
C
= 10 pF  
Waveform 1  
L
(see Note A)  
V
/2  
CC  
V
OL  
VOLTAGE WAVEFORMS  
OPEN-DRAIN OUTPUT TRANSITION TIME  
(HIGH-TO-LOW)  
LOAD CIRCUIT  
V
I(PP)  
LVCMOS  
RESET  
Input  
V
CC  
Timing  
Inputs  
V
/2  
V
V
ICR  
CC  
ICR  
0 V  
t
PLH  
t
PHL  
V
OH  
V
OH  
Output  
Output  
0.15 V  
Waveform 2  
0.15 V  
Waveform 2  
0 V  
0 V  
VOLTAGE WAVEFORMS  
VOLTAGE WAVEFORMS  
OPEN-DRAIN OUTPUT TRANSITION TIME  
(LOW-TO-HIGH)  
OPEN-DRAIN OUTPUT TRANSITION TIME  
(LOW-TO-HIGH)  
A. CL includes probe and jig capacitance.  
B. All input pulses are supplied  
PRR 10 MHz, ZO = 50 , input slew rate = 1 V/ns ±20% (unless otherwise specified).  
C. tPLH and tPHL are the same as tpd  
by  
generators  
having  
the  
following  
characteristics:  
.
Figure 4. Error Output Load Circuit and Voltage Waveforms  
20  
Submit Documentation Feedback  
Copyright © 2007–2009, Texas Instruments Incorporated  
Product Folder Link(s): 74SSTUB32868  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Mar-2009  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
74SSTUB32868ZRHR  
ACTIVE  
NFBGA  
ZRH  
176  
1000 Green (RoHS &  
no Sb/Br)  
SNAGCU  
Level-3-260C-168 HR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
Medical  
Security  
Logic  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
Power Mgmt  
power.ti.com  
Transportation and  
Automotive  
www.ti.com/automotive  
Microcontrollers  
RFID  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
Wireless  
www.ti.com/video  
www.ti.com/wireless-apps  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
TI E2E Community Home Page  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2011, Texas Instruments Incorporated  

相关型号:

74SSTV16859DGGRG4

13-BIT TO 26-BIT REGISTERED BUFFER WITH SSTL 2 INPUTS AND OUTPUTS
TI

74SSTV16859NL

D Flip-Flop, SSTV Series, 1-Func, Positive Edge Triggered, 13-Bit, True Output, PQCC56, PLASTIC, VFPQFN-56
IDT

74SSTV16859NL8

Bus Driver, PQCC56
IDT

74SSTV16859NLG

VFQFPN-56, Tray
IDT

74SSTV16859RGQ8G3

13-BIT TO 26-BIT REGISTERED BUFFER WITH SSTL 2 INPUTS AND OUTPUTS
TI

74SSTVF32852ZKFR

24-BIT TO 48-BIT REGISTERED BUFFER WITH SSTL_2 INPUTS AND OUTPUTS
TI

74SSTVN16859CPAG8

TSSOP-64, Reel
IDT

74SW-NWA120-CA

Single Color LED, Amber, Clear, 7.92mm,
VCC

74SW-NWA120-CW

Single Color LED, Amber, Water Clear, 7.92mm,
VCC

74SW-NWA12H-CA

Single Color LED, Amber, Clear, 7.92mm,
VCC

74SW-NWA12H-CW

Single Color LED, Amber, Water Clear, 7.92mm,
VCC

74SW-NWA15H-CW

Single Color LED, Amber, Water Clear, 7.92mm,
VCC