8508401FX [TI]

LS SERIES, DECIMAL DECODER/DRIVER, INVERTED OUTPUT, CDFP16, CERAMIC, FP-16;
8508401FX
型号: 8508401FX
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

LS SERIES, DECIMAL DECODER/DRIVER, INVERTED OUTPUT, CDFP16, CERAMIC, FP-16

驱动 CD 输出元件
文件: 总106页 (文件大小:1781K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
Analog Front End Wideband Mixed-Signal Transceiver  
Check for Samples: AFE7222, AFE7225  
1 INTRODUCTION  
1.1 FEATURES  
1
– TX Path Interpolation by 2 or 4  
• AFE7225  
– RX Path Decimation by 2  
– Dual 12-Bit 250MSPS TX DACs  
– Dual 12-Bit 125MSPS RX ADCs  
• AFE7222  
– Dual 12-Bit 130MSPS TX DACs  
– Dual 12-Bit 65MSPS RX ADCs  
• OPTIONS  
– 3.0V/1.8V Supplies, Low Power  
– Fast Wakeup Modes for Half-Duplex  
– Coarse or Fine Digital Mixer  
– Quadrature Modulation Corrections  
– Clock Input Divide/Multiply  
– Serial LVDS or Interleaved Parallel CMOS  
Interface  
– 64-Pin QFN Package (9mm × 9mm)  
– Dual 12-Bit Auxiliary DACs  
– Dual Input 12-Bit Auxiliary ADC  
1.2 APPLICATIONS  
Portable, Low Power Radio  
Wireless Infrastructure  
Point-to-Point Radio  
Pico-Cell BTS  
1.3 DESCRIPTION  
The AFE7225/7222 is an analog front end designed for full- or half-duplex radios. Over-sampling transmit  
12-bit DACs provide output frequencies from baseband to Nyquist. Under-sampling receive 12-bit ADCs  
allow analog inputs from baseband to ~230MHz. Most blocks within the AFE7225/7222 are independently  
controlled for optimization of power consumption versus utilization. Two auxiliary control 12-bit DACs and  
a dual input auxiliary monitoring 12-bit ADC are available via serial interface. Digital features include QMC  
(quadrature modulation correction), interpolation, decimation, RMS/peak power meter and mixers with  
independent NCOs for RX and TX path.  
The AFE7225/7222 is available in a 64-pin 9x9mm QFN package (RGC). The AFE7225/7222 is built on  
Texas Instrument’s low power analog CMOS process and is specified over the full industrial temperature  
range (–40°C to 85°C).  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date. Products conform to  
specifications per the terms of the Texas Instruments standard warranty. Production  
processing does not necessarily include testing of all parameters.  
Copyright © 2011–2012, Texas Instruments Incorporated  
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
1.4 DETAILED BLOCK DIAGRAM  
12b  
RX ADC A  
INP_A_ADC  
INN_A_ADC  
12-Bit ADC  
Outputs  
INP_B_ADC  
INN_B_ADC  
12b  
RX ADC B  
AVDD3_AUX = 3 V  
AVDD3_DAC = 3 V  
DVDD18_DAC = 1.8 V  
AVDD18_ADC = 1.8 V  
DVDD18 = 1.8 V  
SYNC  
SYNC  
SYNC  
VCM  
SYNC  
RX RMS /  
Peak  
Power Meter  
ADC CLK  
DAC CLK  
NCO  
Clock  
Divide/Multiply  
CLKINP  
CLKINN  
SYNC  
Internal  
Reference  
SYNC  
SYNC  
SYNC  
NCO  
DVDD18_CLK = 1.8 V  
BIASJ  
IOUTP_A_DAC  
IOUTN_A_DAC  
IOUTP_B_DAC  
IOUTN_B_DAC  
Thermal Pad = Ground  
12b  
TX DAC A  
12-Bit DAC  
Inputs  
12b  
TX DAC B  
SYNC  
SYNC  
SYNC  
SYNC  
12b Aux DAC  
12b Aux DAC  
AUXDAC_A  
AUXDAC_B  
SYNC  
SYNC  
SYNC  
SEN  
SCLK  
SDATA  
SDOUT  
RESET  
PDN  
SPI Interface, Registers and Control  
AUXADC_A  
AUXADC_B  
2-1  
12b Aux ADC  
MUX  
SYNC  
Figure 1-1. Block Diagram of AFE7222/AFE7225  
2
INTRODUCTION  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
 
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
2 DEVICE INFORMATION  
2.1 PACKAGE/ORDERING INFORMATION  
SPECIFIED  
TEMPERATURE  
RANGE  
TRANSPORT  
MEDIA,  
QUANTITY  
PACKAGE  
DESIGNATOR  
PACKAGE  
MARKING  
ORDERING  
NUMBER  
PRODUCT PACKAGE-LEAD  
AFE7222IRGCT  
AFE7222IRGCR  
AFE7222IRGC25  
AFE7225IRGCT  
AFE7225IRGCR  
AFE7225IRGC25  
Tape and Reel  
Tape and Reel  
Tape and Reel  
Tape and Reel  
Tape and Reel  
Tape and Reel  
AFE7222  
AFE7225  
QFN-64  
QFN-64  
RGC  
–40°C to 85°C  
–40°C to 85°C  
AFE7222I  
RGC  
AFE7225I  
2.2 DEVICE PINOUT, CMOS INPUT/OUTPUT MODE  
RGC Package  
(Top View)  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
48  
AVDD18_ADC  
INN_B_ADC  
ADCDATA6  
1
2
3
4
5
6
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
ADC_DCLKOUT  
ADCDATA7  
ADCDATA8  
ADCDATA9  
ADCDATA10  
ADCDATA11  
DVDD18  
INP_B_ADC  
Thermal pad connected to ground  
AVDD18_ADC  
INN_A_ADC  
INP_A_ADC  
AVDD18_ADC  
7
8
CLKINN  
64-QFN  
9
CLKINP  
SYNCIN  
DVDD18_CLK  
10  
11  
12  
13  
14  
15  
16  
DACDATA0  
AVDD3_DAC  
IOUTP_A_DAC  
IOUTN_A_DAC  
AVDD3_DAC  
DACDATA1  
DACDATA2  
DACDATA3  
DACDATA4  
DAC_DCLKIN  
DACDATA5  
36  
35  
IOUTP_B_DAC  
IOUTN_B_DAC  
34  
33  
32  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31  
Figure 2-1. Device Pinout, CMOS Input/Output Mode  
Copyright © 2011–2012, Texas Instruments Incorporated  
DEVICE INFORMATION  
3
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
 
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
Table 2-1. Pin Configuration: CMOS Input/Output Mode  
PIN  
DESCRIPTION  
NO.  
1
NAME  
AVDD18_ADC  
INN_B_ADC  
INP_B_ADC  
AVDD18_ADC  
INN_A_ADC  
INP_A_ADC  
AVDD18_ADC  
CLKINN  
1.8V supply for RX ADCs  
2
RX ADC channel B analog input, negative  
RX ADC channel B analog input, positive  
1.8V supply for RX ADCs  
3
4
5
RX ADC channel A analog input, negative  
RX ADC channel A analog input, positive  
1.8V supply for RX ADCs  
6
7
8
main clock input, negative side if differential mode, TX side if single-ended 2 clock mode  
main clock input, positive side if differential mode, RX side if single-ended 2 clock mode  
1.8V supply for Clocking circuit  
9
CLKINP  
10  
11  
12  
13  
14  
15  
16  
17  
DVDD18_CLK  
AVDD3_DAC  
IOUTP_A_DAC  
IOUTN_A_DAC  
AVDD3_DAC  
IOUTP_B_DAC  
IOUTN_B_DAC  
AVDD3_DAC  
3V supply for TX DACs  
TX DAC channel A current output, positive (current sink DACs)  
TX DAC channel A current output, negative (current sink DACs)  
3V supply for TX DACs  
TX DAC channel B current output, positive (current sink DACs)  
TX DAC channel B current output, negative (current sink DACs)  
3V supply for TX DACs  
sets the TX DAC output current (resistor from pin to ground). Use 960 Ohm to set a full scale current of  
20 mA.  
18  
BIASJ  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
DVDD18_DAC  
AUXDAC_A  
AUXDAC_B  
AVDD3_AUX  
AUXADC_A  
AUXADC_B  
AVDD18_ADC  
DACDATA11  
DACDATA10  
DACDATA9  
DACDATA8  
DACDATA7  
DACDATA6  
DVDD18  
1.8V DAC digital supply  
auxiliary DAC channel A output, current sourcing up to 7.5mA (SPI programmable)  
auxiliary DAC channel B output, current sourcing up to 7.5mA (SPI programmable)  
3V supply for auxiliary ADC/DACs  
auxiliary ADC channel A input  
auxiliary ADC channel B input  
1.8V supply for RX ADCs  
CMOS data input for TX data, MSB of TX DACs  
CMOS data input for TX data  
CMOS data input for TX data  
CMOS data input for TX data  
CMOS data input for TX data  
CMOS data input for TX data  
1.8V supply for digital interface  
DACDATA5  
DAC_DCLKIN  
DACDATA4  
DACDATA3  
DACDATA2  
DACDATA1  
DACDATA0  
SYNCIN  
CMOS data input for TX data  
CMOS clock input for TX data. Send clock with data.  
CMOS data input for TX data  
CMOS data input for TX data  
CMOS data input for TX data  
CMOS data input for TX data  
CMOS data input for TX data. LSB of TX DACs  
CMOS sync input. Used to reset internal clock dividers and reset TX data FIFO pointer  
1.8V supply for digital interface  
DVDD18  
ADCDATA11  
ADCDATA10  
ADCDATA9  
ADCDATA8  
ADCDATA7  
CMOS data output for RX data, MSB of RX ADCs  
CMOS data output for RX data  
CMOS data output for RX data  
CMOS data output for RX data  
CMOS data output for RX data  
4
DEVICE INFORMATION  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
Table 2-1. Pin Configuration: CMOS Input/Output Mode (continued)  
PIN  
DESCRIPTION  
NO.  
47  
48  
49  
50  
51  
52  
53  
54  
55  
NAME  
ADC_DCLKOUT  
ADCDATA6  
DVDD18  
CMOS clock output for RX data  
CMOS data output for RX data  
1.8V supply for digital interface  
CMOS data output for RX data  
CMOS data output for RX data  
CMOS data output for RX data  
CMOS data output for RX data  
CMOS data output for RX data  
ADCDATA5  
ADCDATA4  
ADCDATA3  
ADCDATA2  
ADCDATA1  
ADCDATA0  
CMOS data output for RX data, LSB of RX ADCs  
Can be programmed as global powerdown (deep sleep), fast recovery powerdown (light sleep) or TX/RX  
switch. Active high.  
56  
PDN  
57  
58  
59  
60  
61  
62  
SEN  
SDATA  
SPI enable (1.8V CMOS)  
SPI data input (1.8V CMOS)  
SPI clock input (1.8V CMOS)  
SPI data output (1.8V CMOS)  
Reset the SPI. Active high (1.8V CMOS).  
1.8V supply for RX ADCs  
SCLK  
SDOUT  
RESET  
AVDD18_ADC  
Common mode voltage output. Outputs the ideal common mode input voltage for the ADC. Nominally  
around 0.95V.  
63  
64  
VCM  
AVDD18_ADC  
VSS  
1.8V supply for RX ADCs  
Thermal  
pad  
Connect thermal pad to the board ground  
Copyright © 2011–2012, Texas Instruments Incorporated  
DEVICE INFORMATION  
5
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
2.3 DEVICE PINOUT, LVDS INPUT/OUTPUT MODE  
RGC Package  
(Top View)  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
AVDD18_ADC  
INN_B_ADC  
INP_B_ADC  
AVDD18_ADC  
NC  
1
2
3
4
5
6
7
8
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
ADC_FCLKOUTP  
ADC_FCLKOUTN  
ADCB_DATA_0P  
ADCB_DATA_0N  
ADCB_DATA_1P  
ADCB_DATA_1N  
DVDD18  
Thermal pad connected to ground  
INN_A_ADC  
INP_A_ADC  
AVDD18_ADC  
CLKINN  
CLKINP  
64-QFN  
9
SYNCINN  
DVDD18_CLK  
AVDD3_DAC  
IOUTP_A_DAC  
IOUTN_A_DAC  
AVDD3_DAC  
IOUTP_B_DAC  
IOUTN_B_DAC  
10  
11  
12  
13  
14  
15  
16  
SYNCINP  
DACB_DATA_1N  
DACB_DATA_1P  
DACB_DATA_0N  
DACB_DATA_0P  
DAC_DCLKINN  
DAC_DCLKINP  
37  
36  
35  
34  
33  
32  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31  
Figure 2-2. Device Pinout, LVDS Input/Output Mode  
Table 2-2. Pin Configuration: LVDS Input/Output Mode  
PIN  
DESCRIPTION  
NO.  
1
NAME  
AVDD18_ADC  
INN_B_ADC  
INP_B_ADC  
AVDD18_ADC  
INN_A_ADC  
INP_A_ADC  
AVDD18_ADC  
CLKINN  
1.8V supply for RX ADCs  
2
RX ADC channel B analog input, negative  
RX ADC channel B analog input, positive  
1.8V supply for RX ADCs  
3
4
5
RX ADC channel A analog input, negative  
RX ADC channel A analog input, positive  
1.8V supply for RX ADCs  
6
7
8
main clock input, negative side if differential mode, TX side if single-ended 2 clock mode  
6
DEVICE INFORMATION  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
Table 2-2. Pin Configuration: LVDS Input/Output Mode (continued)  
PIN  
DESCRIPTION  
NO.  
9
NAME  
CLKINP  
main clock input, positive side if differential mode, RX side if single-ended 2 clock mode  
1.8V supply for Clocking circuit  
10  
11  
12  
13  
14  
15  
16  
17  
DVDD18_CLK  
AVDD3_DAC  
IOUTP_A_DAC  
IOUTN_A_DAC  
AVDD3_DAC  
IOUTP_B_DAC  
IOUTN_B_DAC  
AVDD3_DAC  
3V supply for TX DACs  
TX DAC channel A current output, positive (current sink DACs)  
TX DAC channel A current output, negative (current sink DACs)  
3V supply for TX DACs  
TX DAC channel B current output, positive (current sink DACs)  
TX DAC channel B current output, negative (current sink DACs)  
3V supply for TX DACs  
sets the TX DAC output current (resistor from pin to ground). Use 960 Ohm to set a full scale current of  
20 mA.  
18  
BIASJ  
19  
20  
DVDD18_DAC  
AUXDAC_A  
AUXDAC_B  
AVDD3_AUX  
AUXADC_A  
AUXADC_B  
AVDD18_ADC  
1.8V DAC digital supply  
auxiliary DAC channel A output, current sourcing up to 7.5mA (SPI programmable)  
21  
auxiliary DAC channel B output, current sourcing up to 7.5mA (SPI programmable)  
22  
3V supply for auxiliary ADC/DACs  
23  
auxiliary ADC channel A input  
24  
auxiliary ADC channel B input  
25  
1.8V supply for RX ADCs  
26, 27  
26  
LVDS Wire 1 data input for Channel A TX data – inactive in 1-wire mode, LSB byte in 2-wire mode  
DAC_DATA_11  
DAC_DATA_10  
Positive  
27  
Negative  
28, 29  
28  
LVDS Wire 0 data input for Channel A TX data – active in 1-wire mode, MSB byte in 2-wire mode  
DAC_DATA_9  
DAC_DATA_8  
Positive  
29  
Negative  
30, 31  
30  
LVDS frame clock input  
DAC_FCLKINP  
DAC_FCLKINN  
DVDD18  
Positive  
31  
Negative  
32  
1.8V supply for digital interface  
33, 34  
33  
LVDS bit clock input  
DAC_DCLKINP  
DAC_DCLKINN  
Positive  
34  
Negative  
35, 36  
35  
LVDS Wire 0 data input for Channel B TX data – active in 1-wire mode, LSB byte in 2-wire mode  
DACB_DATA_0P  
DACB_DATA_0N  
Positive  
36  
Negative  
37, 38  
37  
LVDS Wire 1 data input for Channel B TX data – inactive in 1-wire mode, MSB byte in 2-wire mode  
DACB_DATA_1P  
DACB_DATA_1N  
Positive  
38  
Negative  
39, 40  
39  
LVDS SYNC input – Used to reset internal clock dividers and reset TX data FIFO pointer  
SYNCINP  
SYNCINN  
DVDD18  
Positive  
40  
Negative  
41  
1.8V supply for digital interface  
42, 43  
42  
LVDS Wire 1 data output for Channel B RX data – inactive in 1-wire mode, MSB byte in 2-wire mode  
ADCB_DATA_1N  
ADCB_DATA_1P  
Positive  
43  
Negative  
44, 45  
44  
LVDS Wire 0 data output for Channel B RX data – active in 1-wire mode, LSB byte in 2-wire mode  
ADCB_DATA_0N  
ADCB_DATA_0P  
Positive  
45  
Negative  
Copyright © 2011–2012, Texas Instruments Incorporated  
DEVICE INFORMATION  
7
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
Table 2-2. Pin Configuration: LVDS Input/Output Mode (continued)  
PIN  
DESCRIPTION  
NO.  
46, 47  
46  
NAME  
LVDS frame clock output  
Positive  
ADC_FCLKOUTN  
ADC_FCLKOUTP  
NC  
47  
Negative  
48  
No Connect  
49  
DVDD18  
1.8V supply for digital interface  
LVDS bit clock output  
Positive  
50, 51  
50  
ADC_DCLKOUTN  
ADCDCLKOUTP  
51  
Negative  
52,53  
52  
LVDS Wire 0 data output for Channel A RX data – active in 1-wire mode, MSB byte in 2-wire mode  
ADCA_DATA_0N  
ADCA_DATA_0P  
Positive  
53  
Negative  
54,55  
54  
LVDS Wire 1 data output for Channel A RX data – inactive in 1-wire mode, LSB byte in 2-wire mode  
ADCA_DATA_1N  
ADCA_DATA_1P  
Positive  
55  
Negative  
Can be programmed as global powerdown (deep sleep), fast recovery powerdown (light sleep) or TX/RX  
switch. Active high.  
56  
PDN  
57  
58  
59  
60  
61  
62  
SEN  
SDATA  
SPI enable (1.8V CMOS)  
SPI data input (1.8V CMOS)  
SPI clock input (1.8V CMOS)  
SPI data output (1.8V CMOS)  
Reset the SPI. Active high (1.8V CMOS).  
1.8V supply for RX ADCs  
SCLK  
SDOUT  
RESET  
AVDD18_ADC  
Common mode voltage output. Outputs the ideal common mode input voltage for the ADC. Nominally  
around 0.95V.  
63  
64  
VCM  
AVDD18_ADC  
VSS  
1.8V supply for RX ADCs  
Thermal  
pad  
Connect thermal pad to the board ground  
8
DEVICE INFORMATION  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
3 ELECTRICAL SPECIFICATIONS  
3.1 ABSOLUTE MAXIMUM RATINGS(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–0.3  
–0.3  
–2.4  
–0.3  
–0.3  
–0.3  
–40  
MAX UNIT  
Supply voltage range, *VDD3*  
3.6  
2.1  
3.9  
2.1  
3.9  
2.1  
85  
V
V
Supply voltage range, *VDD18*  
Voltage betweeen *VDD3* to *VDD18*  
V
INP_A_ADC, INM_A_ADC, INP_B_ADC, INM_B_ADC, AUXADC_A, AUXADC_B, CLKINN, CLKINP  
RESET, SCLK, SDATA SEN  
V
V
DAC*_DATA_nP/M, DAC_DCLK  
V
TA  
Operating free-air temperature range  
Operating junction tamperature range  
Storage temperature range  
°C  
°C  
°C  
kV  
TJ  
125  
150  
2
Tstg  
–65  
ESD rating Human Body Model (HBM)  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.  
3.2 THERMAL INFORMATION  
AFE7222/AFE7225  
THERMAL METRIC  
RGC PACKAGE  
UNITS  
64 PINS  
22.8  
6.7  
θJA  
Junction-to-ambient thermal resistance  
θJCtop  
θJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
2.3  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.1  
ψJB  
2.2  
θJCbot  
0.2  
3.3 RECOMMENDED OPERATING CONDITIONS  
over operating free-air temperature range (unless otherwise noted)  
AFE7222  
TYP  
AFE7225  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
1.7  
MAX  
1.9  
MIN  
1.7  
TYP  
1.8  
MAX  
DVDD18 voltage range  
AVDD3 voltage range  
1.8  
1.9  
3.6  
V
V
2.85  
3.0  
3.6  
2.85  
3.0  
Common mode voltage at  
ADC input pins  
VCM-0.05  
VCM  
VCM+0.05 VCM–0.05  
VCM  
VCM+0.05  
V
V
Common mode voltage at  
DAC output pins  
AVDD3  
AVDD3  
ADC_CLK speed(1)  
DAC_CLK speed(1)  
2.5(2)  
1
65  
2.5(2)  
1
125  
250  
MSPS  
MSPS  
130  
(1) See Table 10-1 and Table 10-2 for corresponding maximum interface rates.  
(2) Minimum ADC_CLK speed can be reduced to 0.8 MSPS by writing the following serial interface registers:  
Register address 0x208, value 0x8  
Register address 0x4, value 0x8  
Copyright © 2011–2012, Texas Instruments Incorporated  
ELECTRICAL SPECIFICATIONS  
9
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
 
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
3.4 SUPPLY CHARACTERISTICS  
AVDD18_ADC=1.8V, DVDD18_CLK=1.8V, DVDD18=1.8V, DVDD18_DAC=1.8V, AVDD3_DAC=3.0V, AVDD3_AUX=3.0V,  
IOUTFS=20mA, typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
AFE7225  
POWER IN LVDS MODE  
Dual RX ADC, Dual TX  
DAC with Interpolate by 2,  
2-wire LVDS interface  
FADCCLK = 125 MSPS  
fADCIN = 10 MHz  
UNIT  
FDACCLK = 250 MSPS  
fDACOUT = 10 MHz  
MIN  
TYP  
577  
115  
95  
12  
7
MAX  
Power dissipation, full duplex mode  
Supply current, full duplex mode  
RX and TX active, No input signal applied on ADC and DAC  
650  
mW  
mA  
AVDD18_ADC, RX and TX active, No input signal applied on ADC and DAC  
DVDD18, RX and TX active, No input signal applied on ADC and DAC  
DVDD18_CLK, RX and TX active, No input signal applied on ADC and DAC  
DVDD18_DAC, RX and TX active, No input signal applied on ADC and DAC  
AVDD3_DAC, RX and TX active, No input signal applied on ADC and DAC  
AVDD3_AUX, RX and TX active, No input signal applied on ADC and DAC  
48  
7
Power dissipation, half duplex RX  
mode  
RX active, TX in light sleep, TX clock is off, No input signal applied on ADC and  
DAC  
362  
419  
417  
482  
mW  
mW  
Power dissipation, half duplex TX  
mode  
TX active, RX in light sleep, RX clock is on, No input signal applied on ADC  
and DAC  
Global powerdown enabled  
12  
215  
177  
40  
246  
231  
Power dissipation in Sleep modes  
Fast recovery powerdown enabled, TX/RX sleeping, clocks on  
Fast recovery powerdown enabled, TX/RX sleeping, TX clock off, RX clock on  
TEST CONDITIONS  
mW  
UNIT  
mW  
PARAMETER  
AFE7222/AFE7225  
POWER IN CMOS MODE  
Dual RX ADC, Dual TX  
DAC with Interpolate by 2,  
CMOS interface  
FADCCLK = 65 MSPS  
fADCIN = 10 MHz  
FDACCLK = 130 MSPS  
fDACOUT = 10 MHz  
MIN  
TYP  
MAX  
Power  
(AVDD18_ADC,  
326  
391  
DVDD18_CLK, DVDD18_DAC,  
RX and TX active, No input signal applied on  
AVDD3_DAC, AVDD3_AUX)  
Power dissipation, full duplex mode  
ADC and DAC  
Digital Power(1) (DVDD18)  
72  
398  
77  
40  
9
mW  
mW  
Total Power  
AVDD18_ADC, RX and TX active, No input signal applied on ADC and DAC  
DVDD18, RX and TX active, No input signal applied on ADC and DAC  
DVDD18_CLK, RX and TX active, No input signal applied on ADC and DAC  
DVDD18_DAC, RX and TX active, No input signal applied on ADC and DAC  
AVDD3_DAC, RX and TX active, No input signal applied on ADC and DAC  
AVDD3_AUX, RX and TX active, No input signal applied on ADC and DAC  
Supply current, full duplex mode  
mA  
4
48  
7
Power  
(AVDD18_ADC,  
DVDD18_CLK, DVDD18_DAC,  
AVDD3_DAC, AVDD3_AUX)  
Digital Power(1) (DVDD18)  
176  
211  
282  
Power dissipation, half duplex RX  
mode  
RX active, TX in light sleep, TX clock is off,  
No input signal applied on ADC and DAC  
mW  
mW  
36  
Total Power  
212  
Power  
(AVDD18_ADC,  
DVDD18_CLK, DVDD18_DAC,  
235  
Power dissipation, half duplex TX  
mode  
TX active, RX in light sleep, RX clock is on,  
No input signal applied on ADC and DAC  
AVDD3_DAC, AVDD3_AUX)  
Digital Power(1) (DVDD18)  
56  
Total Power  
291  
(1) These numbers belong to no-load capacitance present on board. The maximum DVDD18 current with CMOS interface depends on the  
actual load capacitance on the digital output lines.  
10  
ELECTRICAL SPECIFICATIONS  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
 
 
 
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
3.5 SUPPLY CHARACTERISTICS (Continued)  
AVDD18_ADC=1.8V, DVDD18_CLK=1.8V, DVDD18=1.8V, DVDD18_DAC=1.8V, AVDD3_DAC=3.0V, AVDD3_AUX=3.0V,  
IOUTFS=20mA, typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
AFE7222/AFE7225  
POWER IN CMOS MODE  
Dual RX ADC, Dual TX  
DAC with Interpolate by 2,  
CMOS interface  
FADCCLK = 65 MSPS  
fADCIN = 10 MHz  
UNIT  
FDACCLK = 130 MSPS  
fDACOUT = 10 MHz  
MIN  
TYP  
12  
MAX  
40  
Global powerdown enabled  
Power dissipation in Sleep modes  
Fast recovery powerdown enabled, TX/RX sleeping, clocks on  
140  
120  
165  
165  
mW  
Fast recovery powerdown enabled, TX/RX sleeping, TX clock off, RX clock on.  
Power Up and Power Down Time in Different Modes  
Differential input clock  
25  
20  
25  
Global powerdown, RX recovery time  
µs  
µs  
Single-ended input clock  
Differential input clock  
Global powerdown in Low power RX  
CMOS mode, RX recovery time (ADC  
running at less than 40 MSPS)  
Single-ended input clock  
13  
Differential input clock  
25  
4
Global powerdown, TX recovery time  
µs  
µs  
Single-ended input clock  
RX clock is ON during powerdown  
RX recovery time in fast recovery  
mode  
5
TX recovery time in fast recovery  
mode  
4
5
µs  
µs  
RX recovery time from RX  
powerdown  
RX clock is on during powerdown  
TX recovery time fromTX powerdown  
4
µs  
Copyright © 2011–2012, Texas Instruments Incorporated  
ELECTRICAL SPECIFICATIONS  
11  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
 
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
3.6 RX ADC ELECTRICAL CHARACTERISTICS  
Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, supplies at nominal voltages, 50% clock  
duty cycle, LVDS output interface, –1dBFS differential input, unless otherwise noted.  
AFE7222  
TYP MAX  
AFE7225  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MIN  
TYP MAX  
Maximum Clock Rate  
65  
12  
125 MSPS  
12 bits  
Resolution  
ANALOG INPUTS  
Differential input range  
2
0.95  
>1  
2
0.95  
>1  
Vpp  
V
VCM  
Common mode output voltage  
Input resistance (DC)  
Input capacitance  
Differential  
MΩ  
pF  
Differential  
4
4
Analog input bandwidth  
550  
40  
550  
40  
MHz  
dB  
CMRR Common mode rejection ratio  
Fin = 10MHz  
DYNAMIC ACCURACY  
No Missing Codes,  
Fin =10MHz  
DNL  
INL  
Differential linearity error  
–0.95  
±0.5  
1.4 –0.95  
±0.5  
1.4 LSB  
1.7 LSB  
Integral linearity error  
Offset error  
Fin = 10MHz  
–1.7  
–15  
±0.2  
2
1.7  
15  
–1.7  
–15  
±0.2  
3
15  
mV  
Offset temperature co-efficient  
>0.005  
>0.005  
mV/°C  
Gain error as a result of internal reference  
inaccuracy alone – EGREF  
–2.5  
2.5  
–2.5  
2.5 %FS  
%FS  
Gain error of channel alone – EGCHAN  
±1  
±1  
DYNAMIC AC CHARACTERISTICS  
Fin = 10MHz  
Fin = 70MHz  
Fin = 140MHz  
Fin = 10MHz  
Fin = 70MHz  
Fin = 140MHz  
67.5  
73  
70.5  
70  
67  
73  
70.7  
70.1  
69.5  
84  
dBFS  
dBFS  
dBFS  
dBc  
SNR  
Signal-to-noise ratio(1)  
68.7  
85  
SFDR Spurious free dynamic range(1)  
81  
79  
dBc  
77  
76  
dBc  
(1) Up to 65MSPS typical SNR and SFDR performance in CMOS interface is same as with LVDS interface.  
12  
ELECTRICAL SPECIFICATIONS  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
3.7 TX DAC ELECTRICAL CHARACTERISTICS  
Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, 50% clock duty cycle, supplies at nominal  
voltages, IOUTFS = 20 mA, DAC output common mode voltage is AVDD3=3.0V, unless otherwise noted.  
AFE7222  
AFE7225  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN TYP  
MAX  
130  
12  
MIN TYP  
MAX  
Maximum clock output rate  
Resolution  
250 MSPS  
12  
Bits  
ANALOG OUTPUTS  
Full scale output current, per DAC  
2
20  
2
20  
mA  
V
IOUTFS = 20 mA,  
Current sink output  
Output voltage compliance range  
AVDD3_DAC –0.5  
AVDD3_DAC+0.5 AVDD3_DAC –0.5  
AVDD3_DAC+0.5  
Output resistance  
Output capacitance  
Offset error  
300  
5
300  
5
kΩ  
pF  
Mid code offset  
±0.03  
±1  
±0.03  
±1  
%FS(1)  
%FS(1)  
%FS(1)  
Gain error  
Internal reference  
Gain mismatch  
Internal reference dual DAC  
±0.5  
±0.5  
DC PERFORMANCE  
INL  
Integral non-linearity  
Fout = 10 MHz  
Fout = 10 MHz  
–2  
±1  
2
–2  
±1  
2
LSB  
LSB  
DNL  
Differential non-linearity  
±0.5  
±0.5  
AC PERFORMANCE  
Noise spectral density  
Fout = 10 MHz, 0 dBFS  
Fout = 10 MHz, 0 dBFS  
Fout = 20 MHz, 0 dBFS  
145.5  
70  
149  
76  
148.5  
70  
151  
76  
dBc/Hz  
dBc  
SFDR  
IMD  
Spurious free dynamic range  
Inter-modulation distortion  
75  
74  
dBc  
Fout = 5.1/6.1 MHz,  
–7 dBFS each  
73  
75  
73  
dBc  
dB  
DAC clock = 122.88 MSPS,  
Fout = 30.72 MHz  
ACLR  
Adjacent channel leakage ratio  
DAC clock = 245.76 MSPS,  
Fout = 61.44 MHz  
73  
(1) %FS = % Differential Full Scale  
3.8 AUXILIARY ADC ELECTRICAL CHARACTERISTICS  
Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, supplies at nominal voltages, unless  
otherwise noted.  
PARAMETER  
TEST CONDITIONS  
AFE7222 / AFE7225  
MIN TYP MAX  
UNIT  
Maximum Clock Rate  
100 kSPS  
12 Bits  
Resolution  
ANALOG INPUTS  
Input voltage range  
1.5  
4
V
Input capacitance  
pF  
Maximum input signal frequency  
10  
kHz  
DC PERFORMANCE  
INL Integral non-linearity  
Static conditions (near DC input)  
–4.5  
±2  
4.5 LSB  
Copyright © 2011–2012, Texas Instruments Incorporated  
ELECTRICAL SPECIFICATIONS  
13  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
 
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
3.9 AUXILIARY DAC ELECTRICAL CHARACTERISTICS  
Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, supplies at nominal voltages, IOUTFS  
=
5mA, 300 Ω termination, unless otherwise noted.  
AFE7222/AFE7225  
PARAMETER  
Maximum Clock Rate  
TEST CONDITIONS  
UNIT  
MIN TYP  
MAX  
Continuous refresh of AUX DAC Channel A from SDATA  
and Channel B from SDOUT  
3.33(1) MSPS  
12 Bits  
Resolution  
ANALOG OUTPUTS  
Output current, per auxDAC  
Output voltage compliance range  
DYNAMIC PERFORMANCE  
2.5  
1.5  
7.5  
mA  
V
INL  
Integral non-linearity  
Static conditions (near DC input)  
Static conditions (near DC input)  
–1.7 ±0.5  
±0.3  
1.7 LSB  
LSB  
DNL  
Differential non-linearity  
(1) 12 bits x (1/SCLK) in direct access mode, SCLK max limit is 40MHz  
3.10 DIGITAL CHARACTERISTICS  
The DC specifications refer to the condition where the digital outputs are not switching, but are permanently at a valid logic  
level 0 or 1. AVDD18*, DVDD18* = 1.8V, AVDD3* = 3.0V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
DIGITAL INPUTS – RESET, SCLK, SDATA, SEN, PDN  
All these pins support 1.8V and 3V CMOS  
logic levels.  
High-level input voltage  
1.3  
V
Low-level input voltage  
0.4  
0.4  
V
DAC DIGITAL INPUTS IN CMOS INTERFACE MODE  
High-level input voltage  
1.8V CMOS logic levels only  
1.3  
V
V
Low-level input voltage  
DAC DIGITAL INPUTS IN LVDS INTERFACE MODE  
Standard swing LVDS with external 100ohms  
termination  
VIDH  
High-level differential input voltage  
350  
mV  
Standard swing LVDS with external 100ohms  
termination  
VIDL  
Low-level differential input voltage  
Input common-mode voltage  
–350  
1.2  
mV  
V
VICM  
DIGITAL OUTPUTS – CMOS INTERFACE – SDOUT, ADC OUTPUTS (IN CMOS INTERFACE MODE)  
High-level output voltage  
DVDD18 – 0.1 DVDD18  
0
V
V
Low-level output voltage  
0.1  
DIGITAL OUTPUTS – LVDS INTERFACE (ADC OUTPUTS IN LVDS MODE)  
VODH High-level differential output voltage  
VODL Low-level differential output voltage  
VOCM Output common-mode voltage  
Standard swing LVDS  
Standard swing LVDS  
235  
375 mV  
–375  
–235 mV  
0.9  
1.05  
1.2  
V
14  
ELECTRICAL SPECIFICATIONS  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
3.11 TIMING REQUIREMENTS  
Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, unless otherwise noted.  
AFE7222  
TYP  
AFE7225  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
MIN  
TYP  
MAX  
SCLK INPUT  
tSCLK  
CLOCK period  
25  
25  
ns  
ns  
ns  
tSCLKH  
tSCLKL  
CLOCK pulse width high  
CLOCK pulse width low  
12.5  
12.5  
12.5  
12.5  
Assuming 50/50 duty cycle  
3.12 TIMING REQUIREMENTS FOR RECEIVE PATH – LVDS AND CMOS MODES  
Typical values are at 25°C, AVDD3_DAC = 3.0 V, AVDD3_AUX = 3.0 V, AVDD18_ADC = 1.8 V, DVDD18_CLK = 1.8 V,  
DVDD18_DAC = 1.8 V, DVDD18 = 1.8 V, sampling frequency = 125 MSPS, sine wave input clock, 1.5 Vpp clock amplitude,  
CLOAD = 5 pF (1), RLOAD = 100 Ω (2), unless otherwise noted. Min and max values are across the full temperature range TMIN = -  
40°C to TMAX = 85°C, AVDD3_DAC = 3.0 V, AVDD3_AUX = 3.0 V, AVDD18_ADC = 1.8 V, DVDD18_CLK = 1.8 V,  
DVDD18_DAC = 1.8 V, DVDD18 = 1.7 V to 1.9 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
ns  
TA  
Aperture delay  
2
±120  
±450  
Aperture delay matching  
Aperture delay matching  
Between two channels on the same device  
ps  
Between two devices at same temperature and DVDD18 supply  
ps  
Jitter added by internal clock distribution, specified as it relates  
to the receive ADC  
TJ  
Aperture jitter  
250  
fs rms  
Default Mode  
16  
33  
Mixer Enabled (RX_MIXER_EN = 1)  
clock  
cycles  
ADC Latency(3)  
RX QMC Gain Phase Correction Enabled  
(RX_QMC_CORR_ENA=1, RX_QMC_CORR_ENB=1)  
22  
LVDS OUTPUT INTERFACE  
2-WIRE MODE, DDR CLOCK(4), Sampling frequency = 125MSPS  
(5)  
tsu  
th  
Data setup time  
Data valid(5) to zero-crossing of CLKOUTP  
0.29  
0.3  
0.42  
0.47  
ns  
ns  
ns  
(5)  
(5)  
Data hold time  
Zero-crossing of CLKOUTP to data becoming invalid  
tPDI  
Clock propagation delay  
Input clock rising edge cross-over to output clock rising edge  
cross-over 10 MSPS Sampling frequency 125 MSPS Ts =  
1/Sampling frequency  
tPDI = tDELAY  
tdelay  
11.5  
13.8 15.5  
±300  
ns  
ps  
Variation of tdelay  
Between two devices at same temperature and DVDD18 supply  
Duty cycle of differential clock, (ADC_DCLKOUTP-  
ADC_DCLKOUTM) 10 MSPS Sampling frequency 125  
MSPS  
LVDS bit clock duty cycle  
50%  
2-WIRE MODE, SDR CLOCK(4), Sampling frequency = 65MSPS  
(5)  
tsu  
th  
Data setup time  
Data valid (5) to zero-crossing of CLKOUTP  
0.85  
1.08  
1.08  
1.21  
ns  
ns  
(5)  
(5)  
Data hold time  
Zero-crossing of CLKOUTP to data becoming invalid  
Input clock rising edge cross-over to output clock rising edge  
cross-over 10 MSPS Sampling frequency 65 MSPS Ts =  
1/Sampling frequency  
tPDI  
Clock propagation delay  
tPDI = 0.5*Ts + tDELAY  
ns  
tdelay  
11.5  
14 16.5  
±300  
ns  
ps  
Variation of tdelay  
Between two devices at same temperature and DVDD18 supply  
Duty cycle of differential clock, (CLKOUTP-CLKOUTM) 10  
MSPS Sampling frequency 65 MSPS  
LVDS bit clock duty cycle  
50%  
1-WIRE MODE (DDR CLOCK ONLY)(4), Sampling frequency = 65MSPS  
(5)  
tsu  
Data setup time  
Data valid (5) to zero-crossing of CLKOUTP  
0.25  
0.39  
ns  
(1) CLOAD is the effective external single-ended load capacitance between each output pin and ground  
(2) RLOAD is the differential load resistance between the LVDS output pair.  
(3) At higher frequencies, tPDI is greater than one clock period and overall latency = ADC latency + 1.  
(4) Measurements are done with a transmission line of 100-Ω characteristic impedance between the device and the load. Setup and hold  
time specifications take into account the effect of jitter on the output data and clock.  
(5) Data valid refers to LOGIC HIGH of +100.0 mV and LOGIC LOW of -100.0 mV.  
Copyright © 2011–2012, Texas Instruments Incorporated  
ELECTRICAL SPECIFICATIONS  
15  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
Typical values are at 25°C, AVDD3_DAC = 3.0 V, AVDD3_AUX = 3.0 V, AVDD18_ADC = 1.8 V, DVDD18_CLK = 1.8 V,  
DVDD18_DAC = 1.8 V, DVDD18 = 1.8 V, sampling frequency = 125 MSPS, sine wave input clock, 1.5 Vpp clock amplitude,  
CLOAD = 5 pF (1), RLOAD = 100 Ω (2), unless otherwise noted. Min and max values are across the full temperature range TMIN = -  
40°C to TMAX = 85°C, AVDD3_DAC = 3.0 V, AVDD3_AUX = 3.0 V, AVDD18_ADC = 1.8 V, DVDD18_CLK = 1.8 V,  
DVDD18_DAC = 1.8 V, DVDD18 = 1.7 V to 1.9 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
(5)  
(5)  
th  
Data hold time  
Zero-crossing of CLKOUTP to data becoming invalid  
0.26  
0.4  
ns  
Input clock rising edge cross-over to output clock rising edge  
cross-over 10 MSPS Sampling frequency 65 MSPS Ts =  
1/Sampling frequency  
tPDI  
tdelay  
Clock propagation delay  
tPDI = 0.5*Ts + tDELAY  
ns  
11.5  
13.5 15.5  
±300  
ns  
ps  
Variation of tdelay  
Between two devices at same temperature and DVDD18 supply  
Duty cycle of differential clock, (CLKOUTP-CLKOUTM) 10  
MSPS Sampling frequency 65 MSPS  
LVDS bit clock duty cycle  
50%  
COMMON  
Rise time measured from -100 mV to +100 mV Fall time  
measured from +100 mV to -100 mV 10 MSPS Sampling  
frequency 125 MSPS  
tRISE  
tFALL  
,
Data rise time, Data fall  
time  
0.08  
0.1  
ns  
ns  
Rise time measured from -100 mV to +100 mV Fall time  
measured from +100 mV to -100 mV 10 MSPS Sampling  
frequency 125 MSPS  
tCLKRISE  
,
Output clock rise time,  
tCLKFALL Output clock fall time  
CMOS OUTPUT INTERFACE (6), Sampling frequency = 105MSPS(7)  
(8)  
(8)  
tsu  
th  
Data setup time  
Data valid to cross-over of ADC_DCLKOUT  
Cross-over of ADC_DCLKOUT to data becoming invalid  
0.5  
1.4  
1.4  
1.8  
ns  
ns  
(8)  
(8)  
Data hold time  
Input clock rising edge cross-over to output clock rising edge  
cross-over 10 MSPS Sampling frequency 105 MSPS Ts =  
1/Sampling frequency  
tPDI  
Clock propagation delay  
tPDI = 0.5*Ts + tDELAY  
ns  
tdelay  
14  
16.5  
19  
ns  
ps  
Variation of tdelay  
Between two devices at same temperature and DVDD18 supply  
±350  
Duty cycle of output clock, ADC_DCLKOUT 10 MSPS ≤  
Sampling frequency 105 MSPS  
Output clock duty cycle  
46%  
Rise time measured from 20% to 80% of DVDD18 Fall time  
measured from 80% to 20% of DVDD18 1 Sampling  
frequency 105 MSPS  
tRISE  
tFALL  
,
Data rise time, Data fall  
time  
0.76  
ns  
ns  
Rise time measured from 20% to 80% of DVDD18 Fall time  
measured from 80% to 20% of DRVDD 1 Sampling frequency  
105 MSPS  
tCLKRISE  
,
Output clock rise time,  
0.74  
tCLKFALL Output clock fall time  
(6) For Fs > 105 MSPS, it is recommended to use external clock for data capture and NOT the device output clock signal  
(ADC_DCLKOUT).  
(7) For Fs > 65MSPS, CMOS output buffers strength is increased by writing serial register bits STR_CTRL<1:0> = '10'.  
(8) Data valid refers to LOGIC HIGH of 1.26 V and LOGIC LOW of 0.54 V.  
16  
ELECTRICAL SPECIFICATIONS  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
 
 
 
 
 
 
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
Table 3-1. LVDS Timings at Lower Sampling Frequencies  
2-WIRE MODE DDR CLOCK  
Setup time, ns  
TYP  
Hold time, ns  
TYP  
Sampling Frequency, MSPS  
MIN  
3.75  
1.99  
1.28  
0.84  
0.59  
0.46  
0.31  
0.29  
MAX  
MIN  
3.64  
1.96  
1.28  
0.85  
0.70  
0.49  
0.36  
0.30  
MAX  
20  
35  
3.93  
2.18  
1.46  
1.06  
0.81  
0.67  
0.52  
0.42  
3.9  
2.2  
50  
1.51  
65  
1.14  
80  
0.90  
95  
0.70  
110  
125  
0.58  
0.47  
Clock propagation delay, tPDI = tDELAY  
tDELAY, ns  
13.8  
Fs 125MSPS  
11.5  
13.8  
15.5  
11.5  
15.5  
2-WIRE MODE, SDR CLOCK  
Setup time, ns  
TYP  
Hold time, ns  
TYP  
Sampling Frequency, MSPS  
MIN  
8.14  
3.89  
2.33  
1.68  
1.22  
0.85  
MAX  
MIN  
7.90  
3.85  
2.51  
1.81  
1.41  
1.08  
MAX  
10  
20  
30  
40  
50  
65  
8.32  
4.08  
2.6  
8.06  
4.01  
2.71  
1.91  
1.48  
1.08  
2.03  
1.64  
1.21  
tDELAY, ns  
14  
Fs 65MSPS  
Clock propagation delay, tPDI = 0.5*Ts + tDELAY  
11.5  
16.5  
1-WIRE MODE, DDR CLOCK  
Setup time, ns  
Hold time, ns  
TYP  
Sampling Frequency, MSPS  
MIN  
1.71  
0.77  
0.36  
0.25  
TYP  
1.90  
0.99  
0.61  
0.39  
MAX  
MIN  
1.67  
0.82  
0.39  
0.26  
MAX  
20  
35  
50  
65  
1.92  
1.04  
0.62  
0.40  
tDELAY, ns  
TYP  
Fs 65MSPS  
Clock propagation delay, tPDI = 0.5*Ts + tDELAY  
MIN  
MAX  
11.50  
13.50  
15.50  
Table 3-2. CMOS Timings at Lower Sampling Frequencies  
Timings specified with respect to CLKOUT  
Sampling Frequency, MSPS  
Setup time, ns  
Hold time, ns  
MIN  
10.90  
4.62  
2.06  
1
TYP  
11.50  
5.25  
2.66  
1.9  
MAX  
MIN  
11.22  
4.99  
2.46  
1.8  
TYP  
11.60  
5.33  
MAX  
20  
40  
65  
2.86  
90  
2.3  
105  
0.5  
1.4  
1.4  
1.8  
tDELAY, ns  
TYP  
Fs 105MSPS  
Clock propagation delay, tPDI = 0.5*Ts + tDELAY  
MIN  
14  
MAX  
19  
16.50  
Copyright © 2011–2012, Texas Instruments Incorporated  
ELECTRICAL SPECIFICATIONS  
17  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
 
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
3.13 TIMING REQUIREMENTS FOR TRANSMIT PATH – LVDS AND CMOS MODES(1)  
Typical values are at 25°C, AVDD3_DAC = 3.0 V, AVDD3_AUX = 3.0 V, AVDD18_ADC = 1.8 V, DVDD18_CLK = 1.8 V,  
DVDD18_DAC = 1.8 V, DVDD18 = 1.8 V, sine wave input clock, 1.5 Vpp clock amplitude, unless otherwise noted. Min and  
max values are across the full temperature range TMIN = -40°C to TMAX = 85°C, AVDD3_DAC = 3.0 V, AVDD3_AUX = 3.0 V,  
AVDD18_ADC = 1.8 V, DVDD18_CLK = 1.8 V, DVDD18_DAC = 1.8 V, DVDD18 = 1.7 V to 1.9 V  
PARAMETER  
DAC Latency  
LVDS INPUT INTERFACE  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
clock  
cycles  
Default Mode  
16  
tsu  
th  
Data setup time  
Data hold time  
Data valid(2) to zero-crossing of DAC_DCLKINP  
0.5  
0.3  
ns  
ns  
(2)  
Zero-crossing of DAC_DCLKINP to data becoming invalid  
CMOS INPUT INTERFACE  
(3)  
tsu  
th  
Data setup time  
Data hold time  
Data valid to cross-over of DAC_DCLKIN  
0.3  
0.5  
ns  
ns  
(3)  
Cross-over of DAC_DCLKIN to data becoming invalid  
(1) Timing parameters are ensured by design and characterization and not tested in production.  
(2) Data valid refers to LOGIC HIGH of +100 mV and LOGIC LOW of -100 mV.  
(3) Data valid refers to LOGIC HIGH of 1.26 V and LOGIC LOW of 0.54 V.  
18  
ELECTRICAL SPECIFICATIONS  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
4 SERIAL PERIPHERAL INTERFACE  
4.1 DESCRIPTION  
The SPI (serial peripheral interface) is used to program the AFE7225/7222. It is used to read data from  
and write data to the registers, from the rms/peak power meter and the auxiliary ADC. It is also used to  
send data to the auxiliary DACs.  
The interface is formed with pins SEN (Serial Interface Enable), SCLK (Serial Interface Clock), SDATA  
(Serial interface input data) and SDOUT (Serial interface output data).  
The serial shift of bits into the device is enabled when SEN is low. Serial data SDATA is latched at every  
rising edge of SCLK when SEN is active (low). The SPI uses a 20-bit serial arrangement – the first 12-bits  
are the register address, and the last 8-bits represent the data for the address.  
The interface can work with SCLK frequency from a frequency of 40MHz down to a few Hertz and also  
with non-50% SCLK duty cycle.  
Direct access modes exist for reading from the auxiliary ADC and writing to the auxiliary DACs by using  
the SPI pins.  
REGISTER DATA  
(D7:D0)  
REGISTER ADDRESS  
(A11:A0)  
SDATA  
SCLK  
SEN  
Figure 4-1. Timing  
Address bits (A11:A8) are referred to as the Page address of the register, and address bits (A7:A0) are  
referred to as the Row address of the register.  
4.2 SPI REGISTER READOUT  
Data stored in a register corresponding to a page can be read out by programming the readout bit  
corresponding to that page. The read out bit for a register addressed by (A11:A0) is the D0 bit of the  
register with the Page address of (A11:A8) and row address of 00000000.  
To read out a particular register, the following steps have to be followed:  
1. Configure SDOUT as a digital output pin using bits  
2. Set the register specific readout bit. This bit can be set by writing the following 20-bit sequence –  
A11:A8,00000000,00000001 where (A11..A8) is the page address of the register whose contents are  
desired to be read out  
3. Once in the readout mode, write the address of the register to be readout as below. The new data  
write is ignored. The data contents of the register come out serially on the SDOUT pin (with MSB first  
format) as shown below.  
Copyright © 2011–2012, Texas Instruments Incorporated  
SERIAL PERIPHERAL INTERFACE  
19  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
REGISTER DATA  
(D7:D0)  
Ignored  
REGISTER ADDRESS  
(A11:A0)  
SDATA  
SCLK  
SEN  
SDOUT  
Contents of addressed register  
(D7..D0)  
Figure 4-2. Timing  
4. If the next register to be read out has the same page address, then repeat Step 3 with the new  
address to be read out.  
5. To exit the register readout mode, write A11:A8,00000000,00000000.  
20  
SERIAL PERIPHERAL INTERFACE  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
 
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
5 REGISTER DESCRIPTIONS  
5.1 TRANSMIT DIGITAL SIGNAL CHAIN REGISTERS  
SYNC  
NCO  
TX A input  
(I channel)  
TX A output  
DAC_CLK  
TX B input  
(Q channel)  
TX B output  
SYNC  
SYNC  
SYNC  
SYNC  
DAC_DCLKIN  
DAC_CLK  
%1,2,4  
Figure 5-1. Signal Chain  
Input data is shifted into the 8-deep FIFO at the rate of DAC_DCLKIN. At its output, the FIFO hands off  
the data using a divided version of the DAC_CLK (based on the interpolation factor). The rest of the signal  
chain runs off DAC_CLK and its divided derivatives.  
Register Name – CONFIG0 – Address 0x103, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
Tx_BYP_SRC  
TX_BYP TX_ChB_PDN_SRC TX_CHB_PDN TX_CHA_PDN_SRC TX_CHA_PDN  
TX_DIS  
TX_DIS – Disables the digital signal chain of both channels in TX . All blocks in digital signal chain are  
powered down, and the output is DAC mid-code. Note: the DACs are not powered down in this mode.  
TX_CHA_PDN – Powers down digital signal chain of Channel A in Tx . Output of the channel is mid code.  
Set TX_CHA_PDN_SRC for this to take effect.  
TX_CHA_PDN_SRC – Setting this causes the value programmed into TX_CHA_PDN to take effect.  
TX_CHB_PDN – Powers down digital signal chain of Channel B in Tx . Output of the channel is mid code.  
Set TX_CHB_PDN_SRC for this to take effect.  
TX_CHB_PDN_SRC – Setting this causes the value programmed into TX_CHB_PDN to take effect.  
Note that when in default mode of operation (none of the register-selectable digital features enabled), all 4  
of above bits (TX_CHA_PDN, TX_CHA_PDN_SRC, TX_CHB_PDN, TX_CHB_PDN_SRC) have to be set  
together to '1' for them to take effect. However, if any of the digital features (like interpolation, Fine mixer,  
Coarse mixer, or QMC gain/phase or offset) are enabled, then the channel A can be independently  
powered down using bits TX_CHA_PDN and TX_CHA_PDN_SRC, and channel B can be independently  
powered down using bits TX_CHB_PDN and TX_CHB_PDN_SRC.  
TX_BYP – The inputs to both the Tx channels are directly passed to the outputs. FIFO is bypassed. Set  
TX_BYP_SRC for this to take effect.  
TX_BYP_SRC – Setting this causes the value programmed into TX_BYP to take effect.  
Copyright © 2011–2012, Texas Instruments Incorporated  
REGISTER DESCRIPTIONS  
21  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
Register Name – CONFIG1 – Address 0x104, Default = 0x10  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
MASK_2_AWAY_DET  
TX_CHB_8_IP_EN  
TX_CHA_8_IP_EN  
TX_CHA_8_IP_EN – Enable the 8- sample mode FIFO mode for Channel A . The 8 samples written into  
the regs 0x11F to 0x12E are repeatedly cycled through, and sent to the DAC A. This is a useful diagnostic  
mode.  
TX_CHB_8_IP_EN – Enable the 8- sample mode FIFO mode for Channel B . The 8 samples written into  
the regs 0x12F to 0x13E are repeatedly cycled through, and sent to the DAC B.  
MASK_2_AWAY_DET – Refer CONFIG58 for a description of the collision condition in the FIFO. Setting  
the MASK_2_AWAY_DET prevents the 2-away condition from triggering collision detection. If collision  
detection is enabled, and 2-away condition occurs, the output samples will be forced to DAC mid code,  
unless MASK_2_AWAY_DET is set.  
Register Name – CONFIG2 – Address 0x105, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
STORE_FIFO_PTRS  
RX_TX_LPBK_SRC  
RX_TX_LPBK  
STORE_FIFO_PTRS – When set , the FIFO Read and Write pointers are written into the register 0x141 at  
the rate of the divided DAC_CLK. The pointers are no longer written to the serial interface regs when  
Register readout is enabled.  
RX_TX_LPBK – When this bit and RX_TX_LPBK_SRC are both set , the input to the TX signal chain is  
tapped from the the final output of the RX signal chain. As is obvious, the ADC_CLK and DAC_CLK rates  
should be the same when using this mode.  
RX_TX_LPBK_SRC – When this bit and RX_TX_LPBK are both set , the input to the TX signal chain is  
tapped from the the final output of the RX signal chain  
The RX to TX loopback is shown below. The dotted arrows illustrate the loopback path.  
Note that though the data going into the TX digital signal chain is looped back internally from the RX  
Digital signal chain, it is still required to give an active DAC_DCLKIN in this mode because the Tx FIFO  
requires it for proper data transfer.  
INP_A_ADC  
12b  
RX ADC A  
INN_A_ADC  
12-bit ADC  
Output  
INP_B_ADC  
INN_B_ADC  
12b  
RX ADC B  
IOUTP_A_DAC  
IOUTN_A_DAC  
IOUTP_B_DAC  
IOUTN_B_DAC  
12b  
TX DAC A  
12-bit DAC  
Input  
12b  
TX DAC B  
Figure 5-2. Loopback  
22  
REGISTER DESCRIPTIONS  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
Register Name – CONFIG3 – Address 0x106, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
FIR2B_MODE FIR1B_MODE  
FIR2A_MODE  
FIR1A_MODE  
TX_INT_MODE_SRC  
TX_INT_MODE(1:0)  
TX_INT_MODE(1:0) – Specifies the interpolation factor. To use this mode, set TX_INT_MODE_SRC to 1.  
VALUE  
INTERPOLATION FACTOR  
0
1
2
3
1
2
4
4
While interpolating by a factor of 2, the DAC_DCLKIN rate should be set to half of the DAC_CLK rate.  
While interpolating by a factor of 4, the DAC_DCLKIN rate should be set to one fourth of the DAC_CLK  
rate. In interpolate by 2 mode , TxFIR1 alone is used. In Interpolate by 4 mode, both TxFIR1, and TxFIR2  
are used.  
TX_INT_MODE_SRC – Needs to be set to 1 when programming TX_INT_MODE(1:0)  
FIR1A_MODE – Specifies whether TxFIR1 in Channel A is in low pass or high pass mode . Set this bit to  
configure the filter in high pass mode. In interpolate by 4 mode, always set TxFIR1 to low pass mode.  
FIR2A_MODE – Specifies whether TxFIR2 in Channel A is in low pass or high pass mode. Set this bit to  
configure the filter in high pass mode  
FIR1B_MODE – Specifies whether TxFIR1 in Channel B is in low pass or high pass mode. Set this bit to  
configure the filter in high pass mode  
FIR2B_MODE – Specifies whether TxFIR2 in Channel B is in low pass or high pass mode . Set this bit to  
configure the filter in high pass mode  
Register Name – CONFIG4 – Address 0x107, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
TX_CMIX_PHASE(1:0)  
TX_CMIX_PHASE_INCR  
TX_CMIX_MODE(1:0)  
TX_CMIX_EN  
TX_CMIX_EN – Enables the Tx Coarse Mixer.  
TX_CMIX_MODE (1:0) – Specifies the mode in which the TX CMIX is configured. Set TX_CMIX_EN for  
this to take effect.  
VALUE  
MIXING MODE  
Normal(Low pass )  
0
1
2
3
Fs /2 (High Pass ) – real mixing mode  
+ Fs/4 – complex mixing mode  
– Fs/4 – complex mixing mode  
TX_CMIX_PHASE_INCR – This bit is a method to control the mixing phase without using the SYNC pin. A  
0 to 1 transition on this bit causes the phase of mixing in the TX CMIX to be incremented by 1 with respect  
to the current phase of mixing. To increment the phase of mixing more than once, clear and then set this  
bit once again. Syncing needs to be disabled for Tx CMIX for this mode to work. (This means that global  
syncing should be disabled, and CMIX-specifc syncing should also be disabled).  
TX_CMIX_PHASE (1:0) – The value programmed into this is applied as the current TX CMIX phase,  
when the CMIX is synced, Syncing needs to be enabled for CMIX for this mode to work. This mode is  
meant to synchronize the phase of mixing across multiple chips.  
Copyright © 2011–2012, Texas Instruments Incorporated  
REGISTER DESCRIPTIONS  
23  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
Register Name – CONFIG5 – Address 0x108, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
Tx_INV_SINC_FIL_EN_SRC  
Tx_INV_SINC_FIL_EN  
TX_DIV_PHASE_  
INCR  
TX_DIV_PHASE(1:0)  
TX_DATA_ROUTE_  
ORDER (1:0)  
TX_DATA_ROUTE_ORDER (1:0) – Specifies the order in which the A and B outputs of the TX Signal  
Chain are routed to the DACs  
VALUE  
ROUTING ORDER  
Normal – DACA gets TX Output A and DACB gets TX Output B  
Both DACs get TX Output A  
0
1
2
3
Both DACs get TX Output B  
Swapped – DACA gets TX Output B and DACB gets TX Output A  
TX_DIV_PHASE (1:0) – The value programmed into this is applied as the TX Divider phase, when the  
divider is synced. The divider here refers to the clock divider that divides the DAC_CLK depending on the  
interpolation factor. For division by 2, there are 2 possible phases of the divided clock. For division by 4,  
there are 4 possible phases. If the divider phase is not synced across chips, then it will cause a phase  
uncertainty in the DAC analog output, and can also cause uncertainty in the CMIX operation.  
TX_DIV_PHASE_INCR – This bit is a method to control the phase of the divided clock without using the  
SYNC pin. A 0 to 1 transition on this bit causes the phase of division in the TX Divider to be incremented  
by 1 with respect to the current phase of division. To increment the phase of division more than once,  
clear and then set this bit once again. Global syncing as well as Syncing for the Tx Divider needs to be  
disabled for this mode to work.  
Tx_INV_SINC_FIL_EN – Enables the Tx Inverse Sinc Filter. Set Tx_INV_SINC_FIL_EN_SRC for this to  
take effect.  
Tx_INV_SINC_FIL_EN_SRC – When set, this allows Tx_INV_SINC_FIL_EN to take effect.  
Register Name – CONFIG6 – Address 0x10B, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
TX_QMC_GAIN_PH_ TX_QMC_OFF_  
SYNC_DIS SYNC_DIS  
<3>  
<2>  
<1>  
<0>  
TX_CMIX_SYNC_  
SRC  
TX_GLOBAL_  
SYNC_DIS  
TX_DIV_  
SYNC_DIS  
TX_CMIX_  
SYNC_DIS  
TX_FIFO_  
SYNC_DIS  
TX_FIFO_SYNC_DIS  
Disables Syncing of the FIFO. This takes effect only when  
TX_GLOBAL_SYNC_DIS is set. This is only a enable/ disable bit – the actual sync source can be set to  
pin or serial interface. When the FIFO is synced, the read and write pointers are initialized such that they  
are separated by 4 positions.This mode is common for both channels.  
TX_CMIX_SYNC_DIS  
Disables Syncing of the Tx CMIX .This takes effect only when  
TX_GLOBAL_SYNC_DIS is set. CMIX syncing refers to setting the phase of the complex mixing. This  
mode is common for both channels.  
TX_DIV_SYNC_DIS – Disables Syncing of the Tx Divider phase .This takes effect only when  
TX_GLOBAL_SYNC_DIS is set. Common for both channels.  
TX_QMC_OFF_SYNC_DIS – Disables Syncing of Tx QMC Offset Correction .This takes effect only when  
TX_GLOBAL_SYNC_DIS is set. This mode is common for both channels.  
TX_QMC_GAIN_PH_SYNC_DIS – Disables Syncing of Tx QMC Gain Phase Correction .This takes effect  
only when TX_GLOBAL_SYNC_DIS is set. This mode is common for both channels.  
TX_GLOBAL_SYNC_DIS – When set, disables global syncing of TX and enables block level syncing.  
When cleared, a rising edge on the selected sync source causes all TX blocks to be synced.  
24  
REGISTER DESCRIPTIONS  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
TX_CMIX_SYNC_SRC – Specifies the sync source for TX CMIX. When cleared, SYNC pin is used as the  
sync source. When set, a rising edge on serial interface bit TX_CMIX_SER_IF_SYNC in Register 0x10D  
is used as the sync source for TX CMIX. This is applicable when TX_GLOBAL_SYNC_DIS is set and  
TX_CMIX_SYNC_DIS is cleared.  
VALUE  
SYNC SOURCE  
Pin  
0
1
Serial interface bit  
Register Name – CONFIG7 – Address 0x10C, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
TX_GLOBAL_  
SYNC_SRC  
TX_QMC_GAIN_PH_  
SYNC_SRC  
TX_QMC_OFF_SYNC_ TX_DIV_SYNC_  
SRC SRC  
TX_FIFO_SYNC_  
SRC  
TX_FIFO_SYNC_SRC  
Specifies the Sync source for TX FIFO. It is applicable when  
TX_GLOBAL_SYNC_DIS is set and TX_FIFO_SYNC_DIS is cleared.  
VALUE  
SYNC SOURCE  
Pin  
0
1
Serial interface bit  
When the value programmed is 1, a rising edge on the serial interface bit TX_FIFO_SER_IF_SYNC in  
register 0x10D is used as the sync source for the FIFO.  
TX_DIV_SYNC_SRC – Specifies the sync source for TX Divider. When cleared, SYNC pin is used as the  
sync source. When set, a rising edge on serial interface bit TX_DIV_SER_IF_SYNC in register 0x10D is  
used as the sync source for TX Divider. This is applicable when TX_GLOBAL_SYNC_DIS is set and  
TX_DIV_SYNC_DIS is cleared.  
TX_QMC_OFF_SYNC_SRC – Specifies the sync source for TX QMC Offset Correction. When cleared,  
SYNC pin is used as the sync source. When set,  
a rising edge on serial interface bit  
TX_QMC_OFF_SER_IF_SYNC in register 0x10D is used as the sync source for TX QMC Offset  
Correction. This is applicable when TX_GLOBAL_SYNC_DIS is set and TX_QMC_OFF_SYNC_DIS is  
cleared.  
TX_QMC_GAIN_PH_SYNC_SRC – Specifies the sync source for TX QMC Gain Phase Correction. When  
cleared, SYNC pin is used as the sync source. When set, a rising edge on serial interface bit  
TX_QMC_GAIN_PH_SER_IF_SYNC in register 0x10D is used as the sync source for TX QMC Gain  
Phase  
Correction.  
This  
is  
applicable  
when  
TX_GLOBAL_SYNC_DIS  
is  
set  
and  
TX_QMC_GAIN_PH_SYNC_DIS is cleared.  
TX_GLOBAL_SYNC_SRC Specifies the sync source for TX. This is applicable when  
TX_GLOBAL_SYNC_DIS is cleared.  
VALUE  
SYNC SOURCE  
0
1
All blocks synced from the SYNC pin  
All blocks synced using serial Interface bit  
When serial interface is specified to be the sync source, a rising edge on the serial interface bit  
TX_GLOB_SER_IF_SYNC in register 0x10D is used as the sync source.  
Copyright © 2011–2012, Texas Instruments Incorporated  
REGISTER DESCRIPTIONS  
25  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
Register Name – CONFIG8 – Address 0x10D, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
TX_QMC_GAIN_PH_ TX_QMC_OFF_  
SER_IF_SYNC SER_IF_SYNC  
<3>  
<2>  
<1>  
<0>  
TX_GLOBAL_SER_  
IF_SYNC  
TX_DIV_SER_ TX_CMIX_SER_ TX_FIFO_SER_  
IF_SYNC IF_SYNC IF_SYNC  
TX_FIFO_SER_IF_SYNC – A rising edge on this bit is used as the sync source for TX FIFO. This is  
applicable when TX_GLOBAL_SYNC_DIS is set, and TX_FIFO_SYNC_DIS is cleared, and  
TX_FIFO_SYNC_SRC specifies serial interface bit to be the sync source for the FIFO.  
TX_CMIX_SER_IF_SYNC – A rising edge on this bit is used as the sync source for TX CMIX. This is  
applicable when TX_GLOBAL_SYNC_DIS is set, and TX_CMIX_SYNC_DIS is cleared, and  
TX_CMIX_SYNC_SRC specifies serial interface bit to be the sync source for the TX CMIX.  
TX_DIV_SER_IF_SYNC – A rising edge on this bit is used as the sync source for TX Divider. This is  
applicable when TX_GLOBAL_SYNC_DIS is set, and TX_DIV_SYNC_DIS is cleared, and  
TX_DIV_SYNC_SRC specifies serial interface bit to be the sync source for the TX Divider.  
TX_QMC_OFF_SER_IF_SYNC – A rising edge on this bit is used as the sync source for TX QMC Offset  
correction block. This is applicable when TX_GLOBAL_SYNC_DIS is set, and TX_QMC_OFF_SYNC_DIS  
is cleared, and TX_QMC_OFF_SYNC_SRC specifies serial interface bit to be the sync source for the TX  
QMC Offset correction.  
TX_QMC_GAIN_PH_SER_IF_SYNC – A rising edge on this bit is used as the sync source for TX QMC  
Gain Phase correction block. This is applicable when TX_GLOBAL_SYNC_DIS is set, and  
TX_QMC_GAIN_PH_SYNC_DIS is cleared, and TX_QMC_GAIN_PH_SYNC_SRC specifies serial  
interface bit to be the sync source for the TX QMC Gain Phase correction.  
TX_GLOBAL_SER_IF_SYNC – A rising edge on this is used as the sync source for TX. This is applicable  
when TX_GLOBAL_SYNC_DIS is cleared, and TX_GLOBAL_SYNC_SRC(1:0) specifies serial interface  
bit to be the sync source for TX.  
Register Name – CONFIG9 – Address 0x10E, Default = 0x00  
<7> <6> <5> <4>  
TX_QMC_CORR_ TX_QMC_OFFSET_  
ENA ENA  
<3>  
<2>  
<1>  
<0>  
TX_QMC_GAIN_PH_  
SYNC_NEEDED  
TX_QMC_OFF_  
SYNC_NEEDED  
TX_QMC_OFF_SYNC_NEEDED – Specifies if syncing is needed for TX QMC Offset Correction . If set,  
QMC Offset values programmed in the serial interface registers are not applied to the QMC Offset  
correction block until a sync is applied.  
TX_QMC_GAIN_PH_SYNC_NEEDED – Specifies if syncing is needed for TX QMC Gain Phase  
Correction. If set, QMC gain and Phase values programmed into the serial interface registers are not  
applied to the QMC Gain Phase correction block until a sync is applied.  
TX_QMC_OFFSET_ENA – Enables TX QMC Offset Correction. Common for both channels.  
TX_QMC_CORR_ENA – Enable TX QMC Gain Phase Correction. Common for both channels. Note that  
by default, the TX_QMC_GAINA(2:0) and TX_QMC_GAINB(2:0) are set to 0. So when  
TX_QMC_CORR_ENA is written, the output goes to zero until the time TX_QMC_GAINA(2:0) and  
TX_QMC_GAINB(2:0) are written to the desired value.  
Register Name – CONFIG10 – Address 0x10F Default = 0x00 (Optionally Synced)  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
TX_QMC_OFFSETA(12:5)  
TX_QMC_OFFSETA(12:5) – Upper 8 bits of DAC A Offset Correction . The lower 5 bits are in CONFIG11  
Register. Offset is a signed value (2s complement).  
26  
REGISTER DESCRIPTIONS  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
Register Name – CONFIG11 – Address 0x110 Default = 0x00 (Optionally Synced )  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
TX_QMC_OFFSETA(4:0)  
TX_QMC_GAINA(2:0)  
TX_QMC_OFFSETA(4:0) – Lower 5 bits of DAC A Offset Correction .  
TX_QMC_GAINA(2:0) – Lower 3 bits of the 11 bit QMC Gain word for DAC A. The upper 8 bits are in  
CONFIG12 register.The full 11 bit TX_QMC_GAINA(10:0) word is formatted as UNSIGNED with a range  
or 0 to 1.9990 . The implied decimal point for the multiplication is between bits (9) and (10).  
Register Name – CONFIG12 – Address 0x111 Default = 0x00 (Synced )  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
TX_QMC_GAINA(10:3)  
TX_QMC_GAINA(10:3) –Upper 8 bits if the 11 bit QMC Gain word for DAC A.  
Register Name – CONFIG13 – Address 0x112 Default = 0x00 (Synced)  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
TX_QMC_OFFSETB(12:5)  
TX_QMC_OFFSETB(12:5) –Upper 8 bits of DAC B Offset Correction. The lower 5 bits are in CONFIG14  
Register.  
Register Name – CONFIG14 – Address 0x113 Default = 0x00 (Synced)  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
TX_QMC_OFFSETB(4:0)  
TX_QMC_GAINB(2:0)  
TX_QMC_OFFSETB(4:0) – Lower 5 bits of DAC B Offset Correction .  
TX_QMC_GAINB(2:0) – Lower 3 bits of the 11 bit QMC Gain word for DAC B. The upper 8 bits are in  
CONFIG15 register.The full 11 bit TX_QMC_GAINB(10:0) word is formatted as UNSIGNED with a range  
or 0 to 1.9990.  
Register Name – CONFIG15 – Address 0x114 Default = 0x00 (Synced)  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
TX_QMC_GAINB(10:3)  
TX_QMC_GAINB(10:3) – Upper 8 bits if the 11 bit QMC Gain word for DAC B.  
Register Name – CONFIG16 – Address 0x115 Default = 0x00 (Synced)  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
TX_QMC_PHASE(9:2)  
TX_QMC_PHASE(9:2) – Upper Upper 8 bits if the 10 bit QMC Phase word. The lower two bits are in the  
CONFIG17 register. The full QMC_PHASE(9:0) correction word is formatted as 2s complement and  
scaled to occupy a range of -0.125 to 0.12475. To acomplish QMC Phase correction, this value is  
multiplied by the current Q sample, then summed to the I sample.  
Register Name – CONFIG17 – Address 0x116 Default = 0x00 (Synced)  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
TX_QMC_PHASE(1:0)  
TX_QMC_PHASE(1:0) – Lower 2 bits of the 10 bit QMC Phase word .  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
REGISTER DESCRIPTIONS  
27  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
Register Name – CONFIG18 – Address 0x117 Default = 0x00 (Synced)  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<2>  
<2>  
<2>  
<1>  
<1>  
<1>  
<1>  
<0>  
TX_NCO_FREQ_WORD(31:24)  
TX_NCO_FREQ_WORD(31:24) – See CONFIG21 below.  
Register Name – CONFIG19 – Address 0x118 Default = 0x00 (Synced)  
<7>  
<6>  
<5>  
<4>  
<3>  
<0>  
<0>  
<0>  
TX_NCO_FREQ_WORD(23:16)  
TX_NCO_FREQ_WORD(23:16) – See CONFIG21 below.  
Register Name – CONFIG20 – Address 0x119 Default = 0x00 (Synced)  
<7>  
<6>  
<5>  
<4>  
<3>  
TX_NCO_FREQ_WORD(15:8)  
TX_NCO_FREQ_WORD(15:8) – See CONFIG21 below.  
Register Name – CONFIG21 – Address 0x11A Default = 0x00 (Synced)  
<7>  
<6>  
<5>  
<4>  
<3>  
TX_NCO_FREQ_WORD(7:0)  
TX_NCO_FREQ_WORD(7:0) – This is used to determine the frequency, Fmix of the NCO. The twos  
complement formatted value can be positive or negative, and the LSB is equal to Fs/232  
Register Name – CONFIG22 – Address 0x11B Default = 0x00 (Synced)  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
TX_NCO_PHASE_OFF(15:8)  
TX_NCO_FREQ_WORD(15:8) – See CONFIG23 below.  
Register Name – CONFIG23 – Address 0x11C Default = 0x00 (Synced)  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
TX_NCO_PHASE_OFF(7:0)  
TX_NCO_PHASE_OFF(7:0) – This is the 2s complement Phase offset added to the NCO accumulator  
just before the generation of the SIN and COS values.  
Register Name – CONFIG24 – Address 0x11D, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
TX_MIXER_EN  
TX_MIXER_GAIN(1:0)  
TX_MIXER_GAIN(1:0) – The fine mixer realizes the functions {Acos(ωmixt) – B sin(ωmixt)} and {Asin(ωmixt)  
+ Bcos(ωmixt)} This can cause the fine mixer output to be up to 3 dB higher than the individual inputs.The  
mixer gain can restore the signal level to the desired level by providing a programmable attenuation.  
VALUE  
GAIN  
0
1
2
3
–2.5 dB (default) – use when complex mixing  
–6 dB  
0 dB – use when one input is zero  
0 dB  
TX_MIXER_EN – This enables the fine mixer, which also causes the NCO to be enabled.  
28  
REGISTER DESCRIPTIONS  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
Register Name – CONFIG25– Address 0x11E Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
TX_NCO_SYNC_  
DIS  
TX_NCO_SYNC_  
SRC  
TX_NCO_SER_IF_  
SYNC  
TX_NCO_SYNC_  
NEEDED  
TX_NCO_SYNC_NEEDED – Specifies if syncing is needed for TX NCO. If set, NCO Frequency and  
Offset words programmed into the serial interface registers are not applied to the NCO until a sync is  
applied  
TX_NCO_SER_IF_SYNC – A rising edge on this bit is used as the sync source for TX NCO. This is  
applicable when TX_GLOBAL_SYNC_DIS is set, and TX_NCO_SYNC_DIS is cleared, and  
TX_NCO_SYNC_SRC specifies serial interface bit to be the sync source for the NCO.  
TX_NCO_SYNC_SRC – Specifies the sync source for TX NCO. When cleared, SYNC pin is used as the  
sync source. When set, a rising edge on serial interface bit TX_NCO_SER_IF_SYNC is used as the sync  
source for TX NCO. This is applicable when TX_GLOBAL_SYNC_DIS is set.  
TX_NCO_SYNC_DIS  
Disables Syncing of the Tx NCO. This takes effect only when  
TX_GLOBAL_SYNC_DIS is set.  
Register Name – CONFIG26 – Address 0x11F, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
CHA_REG1(15:8)  
CHA_REG1(15:8) – Upper 8 bits for sample 1 for DAC A in 8-sample FIFO mode . TX_CHA_8_IP_EN in  
CONFIG 1 needs to be set for Regs CONFIG26 to CONFIG41 to take effect.  
Register Name – CONFIG27 – Address 0x120, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<2>  
<2>  
<2>  
<2>  
<1>  
<1>  
<1>  
<1>  
<1>  
<0>  
<0>  
<0>  
<0>  
<0>  
CHA_REG1(7:0)  
CHA_REG1(7:0) – Lower 8 bits for sample 1 for DAC A  
Register Name – CONFIG28 – Address 0x121, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
CHA_REG2(15:8)  
CHA_REG2(15:8) – Upper 8 bits for sample 2 for DAC A .  
Register Name – CONFIG29 – Address 0x122, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
CHA_REG2(7:0)  
CHA_REG2(7:0) – Lower 8 bits for sample 2 for DAC A  
Register Name – CONFIG30 – Address 0x123, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
CHA_REG3(15:8)  
CHA_REG3(15:8) – Upper 8 bits for sample 3 for DAC A  
Register Name – CONFIG31 – Address 0x124, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
CHA_REG3(7:0)  
CHA_REG3(7:0) – Lower 8 bits for sample 3 for DAC A  
Copyright © 2011–2012, Texas Instruments Incorporated  
REGISTER DESCRIPTIONS  
29  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
Register Name – CONFIG32 – Address 0x125, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<2>  
<2>  
<2>  
<2>  
<2>  
<2>  
<2>  
<2>  
<1>  
<1>  
<1>  
<1>  
<1>  
<1>  
<1>  
<1>  
<1>  
<0>  
CHA_REG4(15:8)  
CHA_REG4(15:8) – Upper 8 bits for sample 4 for DAC A .  
Register Name – CONFIG33 – Address 0x126, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<0>  
<0>  
<0>  
<0>  
<0>  
<0>  
<0>  
<0>  
CHA_REG4(7:0)  
CHA_REG4(7:0) – Lower 8 bits for sample 4 for DAC A  
Register Name – CONFIG34 – Address 0x127, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
CHA_REG5(15:8)  
CHA_REG5(15:8) – Upper 8 bits for sample 5 for DAC A  
Register Name – CONFIG35 – Address 0x128, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
CHA_REG5(7:0)  
CHA_REG5(7:0) – Lower 8 bits for sample 5 for DAC A .  
Register Name – CONFIG36 – Address 0x129, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
CHA_REG6(15:8)  
CHA_REG6(15:8) – Upper 8 bits for sample 6 for DAC A  
Register Name – CONFIG37 – Address 0x12A, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
CHA_REG6(7:0)  
CHA_REG6(7:0) – Lower 8 bits for sample 6 for DAC A  
Register Name – CONFIG38 – Address 0x12B, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
CHA_REG7(15:8)  
CHA_REG7(15:8) – Upper 8 bits for sample 7 for DAC A  
Register Name – CONFIG39 – Address 0x12C, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
CHA_REG7(7:0)  
CHA_REG7(7:0) – Lower 8 bits for sample 7 for DAC A.  
Register Name – CONFIG40 – Address 0x12D, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
CHA_REG8(15:8)  
CHA_REG8(15:8) – Upper 8 bits for sample 8 for DAC A  
30  
REGISTER DESCRIPTIONS  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
Register Name – CONFIG41 – Address 0x12E, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
CHA_REG8(7:0)  
CHA_REG8(7:0) – Lower 8 bits for sample 8 for DAC A  
Register Name – CONFIG42 – Address 0x12F, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
CHB_REG1(15:8)  
CHB_REG1(15:8) – Upper 8 bits for sample 1 for DAC B . TX_CHB_8_IP_EN in CONFIG 1 needs to be  
set for Regs CONFIG42 to CONFIG57 to take effect.  
Register Name – CONFIG43 – Address 0x130, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<2>  
<2>  
<2>  
<2>  
<2>  
<2>  
<1>  
<1>  
<1>  
<1>  
<1>  
<1>  
<1>  
<0>  
<0>  
<0>  
<0>  
<0>  
<0>  
<0>  
CHB_REG1(7:0)  
CHB_REG1(7:0) – Lower 8 bits for sample 1 for DAC B  
Register Name – CONFIG44 – Address 0x131, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
CHB_REG2(15:8)  
CHB_REG2(15:8) – Upper 8 bits for sample 2 for DAC B.  
Register Name – CONFIG45 – Address 0x132, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
CHB_REG2(7:0)  
CHB_REG2(7:0) – Lower 8 bits for sample 2 for DAC B  
Register Name – CONFIG46 – Address 0x133, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
CHB_REG3(15:8)  
CHB_REG3(15:8) – Upper 8 bits for sample 3 for DAC B.  
Register Name – CONFIG47 – Address 0x134, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
CHB_REG3(7:0)  
CHB_REG3(7:0) – Lower 8 bits for sample 3 for DAC B  
Register Name – CONFIG48 – Address 0x135, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
CHB_REG4(15:8)  
CHB_REG4(15:8) – Upper 8 bits for sample 4 for DAC B.  
Register Name – CONFIG49 – Address 0x136, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
CHB_REG4(7:0)  
CHB_REG4(7:0) – Lower 8 bits for sample 4 for DAC B.  
Copyright © 2011–2012, Texas Instruments Incorporated  
REGISTER DESCRIPTIONS  
31  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
Register Name – CONFIG50 – Address 0x137, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<2>  
<2>  
<2>  
<2>  
<2>  
<2>  
<2>  
<1>  
<1>  
<1>  
<1>  
<1>  
<1>  
<1>  
<1>  
<0>  
CHB_REG5(15:8)  
CHB_REG5(15:8) – Upper 8 bits for sample 5 for DAC B.  
Register Name – CONFIG51 – Address 0x138, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<0>  
<0>  
<0>  
<0>  
<0>  
<0>  
<0>  
<0>  
CHB_REG5(7:0)  
CHB_REG5(7:0) – Lower 8 bits for sample 5 for DAC B  
Register Name – CONFIG52 – Address 0x139, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
CHB_REG6(15:8)  
CHB_REG6(15:8) – Upper 8 bits for sample 6 for DAC B.  
Register Name – CONFIG53 – Address 0x13A, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
CHB_REG6(7:0)  
CHB_REG6(7:0) – Lower 8 bits for sample 6 for DAC B.  
Register Name – CONFIG54 – Address 0x13B, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
CHB_REG7(15:8)  
CHB_REG7(15:8) – Upper 8 bits for sample 7 for DAC B.  
Register Name – CONFIG55 – Address 0x113C, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
CHB_REG7(7:0)  
CHB_REG7(7:0) – Lower 8 bits for sample 7 for DAC B  
Register Name – CONFIG56 – Address 0x13D, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
CHB_REG8(15:8)  
CHB_REG8(15:8) – Upper 8 bits for sample 8 for DAC B.  
Register Name – CONFIG57 – Address 0x13E, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
CHB_REG8(7:0)  
CHB_REG8(7:0) – Lower 8 bits for sample 8 for DAC B  
Register Name – CONFIG58 – Address 0x13F, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
EN_IP_CLK_STOP_DET  
EN_FIFO_COLLISION_DET  
EN_FIFO_COLLISION_DET – On RESET (and when synced), the read and write pointers of the FIFO are  
set 4 positions away. The read pointer increments at the DAC_DCLKIN rate whereas the write pointer  
increments at the divided DAC_CLK rate. While the frequencies of these 2 clocks are expected to be the  
same, relative phase drifts can cause this relative difference of 4 positions to drift. When the  
EN_FIFO_COLLISION_DET bit is set, a collision condition is detected when the relative difference  
32  
REGISTER DESCRIPTIONS  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
between the read and write pointers becomes either 0,1 or 2. Detection of this collision condition  
automatically causes masks the DACs to give out an output corresponding to mid code. The read and  
write pointer differing by 2 is referred to as 2-way detection. 2-away detection can be prevented from  
triggering collision by setting MASK_2_AWAY_DET in CONFIG 1. Collision detection is done once every  
8 input samples.  
EN_IP_CLK_STOP_DET – When set, the condition of input clock being stopped causes the DAC outputs  
to be forced to mid code.  
Register Name – CONFIG59 – Address 0x140, Default = 0x00 (Read Only)  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
FIFO_ERROR  
FIFO_COLLISION  
FIFO_1_AWAY  
FIFO_2_AWAY  
INP_CLK_STOP  
These are refreshed at the rate of the divided DAC_CLK.  
INP_CLK_STOP – If set, it indicates that the input clock has been detected as having been stopped.  
FIFO_2_AWAY – If set, it indicates that the condition of the read and write pointers being 2 locations  
away from each other has been detected.  
FIFO_1_AWAY – If set, it indicates that the condition of the read and write pointers being 1 location away  
from each other has been detected.  
FIFO_COLLISION – If set, this indicates that the read and write pointers have been detected as  
overlapping with each other  
FIFO_ERROR – If set, this indicates that either Collision , or 1-away or 2-away condition has been  
detected.  
Register Name – CONFIG60 – Address 0x141, Default = 0x00 (Read Only)  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
FIFO_INP_PTR(2:0)  
FIFO_OP_PTR(2:0)  
FIFO_OP_PTR(2:0) – Containts the FIFO read pointer value. Its written into the register when  
STORE_FIFO_PTRS is set in CONFIG2. It is not updated once the device is configured into readout  
mode.  
FIFO_INP_PTR(2:0) – Containts the FIFO write pointer value. Its written into the register when  
STORE_FIFO_PTRS is set in CONFIG2. It is not updated once the device is configured into readout  
mode.  
5.2 RECEIVE DIGITAL SIGNAL CHAIN REGISTERS  
RX Output A  
RX Input A  
(I Channel)  
RX Output B  
(Q Channel)  
RX Input B  
SYNC  
SYNC  
SYNC  
RX RMS /  
Peak  
Power Meter  
NCO  
SYNC  
SYNC  
Figure 5-3. Signal Chain  
Copyright © 2011–2012, Texas Instruments Incorporated  
REGISTER DESCRIPTIONS  
33  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
Register Name – CONFIG61 – Address 0x165, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
TX_RX_LPBK_ TX_RX_LPBK  
SRC  
RX_DECB_MODE RX_DECA_MODE  
RX_DEC_FIL_  
EN_SRC  
RX_DEC_FIL_  
EN  
RX_DEC_FIL_EN – Enables the decimation filter in the RX path in both the A and B channels. Set  
RX_DEC_FIL_EN_SRC for this to take effect. Output clock automatically set to 0.5X.  
RX_DEC_FIL_EN_SRC – When set, this allows RX_DEC_FIL_EN to take effect.  
RX_DECA_MODE – When set, configures the decimation filter in Channel A in high pass mode. By  
default, the filter is in low pass mode.  
RX_DECB_MODE – When set, configures the decimation filter in Channel B in high pass mode. By  
default, the filter is in low pass mode.  
TX_RX_LPBK – When this bit and TX_Rx_LPBK_SRC are both set , the input to the RX signal chain is  
tapped from the the final output of the TX signal chain.  
TX_Rx_LPBK_SRC – When this bit and TX_RX_LPBK are both set , the input to the RX signal chain is  
tapped from the the final output of the TX signal chain.  
The TX to RX loopback is illustrated below. The dotted arrows show the loopback mode.  
INP_A_ADC  
12b  
RX ADC A  
INN_A_ADC  
12-bit ADC  
Output  
INP_B_ADC  
INN_B_ADC  
12b  
RX ADC B  
IOUTP_A_DAC  
IOUTN_A_DAC  
IOUTP_B_DAC  
IOUTN_B_DAC  
12b  
TX DAC A  
12-bit DAC  
Input  
12b  
TX DAC B  
Figure 5-4. Signal Chain  
Register Name – CONFIG62 – Address 0x166, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
RX_DIV_PHASE_INV  
RX_DIV_PHASE  
RX_CMIX_PHASE(1:0)  
RX_CMIX_PHASE_  
INCR  
RX_CMIX_MODE(1:0) RX_CMIX_EN  
RX_CMIX_EN – Enables the RX Coarse mixer.  
RX_CMIX_MODE(1:0) – Specifies the mode in which the RX Coarse mixer is configured . Set  
RX_CMIX_EN for this to take effect.  
VALUE  
MIXING MODE  
Normal(Low pass )  
Fs /2 (High Pass )  
+ Fs/4  
0
1
2
3
– Fs/4  
34  
REGISTER DESCRIPTIONS  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
RX_CMIX_PHASE_INCR – This bit can be used to control the mixing phase without the need for the  
SYNC pin. A 0 to 1 transition on this bit causes the phase of mixing in the RX CMIX to be incremented by  
1 with respect to the current phase of mixing . To increment the phase of mixing more than once, clear  
and then set this bit once again. Syncing needs to be disabled for RX CMIX for this mode to work. (This  
means that both global syncing, as well as block level syncing needs to be disabled for CMIX )  
RX_CMIX_PHASE(1:0) – The value programmed into this is applied as the RX CMIX phase, when the  
CMIX is synced, Syncing needs to be enabled for CMIX for this mode to work.  
RX_DIV_PHASE – The value programmed into this is applied as the RX Divider phase, when the divider  
is synced. If divider is not synced, then output latency can differ by 1 with respect to the sampling clock.  
The RX divider is used whenever the decimation filter is enabled.  
RX_DIV_PHASE_INV – This bit is used to control the phase of the RX divider without the need for the  
SYNC pin. A 0 to 1 transition on this bit causes the phase of division in the RX Divider to be inverted by 1  
with respect to the current phase of division. To invert the phase of division more than once, clear and  
then set this bit once again. Syncing needs to be disabled for RX Divider for this mode to work.  
Register Name – CONFIG63 – Address 0x167, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
RX_BYP_SRC  
RX_BYP  
RX_CHB_PDN_SRC  
RX_CHB_PDN  
RX_CHA_PDN  
RX_CHA_PDN_S RX_DIS  
RC  
RX_DIS – Disables the RX signal chain of both channels. All blocks in the signal chain are powered down,  
and the RX output is mid-code.  
RX_CHA_PDN_SRC – Setting this causes the value programmed into RX_CHA_PDN to take effect.  
RX_CHA_PDN – Powers down Channel A in Rx signal chain. Output of the channel is mid code. Set  
RX_CHA_PDN_SRC for this to take effect. Output clock is not powered down.  
RX_CHB_PDN – Powers down Channel B in Rx signal chain. Output of the channel is mid code. Set  
RX_CHB_PDN_SRC for this to take effect. Output clock is not powered down.  
RX_CHB_PDN_SRC – Setting this causes the value programmed into RX_CHB_PDN to take effect.  
Note that when in default mode of operation (none of the register-selectable digital features enabled), all 4  
of above bits (RX_CHA_PDN, RX_CHA_PDN_SRC, RX_CHB_PDN, RX_CHB_PDN_SRC) have to be set  
together to ‘1’ for them to take effect. However, if any of the digital features (like interpolation, Fine mixer,  
Coarse mixer, or QMC gain/phase or offset) are enabled, then the channel A can be independently  
powered down using bits RX_CHA_PDN and RX_CHA_PDN_SRC, and channel B can be independently  
powered down using bits RX_CHB_PDN and RX_CHB_PDN_SRC.  
RX_BYP – The inputs to both the Rx channels are directly passed to the outputs. Set RX_BYP_SRC for  
this to take effect. Use this mode to operate the Rx with lowest latency.  
RX_BYP_SRC – Setting this causes the value programmed into RX_BYP to take effect.  
Register Name – CONFIG64 – Address 0x168, Default = 0x00  
<7> <6> <5> <4> <3>  
RX_GLOBAL_SYNC_ RX_QMC_GAIN_PH_SYNC_ RX_QMC_OFF_SYNC_ RX_DIV_SYNC_ RX_CMIX_SYNC_  
DIS DIS DIS DIS DIS  
<2>  
<1>  
<0>  
RX_CMIX_SYNC_DIS – Disables Syncing of the Rx Coarse mixer. This takes effect only when  
RX_GLOBAL_SYNC_DIS is set.  
RX_DIV_SYNC_DIS – Disables Syncing of the Rx clock divider .This takes effect only when  
RX_GLOBAL_SYNC_DIS is set.  
RX_QMC_OFF_SYNC_DIS – Disables Syncing of Rx QMC Offset Correction .This takes effect only when  
RX_GLOBAL_SYNC_DIS is set.  
Copyright © 2011–2012, Texas Instruments Incorporated  
REGISTER DESCRIPTIONS  
35  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
RX_QMC_GAIN_PH_SYNC_DIS – Disables Syncing of Rx QMC Gain Phase Correction.  
This takes effect only when RX_GLOBAL_SYNC_DIS is set.  
RX_GLOBAL_SYNC_DIS – When set, disables global syncing of RX signal chain. When cleared, a rising  
edge on the selected sync source causes RX blocks to be synced.  
Register Name – CONFIG65 – Address 0x169, Default = 0x00  
<7> <6> <5>  
<4>  
RX_GLOBAL_SYNC_ RX_QMC_GAIN_PH_SYNC_ RX_QMC_OFF_SYNC_ RX_DIV_SYNC_ RX_CMIX_SYNC_  
SRC SRC SRC SRC SRC  
<3>  
<2>  
<1>  
<0>  
RX_CMIX_SYNC_SRC – Specifies the sync source for the RX Coarse mixer. When cleared, SYNC pin is  
used as the sync source . When set, a rising edge on serial interface bit RX_CMIX_SER_IF_SYNC in  
Register 0x16A is used as the sync source for RX CMIX. This is applicable when  
RX_GLOBAL_SYNC_DIS is set, and RX_CMIX_SYNC_DIS is cleared.  
RX_DIV_SYNC_SRC – Specifies the sync source for the RX Divider. When cleared, SYNC pin is used as  
the sync source . When set, a rising edge on serial interface bit RX_DIV_SER_IF_SYNC in register 0x16A  
is used as the sync source for RX Divider. This is applicable when RX_GLOBAL_SYNC_DIS is set and  
RX_DIV_SYNC_DIS is cleared.  
RX_QMC_OFF_SYNC_SRC – Specifies the sync source for RX QMC Offset Correction. When cleared,  
SYNC pin is used as the sync source . When set , a rising edge on serial interface bit  
RX_QMC_OFF_SER_IF_SYNC in register 0x16A is used as the sync source for RX QMC Offset  
Correction. This is applicable when RX_GLOBAL_SYNC_DIS is set and RX_QMC_OFF_SYNC_DIS is  
cleared.  
RX_QMC_GAIN_PH_SYNC_SRC – Specifies the sync source for RX QMC Gain Phase Correction. When  
cleared, SYNC pin is used as the sync source. When set, a rising edge on serial interface bit  
RX_QMC_GAIN_PH_SER_IF_SYNC in register 0x16A is used as the sync source for RX QMC Gain  
Phase  
Correction.  
This  
is  
applicable  
when  
RX_GLOBAL_SYNC_DIS  
is  
set  
and  
RX_QMC_GAIN_PH_SYNC_DIS is cleared.  
RX_GLOBAL_SYNC_SRC – Specifies the sync source for RX. When cleared, SYNC pin is used as the  
sync source. When set, a rising edge on serial interface bit RX_GLOB_SER_IF_SYNC in register 0x16A  
is used as the sync source for RX. This is applicable when RX_GLOBAL_SYNC_DIS is cleared.  
Register Name – CONFIG66 – Address 0x16A, Default = 0x00  
<7> <6> <5>  
<4>  
RX_GLOBAL_SER_ RX_QMC_GAIN_PH_ RX_QMC_OFF_SER_  
IF_SYNC SER_ IF_SYNC IF_SYNC  
<3>  
<2>  
<1>  
<0>  
RTX_DIV_SER_  
IF_SYNC  
RX_CMIX_SER_IF_  
SYNC  
RX_CMIX_SER_IF_SYNC – A rising edge on this bit is used as the sync source for RX CMIX. This is  
applicable when RX_GLOBAL_SYNC_DIS is set, and RX_CMIX_SYNC_DIS is cleared, and  
RX_CMIX_SYNC_SRC specifies serial interface bit to be the sync source for the RX CMIX.  
RX_DIV_SER_IF_SYNC – A rising edge on this bit is used as the sync source for RX Divider. This is  
applicable when RX_GLOBAL_SYNC_DIS is set, and RX_DIV_SYNC_DIS is cleared, and  
RX_DIV_SYNC_SRC specifies serial interface bit to be the sync source for the RX Divider.  
RX_QMC_OFF_SER_IF_SYNC – A rising edge on this bit is used as the sync source for RX QMC Offset  
correction  
block.  
This  
is  
applicable  
when  
RX_GLOBAL_SYNC_DIS  
is  
set,  
and  
RX_QMC_OFF_SYNC_DIS is cleared, and RX_QMC_OFF_SYNC_SRC specifies serial interface bit to be  
the sync source for the RX QMC Offset correction.  
RX_QMC_GAIN_PH_SER_IF_SYNC – A rising edge on this bit is used as the sync source for RX QMC  
Gain Phase correction block. This is applicable when RX_GLOBAL_SYNC_DIS is set, and  
RX_QMC_GAIN_PH_SYNC_DIS is cleared, and RX_QMC_GAIN_PH_SYNC_SRC specifies serial  
interface bit to be the sync source for the RX QMC Gain Phase correction.  
36  
REGISTER DESCRIPTIONS  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
RX_GLOBAL_SER_IF_SYNC – A rising edge on this is used as the sync source for RX . This is  
applicable when RX_GLOBAL_SYNC_DIS is cleared, and RX_GLOBAL_SYNC_SRC specifies serial  
interface bit to be the sync source for RX.  
Register Name – CONFIG67 – Address 0x16B, Default = 0x00  
<7> <6> <5>  
<4>  
<3>  
<2>  
<1>  
<0>  
RX_QMC_CORR_  
ENA  
RX_QMC_OFFSET_  
ENA  
RX_QMC_GAIN_PH_SYNC_  
NEEDED  
RX_QMC_OFF_SYNC_  
NEEDED  
RX_QMC_OFF_SYNC_NEEDED – Specifies if syncing is needed for RX QMC Offset Correction. If set,  
QMC Offset values programmed into the serial interface registers are not applied to the QMC Offset  
correction block until a Sync is applied.  
RX_QMC_GAIN_PH_SYNC_NEEDED – Specifies if syncing is needed for RX QMC Gain Phase  
Correction. If set, QMC gain and Phase values programmed into the serial interface registers are not  
applied to the QMC Gain Phase correction block until a sync is applied.  
RX_QMC_OFFSET_ENA – Enables RX QMC Offset Correction.  
RX_QMC_CORR_ENA – Enable RX QMC Gain Phase Correction.  
Register Name – CONFIG68 – Address 0x16C, Default = 0x00 (Synced)  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
RX_QMC_OFFSETA(12:5)  
RX_QMC_OFFSETA(12:5) – Upper 8 bits of ADC A Offset Correction . The lower 5 bits are in CONFIG69  
Register.  
Register Name – CONFIG69 – Address 0x16D, Default = 0x00 (Synced)  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
RX_QMC_OFFSETA(4:0)  
RX_QMC_GAINA(2:0)  
RX_QMC_OFFSETA(4:0) – Lower 5 bits of ADC A Offset Correction .  
RX_QMC_GAINA(2:0) – Lower 3 bits of the 11 bit QMC Gain word for ADC A. The upper 8 bits are in  
CONFIG70 register.The full 11 bit RX_QMC_GAINA(10:0) word is formatted as UNSIGNED with a range  
or 0 to 1.9990. The implied decimal point for the multiplication is between bits (9) and (10).  
Register Name – CONFIG70 – Address 0x16E, Default = 0x00 (Synced)  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
RX_QMC_GAINA(10:3)  
RX_QMC_GAINA(10:3) – Upper 8 bits if the 11 bit QMC Gain word for ADC A  
Register Name – CONFIG71 – Address 0x16F, Default = 0x00 (Synced)  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
RX_QMC_OFFSETB(12:5)  
RX_QMC_OFFSETB(12:5) – Upper 8 bits of ADC B Offset Correction . The lower 5 bits are in CONFIG72  
Register.  
Register Name – CONFIG72 – Address 0x170, Default = 0x00 (Synced)  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
RX_QMC_OFFSETB(4:0)  
RX_QMC_GAINB(2:0)  
RX_QMC_OFFSETB(4:0) – Lower 5 bits ofADC B Offset Correction .  
RX_QMC_GAINB(2:0) – Lower 3 bits of the 11 bit QMC Gain word for ADC B. The upper 8 bits are in  
CONFIG73 register.The full 11 bit RX_QMC_GAINB(10:0) word is formatted as UNSIGNED with a range  
or 0 to 1.9990.  
Copyright © 2011–2012, Texas Instruments Incorporated  
REGISTER DESCRIPTIONS  
37  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
Register Name – CONFIG73 – Address 0x171, Default = 0x00 (Synced)  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<1>  
<0>  
RX_QMC_GAINB(10:3)  
RX_QMC_GAINB(10:3) – Upper 8 bits of the 11 bit QMC Gain word for ADC B.  
Register Name – CONFIG74 – Address 0x172, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<0>  
RX_QMC_PHASE(9:2)  
RX_QMC_PHASE(9:2) – Upper 8 bits of the 10 bit QMC Phase word. The lower two bits are in the  
CONFIG75 register. The full QMC_PHASE(9 :0) correction word is formatted as 2s complement and  
scaled to occupy a range of -0.125 to 0.12475. To acomplish QMC Phase correction, this value is  
multiplied by the current Q sample, then summed to the I sample.  
Register Name – CONFIG75 – Address 0x173, Default = 0x00 (Synced)  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
RX_QMC_PHASE(1:0)  
RX_QMC_PHASE(1:0) – Lower 2 bits of the 10 bit QMC Phase word.  
Register Name – CONFIG76 – Address 0x174, Default = 0x00 (Synced)  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<2>  
<2>  
<2>  
<1>  
<1>  
<1>  
<1>  
<0>  
<0>  
<0>  
<0>  
RX_NCO_FREQ_WORD(31:24)  
RX_NCO_FREQ_WORD(31:24) – See CONFIG79 below.  
Register Name – CONFIG77 – Address 0x175, Default = 0x00 (Synced)  
<7>  
<6>  
<5>  
<4>  
<3>  
RX_NCO_FREQ_WORD(23:16)  
RX_NCO_FREQ_WORD(23:16) – See CONFIG79 below.  
Register Name – CONFIG78 – Address 0x176, Default = 0x00 (Synced)  
<7>  
<6>  
<5>  
<4>  
<3>  
RX_NCO_FREQ_WORD(15:8)  
RX_NCO_FREQ_WORD(15:8) – See CONFIG79 below.  
Register Name – CONFIG79 – Address 0x177, Default = 0x00 (Synced)  
<7>  
<6>  
<5>  
<4>  
<3>  
RX_NCO_FREQ_WORD(7:0)  
RX_NCO_FREQ_WORD(7:0) – This 32-bit word specifies the frequency of the NCO used by the fine  
mixer. The twos complement formatted value can be positive or negative, and the LSB is equal to (Fs/232).  
Register Name – CONFIG80 – Address 0x178, Default = 0x00 (Synced)  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
RX_NCO_PHASE_OFF(15:8)  
RX_NCO_PHASE_OFF(15:8) – See CONFIG81 below.  
38  
REGISTER DESCRIPTIONS  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
Register Name – CONFIG81 – Address 0x179, Default = 0x00 (Synced)  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
RX_NCO_PHASE_OFF(7:0)  
RX_NCO_PHASE_OFF(7:0) – This is the Phase offset added to the NCO accumulator just before the  
generation of the SIN and COS values.  
Register Name – CONFIG82 – Address 0x17A, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
PWR_MTR_COARSE_SAMPLES(2:0)  
RX_MIXER_EN  
RX_MIXER_GAIN(1:0)  
RX_MIXER_GAIN(1:0) – This specifies the gain to be applied to the mixer output to prevent it from  
saturating.  
VALUE  
GAIN  
-2.5 dB  
-6 dB  
0 dB  
0
1
2
3
0 dB  
RX_MIXER_EN – This enables the Full mixer, which also causes the NCO to be enabled.  
PWR_MTR_COARSE_SAMPLES(2:0) – Specifies the number of samples, ‘N’ over which power is to be  
computed when the power meter is configured in the coarse mode. Keeps refreshing every ‘N’ samples  
but writes to serial interface register only when serial clock is available – which requires a write to this  
page. Stops refreshing once you get into readout mode.  
VALUE  
NUMBER OF SAMPLES  
0
1
2
3
4
5
6
7
16  
32  
64  
128  
256  
512  
1024  
16  
Register Name – CONFIG83 – Address 0x17B, Default = 0x00  
<7>  
PWR_MTR_ PWR_MTR_  
SYNC_DIS  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
PWR_MTR_  
PWR_MTR_  
RX_NCO_  
RX_NCO_  
SYNC_SOURCE  
RX_NCO_SER_  
IF_SYNC  
RX_NCO_  
SYNC_  
SYNC_SRC SER_IF_SYNC SYNC_NEEDED SYNC_DIS  
NEEDED  
RX_NCO_SYNC_NEEDED – Specifies if syncing is needed for RX NCO. If set , NCO Frequency and  
Offset words programmed into the serial interface registers are not applied to the NCO until a sync is  
applied  
RX_NCO_SER_IF_SYNC – A rising edge on this bit is used as the sync source for RX NCO. This is  
applicable when RX_GLOBAL_SYNC_DIS is set, and RX_NCO_SYNC_DIS is cleared, and  
RX_NCO_SYNC_SRC specifies serial interface bit to be the sync source for the NCO.  
RX_NCO_SYNC_SRC – Specifies the sync source for RX NCO. When cleared, SYNC pin is used as the  
sync source. When set, a rising edge on serial interface bit RX_NCO_SER_IF_SYNC is used as the sync  
source for RX NCO. This is applicable when RX_GLOBAL_SYNC_DIS is set  
RX_NCO_SYNC_DIS  
Disables Syncing of the RX NCO .This takes effect only when  
RX_GLOBAL_SYNC_DIS is set  
Copyright © 2011–2012, Texas Instruments Incorporated  
REGISTER DESCRIPTIONS  
39  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
PWR_MTR_SYNC_NEEDED – Specifies if syncing is needed for the RX Power Meter . If set, power  
computation begins a programmable number of cycles after the detection of a sync pulse. Applies for both  
the coarse and fine power meters.  
PWR_MTR_SER_IF_SYNC – A rising edge on this bit is used as the sync source for RX Power Meter.  
This is applicable when RX_GLOBAL_SYNC_DIS is set, and PWR_MTR_SYNC_DIS is cleared, and  
PWR_MTR_SYNC_SRC specifies serial interface bit to be the sync source for the Power Meter.  
PWR_MTR_SYNC_SRC – Specifies the sync source for RX Power Meter . When cleared, SYNC pin is  
used as the sync source . When set, a rising edge on serial interface bit PWR_MTR_SER_IF_SYNC is  
used as the sync source for RX Power Meter. This is applicable when RX_GLOBAL_SYNC_DIS is set  
PWR_MTR_SYNC_DIS – Disables Syncing of the RX Power Meter .This takes effect only when  
RX_GLOBAL_SYNC_DIS is set.  
Register Name – CONFIG84 – Address 0x17C, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
INTGR_CNT (20:13)  
INTGR_CNT(20:13) – Upper 8 bits of the 21 bit Integration count for the fine power meter. Integration is  
done over (8N + 3) samples where N is the unsigned integer represented by INTGR_CNT (20:0)  
Register Name – CONFIG85 – Address 0x17D, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
INTGR_CNT(12:5)  
INTGR_CNT(12:5) – Middle 8 bits of the 21 bit Integration count for the Power meter.  
Register Name – CONFIG86 – Address 0x17E, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
INTGR_CNT(4:0)  
SYNC_CNT(8:6)  
SYNC_CNT(8:6) – Upper 3 bits of the 9 bit Sync count for the fine power meter. After the detection of a  
sync pulse, there is a delay of 8N +4 cycles before Integration begins, where N is the unsigned integer  
represented by SYNC_CNT(8:0)  
INTGR_CNT(4:0) – Lower 5 bits of the 21 bit Integration count for the fine power meter.  
Register Name – CONFIG87 – Address 0x17F, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
SYNC_CNT(5:0)  
SYNC_CNT(5:0) – Lower 3 bits of the 9 bit Sync count.  
Register Name – CONFIG88 – Address 0x180, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
INTRV_CNT (20:13)  
INTRV_CNT (20:13) – Upper 8 bits of the 21 bit Interval count for the fine power meter. The actual  
Interval period is (8N + 3) samples where N is the unsigned integer represented by INTRV_CNT (20:0)  
40  
REGISTER DESCRIPTIONS  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
Register Name – CONFIG89 – Address 0x181, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
INTRV_CNT(12:5)  
INTRV_CNT(12:5) – Middle 8 bits of the 21 bit Interval count for the Power meter  
Register Name – CONFIG90 – Address 0x182, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
INTRV_CNT (4:0)  
PWR_MTR_MODE PWR_MTR_FINE PWR_MTR_EN  
INTRV_CNT(4:0) – Lower 4 bits of the 21 bit Interval count for the Power meter  
PWR_MTR_EN – Enables the power meter. Common for fine and coarse power meters.  
PWR_MTR_FINE – When cleared, configures the power meter in ‘Fine ‘ mode where it gives linear  
output . When set, configures it in the coarse mode, where it gives output in the db scale.In coarse mode,  
the  
number  
of  
samples  
over  
which  
power  
is  
computed  
is  
specified  
in  
the  
PWR_MTR_COARSE_SAMPLES(2:0) in CONFIG82.  
PWR_MTR_MODE – When cleared, configures the power meter in the real mode – Output I = I2, Output  
Q = Q2. When set, configures it in complex mode – Output = I2 + Q2.  
Register Name – CONFIG91 – Address 0x183, Default = 0x00 (Read Only)  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
PWR_OP_I(57:50)  
PWR_OP_I(57:50) – Upper 8 bits of the Power meter output for I channel when it is configured in the Fine  
mode. This represents power of I channel when configured in the real mode, and the complex power when  
configured in the complex mode.  
Register Name – CONFIG92 – Address 0x184, Default = 0x00 (Read Only)  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<2>  
<2>  
<2>  
<1>  
<1>  
<1>  
<1>  
<0>  
<0>  
<0>  
<0>  
PWR_OP_I(49:42)  
PWR_OP_I(49:42)  
Register Name – CONFIG93 – Address 0x185, Default = 0x00 (Read Only)  
<7> <6> <5> <4> <3>  
PWR_OP_I(41:34)  
PWR_OP_I(41:34)  
Register Name – CONFIG94 – Address 0x186, Default = 0x00 (Read Only)  
<7> <6> <5> <4> <3>  
PWR_OP_I(33:26)  
PWR_OP_I(33:26)  
Register Name – CONFIG95 – Address 0x187, Default = 0x00 (Read Only)  
<7> <6> <5> <4> <3>  
PWR_OP_I(25:18)  
PWR_OP_I(25:18)  
Copyright © 2011–2012, Texas Instruments Incorporated  
REGISTER DESCRIPTIONS  
41  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
Register Name – CONFIG96 – Address 0x188, Default = 0x00 (Read Only)  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<2>  
<2>  
<1>  
<1>  
<1>  
<0>  
PWR_OP_I(17:10)  
PWR_OP_I(17:10)  
Register Name – CONFIG97 – Address 0x189, Default = 0x00 (Read Only)  
<7> <6> <5> <4> <3>  
PWR_OP_I(9:2)  
<0>  
<0>  
PWR_OP_I(9:2)  
Register Name – CONFIG98 – Address 0x18A, Default = 0x00 (Read Only)  
<7> <6> <5> <4> <3>  
PWR_OP_I(1:0) PWR_OP_Q(57:52)  
PWR_OP_Q(57:0) – Power meter output for Q channel when it is configured in the Fine mode . This  
represents power of Q channel when configured in the real mode. In the complex mode, this does not  
contain any information. For a 12-bit output (as is the case in AFE722x), the lower eight bits will not  
contain any information; so it is sufficient to read out PWR_OP_Q(57:8).  
PWR_OP_I(57:0) – Power meter output for I channel when it is configured in the Fine real mode. This  
represent the power of the I channel, and in the complex mode, it represents the complex power. For a  
12-bit output (as is the case in AFE722x), the lower eight bits will not contain any information; so it is  
sufficient to read out PWR_OP_I(57:8).  
Register Name – CONFIG99 – Address 0x18B, Default = 0x00 (Read Only)  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<2>  
<2>  
<2>  
<2>  
<1>  
<1>  
<1>  
<1>  
<1>  
<0>  
<0>  
<0>  
<0>  
<0>  
PWR_OP_Q(51:44)  
PWR_OP_Q(51:44)  
Register Name – CONFIG100 – Address 0x18C, Default = 0x00 (Read Only)  
<7> <6> <5> <4> <3>  
PWR_OP_Q(43:36)  
PWR_OP_Q(43:36)  
Register Name – CONFIG101 – Address 0x18D, Default = 0x00 (Read Only)  
<7> <6> <5> <4> <3>  
PWR_OP_Q(35:28)  
PWR_OP_Q(35:28)  
Register Name – CONFIG102 – Address 0x18E, Default = 0x00 (Read Only)  
<7> <6> <5> <4> <3>  
PWR_OP_Q(27:20)  
PWR_OP_Q(27:20)  
Register Name – CONFIG103 – Address 0x18F, Default = 0x00 (Read Only)  
<7> <6> <5> <4> <3>  
PWR_OP_Q(19:12)  
42  
REGISTER DESCRIPTIONS  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
PWR_OP_Q(19:12)  
Register Name – CONFIG104 – Address 0x190, Default = 0x00 (Read Only)  
<7> <6> <5> <4> <3>  
PWR_OP_Q(11:4)  
<2>  
<1>  
<0>  
PWR_OP_Q(11:4)  
Register Name – CONFIG105 – Address 0x191, Default = 0x00 (Read Only)  
<7> <6> <5> <4> <3>  
PWR_OP_Q(3:0)  
<2>  
<1>  
<0>  
PWR_OP_Q_RDY PWR_OP_I_RDY  
PWR_OP_I_RDY – Set when the very first computation from the ‘I’ power meter is complete.  
PWR_OP_Q_RDY – Set when the very first computation from the ‘Q’ power meter is complete.  
PWR_OP_Q(3:0) – Lowest two bits of the power meter output for Q channel when it is configured to do  
fine power computation in the real mode.  
Register Name – CONFIG106 – Address 0x1B2, Default = 0x00 (Read Only)  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
COARSE_PWR_OP_I(3:0)  
COARSE_PWR_OP_Q(3:0)  
COARSE_PWR_OP_Q(3:0) – Represents the power in the Q channel when power meter is configured in  
the coarse power computation mode. In complex power computation mode, this output should be ignored.  
The mapping of this value to the db scale is given below table.  
COARSE_PWR_OP_I(3:0) – Represents the power in the I channel when power meter is configured in  
the coarse power computation mode. In complex power computation mode, this output represents the  
complex power.  
Note – In complex power computation mode, the full scale is twice of what it is in the real power  
computation mode.  
VALUE  
POWER IN DB SCALE  
Greater than –1 dbFS  
Greater than –2 dbFS  
Greater than –3 dbFS  
Greater than –4 dbFS  
Greater than –5 dbFS  
Greater than –6 dbFS  
Greater than –7 dbFS  
Greater than –8 dbFS  
Greater than –9 dbFS  
Greater than –10 dbFS  
Greater than –11 dbFS  
Greater than –12 dbFS  
Greater than –13 dbFS  
Greater than –14 dbFS  
Greater than –15 dbFS  
Lesser than –15 dbFS  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Copyright © 2011–2012, Texas Instruments Incorporated  
REGISTER DESCRIPTIONS  
43  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
5.3 CHIP CONTROL REGISTERS  
Register Name – CONFIG107 – Address 0x000, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
SOFTWARE_RESET  
SOFTWARE_RESET:-Register bit to reset the device. Once set, the bit generates a reset pulse, which  
resets all the register bits including itself.  
Register Name – CONFIG108 – Address 0x207, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
REG_PDNFRM_REG REG_PDN_FAST  
REG_PDN_GBL REG_PDNQ REG_PDNI  
REG_PDN_RX  
REG_PDN_TX  
REG_PDN_FRM_REG : Specifies whether the PDN control is through PIN or register bit. When cleared,  
PDN pin is used as the master control.  
For all the below power down modes to work, either set REG_PDN_FRM_REG or pull PDN pin to ‘High’.  
REG_PDN_FAST : When REG_PDN_FRM_REG is low, this bit configures the PDN pin for fast  
powerdown control. When REG_PDN_FRM_REG is high, this bit directly controls the fast powerdown  
mode. When set, it power downs both transmitter and receiver but keeps certain blocks like reference  
circuitry active. Also the Rx output clock is still active. This mode can be used where fast wake up times  
are required.  
REG_PDN_GBL : When REG_PDN_FRM_REG is low, this bit configures the PDN pin for global  
powerdown control. When REG_PDN_FRM_REG is high, this bit directly controls the global powerdown  
mode. When set, it powers down almost all circuitry inside the chip. Thus this mode can be used when  
lowest power is desired. The wakeup times in this mode are much higher than in the fast powerdown  
mode.  
REG_PDNQ : Power downs Q channel of both transmitter and reciever.  
REG_PDNI : Power down I channel of both transmitter and reciever.  
REG_PDN_RX : Power downs reciever i.e both the ADC’s. Clock path is still active.  
REG_PDN_TX : Power downs transmitter i.e both the DAC’s.  
REG_PDN_FRM_REG has a similar role to play for the above modes (REG_PDNQ, REG_PDNI,  
REG_PDN_RX, REG_PDN_TX). When REG_PDN_FRM_REG is low, it configures the PDN pin to the  
function of the bit that is set. When REG_PDN_FRM_REG is high, the set bit directly controls the  
described powerdown mode.  
At 20 MHz Fs, the typical power consumption in different modes are as follows:  
CURRENT ON 1.8 V SUPPLY  
(mA)  
CURRENT ON 3 V SUPPLY  
(mA)  
CONDITION  
Normal  
63  
2.4  
25  
27  
62  
25  
58  
3
Global Power down (REG_PDN_GBL = 1)  
Fast power down (REG_PDN_FAST = 1)  
Rx_power down (REG_PDN_RX = 1)  
13  
58  
13  
13  
Tx power down (REG_PDN_TX = 1)  
Both Rx and Tx (REG_PDN_TX = 1, REG_PDN_RX = 1)  
Register Name – CONFIG109 – Address 0x208, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
REG_PDNI_TX  
REG_PDNQ_TX  
REG_PDNI_RX  
REG_PDNQ_RX  
MODE_LP_CMOS  
REG_SINGLE  
44  
REGISTER DESCRIPTIONS  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
REG_PDNI_TX : Power downs TX Channel A (I Channel) alone.  
REG_PDNQ_TX : Power downs TX Channel B (Q Channel) alone.  
REG_PDNI_RX : Power downs RX Channel A (I Channel) alone.  
REG_PDNQ_RX : Power downs RX Channel B (Q Channel) alone.  
REG_PDN_FRM_REG has a similar role to play for the above modes (REG_PDNI_TX, REG_PDNQ_TX,  
REG_PDNI_RX, REG_PDNQ_RX). When REG_PDN_FRM_REG is low, it configures the PDN pin to the  
function of the bit that is set. When REG_PDN_FRM_REG is high, the set bit directly controls the  
described powerdown mode.  
MODE_LP_CMOS : Low power RX CMOS mode. When the RX interface is set to CMOS interface, the  
device power can be lowered by about 20 mW by setting this bit. Use this mode only for Fs less than 40  
MSPS. Refer to section Low power RX CMOS mode.  
REG_SINGLE : Setting this bit power downs one ADC (Channel A) and One DAC (Channel A). The  
output data format is SDR. In this mode DAC Channel B and ADC Channel B are active.  
Register Name – CONFIG110 – Address 0x209, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
REG_OEZ_  
LVDS_ CHB  
REG_OEZ_  
LVDS_ CHA  
REG_OEZ_  
LVDS_CLK  
REG_OEZ_  
CMOS_ CLK  
REG_OEZ_  
CMOS_DAT  
REG_OEZ_CMOS_DAT: 3-state RX CMOS data buffers (use for Half Duplex TX mode when using  
CMOS interface)  
REG_OEZ_CMOS_CLK: 3-state RX CMOS clock buffer (use for Half Duplex TX mode when using CMOS  
interface)  
REG_OEZ_LVDS_CLK: 3-state RX LVDS clock buffer (use for Half Duplex TX mode when using LVDS  
interface)  
REG_OEZ_LVDS_CHA: 3-state RX LVDS data buffers for Channel A (use for Half Duplex TX mode when  
using LVDS interface)  
REG_OEZ_LVDS_CHB: 3-state RX LVDS data buffers for Channel B (use for Half Duplex TX mode when  
using LVDS interface)  
Register Name – CONFIG111 – Address 0x20A, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
REG_SE_CLK  
REG_LVDS_TX REG_LVDS_RX  
WHAT_IS_SDOUT<1:0>  
REG_SE_CLK: When set, the device is configured to expect two single ended clocks on CLKINP and  
CLKINN. DAC_CLK gets derived from the clock on CLKINN and ADC_CLK from the clock on CLKINP.  
The differential clock buffer is turned off, saving about 6mA of current on the 1.8 V supply.  
REG_LVDS_TX: By default both RX and TX interfaces are in CMOS mode, this bit sets the TX input  
interface in LVDS mode  
REG_LVDS_RX: this bit sets the RX output interface in LVDS mode. In addition to setting this bit, also set  
bit MASTER_OVERRIDE_RX (in CONFIG131) for proper LVDS settings.  
WHAT_IS_SDOUT<1:0>: Configures the SDOUT pin.  
WHAT_IS_SDOUT<1:0>  
Mode  
00  
01  
10  
11  
Floating  
Analog test o/p (Do not use)  
Digital o/p (Use for Aux ADC and register readout)  
Digital i/p (Use for Aux DAC input mode)  
Copyright © 2011–2012, Texas Instruments Incorporated  
REGISTER DESCRIPTIONS  
45  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
5.4 TX DAC CONTROL REGISTERS  
Register Name – CONFIG112 – Address 0x237, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
DACQ_GAIN<7:0>  
DACQ_GAIN<7:0>: Fine control of Channel B (DACQ) output current.  
Output current range is 0.04*FS to -0.04*FS, where FS is Full scale current of DACQ. The word is in 2’s  
complement format.  
DACQ_GAIN<7:0>(decimal equivalent)  
OUTPUT CURRENT  
FS  
0
127  
128  
FS+.04*FS  
FS-.04*FS  
Register Name – CONFIG113 – Address 0x238, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
DACI_GAIN<7:0>  
DACI_GAIN<7:0>: Fine control of Channel A (DACI) output current. Similar to DACQ_GAIN<7:0>.  
Register Name – CONFIG114 – Address 0x239, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
DACI_COARSEZ<3:0>  
DACQ_COARSEZ<3:0>  
DACI_COARSEZ<3:0>: Coarse control of the Channel A (DACI) output current. Let FS be full scale  
current then,  
DACI_COARSEZ<3:0>  
OUTPUT CURRENT  
FS  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
15*FS/16  
14*FS/16  
13*FS/16  
12*FS/16  
11*FS/16  
10*FS/16  
9*FS/16  
8*FS/16  
7*FS/16  
6*FS/16  
5*FS/16  
4*FS/16  
3*FS/16  
2*FS/16  
FS/16  
DACQ_COARSEZ<3:0>: Coarse control of the Channel B (DACQ) output current - similar to  
DACI_COARSEZ<3:0>.  
46  
REGISTER DESCRIPTIONS  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
5.5 CLOCKING CONTROL REGISTERS  
Register Name – CONFIG115 – Address 0x23C, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
STR_CTRL<1:0>  
DIV_ADC<1:0>  
DIV_DAC<1:0>  
STR_CTRL<1:0>: Controls the strength of the RX CMOS output clock (ADC_DCLKOUT) and data buffers  
(increases the strength). When running at Fs higher than 90 MSPS, set to ‘10’ to get more timing margins.  
Enabling this mode might increase the digital noise coupled to analog and may degrade the ADC SNR by  
up to a dB.  
DIV_ADC<1:0>: Divides the clock going to the ADC.  
DIV_ADC<1:0>  
DIVISION FACTOR  
00  
01  
10  
11  
Default (no division)  
2
4
2
DIV_DAC<1:0>: Divides the clock going to the DAC.  
DIV_ADC<1:0>  
DIVISION FACTOR  
00  
01  
10  
11  
Default (no division)  
2
4
2
Register Name – CONFIG116 – Address 0x23D, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
PLL_ENABLE  
PLL_DIVM<1:0>  
PLL_DIVN  
PLL_ENABLE: Setting this bit enables the PLL. Output clock of the PLL is either 2X or 4X of Fs (input  
clock rate).  
PLL_DIVN: Selects multiplication by 4 (default is multiplication by 2).  
PLL_DIVM<1:0>: Different values as listed in the below table need to be programmed for different Fs  
ranges.  
PLL_DIVM<1:0>  
FS in MSPS  
15-20  
Multiplication by 2  
Multiplication by 4  
3
2
1
0
2
20-35  
1
35-80  
0
> 80-180  
Out of range  
While operating PLL with a multiplication factor set by PLL_DIVN = X, there can be significant spurs at  
(NFs/X+/-Fin) where N is an integer. At Fin = 10 MHz, these spurs can be about -60dBc.  
Copyright © 2011–2012, Texas Instruments Incorporated  
REGISTER DESCRIPTIONS  
47  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
Register Name – CONFIG117A – Address 0xDB, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
ENABLE_DCC_CHB  
ENABLE_DCC_CHB: Enables the duty cycle correction circuit (DCC) for the ADC_CLK for ADC Channel  
B. It is recommended to use the DCC when operating at frequencies of ADC_CLK higher than 65 MSPS.  
Register Name – CONFIG117B – Address 0xF2, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
ENABLE_DCC_CHA  
ENABLE_DCC_CHA: Enables the duty cycle correction circuit (DCC) for the ADC_CLK for ADC Channel  
A. It is recommended to use the DCC when operating at frequencies of ADC_CLK higher than 65 MSPS.  
5.6 AUX DAC REGISTERS  
Register Name – CONFIG118 – Address 0x242, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
AUX_DAC_TERM_N<2:0>  
EN_AUXDACB EN_AUXDACA  
AUX_DAC_TERM_N<2:0>: Termination resistor for the negative terminal of the AUX DAC (internal node).  
Choose it to be close to the termination resistor on the pin.  
AUX_DAC_TERM_N<2:0>  
TERMINTION RESISTOR (ohm)  
0
200 (default)  
1
infinite  
67  
10  
11  
100  
133  
400  
57  
100  
101  
110  
111  
80  
EN_AUXDACB: Enables AUXDACB.  
EN_AUXDACA: Enables AUXDACA.  
Register Name – CONFIG119 – Address 0x243, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
<0>  
REG_AUXDACA_IN<11:4>  
REG_AUXDACA_IN<11:4> – Register bits for DACA data in Register Access mode  
Register Name – CONFIG120 – Address 0x244, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
REG_AUXDACA_IN<3:0>  
REG_AUXDACA_IN<3:0> – Register bits for DACA data in Register Access mode.  
48  
REGISTER DESCRIPTIONS  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
Register Name – CONFIG121 – Address 0x245, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
<0>  
<0>  
REG_AUXDACB_IN<11:4>  
REG_AUXDACB_IN<11:4> – Register bits for DACB data in Register Access mode  
Register Name – CONFIG122 – Address 0x246, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
REG_AUXDACB_IN<3:0>  
REG_AUXDACB_IN<3:0> – Register bits for DACB data in Register Access mode  
Register Name – CONFIG123 – Address 0x248, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
FS_AUXDACI<3:0>  
FS_AUXDACI<3:0> – Sets full scale output current for AUXDACA. The 16 levels in mA are:  
FS_AUXDACI<3:0>  
0000  
OUTPUT CURRENT(mA)  
5
0001  
5.5  
0010  
4
0011  
4.5  
0100  
7
7.5  
0101  
0110  
6
0111  
6.5  
1000  
Do not use  
Do not use  
Do not use  
Do not use  
3
1001  
1010  
1011  
1100  
1101  
3.5  
1110  
Do not use  
2.5  
1111  
Register Name – CONFIG124 – Address 0x249, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
FS_AUXDACQ<3:0>  
FS_AUXDACQ<3:0> – Sets full scale input current for AUXDACB. This register is similar to Register  
0x248.  
5.7 LVDS TX INPUT INTERFACE REGISTERS  
Register Name – CONFIG125 – Address 0x30B, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
TWOWIRE_TX  
RESOLUTION_TX<2:0>  
MSB_FIRST_TX  
SERIALIZATION_TX<1:0>  
SDR_TX  
All the modes of register 0x30B works only if MASTER_OVERRIDE_TX (Bit <2> in Address 0x30C) is  
enabled.  
TWOWIRE_TX: Sets two wire modes in the transmitter side.  
RESOLUTION_TX<2:0>: To set the input resolution of the Transmitter.  
Copyright © 2011–2012, Texas Instruments Incorporated  
REGISTER DESCRIPTIONS  
49  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
RESOLUTION_TX<2:0>  
000  
RESOLUTION  
12  
MSB_FIRST_TX<1:0>: Decides whether LSB first or MSB first. Default is LSB first..  
MSB_FIRST_TX  
DATA PATTERN  
LSB first  
0
1
MSB first  
SERIALIZATION_TX<1:0>: Sets serialization factor of the transmitter.  
SERIALIZATION_TX<1:0>  
SERIALIZATION FACTOR  
00  
01  
10  
12x (default)  
14x  
16x  
SDR_TX: By setting this Tx expects SDR input pattern, where as the default is DDR. Bit clock is double  
rate in SDR mode.  
Register Name – CONFIG126 – Address 0x30C, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
MASTER_OVERRIDE_TX  
BITWISE_TX  
DFS_TX  
All the modes of register 0x30C works only if MASTER_OVERRIDE_TX (Bit <2> in Address 0x30C) is  
enabled.  
MASTER_OVERRIDE_TX: Master bit for various override modes  
BITWISE_TX: To set the device in bitwise mode.  
DFS_TX: Determines the data format of the incoming data.  
DFS_TX  
DATA FORMAT  
2’s complement (default)  
straight offset binary  
0
1
Register Name – CONFIG127 – Address 0x30d, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
WORDWISE_TX  
All the modes of register 0x30D works only if MASTER_OVERRIDE_TX (Bit <2> in Address 0x30C) is  
enabled.  
WORDWISE_TX: If set, TX expects word mode format data.  
50  
REGISTER DESCRIPTIONS  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
5.8 LVDS RX OUTPUT INTERFACE REGISTERS  
Register Name – CONFIG128 – Address 0x337, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
OVR_EN_RX  
WORDWISE_ RX  
PATTERN_SEL_RX<2:0>  
All the modes of register 0x337 work only if MASTER_OVERRIDE_RX (Bit <7> in Address 0x33A) is  
enabled.  
OVR_EN_RX: Overrange indicator enable bit. When 0 – Overrange is not sent along with data. If 1 – D0  
is replaced by Overrange indicator bit.  
WORDWISE_RX: When selected, wordwise mode is enabled.  
PATTERN_SEL_RX<2:0>: To select the output pattern from the serializer  
PATTERN_SEL<2:0>  
OUTPUT PATTERN  
Normal ADC pattern  
All Zeros  
000  
001  
010  
011  
All ones  
alternate between 1 and 0  
(D11..D0 alternates between 010101010101 and 101010101010)  
100  
Data ramp pattern  
(D11..D0 ramps continuously every 4 clock cycles in steps of 1 LSB)  
101  
110  
111  
Output custom pattern  
Deskew pattern – D11..D0 replaced by 010101010101  
Sync pattern – D11..D0 replaced by 111111000000 in 1-wire mode and  
by 111000111000 in 2-wire mode  
Register Name – CONFIG129 – Address 0x338, Default = 0x00  
<7> <6> <5> <4>  
CUSTOM PATTERN <15:8>  
<3>  
<2>  
<2>  
<1>  
<1>  
<0>  
<0>  
Register Name – CONFIG130 – Address 0x339, Default = 0x00  
<7> <6> <5> <4>  
CUSTOM PATTERN <7:0>  
<3>  
Register Name – CONFIG131 – Address 0x33A, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
MSB_FIRST_RX  
<2>  
<1>  
TWOWIRE_RX  
<0>  
SDR_RX  
MASTER_OVERRIDE_RX  
SERIALIZATION_RX<1:0>  
DFS_RX  
All the modes of register 0x33A work only if MASTER_OVERRIDE_RX (Bit <7> in Address 0x33A) is  
enabled.  
MASTER_OVERRIDE_RX: Master override bit for RX interface registers. This bit needs to be set to 1  
whenever the RX interface mode is chosen to be LVDS interface.  
SERIALIZATION_RX<1:0>: Sets the serialization factor.  
SERIALIZATION_RX<1:0>  
SERIALIZATION  
00  
01  
10  
12  
14  
16  
In two wire mode for 14x serialization the frame clock is 0.5X, where as 12X and 16X frame clock is still  
1X.  
DFS_RX: Sets the output data format.  
Copyright © 2011–2012, Texas Instruments Incorporated  
REGISTER DESCRIPTIONS  
51  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
DFS_RX  
DATA FORMAT  
2s-complememt  
0
1
straight offset binary  
MSB_FIRST_RX: Flips the out data order to MSB first.  
MSB_FIRST_RX  
DATA ORDER  
LSB first  
0
1
MSB first  
TWOWIRE_RX: Configure the device to give data in two wire mode.  
SDR_RX: Configure the device to give data in SDR mode.  
Register Name – CONFIG132 – Address 0x33B, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
BITWISE_RX  
HALFX_IN_2WIRE_RX  
All the modes of register 0x33B work only if MASTER_OVERRIDE_RX (Bit <7> in Address 0x33A) is  
enabled.  
BITWISE_RX: Configure the device to give data in bit wise mode.  
HALFX_IN_2WIRE_RX: Makes the frame clock output 0.5X (default is 1X). To be used when in wordwise  
mode.  
Register Name – CONFIG133 – Address 0x23A, Default = 0x00  
<7> <6> <5> <4>  
<3>  
<2>  
<1>  
<0>  
CLK_STR_2X  
DATA_STR_2X  
CLK_STR_RX: When set, the LVDS clock buffers has double strength (to be used with 50 ohms external  
termination)  
DATA_STR_2X: When set, all the LVDS clock buffers have double strength (to be used with 50 ohms  
external termination)  
Register Name – CONFIG134 – Address 0x001, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
LVDS_SWING<5:0>  
5.9 AUX ADC REGISTERS  
Register Name – CONFIG135 – Address 0x364, Default = 0x00  
<7> <6> <5> <4>  
SHIGH_WIDTH<1:0> NO_OF_SAMPLES_AVGED<1:0>  
<3>  
<2>  
NO_OF_SAMPLES<2:0>  
<1>  
<0>  
CONV_START  
SHIGH_WIDTH<1:0>: No. of clock cycles width of sampling clock.  
SHIGH_WIDTH<1:0>  
NO.OF CLOCK CYCLE WIDTH  
00  
01  
10  
11  
15(default)  
30  
60  
150  
NO_OF_SAMPLES<2:0>: No. of samples to convert in 1 conversion cycle.  
52  
REGISTER DESCRIPTIONS  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
NO_OF_SAMPLES<2:0>  
NO.OF SAMPLES TO CONVERT  
000  
001  
010  
011  
100  
101  
110  
111  
1
2
4
8
16  
Continuous  
Continuous  
Continuous  
NO_OF_SAMPLES_AVERAGED<1:0>: No. of samples within the same conversion cycle to be averaged.  
Should be less than or equal to NO_OF_SAMPLES.  
NO_OF_SAMPLES_AVERAGED<1:0>  
NO. OF SAMPLES TO BE AVERAGED  
00  
01  
10  
11  
No averaging  
2
4
8
If averaging is set, then the Aux ADC output is updated once in every X samples where X is equal to the  
no. of samples to be averaged.  
CONV_START: Starts Conversion.  
Register Name – CONFIG136 – Address 0x36F, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
BYPASSZ_BUF  
RANGE_AUXADC  
BYPASSZ_BUF: Enables the high impedance input buffer.  
RANGE_AUXADC: Sets the input full scale range of the Aux ADC. Default is 0-1.5V. Setting this bit to 1  
makes the input full scale range 0-DVDD18.  
Register Name – CONFIG137 – Address 0x370, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
EN_AUX_ADC  
MODE_INPUT<1:0>  
EN_AUX_ADC: Static control bit that “wakes up” the Aux ADC.  
MODE_INPUT<1:0>: selects which of the 4 inputs (2 external and 2 internal) is multiplexed into the Aux  
ADC. Default is AUXADC_A.  
MODE_INPUT<1:0>  
AUX_ADC_INPUT  
AUX_ADC_A  
00  
01  
AUX_ADC_B  
5.10 HALF DUPLEX MODE REGISTERS  
Register Name – CONFIG138 – Address 0x24D, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
REG_HALF_DUPLEX_  
THRU_PIN  
Copyright © 2011–2012, Texas Instruments Incorporated  
REGISTER DESCRIPTIONS  
53  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
REG_HALF_DUPLEX_THRU_PIN: Configures the PDN pin as a toggle pin between half duplex RX mode  
and half duplex TX mode. When this bit is set, a ‘1’ on the PDN pin puts the device in half duplex RX  
mode (TX shutdown), and a ‘0’ on the PDN pin puts the device in half duplex TX mode (RX shutdown).  
5.11 LOW POWER RX CMOS MODE REGISTERS  
In Low power CMOS mode, there are various ways to move output data of ADC with respect to output  
clock to achieve required setup and hold time. This can be done using following register.  
Register Name – CONFIG139 – Address 0x33D, Default = 0x00  
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
<1>  
<0>  
DELAY_CLK_LP_CMOS<1:0>  
DELAY_CLK_LP_CMOS<1:0>: Programmable delay for the output clock (ADC_DCLKOUT) when in low  
power CMOS mode.  
DELAY_CLK_LP_CMOS<1:0>  
DELAY(1) (ns)  
4*X - 0.3  
00  
01  
10  
11  
5*X - 0.3  
2*X - 0.3  
3*X - 0.3  
(1) X is the unit delay programmed by CHANGE_UNIT_DELAY<2:0>  
bits.  
Register Name – CONFIG140 – Address 0x33F, Default = 0x00  
<7> <6> <5> <4>  
DELAY_DATA_LP_CMOS<2:0>  
<3>  
<2>  
<1>  
<0>  
CHANGE_UNIT_DELAY<2:0>  
CHANGE_UNIT_DELAY<2:0>: Changes the delay step for the DELAY_CLK_LP_CMOS and  
DELAY_DATA_LP_CMOS programming when in low power CMOS mode (MODE_LP_CMOS=’1’).  
CHANGE_UNIT_DELAY<2:0>  
DELAY UNIT "X" (ns)  
000  
001  
010  
011  
100  
101  
110  
111  
1.12  
1.5  
0.55  
0.9  
1.85  
2.2  
1.25  
1.62  
DELAY_DATA_LP_CMOS<2:0>: Programmable delay for the output data when in low power CMOS  
mode (MODE_LP_CMOS=’1’).  
DELAY_DATA_LP_CMOS<2:0>  
DELAY(1) (ns)  
4*X - 0.3  
5*X - 0.3  
6*X - 0.3  
7*X - 0.3  
NA  
000  
001  
010  
011  
100  
101  
110  
111  
1*X - 0.3  
2*X - 0.3  
3*X - 0.3  
(1) X is the unit delay programmed by CHANGE_UNIT_DELAY<2:0>  
bits.  
54  
REGISTER DESCRIPTIONS  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
6 TYPICAL CHARACTERISTICS FOR AFE7222  
6.1 RECEIVE PATH  
All plots are at 25°C, AVDD18_ADC=1.8V, DVDD18_CLK=1.8V, DVDD18=1.8V, DVDD18_DAC=1.8V, AVDD3_DAC=3.0V,  
AVDD3_AUX=3.0V, maximum rated clock frequency, sine wave input clock. 1.5 VPP differential clock amplitude, 50% clock  
duty cycle, –1 dBFS differential analog input, 0 dB gain, CMOS output interface for AFE7222, 32k point FFT (unless  
otherwise noted)  
AMPLITUDE  
vs  
AMPLITUDE  
vs  
FREQUENCY  
FREQUENCY  
0
−10  
0
−10  
SNR = 71.2dBFS  
SINAD = 71.1dBFS  
THD = 86.1dBc  
SNR = 70.2dBFS  
SINAD = 69.6dBFS  
SFDR = 79.2dBc  
THD = 77.3dBc  
−20  
−20  
SFDR = 88.3dBc  
−30  
−30  
−40  
−40  
−50  
−50  
−60  
−60  
−70  
−70  
−80  
−80  
−90  
−90  
−100  
−110  
−120  
−100  
−110  
−120  
0
6.5  
13  
19.5  
26  
32.5  
0
6.5  
13  
19.5  
26  
32.5  
Frequency (MHz)  
Frequency (MHz)  
G001  
G002  
Figure 6-1. FFT Plot 10MHz 65MSPS  
Figure 6-2. FFT Plot 70MHz 65MSPS  
AMPLITUDE  
vs  
AMPLITUDE  
vs  
FREQUENCY  
FREQUENCY  
0
0
Each Tone at −7dBFS  
Amplitude  
fIN1 = 50.1MHz  
fIN2 = 55.1MHz  
SNR = 71.2dBFS  
SINAD = 71.1dBFS  
THD = 86.1dBc  
−10  
−20  
−10  
−20  
SFDR = 88.3dBc  
Two-Tone IMD = 77.5dBc  
−30  
−30  
−40  
−40  
−50  
−50  
−60  
−60  
−70  
−70  
−80  
−80  
−90  
−90  
−100  
−110  
−120  
−100  
−110  
−120  
0
6.5  
13  
19.5  
26  
32.5  
0
6.5  
13  
19.5  
26  
32.5  
Frequency (MHz)  
Frequency (MHz)  
G003  
G001  
Figure 6-3. FFT Two-Tone Signal  
Figure 6-4. Spectrum With Decimation Filter OFF  
Copyright © 2011–2012, Texas Instruments Incorporated  
TYPICAL CHARACTERISTICS FOR AFE7222  
55  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
All plots are at 25°C, AVDD18_ADC=1.8V, DVDD18_CLK=1.8V, DVDD18=1.8V, DVDD18_DAC=1.8V, AVDD3_DAC=3.0V,  
AVDD3_AUX=3.0V, maximum rated clock frequency, sine wave input clock. 1.5 VPP differential clock amplitude, 50% clock  
duty cycle, –1 dBFS differential analog input, 0 dB gain, CMOS output interface for AFE7222, 32k point FFT (unless  
otherwise noted)  
AMPLITUDE  
vs  
SNR  
vs  
FREQUENCY  
INPUT FREQUENCY  
0
−10  
71  
70.5  
70  
fIN = 10MHz  
SNR = 71.9dBFS  
SFDR = 92.8dBc  
−20  
−30  
−40  
−50  
−60  
69.5  
69  
−70  
−80  
−90  
−100  
−110  
−120  
68.5  
68  
0
3.5  
7
10.5  
14  
16.2  
20  
40  
60  
80  
100  
120  
140  
Frequency (MHz)  
Frequency (MHz)  
G005  
G006  
Figure 6-5. Spectrum With Decimation Filter ON  
Figure 6-6. SNR vs Input Frequency  
SFDR  
SNR  
vs  
vs  
INPUT FREQUENCY  
86  
TEMPERATURE  
72  
Input frequency = 10MHz  
71.5  
71  
83  
80  
77  
74  
70.5  
70  
69.5  
69  
AVDD18_ADC = 1.7V  
AVDD18_ADC = 1.8V  
AVDD18_ADC = 1.9V  
20  
40  
60  
80  
100  
120  
140  
−40  
−15  
10  
35  
60  
85  
Frequency (MHz)  
Temperature (°C)  
G007  
G008  
Figure 6-7. SFDR vs Input Frequency  
Figure 6-8. SNR Across Temperature and ADC  
Analog Supply  
56  
TYPICAL CHARACTERISTICS FOR AFE7222  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
All plots are at 25°C, AVDD18_ADC=1.8V, DVDD18_CLK=1.8V, DVDD18=1.8V, DVDD18_DAC=1.8V, AVDD3_DAC=3.0V,  
AVDD3_AUX=3.0V, maximum rated clock frequency, sine wave input clock. 1.5 VPP differential clock amplitude, 50% clock  
duty cycle, –1 dBFS differential analog input, 0 dB gain, CMOS output interface for AFE7222, 32k point FFT (unless  
otherwise noted)  
SFDR  
vs  
SNR and SFDR  
vs  
TEMPERATURE  
DVDD Supply Voltage  
72  
71.5  
71  
90  
88  
86  
84  
82  
80  
78  
90  
88  
86  
84  
82  
80  
Input Frequency = 10MHz  
Input frequency = 10MHz  
70.5  
70  
69.5  
69  
SNR  
SFDR  
AVDD18_ADC = 1.7V  
AVDD18_ADC = 1.8V  
AVDD18_ADC = 1.9V  
1.70  
1.75  
1.80  
1.85  
1.90  
Supply Voltage (V)  
−40  
−15  
10  
35  
60  
85  
G010  
Temperature (°C)  
G009  
Figure 6-9. SFDR vs Temperature  
Figure 6-10. Performance Across DVDD Supply  
Voltage  
SNR and SFDR  
vs  
SNR and SFDR  
vs  
COMMON-MODE INPUT VOLTAGE  
ANALOG INPUT AMPLITUDE  
72  
71.5  
71  
87  
85  
83  
81  
79  
74  
73.5  
73  
100  
90  
80  
70  
60  
50  
40  
30  
20  
Input Frequency = 10MHz  
72.5  
72  
71.5  
71  
70.5  
SNR  
70.5  
SNR  
SFDR  
SFDR(dBc)  
SFDR (dBFS)  
Input Frequency = 10MHz  
−20 −15 −10 −5 −1  
70  
0.85  
70  
−40  
0.90  
0.95  
1.00  
1.05  
−35  
−30  
−25  
Common-Mode Input Voltage (V)  
Analog Input Amplitude (dB)  
G011  
G012  
Figure 6-11. Performance Across Common-Mode  
Input Voltage  
Figure 6-12. Performance Across Input Amplitude  
Copyright © 2011–2012, Texas Instruments Incorporated  
TYPICAL CHARACTERISTICS FOR AFE7222  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
57  
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
All plots are at 25°C, AVDD18_ADC=1.8V, DVDD18_CLK=1.8V, DVDD18=1.8V, DVDD18_DAC=1.8V, AVDD3_DAC=3.0V,  
AVDD3_AUX=3.0V, maximum rated clock frequency, sine wave input clock. 1.5 VPP differential clock amplitude, 50% clock  
duty cycle, –1 dBFS differential analog input, 0 dB gain, CMOS output interface for AFE7222, 32k point FFT (unless  
otherwise noted)  
SNR and SFDR  
vs  
SNR and THD  
vs  
INPUT CLOCK AMPLITUDE  
INPUT CLOCK DUTY CYCLE  
71.5  
71  
83  
82  
81  
80  
79  
78  
77  
72.5  
72  
90  
88  
86  
84  
82  
80  
78  
Input Frequency = 10MHz  
Input Frequency = 10MHz  
70.5  
70  
71.5  
71  
69.5  
69  
70.5  
70  
SNR  
SFDR  
SNR  
THD  
68.5  
69.5  
0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1  
Input Clock Amplitude, Differential (Vpp)  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
Input Clock Duty Cycle (%)  
G013  
G014  
Figure 6-13. Performance Across Input Clock  
Figure 6-14. Performance Across Input Clock Duty  
Amplitude  
Cycle  
SNR  
DNL  
vs  
Input Clock Duty Cycle  
72  
vs  
OUTPUT CODE  
0.3  
Input Frequency = 10MHz  
71  
70  
69  
68  
67  
66  
0.2  
0.1  
0
−0.1  
−0.2  
−0.3  
65  
SNR DCC OFF  
SNR DCC ON  
64  
35  
40  
45  
50  
55  
60  
65 70  
75  
250  
750  
1250 1750 2250 2750 3250 3750  
Output Code (LSB)  
Input Clock Duty Cycle (%)  
G054  
G015  
Figure 6-15. SNR vs Input Clock Duty Cycle  
Figure 6-16. DNL Plot  
58  
TYPICAL CHARACTERISTICS FOR AFE7222  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
All plots are at 25°C, AVDD18_ADC=1.8V, DVDD18_CLK=1.8V, DVDD18=1.8V, DVDD18_DAC=1.8V, AVDD3_DAC=3.0V,  
AVDD3_AUX=3.0V, maximum rated clock frequency, sine wave input clock. 1.5 VPP differential clock amplitude, 50% clock  
duty cycle, –1 dBFS differential analog input, 0 dB gain, CMOS output interface for AFE7222, 32k point FFT (unless  
otherwise noted)  
INL  
vs  
OUTPUT CODE  
0.3  
0.2  
0.1  
0
−0.1  
−0.2  
−0.3  
250  
750  
1250 1750 2250 2750 3250 3750  
Output Code (LSB)  
G016  
Figure 6-17. INL Plot  
6.2 TRANSMIT PATH  
All plots are at 25°C, AVDD18_ADC=1.8V, DVDD18_CLK=1.8V, DVDD18=1.8V, DVDD18_DAC=1.8V, AVDD3_DAC=3.0V,  
AVDD3_AUX=3.0V, maximum rated clock frequency, sine wave input clock. 1.5 VPP differential clock amplitude, 50% clock  
duty cycle, 0 dBFS digital input, 0 dB gain, CMOS input interface for AFE7222, 32k point FFT (unless otherwise noted)  
AMPLITUDE  
vs  
AMPLITUDE  
vs  
FREQUENCY  
FREQUENCY  
10  
0
10  
0
DAC Output Frequency = 10MHz  
SFDR = 75dBc  
DAC Output Frequency = 50MHz  
SFDR = 69dBc  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
−110  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
5
15  
25  
35  
45  
55  
15  
40  
65  
90  
115  
140  
165 180  
Frequency (MHz)  
Frequency (MHz)  
G017  
G018  
Figure 6-18. Spectrum Analyzer Plot CMOS Mode  
10MHz IF  
Figure 6-19. Spectrum Analyzer Plot CMOS Mode  
50MHz IF  
Copyright © 2011–2012, Texas Instruments Incorporated  
TYPICAL CHARACTERISTICS FOR AFE7222  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
59  
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
All plots are at 25°C, AVDD18_ADC=1.8V, DVDD18_CLK=1.8V, DVDD18=1.8V, DVDD18_DAC=1.8V, AVDD3_DAC=3.0V,  
AVDD3_AUX=3.0V, maximum rated clock frequency, sine wave input clock. 1.5 VPP differential clock amplitude, 50% clock  
duty cycle, 0 dBFS digital input, 0 dB gain, CMOS input interface for AFE7222, 32k point FFT (unless otherwise noted)  
NOISE SPECTRAL DENSITY  
vs  
NOISE SPECTRAL DENSITY  
vs  
DAC OUTPUT FREQUENCY  
DAC OUTPUT FREQUENCY  
−130  
−135  
−140  
−145  
−150  
−155  
−120  
−125  
−130  
−135  
−140  
−145  
−150  
−155  
DAC Input Amplitude = −12dBFs  
DAC Input Amplitude = −6dBFs  
DAC Input Amplitude = 0dBFs  
DAC Full-Scale = 2mA  
DAC Full-Scale = 10mA  
DAC Full-Scale = 20mA  
10  
20  
30  
40  
50  
10  
20  
30  
40  
50  
DAC Output Frequency (MHz)  
DAC Output Frequency (MHz)  
G019  
G020  
Figure 6-20. NSD vs Frequency Across Input Scale  
Figure 6-21. NSD Vs Iouts  
SFDR  
vs  
SFDR  
vs  
DAC OUTPUT FREQUENCY  
DAC OUTPUT FREQUENCY  
80  
80  
75  
70  
65  
60  
DAC Input = 0dBFS  
DAC Input = −6dBFS  
DAC Input = −12dBFS  
Interpolation = 1  
Interpolation = 2  
76  
72  
68  
64  
10  
20  
30  
40  
50  
60  
10  
20  
30  
40  
50  
DAC Output Frequency (MHz)  
DAC Output Frquency (MHz)  
G021  
G022  
Figure 6-22. SFDR vs Frequency  
Figure 6-23. SFDR vs Interpolation  
60  
TYPICAL CHARACTERISTICS FOR AFE7222  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
All plots are at 25°C, AVDD18_ADC=1.8V, DVDD18_CLK=1.8V, DVDD18=1.8V, DVDD18_DAC=1.8V, AVDD3_DAC=3.0V,  
AVDD3_AUX=3.0V, maximum rated clock frequency, sine wave input clock. 1.5 VPP differential clock amplitude, 50% clock  
duty cycle, 0 dBFS digital input, 0 dB gain, CMOS input interface for AFE7222, 32k point FFT (unless otherwise noted)  
SFDR  
vs  
HD2, HD3  
vs  
DAC OUTPUT FREQUENCY  
DAC OUTPUT FREQUENCY  
80  
76  
72  
68  
64  
60  
82  
78  
74  
70  
66  
DAC Output Range = 2mA  
DAC Output Range = 10mA  
DAC Output Range = 20mA  
DAC Interpolation by 2  
HD2  
HD3  
10  
20  
30  
40  
50  
10  
20  
30  
40  
50  
DAC Output Frequency (MHz)  
DAC Output Frequency (MHz)  
G023  
G024  
Figure 6-24. SFDR Vs IOUTFS  
Figure 6-25. HD2, HD3 Across Frequency  
IMD3  
vs  
DAC OUTPUT FREQUENCY  
−80  
−82  
−84  
−86  
−88  
−90  
10  
20  
30  
40  
50  
60  
70  
DAC Output Frequency (MHz)  
G025  
Figure 6-26. IMD3 vs Frequency CMOS  
Copyright © 2011–2012, Texas Instruments Incorporated  
TYPICAL CHARACTERISTICS FOR AFE7222  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
61  
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
7 TYPICAL CHARACTERISTICS FOR AFE7225  
7.1 RECEIVE PATH  
All plots are at 25°C, AVDD18_ADC=1.8V, DVDD18_CLK=1.8V, DVDD18=1.8V, DVDD18_DAC=1.8V, AVDD3_DAC=3.0V,  
AVDD3_AUX=3.0V, maximum rated clock frequency, sine wave input clock. 1.5 VPP differential clock amplitude, 50% clock  
duty cycle, –1 dBFS differential analog input, 0 dB gain, LVDS output interface for AFE7225, 32k point FFT (unless otherwise  
noted)  
AMPLITUDE  
vs  
AMPLITUDE  
vs  
FREQUENCY  
FREQUENCY  
0
−10  
0
−10  
SNR = 70.8dBFS  
SINAD = 70.7dBFS  
SFDR = 87.9dBc  
THD = 85.2dBc  
SNR = 70.0dBFS  
SINAD = 69.5dBFS  
SFDR = 80.1dBc  
THD = 77.8dBc  
−20  
−20  
−30  
−30  
−40  
−40  
−50  
−50  
−60  
−60  
−70  
−70  
−80  
−80  
−90  
−90  
−100  
−110  
−120  
−100  
−110  
−120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
G026  
G027  
Figure 7-1. FFT Plot 10MHz 125MSPS  
Figure 7-2. FFT Plot 70MHz 125MSPS  
AMPLITUDE  
AMPLITUDE  
vs  
FREQUENCY  
0
vs  
FREQUENCY  
0
Each Tone at −7dBFS  
Amplitude  
fIN1 = 50.1MHz  
fIN2 = 55.1MHz  
SNR = 70.8dBFS  
−10  
−10  
SINAD = 70.7dBFS  
SFDR = 87.9dBc  
THD = 85.2dBc  
−20  
−30  
−20  
−30  
Two-Tone IMD = 83.7dBc  
−40  
−40  
−50  
−50  
−60  
−60  
−70  
−70  
−80  
−80  
−90  
−90  
−100  
−110  
−120  
−100  
−110  
−120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
G028  
G026  
Figure 7-3. FFT Two-Tone Signal  
Figure 7-4. Spectrum With Decimation Filter OFF  
62  
TYPICAL CHARACTERISTICS FOR AFE7225  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
Copyright © 2011–2012, Texas Instruments Incorporated  
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
All plots are at 25°C, AVDD18_ADC=1.8V, DVDD18_CLK=1.8V, DVDD18=1.8V, DVDD18_DAC=1.8V, AVDD3_DAC=3.0V,  
AVDD3_AUX=3.0V, maximum rated clock frequency, sine wave input clock. 1.5 VPP differential clock amplitude, 50% clock  
duty cycle, –1 dBFS differential analog input, 0 dB gain, LVDS output interface for AFE7225, 32k point FFT (unless otherwise  
noted)  
AMPLITUDE  
vs  
SNR  
vs  
FREQUENCY  
INPUT FREQUENCY  
0
−10  
71  
70  
69  
68  
fIN = 10MHz  
SNR = 71.8dBFS  
SINAD = 71.8dBFS  
SFDR = 85.6dBc  
THD = 85.25dBc  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
−110  
−120  
0
10.5  
21  
31.5  
50  
100  
150  
200  
Frequency (MHz)  
Frequency (MHz)  
G030  
G031  
Figure 7-5. Spectrum With Decimation Filter ON  
Figure 7-6. SNR vs Input Frequency  
SFDR  
SINAD  
vs  
vs  
INPUT FREQUENCY  
90  
GAIN  
72  
71  
70  
69  
68  
67  
66  
fIN = 70MHz  
fIN = 140MHz  
86  
82  
78  
74  
70  
66  
50  
100  
150  
200  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Frequency (MHz)  
Digital Gain (dB)  
G032  
G033  
Figure 7-7. SFDR vs Input Frequency  
Figure 7-8. SINAD Across Gain  
Copyright © 2011–2012, Texas Instruments Incorporated  
TYPICAL CHARACTERISTICS FOR AFE7225  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
63  
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
All plots are at 25°C, AVDD18_ADC=1.8V, DVDD18_CLK=1.8V, DVDD18=1.8V, DVDD18_DAC=1.8V, AVDD3_DAC=3.0V,  
AVDD3_AUX=3.0V, maximum rated clock frequency, sine wave input clock. 1.5 VPP differential clock amplitude, 50% clock  
duty cycle, –1 dBFS differential analog input, 0 dB gain, LVDS output interface for AFE7225, 32k point FFT (unless otherwise  
noted)  
SFDR  
vs  
SNR  
vs  
GAIN  
TEMPERATURE  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
71.5  
71  
fIN = 70MHz  
fIN = 140MHz  
Input Frequency = 10MHz  
70.5  
AVDD18_ADC = 1.7V  
AVDD18_ADC = 1.8V  
AVDD18_ADC = 1.9V  
70  
−40  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
−15  
10  
35  
60  
85  
Digital Gain (dB)  
Temperature (°C)  
G034  
G035  
Figure 7-9. SFDR vs Gain  
Figure 7-10. SNR Across Temperature and ADC  
Analog Supply  
SNR and SFDR  
vs  
SFDR  
vs  
TEMPERATURE  
DVDD SUPPLY VOLTAGE  
74  
73  
72  
71  
70  
69  
68  
88  
87  
86  
85  
84  
83  
82  
90  
89  
88  
87  
86  
85  
84  
Input Frequency = 10MHz  
Input Frequency = 10MHz  
SNR  
SFDR  
AVDD18_ADC = 1.7 V  
AVDD18_ADC = 1.8 V  
AVDD18_ADC = 1.9 V  
1.70  
1.75  
1.80  
Supply Voltage (V)  
1.85  
1.90  
−40  
−15  
10  
35  
60  
85  
G037  
Temperature (°C)  
G036  
Figure 7-11. SFDR Across Temperature and ADC  
Analog Supply  
Figure 7-12. Performance Across DVDD Supply  
Voltage  
64  
TYPICAL CHARACTERISTICS FOR AFE7225  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
All plots are at 25°C, AVDD18_ADC=1.8V, DVDD18_CLK=1.8V, DVDD18=1.8V, DVDD18_DAC=1.8V, AVDD3_DAC=3.0V,  
AVDD3_AUX=3.0V, maximum rated clock frequency, sine wave input clock. 1.5 VPP differential clock amplitude, 50% clock  
duty cycle, –1 dBFS differential analog input, 0 dB gain, LVDS output interface for AFE7225, 32k point FFT (unless otherwise  
noted)  
SNR and SFDR  
SNR and SFDR  
vs  
vs  
COMMON-MODE INPUT VOLTAGE  
INPUT CLOCK AMPLITUDE  
74  
73  
72  
71  
70  
69  
68  
84  
83  
82  
81  
80  
79  
78  
73  
72.5  
72  
100  
90  
80  
70  
60  
50  
40  
30  
20  
Input Frequency = 10MHz  
71.5  
71  
70.5  
70  
SNR  
SFDR (dBc)  
69.5  
SNR  
SFDR  
Input Frequency = 10MHz  
−40 −30  
SFDR (dBFS)  
69  
−50  
0.85  
0.90  
0.95  
1.00  
1.05  
−20  
Analog Input Amplitude (dBFS)  
−10  
0
Common-Mode Input Voltage (V)  
G038  
G040  
Figure 7-13. Performance Across Common-Mode  
Figure 7-14. Performance Across Input Clock  
Input Voltage  
Amplitude  
SNR and SFDR  
DNL  
vs  
vs  
INPUT CLOCK DUTY CYCLE  
OUTPUT CODE  
72  
71  
70  
69  
68  
67  
79  
78  
77  
76  
75  
74  
0.3  
Input Frequency = 10MHz  
0.2  
0.1  
0
−0.1  
−0.2  
−0.3  
SNR  
THD  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
Input Clock Duty Cycle (%)  
255  
755  
1255  
1755  
2255  
2755  
3255  
3755  
G039  
Output Code (LSB)  
G041  
Figure 7-15. Performance Across Input Clock Duty  
Cycle  
Figure 7-16. DNL Plot  
Copyright © 2011–2012, Texas Instruments Incorporated  
TYPICAL CHARACTERISTICS FOR AFE7225  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
65  
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
All plots are at 25°C, AVDD18_ADC=1.8V, DVDD18_CLK=1.8V, DVDD18=1.8V, DVDD18_DAC=1.8V, AVDD3_DAC=3.0V,  
AVDD3_AUX=3.0V, maximum rated clock frequency, sine wave input clock. 1.5 VPP differential clock amplitude, 50% clock  
duty cycle, –1 dBFS differential analog input, 0 dB gain, LVDS output interface for AFE7225, 32k point FFT (unless otherwise  
noted)  
INL  
vs  
OUTPUT CODE  
0.3  
0.2  
0.1  
0
−0.1  
−0.2  
−0.3  
350  
850  
1350  
1850  
2350  
2850  
3350 3750  
Output Code (LSB)  
G042  
Figure 7-17. INL Plot  
7.2 TRANSMIT PATH  
All plots are at 25°C, AVDD18_ADC=1.8V, DVDD18_CLK=1.8V, DVDD18=1.8V, DVDD18_DAC=1.8V, AVDD3_DAC=3.0V,  
AVDD3_AUX=3.0V, maximum rated clock frequency, sine wave input clock. 1.5 VPP differential clock amplitude, 50% clock  
duty cycle, 0 dBFS digital input, 0 dB gain, LVDS input interface for AFE7225, 32k point FFT (unless otherwise noted)  
AMPLITUDE  
vs  
AMPLITUDE  
vs  
FREQUENCY  
FREQUENCY  
10  
0
5
0
DAC Output Frequency = 10MHz  
SFDR = 74.5dBc  
DAC Output Frequency = 50MHz  
SFDR = 69.2dBc  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
−110  
0
10  
20  
30  
40  
50  
60  
50  
100  
150  
200  
Frequency (MHz)  
Frequency (MHz)  
G043  
G044  
Figure 7-18. Spectrum Analyzer Plot LVDS Mode  
10MHz IF  
Figure 7-19. Spectrum Analyzer Plot LVDS Mode  
50MHz IF  
66  
TYPICAL CHARACTERISTICS FOR AFE7225  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
All plots are at 25°C, AVDD18_ADC=1.8V, DVDD18_CLK=1.8V, DVDD18=1.8V, DVDD18_DAC=1.8V, AVDD3_DAC=3.0V,  
AVDD3_AUX=3.0V, maximum rated clock frequency, sine wave input clock. 1.5 VPP differential clock amplitude, 50% clock  
duty cycle, 0 dBFS digital input, 0 dB gain, LVDS input interface for AFE7225, 32k point FFT (unless otherwise noted)  
NOISE SPECTRAL DENSITY  
vs  
NOISE SPECTRAL DENSITY  
vs  
DAC OUTPUT FREQUENCY  
DAC OUTPUT FREQUENCY  
−125  
−130  
−135  
−140  
−145  
−150  
−155  
−125  
−130  
−135  
−140  
−145  
−150  
−155  
Input Amplitude = −12dBFs  
Input Amplitude = −6dBFs  
Input Amplitude = 0dBFs  
DAC Output Range = 2mA  
DAC Output Range = 10mA  
DAC Output Range = 20mA  
10  
20  
30  
40  
50  
10  
20  
30  
40  
50  
DAC Output Frequency (MHz)  
DAC Output Frequency (MHz)  
G045  
G046  
Figure 7-20. NSD vs Frequency Across Input Scale  
Figure 7-21. NSD Vs Iouts  
SFDR  
vs  
SFDR  
vs  
DAC OUTPUT FREQUENCY  
DAC OUTPUT FREQUENCY  
88  
85  
80  
75  
70  
65  
DAC Input Amplitude = −12dBFS  
DAC Input Amplitude = −6dBFS  
DAC Input Amplitude = 0dBFS  
Interpolation = 1  
Interpolation = 2  
84  
80  
76  
72  
68  
64  
10  
20  
30  
40  
50  
60  
10  
20  
30  
40  
50  
DAC Output Frequency (MHz)  
DAC Output Frquency (MHz)  
G047  
G048  
Figure 7-22. SFDR vs Frequency  
Figure 7-23. SFDR vs Interpolation  
Copyright © 2011–2012, Texas Instruments Incorporated  
TYPICAL CHARACTERISTICS FOR AFE7225  
67  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
All plots are at 25°C, AVDD18_ADC=1.8V, DVDD18_CLK=1.8V, DVDD18=1.8V, DVDD18_DAC=1.8V, AVDD3_DAC=3.0V,  
AVDD3_AUX=3.0V, maximum rated clock frequency, sine wave input clock. 1.5 VPP differential clock amplitude, 50% clock  
duty cycle, 0 dBFS digital input, 0 dB gain, LVDS input interface for AFE7225, 32k point FFT (unless otherwise noted)  
SFDR  
vs  
HD2, HD3  
vs  
DAC OUTPUT FREQUENCY  
DAC OUTPUT FREQUENCY  
86  
82  
78  
74  
70  
66  
62  
88  
84  
80  
76  
72  
68  
64  
60  
DAC Output Range = 2mA  
DAC Output Range = 10mA  
DAC Output Range = 20mA  
HD2  
HD3  
10  
20  
30  
40  
50  
10  
20  
30  
40  
50  
DAC Output Frequency (MHz)  
DAC Output Frequency (MHz)  
G049  
G050  
Figure 7-24. SFDR Vs IOUTFS  
Figure 7-25. HD2, HD3 Across Frequency  
IMD3  
vs  
DAC OUTPUT FREQUENCY  
−70  
Spacing Between Two Tones = 1MHz  
Each Tone Amplitude = −7dBFS  
−75  
−80  
−85  
−90  
−95  
−100  
20  
40  
60  
80  
100  
Output Tone Frequency (MHz)  
G051  
Figure 7-26. IMD3 vs Frequency  
68  
TYPICAL CHARACTERISTICS FOR AFE7225  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
Copyright © 2011–2012, Texas Instruments Incorporated  
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
8 TYPICAL CHARACTERISTICS FOR COMMON PLOTS  
TOTAL POWER  
vs  
TOTAL POWER  
vs  
SAMPLING FREQUENCY  
SAMPLING FREQUENCY  
0.55  
0.5  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
Full Duplex  
Full Duplex  
Half Duplex RX On  
Half Duplex TX On  
Power Down I Channel  
Power Down Q Channel  
Half Duplex RX On  
Half Duplex TX On  
Power Down I Channel  
Power Down Q Channel  
0.45  
0.4  
0.35  
0.3  
0.25  
0.2  
0.15  
0.1  
0.05  
10  
30  
50  
70  
90  
110  
130  
10  
40  
70  
100  
130  
160  
190  
220  
250  
Sampling Frequency (MSPS)  
Sampling Frequency (MSPS)  
G052  
G053  
Figure 8-1. Power vs fclk CMOS  
Figure 8-2. Power vs fclk 2-Wire LVDS  
Copyright © 2011–2012, Texas Instruments Incorporated  
TYPICAL CHARACTERISTICS FOR COMMON PLOTS  
69  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
 
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
9 APPLICATION INFORMATION  
9.1 DEVICE DESCRIPTION  
The AFE7225/7222 is designed to offer small footprint, high performance, low power and flexibility in  
applications that require half or full duplex software defined radios. The receive path consists of dual 12-bit  
125MSPS ADCs, a digital quadrature modulation correction block, FCLK/4 digital frequency shifter and /2  
decimation filter. The transmit path consists of dual 12-bit 250MSPS DACs, a digital quadrature  
modulation correction block, FCLK /4 digital frequency shifter, and x2/x4 interpolation filters as well as a  
FIFO. A peak/rms power meter is available to the receive path. Fine Mixers with NCOs are available for  
both receive and transmit path. These NCOs can be programmed independently. The primary digital  
interface is selectable as either interleaved parallel CMOS or serialized LVDS. Device control is provided  
via SPI (serial peripheral interface).  
An auxiliary 12-bit 100kSPS ADC with two single-ended voltage inputs via a multiplexer is provided for  
voltage monitoring. A dual auxiliary 12-bit 2MSPS single-ended current source output DAC is available for  
control and/or board calibration. Most blocks can be independently powered on/off as needed to save  
power. All of this capability is available in a small 9mm x 9mm 64-pin QFN package.  
9.2 RECEIVER SIGNAL CHAIN  
INP_A_ADC  
12b  
RX ADC A  
RX Output A  
RX Output B  
INN_A_ADC  
INP_B_ADC  
12b  
RX ADC B  
INN_B_ADC  
SYNC  
SYNC  
SYNC  
RX RMS /  
Peak  
Power Meter  
NCO  
SYNC  
SYNC  
Figure 9-1. Signal Chain  
9.3 RECEIVE ADC  
The dual receive ADCs are created using a pipeline architecture and are powered from a 1.8V analog  
supply (AVDD18_ADC). The common-mode of the differential inputs is 0.95V. A VCM pin is provided  
which outputs the common-mode voltage for use in setting up the proper input level. If the VCM pin  
cannot be used in your application, ensure that the analog inputs are centered at 0.95V. The full scale  
range of the inputs is 2.0Vpp differential, or 0.95 ± 0.5V on both INN and INP pins.  
The receive ADCs are capable of under-sampling intermediate frequencies (IF) at high frequency. The  
3dB full power input bandwidth (FPBW) is approximately 550MHz. Good distortion and noise is maintained  
to ~230MHz. The dual ADCs can be used to capture complex I/Q inputs from a quadrature demodulator,  
or two independent IFs or used in a diversity configuration. In order to obey the Nyquist-Shannon  
sampling theorem, ensure that the bandwidth to be sampled does not exceed FADCCLK/2. An external  
anti-aliasing filter is recommended that confines the analog input energy to a single Nyquist band (multiple  
of FADCCLK/2) to avoid unwanted aliasing and reduced overall performance.  
9.4 RECEIVE DECIMATION FILTER  
The user has the option of a decimation filter in the receive data path. The decimation filter can be used to  
reduce the ADC data sample rate by half. The extra sampling bandwidth could be used for processing  
gain and to ease the roll-off requirements of an external anti-aliasing filter. The decimation filter is a 43 tap  
half-band filter. The transition band is from 0.38 to 0.62 of FADCCLK/4, and the stop band attenuation is  
greater than 80dB. The pass-band ripple is less than 0.1dB. Coefficients 1 to 22 are listed. Coefficients 23  
to 43 are the same as those from 22 to 1.  
70  
APPLICATION INFORMATION  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
RXFIR (decimation filter)  
coefficients = [+9 0 –33 0 +88 0 –196 0 +387 0 –704 0 +1210 0 –2024 0 +3432 0 –6485 0 +20700  
+32768]  
The frequency response of the filter is shown below.  
Frequency Response of Decimation Filter  
20  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
Normalized Frequency  
0.7  
0.8  
0.9  
1
Figure 9-2. Decimation Filter Frequency Response (from 0 to FADCCLK/2)  
9.5 RECEIVE FINE FREQUENCY MIXER (FMIX)  
The fine mixer uses a Numerically Controlled Oscillator (NCO) to generate two complementary outputs of  
a finely programmable frequency, which is then mixed with the A and B inputs to generate complex  
outputs.  
The mixer computes two outputs as follows:  
Output I = {Acos(ωmixt) – B sin(ωmixt)} and  
Output Q = {Asin(ωmixt) + Bcos(ωmixt)}  
where ωmix is the programmed fine frequency.  
The NCO has a 32 bit frequency register, and a 20 bit phase register. The 32 bit frequency register can be  
used to set the mixing frequency over a range of ±Fs/2 in steps of Fs/232.  
9.6 RECEIVE COARSE FREQUENCY MIXER (CMIX)  
The receive path contains an optional ±FADCCLK/4 coarse digital frequency mixer. An example of its use is  
the capture of an IF centered in the middle of a Nyquist band. The digital mixer can move the carrier or  
block of carriers to baseband or near baseband. If the total bandwidth of the carrier or summation of  
carriers is less than 0.4 × FADCCLK/4, the decimation filter can also be employed.  
The CMIX block does a complex mixing on the A and B channels as shown below. The SYNC pin can be  
used to ensure that across chips, the phase of mixing is maintained.  
Copyright © 2011–2012, Texas Instruments Incorporated  
APPLICATION INFORMATION  
71  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
MIXING MODE  
MIXING  
MIXING PATTERN(1)  
Iout = { +A, +A , +A, +A }  
Qout = { +B, +B , +B, +B }  
00  
Normal (Low Pass, No Mixing)  
Iout = { +A, –A , +A, –A }  
Qout = { +B, –B , +B, –B }  
01  
10  
11  
High Pass (Fs/2)  
+Fs/4  
Iout = { +A, –B , –A, +B }  
Qout = { +B, +A , –B, –A }  
Iout = { +A, +B , –A, –B }  
Qout = { +B, –A , –B, +A }  
–Fs/4  
(1) A and B are the inputs to the CMIX block. Iout and Qout are the outputs.  
9.7 RMS POWER METER  
The RX signal chain has two power meters – the coarse power meter and fine power meter.  
9.7.1 Coarse Power Meter  
The fine power meter estimates the total integrated power in linear scale based on a much larger set of  
samples. The resulting integrated power number is stored in a register for readout. The interval time (how  
often to start integration) and integration time (number of samples to integrate) is programmable. The  
power meter can be configured in either real mode (where the power of each channel is calculated  
individually) or in a complex mode {where the power of (I^2+Q^2) is calculated}. This is illustrated below.  
Power Meter 1  
I
a
b
COARSE_PWR_OP_I (3:0)  
0
Q
Complex mode  
Power Meter 2  
a
b
COARSE_PWR_OP_Q (3:0)  
0
PWR_METER_COARSE_SAMPLES(2:0)  
Figure 9-3. Coarse Power Meter  
9.7.2 Fine Power Meter  
The fine power meter estimates the total integrated power in linear scale based on a much larger set of  
samples. The resulting integrated power number is stored in a register for readout. The interval time (how  
often to start integration) and integration time (number of samples to integrate) is programmable. The  
power meter can be configured in either real mode (where the power of each channel is calculated  
individually) or in a complex mode {where the power of (I2+Q2)is calculated}. This is illustrated below.  
72  
APPLICATION INFORMATION  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
 
 
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
Power Meter 1  
I
(57:0)  
PWR_OP_I  
0
Q
Complex mode  
Power Meter 2  
PWR_OP_Q (57:0)  
0
SYNC_CNT(8:0)  
INTRV_CNT(20:0)  
INTGR_CNT(20:0)  
Figure 9-4. Fine Power Meter  
Power in the fine power meter is calculated by squaring each I (I and Q for complex inputs) sample,  
summing, and then integrating the summed-squared results into a 58 bit accumulator over a  
programmable integration period.  
The integration period is programmed into the 21 bit counter, in 8 sample increments. The power stored in  
the 58-bit register is:  
Power = [ (I*I) x (Nx8 + 3) ] for real inputs where N is the integration count.  
Power = [ (I*I + Q*Q) x (Nx8 + 3) ] for complex inputs where N is the integration count.  
The power meter operation can be optionally synced. If power meter syncing is enabled, it waits for a  
programmable number of cycles after a valid sync, and then starts computation. If syncing is disabled, it  
starts computation as soon as the power meter is enabled. Once the computation interval is completed,  
the computed power is written to a set of serial interface registers, and the next computation interval  
begins. The contents of these registers can be read out serially through SDOUT.  
The process begins with a sync event starting the 9 bit delay counter. After (8xsync_delay + 4) samples,  
the integration interval is started. Integration continues until the integration count is met, at which point the  
58 bit integrator results are transferred to the read only register. A new measurement period will start at  
the end of the interval period.  
A more detailed diagram of the power meter is shown below (the I and Q are represented as 16-bit  
numbers).  
Copyright © 2011–2012, Texas Instruments Incorporated  
APPLICATION INFORMATION  
73  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
 
 
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
32  
32  
16  
I
33  
58-Bit  
Integrator  
58-Bit  
Register  
RMS Power  
16  
Q
Transfer  
Clear  
9-Bit  
Sync Delay  
Counter  
21-Bit  
Interval  
Counter  
21-Bit  
Integration  
Counter  
Sync  
Interrupt  
9
21  
21  
Delay  
(in 8 Sample  
Increments)  
Interval  
(in 8 Sample  
Increments)  
Integration  
(in 8 Sample  
Increments)  
SYNC_CNT(8:0)  
INTRV_CNT(20:0) INTGR_CNT(20:0)  
B0108-03  
Figure 9-5. Power Meter Detailed Diagram  
The power meter timing is shown below:  
Figure 9-6. Power Meter Timing  
9.8 TRANSMIT SIGNAL CHAIN  
SYNC  
NCO  
TX A input  
(I channel)  
TX A output  
DAC_CLK  
TX B input  
(Q channel)  
TX B output  
SYNC  
SYNC  
SYNC  
SYNC  
DAC_DCLKIN  
DAC_CLK  
%1,2,4  
Figure 9-7. Transmit Signal Chain  
9.9 TRANSMIT DAC  
The transmit DAC is a current-steering architecture, capable of clock rates up to 250MSPS and output  
currents up to 20mA. The DAC is structured as a current sink from the load. The DAC is powered from  
AVDD3_DAC, a 3V analog supply. This provides for an output compliance range of AVDD3_DAC ± 0.5V.  
To benefit from the full 1V swing available on each DAC output pin, a voltage divider load referenced to a  
higher voltage supply, like 5V, is recommended. The current-steering architecture will sink current into the  
+ and – DAC outputs. The sum of the current will always be equal to the full-scale current. The full scale  
current is set with a resistor (RBIAS) to ground on the BIASJ pin, and will be equal to  
74  
APPLICATION INFORMATION  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
 
 
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
IOUTFS = 16 × (VREF/RBIAS), where VREF = 1.2V.  
I
= 16 * (VREF/RBIAS), where VREF = 1.2 V  
OUTFS  
External Termination  
IOUTP_A_DAC  
IOUTN_A_DAC  
IDAC  
Figure 9-8. Current Steering Architecture of DAC  
9.10 FIFO  
The 8-Deep FIFO is used to handoff the data from the digital clock (DAC_DCLKIN) domain to the  
DAC_CLK domain (or the divided version of DAC_CLK if interpolation is used). The FIFO has a read and  
write pointer, which are initialized to 4 away from each other when the chip is either reset or synchronized.  
The write pointer increments with DAC_DCLKIN whereas the read pointer increments with DAC_DCLKIN  
(or the divided version). Ideally, the read and write pointers maintain the difference of 4. However, if there  
is a drift in the relative phases of the two clocks, the instantaneous values of the read and write pointers  
can differ from 4. If the pointers come to within 2 positions of each other, the FIFO can be set to identify  
that condition as a possible "collision" condition and can shut off the DAC outputs by pulling it to mid code.  
A stoppage of the input clock can also be detected by the FIFO.  
9.11 TRANSMIT INTERPOLATION FILTERS  
The AFE7225/7222 can enable 2x or 4x interpolation using on-chip half-band interpolation filters. The  
additional oversampling provided by interpolation can be used to reduce the order of the low pass anti-  
aliasing filter that follows the transmit DACs or so that the digital carrier can be block shifted by the coarse  
mixer to a higher output IF.  
While interpolating by a factor of 2, the DAC_DCLKIN rate should be set to half of the input clock rate.  
While interpolating by a factor of 4, the DAC_DCLKIN rate should be set to one fourth of the input clock  
rate.  
Each channel has two filters TxFIR1, and TxFIR2, of which TxFIR1 alone is enabled in the Interpolate by  
2 mode, Both filters are enabled in Intertpolate by 4 mode. The 2 filters in each of the two channels can  
individually be configured to operate in the ‘low pass ‘ or the high pass mode. By default, all filters are  
configured to opearate in the low pass mode. The following table lists the address and data mask values  
to be programmed to configure each of these filters in the high pass mode.  
TXFIR1 is a 43 tap half-band filter. The transition band is from 0.4 to 0.6 of FCLKFIR1/2, and the stop band  
attenuation is 70 dB. Pass band ripple is less than 0.1dB. It has the following coefficients (listed only up to  
the middle one)  
TXFIR1 (interpolation filter 1)  
coefficients = [12 0 –33 0 73 0 –143 0 254 0 –426 0 685 0 –1090 0 1781 0 –3286 0 10365 16384 ]  
The frequency response is shown below.  
Copyright © 2011–2012, Texas Instruments Incorporated  
APPLICATION INFORMATION  
75  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
 
 
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
Frequency Response of Interpolation Filter 1  
20  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
Normalized Frequency  
0.7  
0.8  
0.9  
1
Figure 9-9. Interpolation Filter 1 freq Response (from 0 to FDACCLK/2) (2X Interpolation mode)  
TXFIR2 is a 19 tap half-band filter. The transition band is from 0.27 to 0.75 of FCLKFIR2/2, and the stop  
band attenuation is 70dB. Pass band ripple is less than 0.1dB. It has the following coefficients (listed only  
up to the middle one).  
TXFIR2 (interpolation filter 2)  
coefficients = [11 0 –64 0 224 0 –648 0 2525 4096]  
Individual and Composite Responses of Interpolation Filters  
50  
0
-50  
-100  
-150  
-200  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
Normalized Frequency  
Figure 9-10. Interpolation filters individual and composite responses – TXFIR1 response is shown in  
blue, TXFIR2 response is in red, and the composite response is in green. (4X interpolation mode, from 0  
to FDACCLK/2)  
76  
APPLICATION INFORMATION  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
9.12 TRANSMIT FINE FREQUENCY MIXER (FMIX)  
The fine mixer uses a Numerically Controlled Oscillator (NCO) to generate two complementary outputs of  
a finely programmable frequency, which is then mixed with the A and B inputs to generate complex  
outputs.  
The mixer computes two outputs as follows:  
Output I = {Acos(ωmixt) – B sin(ωmixt)} and  
Output Q = {Asin(ωmixt) + Bcos(ωmixt)}  
where ωmix is the programmed fine frequency.  
The NCO has a 32 bit frequency register, and a 20 bit phase register. The 32 bit frequency register can be  
used to set the mixing frequency over a range of ±Fs/2 in steps of Fs/232.  
9.13 TRANSMIT COARSE FREQUENCY MIXER  
The transmit path contains an optional ±FDACCLK/4 coarse digital frequency mixer. An example of its use is  
the processing of an input pattern to the AFE7225/7222 at or near baseband. The digital mixer can move  
the carrier or block of carriers to a higher IF after interpolation. This is useful especially in quadrature  
modulation as it creates more separation between the wanted signal and its image, making it easier to  
filter the unwanted image at RF after the analog quadrature modulator.  
MIXING MODE  
MIXING  
MIXING PATTERN(1)  
Iout = { +A, +A , +A, +A }  
Qout = { +B, +B , +B, +B }  
00  
Normal (Low Pass, No Mixing)  
Iout = { +A, –A , +A, –A }  
Qout = { +B, –B , +B, –B }  
01  
10  
11  
High Pass (Fs/2)  
+Fs/4  
Iout = { +A, –B , –A, +B }  
Qout = { +B, +A , –B, –A }  
Iout = { +A, +B , –A, –B }  
Qout = { +B, –A , –B, +A }  
–Fs/4  
(1) A and B are the inputs to the CMIX block. Iout and Qout are the outputs.  
9.14 TRANSMIT INVERSE SINC FILTER  
The inverse SINC filter is 9-tap and has a response that is inverse of the natural DAC droop versus  
frequency (due to sin(x)/x roll-off caused by zero-order hold of DAC sampling. It uses the same  
coefficients as in DAC5688. The inverse sinc filter has a gain > 1 at all frequencies. Therefore, the signal  
input to the inverse SINC must be reduced from full scale to prevent saturation in the filter. The amount of  
backoff required depends on the signal frequency, and is set such that at the signal frequencies the  
combination of the input signal and filter response is less than 1 (0dB). For example, if the signal input to  
the inverse SINC filter is at FDACCLK/4, the response of the inverse SINC is 0.9 dB, and the signal must be  
backed off from full scale by 0.9 dB. The gain function in the QMC block can be used to reduce the  
amplitude of the input signal. The coefficients are same as those in the inverse SINC filter in DAC5688  
(listed only up to the middle one).  
Coefficients = [ 1 –4 13 –50 592 ]  
Its frequency response is shown below:  
Copyright © 2011–2012, Texas Instruments Incorporated  
APPLICATION INFORMATION  
77  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
Frequency Response of Inverse SINC Filter  
3.5  
3
2.5  
2
1.5  
1
0.5  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Normalized Frequency  
Figure 9-11. Inverse SINC Filter Frequency Response (0 to Fdac/2)  
9.15 QUADRATURE MODULATION CORRECTION (QMC) – SIMILAR FOR TRANSMIT AND  
RECEIVE  
The Quadrature Modulator Correction (QMC) block provides a means for changing the phase balance of  
the complex signal to compensate for I and Q imbalance present in an analog quadrature modulator. The  
block diagram for the QMC block is shown below. The QMC block contains 3 programmable parameters.  
Registers QMC_GAINA(10:0) and QMC_GAINB(10:0) control the I and Q path gains and are 11 bit values  
with a range of 0 to 1.99. The gain adjustment value is determined by dividing the register value by 1024.  
A value of 1024 is therefore a gain of 1, a value of 512 is a gain of 0.5 and a value of 2047 is a gain of  
1.99. Note that the I and Q gain can also be controlled by setting the DAC full scale output current.  
Register QMC_PHASE(9:0) controls the phase imbalance between I and Q and is a 10-bit value with a  
range of –0.125 to +0.125 that is multiplied by the Q sample and added to the I sample.  
QMC_GAINA(10:0)  
11  
12  
12  
A Data In  
A Data Out  
x
S
10  
QMC_PHASE(9:0)  
x
12  
12  
B Data In  
B Data Out  
x
11  
QMC_GAINB(10:0)  
Figure 9-12. QMC Block Diagram  
78  
APPLICATION INFORMATION  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
9.16 DIGITAL OFFSET CONTROL  
Registers QMC_OFFSETA(12:0) and QMC_OFFSETB(12:0) control the A and B path offsets and are 13-  
bit values with a range of -4096 to 4095. The offset adjustment value is got by dividing the register value  
by 16, so the range of the offset adjustment is ±256 LSB. The DAC offset value adds a digital offset to the  
digital data before digital-to-analog conversion. The data and offset values are LSB aligned.  
QMC_OFFSETA  
13  
12  
12  
12  
A Data In  
B Data In  
A Data Out  
B Data Out  
S
S
12  
13  
QMC_OFFSETB  
Figure 9-13. Digital Offset Block Diagram  
9.17 SYNCHRONIZING MULTIPLE CHIPS  
The AFE722x has a SYNC pin that can be used to synchronize multiple chips. When such synchronization  
is not required, the SYNC pin can be tied to ground (or in the case of differential SYNC input, tie  
SYNCINP to logic low and SYNCINN to logic high).  
On the transmit side, several blocks need to be synchronized. These include the clock divider, FIFO read  
and write pointersm, coarse mixer mixing phase, NCO phase, power meter, QMC gain/ phase correction  
block. Note however that all these blocks can function even without synchronization.  
The simplest way to synchronize all blocks is using the global synchronizing mode, which is enabled by  
default. The synchronization source, by default, is the SYNC pin. A rising edge on the SYNC pin will  
cause all blocks to be synced in an order that is internally controlled. The synchronization source can also  
be set to a serial interface bit (TX_GLOBAL_SYNC_SRC and RX_GLOBAL_SYNC_SRC). When using  
the serial interface bit, a 0-1 transition on the register bit triggers syncing.  
In most cases, global synchronizing mode is sufficient. However, each block can be independently  
synchronized by disabling the global synchronization modes (TX_GLOBAL_SYNC_DIS and  
RX_GLOBAL_SYNC_DIS) and enabling the block-specific synchronization register controls. The block-  
specific synchronization can also be done either using the SYNC pin or using 0-1 transitions on specific  
register bits.  
For some blocks, there is an option to specify whether or not syncing is neede. An example is the QMC  
offset register control. When syncing is specified as not needed, the values in the QMC offset register are  
applied as soon as they are written into. However when syncing is specified as needed, the values written  
into this register are applied to the block only when a valid SYNC pulse is applied.  
When applying block specific syncing, it is recommended that the following order be followed:  
1. Synchronize the clock divider first  
2. Synchronize the FIFO next  
3. Synchronize all other other blocks next in no specific order  
The effect on synchronizing on various blocks is listed below:  
FIFO – the write pointer is reset to zero and the read pointer is reset to 4.  
QMC offset correction – The QMC offset correction values programmed into the serial interface  
registers are loaded into the block  
QMC Gain/ Phase correction block – The gain and phase correction values programmed into the  
serial interface registers are loaded into the block  
Copyright © 2011–2012, Texas Instruments Incorporated  
APPLICATION INFORMATION  
79  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
Fine mixer – The NCO frequency and phase register values programmed into the serial interface  
registers are loaded into the block. Also the NCO phase accumulator is initialized to the programmed  
phase offset.  
Coarse mixer – The phase programmed for the mixing is applied on SYNC.  
Power meter – After a SYNC event, power computation begins after a programmable number of  
cycles.  
80  
APPLICATION INFORMATION  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
10 DIGITAL INTERFACE  
The digital interface is capable of operating in two distinct modes – interleaved parallel CMOS and  
serialized LVDS. The supported maximum speed of operation varies depending upon mode in which  
digital interface is operating. AFE722x has constraints on maximum frequencies of ADC_CLK and  
DAC_CLK. Using these constraints, a comprehensive table showing maximum frequencies of different  
clocks in different interfaces is listed in Table 10-1.  
The following table shows the maximum frequency of operation of various clocks of AFE7225 in LVDS  
interface mode (set register bit REG_LVDS_TX=’1’ to put DAC in LVDS interface mode, and  
MASTER_OVERRIDE_RX=’1’ and REG_LVDS_RX=’1’ to put ADC in LVDS interface mode.)  
Table 10-1. Maximum Interface Rates in LVDS Mode  
RX PATH  
Max ADC  
Sampling  
Clock  
SDR or  
DDR  
(register bit  
SDR_RX)  
Decimation Factor  
(register bits  
RX_DEC_FIL_EN,  
RX_DEC_FIL_EN_SRC)  
Wire Mode  
(register bit  
TWOWIRE_RX)  
Max ADC Frame Clock  
(ADC_FCLKOUTP/N)  
MHz  
Max ADC Bit Clock  
(ADC_DCLKOUTP/N)  
MHz  
Max Serial Output Data  
Rate (ADCx_DATA_nP/N)  
Mbps, per wire  
(ADC_CLK(1)  
MHz  
)
1
2
1
2
1
2
65  
390  
195  
780  
390  
750  
375  
390  
195  
1-wire  
2-wire  
DDR  
DDR  
SDR  
65  
125  
65  
32.5  
125  
62.5  
65  
375  
187.5  
390  
2-wire  
32.5  
195  
TX PATH  
SDR or  
DDR  
(register bit  
SDR_TX)  
Interpolation By  
(register bits  
TX_INT_MODE(1:0),  
TX_INT_MODE_SRC)  
Max DAC  
Wire Mode  
(register bit  
TWOWIRE_TX)  
Max DAC Frame Clock  
(DAC_FCLKINP/N)  
MHz  
Max DAC Bit Clock  
( DAC_DCLKINP/N)  
MHz  
Max Serial Input Data Rate  
(ADCx_DATA_nP/N)  
Mbps, per wire  
Output Clock  
(DAC_CLK(1)  
MHz  
)
1
2
4
1
2
4
1
2
4
65  
65  
65  
390  
390  
375  
390  
390  
375  
390  
375  
187.5  
780  
780  
750  
390  
390  
375  
780  
780  
375  
1-wire  
2-wire  
2-wire  
DDR  
SDR  
DDR  
130  
250  
65  
62.5  
65  
130  
250  
130  
250  
250  
65  
62.5  
130  
125  
62.5  
(1) ADC_CLK and DAC_CLK are derived from clocks on CLKINP and CLKINN (differential clock, a single-ended clock or two independent  
single-ended clocks). See Clocking section for details. For Full-Duplex operation requiring two single-ended clocks, see section Full  
Duplex Operation – Coupling Considerations.  
Copyright © 2011–2012, Texas Instruments Incorporated  
DIGITAL INTERFACE  
81  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
 
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
Table 10-2 shows the maximum frequency of operation of various clocks of AFE7225 in CMOS interface  
mode (by default after reset, AFE722x operates in CMOS interface mode for both RX and TX path).  
Table 10-2. Maximum Interface Rates in CMOS Mode  
RX PATH  
Decimation Factor  
(register bits  
RX_DEC_FIL_EN,  
RX_DEC_FIL_EN_SRC)  
Low Power CMOS Mode  
(register bit  
MODE_LP_CMOS)  
Max ADC Sampling Clock  
Max ADC_DCLKOUT  
MHz  
Max Parallel Output Data Rate  
Mbps, per pin  
(ADC_CLK(1)  
MHz  
)
1
2
1
2
105  
52.5  
40  
210  
105  
80  
Disabled (default)  
Enabled  
105  
40  
20  
40  
TX PATH  
Interpolation Factor  
(register bits  
TX_INT_MODE(1:0),  
TX_INT_MODE_SRC)  
Max DAC Output Clock  
Max DAC_DCLKIN  
MHz  
Max Parallel Input Data Rate  
(DAC_CLK(1)  
MHz  
)
Mbps, per pin  
1
2
4
130  
65  
260  
130  
65  
130  
32.5  
(1) ADC_CLK and DAC_CLK are derived from clocks on CLKINP and CLKINN (differential clock, a single-ended clock or two independent  
single-ended clocks). See Clocking section for details. For Full-Duplex operation requiring two single-ended clocks, see section Full  
Duplex Operation – Coupling Considerations.  
10.1 PARALLEL CMOS ADC RX DATA  
The 12-bit ADC-A and ADC-B data is interleaved (A then B) into one 12-bit word on pins  
ADCDATA0:ADCDATA11 at twice the rate of each pattern with a DDR clock (data transitions on rising  
and falling edges). This can be quadrature data or two independent receive channels. Note that in the  
default RX CMOS mode, the edges of the ADC_DCLKOUT are aligned in the middle of the data window.  
ADC_DCLKOUT  
B
A
B
A
B
A
B
ADCDATA <11:0>  
Figure 10-1. RX CMOS Interleaved Output  
10.2 TIMING INFORMATION FOR PARALLEL CMOS ADC RX DATA  
tCLK  
ADC_DCLKOUT  
th  
tsu  
th  
tsu  
A
B
A
ADCDATA <11:0>  
tCLK = Time period of ADC output data clock (same as time period of ADC sampling clock when decimation is set to  
1).  
Figure 10-2. RX CMOS Output Timing  
82  
DIGITAL INTERFACE  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
 
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
10.3 PARALLEL CMOS DAC TX DATA  
The 12-bit DAC-A and DAC-B data is interleaved (A then B) into one 12-bit word on pins  
DACDATA0:DACDATA11 at twice the rate of each pattern with a DDR clock (data transitions on rising  
and falling edges). This can be quadrature data or two independent transmit channels.  
DAC_DCLKIN  
B
A
B
A
B
A
B
DACDATA <11:0>  
Figure 10-3. TX CMOS Interleaved Input  
10.4 TIMING INFORMATION FOR PARALLEL CMOS DAC TX DATA  
tCLK  
DAC_DCLKIN  
th  
tsu  
th  
tsu  
A
B
A
DACDATA <11:0>  
tCLK = Time period of DAC input data clock (same as time period of DAC output clock when interpolation is set to 1).  
Figure 10-4. TX CMOS Input Timing  
10.5 LOW POWER RX CMOS MODE  
The default RX CMOS mode uses an internal PLL to position the clock edges in the middle of the data  
window. While operating at speeds lower than 40 MSPS, a low power CMOS mode can be enabled (set  
bit MODE_LP_CMOS to 1). In this mode, the PLL is bypassed and the clock edges are set relative to the  
data transitions through delay elements. Bypassing the PLL saves about 20 mW of power. However,  
because the delay elements operate in open loop, there is no tight control on the precise delay and there  
can be a chip to chip variation. At low speeds, there will be sufficient set up and hold time inspite of the  
variations in the clock edge relative to the data. An advantage of the low power RX CMOS mode is that  
the recovery of the RX from powerdown is much faster because of the absence of the PLL. For example,  
with the low power RX CMOS mode enabled, the RX recovers from a state of OFF clock to a state of ON  
clock in 5 us (as compared to 20 us when in default RX CMOS mode). Another advantage of this low  
power RX CMOS mode is that the minimum frequency of operation is extended down to 2.5 MSPS (from  
10 MSPS).  
10.6 SERIAL LVDS DAC TX INTERFACE  
12-bit DAC input data is serialized onto one or two LVDS pairs per DAC. DACA and DACB data inputs  
can be quadrature data or two independent receive channels. Two serialization modes are available.  
1-Wire mode: 1 LVDS pair for the data to each DAC. It will operate in a DDR fashion serialized to a  
frequency of 6x the pattern word rate. A frame clock (DAC_FCLKINP/N) at the word rate and a bit  
clock (DAC_DCLKINP/N) at 6x. Example: 50MSPS 12-bit pattern will serialize to 300MHz on each  
LVDS pair, frame clock of 50MHz and bit clock of 300MHz. Effective serial data rate is 600Mbps due to  
bit transitions on rising and falling edge of bit clock. Recommended maximum word rate is ~65MSPS in  
this mode.  
Copyright © 2011–2012, Texas Instruments Incorporated  
DIGITAL INTERFACE  
83  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
tCLK/6  
DAC_DCLK  
DACDATA  
th  
tsu  
th  
tsu  
Ch A  
Ch B  
A. tCLK = Time period of DAC input data clock (same as time period of DAC output clock when interpolation is set to 1).  
B. th is minimum hold time required at the AFE722x input.  
C. tsu is minimum setup time required at the AFE722x input.  
Figure 10-5. TX 1-Wire Mode Timing Diagram  
2-Wire mode, DDR clock: 2 LVDS pairs for the data to each DAC. It will operate in a DDR fashion  
serialized to a frequency of 3x the pattern word rate. A frame clock (DAC_FCLKINP/N) at half the word  
rate and a bit clock (DAC_DCLKINP/N) at 3x. Example: 50MSPS 12-bit pattern will serialize to  
150MHz on each LVDS pair, frame clock of 25MHz and bit clock of 150MHz. Effective serial data rate  
is 300Mbps on each LVDS pair due to bit transitions on rising and falling edge of bit clock.  
Recommended maximum word rate is ~125MSPS in this mode.  
tCLK/3  
DAC_DCLK  
th  
tsu  
th  
tsu  
Ch A  
Ch B  
DAC_DATA  
A. tCLK = Time period of DAC input data clock (same as time period of DAC output clock when interpolation is set to 1).  
B. th is minimum hold time required at the AFE722x input.  
C. tsu is minimum setup time required at the AFE722x input.  
Figure 10-6. TX 2-Wire Mode, DDR Clock Timing Diagram  
2-Wire mode, SDR clock: 2 LVDS pairs for the data to each DAC. It will operate in a SDR fashion  
serialized to a frequency of 6x the pattern word rate. A frame clock (DAC_FCLKINP/N) at the word rate  
and a bit clock (DAC_DCLKINP/N) at 6x. Example: 50MSPS 12-bit pattern will serialize to 300MHz on  
each LVDS pair, frame clock of 50MHz and bit clock of 300MHz. Effective serial data rate is 300Mbps  
on each LVDS pair due to bit transitions on rising edge of bit clock. Recommended maximum word  
rate is ~65MSPS in this mode.  
84  
DIGITAL INTERFACE  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
 
 
 
 
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
10.6.1 LVDS TX Interface  
Input Clock,  
CLK  
Freq = Fs  
DAC Frame Clock,  
DAC_FCLK  
Freq = 1X Fs  
DAC Bit Clock,  
DAC_DCLK  
Freq = 6X Fs  
Input Data,  
DACB_DATA0  
D0  
(D11)  
D1  
(D10)  
D2  
(D9)  
D3  
(D8)  
D4  
(D7)  
D5  
(D6)  
D6  
(D5)  
D7  
(D4)  
D8  
(D3)  
D9  
(D2)  
D10  
(D1)  
D11  
(D0)  
D0  
(D11)  
D1  
(D10)  
DACA_DATA0  
Data rate = 12X Fs  
SAMPLE  
N+1  
SAMPLE N  
Data bit in LSB First mode  
D0  
(D11)  
Data bit in MSB First mode  
Figure 10-7. 1-WIRE MODE  
Input Clock,  
CLK  
Freq = Fs  
DAC Frame Clock,  
DAC_FCLK  
Freq = 1X Fs  
DAC Bit Clock – DDR (def)  
DAC_DCLK  
Freq = 3X Fs  
DAC Bit Clock – SDR  
DAC_DCLK  
Freq = 6X Fs  
Input Data (LSB byte)  
DACA_DATA_1  
DACB_DATA_0  
D2  
(D3)  
D3  
(D2)  
D4  
(D1)  
D5  
(D0)  
D0  
(D5)  
D1  
(D4)  
D2  
(D3)  
D3  
(D2)  
D4  
(D1)  
D5  
(D0)  
D0  
(D5)  
D1  
(D4)  
Input Data (MSB byte)  
DACA_DATA_0  
DACB_DATA_1  
D6  
(D11)  
D7  
(D10)  
D8  
(D9)  
D9  
(D8)  
D10  
(D7)  
D11  
(D6)  
D6  
(D11)  
D7  
(D10)  
D8  
(D9)  
D9  
(D8)  
D10  
(D7)  
D11  
(D6)  
Data rate = 6X Fs  
D8  
(D2)  
Input Data (Even bits)  
DACA_DATA_1  
DACB_DATA_0  
D0  
(D10)  
D2  
(D8)  
D4  
(D6)  
D6  
(D4)  
D10  
(D0)  
D0  
(D10)  
D2  
(D8)  
D4  
(D6)  
D6  
(D4)  
D8  
(D2)  
D10  
(D0)  
Input Data (Odd bits)  
DACA_DATA_0  
DACB_DATA_1  
D1  
(D11)  
D3  
(D9)  
D5  
(D7)  
D7  
(D5)  
D9  
(D3)  
D11  
(D1)  
D1  
(D11)  
D3  
(D9)  
D5  
(D7)  
D7  
(D5)  
D9  
(D3)  
D11  
(D1)  
Input Data (Sample N)  
DACA_DATA_1  
DACB_DATA_0  
D6  
(D5)  
D7  
(D4)  
D8  
(D3)  
D9  
(D2)  
D10  
(D1)  
D11  
(D0)  
D0  
(D11)  
D1  
(D10)  
D2  
(D9)  
D3  
(D8)  
D4  
(D7)  
D5  
(D6)  
Input Data (Sample N+1)  
DACA_DATA_0  
DACB_DATA_1  
D8  
(D3)  
D9  
(D2)  
D10  
(D1)  
D11  
(D0)  
D6  
(D5)  
D7  
(D4)  
D0  
(D11)  
D1  
(D10)  
D2  
(D9)  
D3  
(D8)  
D4  
(D7)  
D5  
(D6)  
White cells – Sample N  
Grey cells – Sample N+1  
Data bit in LSB First mode  
Data bit in MSB First mode  
D0  
(D5)  
Figure 10-8. 2-WIRE MODE  
Copyright © 2011–2012, Texas Instruments Incorporated  
DIGITAL INTERFACE  
85  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
10.7 SERIAL LVDS ADC RX INTERFACE  
Note: Set MASTER_OVERRIDE_RX bit to ‘1’ before entering RX LVDS interface.  
The 12-bit ADC output data is serialized onto one or two LVDS pairs per ADC. ADCA and ADCB data  
outputs can be quadrature data or two independent receive channels. Two serialization modes are  
available.  
1-Wire mode: 1 LVDS pair for the data from each ADC. It will operate in a DDR fashion serialized to a  
frequency of 6x the pattern word rate. A frame clock (ADC_FCLKOUT) at the word rate and a bit clock  
(ADC_DCLKOUT) at 6x. Example: 50MSPS 12-bit pattern will serialize to 300MHz on each LVDS pair,  
frame clock of 50MHz and bit clock of 300MHz. Effective serial data rate is 600Mbps due to bit  
transitions on rising and falling edge of bit clock.  
tCLK/6  
ADC_DCLK  
th  
tsu  
th  
tsu  
Ch A  
Ch B  
ADC_DATA  
A. tCLK = Time period of ADC output frame clock.  
B. th is minimum hold time required at the AFE722x output.  
C. tsu is minimum setup time required at the AFE722x output.  
Figure 10-9. RX 1-Wire Mode Timing Diagram  
2-Wire mode, DDR clock: 2 LVDS pairs for the data from each ADC. It will operate in a DDR fashion  
serialized to a frequency of 3x the pattern word rate. A frame clock (ADC_FCLKOUT) at half the word  
rate and a bit clock (ADC_DCLKOUT) at 3x. Example: 50MSPS 12-bit pattern will serialize to 150MHz  
on each LVDS pair, frame clock of 25MHz and bit clock of 150MHz. Effective serial data rate is  
300Mbps on each LVDS pair due to bit transitions on rising and falling edge of bit clock.  
tCLK/3  
ADC_DCLK  
th  
tsu  
th  
tsu  
Ch B  
Ch A  
ADC_DATA  
A. tCLK = Time period of ADC output frame clock.  
B. th is minimum hold time required at the AFE722x output.  
C. tsu is minimum setup time required at the AFE722x output.  
Figure 10-10. RX 2-Wire Mode, DDR Clock Timing Diagram  
2-Wire mode, SDR clock: 2 LVDS pairs for the data from each ADC. It will operate in a SDR fashion  
serialized to a frequency of 6x the pattern word rate. A frame clock (ADC_FCLKOUT) at the word rate  
and a bit clock (ADC_DCLKOUT) at 6x. Example: 50MSPS 12-bit pattern will serialize to 300MHz on  
each LVDS pair, frame clock of 50MHz and bit clock of 300MHz. Effective serial data rate is 300Mbps  
on each LVDS pair due to bit transitions on rising edge of bit clock.  
86  
DIGITAL INTERFACE  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
 
 
 
 
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
10.7.1 LVDS RX Interface  
Input Clock,  
CLK  
Freq = Fs  
ADC Frame Clock,  
ADC_FCLK  
Freq = 1X Fs  
ADC Bit Clock,  
ADC_DCLK  
Freq = 6X Fs  
ADC Output Data,  
ADCB_DATA0  
ADCA_DATA0  
D0  
(D11)  
D1  
(D10)  
D2  
(D9)  
D3  
(D8)  
D4  
(D7)  
D5  
(D6)  
D6  
(D5)  
D7  
(D4)  
D8  
(D3)  
D9  
(D2)  
D10  
(D1)  
D11  
(D0)  
D0  
(D11)  
D1  
(D10)  
Data rate = 12X Fs  
SAMPLE  
N+1  
SAMPLE N  
Data bit in LSB First mode  
D0  
(D11)  
Data bit in MSB First mode  
Figure 10-11. 1-WIRE MODE  
Input Clock,  
CLK  
Freq = Fs  
ADC Frame Clock,  
ADC_FCLK  
Freq = 1X Fs  
ADC Bit Clock – DDR (def)  
DCLK  
Freq = 3X Fs  
ADC Bit Clock – SDR  
DCLK  
Freq = 6X Fs  
Output Data (LSB byte)  
ADCA_DATA_1  
ADCB_DATA_0  
D2  
(D3)  
D3  
(D2)  
D4  
(D1)  
D5  
(D0)  
D0  
(D5)  
D1  
(D4)  
D2  
(D3)  
D3  
(D2)  
D4  
(D1)  
D5  
(D0)  
D0  
(D5)  
D1  
(D4)  
Output Data (MSB byte)  
ADCA_DATA_0  
ADCB_DATA_1  
D6  
(D11)  
D7  
(D10)  
D8  
(D9)  
D9  
(D8)  
D10  
(D7)  
D11  
(D6)  
D6  
(D11)  
D7  
(D10)  
D8  
(D9)  
D9  
(D8)  
D10  
(D7)  
D11  
(D6)  
Data rate = 6X Fs  
D8  
(D2)  
Output Data (Even bits)  
ADCA_DATA_1  
ADCB_DATA_0  
D0  
(D10)  
D2  
(D8)  
D4  
(D6)  
D6  
(D4)  
D10  
(D0)  
D0  
(D10)  
D2  
(D8)  
D4  
(D6)  
D6  
(D4)  
D8  
(D2)  
D10  
(D0)  
Output Data (Odd bits)  
ADCA_DATA_0  
ADCB_DATA_1  
D1  
(D11)  
D3  
(D9)  
D5  
(D7)  
D7  
(D5)  
D9  
(D3)  
D11  
(D1)  
D1  
(D11)  
D3  
(D9)  
D5  
(D7)  
D7  
(D5)  
D9  
(D3)  
D11  
(D1)  
Output Data (Sample N)  
ADCA_DATA_1  
ADCB_DATA_0  
D8  
(D3)  
D9  
(D2)  
D10  
(D1)  
D11  
(D0)  
D6  
(D5)  
D7  
(D4)  
D0  
(D11)  
D1  
(D10)  
D2  
(D9)  
D3  
(D8)  
D4  
(D7)  
D5  
(D6)  
Output Data (Sample N+1)  
ADCA_DATA_0  
ADCB_DATA_1  
D8  
(D3)  
D9  
(D2)  
D10  
(D1)  
D11  
(D0)  
D6  
(D5)  
D7  
(D4)  
D0  
(D11)  
D1  
(D10)  
D2  
(D9)  
D3  
(D8)  
D4  
(D7)  
D5  
(D6)  
White cells – Sample N  
Grey cells – Sample N+1  
Data bit in LSB First mode  
Data bit in MSB First mode  
D0  
(D5)  
Figure 10-12. 2-WIRE MODE  
Copyright © 2011–2012, Texas Instruments Incorporated  
DIGITAL INTERFACE  
87  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
10.7.2 CLOCKING  
The clock inputs are versatile. The AFE7225/7222 can be driven by a differential clock, a single-ended  
clock or two independent single-ended clocks. Low voltage CMOS for single-ended and LVDS for  
differential are supported clock levels. Since routing single-ended clocks on the printed circuit board is  
different from system to system, it is possible to see some performance degradation in the data converters  
if the clock becomes corrupted prior to entering the AFE7225/7222. This is less likely to occur if using a  
differential clock routed on the board due to the common-mode noise rejection of the differential clock  
receiver.  
The full block diagram of the clocking to the ADC and DAC is shown below.  
DIV_ADC<1:0>  
Single-  
ended  
Buffer  
ENABLE_DCC  
Clock  
Divider  
%1,2,4  
DCC  
(Duty Cycle  
Correction)  
MUX  
REG_SE_CLK  
MUX  
MUX  
ADC_CLK  
CLKINP  
CLKINN  
Differential  
Buffer  
PLL_ENABLE  
MUX  
DIV_DAC<1:0>  
PLL  
X2,4  
Single-  
ended  
Buffer  
Clock  
Divider  
%1,2,4  
DAC_CLK  
Figure 10-13. Clocking  
Depending on the ADC input frequency and the target SNR of the receiver, it may be important to provide  
a low jitter clock source to the AFE7225/7222. A good estimate for required clock jitter to achieve a certain  
SNR can be found using SNR = 20*log10(2*pi*FINadc *JITTERtotal). The JITTERtotal is the rms  
summation of the external clock jitter and the internal AFE7225/7222 RX ADC clocking aperture jitter,  
specified in the timing characteristics table. A good target for the total jitter is a value that allows an SNR  
that meets or exceeds the ADC SNR so that the clock source jitter will not degrade the SNR. Note that the  
SNR is dependent on the analog input frequency and not the clock frequency.  
When different rate clocks are required for the ADC and the DAC (for example, DAC_CLK is 2X rate of  
ADC_CLK), it is strongly recommended that the input clock be at the higher of the two rates. Dividing the  
high speed clock to derive the half rate clock always gives much lower jitter than using the PLL to multiply  
the lower rate clock to derive the higher rate inside the chip. Use the PLL only when performance  
requirements are relaxed and the additional jitter is tolerable (usually when the analog I/O frequencies are  
low).  
The equivalent circuit model of the differential buffer is shown below. Note that even with the single ended  
buffer is enabled, the loading from the passive components in the differential buffer circuit (including the 2  
pF differential cap, the two 5 kOhm resistors and the equivalent input load, Ceq are still present).  
88  
DIGITAL INTERFACE  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
Differential Clock buffer  
Lpkg  
~ 1 nH  
20 W  
CLKINP  
Cbond  
~ 1 pF  
Ceq  
Ceq  
5 kW  
Resr  
~100 W  
VCM  
2 pF  
5 kW  
Lpkg  
~ 1 nH  
20 W  
CLKINN  
Cbond  
~ 1 pF  
Resr  
~100 W  
Ceq ~ 1 to 3 pF, equivalent input capacitance of differential  
clock buffer  
Figure 10-14. Input Clock Equivalent Circuit  
10.8 Auxiliary ADC  
The schematic of the Auxiliary ADC is shown below.  
MODE_INPUT<1:0>  
BYPASSZ_BUF  
AUXADC_A  
SHIGH  
12-Bit  
SAR ADC  
Input  
Buffer  
Serializer  
SCLK  
SDOUT  
AUXADC_B  
SCLK  
Figure 10-15. Auxiliary ADC Schematic  
The Auxiliary ADC comprises a 12-bit SAR ADC with a high impedance input buffer that is bypassed by  
default (BYPASSZ_BUF=0). The Auxiliary ADC can select its input from 2 external pins called  
AUXADC_A and AUXADC_B. This selection is done using the bits MODE_INPUT <1:0>. The conversion  
is started by setting bit CONV_START to 1, and SCLK is used as the conversion clock. The SAR ADC  
converts the selected input and the 12-bit output is serialized using the SCLK and given out on the  
SDOUT pin. After setting CONV_START to 1, the Auxiliary ADC can be configured for either a single  
conversion, multiple conversions or in continuous conversion mode.  
With the input buffer bypassed, the input range of the Auxiliary ADC is 0-1.5V when RANGE_AUXADC is  
set to 0. When the Auxiliary ADC is converting, the SAR ADC draws switching current from the input pin if  
the input buffer is bypassed. This may not be desirable for applications where the voltage being monitored  
does not have drive capability. With the input buffer introduced in the path of the input, the AUXADC  
inputs are high impedance and do not draw current. However, the input voltage range (at the AUXADC  
pins) is slightly reduced to 0.1-1.5V.  
With RANGE_AUXADC set to 1, the input range is increased to 0-DVDD18 with the buffer bypassed and  
0.1-(DVDD18-0.1)V with the buffer enabled.  
Copyright © 2011–2012, Texas Instruments Incorporated  
DIGITAL INTERFACE  
89  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
 
 
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
10.8.1 Enabling the Auxiliary ADC  
The Auxiliary ADCs are disabled by default.  
Below is the timing diagram illustrating the Aux ADC operation.  
Before starting conversion, set bit EN_AUX_ADC to '1'. Also set WHAT_IS_SDOUT<1:0> to configure  
SDOUT as a digital output pin.  
tPER  
SCLK  
SEN  
SET CONVERSION START=1  
20 clocks  
SDATA  
Write Address: 364 Data: 01  
SHIGH (INTERNAL SAMPLING  
CLOCK)  
AUXADC goes back to sampling mode  
AUXADC input sampled here  
SDOUT  
DO11DO10 DO9 DO8 DO7 DO6 DO5 DO4 DO3  
DO2 DO1 DO0  
DATA LATENCY  
= 27.5 CLOCKS  
DATA PROPAGATION DELAY  
= 20 ns  
Figure 10-16. AUX ADC Timing Diagram  
Note that throughout the Aux ADC conversion, SEN is kept low (active). Also keep SDATA low once the  
CONV_START bit has been written.  
To get out of Aux ADC conversion mode, pull SEN high, then pull it low again and write the bit to make  
CONV_START=0.  
10.9 Auxiliary DAC  
The schematic of the Auxiliary DAC (for channel A) is shown below.  
AVDD3_AUX (3 V)  
IAUX_DAC  
AUXDAC_A_N  
(Internal node)  
AUXDAC_A  
(Pin)  
R
EXT  
RINT  
Figure 10-17. Auxiliary DAC Schematic  
The Auxiliary DAC is a 12-bit current output DAC with the current steered into the AUXDAC_A pin  
dependent on the digital code. The data format of the Auxiliary DAC input is offset binary.  
REXT is the external connected to the AUXDAC_A pin and along with the value of the full scale current,  
sets the full scale output voltage range. For zero input code, voltage on AUXDAC_A is equal to 0 V.  
For maximum input code, voltage on AUXDAC_A is equal to IAUX_DAC*REXT  
.
IAUX_DAC is the full scale current of the Auxiliary DAC, and can be programmed from 2.5 mA to 7.5 mA  
(using bits FS_AUXDACI<3:0>).  
For best linearity, limit the maximum voltage at AUXDAC_A to 1.5V. For example, with IAUX_DAC set to 5  
mA, and REXT set to 300 Ohm, the voltage on AUXDAC_A will swing from 0 to 1.5V.  
90  
DIGITAL INTERFACE  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
AUXDAC_A_N is the internal complementary node and has an internal resistor, RINT programmable from  
57 Ohm to 400 Ohm (using bits AUX_DAC_TERM_N<2:0>). For best linearity, choose a value of this  
resistor to be as close to REXT as possible.  
10.10 Enabling the Auxiliary DAC  
The Auxiliary DACs are disabled by default.  
Note that address of the 20 bit serial interface write bus is the 1st 12 bits out of which the 1st 4 bits  
determine the access mode for the Auxiliary DAC.  
Let us denote this address as ADDR<11:0>.  
Following are Aux DAC modes:  
If ADDR<11:8> = 0100, then we enter Direct Access mode for DAC. In this mode, DAC data is  
dynamically written through SDATA (and SDOUT).  
If ADDR<11:8> = 0101, then we enter the Register Access mode. In this mode, DAC is loaded with the  
data from contents of pre-loaded registers.  
In direct access mode  
If ADDR<7:6> = 01: DAC_A will get written with the 12 serial bits from SDATA, DAC_B will get written  
with the 12 serial bits from SDOUT (both at the rising edge of SCLK)  
If ADDR<7:6> = 10: DAC_A will get 12 bits from SDATA, DAC_B will get next 12 bits from SDATA  
(both at the rising edge of SCLK)  
If ADDR<7:6> = 11: DAC_A will get 12 bits from SDATA at the rising edge of SCLK, DAC_B will get 12  
bits from SDATA at the falling edge of SCLK.  
In register access mode:  
ADDR<7:6> = 01: Only DAC_A will be loaded with the register  
ADDR<7:6> = 10: Only DAC_B will be loaded  
ADDR<7:6> = 11: Both DAC_A and DAC_B are loaded.  
For either direct access or register access modes, only the 1st 6 bits of the address need to be written for  
the serial interface state machine. Remainig bits are considered as applicable to the DAC data.  
Below diagram shows the Aux DAC timing for the direct access mode where DAC_A is written through  
SDATA and DAC_B through SDOUT.  
Start by already setting EN_AUXDACA and EN_AUXDACB bits high.  
tPER  
SCLK  
SEN  
TO GET INTO DIRECT ACCESS  
MODE  
AUX DAC A INPUT1  
AUX DAC A INPUT2  
SDATA  
SDOUT  
0
1
0
0
0
1
DA2 DA1 DA0  
DA2 DA1 DA0  
DA3  
DA3  
DA11  
DA10 DA9 DA8 DA7 DA6 DA5 DA4  
DA11 DA10 DA9 DA8 DA7 DA6 DA5 DA4  
DA11 DA10 DA9 DA8 DA7 DA6 DA5 DA4  
AUX DAC B INPUT1  
AUX DAC B INPUT2  
DB2 DB1 DB0  
DB2 DB1  
DB3  
DB3  
DB0  
DB11  
DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4  
DB10 DB9 DB8 DB7 DB6 DB5 DB4  
DB10 DB9 DB8 DB7 DB6 DB5 DB4  
DB11  
AUXDAC_A  
AUXDAC_B  
tSETTLE  
tSETTLE  
DELAY FOR FIRST UPDATE = 22 CLOCKS  
DELAY FOR SUBSEQUENT UPDATE = 12 CLOCKS  
Figure 10-18. Aux DAC Timing Diagram: DAC_A is Written Through SDATA and DAC_B Through SDOUT  
tPER = SCLK period > 25 ns  
tSETTLE = Settling time of Aux DAC for full scale output (0-1.5V) = 40 ns  
Copyright © 2011–2012, Texas Instruments Incorporated  
DIGITAL INTERFACE  
91  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
Therefore fastest update time:  
First update = 22*25ns + 40ns = 590 ns  
Subsequent update = 12*25ns = 300 ns  
For the direct access mode where DAC_A and DAC_B are both written through SDATA, the timing is  
shown in figure below.  
tPER  
SCLK  
SEN  
TO GET INTO DIRECT ACCESS  
MODE  
AUX DAC A INPUT1  
AUX DAC B INPUT1  
SDATA  
0
1
0
0
0
1
DA2 DA1 DA0  
DA2 DA1 DA0  
DA3  
DA3  
DA11  
DA10 DA9 DA8 DA7 DA6 DA5 DA4  
DA11 DA10 DA9 DA8 DA7 DA6 DA5 DA4  
DA11 DA10 DA9 DA8 DA7 DA6 DA5 DA4  
AUXDAC_A  
AUXDAC_B  
tSETTLE  
DELAY FOR FIRST UPDATE = 34 CLOCKS  
Figure 10-19. Aux DAC Timing Diagram: DAC_A and DAC_B are Both Written Through SDATA  
Therefore fastest update time:  
First update = 34*25ns + 40ns = 890 ns  
Subsequent update = 24*25ns = 600 ns  
After the first Aux DAC refresh, subsequent refresh of the Aux DAC outputs in the above mentioned direct  
access mode takes place after every 24 clocks. Note that the Aux DAC takes about 12 mA on  
AVDD3_AUX (when full scale output is set to 5 mA each Aux DAC).  
10.11 Full Duplex Operation – Coupling Considerations  
When operating the transmit and receive channels simultaneously, several factors need to be considered  
in order to minimize the coupling between the transmit and receive channels. In a general case, the DAC  
and ADC clocks can be at arbitrary rates, with or without harmonic relations to each other. In such a case,  
there exist serious possibilities of coupling between the ADC and DAC. As far as possible, we recommend  
driving the ADC and DAC with the same clock rate externally, and use the internal clock division and  
multiplication to adjust to the required ADC and DAC clock rates internally.  
The internal block diagram of the clocking path is repeated below.  
92  
DIGITAL INTERFACE  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
DIV_ADC<1:0>  
Single-  
ended  
Buffer  
ENABLE_DCC  
DCC  
(Duty Cycle  
Clock  
Divider  
%1,2,4  
MUX  
REG_SE_CLK  
MUX  
Correction)  
MUX  
ADC_CLK  
CLKINP  
CLKINN  
Differential  
Buffer  
PLL_ENABLE  
DIV_DAC<1:0>  
PLL  
X2,4  
Single-  
ended  
Buffer  
Clock  
Divider  
%1,2,4  
DAC_CLK  
MUX  
Figure 10-20. Block Diagram of Clocking Path  
Three cases are considered:  
Case 1: DAC_CLK and ADC_CLK are at same rate: In this case, either CLKINP and CLKINN should be  
driven by a differential clock (common to both the ADC and DAC) or two single ended clocks, both at the  
same rate.  
Case 2: DAC_CLK and ADC_CLK are at different rates such that the higher rate is 2X or 4X of the  
lower rate: In this case, we again recommend driving CLKINP/CLKINN differentially (or by two equal rate  
single ended clocks) at the higher of two rates and dividng internally by the factor of 2 (or 4) on the  
channel that requires the lower rate clock.  
Case 3: DAC_CLK and ADC_CLK are at different rates with the DAC_CLK being at 8X or 16X of the  
ADC_CLK: In this case, we recommend driving CLKINP/CLKINN differentially (or by two equal rate single  
ended clocks) at 4X of ADC_CLK rate, dividing it by 4 for the ADC, and multiplying it by 2 (or 4) for the  
DAC.  
Case 4: DAC_CLK and ADC_CLK are at different rates that are harmonically related but not at rates  
covered by Case 2 or Case 3: In this case, there is no alternative but to drive CLKINP and CLKINN with  
two different rate clocks. If phase control of the two clocks is possible, we recommend that the phases be  
adjusted such that the two clocks have rise/fall edges that do not come within 5 ns of each other. We also  
recommend that the driving clock rates be as close to each other as possible.  
Case 5: DAC_CLK and ADC_CLK are at different rates that are non-harmonically related: This is the  
worst case and it is recommended to avoid operating the AFE in full duplex mode with such clock rates.  
The presence of non-harmonically related clocks at two adjacent pins can cause periodic modulation in  
the sampling instant that can result in huge spurs that get worse at higher ADC input frequencies (and  
DAC output frequencies). At 70 MHz IF, these spur levels could be as large as –45 dBc.  
10.12 Half Duplex Operation – Coupling Considerations  
If the ADC and DAC are driven externally by unequal rate clocks, then ensure that these clocks are not on  
simultaneously. For example, in half duplex mode with the Tx active, ensure that the ADC clock to the  
device is shut off. If the ADC and DAC are driven by equal rate clocks, then it is not required to shut off  
the ADC clock when the Tx is active (and DAC clock when the Rx is active).  
10.13 Half Duplex Operation Through a Common I/O Interface  
If the AFE7222/7225 is to be always operated in Half Duplex mode through a common I/O interface for the  
RX and TX (to reuse the same bus), then the RX and TX data and clocks can be tied on the board as  
illustrated below:  
Copyright © 2011–2012, Texas Instruments Incorporated  
DIGITAL INTERFACE  
93  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
AFE7222/ 7225  
REG_OEZ_CMOS_DAT  
REG_PDN_RX  
RX DATA  
RX CLK  
ADCDATA  
ADC  
ADC_DCLKOUT  
TO FPGA  
REG_OEZ_CMOS_CLK  
TX CLK  
DAC_DCLKIN  
DACDATA  
DAC  
TX DATA  
REG_PDN_TX  
Figure 10-21. I/O Interface  
To enable the TX in Half Duplex mode, set:  
REG_PDN_RX=1, REG_OEZ_CMOS_DAT=1, REG_OEZ_CMOS_CLK=1, and drive the DACDATA and  
DAC_DCLKIN pins as TX input pins.  
To enable the RX in Half Duplex mode, set:  
REG_PDN_TX=1 and receive data and clock from the RX on the same bus.  
For a pin control to be able to toggle between RX half duplex and TX half duplex modes, set bit  
REG_HALF_DUPLEX_THRU_PIN. When this mode is set, the PDN pin serves as a toggle pin – when the  
PDN pin is high, the device operates in Half duplex RX mode and when the PDN pin is low, the device  
operates in Half duplex TX mode.  
Note that half duplex mode through a common I/O interface and the full duplex mode will require different  
board configurations, since in the former mode, the I/O bus is shared.  
11 QUICK GUIDE  
Supplies:  
We recommend driving the Device with 3 supplies :  
3V supply – Tie pins 11, 14, 17, 22 to this supply  
1.8V analog supply – Tie pins 1, 4, 7, 10, 19, 25, 62, 64 to this supply  
1.8V digital supply – Tie pins 32, 41, 49 to this supply  
Power up sequence:  
Power on the 3V and 1.8V supplies in any sequence  
Apply a high going pulse on RESET of minimum width 100 ns to reset the internal registers of the device.  
Software RESET:  
In addition to the hardware RESET pin, the device also has a software RESET bit. This is a self-clearing  
bit, so it needs to be only asserted whenever the device needs to be reset. The software RESET can be  
applied by programming register address 000, Data 02.  
94  
QUICK GUIDE  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
Clocking:  
By default, the device expects a differential clock on CLKINP and CLKINN. This differential clock is used  
to drive both the ADC and DAC.  
In case the clock source is single ended, then short CLKINN to a voltage of 0.95V and apply the single  
ended clock source on CLKINP – alternatively, CLKINP can be driven with a voltage of 0.95V and the  
single ended clock source can be applied on CLKINN.  
A third alternative is to use the single ended clock buffer inside the device. This mode saves about 9 mW  
of power since the differential clock buffer is shut down. By setting register (address 20A, Data 20), the  
single ended clock buffer can be enabled. In that case, Pin 8 provides the single ended clock for the DAC  
whereas Pin 9 provides the single ended clock for the ADC – if a single clock source is to be used for  
both, then tie pins 8 and 9 to this clock source.  
Biasing the ADC inputs:  
The common mode of the ADC input pins should set to VCM, which is nominally 0.95V (measured after  
programming the initialization registers). Deviating from this input common mode can cause degraded  
performance. The full scale input swing on the inputs is 2 Volt differential peak-to-peak. When biased  
optimally at 0.95V, the device gives a full scale output code when the positive input swings between  
roughly 0.45V and 1.45V (and correspondingly the negative input swings between 1.45V and 0.45V). It is  
recommended to operate the ADC at an input that is at least 1 dB below full scale.  
ADC output format:  
The ADC gives out a 12-bit output in 2s complement format. For the most negative input, the ADC gives  
out a code of 100000000000. For the most positive input, the output code is 011111111111.  
RX data output capture (CMOS mode) :  
The RX output data format is DDR (Dual data rate) CMOS. The output of the ADC channel A can be  
captured using the rising edge of ADC_DCLKOUT. The output of ADC channel B can be captured using  
the falling edge of ADC_DCLKOUT. The clock rate of ADC_DCLKOUT matches with the input clock rate  
(on CLKINP, CLKINN).  
ADC_DCLKOUT  
B
A
B
A
B
A
B
ADCDATA <11:0>  
Figure 11-1. RX CMOS Output Interface  
A variety of test patterns can be output by the device in order to debug issues with the capture. To enable  
the test patterns, program register address 042, Data 08. Once this register is programmed, we can  
change the output pattern as follows :  
TO REPLACE NORMAL DATA WITH THE FOLLOWING  
.. ON CHANNEL A WRITE  
Address 031, Data 01  
Address 031, Data 02  
Address 031, Data 03  
Address 031, Data 04  
Address 031, Data 05  
.. ON CHANNEL B WRITE  
Address 037, Data 01  
Address 037, Data 02  
Address 037, Data 03  
Address 037, Data 04  
Address 037, Data 05  
All bits 0  
All bits 1  
All bits toggle between 0 and 1  
Linearly ramping code that ramps through min to max code  
12-bit Custom code  
The 12 bits for the custom code (C<11 :0>) can be set (common for Channel A and B) using the following  
bits:  
C<11> = Bit D5 of regster address 03F  
C<10> = Bit D4 of regster address 03F  
C<9> = Bit D3 of regster address 03F  
Copyright © 2011–2012, Texas Instruments Incorporated  
QUICK GUIDE  
95  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
C<8> = Bit D2 of regster address 03F  
C<7> = Bit D1 of regster address 03F  
C<6> = Bit D0 of regster address 03F  
C<5> = Bit D7 of regster address 040  
C<4> = Bit D6 of regster address 040  
C<3> = Bit D5 of regster address 040  
C<2> = Bit D4 of regster address 040  
C<1> = Bit D3 of regster address 040  
C<0> = Bit D2 of regster address 040  
For example, programming registers (Address 03F Data 29) and (Address 040 Data 34) replaces the  
normal ADC data for both channels with the static binary code 101001001101.  
DAC input format:  
The DAC input format is also 2s complement similar to the ADC.  
Full scale DAC current:  
The full scale DAC current (IOUTFS) is set by the resistor (of value RBIASJ) on the BIASJ pin.  
IOUTFS = 19.2/RBIASJ.  
For RBIASJ=960Ω, IOUTFS = 20 mA  
For the 12-bit input code (where CODE is the decimal representation of the DAC data input word in  
straight offset binary format):  
IOUTP = IOUTFS × CODE / 4096  
IOUTN = IOUTFS × (4096 – CODE) / 4096  
TX data input (CMOS mode):  
The TX input data format is also DDR CMOS. The rising edge of the DAC_DCLKIN latches the Channel A  
data inside the AFE7225/7222, and the falling edge latches the Channel B data. The clock rate of  
DAC_DCLKIN is same as the input clock rate when interpolation is not set. When 2X interpolation is set, it  
should be half the input clock rate, and when 4X interpolation is set, it should be one-fourth the input clock  
rate.  
DAC_DCLKIN  
B
A
B
A
B
A
B
DACDATA <11:0>  
Figure 11-2. TX CMOS Input Interface  
Interpolation:  
While interpolating by a factor of 2, the DAC_DCLKIN rate should be set to half of the input clock rate.  
The 2X interpolation mode on the TX side can be set by the following register : Address 106, Data 05.  
Powerdown modes:  
The device has several powerdown modes which provide a tradeoff between power consumed and speed  
of recovery from powerdown. The nature of the powerdown mode can be set through the registers. Also  
the assertion of the powerdown can be done either through the PDN pin or through a register bit.  
While using the PDN pin to control the powerdown state, the following are the register configurations (see  
specifications table for recovery times)  
Global powerdown mode through PDN pin : Set Address 207, Data 20, and control PDN pin to assert/  
de-assert global powerdown mode. Most functions are shutdown.  
96  
QUICK GUIDE  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
www.ti.com  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
Fast recovery powerdown mode through PDN pin : Set Address 207, Data 40, and control PDN pin to  
assert/ de-assert fast recovery powerdown mode. RX and TX are both put to light sleep, for fast recovery.  
Powerdown TX through PDN pin : Set Address 207, Data 02, and control PDN pin to assert/ de-assert  
TX powerdown mode. In this mode, the TX path is shut down and the RX is fully active, but TX is waiting  
for fast recovery.  
Powerdown RX through PDN pin : Set Address 207, Data 04, and control PDN pin to assert/ de-assert  
RX powerdown mode. In this mode, the RX path is shut down and the TX is fully active, but RX is waiting  
for fast recovery.  
In the above cases, the PDN pin was used to assert/ de-assert the powerdown state. Alternatively, a  
register bit can be used to assert/ de-assert the powerdown state. This is bit D7 of register address 207.  
The corresponding register configurations to assert/ de-assert the powerdown through the register bit are  
as follows (in this case, keep the PDN pin low).  
MODE  
TO ASSERT POWERDOWN WRITE  
TO DE-ASSERT POWERDOWN WRITE  
Global powerdown through register  
Fast recovery powerdown through register  
TX powerdown through register  
RX powerdown through register  
Address 207, Data A0  
Address 207, Data 20  
Address 207, Data C0  
Address 207, Data 40  
Address 207, Data 82  
Address 207, Data 02  
Address 207, Data 84  
Address 207, Data 04  
Copyright © 2011–2012, Texas Instruments Incorporated  
QUICK GUIDE  
97  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
AFE7222  
AFE7225  
SLOS711B NOVEMBER 2011REVISED MARCH 2012  
www.ti.com  
Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Original (November 2011) to Revision A  
Page  
Changed DETAILED BLOCK DIAGRAM ........................................................................................ 2  
Deleted product preview for AFE7225 from PACKAGE/ORDERING INFORMATION ................................. 3  
Changed SUPPLY CHARACTERISTICS ...................................................................................... 10  
Changed TX DAC ELECTRICAL CHARACTERISTICS ..................................................................... 13  
Changed Data setup times ...................................................................................................... 16  
Changed Data hold times ....................................................................................................... 16  
Added Note to TIMING REQUIREMENTS FOR RECEIVE PATH – LVDS AND CMOS MODES ..................... 16  
Changed tdelay times .............................................................................................................. 16  
Changed Output clock duty cycle ............................................................................................. 16  
Changed Table 3-2 ................................................................................................................ 17  
Changed Table 10-1 .............................................................................................................. 81  
Changed Table 10-2 .............................................................................................................. 82  
Changes from Revision A (December 2011) to Revision B  
Page  
Added note to RECOMMENDED OPERATING CONDITIONS .............................................................. 9  
Changed SUPPLY CHARACTERISTICS table ............................................................................... 10  
Added RX and TX active, No input signal applied on ADC and DAC to Supply current, full duplex mode  
test conditions ..................................................................................................................... 10  
Changed Power dissipation to Supply current in POWER IN CMOS MODE .......................................... 10  
Added RX and TX active, No input signal applied on ADC and DAC to Supply current, full duplex mode  
test conditions ..................................................................................................................... 10  
Added Power dissipation in Sleep modes MAX values ................................................................... 11  
Added (with MSB first format) to SPI REGISTER READOUT 3rd bullet ............................................... 20  
Changed Figure 8-1 ............................................................................................................... 69  
Changed Figure 9-3 figure title ................................................................................................. 72  
Changed Figure 9-4 figure title ................................................................................................. 73  
Changed Figure 9-5 figure title ................................................................................................. 74  
Changed Figure 9-8 figure title ................................................................................................. 75  
Added Figure 10-5 figure title .................................................................................................. 84  
Added Figure 10-6 figure title .................................................................................................. 84  
Added Figure 10-9 figure title .................................................................................................. 86  
Added Figure 10-10 figure title ................................................................................................. 86  
Changed BYPASS_BUF to BYPASSZ_BUF in Figure 10-15 .............................................................. 89  
98  
QUICK GUIDE  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): AFE7222 AFE7225  
PACKAGE OPTION ADDENDUM  
www.ti.com  
13-Jan-2012  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
AFE7222IRGC25  
AFE7222IRGCR  
AFE7222IRGCT  
AFE7225IRGC25  
AFE7225IRGCR  
AFE7225IRGCT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RGC  
RGC  
RGC  
RGC  
RGC  
RGC  
64  
64  
64  
64  
64  
64  
25  
2000  
250  
25  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
CU NIPDAU Level-3-260C-168 HR  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
2000  
250  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
13-Jan-2012  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Feb-2012  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
AFE7222IRGCR  
AFE7222IRGCT  
AFE7225IRGCR  
AFE7225IRGCT  
VQFN  
VQFN  
VQFN  
VQFN  
RGC  
RGC  
RGC  
RGC  
64  
64  
64  
64  
2000  
250  
330.0  
330.0  
330.0  
330.0  
16.4  
16.4  
16.4  
16.4  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
1.5  
1.5  
1.5  
1.5  
12.0  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
Q2  
Q2  
Q2  
Q2  
2000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Feb-2012  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
AFE7222IRGCR  
AFE7222IRGCT  
AFE7225IRGCR  
AFE7225IRGCT  
VQFN  
VQFN  
VQFN  
VQFN  
RGC  
RGC  
RGC  
RGC  
64  
64  
64  
64  
2000  
250  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
28.6  
28.6  
28.6  
28.6  
2000  
250  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TIs terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TIs standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Audio  
Applications  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Medical  
Logic  
Security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
www.ti.com/video  
OMAP Mobile Processors www.ti.com/omap  
Wireless Connectivity www.ti.com/wirelessconnectivity  
TI E2E Community Home Page  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2012, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY