ADC128S102PWTSEP [TI]

抗辐射、八通道、50kSPS 至 1MSPS、12 位模数转换器 (ADC) | PW | 16 | -55 to 125;
ADC128S102PWTSEP
型号: ADC128S102PWTSEP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

抗辐射、八通道、50kSPS 至 1MSPS、12 位模数转换器 (ADC) | PW | 16 | -55 to 125

转换器 模数转换器
文件: 总31页 (文件大小:1669K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADC128S102-SEP  
ZHCSNM2A DECEMBER 2021 REVISED APRIL 2022  
ADC128S102-SEP 耐辐8 通道、50-kSPS 1-MSPS12 ADC  
1 特性  
3 说明  
• 抗辐射  
ADC128S102-SEP 是一款低功耗、8 通道、CMOS、  
12 位模数转换器 (ADC)具有 50 kSPS 1 MSPS  
的转换吞吐率。该转换器以逐次逼近寄存器 (SAR) 架  
构为基础具有内部追踪保持电路。该器件经配置可接  
收多达八路输入信号IN0 IN7。  
125°C 的环境温度下单粒子锁(SEL) 抗  
扰度高达  
LET = 43 MeV-cm2/mg  
– 单粒子功能中(SEFI) LET 特征值高43  
MeV-cm2/mg  
– 电离辐射总剂(TID) RLAT/RHA 特征值高达  
30 krad(Si)  
串行数据输出采用标准二进制容多个标准如  
SPIQSPIMICROWIRE和许多常见的 DSP 串行  
接口。  
• 增强型航天塑料EP):  
ADC128S102-SEP 可由独立的模拟和数字电源供电。  
模拟电源 (VA) 的电压范围为 2.7V 5.25V数字电源  
(VD) 的电压范围为 2.7V VA。使用 3V 5V 电源的  
正常功耗分别为 2.3 mW 10.7 mW。使用 3V 5V  
电源时断电特性可分别将功耗降至 16.5 μW 30  
μW。  
– 符ASTM E595 释气规格要求  
– 供应商项目(VID) V62/22608  
– 军用温度范围-55°C 125°C  
– 制造、组装和测试一体化基地  
– 金键合线NiPdAu 铅涂层  
– 晶圆批次可追溯性  
– 延长了产品生命周期  
– 延长了产品变更通知  
• 宽电源电压范围:  
器件信息(1)  
封装尺寸标称值)  
器件型号  
封装  
ADC128S102-SEP  
TSSOP (16)  
5.00mm × 4.40mm  
VA2.7V 5.25V  
VD2.7V VA  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
• 兼SPIQSPIMICROWIRE®DSP  
• 转换速率50 kSPS 1 MSPS  
DNL+1.8 LSB -0.99 LSB最大值)  
INL+1.6 LSB -1.6 LSB最大值)  
• 功耗:  
3V 电源2.7 mW典型值)  
5V 电源11 mW典型值)  
2 应用  
卫星电力系(EPS)  
命令和数据处(C&DH)  
光学成像有效载荷  
• 电压、电流和温度监控  
• 加速器  
VA is used as the Reference  
VD can be set independently  
for the ADC  
of VA  
“Analog” Supply Rail  
“Digital” Supply Rail  
VD  
VA  
VIN7  
IN7  
IN6  
IN5  
IN4  
IN3  
IN2  
IN1  
IN0  
4-wire SPI  
SAR  
ADC  
MCU  
VIN3  
VIN0  
AGND  
DGND  
方框图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNAS825  
 
 
 
 
ADC128S102-SEP  
ZHCSNM2A DECEMBER 2021 REVISED APRIL 2022  
www.ti.com.cn  
Table of Contents  
7.5 Programming............................................................ 18  
8 Application and Implementation..................................20  
8.1 Application Information............................................. 20  
8.2 Typical Application.................................................... 20  
9 Power Supply Recommendations................................22  
9.1 Power-Supply Sequence.......................................... 22  
9.2 Power Management..................................................22  
9.3 Power-Supply Noise Considerations........................ 22  
10 Layout...........................................................................23  
10.1 Layout Guidelines................................................... 23  
10.2 Layout Example...................................................... 23  
11 Device and Documentation Support..........................24  
11.1 接收文档更新通知................................................... 24  
11.2 支持资源..................................................................24  
11.3 Trademarks............................................................. 24  
11.4 Electrostatic Discharge Caution..............................24  
11.5 术语表..................................................................... 24  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................6  
6.6 Timing Requirements..................................................8  
6.7 Switching Characteristics............................................8  
6.8 Timing Diagrams.........................................................9  
6.9 Typical Characteristics..............................................10  
7 Detailed Description......................................................15  
7.1 Overview...................................................................15  
7.2 Functional Block Diagram.........................................15  
7.3 Feature Description...................................................15  
7.4 Device Functional Modes..........................................17  
Information.................................................................... 24  
12.1 Engineering Samples..............................................24  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (December 2021) to Revision A (April 2022)  
Page  
• 将文档状态从预告信息更改为量产数..............................................................................................................1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: ADC128S102-SEP  
 
ADC128S102-SEP  
ZHCSNM2A DECEMBER 2021 REVISED APRIL 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
CS  
VA  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
SCLK  
DOUT  
DIN  
AGND  
IN0  
VD  
IN1  
DGND  
IN7  
IN2  
IN3  
IN6  
IN4  
IN5  
Not to scale  
5-1. PW Package, 16-Pin TSSOP (Top View)  
5-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NO.  
NAME  
Chip select. On the falling edge of CS, a conversion process begins. Conversions continue as long as  
CS is held low.  
1
CS  
IN  
Positive analog supply pin. This voltage is also used as the reference voltage. Connect this pin to a  
2
VA  
Supply quiet 2.7-V to 5.25-V source and bypass this pin to GND with 1-µF and 0.1-µF monolithic ceramic  
capacitors located within 1 cm of the power pin.  
3
AGND  
IN0  
Supply The ground return for the analog supply and signals.  
4
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
Analog input. This signal can range from 0 V to VREF  
Analog input. This signal can range from 0 V to VREF  
Analog input. This signal can range from 0 V to VREF  
Analog input. This signal can range from 0 V to VREF  
Analog input. This signal can range from 0 V to VREF  
Analog input. This signal can range from 0 V to VREF  
Analog input. This signal can range from 0 V to VREF  
.
.
.
.
.
.
.
5
IN1  
6
IN2  
7
IN3  
8
IN4  
9
IN5  
10  
11  
12  
IN6  
IN7  
Analog input. This signals can range from 0 V to VREF.  
DGND  
Supply The ground return for the digital supply and signals.  
Positive digital supply pin. Connect this pin to a 2.7-V to VA supply, and bypass this pin to GND with a  
0.1-µF monolithic ceramic capacitor located within 1 cm of the power pin.  
13  
14  
15  
VD  
DIN  
Supply  
IN  
Digital data input. The control register is loaded through this pin on rising edges of the SCLK pin.  
Digital data output. The output samples are clocked out of this pin on the falling edges of the SCLK  
pin.  
DOUT  
OUT  
Digital clock input. The specified performance range of frequencies for this input is 0.8 MHz to  
16 MHz. This clock directly controls the conversion and readout processes.  
16  
SCLK  
IN  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: ADC128S102-SEP  
 
ADC128S102-SEP  
ZHCSNM2A DECEMBER 2021 REVISED APRIL 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating ambient temperature range (unless otherwise noted)(1)  
MIN  
0.3  
MAX  
6.5  
UNIT  
V
Analog supply voltage (VA)  
Digital supply voltage (VD)(2)  
Voltage on analog input pins to AGND(2)  
Voltage on digital input and digital output pins to DGND(2)  
DGND to AGND  
VA + 0.3  
VA + 0.3  
VD + 0.3  
0.3  
V
0.3  
V
AGND 0.3  
DGND 0.3  
0.3  
V
V
Input current at any pin  
10  
mA  
mA  
10  
Package input current  
20  
20  
Power-dissipation at TA = 25°C  
Junction temperature, TJ  
See(3)  
150  
°C  
°C  
Storage temperature, Tstg  
150  
65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) The maximum voltage is not to exceed 6.5 V  
(3) The absolute maximum junction temperature (TJmax) for this device is 150°C. The maximum allowable power dissipation is dictated by  
TJmax, the junction-to-ambient thermal resistance (θJA), and the ambient temperature (TA), and can be calculated using the formula  
PDMAX = (TJmax TA)/θJA. The values for maximum power dissipation listed above will be reached only when the device is operated  
in a severe fault condition (e.g. when input or output pins are driven beyond the power supply voltages, or the power supply polarity is  
reversed). Such conditions should always be avoided.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
Analog power supply  
Digital power supply  
Digital input voltage  
Full-scale analog input range  
Clock frequency  
TEST CONDITIONS  
VA to AGND  
VD to DGND  
MIN  
2.7  
2.7  
0
NOM  
MAX UNIT  
VA  
5.25  
VA  
V
V
V
V
VD  
VIN  
FSR  
VA  
0
VA  
0.8  
55  
16 MHz  
125 °C  
TA  
Ambient temperature  
25  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: ADC128S102-SEP  
 
 
 
 
 
 
 
 
 
ADC128S102-SEP  
ZHCSNM2A DECEMBER 2021 REVISED APRIL 2022  
www.ti.com.cn  
6.4 Thermal Information  
ADC128S102-SEP  
THERMAL METRIC(1)  
PW (TSSOP)  
UNIT  
16 PINS  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
110  
42  
56  
5
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
55  
ΨJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: ADC128S102-SEP  
 
 
ADC128S102-SEP  
ZHCSNM2A DECEMBER 2021 REVISED APRIL 2022  
www.ti.com.cn  
6.5 Electrical Characteristics  
at AGND = DGND = 0 V, fSCLK = 0.8 MHz to 16 MHz, fSAMPLE = 50 kSPS to 1 MSPS, and CL = 50 pF (unless otherwise  
noted); minimum and maximum values at TA = 55°C to +125°C; typical values at TA = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ANALOG INPUTS  
IDCL  
CIN  
Input leakage current  
Input capacitance(1)  
µA  
pF  
1  
1
Track mode  
Hold mode  
33  
3
DC PERFORMANCE  
Resolution  
No missing codes  
VA = VD = 3 V  
12  
0.5  
Bits  
1.8  
1.7  
0.99  
0.3  
0.9  
DNL  
Differential nonlinearity  
LSB  
VA = VD = 5 V  
0.99  
1.6  
1.5  
2.3  
2.3  
1.5  
1.5  
2.1  
2.1  
1.6  
1.6  
0.5  
±0.6  
±0.9  
0.8  
VA = VD = 3 V  
VA = VD = 5 V  
VA = VD = 3 V  
VA = VD = 5 V  
VA = VD = 3 V  
VA = VD = 5 V  
VA = VD = 3 V  
VA = VD = 5 V  
VA = VD = 3 V  
VA = VD = 5 V  
1.6  
1.5  
2.3  
2.3  
1.5  
1.5  
2.1  
2.1  
1.6  
1.6  
INL  
Integral nonlinearity  
Input offset error  
LSB  
LSB  
LSB  
LSB  
LSB  
VOFF  
OEM  
FSE  
1.1  
±0.1  
±0.3  
0.8  
Offset error match  
Full-scale error  
0.3  
±0.1  
±0.3  
FSEM  
Full-scale error match  
AC PERFORMANCE  
VA = VD = 3 V  
VA = VD = 5 V  
6.8  
10  
FPBW  
Full-power bandwidth  
MHz  
dB  
VA = VD = 3 V,  
fIN = 40.2 kHz, 0.02 dBFS  
68  
68  
72  
72  
SINAD  
Signal-to-noise + distortion ratio  
Signal-to-noise ratio  
VA = VD = 5 V,  
fIN = 40.2 kHz, 0.02 dBFS  
VA = VD = 3 V,  
fIN = 40.2 kHz, 0.02 dBFS  
68.5  
68  
72  
SNR  
THD  
dB  
dB  
VA = VD = 5 V,  
fIN = 40.2 kHz, 0.02 dBFS  
72  
VA = VD = 3 V,  
fIN = 40.2 kHz, 0.02 dBFS  
86  
87  
91  
72  
72  
Total harmonic distortion  
Spurious-free dynamic range  
Effective number of bits  
VA = VD = 5 V,  
fIN = 40.2 kHz, 0.02 dBFS  
VA = VD = 3 V,  
fIN = 40.2 kHz, 0.02 dBFS  
75  
75  
SFDR  
ENOB  
ISO  
dB  
VA = VD = 5 V,  
fIN = 40.2 kHz, 0.02 dBFS  
90  
VA = VD = 3 V,  
fIN = 40.2 kHz, 0.02 dBFS  
11.1  
11  
11.6  
11.6  
84  
Bits  
dB  
VA = VD = 5 V,  
fIN = 40.2 kHz, 0.02 dBFS  
VA = VD = 3 V,  
fIN = 20 kHz, 0.02 dBFS  
Channel-to-channel isolation  
VA = VD = 5 V,  
fIN = 20 kHz, 0.02 dBFS  
85  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: ADC128S102-SEP  
 
ADC128S102-SEP  
ZHCSNM2A DECEMBER 2021 REVISED APRIL 2022  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
at AGND = DGND = 0 V, fSCLK = 0.8 MHz to 16 MHz, fSAMPLE = 50 kSPS to 1 MSPS, and CL = 50 pF (unless otherwise  
noted); minimum and maximum values at TA = 55°C to +125°C; typical values at TA = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VA = VD = 3 V,  
fIN = 19.5 kHz, 0.02 dBFS  
93  
77  
Intermodulation distortion,  
second order terms  
VA = VD = 5 V,  
fIN = 19.5 kHz, 0.02 dBFS  
93  
91  
91  
77  
70  
70  
IMD  
dB  
VA = VD = 3 V,  
fIN = 19.5 kHz, 0.02 dBFS  
Intermodulation distortion,  
third order terms  
VA = VD = 5 V,  
fIN = 19.5 kHz, 0.02 dBFS  
DIGITAL INPUTS  
VA = VD = 2.7 V to 3.6 V  
VA = VD = 4.75 V to 5.25 V  
VA = VD = 2.7 V to 5.25 V  
VIN = 0 V or VD  
2.1  
2.4  
VIH  
VIL  
Input high logic level  
V
Input low logic level  
Input current  
0.8  
±2  
V
±0.01  
µA  
pF  
Digital input capacitance(1)  
3.5  
DIGITAL OUTPUTS  
Output format  
Straight binary  
VD - 0.5  
ISOURCE = 200 µA,  
VA = VD = 2.7 V to 5.25 V  
VOH  
VOL  
Output high logic level  
Output low logic level  
V
V
ISOURCE = 200 µA to 1 mA,  
VA = VD = 2.7 V to 5.25 V  
0.4  
±1  
Hiigh-impedance output leakage  
current  
VA = VD = 2.7 V to 5.25 V  
±0.01  
µA  
pF  
Hiigh-impedance output  
capacitance(1)  
3.5  
POWER SUPPLY  
VA = VD = 2.7 V to 3.6 V  
fSAMPLE = 1 MSPS, fIN = 40 kHz  
0.9  
2.2  
5.5  
6
1.5  
3.2  
50  
Total supply current,  
normal mode (CS low)  
mA  
µA  
VA = VD = 4.75 V to 5.25 V  
fSAMPLE = 1 MSPS, fIN = 40 kHz  
IA + ID  
VA = VD = 2.7 V to 3.6 V  
fSAMPLE = 0 kSPS  
Total supply current,  
shutdown mode (CS high)  
VA = VD = 4.75 V to 5.25 V  
fSAMPLE = 0 kSPS  
70  
VA = VD = 3 V  
fSAMPLE = 1 MSPS, fIN = 40 kHz  
2.7  
11  
4.5  
15.5  
150  
350  
Power consumption,  
normal mode (CS low)  
mW  
µW  
VA = VD = 5 V  
fSAMPLE = 1 MSPS, fIN = 40 kHz  
PC  
VA = VD = 3 V  
fSAMPLE = 0 kSPS  
16.5  
30  
Power consumption,  
shutdown mode (CS high)  
VA = VD = 5 V  
fSAMPLE = 0 kSPS  
(1) This parameter is specified by design and/or characterization and is not tested in production.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: ADC128S102-SEP  
 
ADC128S102-SEP  
ZHCSNM2A DECEMBER 2021 REVISED APRIL 2022  
www.ti.com.cn  
6.6 Timing Requirements  
at VA = VD = 2.7 V to 5.25 V, AGND = DGND = 0 V, fSCLK = 0.8 MHz to 16 MHz, fSAMPLE = 50 kSPS to 1 MSPS, and CL = 50  
pF (unless otherwise noted); minimum and maximum values at TA = 55°C to +125°C; typical values at TA = 25°C.  
MIN  
TYP  
MAX  
UNIT  
CONVERSION CYCLE  
fSCLK  
Serial clock frequency  
VA = VD = 2.7 V to 5.25 V  
VA = VD = 2.7 V to 5.25 V  
VA = VD = 2.7 V to 5.25 V  
VA = VD = 2.7 V to 5.25 V  
VA = VD = 2.7 V to 5.25 V  
0.8  
40%  
50  
16  
MHz  
Serial clock duty cycle  
60%  
fS  
Sample rate in continuous mode  
Conversion (hold) time  
kSPS  
SCLK  
SCLK  
tCONVERT  
tACQ  
13  
3
Acquisition (track) time  
(tCONV + tACQ) at  
VA = VD = 2.7 V to 5.25 V  
tCYCLE  
Throughput time  
16  
SCLK  
SPI INTERFACE TIMINGS  
tCSH  
tCSS  
tDS  
CS hold time after SCLK rising edge  
CS setup time prior to SCLK rising edge  
10  
10  
10  
10  
2
ns  
ns  
ns  
ns  
ns  
ns  
4.5  
DIN setup time prior to SCLK rising edge  
DIN hold time after SCLK rising edge  
SCLK high time  
tDH  
tCH  
tCL  
0.4 x tSCLK  
0.4 x tSCLK  
SCLK low time  
6.7 Switching Characteristics  
at VA = VD = 2.7 V to 5.25 V, AGND = DGND = 0 V, fSCLK = 0.8 MHz to 16 MHz, fSAMPLE = 50 kSPS to 1 MSPS, and CL = 50  
pF (unless otherwise noted); minimum and maximum values at TA = 55°C to +125°C; typical values at TA = 25°C.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SPI INTERFACE TIMINGS  
tEN  
CS falling edge to DOUT enabled  
5
30  
27  
ns  
ns  
ns  
ns  
ns  
tDACC  
tDHLD  
DOUT access time after SCLK falling edge  
DOUT hold time after SCLK falling edge  
17  
7
DOUT falling  
DOUT rising  
2.4  
0.9  
20  
20  
tDIS  
CS rising edge to DOUT high-impedance  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: ADC128S102-SEP  
 
 
ADC128S102-SEP  
ZHCSNM2A DECEMBER 2021 REVISED APRIL 2022  
www.ti.com.cn  
6.8 Timing Diagrams  
Power  
Down  
Power Up  
Power Up  
Hold  
Track  
Track  
Hold  
10  
CS  
8
9
11  
12  
13  
14  
15  
16  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
SCLK  
Control register N  
ADD2 ADD1 ADD0  
Control register N + 1  
ADD2 ADD1 ADD0  
DIN  
Data N œ 1  
Data N  
DOUT  
FOUR ZEROS  
DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
FOUR ZEROS  
DB11 DB10 DB9  
6-1. ADC128S102-SEP Operational Timing Diagram  
CS  
tCONVERT  
tACQ  
tCH  
SCLK  
1
2
3
4
5
6
7
8
16  
tCL  
tDACC  
tDHLD  
tDIS  
tEN  
DB11  
DB10  
DB1  
DB0  
DOUT  
FOUR ZEROS  
tDH  
DB9  
DB8  
tDS  
DONTC DONTC  
DONTC  
ADD2  
ADD1  
ADD0  
DONTC DONTC  
DIN  
6-2. ADC128S102-SEP Serial Timing Diagram  
SCLK  
t
CSS  
CS  
CS  
t
CSH  
6-3. SCLK and CS Timing Parameters  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: ADC128S102-SEP  
 
 
 
ADC128S102-SEP  
ZHCSNM2A DECEMBER 2021 REVISED APRIL 2022  
www.ti.com.cn  
6.9 Typical Characteristics  
TA = 25°C, fSAMPLE = 1 MSPS, fSCLK = 16 MHz, and fIN = 40.2 kHz (unless otherwise noted)  
6-4. DNL  
6-5. DNL  
6-6. INL  
6-7. INL  
6-8. DNL vs Supply  
6-9. INL vs Supply  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: ADC128S102-SEP  
 
ADC128S102-SEP  
ZHCSNM2A DECEMBER 2021 REVISED APRIL 2022  
www.ti.com.cn  
6.9 Typical Characteristics (continued)  
TA = 25°C, fSAMPLE = 1 MSPS, fSCLK = 16 MHz, and fIN = 40.2 kHz (unless otherwise noted)  
6-10. SNR vs Supply  
6-11. THD vs Supply  
6-12. ENOB vs Supply  
6-13. DNL vs SCLK Duty Cycle  
6-14. INL vs SCLK Duty Cycle  
6-15. SNR vs SCLK Duty Cycle  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: ADC128S102-SEP  
ADC128S102-SEP  
ZHCSNM2A DECEMBER 2021 REVISED APRIL 2022  
www.ti.com.cn  
6.9 Typical Characteristics (continued)  
TA = 25°C, fSAMPLE = 1 MSPS, fSCLK = 16 MHz, and fIN = 40.2 kHz (unless otherwise noted)  
6-16. THD vs SCLK Duty Cycle  
6-17. ENOB vs SCLK Duty Cycle  
6-18. DNL vs SCLK  
6-19. INL vs SCLK  
6-20. DNL vs SCLK  
6-21. INL vs SCLK  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: ADC128S102-SEP  
ADC128S102-SEP  
ZHCSNM2A DECEMBER 2021 REVISED APRIL 2022  
www.ti.com.cn  
6.9 Typical Characteristics (continued)  
TA = 25°C, fSAMPLE = 1 MSPS, fSCLK = 16 MHz, and fIN = 40.2 kHz (unless otherwise noted)  
6-22. SNR vs SCLK  
6-23. SNR vs SCLK  
6-24. THD vs SCLK  
6-25. THD vs SCLK  
6-26. ENOB vs SCLK  
6-27. ENOB vs SCLK  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: ADC128S102-SEP  
ADC128S102-SEP  
ZHCSNM2A DECEMBER 2021 REVISED APRIL 2022  
www.ti.com.cn  
6.9 Typical Characteristics (continued)  
TA = 25°C, fSAMPLE = 1 MSPS, fSCLK = 16 MHz, and fIN = 40.2 kHz (unless otherwise noted)  
6-28. ENOB vs Temperature  
6-30. INL vs Temperature  
6-32. THD vs Temperature  
6-29. DNL vs Temperature  
6-31. SNR vs Temperature  
6-33. Power Consumption vs SCLK  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: ADC128S102-SEP  
ADC128S102-SEP  
ZHCSNM2A DECEMBER 2021 REVISED APRIL 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The ADC128S102-SEP is a small, eight-channel, multiplexed, 12-bit, successive-approximation register analog-  
to-digital converter (SAR ADC) designed around a charge redistribution digital-to-analog converter (DAC). In  
addition to having 8 input channels, the ADC128S102-SEP can operate at sampling rates up to 1 MSPS.  
The device provides an SPI-compatible serial interface.  
7.2 Functional Block Diagram  
IN0  
VA  
.
.
.
12-BIT  
SUCCESSIVE  
APPROXIMATION  
ADC  
MUX  
T/H  
AGND  
AGND  
IN7  
VD  
SCLK  
ADC128S102  
CS  
CONTROL  
LOGIC  
DIN  
DOUT  
DGND  
7.3 Feature Description  
7.3.1 ADC128S102-SEP Transfer Function  
The output format of the ADC128S102-SEP is straight binary. Code transitions occur midway between  
successive integer LSB values. The LSB width for the ADC128S102-SEP is VA / 4096. 7-1 illustrates the ideal  
transfer characteristic. The transition from an output code of 0000 0000 0000 to a code of 0000 0000 0001 is at  
1/2 LSB, or a voltage of VA / 8192. Other code transitions occur at steps of one LSB.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: ADC128S102-SEP  
 
 
 
 
ADC128S102-SEP  
ZHCSNM2A DECEMBER 2021 REVISED APRIL 2022  
www.ti.com.cn  
111...111  
111...110  
111...000  
ö
1LSB = VA/4096  
011...111  
000...010  
000...001  
000...000  
+VA - 1.5LSB  
0.5LSB  
0V  
ANALOG INPUT  
7-1. Ideal Transfer Characteristic  
7.3.2 Analog Inputs  
7-2 shows an equivalent circuit for one of the input channels of the ADC128S102-SEP. Diodes D1 and D2  
provide ESD protection for the analog inputs. The operating range for the analog inputs is 0 V to VA. Going  
beyond this range causes the ESD diodes to conduct and results in erratic operation.  
Capacitor C1 in 7-2 has a typical value of 3 pF and is mainly the package pin capacitance. Resistor R1 is the  
ON-resistance of the multiplexer and track-and-hold switch and is typically 500 Ω. Capacitor C2 is the  
ADC128S102-SEP sampling capacitor, and is typically 30 pF. The ADC128S102-SEP delivers best performance  
when driven by a low-impedance source (less than 100 Ω). This source is especially important when using the  
ADC128S102-SEP to sample dynamic signals. Also important when sampling dynamic signals is a band-pass or  
low-pass filter, which reduces harmonics and noise in the input. These filters are often referred to as antialiasing  
filters.  
VA  
C2  
D1  
30 pF  
R1  
VIN  
C1  
3 pF  
D2  
Conversion Phase - Switch Open  
Track Phase - Switch Closed  
7-2. Equivalent Input Circuit  
7.3.3 Digital Inputs and Outputs  
The digital inputs of the ADC128S102-SEP (SCLK, CS, and DIN) have an operating range of 0 V to VA. The  
inputs are not prone to latch-up and can be asserted before the digital supply (VD) without any risk. The digital  
output (DOUT) operating range is controlled by VD. The output high voltage is VD 0.5 V (minimum) when the  
output low voltage is 0.4 V (maximum).  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: ADC128S102-SEP  
 
 
ADC128S102-SEP  
ZHCSNM2A DECEMBER 2021 REVISED APRIL 2022  
www.ti.com.cn  
7.3.4 Radiation Environments  
Careful consideration must be given to environmental conditions when using a product in a radiation  
environment.  
7.3.4.1 Total Ionizing Dose  
Testing and qualification of these products is done on a wafer level according to MIL-STD-883G, Test Method  
1019.7. Testing is done according to condition A and the extended room temperature anneal test described in  
section 3.11 for application environment dose rates less than 51.61 rad(Si)/s. Wafer level TID data are available  
with lot shipments.  
7.3.4.2 Single Event Latch-Up  
One-time single event latch-up (SEL) was preformed according to EIA/JEDEC Standard, EIA/JEDEC57. The  
linear energy transfer threshold (LETth) shown in the 特性 section is the maximum LET tested. A test report is  
available upon request.  
7.4 Device Functional Modes  
7.4.1 ADC128S102-SEP Operation  
Simplified schematics of the ADC128S102-SEP in both track and hold operation are provided in 7-3 and 图  
7-4, respectively. In 7-3, the ADC128S102-SEP is in track mode: switch SW1 connects the sampling  
capacitor to one of eight analog input channels through the multiplexer, and SW2 balances the comparator  
inputs. The ADC128S102-SEP is in this state for the first three SCLK cycles after CS is brought low.  
IN0  
CHARGE  
REDISTRIBUTION  
DAC  
MUX  
SAMPLING  
R
CAPACITO  
SW1  
+
-
IN7  
CONTROL  
LOGIC  
SW2  
AGND  
V /2  
A
7-3. ADC128S102-SEP in Track Mode  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: ADC128S102-SEP  
 
 
ADC128S102-SEP  
ZHCSNM2A DECEMBER 2021 REVISED APRIL 2022  
www.ti.com.cn  
7-4 shows the ADC128S102-SEP in hold mode: switch SW1 connects the sampling capacitor to ground,  
maintaining the sampled voltage, and switch SW2 unbalances the comparator. The control logic then instructs  
the charge-redistribution DAC to add or subtract fixed amounts of charge to or from the sampling capacitor until  
the comparator is balanced. When the comparator is balanced, the digital word supplied to the DAC is the digital  
representation of the analog input voltage. The ADC128S102-SEP is in this state for the last 13 SCLK cycles  
after CS is brought low.  
IN0  
CHARGE  
REDISTRIBUTION  
DAC  
MUX  
SAMPLING  
CAPACITOR  
SW1  
+
-
IN7  
CONTROL  
LOGIC  
SW2  
AGND  
V
A
/2  
7-4. ADC128S102-SEP in Hold Mode  
7.5 Programming  
7.5.1 Serial Interface  
An operational timing diagram and a serial interface timing diagram for the ADC128S102-SEP are illustrated in  
the Timing Diagrams section. CS, chip select, initiates conversions and frames the serial data transfers. SCLK  
(serial clock) controls both the conversion process and the timing of serial data. DOUT is the serial data output  
pin, where a conversion result is sent as a serial data stream, MSB first. Data to be written to the control register  
are placed on DIN, the serial data input pin. New data are written to DIN with each conversion.  
A serial frame is initiated on the falling edge of CS and ends on the rising edge of CS. Each frame must contain  
an integer multiple of 16 rising SCLK edges. The ADC DOUT pin is in a high-impedance state when CS is high  
and is active when CS is low. CS is asynchronous and therefore functions as an output enable. Similarly, SCLK  
is internally gated off when CS is brought high.  
During the first three SCLK cycles, the ADC is in track mode, acquiring the input voltage. For the next 13 SCLK  
cycles the conversion is accomplished and the data are clocked out. SCLK falling edges 1 through 4 clock out  
leading zeros and falling edges 5 through 16 clock out the conversion result, MSB first. If there is more than one  
conversion in a frame (continuous conversion mode), the ADC re-enters track mode on the SCLK falling edge  
after the N × 16th SCLK rising edge and re-enters the hold/convert mode on the N × 16 + 4th SCLK falling edge.  
N is an integer value.  
The ADC128S102-SEP enters track mode under three different conditions. In 6-1, CS goes low with SCLK  
high and the ADC enters track mode on the first SCLK falling edge. In the second condition, CS goes low with  
SCLK low. Under this condition, the ADC automatically enters track mode and the CS falling edge is taken as the  
first SCLK falling edge. In the third condition, CS and SCLK go low simultaneously and the ADC enters track  
mode. Although there is no timing restriction with respect to the falling edges of CS and SCLK, see 6-3 for  
setup and hold time requirements for the CS falling edge with respect to the SCLK rising edge.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: ADC128S102-SEP  
 
 
ADC128S102-SEP  
ZHCSNM2A DECEMBER 2021 REVISED APRIL 2022  
www.ti.com.cn  
During each conversion, data are clocked into a control register through the DIN pin on the first eight SCLK  
rising edges after the fall of CS. As given in 7-1, 7-2, and 7-3, the control register is loaded with data  
indicating the input channel to be converted on the subsequent conversion.  
Although the ADC128S102-SEP can acquire the input signal to full resolution in the first conversion immediately  
following power up, the first conversion result after power up is that of a randomly selected channel. Therefore,  
incorporate a dummy conversion to set the required channel to be used on the subsequent conversion.  
7-1. Control Register Bits  
BIT 7 (MSB)  
DONTC  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
DONTC  
ADD2  
ADD1  
ADD0  
DONTC  
DONTC  
DONTC  
7-2. Control Register Bit Descriptions  
BIT  
SYMBOL  
DESCRIPTION  
7, 6, 2, 1, 0 DONTC  
Don't care. The values of these bits do not affect the device.  
5
4
3
ADD2  
ADD1  
ADD0  
These three bits determine which input channel is sampled and converted at the next conversion cycle. The  
mapping between codes and channels is given in 7-3.  
7-3. Input Channel Selection  
ADD2  
ADD1  
ADD0  
INPUT CHANNEL  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
IN0  
IN1  
IN2  
IN3  
IN4  
IN5  
IN6  
IN7  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: ADC128S102-SEP  
 
 
 
ADC128S102-SEP  
ZHCSNM2A DECEMBER 2021 REVISED APRIL 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
The ADC128S102-SEP is a low-power, eight-channel, 12-bit ADC with specified performance specifications from  
50 kSPS to 1 MSPS. The ADC128S102-SEP can be used at sample rates below 50 kSPS by powering the  
device down (deasserting CS) in between conversions. The Electrical Characteristics table highlights the clock  
frequency where ADC performance is specified. There is no limitation on periods of time for shutdown between  
conversions.  
8.2 Typical Application  
8-1 shows a typical application block diagram. The split analog and digital supply pins are both powered in  
this example by the Texas Instruments' LP2950-N low-dropout voltage regulator. The analog supply is bypassed  
with a capacitor network located close to the ADC128S102-SEP. The digital supply is separated from the analog  
supply by an isolation resistor and bypassed with additional capacitors. The ADC128S102-SEP uses the analog  
supply (VA) as its reference voltage; thus, VA must be kept as clean as possible. Because of the low power  
requirements of the ADC128S102-SEP, a precision reference can also be used as a power supply.  
51W  
LP2950  
5V  
1 mF  
0.1 mF  
1.0 mF  
0.1 mF  
1.0 mF  
0.1 mF  
VD  
VA  
22W  
SCLK  
CS  
INPUT  
IN0  
.
.
.
MICROPROCESSOR  
DSP  
ADC128S102  
1 nF  
DIN  
IN7  
DOUT  
DGND  
AGND  
8-1. Typical Application Circuit  
8.2.1 Design Requirements  
A positive-supply-only data acquisition (DAQ) system is capable of digitizing up to eight single-ended input  
signals ranging from 0 V to 5 V with BW = 10 kHz and a throughput up to 500 kSPS. The ADC128S102-SEP  
must interface to an MCU whose supply is set at 5 V. To interface with an MCU that operates at 3.3 V or lower,  
VA and VD must be separated and care must be taken to ensure that VA is powered before VD.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: ADC128S102-SEP  
 
 
 
 
ADC128S102-SEP  
ZHCSNM2A DECEMBER 2021 REVISED APRIL 2022  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
The signal range requirement forces the design to use a 5-V analog supply at VA, the analog supply. This  
requirement stems from the fact that VA is also a reference potential for the ADC. If the requirement of  
interfacing to the MCU changes to 3.3 V, the VD supply voltage must also change to 3.3 V. The maximum  
sampling rate of the ADC128S102-SEP when all channels (eight) are enabled is fS = fSCLK / (16 × 8).  
Faster sampling rates can be achieved when fewer channels are sampled. A single channel can be sampled at  
the maximum rate of fS (single) = fSCLK / 16.  
The VA and VD pins are separated by a 51-Ω resistor to minimize digital noise from corrupting the analog  
reference input. If additional filtering is required, the resistor can be replaced by a ferrite bead, thus achieving a  
second-order filter response. Further noise consideration can be provided to the SPI interface, especially when  
the controller MCU is capable of producing fast rising edges on the digital bus signals. Inserting small  
resistances in the digital signal path can help reduce ground bounce, and thus improve overall noise  
performance of the system. Care must be taken when the signal source is capable of producing voltages beyond  
VA. In such instances, the internal ESD diodes can start conducting. The ESD diodes are not intended as input  
signal clamps. To provide the desired clamping action, use Schottky diodes.  
8.2.3 Application Curve  
8-2. ENOB vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: ADC128S102-SEP  
ADC128S102-SEP  
ZHCSNM2A DECEMBER 2021 REVISED APRIL 2022  
www.ti.com.cn  
9 Power Supply Recommendations  
There are three major power supply concerns with this product: power-supply sequencing, power management,  
and the effect of digital supply noise on the analog supply.  
9.1 Power-Supply Sequence  
The ADC128S102-SEP is a dual-supply device. The two supply pins share ESD resources, so care must be  
exercised to ensure that power is applied in the correct sequence. To avoid turning on the ESD diodes, the  
digital supply (VD) cannot exceed the analog supply (VA) by more than 300 mV. Therefore, VA must ramp up  
before or concurrently with VD.  
9.2 Power Management  
The ADC128S102-SEP is fully powered up when CS is low and is fully powered down when CS is high, with one  
exception. If operating in continuous conversion mode, the ADC128S102-SEP automatically enters power-down  
mode between the 16th SCLK falling edge of a conversion and the 1st SCLK falling edge of the subsequent  
conversion (see 6-1).  
In continuous conversion mode, the ADC128S102-SEP can perform multiple conversions back to back. Each  
conversion requires 16 SCLK cycles and the ADC128S102-SEP performs conversions continuously as long as  
CS is held low. Continuous mode offers maximum throughput.  
In burst mode, throughput can be traded off for power consumption by performing fewer conversions per unit  
time. In other words, more time is spent in power-down mode and less time is spent in normal mode. By using  
this technique, very low sample rates can be achieved while still using an SCLK frequency within the electrical  
specifications. To calculate the power consumption (PC), simply multiply the fraction of time spent in normal  
mode (tN) by the normal mode power consumption (PN), as shown in 方程1, and add the fraction of time spent  
in shutdown mode (tS) multiplied by the shutdown mode power consumption (PS).  
tN  
tS  
PC =  
´PN +  
´PS  
tN + tS  
tN + tS  
(1)  
9.3 Power-Supply Noise Considerations  
The charging of any output load capacitance requires current from the digital supply, VD. The current pulses  
required from the supply to charge the output capacitance cause voltage variations on the digital supply. If these  
variations are large enough, they can degrade SNR and SINAD performance of the ADC. Furthermore, if the  
analog and digital supplies are tied directly together, the noise on the digital supply is coupled directly into the  
analog supply, causing greater performance degradation than noise alone causes on the digital supply. Similarly,  
discharging the output capacitance when the digital output goes from a logic high to a logic low dumps current  
into the die substrate, which is resistive. Load discharge currents cause ground bounce noise in the substrate  
that degrades noise performance if that current is large enough. The larger the output capacitance, the more  
current flows through the die substrate and the greater the noise coupled into the analog channel.  
The first solution to keeping digital noise out of the analog supply is to decouple the analog and digital supplies  
from each other or use separate supplies for them. To keep noise out of the digital supply, keep the output load  
capacitance as small as practical. If the load capacitance is greater than 50 pF, use a 100-series resistor at  
the ADC output, located as close to the ADC output pin as practical. This resistor limits the charge and discharge  
current of the output capacitance and improves noise performance. Because the series resistor and the load  
capacitance form a low-frequency pole, verify signal integrity when the series resistor is added.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: ADC128S102-SEP  
 
 
 
 
 
ADC128S102-SEP  
ZHCSNM2A DECEMBER 2021 REVISED APRIL 2022  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
Capacitive coupling between the noisy digital circuitry and the sensitive analog circuitry can lead to poor  
performance. The solution is to keep the analog circuitry separated from the digital circuitry and the clock line as  
short as possible.  
Digital circuits create substantial supply and ground current transients. The logic noise generated can have  
significant impact upon system noise performance. To avoid performance degradation of the ADC128S102-SEP  
resulting from supply noise, do not use the same supply for the ADC128S102-SEP that is used for digital logic.  
Generally, analog and digital lines cross each other at 90° to avoid crosstalk. However, to maximize accuracy in  
high-resolution systems, avoid crossing analog and digital lines altogether. Clock lines must be kept as short as  
possible and isolated from all other lines, including other digital lines. In addition, the clock line must be treated  
as a transmission line and be properly terminated.  
Isolate the analog input from noisy signal traces to avoid coupling of spurious signals into the input. Any external  
component (for example, a filter capacitor) connected between the converter input pins and ground or to the  
reference input pin and ground must be connected to a very clean point in the ground plane.  
Use a single, uniform ground plane and split power planes. The power planes must be located within the same  
board layer. Place all analog circuitry (input amplifiers, filters, reference components, and so forth) over the  
analog power plane. Place all digital circuitry and I/O lines over the digital power plane. Furthermore, all  
components in the reference circuitry and the input signal chain that are connected to ground must be connected  
together with short traces and enter the analog ground plane at a single, quiet point.  
10.2 Layout Example  
ANALOG  
SUPPLY  
RAIL  
CS  
VA  
SCLK  
DOUT  
DIN  
toMCU  
AGND  
IN0  
VD  
^5LDLÇ![_ {Ütt[ò w!L[  
IN1  
DGND  
IN7  
IN2  
IN3  
IN6  
to analog  
signal sources  
IN4  
IN5  
VIA to GROUND PLANE  
GROUND PLANE  
10-1. Layout Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: ADC128S102-SEP  
 
 
 
ADC128S102-SEP  
ZHCSNM2A DECEMBER 2021 REVISED APRIL 2022  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.3 Trademarks  
SPIand QSPIare trademarks of Motorola, Inc..  
TI E2Eis a trademark of Texas Instruments.  
MICROWIRE® is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
12.1 Engineering Samples  
Engineering samples are available for order and are identified by MPR in the orderable device name (see  
Packaging Information at the end of this document). Engineering (MPR) samples meet the performance  
specifications of the data sheet at room temperature only and have not received the full space production flow or  
testing. Engineering samples may be QCI rejects that failed tests that do not impact the performance at room  
temperature, such as radiation or reliability testing.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: ADC128S102-SEP  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Mar-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADC128S102PWTSEP  
ACTIVE  
TSSOP  
PW  
16  
250  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-55 to 125  
128S102  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
21-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADC128S102PWTSEP TSSOP  
PW  
16  
250  
178.0  
12.4  
6.9  
5.6  
1.6  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
21-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
TSSOP PW 16  
SPQ  
Length (mm) Width (mm) Height (mm)  
208.0 191.0 35.0  
ADC128S102PWTSEP  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
PW0016A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
4.5  
4.3  
NOTE 4  
1.2 MAX  
0.19  
B
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220204/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
16X (1.5)  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220204/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
16X (1.5)  
SYMM  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220204/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

ADC128S102QML

8-Channel, 50 kSPS to 1 MSPS, 12-Bit A/D Converter
NSC

ADC128S102QML-SP

耐辐射、八通道、50kSPS 至 1MSPS、12 位模数转换器 (ADC)
TI

ADC128S102WG-QV

IC SUCCESSIVE APPROXIMATION ADC, CDSO16, CERRAMIC, SOIC-16, Analog to Digital Converter
NSC

ADC128S102WGMLS

IC 8-CH 12-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL ACCESS, CDSO16, CERRAMIC, SOIC-16, Analog to Digital Converter
NSC

ADC128S102WGMPR

8-Channel, 50 kSPS to 1 MSPS, 12-Bit A/D Converter
NSC

ADC128S102WGMPR

耐辐射、八通道、50kSPS 至 1MSPS、12 位模数转换器 (ADC) | NAC | 16 | 25 to 25
TI

ADC128S102WGRQV

8-Channel, 50 kSPS to 1 MSPS, 12-Bit A/D Converter
NSC

ADC128S102WGRQV

耐辐射、八通道、50kSPS 至 1MSPS、12 位模数转换器 (ADC) | NAC | 16 | -55 to 125
TI

ADC128S102WRQV

耐辐射、八通道、50kSPS 至 1MSPS、12 位模数转换器 (ADC) | NAD | 16 | -55 to 125
TI

ADC129

1W, Miniature SIP, Single & Dual Output DC/DC Converters
MPSIND

ADC1295X

ADC1295X 8bit 800K ADC|Data Sheet
ETC

ADC1298X

ADC1298X 10BIT 30MSPS ADC|Data Sheet
ETC