ADC12DJ2700AAVT [TI]

12 位双通道 2.7GSPS 或单通道 5.4GSPS 射频采样模数转换器 (ADC) | AAV | 144 | -40 to 85;
ADC12DJ2700AAVT
型号: ADC12DJ2700AAVT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

12 位双通道 2.7GSPS 或单通道 5.4GSPS 射频采样模数转换器 (ADC) | AAV | 144 | -40 to 85

射频 转换器 模数转换器
文件: 总151页 (文件大小:3064K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
ADC12DJ2700 5.4GSPS 单通道或 2.7GSPS 双通道  
12 位射频采样模数转换器 (ADC)  
1 特性  
2 应用  
1
ADC 内核:  
通信测试仪(802.11ad5G)  
卫星通信 (SATCOM)  
12 位分辨率  
相控阵雷达、信号情报和电子情报  
合成孔径雷达 (SAR)  
单通道模式下采样率高达 5.4GSPS  
双通道模式下采样率高达 2.7GSPS  
飞行时间和激光雷达测距  
示波器和宽带数字转换器  
微波回程连线  
性能规格:  
本底噪声(无信号,VFS = 1.0VPP-DIFF):  
双通道模式:–151.6dBFS/Hz  
单通道模式:–153.8dBFS/Hz  
射频采样软件定义无线电 (SDR)  
光谱测量  
V
HD2HD3–65dBc,高达 3GHz  
CMI 0V 时的缓冲模拟输入:  
模拟输入带宽 (-3dB)8.0GHz  
可用输入频率范围:>10GHz  
3 说明  
ADC12DJ2700 器件是一款射频采样千兆采样模数转换  
(ADC),可对从直流到 10GHz 以上的输入频率进行  
直接采样。在双通道下,ADC12DJ2700 的最大采样率  
2700MSPS,单通道模式下的最大采样率为  
满量程输入电压(VFS,默认值):0.8VPP  
模拟输入共模电压 (VICM)0V  
无噪声孔径延迟 (TAD) 调节:  
5400MSPS。通道数(双通道模式)和奎斯特带宽  
(单通道模式)的可编程交换功能可用于开发灵活的硬  
件,以满足高通道数或宽瞬时信号带宽 应用的需求。  
8.0GHz 的全功率输入带宽 (-3dB),可用频率在双通道  
和单通道模式下均超过 -3dB,可对频率捷变系统的  
LSC X 频带进行直接射频采样。  
采样精度控制:19fs 步长  
简化同步和交错  
温度和电压不变延迟  
简便易用的同步 特性:  
自动 SYSREF 计时校准  
样片标记时间戳  
ADC12DJ2700 采用具有多达 16 个串行通道和子类 1  
兼容性的高速 JESD204B 输出接口,可实现确定性延  
迟和多器件同步。串行输出通道支持高达 12.8Gbps 的  
速率,并可配置交换位速率和通道数。 创新同步 具有  
无噪声孔径延迟 (TAD) 调节和 SYSREF 窗口等创新的  
同步特性,简化了相控阵雷达和 MIMO 通信的系统设  
计。 采用双通道模式的可选数字下变频器 (DDC) 可以  
降低接口速率(实际和复杂抽取模式),支持数字化信  
号混合(仅复杂抽取模式)。  
JESD204B 串行数据接口:  
支持子类 0 1  
最大通道速率:12.8Gbps  
多达 16 个通道可降低通道速率  
双通道模式下的数字下变频器:  
实际输出:DDC 旁路或双倍抽取  
复杂输出:4 倍、8 倍或 16 倍抽取  
每个 DDC 均具有四个独立的 32 NCO  
功耗:2.7W  
器件信息(1)  
电源电压:1.1V1.9V  
器件型号  
封装  
封装尺寸(标称值)  
ADC12DJ2700 测量的输入带宽  
3
ADC12DJ2700  
FCBGA (144) 10.00mm × 10.00mm  
(1) 如需了解所有可用封装,请参见数据表末尾的封装选项附录。  
0
-3  
-6  
-9  
Single Channel Mode  
Dual Channel Mode  
-12  
-15  
0
2
4
6
8
Input Frequency (GHz)  
10  
12  
D_BW  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSEH9  
 
 
 
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
目录  
7.3 Feature Description................................................. 36  
7.4 Device Functional Modes........................................ 60  
7.5 Programming........................................................... 79  
7.6 Register Maps......................................................... 80  
Application and Implementation ...................... 130  
8.1 Application Information.......................................... 130  
8.2 Typical Applications ............................................. 130  
8.3 Initialization Set Up .............................................. 137  
Power Supply Recommendations.................... 137  
9.1 Power Sequencing................................................ 139  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 9  
6.1 Absolute Maximum Ratings ...................................... 9  
6.2 ESD Ratings.............................................................. 9  
6.3 Recommended Operating Conditions..................... 10  
6.4 Thermal Information................................................ 10  
6.5 Electrical Characteristics: DC Specifications .......... 11  
6.6 Electrical Characteristics: Power Consumption ...... 13  
8
9
10 Layout................................................................. 139  
10.1 Layout Guidelines ............................................... 139  
10.2 Layout Example .................................................. 140  
11 器件和文档支持 ................................................... 143  
11.1 器件支持 ............................................................. 143  
11.2 文档支持.............................................................. 143  
11.3 接收文档更新通知 ............................................... 143  
11.4 支持资源.............................................................. 143  
11.5 ..................................................................... 143  
11.6 静电放电警告....................................................... 144  
11.7 Glossary.............................................................. 144  
12 机械、封装和可订购信息..................................... 144  
6.7 Electrical Characteristics: AC Specifications (Dual-  
Channel Mode) ........................................................ 14  
6.8 Electrical Characteristics: AC Specifications (Single-  
Channel Mode) ........................................................ 17  
6.9 Timing Requirements.............................................. 20  
6.10 Switching Characteristics...................................... 21  
6.11 Typical Characteristics.......................................... 25  
Detailed Description ............................................ 35  
7.1 Overview ................................................................. 35  
7.2 Functional Block Diagram ....................................... 36  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (January 2018) to Revision A  
Page  
Changed Pin Functions table listed in alphanumeric order by pin name. .............................................................................. 5  
Deleted reference to footnote below the Pin Functions table and moved the information to the Power-Down Mode  
section. ................................................................................................................................................................................... 7  
Added Operating free-air temperature parameter to Absolute Maximum Ratings table ........................................................ 9  
Added Storage temperature parameter to Recommended Operating Conditions table ...................................................... 10  
Changed FFT plots in Typical Characteristics section to show improved look ................................................................... 25  
已更改 product description in Overview section .................................................................................................................. 35  
已更改 Device Comparison section to include all devices in the family. .............................................................................. 36  
已更改 location of Analog Reference Voltage section. ........................................................................................................ 38  
已更改 location of Temperature Monitoring Diode section. ................................................................................................. 40  
已添加 requirement for at least 3 rising edges of SYSREF before SYSREF_POS output is valid...................................... 43  
已添加 clarification of NCO synchronization using DC-coupled SYSREF............................................................................ 49  
已添加 clarification of NCO synchronization using AC-coupled SYSREF............................................................................ 50  
已更改 note in Power-Down Modes section to caution note explaining reliable serializer operation instead of the  
information being presented under the Pin Functions table................................................................................................. 69  
已更改 the Low-Power Background Calibration (LPBG) Mode section to provide additional detail of how to operate  
the device in low-power background calibration mode......................................................................................................... 75  
已添加 clarity about offset calibration when both CAL_OS and CAL_BG are enabled. ...................................................... 76  
已更改 Trimming section to limit trimming to foreground (FG) calibration mode only to better reflect customer use  
cases and simplify the explanation....................................................................................................................................... 77  
已更改 additional clarity to Offset Filtering section to explain the frequency domain impact of the feature. ....................... 78  
Added ADC12DJ2700 Access Type Codes table ................................................................................................................ 85  
已添加 Reconfigurable Dual-Channel 2.5-GSPS or Single-Channel 5.0-Gsps Oscilloscope section................................ 133  
2
Copyright © 2018–2020, Texas Instruments Incorporated  
 
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
修订历史记录 (continued)  
已更改 Top Layer Routing: Analog Inputs, CLK and SYSREF, DA0-3, DB0-3 to Bottom Layer Routing: Additional  
CLK Routing, DA4-7, DB4-7 figures .................................................................................................................................. 140  
Copyright © 2018–2020, Texas Instruments Incorporated  
3
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
5 Pin Configuration and Functions  
AAV Package  
144-Ball Flip Chip BGA  
Top View  
1
2
3
4
5
6
7
8
9
10  
11  
12  
A
B
C
D
E
F
AGND  
AGND  
AGND  
INA+  
INAœ  
AGND  
AGND  
DA3+  
DA3œ  
DA2+  
DA2œ  
DGND  
TMSTP+  
TMSTPœ  
AGND  
AGND  
SYNCSE  
VA11  
AGND  
AGND  
VA19  
VA19  
VA19  
VA19  
VA19  
VA19  
VA19  
VA19  
AGND  
INB+  
AGND  
VA11  
VA11  
VA11  
VA11  
VA11  
VA11  
VA11  
VA11  
AGND  
INBœ  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
PD  
AGND  
NCOA0  
NCOA1  
CALTRIG  
CALSTAT  
VD11  
DA7+  
ORA0  
ORA1  
SCS  
DA7œ  
VD11  
DGND  
VD11  
DGND  
DGND  
VD11  
DGND  
VD11  
DB7œ  
DB3œ  
DA6+  
VD11  
DGND  
VD11  
DGND  
DGND  
VD11  
DGND  
VD11  
DB6+  
DB2+  
DA6œ  
DA5+  
DA5œ  
DA4+  
DA4œ  
DB4œ  
DB4+  
DB5œ  
DB5+  
DB6œ  
DB2œ  
DGND  
DA1+  
DA1œ  
DA0+  
DA0œ  
DB0œ  
DB0+  
DB1œ  
DB1+  
DGND  
BG  
VA11  
AGND  
VA19  
VA19  
CLK+  
AGND  
AGND  
VA19  
AGND  
AGND  
VA19  
SCLK  
G
H
J
CLKœ  
SDI  
AGND  
VD11  
SDO  
AGND  
VA11  
VA11  
NCOB1  
NCOB0  
AGND  
ORB1  
ORB0  
DB7+  
DB3+  
K
SYSREF+  
SYSREFœ  
AGND  
TDIODE+  
AGND  
AGND  
TDIODEœ  
AGND  
AGND  
L
AGND  
AGND  
M
AGND  
DGND  
Not to scale  
4
Copyright © 2018–2020, Texas Instruments Incorporated  
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
A1, A2, A3,  
A6, A7, B2,  
B3, B4, B5,  
B6, B7, C6,  
D1, D6, E1,  
E6, F2, F3,  
F6, G2, G3,  
G6, H1, H6,  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit  
board.  
AGND  
J1, J6, L2, L3,  
L4, L5, L6, L7,  
M1, M2, M3,  
M6, M7  
Band-gap voltage output. This pin is capable of sourcing only small currents and driving limited  
capacitive loads, as specified in the Recommended Operating Conditions table. This pin can be  
left disconnected if not used.  
BG  
C3  
F7  
E7  
O
O
I
Foreground calibration status output or device alarm output. Functionality is programmed through  
CAL_STATUS_SEL. This pin can be left disconnected if not used.  
CALSTAT  
CALTRIG  
Foreground calibration trigger input. This pin is only used if hardware calibration triggering is  
selected in CAL_TRIG_EN, otherwise software triggering is performed using CAL_SOFT_TRIG.  
Tie this pin to GND if not used.  
Device (sampling) clock positive input. The clock signal is strongly recommended to be AC-  
coupled to this input for best performance. In single-channel mode, the analog input signal is  
sampled on both the rising and falling edges. In dual-channel mode, the analog signal is sampled  
on the rising edge. This differential input has an internal untrimmed 100-Ω differential termination  
and is self-biased to the optimal input common-mode voltage as long as DEVCLK_LVPECL_EN  
is set to 0.  
CLK+  
F1  
I
Device (sampling) clock negative input. TI strongly recommends using AC-coupling for best  
performance.  
CLK–  
DA0+  
DA0–  
DA1+  
DA1–  
DA2+  
DA2–  
DA3+  
DA3–  
DA4+  
DA4–  
DA5+  
DA5–  
G1  
E12  
F12  
C12  
D12  
A10  
A11  
A8  
I
High-speed serialized data output for channel A, lane 0, positive connection. This differential  
output must be AC-coupled and must always be terminated with a 100-Ω differential termination  
at the receiver. This pin can be left disconnected if not used.  
O
O
O
O
O
O
O
O
O
O
O
O
High-speed serialized data output for channel A, lane 0, negative connection. This pin can be left  
disconnected if not used.  
High-speed serialized data output for channel A, lane 1, positive connection. This differential  
output must be AC-coupled and must always be terminated with a 100-Ω differential termination  
at the receiver. This pin can be left disconnected if not used.  
High-speed serialized data output for channel A, lane 1, negative connection. This pin can be left  
disconnected if not used.  
High-speed serialized-data output for channel A, lane 2, positive connection. This differential  
output must be AC-coupled and must always be terminated with a 100-Ω differential termination  
at the receiver. This pin can be left disconnected if not used.  
High-speed serialized-data output for channel A, lane 2, negative connection. This pin can be left  
disconnected if not used.  
High-speed serialized-data output for channel A, lane 3, positive connection. This differential  
output must be AC-coupled and must always be terminated with a 100-Ω differential termination  
at the receiver. This pin can be left disconnected if not used.  
High-speed serialized-data output for channel A, lane 3, negative connection. This pin can be left  
disconnected if not used.  
A9  
High-speed serialized data output for channel A, lane 4, positive connection. This differential  
output must be AC-coupled and must always be terminated with a 100-Ω differential termination  
at the receiver. This pin can be left disconnected if not used.  
E11  
F11  
C11  
D11  
High-speed serialized data output for channel A, lane 4, negative connection. This pin can be left  
disconnected if not used.  
High-speed serialized data output for channel A, lane 5, positive connection. This differential  
output must be AC-coupled and must always be terminated with a 100-Ω differential termination  
at the receiver. This pin can be left disconnected if not used.  
High-speed serialized data output for channel A, lane 5, negative connection. This pin can be left  
disconnected if not used.  
Copyright © 2018–2020, Texas Instruments Incorporated  
5
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
High-speed serialized data output for channel A, lane 6, positive connection. This differential  
output must be AC-coupled and must always be terminated with a 100-Ω differential termination  
at the receiver. This pin can be left disconnected if not used.  
DA6+  
B10  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
High-speed serialized data output for channel A, lane 6, negative connection. This pin can be left  
disconnected if not used.  
DA6–  
DA7+  
DA7–  
DB0+  
DB0–  
DB1+  
DB1–  
DB2+  
DB2–  
DB3+  
DB3–  
DB4+  
DB4–  
DB5+  
DB5–  
DB6+  
DB6–  
DB7+  
DB7–  
B11  
B8  
High-speed serialized data output for channel A, lane 7, positive connection. This differential  
output must be AC-coupled and must always be terminated with a 100-Ω differential termination  
at the receiver. This pin can be left disconnected if not used.  
High-speed serialized data output for channel A, lane 7, negative connection. This pin can be left  
disconnected if not used.  
B9  
High-speed serialized data output for channel B, lane 0, positive connection. This differential  
output must be AC-coupled and must always be terminated with a 100-Ω differential termination  
at the receiver. This pin can be left disconnected if not used.  
H12  
G12  
K12  
J12  
M10  
M11  
M8  
High-speed serialized data output for channel B, lane 0, negative connection. This pin can be left  
disconnected if not used.  
High-speed serialized data output for channel B, lane 1, positive connection. This differential  
output must be AC-coupled and must always be terminated with a 100-Ω differential termination  
at the receiver. This pin can be left disconnected if not used.  
High-speed serialized data output for channel B, lane 1, negative connection. This pin can be left  
disconnected if not used.  
High-speed serialized data output for channel B, lane 2, positive connection. This differential  
output must be AC-coupled and must always be terminated with a 100-Ω differential termination  
at the receiver. This pin can be left disconnected if not used.  
High-speed serialized data output for channel B, lane 2, negative connection. This pin can be left  
disconnected if not used.  
High-speed serialized data output for channel B, lane 3, positive connection. This differential  
output must be AC-coupled and must always be terminated with a 100-Ω differential termination  
at the receiver. This pin can be left disconnected if not used.  
High-speed serialized data output for channel B, lane 3, negative connection. This pin can be left  
disconnected if not used.  
M9  
High-speed serialized data output for channel B, lane 4, positive connection. This differential  
output must be AC-coupled and must always be terminated with a 100-Ω differential termination  
at the receiver. This pin can be left disconnected if not used.  
H11  
G11  
K11  
J11  
L10  
L11  
L8  
High-speed serialized data output for channel B, lane 4, negative connection. This pin can be left  
disconnected if not used.  
High-speed serialized data output for channel B, lane 5, positive connection. This differential  
output must be AC-coupled and must always be terminated with a 100-Ω differential termination  
at the receiver. This pin can be left disconnected if not used.  
High-speed serialized data output for channel B, lane 5, negative connection. This pin can be left  
disconnected if not used.  
High-speed serialized data output for channel B, lane 6, positive connection. This differential  
output must be AC-coupled and must always be terminated with a 100-Ω differential termination  
at the receiver. This pin can be left disconnected if not used.  
High-speed serialized data output for channel B, lane 6, negative connection. This pin can be left  
disconnected if not used.  
High-speed serialized data output for channel B, lane 7, positive connection. This differential  
output must be AC-coupled and must always be terminated with a 100-Ω differential termination  
at the receiver. This pin can be left disconnected if not used.  
High-speed serialized data output for channel B, lane 7, negative connection. This pin can be left  
disconnected if not used.  
L9  
A12, B12, D9,  
D10, F9, F10,  
G9, G10, J9,  
J10, L12, M12  
Digital supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit  
board.  
DGND  
6
Copyright © 2018–2020, Texas Instruments Incorporated  
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Channel A analog input positive connection. INA± is recommended for use in single channel  
mode for optimal performance. The differential full-scale input voltage is determined by the  
FS_RANGE_A register (see the Full-Scale Voltage (VFS) Adjustment section). This input is  
terminated to ground through a 50-Ω termination resistor. The input common-mode voltage is  
typically be set to 0 V (GND) and must follow the recommendations in the Recommended  
Operating Conditions table. This pin can be left disconnected if not used.  
INA+  
A4  
I
Channel A analog input negative connection. INA± is recommended for use in single channel  
mode for optimal performance. See INA+ (pin A4) for detailed description. This input is terminated  
to ground through a 50-Ω termination resistor. This pin can be left disconnected if not used.  
INA–  
INB+  
INB–  
A5  
M4  
M5  
I
I
I
Channel B analog input positive connection. INA± is recommended for use in single channel  
mode for optimal performance. The differential full-scale input voltage is determined by the  
FS_RANGE_B register (see the Full-Scale Voltage (VFS) Adjustment section). This input is  
terminated to ground through a 50-Ω termination resistor. The input common-mode voltage is  
typically be set to 0 V (GND) and must follow the recommendations in the Recommended  
Operating Conditions table. This pin can be left disconnected if not used.  
Channel B analog input negative connection. INA± is recommended for use in single channel  
mode for optimal performance. See INA+ (pin A4) for detailed description. This input is terminated  
to ground through a 50-Ω termination resistor. This pin can be left disconnected if not used.  
LSB of NCO selection control for DDC A. NCOA0 and NCOA1 select which NCO, of a possible  
four NCOs, is used for digital mixing when using a complex output JMODE. The remaining  
unselected NCOs continue to run to maintain phase coherency and can be swapped in by  
changing the values of NCOA0 and NCOA1 (when CMODE = 1). This pin is an asynchronous  
input. See the NCO Fast Frequency Hopping (FFH) and NCO Selection sections for more  
information. Tie this pin to GND if not used.  
NCOA0  
NCOA1  
NCOB0  
C7  
D7  
K7  
I
I
I
MSB of NCO selection control for DDC A. Tie this pin to GND if not used.  
LSB of NCO selection control for DDC B. NCOB0 and NCOB1 select which NCO, of a possible  
four NCOs, is used for digital mixing when using a complex output JMODE. The remaining  
unselected NCOs continue to run to maintain phase coherency and can be swapped in by  
changing the values of NCOB0 and NCOB1 (when CMODE = 1). This pin is an asynchronous  
input. See the NCO Fast Frequency Hopping (FFH) and NCO Selection sections for more  
information. Tie this pin to GND if not used.  
NCOB1  
ORA0  
J7  
I
MSB of NCO selection control for DDC B. Tie this pin to GND if not used.  
Fast overrange detection status for channel A for the OVR_T0 threshold. When the analog input  
exceeds the threshold programmed into OVR_T0, this status indicator goes high. The minimum  
pulse duration is set by OVR_N. See the ADC Overrange Detection section for more information.  
This pin can be left disconnected if not used.  
C8  
O
Fast overrange detection status for channel A for the OVR_T1 threshold. When the analog input  
exceeds the threshold programmed into OVR_T1, this status indicator goes high. The minimum  
pulse duration is set by OVR_N. See the ADC Overrange Detection section for more information.  
This pin can be left disconnected if not used.  
ORA1  
ORB0  
ORB1  
D8  
K8  
J8  
O
O
O
Fast overrange detection status for channel B for the OVR_T0 threshold. When the analog input  
exceeds the threshold programmed into OVR_T0, this status indicator goes high. The minimum  
pulse duration is set by OVR_N. See the ADC Overrange Detection section for more information.  
This pin can be left disconnected if not used.  
Fast overrange detection status for channel B for the OVR_T1 threshold. When the analog input  
exceeds the threshold programmed into OVR_T1, this status indicator goes high. The minimum  
pulse duration is set by OVR_N. See the ADC Overrange Detection section for more information.  
This pin can be left disconnected if not used.  
This pin disables all analog circuits and serializer outputs when set high for temperature diode  
calibration only. Do not use this pin to power down the device for power savings. Tie this pin to  
GND during normal operation. For information regarding reliable serializer operation, see the  
Power-Down Modes section.  
PD  
K6  
F8  
I
I
Serial interface clock. This pin functions as the serial-interface clock input that clocks the serial  
programming data in and out. The Using the Serial Interface section describes the serial interface  
in more detail. Supports 1.1-V to 1.9-V CMOS levels.  
SCLK  
Serial interface chip select active low input. The Using the Serial Interface section describes the  
serial interface in more detail. Supports 1.1-V to 1.9-V CMOS levels. This pin has a 82-kΩ pullup  
resistor to VD11.  
SCS  
SDI  
E8  
G8  
I
I
Serial interface data input. The Using the Serial Interface section describes the serial interface in  
more detail. Supports 1.1-V to 1.9-V CMOS levels.  
Copyright © 2018–2020, Texas Instruments Incorporated  
7
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Serial interface data output. The Using the Serial Interface section describes the serial interface  
in more detail. This pin is high impedance during normal device operation. This pin outputs 1.9-V  
CMOS levels during serial interface read operations. This pin can be left disconnected if not used.  
SDO  
H8  
O
Single-ended JESD204B SYNC signal. This input is an active low input that is used to initialize  
the JESD204C serial link in 8B/10B modes when SYNC_SEL is set to 0. When toggled low this  
input initiates code group synchronization (see the Code Group Synchronization (CGS) section).  
After code group synchronization, this input must be toggled high to start the initial lane alignment  
sequence (see the Initial Lane Alignment Sequence (ILAS) section). A differential SYNC signal  
can be used instead by setting SYNC_SEL to 1 and using TMSTP± as a differential SYNC input.  
Tie this pin to GND if differential SYNC (TMSTP±) is used as the JESD204B SYNC signal.  
SYNCSE  
C2  
K1  
I
The SYSREF positive input is used to achieve synchronization and deterministic latency across  
the JESD204B interface. This differential input (SYSREF+ to SYSREF–) has an internal  
untrimmed 100-Ω differential termination and can be AC-coupled when SYSREF_LVPECL_EN is  
set to 0. This input is self-biased when SYSREF_LVPECL_EN is set to 0. The termination  
changes to 50 Ω to ground on each input pin (SYSREF+ and SYSREF–) and can be DC-coupled  
when SYSREF_LVPECL_EN is set to 1. This input is not self-biased when  
SYSREF+  
I
SYSREF_LVPECL_EN is set to 1 and must be biased externally to the input common-mode  
voltage range provided in the Recommended Operating Conditions table.  
SYSREF–  
TDIODE+  
TDIODE–  
L1  
K2  
K3  
I
I
I
SYSREF negative input  
Temperature diode positive (anode) connection. An external temperature sensor can be  
connected to TDIODE+ and TDIODE– to monitor the junction temperature of the device. This pin  
can be left disconnected if not used.  
Temperature diode negative (cathode) connection. This pin can be left disconnected if not used.  
Timestamp input positive connection or differential JESD204B SYNC positive connection. This  
input is a timestamp input, used to mark a specific sample, when TIMESTAMP_EN is set to 1.  
This differential input is used as the JESD204B SYNC signal input when SYNC_SEL is set 1.  
This input can be used as both a timestamp and differential SYNC input at the same time,  
allowing feedback of the SYNC signal using the timestamp mechanism. TMSTP± uses active low  
signaling when used as a JESD204B SYNC. For additional usage information, see the  
Timestamp section.  
TMSTP_RECV_EN must be set to 1 to use this input. This differential input (TMSTP+ to  
TMSTP–) has an internal untrimmed 100-Ω differential termination and can be AC-coupled when  
TMSTP_LVPECL_EN is set to 0. The termination changes to 50 Ω to ground on each input pin  
(TMSTP+ and TMSTP–) and can be DC coupled when TMSTP_LVPECL_EN is set to 1. This pin  
is not self-biased and therefore must be externally biased for both AC- and DC-coupled  
configurations. The common-mode voltage must be within the range provided in the  
Recommended Operating Conditions table when both AC and DC coupled. This pin can be left  
disconnected and disabled (TMSTP_RECV_EN = 0) if SYNCSE is used for JESD204B SYNC  
and timestamp is not required.  
TMSTP+  
B1  
I
Timestamp input positive connection or differential JESD204B SYNC negative connection. This  
pin can be left disconnected and disabled (TMSTP_RECV_EN = 0) if SYNCSE is used for  
JESD204B SYNC and timestamp is not required.  
TMSTP–  
VA11  
C1  
I
I
C5, D2, D3,  
D5, E5, F5,  
G5, H5, J2,  
J3, J5, K5  
1.1-V analog supply  
1.9-V analog supply  
1.1-V digital supply  
C4, D4, E2,  
E3, E4, F4,  
G4, H2, H3,  
H4, J4, K4  
VA19  
VD11  
I
I
C9, C10, E9,  
E10, G7, H7,  
H9, H10, K9,  
K10  
8
Copyright © 2018–2020, Texas Instruments Incorporated  
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–1.32  
–0.1  
MAX  
2.35  
1.32  
1.32  
1.32  
0.1  
UNIT  
V
VA19(2)  
VA11(2)  
Supply voltage range  
VD11(3)  
Voltage between VD11 and VA11  
Voltage between AGND and DGND  
V
DA[7:0]+, DA[7:0]–, DB[7:0]+, DB[7:0]–,  
TMSTP+, TMSTP–(3)  
min(1.32,  
VD11+0.5)  
–0.5  
–0.5  
min(1.32,  
VA11+0.5)  
CLK+, CLK–, SYSREF+, SYSREF–(2)  
min(2.35,  
VA19+0.5)  
BG, TDIODE+, TDIODE–(2)  
Pin voltage range  
–0.5  
–1  
V
INA+, INA–, INB+, INB–(2)  
1
CALSTAT, CALTRIG, NCOA0, NCOA1,  
NCOB0, NCOB1, ORA0, ORA1, ORB0,  
ORB1, PD, SCLK, SCS, SDI, SDO,  
SYNCSE(2)  
–0.5  
VA19+0.5  
Peak input current (any input except INA+, INA–, INB+, INB–)  
Peak input current (INA+, INA–, INB+, INB–)  
–25  
–50  
25  
50  
mA  
mA  
Single-ended with ZS-SE = 50 Ω or differential  
Peak RF input power (INA+, INA–, INB+, INB–)  
16.4  
100  
dBm  
mA  
with ZS-DIFF = 100 Ω  
Peak total input current (sum of absolute value of all currents forced in or out, not including  
power-supply current)  
Operating free-air temperature, TA  
Operating junction temperature, TJ  
Storage temperature, Tstg  
–40  
–65  
85  
°C  
°C  
°C  
150  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Measured to AGND.  
(3) Measured to DGND.  
6.2 ESD Ratings  
VALUE  
±2500  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2018–2020, Texas Instruments Incorporated  
9
 
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.8  
NOM  
1.9  
1.1  
1.1  
0
MAX  
UNIT  
VA19, analog 1.9-V supply(1)  
2.0  
1.15  
1.15  
100  
VDD  
Supply voltage range  
VA11, analog 1.1-V supply(1)  
VD11, digital 1.1-V supply(2)  
INA+, INA–, INB+, INB–(1)  
1.05  
1.05  
–50  
V
mV  
V
CLK+, CLK–, SYSREF+,  
SYSREF–(1)(3)  
TMSTP+, TMSTP–(1)(4)  
VCMI  
Input common-mode voltage  
0
0
0.3  
0.3  
1.0  
0.55  
0.55  
2.0  
CLK+ to CLK–, SYSREF+ to  
SYSREF–, TMSTP+ to TMSTP–  
0.4  
Input voltage, peak-to-peak  
differential  
VID  
VPP-DIFF  
INA+ to INA–, INB+ to INB–  
1.0(5)  
CALTRIG, NCOA0, NCOA1, NCOB0,  
NCOB1, PD, SCLK, SCS, SDI,  
SYNCSE(1)  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
0.7  
V
V
CALTRIG, NCOA0, NCOA1, NCOB0,  
NCOB1, PD, SCLK, SCS, SDI,  
SYNCSE(1)  
0.45  
IC_TD  
CL  
Temperature diode input current  
BG maximum load capacitance  
BG maximum output current  
Input clock duty cycle  
TDIODE+ to TDIODE–  
100  
µA  
pF  
µA  
50  
100  
IO  
DC  
TA  
30%  
–40  
50%  
70%  
Operating free-air temperature  
Operating junction temperature  
Storage temperature  
85  
105(6)(7)  
°C  
°C  
°C  
TJ  
Tstg  
–65  
150  
(1) Measured to AGND.  
(2) Measured to DGND.  
(3) TI strongly recommends that CLK± be AC-coupled with DEVCLK_LVPECL_EN set to 0 to allow CLK± to self-bias to the optimal input  
common-mode voltage for best performance. TI recommends AC-coupling for SYSREF± unless DC-coupling is required, in which case,  
the LVPECL input mode must be used (SYSREF_LVPECL_EN = 1).  
(4) TMSTP± does not have internal biasing that requires TMSTP± to be biased externally whether AC-coupled with TMSTP_LVPECL_EN =  
0 or DC-coupled with TMSTP_LVPECL_EN = 1.  
(5) The ADC output code saturates when VID for INA± or INB± exceeds the programmed full-scale voltage (VFS) set by FS_RANGE_A for  
INA± or FS_RANGE_B for INB±.  
(6) Prolonged use above this junction temperature may increase the device failure-in-time (FIT) rate.  
(7) Tested up to 1000 hours continuous operation at Tj = 125°C. See the Absolute Maximum Ratings table for the absolute maximum  
operational temperature.  
6.4 Thermal Information  
ADC12DJ2700  
THERMAL METRIC(1)  
AAV (FCBGA)  
UNIT  
144 PINS  
25.3  
1.1  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
8.2  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.1  
ψJB  
8.2  
RθJC(bot)  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
10  
Copyright © 2018–2020, Texas Instruments Incorporated  
 
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
6.5 Electrical Characteristics: DC Specifications  
typical values at TA = 25°C, VA19 = 1.9 V, VA11 = 1.1 V, VD11 = 1.1 V, default full-scale voltage (FS_RANGE_A =  
FS_RANGE_B = 0xA000), input signal applied to INA± in single-channel modes, fIN = 248 MHz, AIN = –1 dBFS, fCLK  
=
maximum rated clock frequency, filtered 1-VPP sine-wave clock, JMODE = 1, and background calibration (unless otherwise  
noted); minimum and maximum values are at nominal supply voltages and over the operating free-air temperature range  
provided in the Recommended Operating Conditions table  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DC ACCURACY  
Resolution  
Resolution with no missing codes  
12  
Bits  
Maximum positive excursion from ideal step  
size  
0.7  
DNL  
INL  
Differential nonlinearity  
Integral nonlinearity  
LSB  
LSB  
Maximum negative excursion from ideal  
step size  
–0.3  
±2.0  
ANALOG INPUTS (INA+, INA–, INB+, INB–)  
VOFF  
Offset error  
Default full-scale voltage, OS_CAL disabled  
±0.6  
±55  
mV  
mV  
Input offset voltage  
adjustment range  
Available offset correction range (see  
OS_CAL or OADJ_x_INx)  
VOFF_ADJ  
Foreground calibration at nominal  
temperature only  
23  
0
VOFF_DRIFT  
Offset drift  
µV/°C  
Foreground calibration at each temperature  
Default full-scale voltage (FS_RANGE_A =  
FS_RANGE_B = 0xA000)  
750  
800  
850  
500  
Analog differential input full-  
scale range  
Maximum full-scale voltage (FS_RANGE_A  
= FS_RANGE_B = 0xFFFF)  
VIN_FSR  
1000  
1040  
480  
mVPP  
Minimum full-scale voltage (FS_RANGE_A  
= FS_RANGE_B = 0x2000)  
Default FS_RANGE_A and FS_RANGE_B  
setting, foreground calibration at nominal  
temperature only, inputs driven by a 50-Ω  
source, includes effect of RIN drift  
–0.01  
0.03  
Analog differential input full-  
scale range drift  
VIN_FSR_DRIFT  
%/°C  
Default FS_RANGE_A and FS_RANGE_B  
setting, foreground calibration at each  
temperature, inputs driven by a 50-Ω  
source, includes effect of RIN drift  
Analog differential input full-  
scale range matching  
Matching between INA+, INA– and INB+,  
INB–, default setting, dual-channel mode  
VIN_FSR_MATCH  
RIN  
0.625%  
50  
Single-ended input resistance Each input pin is terminated to AGND,  
to AGND  
48  
52  
Ω
measured at TA = 25°C  
Input termination linear  
temperature coefficient  
RIN_TEMPCO  
17.6  
mΩ/°C  
Single-channel mode at DC  
Dual-channel mode at DC  
0.4  
0.4  
Single-ended input  
capacitance  
CIN  
pF  
TEMPERATURE DIODE CHARACTERISTICS (TDIODE+, TDIODE–)  
Forced forward current of 100 µA. Offset  
voltage (approximately 0.792 V at 0°C)  
varies with process and must be measured  
for each part. Offset measurement must be  
done with the device unpowered or with the  
PD pin asserted to minimize device self-  
heating. The PD pin must be asserted only  
long enough to take the offset  
Temperature diode voltage  
slope  
ΔVBE  
–1.6  
mV/°C  
measurement.  
Copyright © 2018–2020, Texas Instruments Incorporated  
11  
 
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
Electrical Characteristics: DC Specifications (continued)  
typical values at TA = 25°C, VA19 = 1.9 V, VA11 = 1.1 V, VD11 = 1.1 V, default full-scale voltage (FS_RANGE_A =  
FS_RANGE_B = 0xA000), input signal applied to INA± in single-channel modes, fIN = 248 MHz, AIN = –1 dBFS, fCLK  
=
maximum rated clock frequency, filtered 1-VPP sine-wave clock, JMODE = 1, and background calibration (unless otherwise  
noted); minimum and maximum values are at nominal supply voltages and over the operating free-air temperature range  
provided in the Recommended Operating Conditions table  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
BAND-GAP VOLTAGE OUTPUT (BG)  
VBG  
Reference output voltage  
I
L 100 µA  
L 100 µA  
1.1  
V
Reference output temperature  
drift  
VBG_DRIFT  
I
–64  
µV/°C  
CLOCK INPUTS (CLK+, CLK–, SYSREF+, SYSREF–, TMSTP+, TMSTP–)  
Differential termination with  
DEVCLK_LVPECL_EN = 0,  
SYSREF_LVPECL_EN = 0, and  
TMSTP_LVPECL_EN = 0  
110  
ZT  
Internal termination  
Ω
Single-ended termination to GND (per pin)  
with DEVCLK_LVPECL_EN = 0,  
SYSREF_LVPECL_EN = 0, and  
TMSTP_LVPECL_EN = 0  
55  
Self-biasing common-mode voltage for  
CLK± when AC-coupled  
0.26  
(DEVCLK_LVPECL_EN must be set to 0)  
Self-biasing common-mode voltage for  
SYSREF± when AC-coupled  
(SYSREF_LVPECL_EN must be set to 0)  
and with receiver enabled  
(SYSREF_RECV_EN = 1)  
0.29  
Input common-mode voltage,  
self-biased  
VCM  
V
Self-biasing common-mode voltage for  
SYSREF± when AC-coupled  
(SYSREF_LVPECL_EN must be set to 0)  
and with receiver disabled  
VA11  
(SYSREF_RECV_EN = 0)  
Between positive and negative differential  
input pins  
CL_DIFF  
CL_SE  
Differential input capacitance  
0.1  
0.5  
pF  
pF  
Single-ended input  
capacitance  
Each input to ground  
SERDES OUTPUTS (DA[7:0]+, DA[7:0]–, DB[7:0]+, DB[7:0]–)  
Differential output voltage,  
peak-to-peak  
mVPP-  
DIFF  
V
VOD  
100-Ω load  
550  
600  
650  
VCM  
Output common-mode voltage AC coupled  
Differential output impedance  
VD11 / 2  
100  
ZDIFF  
Ω
CMOS INTERFACE: SCLK, SDI, SDO, SCS, PD, NCOA0, NCOA1, NCOB0, NCOB1, CALSTAT, CALTRIG, ORA0, ORA1, ORB0, ORB1,  
SYNCSE  
IIH  
High-level input current  
Low-level input current  
Input capacitance  
–40  
–40  
40  
40  
µA  
µA  
pF  
V
IIL  
CI  
2
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
ILOAD = –400 µA  
ILOAD = 400 µA  
1.65  
150  
mV  
12  
Copyright © 2018–2020, Texas Instruments Incorporated  
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
6.6 Electrical Characteristics: Power Consumption  
typical values at TA = 25°C, VA19 = 1.9 V, VA11 = 1.1 V, VD11 = 1.1 V, default full-scale voltage (FS_RANGE_A =  
FS_RANGE_B = 0xA000), input signal applied to INA± in single-channel modes, fIN = 248 MHz, AIN = –1 dBFS, fCLK  
=
maximum rated clock frequency, filtered 1-VPP sine-wave clock, JMODE = 1, and background calibration (unless otherwise  
noted); minimum and maximum values are at nominal supply voltages and over the operating free-air temperature range  
provided in the Recommended Operating Conditions table  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
884  
440  
529  
2.7  
MAX  
UNIT  
mA  
mA  
mA  
W
IVA19  
IVA11  
IVD11  
PDIS  
IVA19  
IVA11  
IVD11  
PDIS  
IVA19  
IVA11  
IVD11  
PDIS  
IVA19  
IVA11  
IVD11  
PDIS  
IVA19  
IVA11  
IVD11  
PDIS  
1.9-V analog supply current  
1.1-V analog supply current  
1.1-V digital supply current  
Power dissipation  
Power mode 1: single-channel  
mode, JMODE 1 (16 lanes, DDC  
bypassed), foreground calibration  
1.9-V analog supply current  
1.1-V analog supply current  
1.1-V digital supply current  
Power dissipation  
884  
439  
569  
2.8  
950  
600  
750  
3.5  
mA  
mA  
mA  
W
Power mode 2: single-channel  
mode, JMODE 0 (8 lanes, DDC  
bypassed), foreground calibration  
1.9-V analog supply current  
1.1-V analog supply current  
1.1-V digital supply current  
Power dissipation  
1161  
525  
544  
3.4  
mA  
mA  
mA  
W
Power mode 3: single-channel  
mode, JMODE 1 (16 lanes, DDC  
bypassed), background calibration  
1.9-V analog supply current  
1.1-V analog supply current  
1.1-V digital supply current  
Power dissipation  
1242  
524  
524  
3.5  
mA  
mA  
mA  
W
Power mode 4: dual-channel mode,  
JMODE 3 (16 lanes, DDC  
bypassed), background calibration  
1.9-V analog supply current  
1.1-V analog supply current  
1.1-V digital supply current  
Power dissipation  
965  
439  
763  
3.2  
mA  
mA  
mA  
W
Power mode 5: dual-channel mode,  
JMODE 11 (8 lanes, 4x decimation),  
foreground calibration  
Copyright © 2018–2020, Texas Instruments Incorporated  
13  
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
6.7 Electrical Characteristics: AC Specifications (Dual-Channel Mode)  
typical values at TA = 25°C, VA19 = 1.9 V, VA11 = 1.1 V, VD11 = 1.1 V, default full-scale voltage (FS_RANGE_A =  
FS_RANGE_B = 0xA000), fIN = 248 MHz, AIN = –1 dBFS, fCLK = maximum rated clock frequency, filtered 1-VPP sine-wave  
clock, JMODE = 3, and background calibration (unless otherwise noted); minimum and maximum values are at nominal  
supply voltages and over the operating free-air temperature range provided in the Recommended Operating Conditions table  
PARAMETER  
TEST CONDITIONS  
Foreground calibration  
MIN  
TYP  
8.1  
MAX  
UNIT  
Full-power input bandwidth(1)  
(–3 dB)  
FPBW  
XTALK  
GHz  
Background calibration  
8.1  
Aggressor = 400 MHz, –1 dBFS  
Aggressor = 3 GHz, –1 dBFS  
Aggressor = 6 GHz, –1 dBFS  
–93  
–70  
–63  
Channel-to-channel crosstalk  
dB  
Errors/  
sample  
CER  
Code error rate  
10–18  
No input, foreground calibration,  
excludes DC offset, includes fixed  
interleaving spur (fS / 2 spur)  
NOISEDC  
DC input noise standard deviation  
1.88  
LSB  
Maximum full-scale voltage  
(FS_RANGE_A = FS_RANGE_B =  
0xFFFF) setting, foreground  
calibration  
–151.6  
Noise spectral density, no input  
signal, excludes fixed interleaving  
spur (fS / 2 spur)  
NSD  
dBFS/Hz  
Default full-scale voltage  
(FS_RANGE_A = FS_RANGE_B =  
0xA000) setting, foreground  
calibration  
–149.1  
23.7  
Maximum full-scale voltage  
(FS_RANGE_A = 0xFFFF) setting,  
foreground calibration  
NF  
Noise figure, no input, ZS = 100 Ω  
dB  
Default full-scale voltage  
(FS_RANGE_A = 0xA000) setting,  
foreground calibration  
23.9  
56.8  
fIN = 347 MHz, AIN = –1 dBFS  
fIN = 347 MHz, AIN = –1 dBFS,  
maximum FS_RANGE_A and  
FS_RANGE_B setting, foreground  
calibration  
57.7  
fIN = 997 MHz, AIN = –1 dBFS  
fIN = 2482 MHz, AIN = –1 dBFS  
56.7  
55.8  
Signal-to-noise ratio, large signal,  
excluding DC, HD2 to HD9 and  
interleaving spurs  
52  
SNR  
dBFS  
fIN = 2482 MHz, AIN = –1 dBFS,  
maximum FS_RANGE_A and  
FS_RANGE_B setting, foreground  
calibration  
56.6  
fIN = 4997 MHz, AIN = –1 dBFS  
fIN = 6397 MHz, AIN = –1 dBFS  
fIN = 8197 MHz, AIN = –1 dBFS  
fIN = 347 MHz, AIN = –16 dBFS  
fIN = 997 MHz, AIN = –16 dBFS  
fIN = 2482 MHz, AIN = –16 dBFS  
fIN = 4997 MHz, AIN = –16 dBFS  
fIN = 6397 MHz, AIN = –16 dBFS  
fIN = 8197 MHz, AIN = –16 dBFS  
53.5  
52.3  
50.8  
57.6  
57.7  
57.6  
57.5  
57.4  
57.2  
Signal-to-noise ratio, small signal,  
excluding DC, HD2 to HD9 and  
interleaving spurs  
SNR  
dBFS  
(1) Full-power input bandwidth (FPBW) is defined as the input frequency where the reconstructed output of the ADC has dropped 3 dB  
below the power of a full-scale input signal at a low input frequency. Useable bandwidth may exceed the –3-dB, full-power input  
bandwidth.  
14  
Copyright © 2018–2020, Texas Instruments Incorporated  
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
Electrical Characteristics: AC Specifications (Dual-Channel Mode) (continued)  
typical values at TA = 25°C, VA19 = 1.9 V, VA11 = 1.1 V, VD11 = 1.1 V, default full-scale voltage (FS_RANGE_A =  
FS_RANGE_B = 0xA000), fIN = 248 MHz, AIN = –1 dBFS, fCLK = maximum rated clock frequency, filtered 1-VPP sine-wave  
clock, JMODE = 3, and background calibration (unless otherwise noted); minimum and maximum values are at nominal  
supply voltages and over the operating free-air temperature range provided in the Recommended Operating Conditions table  
PARAMETER  
TEST CONDITIONS  
fIN = 347 MHz, AIN = –1 dBFS  
fIN = 997 MHz, AIN = –1 dBFS  
fIN = 2482 MHz, AIN = –1 dBFS  
fIN = 4997 MHz, AIN = –1 dBFS  
fIN = 6397 MHz, AIN = –1 dBFS  
fIN = 8197 MHz, AIN = –1 dBFS  
fIN = 347 MHz, AIN = –1 dBFS  
fIN = 997 MHz, AIN = –1 dBFS  
fIN = 2482 MHz, AIN = –1 dBFS  
fIN = 4997 MHz, AIN = –1 dBFS  
fIN = 6397 MHz, AIN = –1 dBFS  
fIN = 8197 MHz, AIN = –1 dBFS  
fIN = 347 MHz, AIN = –1 dBFS  
MIN  
TYP  
56.0  
56.0  
55.1  
51.1  
49.3  
47.0  
9.0  
MAX  
UNIT  
Signal-to-noise and distortion ratio,  
large signal, excluding DC and fS / 2  
fixed spurs  
51  
SINAD  
dBFS  
9.0  
Effective number of bits, large  
signal, excluding DC and fS / 2 fixed  
spurs  
8.2  
8.9  
ENOB  
bits  
8.2  
7.9  
7.5  
70  
fIN = 347 MHz, AIN = –1 dBFS,  
maximum FS_RANGE_A and  
FS_RANGE_B setting, foreground  
calibration  
70  
fIN = 997 MHz, AIN = –1 dBFS  
fIN = 2482 MHz, AIN = –1 dBFS  
71  
68  
Spurious-free dynamic range, large  
signal, excluding DC and fS / 2 fixed  
spurs  
60  
SFDR  
dBFS  
fIN = 2482 MHz, AIN = –1 dBFS,  
maximum FS_RANGE_A and  
FS_RANGE_B setting, foreground  
calibration  
63  
fIN = 4997 MHz, AIN = –1 dBFS  
fIN = 6397 MHz, AIN = –1 dBFS  
fIN = 8197 MHz, AIN = –1 dBFS  
fIN = 347 MHz, AIN = –16 dBFS  
fIN = 997 MHz, AIN = –16 dBFS  
fIN = 2482 MHz, AIN = –16 dBFS  
fIN = 4997 MHz, AIN = –16 dBFS  
fIN = 6397 MHz, AIN = –16 dBFS  
fIN = 8197 MHz, AIN = –16 dBFS  
59  
56  
54  
73  
73  
74  
74  
73  
72  
Spurious-free dynamic range, small  
signal, excluding DC and fS / 2 fixed  
spurs  
SFDR  
fS / 2  
dBFS  
dBFS  
fS / 2 fixed interleaving spur,  
independent of input signal  
No input  
–70  
–78  
–55  
fIN = 347 MHz, AIN = –1 dBFS  
fIN = 347 MHz, AIN = –1 dBFS,  
maximum FS_RANGE_A and  
FS_RANGE_B setting, foreground  
calibration  
–80  
fIN = 997 MHz, AIN = –1 dBFS  
fIN = 2482 MHz, AIN = –1 dBFS  
–77  
–72  
–60  
HD2  
2nd-order harmonic distortion  
dBFS  
fIN = 2482 MHz, AIN = –1 dBFS,  
maximum FS_RANGE_A and  
FS_RANGE_B setting, foreground  
calibration  
–73  
fIN = 4997 MHz, AIN = –1 dBFS  
fIN = 6397 MHz, AIN = –1 dBFS  
fIN = 8197 MHz, AIN = –1 dBFS  
–67  
–63  
–59  
Copyright © 2018–2020, Texas Instruments Incorporated  
15  
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
Electrical Characteristics: AC Specifications (Dual-Channel Mode) (continued)  
typical values at TA = 25°C, VA19 = 1.9 V, VA11 = 1.1 V, VD11 = 1.1 V, default full-scale voltage (FS_RANGE_A =  
FS_RANGE_B = 0xA000), fIN = 248 MHz, AIN = –1 dBFS, fCLK = maximum rated clock frequency, filtered 1-VPP sine-wave  
clock, JMODE = 3, and background calibration (unless otherwise noted); minimum and maximum values are at nominal  
supply voltages and over the operating free-air temperature range provided in the Recommended Operating Conditions table  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fIN = 347 MHz, AIN = –1 dBFS  
–74  
fIN = 347 MHz, AIN = –1 dBFS,  
maximum FS_RANGE_A and  
FS_RANGE_B setting, foreground  
calibration  
–71  
fIN = 997 MHz, AIN = –1 dBFS  
fIN = 2482 MHz, AIN = –1 dBFS  
–76  
–68  
–60  
HD3  
3rd-order harmonic distortion  
dBFS  
fIN = 2482 MHz, AIN = –1 dBFS,  
maximum FS_RANGE_A and  
FS_RANGE_B setting, foreground  
calibration  
–63  
fIN = 4997 MHz, AIN = –1 dBFS  
fIN = 6397 MHz, AIN = –1 dBFS  
fIN = 8197 MHz, AIN = –1 dBFS  
fIN = 347 MHz, AIN = –1 dBFS  
fIN = 997 MHz, AIN = –1 dBFS  
fIN = 2482 MHz, AIN = –1 dBFS  
fIN = 4997 MHz, AIN = –1 dBFS  
fIN = 6397 MHz, AIN = –1 dBFS  
fIN = 8197 MHz, AIN = –1 dBFS  
fIN = 347 MHz, AIN = –1 dBFS  
fIN = 997 MHz, AIN = –1 dBFS  
fIN = 2482 MHz, AIN = –1 dBFS  
fIN = 4997 MHz, AIN = –1 dBFS  
fIN = 6397 MHz, AIN = –1 dBFS  
fIN = 8197 MHz, AIN = –1 dBFS  
–59  
–56  
–54  
–72  
–74  
–75  
–70  
–69  
–64  
–77  
–78  
–78  
–75  
–75  
–81  
–60  
–65  
fS / 2-fIN interleaving spur, signal  
dependent  
fS / 2-fIN  
dBFS  
dBFS  
Worst-harmonic, 4th-order distortion  
or higher  
SPUR  
fIN = 347 MHz ± 2.5 MHz,  
AIN = –7 dBFS per tone  
–83  
–84  
–73  
–63  
–57  
–49  
fIN = 997 MHz ± 2.5 MHz,  
AIN = –7 dBFS per tone  
fIN = 2497 MHz ± 2.5 MHz,  
AIN = –7 dBFS per tone  
IMD3  
3rd-order intermodulation distortion  
dBFS  
fIN = 4997 MHz ± 2.5 MHz,  
AIN = –7 dBFS per tone  
fIN = 6397 MHz ± 2.5 MHz,  
AIN = –7 dBFS per tone  
fIN = 7997 MHz ± 2.5 MHz,  
AIN = –7 dBFS per tone  
16  
Copyright © 2018–2020, Texas Instruments Incorporated  
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
6.8 Electrical Characteristics: AC Specifications (Single-Channel Mode)  
typical values at TA = 25°C, VA19 = 1.9 V, VA11 = 1.1 V, VD11 = 1.1 V, default full-scale voltage (FS_RANGE_A = 0xA000),  
input signal applied to INA±, fIN = 248 MHz, AIN = –1 dBFS, fCLK = maximum rated clock frequency, filtered 1-VPP sine-wave  
clock, JMODE = 1, and background calibration (unless otherwise noted); minimum and maximum values are at nominal  
supply voltages and over the operating free-air temperature range provided in the Recommended Operating Conditions table  
PARAMETER  
TEST CONDITIONS  
Foreground calibration  
MIN  
TYP  
7.9  
MAX  
UNIT  
Full-power input bandwidth(1)  
(–3 dB)  
FPBW  
CER  
GHz  
Background calibration  
7.9  
Errors/  
sample  
Code error rate  
10–18  
1.95  
No input, foreground calibration,  
excludes DC offset, includes fixed  
interleaving spurs (fS / 2 and fS / 4  
spurs), OS_CAL enabled  
NOISEDC  
DC input noise standard deviation  
LSB  
Maximum full-scale voltage  
(FS_RANGE_A = 0xFFFF) setting,  
foreground calibration  
–153.8  
–152.7  
21.5  
Noise spectral density, no input  
signal, excludes fixed interleaving  
spurs (fS / 2 and fS / 4 spur)  
NSD  
dBFS/Hz  
Default full-scale voltage  
(FS_RANGE_A = 0xA000) setting,  
foreground calibration  
Maximum full-scale voltage  
(FS_RANGE_A = 0xFFFF) setting,  
foreground calibration  
NF  
Noise figure, no input, ZS = 100 Ω  
dB  
Default full-scale voltage  
(FS_RANGE_A = 0xA000) setting,  
foreground calibration  
20.3  
56.8  
57.6  
fIN = 347 MHz, AIN = –1 dBFS  
fIN = 347 MHz, AIN = –1 dBFS,  
maximum FS_RANGE_A setting,  
foreground calibration  
fIN = 997 MHz, AIN = –1 dBFS  
fIN = 2482 MHz, AIN = –1 dBFS  
56.6  
55.8  
Signal-to-noise ratio, large signal,  
excluding DC, HD2 to HD9 and  
interleaving spurs  
52  
SNR  
dBFS  
fIN = 2482 MHz, AIN = –1 dBFS,  
maximum FS_RANGE_A setting,  
foreground calibration  
56.6  
fIN = 4997 MHz, AIN = –1 dBFS  
fIN = 6397 MHz, AIN = –1 dBFS  
fIN = 8197 MHz, AIN = –1 dBFS  
fIN = 347 MHz, AIN = –16 dBFS  
fIN = 997 MHz, AIN = –16 dBFS  
fIN = 2482 MHz, AIN = –16 dBFS  
fIN = 4997 MHz, AIN = –16 dBFS  
fIN = 6397 MHz, AIN = –16 dBFS  
fIN = 8197 MHz, AIN = –16 dBFS  
fIN = 347 MHz, AIN = –1 dBFS  
fIN = 997 MHz, AIN = –1 dBFS  
fIN = 2482 MHz, AIN = –1 dBFS  
fIN = 4997 MHz, AIN = –1 dBFS  
fIN = 6397 MHz, AIN = –1 dBFS  
fIN = 8197 MHz, AIN = –1 dBFS  
53.6  
52.4  
50.9  
57.6  
57.4  
57.4  
57.4  
57.4  
57.2  
55.2  
54.3  
53.6  
50.4  
48.2  
45.7  
Signal-to-noise ratio, small signal,  
excluding DC, HD2 to HD9 and  
interleaving spurs  
SNR  
dBFS  
dBFS  
Signal-to-noise and distortion ratio,  
large signal, excluding DC and fS / 2  
fixed spurs  
48  
SINAD  
(1) Full-power input bandwidth (FPBW) is defined as the input frequency where the reconstructed output of the ADC has dropped 3 dB  
below the power of a full-scale input signal at a low input frequency. Useable bandwidth may exceed the –3-dB, full-power input  
bandwidth.  
Copyright © 2018–2020, Texas Instruments Incorporated  
17  
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
Electrical Characteristics: AC Specifications (Single-Channel Mode) (continued)  
typical values at TA = 25°C, VA19 = 1.9 V, VA11 = 1.1 V, VD11 = 1.1 V, default full-scale voltage (FS_RANGE_A = 0xA000),  
input signal applied to INA±, fIN = 248 MHz, AIN = –1 dBFS, fCLK = maximum rated clock frequency, filtered 1-VPP sine-wave  
clock, JMODE = 1, and background calibration (unless otherwise noted); minimum and maximum values are at nominal  
supply voltages and over the operating free-air temperature range provided in the Recommended Operating Conditions table  
PARAMETER  
TEST CONDITIONS  
fIN = 347 MHz, AIN = –1 dBFS  
fIN = 997 MHz, AIN = –1 dBFS  
fIN = 2482 MHz, AIN = –1 dBFS  
fIN = 4997 MHz, AIN = –1 dBFS  
fIN = 6397 MHz, AIN = –1 dBFS  
fIN = 8197 MHz, AIN = –1 dBFS  
fIN = 347 MHz, AIN = –1 dBFS  
MIN  
TYP  
8.9  
8.7  
8.6  
8.1  
7.7  
7.3  
65  
MAX  
UNIT  
Effective number of bits, large  
signal, excluding DC and fS / 2 fixed  
spurs  
!~  
dBFS!~Bit  
s
7.7  
ENOB  
SFDR  
SFDR  
fIN = 347 MHz, AIN = –1 dBFS,  
maximum FS_RANGE_A setting,  
foreground calibration  
67  
fIN = 997 MHz, AIN = –1 dBFS  
fIN = 2482 MHz, AIN = –1 dBFS  
61  
59  
Spurious free dynamic range, large  
signal, excluding DC, fS / 4 and fS / 2  
fixed spurs  
50  
dBFS  
fIN = 2482 MHz, AIN = –1 dBFS,  
maximum FS_RANGE_A setting,  
foreground calibration  
61  
fIN = 4997 MHz, AIN = –1 dBFS  
fIN = 6397 MHz, AIN = –1 dBFS  
fIN = 8197 MHz, AIN = –1 dBFS  
fIN = 347 MHz, AIN = –16 dBFS  
fIN = 997 MHz, AIN = –16 dBFS  
fIN = 2482 MHz, AIN = –16 dBFS  
fIN = 4997 MHz, AIN = –16 dBFS  
fIN = 6397 MHz, AIN = –16 dBFS  
fIN = 8197 MHz, AIN = –16 dBFS  
56  
53  
49  
75  
74  
74  
71  
67  
64  
Spurious free dynamic range, small  
signal, excluding DC, fS / 4 and fS / 2  
fixed spurs  
dBFS  
No input, foreground calibration,  
OS_CAL disabled. Spur can be  
improved by running OS_CAL.  
fS / 2 fixed interleaving spur,  
independent of input signal  
fS / 2  
fS / 4  
–66  
dBFS  
dBFS  
fS / 4 fixed interleaving spur,  
independent of input signal  
No input  
–70  
–74  
–55  
–60  
fIN = 347 MHz, AIN = –1 dBFS  
fIN = 347 MHz, AIN = –1 dBFS,  
maximum FS_RANGE_A setting,  
foreground calibration  
–73  
fIN = 997 MHz, AIN = –1 dBFS  
fIN = 2482 MHz, AIN = –1 dBFS  
–78  
–79  
HD2  
2nd-order harmonic distortion  
dBFS  
fIN = 2482 MHz, AIN = –1 dBFS,  
maximum FS_RANGE_A setting,  
foreground calibration  
–78  
fIN = 4997 MHz, AIN = –1 dBFS  
fIN = 6397 MHz, AIN = –1 dBFS  
fIN = 8197 MHz, AIN = –1 dBFS  
–72  
–61  
–65  
18  
Copyright © 2018–2020, Texas Instruments Incorporated  
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
Electrical Characteristics: AC Specifications (Single-Channel Mode) (continued)  
typical values at TA = 25°C, VA19 = 1.9 V, VA11 = 1.1 V, VD11 = 1.1 V, default full-scale voltage (FS_RANGE_A = 0xA000),  
input signal applied to INA±, fIN = 248 MHz, AIN = –1 dBFS, fCLK = maximum rated clock frequency, filtered 1-VPP sine-wave  
clock, JMODE = 1, and background calibration (unless otherwise noted); minimum and maximum values are at nominal  
supply voltages and over the operating free-air temperature range provided in the Recommended Operating Conditions table  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fIN = 347 MHz, AIN = –1 dBFS  
–71  
fIN = 347 MHz, AIN = –1 dBFS,  
maximum FS_RANGE_A setting,  
foreground calibration  
–69  
fIN = 997 MHz, AIN = –1 dBFS  
fIN = 2482 MHz, AIN = –1 dBFS  
–72  
–68  
–60  
HD3  
3rd-order harmonic distortion  
dBFS  
fIN = 2482 MHz, AIN = –1 dBFS,  
maximum FS_RANGE_A setting,  
foreground calibration  
–62  
fIN = 4997 MHz, AIN = –1 dBFS  
fIN = 6397 MHz, AIN = –1 dBFS  
fIN = 8197 MHz, AIN = –1 dBFS  
fIN = 347 MHz, AIN = –1 dBFS  
fIN = 997 MHz, AIN = –1 dBFS  
fIN = 2482 MHz, AIN = –1 dBFS  
fIN = 4997 MHz, AIN = –1 dBFS  
fIN = 6397 MHz, AIN = –1 dBFS  
fIN = 8197 MHz, AIN = –1 dBFS  
fIN = 347 MHz, AIN = –1 dBFS  
fIN = 997 MHz, AIN = –1 dBFS  
fIN = 2482 MHz, AIN = –1 dBFS  
fIN = 4997 MHz, AIN = –1 dBFS  
fIN = 6397 MHz, AIN = –1 dBFS  
fIN = 8197 MHz, AIN = –1 dBFS  
fIN = 347 MHz, AIN = –1 dBFS  
fIN = 997 MHz, AIN = –1 dBFS  
fIN = 2482 MHz, AIN = –1 dBFS  
fIN = 4997 MHz, AIN = –1 dBFS  
fIN = 6397 MHz, AIN = –1 dBFS  
fIN = 8197 MHz, AIN = –1 dBFS  
–61  
–59  
–56  
–65  
–61  
–59  
–56  
–53  
–49  
–75  
–72  
–75  
–69  
–69  
–65  
–75  
–78  
–78  
–72  
–72  
–79  
–50  
–60  
–65  
fS / 2 – fIN interleaving spur, signal  
dependent  
fS / 2 – fIN  
fS / 4 ± fIN  
SPUR  
dBFS  
dBFS  
dBFS  
fS / 4 ± fIN interleaving spurs, signal  
dependent  
Worst-harmonic, 4th-order distortion  
or higher  
fIN = 347 MHz ± 2.5 MHz,  
AIN = –7 dBFS per tone  
–90  
–79  
–73  
–63  
–58  
–51  
fIN = 997 MHz ± 2.5 MHz,  
AIN = –7 dBFS per tone  
fIN = 2497 MHz ± 2.5 MHz,  
AIN = –7 dBFS per tone  
IMD3  
3rd-order intermodulation distortion  
dBFS  
fIN = 4997 MHz ± 2.5 MHz,  
AIN = –7 dBFS per tone  
fIN = 6397 MHz ± 2.5 MHz,  
AIN = –7 dBFS per tone  
fIN = 7997 MHz ± 2.5 MHz,  
AIN = –7 dBFS per tone  
Copyright © 2018–2020, Texas Instruments Incorporated  
19  
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
6.9 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
DEVICE (SAMPLING) CLOCK (CLK+, CLK–)  
Input clock frequency (CLK+, CLK–), both single-channel and dual-channel  
modes(1)  
fCLK  
800  
2700  
MHz  
SYSREF (SYSREF+, SYSREF–)  
Width of invalid SYSREF capture region of CLK± period, indicating setup or  
tINV(SYSREF)  
tINV(TEMP)  
tINV(VA11)  
48  
0
ps  
hold time violation, as measured by SYSREF_POS status register(2)  
Drift of invalid SYSREF capture region over temperature, positive number  
indicates a shift toward MSB of SYSREF_POS register  
ps/°C  
ps/mV  
Drift of invalid SYSREF capture region over VA11 supply voltage, positive  
number indicates a shift toward MSB of SYSREF_POS register  
0.36  
SYSREF_ZOOM = 0  
Delay of SYSREF_POS LSB  
77  
24  
4
tSTEP(SP)  
ps  
SYSREF_ZOOM = 1  
t(PH_SYS)  
t(PL_SYS)  
Minimum SYSREF± assertion duration after SYSREF± rising edge event  
ns  
ns  
Minimum SYSREF± de-assertion duration after SYSREF± falling edge  
event  
1
JESD204B SYNC TIMING (SYNCSE OR TMSTP±)  
JMODE = 0, 2, 4, 6,  
10, 13, or 15  
Minimum hold time from multiframe boundary  
(SYSREF rising edge captured high) to de-  
21  
tCLK  
cycles  
tH(SYNCSE)  
assertion of JESD204B SYNC signal (SYNCSE if JMODE = 1, 3, 5, 7, 9,  
SYNC_SEL = 0 or TMSTP± if SYNC_SEL = 1) for 11, 14, or 16  
17  
9
NCO synchronization (NCO_SYNC_ILA = 1)  
JMODE = 12, 17, or 18  
JMODE = 0, 2, 4, 6,  
Minimum setup time from de-assertion of  
10, 13, or 15  
–2  
JESD204B SYNC signal (SYNCSE if SYNC_SEL  
tCLK  
cycles  
tSU(SYNCSE)  
= 0 or TMSTP± if SYNC_SEL = 1) to multiframe  
JMODE = 1, 3, 5, 7, 9,  
2
boundary (SYSREF rising edge captured high) for 11, 14, or 16  
NCO synchronization (NCO_SYNC_ILA = 1)  
JMODE = 12, 17, or 18  
10  
4
t(SYNCSE)  
SYNCSE minimum assertion time to trigger link resynchronization  
Frames  
SERIAL PROGRAMMING INTERFACE (SCLK, SDI, SCS)  
fCLK(SCLK)  
t(PH)  
Maximum serial clock frequency  
15.625  
32  
MHz  
ns  
Minimum serial clock high value pulse duration  
Minimum serial clock low value pulse duration  
Minimum setup time from SCS to rising edge of SCLK  
Minimum hold time from rising edge of SCLK to SCS  
Minimum setup time from SDI to rising edge of SCLK  
Minimum hold time from rising edge of SCLK to SDI  
t(PL)  
32  
ns  
tSU(SCS)  
tH(SCS)  
tSU(SDI)  
tH(SDI)  
30  
ns  
3
ns  
30  
ns  
3
ns  
(1) Unless functionally limited to a smaller range in 19 based on programmed JMODE.  
(2) Use SYSREF_POS to select an optimal SYSREF_SEL value for the SYSREF capture, see the SYSREF Position Detector and  
Sampling Position Selection (SYSREF Windowing) section for more information on SYSREF windowing. The invalid region, specified by  
tINV(SYSREF), indicates the portion of the CLK± period (tCLK), as measured by SYSREF_SEL, that may result in a setup and hold violation.  
Verify that the timing skew between SYSREF± and CLK± over system operating conditions from the nominal conditions (that used to  
find optimal SYSREF_SEL) does not result in the invalid region occurring at the selected SYSREF_SEL position in SYSREF_POS,  
otherwise a temperature dependent SYSREF_SEL selection may be needed to track the skew between CLK± and SYSREF±.  
20  
Copyright © 2018–2020, Texas Instruments Incorporated  
 
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
6.10 Switching Characteristics  
typical values at TA = 25°C, VA19 = 1.9 V, VA11 = 1.1 V, VD11 = 1.1 V, default full-scale voltage (FS_RANGE_A =  
FS_RANGE_B = 0xA000), input signal applied to INA± in single-channel modes, fIN = 248 MHz, AIN = –1 dBFS, fCLK  
=
maximum rated clock frequency, filtered 1-VPP sine-wave clock, JMODE = 1, and background calibration (unless otherwise  
noted); minimum and maximum values are at nominal supply voltages and over the operating free-air temperature range  
provided in the Recommended Operating Conditions table  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DEVICE (SAMPLING) CLOCK (CLK+, CLK–)  
Sampling (aperture) delay from the  
CLK± rising edge (dual-channel  
mode) or rising and falling edge  
(single-channel mode) to sampling  
instant  
TAD_COARSE = 0x00, TAD_FINE  
= 0x00, and TAD_INV = 0  
tAD  
360  
ps  
Coarse adjustment  
(TAD_COARSE = 0xFF)  
289  
4.9  
ps  
ps  
Maximum tAD adjust programmable  
delay, not including clock inversion  
(TAD_INV = 0)  
tTAD(MAX)  
Fine adjustment (TAD_FINE =  
0xFF)  
Coarse adjustment  
(TAD_COARSE)  
1.13  
19  
ps  
fs  
tAD adjust programmable delay step  
size  
tTAD(STEP)  
Fine adjustment (TAD_FINE)  
Minimum tAD adjust coarse setting  
(TAD_COARSE = 0x00, TAD_INV  
= 0)  
50  
tAJ  
Aperture jitter, rms  
fs  
Maximum tAD adjust coarse setting  
(TAD_COARSE = 0xFF) excluding  
TAD_INV (TAD_INV = 0)  
70(1)  
SERIAL DATA OUTPUTS (DA[7:0]+, DA[7:0]–, DB[7:0]+, DB[7:0]–)  
fSERDES  
UI  
Serialized output bit rate  
1
12.8  
Gbps  
ps  
Serialized output unit interval  
78.125  
1000  
Low-to-high transition time  
(differential)  
20% to 80%, PRBS-7 test pattern,  
12.8 Gbps, SER_PE = 0x04  
tTLH  
tTHL  
DDJ  
RJ  
37  
37  
ps  
ps  
ps  
ps  
High-to-low transition time  
(differential)  
20% to 80%, PRBS-7 test pattern,  
12.8 Gbps, SER_PE = 0x04  
PRBS-7 test pattern, 12.8 Gbps,  
SER_PE = 0x04, JMODE = 2  
Data dependent jitter, peak-to-peak  
Random jitter, RMS  
7.8  
1.1  
25  
PRBS-7 test pattern, 12.8 Gbps,  
SER_PE = 0x04, JMODE = 2  
PRBS-7 test pattern, 12.8 Gbps,  
SER_PE = 0x04, JMODE = 0, 2  
PRBS-7 test pattern, 6.4 Gbps,  
SER_PE = 0x04, JMODE = 1, 3  
21  
PRBS-7 test pattern, 8 Gbps,  
SER_PE = 0x04, JMODE = 4, 5, 6,  
7
28  
PRBS-7 test pattern, 8 Gbps,  
SER_PE = 0x04, JMODE = 9  
Total jitter, peak-to-peak, with  
gaussian portion defined with respect  
to a BER = 1e-15 (Q = 7.94)  
35  
40  
26  
39  
34  
TJ  
ps  
PRBS-7 test pattern, 8 Gbps,  
SER_PE = 0x04, JMODE = 10, 11  
PRBS-7 test pattern, 3.2 Gbps,  
SER_PE = 0x04, JMODE = 12  
PRBS-7 test pattern, 8 Gbps,  
SER_PE = 0x04, JMODE = 13, 14  
PRBS-7 test pattern, 8 Gbps,  
SER_PE = 0x04, JMODE = 15, 16  
(1) tAJ increases because of additional attenuation on the internal clock path.  
Copyright © 2018–2020, Texas Instruments Incorporated  
21  
 
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
Switching Characteristics (continued)  
typical values at TA = 25°C, VA19 = 1.9 V, VA11 = 1.1 V, VD11 = 1.1 V, default full-scale voltage (FS_RANGE_A =  
FS_RANGE_B = 0xA000), input signal applied to INA± in single-channel modes, fIN = 248 MHz, AIN = –1 dBFS, fCLK  
=
maximum rated clock frequency, filtered 1-VPP sine-wave clock, JMODE = 1, and background calibration (unless otherwise  
noted); minimum and maximum values are at nominal supply voltages and over the operating free-air temperature range  
provided in the Recommended Operating Conditions table  
PARAMETER  
ADC CORE LATENCY  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
JMODE = 0  
–8.5  
–20.5  
–9  
JMODE = 1  
JMODE = 2  
JMODE = 3  
JMODE = 4  
JMODE = 5  
JMODE = 6  
JMODE = 7  
JMODE = 9  
JMODE = 10  
JMODE = 11  
JMODE = 12  
JMODE = 13  
JMODE = 14  
JMODE = 15  
JMODE = 16  
JMODE = 17  
JMODE = 18  
–21  
–4.5  
–24.5  
–5  
–25  
60  
Deterministic delay from the CLK±  
edge that samples the reference  
sample to the CLK± edge that  
samples SYSREF going high(2)  
tADC  
tCLK cycles  
140  
136  
120  
232  
232  
446  
430  
–48.5  
-49  
JESD204B AND SERIALIZER LATENCY  
JMODE = 0  
JMODE = 1  
JMODE = 2  
JMODE = 3  
JMODE = 4  
JMODE = 5  
JMODE = 6  
JMODE = 7  
JMODE = 9  
JMODE = 10  
JMODE = 11  
JMODE = 12  
JMODE = 13  
JMODE = 14  
JMODE = 15  
JMODE = 16  
JMODE = 17  
JMODE = 18  
72  
119  
72  
84  
132  
84  
119  
67  
132  
80  
106  
67  
119  
80  
106  
106  
67  
119  
119  
80  
Delay from the CLK± rising edge that  
samples SYSREF high to the first bit  
tTX  
of the multiframe on the JESD204B  
serial output lane corresponding to  
tCLK cycles  
(3)  
the reference sample of tADC  
106  
213  
67  
119  
225  
80  
106  
67  
119  
80  
106  
195  
195  
119  
208  
208  
(2) tADC is an exact, unrounded, deterministic delay. The delay can be negative if the reference sample is sampled after the SYSREF high  
capture point, in which case the total latency is smaller than the delay given by tTX  
.
(3) The values given for tTX include deterministic and non-deterministic delays. Over process, temperature, and voltage, the delay will vary.  
JESD204B accounts for these variations when operating in subclass-1 mode in order to achieve deterministic latency. Proper receiver  
RBD values must be chosen such that the elastic buffer release point does not occur within the invalid region of the local multiframe  
clock (LMFC) cycle.  
22  
Copyright © 2018–2020, Texas Instruments Incorporated  
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
Switching Characteristics (continued)  
typical values at TA = 25°C, VA19 = 1.9 V, VA11 = 1.1 V, VD11 = 1.1 V, default full-scale voltage (FS_RANGE_A =  
FS_RANGE_B = 0xA000), input signal applied to INA± in single-channel modes, fIN = 248 MHz, AIN = –1 dBFS, fCLK  
=
maximum rated clock frequency, filtered 1-VPP sine-wave clock, JMODE = 1, and background calibration (unless otherwise  
noted); minimum and maximum values are at nominal supply voltages and over the operating free-air temperature range  
provided in the Recommended Operating Conditions table  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SERIAL PROGRAMMING INTERFACE (SDO)  
Maximum delay from the falling edge of the 16th SCLK cycle during read  
operation for SDO transition from tri-state to valid data  
t(OZD)  
t(ODZ)  
t(OD)  
7
7
ns  
ns  
ns  
Maximum delay from the SCS rising edge for SDO transition from valid  
data to tri-state  
Maximum delay from the falling edge of the 16th SCLK cycle during read  
operation to SDO valid  
12  
S1  
S2  
S0  
tAD  
tADC  
tCLK  
CLK+  
CLKœ  
SYSREF+  
SYSREFœ  
tSU(SYSREF)  
tH(SYSREF)  
tTX  
Start of Multi-Frame  
S0  
DA0+/œ(1)  
S1  
S2  
(1) Only the SerDes lane DA0± is shown, but DA0± is representative of all lanes. The number of output lanes used and  
bit-packing format is dependent on the programmed JMODE value.  
1. ADC Timing Diagram  
CLK+  
CLKœ  
SYSREF+  
SYSREFœ  
LMFC(1)  
(Internal)  
One multi-frame  
One multi-frame  
tSU(SYNCSE)  
tH(SYNCSE)  
SYNCSE  
(SYNC_SEL = 0)  
TMSTP+/œ  
(SYNC_SEL = 1)  
tTX  
Start of ILAS  
/R  
DA0+/œ(2)  
(2) The internal LMFC is assumed to be aligned with the CLK± rising edge that captures the SYSREF± high value.  
(3) Only SerDes lane DA0± is shown, but DA0± is representative of all lanes. All lanes output /R at approximately the  
same point in time. The number of lanes is dependent on the programmed JMODE value.  
2. SYNCSE and TMSTP± Timing Diagram for NCO Synchronization  
版权 © 2018–2020, Texas Instruments Incorporated  
23  
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
1st clock  
16th clock  
24th clock  
SCLK  
SCS  
tH(SCS)  
tSU(SCS)  
t(PH)  
t(PL)  
tH(SCS)  
tSU(SCS)  
t(PH) + t(PL) = t(P) = 1 / ƒCLK(SCLK)  
tSU(SDI) tH(SDI)  
tSU(SDI) tH(SDI)  
SDI  
D7  
D7  
D1  
D0  
Write Command  
COMMAND FIELD  
Hi-Z  
t(OD)  
Hi-Z  
t(ODZ)  
SDO  
D1  
D0  
t(OZD)  
Read Command  
3. Serial Interface Timing  
24  
Copyright © 2018–2020, Texas Instruments Incorporated  
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
6.11 Typical Characteristics  
typical values at TA = 25°C, VA19 = 1.9 V, VA11 = VD11 = 1.1 V, default full-scale voltage (FS_RANGE_A = FS_RANGE_B  
= 0xA000), input signal applied to INA± in single-channel modes, fIN = 347 MHz, AIN = –1 dBFS, fCLK = maximum-rated clock  
frequency, filtered, 1-VPP sine-wave clock, JMODE = 1, and background calibration (unless otherwise noted); SNR results  
exclude DC, HD2 to HD9 and interleaving spurs; SINAD, ENOB, and SFDR results exclude DC and fixed-frequency  
interleaving spurs  
9.5  
9
9.5  
9
BG Calibration  
FG Calibration  
BG Calibration  
FG Calibration  
8.5  
8
8.5  
8
7.5  
7
7.5  
7
6.5  
6.5  
0
2000  
4000  
6000  
8000  
10000  
0
2000  
4000  
6000  
8000  
10000  
fIN (MHz)  
fIN (MHz)  
D010  
D002  
JMODE3, fS = 2700 MSPS, foreground (FG) and background (BG)  
calibration  
JMODE1, fS = 5400 MSPS, FG and BG calibration  
Figure 4. ENOB vs Input Frequency  
Figure 5. ENOB vs Input Frequency  
75  
75  
SNR  
SINAD  
SFDR  
SNR  
SINAD  
SFDR  
70  
65  
70  
65  
60  
55  
50  
45  
40  
60  
55  
50  
45  
40  
0
2000  
4000  
6000  
8000  
10000  
0
2000  
4000  
6000  
8000  
10000  
fIN (MHz)  
fIN (MHz)  
D131  
D129  
JMODE3, fS = 2700 MSPS, FG calibration  
JMODE1, fS = 5400 MSPS, FG calibration  
Figure 6. SNR, SINAD, SFDR vs Input Frequency  
Figure 7. SNR, SINAD, SFDR vs Input Frequency  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
HD2  
HD3  
THD  
HD2  
HD3  
THD  
0
2000  
4000  
6000  
8000  
10000  
0
2000  
4000  
6000  
8000  
10000  
fIN (MHz)  
fIN (MHz)  
D132  
D130  
JMODE3, fS = 2700 MSPS, FG calibration  
Figure 8. HD2, HD3, THD vs Input Frequency  
JMODE1, fS = 5400 MSPS, FG calibration  
Figure 9. HD2, HD3, THD vs Input Frequency  
Copyright © 2018–2020, Texas Instruments Incorporated  
25  
 
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
Typical Characteristics (continued)  
typical values at TA = 25°C, VA19 = 1.9 V, VA11 = VD11 = 1.1 V, default full-scale voltage (FS_RANGE_A = FS_RANGE_B  
= 0xA000), input signal applied to INA± in single-channel modes, fIN = 347 MHz, AIN = –1 dBFS, fCLK = maximum-rated clock  
frequency, filtered, 1-VPP sine-wave clock, JMODE = 1, and background calibration (unless otherwise noted); SNR results  
exclude DC, HD2 to HD9 and interleaving spurs; SINAD, ENOB, and SFDR results exclude DC and fixed-frequency  
interleaving spurs  
75  
70  
65  
60  
55  
50  
45  
40  
75  
70  
65  
60  
55  
50  
45  
40  
SNR  
SINAD  
SFDR  
SNR  
SINAD  
SFDR  
0
2000  
4000  
6000  
8000  
10000  
0
2000  
4000  
6000  
8000  
10000  
fIN (MHz)  
fIN (MHz)  
D009  
D001  
JMODE3, fS = 2700 MSPS, BG calibration  
JMODE1, fS = 5400 MSPS, BG calibration  
Figure 10. SNR, SINAD, SFDR vs Input Frequency  
Figure 11. SNR, SINAD, SFDR vs Input Frequency  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
HD2  
HD3  
THD  
HD2  
HD3  
THD  
0
2000  
4000  
6000  
8000  
10000  
0
2000  
4000  
6000  
8000  
10000  
fIN (MHz)  
fIN (MHz)  
D011  
D003  
JMODE3, fS = 2700 MSPS, BG calibration  
Figure 12. HD2, HD3, THD vs Input Frequency  
JMODE1, fS = 5400 MSPS, BG calibration  
Figure 13. HD2, HD3, THD vs Input Frequency  
9.5  
9.25  
9
9.5  
9.25  
9
8.75  
8.75  
8.5  
8.5  
800  
1200  
1600  
fS (MSPS)  
2000  
2400  
2700  
1600  
2400  
3200  
fS (MSPS)  
4000  
4800  
5400  
D013  
D005  
JMODE3, fIN = 347 MHz, BG calibration  
JMODE1, fIN = 347 MHz, BG calibration  
Figure 14. ENOB vs Sampling Rate  
Figure 15. ENOB vs Sampling Rate  
26  
Copyright © 2018–2020, Texas Instruments Incorporated  
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
Typical Characteristics (continued)  
typical values at TA = 25°C, VA19 = 1.9 V, VA11 = VD11 = 1.1 V, default full-scale voltage (FS_RANGE_A = FS_RANGE_B  
= 0xA000), input signal applied to INA± in single-channel modes, fIN = 347 MHz, AIN = –1 dBFS, fCLK = maximum-rated clock  
frequency, filtered, 1-VPP sine-wave clock, JMODE = 1, and background calibration (unless otherwise noted); SNR results  
exclude DC, HD2 to HD9 and interleaving spurs; SINAD, ENOB, and SFDR results exclude DC and fixed-frequency  
interleaving spurs  
75  
70  
65  
60  
55  
50  
45  
40  
75  
70  
65  
60  
55  
50  
45  
40  
SNR  
SINAD  
SFDR  
SNR  
SINAD  
SFDR  
800  
1200  
1600  
fS (MSPS)  
2000  
2400  
2700  
1600  
2400  
3200  
fS (MSPS)  
4000  
4800  
5400  
D012  
D004  
JMODE3, fIN = 347 MHz, BG calibration  
JMODE1, fIN = 347 MHz, BG calibration  
Figure 16. SNR, SINAD, SFDR vs Sampling Rate  
Figure 17. SNR, SINAD, SFDR vs Sampling Rate  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
HD2  
HD3  
THD  
HD2  
HD3  
THD  
800  
1200  
1600  
fS (MSPS)  
2000  
2400  
2700  
1600  
2400  
3200  
fS (MSPS)  
4000  
4800  
5400  
D014  
D006  
JMODE3, fIN = 347 MHz, BG calibration  
JMODE1, fIN = 347 MHz, BG calibration  
Figure 18. HD2, HD3, THD vs Sampling Rate  
Figure 19. HD2, HD3, THD vs Sampling Rate  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
337.5  
675  
Frequency (MHz)  
1012.5  
1350  
0
675  
1350  
Frequency (MHz)  
2025  
2700  
D139  
D134  
JMODE3, fIN = 350 MHz, FG calibration, SNR = 56.7 dBFS,  
SFDR = 68.0 dBFS, ENOB = 9.00 bits  
JMODE1, fIN = 350 MHz, FG calibration, SNR = 56.6 dBFS,  
SFDR = 70.0 dBFS, ENOB = 8.98 bits  
Figure 20. Single-Tone FFT at AIN = –1 dBFS  
Figure 21. Single-Tone FFT at AIN = –1 dBFS  
Copyright © 2018–2020, Texas Instruments Incorporated  
27  
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
Typical Characteristics (continued)  
typical values at TA = 25°C, VA19 = 1.9 V, VA11 = VD11 = 1.1 V, default full-scale voltage (FS_RANGE_A = FS_RANGE_B  
= 0xA000), input signal applied to INA± in single-channel modes, fIN = 347 MHz, AIN = –1 dBFS, fCLK = maximum-rated clock  
frequency, filtered, 1-VPP sine-wave clock, JMODE = 1, and background calibration (unless otherwise noted); SNR results  
exclude DC, HD2 to HD9 and interleaving spurs; SINAD, ENOB, and SFDR results exclude DC and fixed-frequency  
interleaving spurs  
0
0
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
337.5  
675  
Frequency (MHz)  
1012.5  
1350  
0
675  
1350  
Frequency (MHz)  
2025  
2700  
D140  
D135  
JMODE3, fIN = 2400 MHz, FG calibration, SNR = 55.7 dBFS,  
SFDR = 71.7 dBFS, ENOB = 8.87 bits  
JMODE1, fIN = 2400 MHz, FG calibration, SNR = 55.8 dBFS,  
SFDR = 69.3 dBFS, ENOB = 8.90 bits  
Figure 22. Single-Tone FFT at AIN = –1 dBFS  
Figure 23. Single-Tone FFT at AIN = –1 dBFS  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
337.5  
675  
Frequency (MHz)  
1012.5  
1350  
0
675  
1350  
Frequency (MHz)  
2025  
2700  
D141  
D136  
JMODE3, fIN = 5000 MHz, FG calibration, SNR = 53.8 dBFS,  
SFDR = 59.3 dBFS, ENOB = 8.26 bits  
JMODE1, fIN = 5000 MHz, FG calibration, SNR = 54 dBFS,  
SFDR = 55.0 dBFS, ENOB = 8.09 bits  
Figure 24. Single-Tone FFT at AIN = –1 dBFS  
Figure 25. Single-Tone FFT at AIN = –1 dBFS  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
337.5  
675  
Frequency (MHz)  
1012.5  
1350  
0
675  
1350  
Frequency (MHz)  
2025  
2700  
D145  
D144  
JMODE3, fIN = 8200 MHz, FG calibration, SNR = 51.4 dBFS,  
SFDR = 54.0 dBFS, ENOB = 7.62 bits  
JMODE1, fIN = 8200 MHz, FG calibration, SNR = 51.5 dBFS,  
SFDR = 47.2 dBFS, ENOB = 7.16 bits  
Figure 26. Single-Tone FFT at AIN = –1 dBFS  
Figure 27. Single-Tone FFT at AIN = –1 dBFS  
28  
Copyright © 2018–2020, Texas Instruments Incorporated  
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
Typical Characteristics (continued)  
typical values at TA = 25°C, VA19 = 1.9 V, VA11 = VD11 = 1.1 V, default full-scale voltage (FS_RANGE_A = FS_RANGE_B  
= 0xA000), input signal applied to INA± in single-channel modes, fIN = 347 MHz, AIN = –1 dBFS, fCLK = maximum-rated clock  
frequency, filtered, 1-VPP sine-wave clock, JMODE = 1, and background calibration (unless otherwise noted); SNR results  
exclude DC, HD2 to HD9 and interleaving spurs; SINAD, ENOB, and SFDR results exclude DC and fixed-frequency  
interleaving spurs  
0
0
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
337.5  
675  
Frequency (MHz)  
1012.5  
1350  
0
675  
1350  
Frequency (MHz)  
2025  
2700  
D142  
D137  
JMODE3, fIN = 8200 MHz, FG calibration, SNR = 57.1 dBFS,  
SFDR = 74.5 dBFS, ENOB = 9.12 bits  
JMODE1, fIN = 8200 MHz, FG calibration, SNR = 57.0 dBFS,  
SFDR = 61.5 dBFS, ENOB = 8.89 bits  
Figure 28. Single-Tone FFT at AIN = –16 dBFS  
Figure 29. Single-Tone FFT at AIN = –16 dBFS  
0.75  
4
0.5  
0.25  
0
2
0
-0.25  
-0.5  
-0.75  
-2  
-4  
0
4095  
0
4095  
Code  
Code  
D048  
D049  
JMODE1, fS = 5400 MSPS, FG calibration  
JMODE1, fS = 5400 MSPS, FG calibration  
Figure 30. DNL vs Code  
Figure 31. INL vs Code  
75  
70  
65  
60  
55  
50  
45  
40  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
SNR  
SINAD  
SFDR  
HD2  
HD3  
THD  
-75  
-50  
-25  
0
Ambient Temperature (°C)  
25  
50  
75  
100  
125  
-75  
-50  
-25  
0
Ambient Temperature (°C)  
25  
50  
75  
100  
125  
D039  
D041  
JMODE1, fS = 5400 MSPS, fIN = 2400 MHz, BG calibration  
JMODE1, fS = 5400 MSPS, fIN = 2400 MHz, BG calibration  
Figure 32. SNR, SINAD, SFDR vs Temperature  
Figure 33. HD2, HD3, THD vs Temperature  
Copyright © 2018–2020, Texas Instruments Incorporated  
29  
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
Typical Characteristics (continued)  
typical values at TA = 25°C, VA19 = 1.9 V, VA11 = VD11 = 1.1 V, default full-scale voltage (FS_RANGE_A = FS_RANGE_B  
= 0xA000), input signal applied to INA± in single-channel modes, fIN = 347 MHz, AIN = –1 dBFS, fCLK = maximum-rated clock  
frequency, filtered, 1-VPP sine-wave clock, JMODE = 1, and background calibration (unless otherwise noted); SNR results  
exclude DC, HD2 to HD9 and interleaving spurs; SINAD, ENOB, and SFDR results exclude DC and fixed-frequency  
interleaving spurs  
9.5  
9
8.75  
8.5  
FG Calibration at Each Temperature  
FG Calibration at 25°C  
BG Calibration  
FG Calibration at Each Temperature  
9
8.5  
8
8.25  
8
7.75  
7.5  
7.5  
-75  
-50  
-25  
0
25  
50  
Ambient Temperature (°C)  
75  
100  
125  
-75  
-50  
-25  
0
25  
50  
Ambient Temperature (°C)  
75  
100  
125  
D121  
D040  
JMODE1, fIN = 600 MHz, fS = 5400 MSPS  
Figure 35. ENOB vs Temperature and Calibration Type  
JMODE1, fIN = 2400 MHz, fS = 5400 MSPS  
Figure 34. ENOB vs Temperature and Calibration Type  
74  
62  
FG Calibration at Each Temperature  
FG Calibration at 25°C  
FG Calibration at Each Temperature  
FG Calibration at 25°C  
60  
58  
56  
54  
52  
50  
70  
66  
62  
58  
54  
-75  
-50  
-25  
0
Ambient Temperature (°C)  
25  
50  
75  
100  
125  
-75  
-50  
-25  
0
Ambient Temperature (°C)  
25  
50  
75  
100  
125  
D063  
D064  
JMODE1, fIN = 600 MHz, fS = 5400 MSPS  
JMODE1, fIN = 600 MHz, fS = 5400 MSPS  
Figure 36. SNR vs Temperature and Calibration Type  
Figure 37. SFDR vs Temperature and Calibration Type  
-55  
-45  
FG Calibration at Each Temperature  
FG Calibration at 25°C  
FG Calibration at Each Temperature  
FG Calibration at 25°C  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-75  
-50  
-25  
0
Ambient Temperature (°C)  
25  
50  
75  
100  
125  
-75  
-50  
-25  
0
Ambient Temperature (°C)  
25  
50  
75  
100  
125  
D119  
D120  
JMODE1, fIN = 600 MHz, fS = 5400 MSPS  
Figure 38. HD2 vs Temperature and Calibration Type  
JMODE1, fIN = 600 MHz, fS = 5400 MSPS  
Figure 39. HD3 vs Temperature and Calibration Type  
30  
Copyright © 2018–2020, Texas Instruments Incorporated  
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
Typical Characteristics (continued)  
typical values at TA = 25°C, VA19 = 1.9 V, VA11 = VD11 = 1.1 V, default full-scale voltage (FS_RANGE_A = FS_RANGE_B  
= 0xA000), input signal applied to INA± in single-channel modes, fIN = 347 MHz, AIN = –1 dBFS, fCLK = maximum-rated clock  
frequency, filtered, 1-VPP sine-wave clock, JMODE = 1, and background calibration (unless otherwise noted); SNR results  
exclude DC, HD2 to HD9 and interleaving spurs; SINAD, ENOB, and SFDR results exclude DC and fixed-frequency  
interleaving spurs  
66  
64  
62  
60  
58  
56  
54  
52  
50  
9.2  
9
8.8  
8.6  
8.4  
8.2  
SNR  
SINAD  
SFDR  
-5  
-2.5  
0
Supply Voltage (%)  
2.5  
5
-5  
-2.5  
0
Supply Voltage (%)  
2.5  
5
D036  
D037  
JMODE1, fS = 5400 MSPS, fIN = 600 MHz, FG calibration  
JMODE1, fS = 5400 MSPS, fIN = 600 MHz, FG calibration  
Figure 40. SNR, SINAD, SFDR vs Supply Voltage  
Figure 41. ENOB vs Supply Voltage  
85  
-55  
HD2  
HD3  
THD  
80  
75  
70  
65  
60  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
55  
SNR  
SINAD  
SFDR  
50  
45  
1
2
3
4
5
6
7
Decimation Factor  
8
9
10 11 12 13 14 15 16  
-5  
-2.5  
0
Supply Voltage (%)  
2.5  
5
D035  
D038  
fS = 2700 MSPS, fIN = 2400 MHz, FG calibration  
JMODE1, fS = 5400 MSPS, fIN = 600 MHz, FG calibration  
Figure 43. SNR, SINAD, SFDR vs Decimation Factor  
Figure 42. HD2, HD3, THD vs Supply Voltage  
1.2  
1
11  
10.5  
10  
0.8  
0.6  
0.4  
0.2  
0
9.5  
9
IA19  
IA11  
ID11  
fIN = 2400 MHz  
fIN = 600 MHz  
8.5  
1
2
3
4
5
6
7
Decimation Factor  
8
9
10 11 12 13 14 15 16  
1600  
2400  
3200  
fS (MSPS)  
4000  
4800  
5400  
D133  
D007  
fS = 2700 MSPS, FG calibration  
Figure 44. ENOB vs Decimation Factor  
JMODE1, fIN = 347 MHz, FG calibration  
Figure 45. Supply Current vs Sampling Rate  
Copyright © 2018–2020, Texas Instruments Incorporated  
31  
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
Typical Characteristics (continued)  
typical values at TA = 25°C, VA19 = 1.9 V, VA11 = VD11 = 1.1 V, default full-scale voltage (FS_RANGE_A = FS_RANGE_B  
= 0xA000), input signal applied to INA± in single-channel modes, fIN = 347 MHz, AIN = –1 dBFS, fCLK = maximum-rated clock  
frequency, filtered, 1-VPP sine-wave clock, JMODE = 1, and background calibration (unless otherwise noted); SNR results  
exclude DC, HD2 to HD9 and interleaving spurs; SINAD, ENOB, and SFDR results exclude DC and fixed-frequency  
interleaving spurs  
3.2  
1.2  
3
1
2.8  
2.6  
2.4  
2.2  
2
0.8  
0.6  
0.4  
0.2  
0
IA19  
IA11  
ID11  
1600  
2400  
3200  
fS (MSPS)  
4000  
4800  
5400  
800  
1200  
1600  
fS (MSPS)  
2000  
2400  
2700  
D008  
D015  
JMODE1, fIN = 347 MHz, FG calibration  
Figure 46. Power Consumption vs Sampling Rate  
JMODE3, fIN = 347 MHz, FG calibration  
Figure 47. Supply Current vs Sampling Rate  
3.2  
1.2  
1
3
2.8  
2.6  
2.4  
2.2  
2
0.8  
0.6  
0.4  
0.2  
0
IA19  
IA11  
ID11  
800  
1200  
1600  
fS (MSPS)  
2000  
2400  
2700  
-75  
-50  
-25  
0
25  
Ambient Temperature (°C)  
50  
75  
100  
125  
D016  
D047  
JMODE3, fIN = 347 MHz, FG calibration  
JMODE1, fS = 5400 MSPS, fIN = 2400 MHz, BG calibration  
Figure 48. Power Consumption vs Sampling Rate  
Figure 49. Supply Current vs Temperature  
1
4
0.9  
0.8  
0.7  
0.6  
0.5  
3.75  
3.5  
3.25  
3
2.75  
2.5  
2.25  
2
0.4  
IA19  
IA11  
ID11  
0.3  
0.2  
BG Calibration  
FG Calibration  
-75  
-50  
-25  
0
Ambient Temperature (°C)  
25  
50  
75  
100  
125  
-5  
-2.5  
0
Supply Voltage (%)  
2.5  
5
D046  
D045  
JMODE1, fS = 5400 MSPS, fIN = 2400 MHz, BG calibration  
JMODE1, fS = 5400 MSPS, FG calibration  
Figure 51. Supply Current vs Supply Voltage  
Figure 50. Power Consumption vs Temperature  
32  
Copyright © 2018–2020, Texas Instruments Incorporated  
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
Typical Characteristics (continued)  
typical values at TA = 25°C, VA19 = 1.9 V, VA11 = VD11 = 1.1 V, default full-scale voltage (FS_RANGE_A = FS_RANGE_B  
= 0xA000), input signal applied to INA± in single-channel modes, fIN = 347 MHz, AIN = –1 dBFS, fCLK = maximum-rated clock  
frequency, filtered, 1-VPP sine-wave clock, JMODE = 1, and background calibration (unless otherwise noted); SNR results  
exclude DC, HD2 to HD9 and interleaving spurs; SINAD, ENOB, and SFDR results exclude DC and fixed-frequency  
interleaving spurs  
3.2  
1.2  
1.1  
1
3
2.8  
2.6  
2.4  
0.9  
0.8  
0.7  
FG Calibration  
BG Calibration  
LPBG Calibration  
-5  
-2.5  
0
Supply Voltage (%)  
2.5  
5
800  
1200  
1600  
fCLK (MHz)  
2000  
2400  
2700  
D044  
D123  
JMODE1, fS = 5400 MSPS, FG calibration  
JMODE0, fIN = 607 MHz  
Figure 52. Power Consumption vs Supply Voltage  
Figure 53. IA19 Supply Current vs Clock Frequency  
0.8  
0.8  
0.6  
0.4  
0.2  
0
0.6  
0.4  
0.2  
0
FG Calibration  
BG Calibration  
LPBG Calibration  
FG Calibration  
BG Calibration  
LPBG Calibration  
800  
1200  
1600  
fCLK (MHz)  
2000  
2400  
2700  
800  
1200  
1600  
fCLK (MHz)  
2000  
2400  
2700  
D124  
D117  
JMODE0, fIN = 607 MHz  
JMODE0, fIN = 607 MHz  
Figure 54. IA11 Supply Current vs Clock Frequency  
Figure 55. ID11 Supply Current vs Clock Frequency  
4
1.5  
FG Calibration  
BG Calibration  
LPBG Calibration  
IA19  
IA11  
ID11  
1.25  
1
3.5  
3
0.75  
0.5  
0.25  
0
2.5  
2
800  
1200  
1600  
fCLK (MHz)  
2000  
2400  
2700  
0
2
4
6
8 10  
JMODE  
12  
14  
16  
18  
D118  
D034  
JMODE0, fIN = 607 MHz  
fIN = 2400 MHz, fCLK = 2700 MHz, FG calibration  
Figure 56. Power Consumption vs Clock Frequency  
Figure 57. Supply Current vs JMODE  
Copyright © 2018–2020, Texas Instruments Incorporated  
33  
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
Typical Characteristics (continued)  
typical values at TA = 25°C, VA19 = 1.9 V, VA11 = VD11 = 1.1 V, default full-scale voltage (FS_RANGE_A = FS_RANGE_B  
= 0xA000), input signal applied to INA± in single-channel modes, fIN = 347 MHz, AIN = –1 dBFS, fCLK = maximum-rated clock  
frequency, filtered, 1-VPP sine-wave clock, JMODE = 1, and background calibration (unless otherwise noted); SNR results  
exclude DC, HD2 to HD9 and interleaving spurs; SINAD, ENOB, and SFDR results exclude DC and fixed-frequency  
interleaving spurs  
1.5  
1.25  
1
4
3.75  
3.5  
FG Calibration  
BG Calibration  
LPBG Calibration  
0.75  
0.5  
0.25  
0
3.25  
3
IA19  
IA11  
ID11  
2.75  
2.5  
0
2
4
6
8 10  
JMODE  
12  
14  
16  
18  
0
2
4
6
8 10  
JMODE  
12  
14  
16  
18  
D122  
D033  
fIN = 2400 MHz, fCLK = 2700 MHz, BG calibration  
fIN = 2400 MHz, fCLK = 2700 MHz  
Figure 59. Power Consumption vs JMODE  
Figure 58. Supply Current vs JMODE  
4000  
2200  
2000  
1800  
1600  
1400  
3500  
3000  
2500  
2000  
1500  
1000  
500  
Zoomed Area  
in Following Plot  
0
0
5000 10000 15000 20000 25000 30000 35000  
Sample Number  
14800  
15200  
15600  
Sample Number  
16000  
16400  
D125  
D126  
JMODE0, fCLK = 3200 MHz, fIN = 3199.9 MHz  
JMODE0, fCLK = 3200 MHz, fIN = 3199.9 MHz  
Figure 60. Background Calibration Core Transition  
Figure 61. Background Calibration Core Transition  
(AC Signal Zoomed)(1)  
(1)  
(AC Signal)  
4096  
500  
-0.35V Differential  
3584  
+0.35 V Differential  
-0.35 V Differential  
0 V Differential  
400  
300  
200  
100  
3072  
2560  
2048  
1536  
1024  
512  
0
Zoomed Area  
in Following Plot  
0
1600 1700 1800 1900 2000 2100 2200 2300 2400  
Sample Number  
0
1000 2000 3000 4000 5000 6000 7000 8000  
Sample Number  
D127  
D128  
JMODE0, fCLK = 3200 MHz, DC input  
JMODE0, fCLK = 3200 MHz, DC input  
Figure 62. Background Calibration Core Transition  
(DC Signal)(1)  
Figure 63. Background Calibration Core Transition  
(DC Signal Zoomed)(1)  
(1) These curves are taken at a clock frequency higher than the rated maximum clock frequency but are representative of results at the  
rated maximum clock frequency.  
34  
版权 © 2018–2020, Texas Instruments Incorporated  
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
7 Detailed Description  
7.1 Overview  
ADC12DJ2700 device is an RF-sampling, giga-sample, analog-to-digital converter (ADC) that can directly sample  
input frequencies from DC to above 10 GHz. In dual-channel mode, the ADC12DJ2700 can sample up to 2700  
GSPS and up to 5400 GSPS in single-channel mode. Programmable tradeoffs in channel count (dual-channel  
mode) and Nyquist bandwidth (single-channel mode) allow development of flexible hardware that meets the  
needs of both high channel count or wide instantaneous signal bandwidth applications. Full-power input  
bandwidth (–3 dB) of 8.0 GHz, with usable frequencies exceeding the –3-dB point in both dual- and single-  
channel modes, allows direct RF sampling of L-band, S-band, C-band, and X-band for frequency agile systems.  
ADC12DJ2700 uses a high-speed JESD204B output interface with up to 16 serialized lanes and subclass-1  
compliance for deterministic latency and multi-device synchronization. The serial output lanes support up to 12.8  
Gbps and can be configured to trade-off bit rate and number of lanes.  
A number of synchronization features, including noiseless aperture delay (tAD) adjustment and SYSREF  
windowing, simplify system design for multi-channel systems. Aperture delay adjustment can be used to simplify  
SYSREF capture, to align the sampling instance between multiple ADCs or to sample an ideal location of a front-  
end track and hold (T&H) amplifier output. SYSREF windowing offers a simplistic way to measure invalid timing  
regions of SYSREF relative to the device clock and then choose an optimal sampling location. Dual-edge  
sampling (DES) is implemented in single-channel mode to reduce the maximum clock rate applied to the ADC to  
support a wide range of clock sources and relax setup and hold timing for SYSREF capture.  
Optional digital down converters (DDCs) are available in dual-channel mode to allow a reduction in interface rate  
(decimation) and digital mixing of the signal to baseband. The DDC block supports data decimation of 4x, 8x or  
16x and alias-free complex output bandwidths of 80% of the effective output data rate.  
ADC12DJ2700 provides foreground and background calibration options for gain, offset and static linearity errors.  
Foreground calibration is run at system startup or at specified times during which the ADC is offline and not  
sending data to the logic device. Background calibration allows the ADC to run continually while the cores are  
calibrated in the background so that the system does not experience downtime. The calibration routine is also  
used to match the gain and offset between sub-ADC cores to minimize spurious artifacts from time interleaving.  
版权 © 2018–2020, Texas Instruments Incorporated  
35  
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
7.2 Functional Block Diagram  
NCOA0  
NCOA1 NCOB0  
NCOB1 CALTRG  
PD  
SCLK  
SDI  
SDO  
SCS\  
SPI Registers and  
Device Control  
DDC Bypass / Single-Channel Mode  
DDCA  
NCO  
Bank A  
TMSTP+  
DA0+  
DA0œ  
TMSTPœ  
JESD20  
4B  
Link A  
Input  
MUX  
ADC A  
N
Filter  
INA+  
DA7+  
DA7œ  
Mixer  
INAœ  
JMODE  
DDC Bypass / Single-Channel Mode  
Over-  
range  
SYNCSE\  
DDC B  
NCO  
Bank B  
DB0+  
DB0œ  
INB+  
INBœ  
JESD20  
4B  
Link B  
Input  
MUX  
ADC B  
N
Filter  
DB7+  
DB7œ  
Mixer  
DIGBIND  
Aperture  
Delay Adjust  
JMODE  
CLK+  
Clock Distribution  
and Synchronization  
CLKœ  
ORA0  
ORA1  
ORB0  
ORB1  
CALSTAT  
Status  
Indicators  
SYSREF+  
SYSREF  
Windowing  
SYSREFœ  
TDIODE+  
TDIODEœ  
7.3 Feature Description  
7.3.1 Device Comparison  
The devices listed in 1 are part of a pin-to-pin compatible, high-speed, wide-bandwidth ADC family. The family  
is offered to provide a scalable family of devices for varying resolution, sampling rate and signal bandwidth.  
1. Device Family Comparison  
MAXIMUM  
SAMPLING RATE  
DUAL CHANNEL  
DECIMATION  
SINGLE CHANNEL  
DECIMATION  
INTERFACE  
(MAX LINERATE)  
PART NUMBER  
RESOLUTION  
JESD204B /  
JESD204C  
(17.16 Gbps)  
Single 10.4 GSPS  
Dual 5.2 GSPS  
ADC12DJ5200RF  
12-bit  
Complex: 4x, 8x  
Complex: 4x, 8x  
Single 6.4 GSPS  
Dual 3.2 GSPS  
Real: 2x  
Complex: 4x, 8x, 16x  
JESD204B  
(12.8 Gbps)  
ADC12DJ3200  
ADC08DJ3200  
ADC12DJ2700  
12-bit  
8-bit  
None  
None  
None  
Single 6.4 GSPS  
Dual 3.2 GSPS  
JESD204B  
(12.8 Gbps)  
None  
Single 5.4 GSPS  
Dual 2.7 GSPS  
Real: 2x  
Complex: 4x, 8x, 16x  
JESD204B  
(12.8 Gbps)  
12-bit  
36  
版权 © 2018–2020, Texas Instruments Incorporated  
 
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
7.3.2 Analog Inputs  
The analog inputs of the ADC12DJ2700 have internal buffers to enable high input bandwidth and to isolate  
sampling capacitor glitch noise from the input circuit. Analog inputs must be driven differentially because  
operation with a single-ended signal results in degraded performance. Both AC-coupling and DC-coupling of the  
analog inputs is supported. The analog inputs are designed for an input common-mode voltage (VCMI) of 0 V,  
which is terminated internally through single-ended, 50-Ω resistors to ground (GND) on each input pin. DC-  
coupled input signals must have a common-mode voltage that meets the device input common-mode  
requirements specified as VCMI in the Recommended Operating Conditions table. The 0-V input common-mode  
voltage simplifies the interface to split-supply, fully-differential amplifiers and to a variety of transformers and  
baluns. The ADC12DJ2700 includes internal analog input protection to protect the ADC inputs during overranged  
input conditions; see the Analog Input Protection section. 64 provides a simplified analog input model.  
AGND  
Analog Input  
Protection  
Diodes  
50  
INA+, INB+  
ADC  
INAœ, INBœ  
Input Buffer  
50 ꢀ  
64. ADC12DJ2700 Analog Input Internal Termination and Protection Diagram  
There is minimal degradation in analog input bandwidth when using single-channel mode versus dual-channel  
mode. In single-channel mode, INA± is strongly recommended to be used as the input to the ADC because ADC  
performance is optimized for INA±. However, either analog input (INA+ and INA– or INB+ and INB–) can be  
used. Using INB± results in degraded performance unless custom trim routines are used to optimize performance  
for INB± in each device. The desired input can be chosen using SINGLE_INPUT in the input mux control  
register.  
INA± is strongly recommended to be used as the input to the ADC in single-channel mode  
for optimized performance.  
7.3.2.1 Analog Input Protection  
The analog inputs are protected against overdrive conditions by internal clamping diodes that are capable of  
sourcing or sinking input currents during overrange conditions, see the voltage and current limits in the Absolute  
Maximum Ratings table. The overrange protection is also defined for a peak RF input power in the Absolute  
Maximum Ratings table, which is frequency independent. Operation above the maximum conditions listed in the  
Recommended Operating Conditions table results in an increase in failure-in-time (FIT) rate, so the system must  
correct the overdrive condition as quickly as possible. 64 shows the analog input protection diodes.  
7.3.2.2 Full-Scale Voltage (VFS) Adjustment  
Input full-scale voltage (VFS) adjustment is available, in fine increments, for each analog input through the  
FS_RANGE_A register setting (see the INA full-scale range adjust register) and FS_RANGE_B register setting  
(see the INB full-scale range adjust register) for INA± and INB±, respectively. The available adjustment range is  
specified in the Electrical Characteristics: DC Specifications table. Larger full-scale voltages improve SNR and  
noise floor (in dBFS/Hz) performance, but may degrade harmonic distortion. The full-scale voltage adjustment is  
useful for matching the full-scale range of multiple ADCs when developing a multi-converter system or for  
external interleaving of multiple ADC12DJ2700s to achieve higher sampling rates.  
版权 © 2018–2020, Texas Instruments Incorporated  
37  
 
 
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
7.3.2.3 Analog Input Offset Adjust  
The input offset voltage for each input can be adjusted through the SPI register. The OADJ_A_INx registers  
(registers 0x08A and 0x08D) are used to adjust ADC core A's offset voltage when sampling analog input x  
(where x is A for INA± or B for INB±). OADJ_B_INx is used to adjust ADC core B's offset voltage when sampling  
input x. These registers apply to both dual channel mode and single channel mode. To adjust the offset voltage  
in dual channel mode simply adjust the offset to the ADC core sampling the desired input. In single channel  
mode, both ADC core A's and ADC core B's offset must be adjusted together. The difference in the two core's  
offsets in single channel mode results in a spur at fS/2 that is independent of the input. These registers can be  
used to compensate the fS/2 spur in single channel mode. See the Calibration Modes and Trimming section for  
more information.  
7.3.3 ADC Core  
The ADC12DJ2700 consists of a total of six ADC cores. The cores are interleaved for higher sampling rates and  
swapped on-the-fly for calibration as required by the operating mode. This section highlights the theory and key  
features of the ADC cores.  
7.3.3.1 ADC Theory of Operation  
The differential voltages at the analog inputs are captured by the rising edge of CLK± in dual-channel mode or by  
the rising and falling edges of CLK± in single-channel mode. After capturing the input signal, the ADC converts  
the analog voltage to a digital value by comparing the voltage to the internal reference voltage. If the voltage on  
INA– or INB– is higher than the voltage on INA+ or INB+, respectively, then the digital output is a negative 2's  
complement value. If the voltage on INA+ or INB+ is higher than the voltage on INA– or INB–, respectively, then  
the digital output is a positive 2's complement value. 公式 1 can calculate the differential voltage at the input pins  
from the digital output.  
Code  
2
N  
VIN  
=
VFS  
where  
Code is the signed decimation output code (for example, –2048 to +2047)  
N is the ADC resolution  
and VFS is the full-scale input voltage of the ADC as specified in the Recommended Operating Conditions  
table, including any adjustment performed by programming FS_RANGE_A or FS_RANGE_B  
(1)  
7.3.3.2 ADC Core Calibration  
ADC core calibration is required to optimize the analog performance of the ADC cores. Calibration must be  
repeated when operating conditions change significantly, namely temperature, in order to maintain optimal  
performance. The ADC12DJ2700 has a built-in calibration routine that can be run as a foreground operation or a  
background operation. Foreground operation requires ADC downtime, where the ADC is no longer sampling the  
input signal, to complete the process. Background calibration can be used to overcome this limitation and allow  
constant operation of the ADC. See the Calibration Modes and Trimming section for detailed information on each  
mode.  
7.3.3.3 Analog Reference Voltage  
The reference voltage for the ADC12DJ2700 is derived from an internal band-gap reference. A buffered version  
of the reference voltage is available at the BG pin for user convenience. This output has an output-current  
capability of ±100 µA. The BG output must be buffered if more current is required. No provision exists for the use  
of an external reference voltage, but the full-scale input voltage can be adjusted through the full-scale-range  
register settings. In unique cases, the VA11 supply voltage can act as the reference voltage by setting  
BG_BYPASS (see the internal reference bypass register).  
38  
版权 © 2018–2020, Texas Instruments Incorporated  
 
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
7.3.3.4 ADC Overrange Detection  
To ensure that system gain management has the quickest possible response time, a low-latency configurable  
overrange function is included. The overrange function works by monitoring the converted 12-bit samples at the  
ADC to quickly detect if the ADC is near saturation or already in an overrange condition. The absolute value of  
the upper 8 bits of the ADC data are checked against two programmable thresholds, OVR_T0 and OVR_T1.  
These thresholds apply to both channel A and channel B in dual-channel mode. 2 lists how an ADC sample is  
converted to an absolute value for a comparison of the thresholds.  
2. Conversion of ADC Sample for Overrange Comparison  
ADC SAMPLE  
(Offset Binary)  
ADC SAMPLE  
(2's Complement)  
UPPER 8 BITS USED FOR  
COMPARISON  
ABSOLUTE VALUE  
1111 1111 1111 (4095)  
1111 1111 0000 (4080)  
1000 0000 0000 (2048)  
0000 0001 0000 (16)  
0000 0000 0000 (0)  
0111 1111 1111 (+2047)  
0111 1111 0000 (+2032)  
0000 0000 0000 (0)  
111 1111 1111 (2047)  
111 1111 0000 (2032)  
000 0000 0000 (0)  
1111 1111 (255)  
1111 1110 (254)  
0000 0000 (0)  
1000 0001 0000 (–2032)  
1000 0000 0000 (–2048)  
111 1111 0000 (2032)  
111 1111 1111 (2047)  
1111 1110 (254)  
1111 1111 (255)  
If the upper 8 bits of the absolute value equal or exceed the OVR_T0 or OVR_T1 thresholds during the  
monitoring period, then the overrange bit associated with the threshold is set to 1, otherwise the overrange bit is  
0. In dual-channel mode, the overrange status can be monitored on the ORA0 and ORA1 pins for channel A and  
the ORB0 and ORB1 pins for channel B, where ORx0 corresponds to the OVR_T0 threshold and ORx1  
corresponds to the OVR_T1 threshold. In single-channel mode, the overrange status for the OVR_T0 threshold  
is determined by monitoring both the ORA0 and ORB0 outputs and the OVR_T1 threshold is determined by  
monitoring both ORA1 and ORB1 outputs. In single-channel mode, the two outputs for each threshold must be  
OR'd together to determine whether an overrange condition occurred. OVR_N can be used to set the output  
pulse duration from the last overrange event. 3 lists the overrange pulse lengths for the various OVR_N  
settings (see the overrange configuration register). In decimation modes (only in the JMODEs where CS = 1 in 表  
19), the overrange status is also embedded into the output data samples. For complex decimation modes, the  
OVR_T0 threshold status is embedded as the LSB along with the upper 15 bits of every complex I sample and  
the OVR_T1 threshold status is embedded as the LSB along with the upper 15 bits of every complex Q sample.  
For real decimation modes, the OVR_T0 threshold status is embedded as the LSB of every even-numbered  
sample and the OVR_T1 threshold status is embedded as the LSB of every odd-numbered sample. 4 lists the  
outputs, related data samples, threshold settings, and the monitoring period equation. The embedded overrange  
bit goes high if the associated channel exceeds the associated overrange threshold within the monitoring period  
set by OVR_N. Use 4 to calculate the monitoring period.  
3. Overrange Monitoring Period for the ORA0, ORA1, ORB0, and ORB1 Outputs  
OVERRANGE PULSE LENGTH SINCE LAST OVERRANGE  
OVR_N  
EVENT (DEVCLK Cycles)  
0
1
2
3
4
5
6
7
8
16  
32  
64  
128  
256  
512  
1024  
版权 © 2018–2020, Texas Instruments Incorporated  
39  
 
 
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
4. Threshold and Monitoring Period for Embedded Overrange Indicators in Dual-Channel Decimation  
Modes  
OVERRANGE  
INDICATOR  
ASSOCIATED  
THRESHOLD  
OVERRANGE STATUS MONITORING PERIOD  
DECIMATION TYPE  
EMBEDDED IN  
(ADC Samples)  
Channel A even-  
numbered samples  
Real decimation (JMODE 9)  
2OVR_N+1(1)  
ORA0  
ORA1  
ORB0  
ORB1  
OVR_T0  
OVR_T1  
OVR_T0  
OVR_T1  
Complex down-conversion (JMODE  
10-16, except JMODE 12)  
Channel A in-phase (I)  
samples  
2OVR_N(1)  
2OVR_N+1(1)  
2OVR_N(1)  
Channel A odd-  
numbered samples  
Real decimation (JMODE 9)  
Complex down-conversion (JMODE  
10-16, except JMODE 12)  
Channel A quadrature  
(Q) samples  
Channel B even-  
numbered samples  
Real decimation (JMODE 9)  
2OVR_N+1(1)  
2OVR_N(1)  
2OVR_N+1(1)  
2OVR_N(1)  
Complex down-conversion (JMODE  
10-16, except JMODE 12)  
Channel B in-phase (I)  
samples  
Channel B odd-  
numbered samples  
Real decimation (JMODE 9)  
Complex down-conversion (JMODE  
10-16, except JMODE 12)  
Channel B quadrature  
(Q) samples  
(1) OVR_N is the monitoring period register setting.  
Typically, the OVR_T0 threshold can be set near the full-scale value (228 for example). When the threshold is  
triggered, a typical system can turn down the system gain to avoid clipping. The OVR_T1 threshold can be set  
much lower. For example, the OVR_T1 threshold can be set to 64 (peak input voltage of 12 dBFS). If the input  
signal is strong, the OVR_T1 threshold is tripped occasionally. If the input is quite weak, the threshold is never  
tripped. The downstream logic device monitors the OVR_T1 bit. If OVR_T1 stays low for an extended period of  
time, then the system gain can be increased until the threshold is occasionally tripped (meaning the peak level of  
the signal is above 12 dBFS).  
7.3.3.5 Code Error Rate (CER)  
ADC cores can generate bit errors within a sample, often called code errors (CER) or referred to as sparkle  
codes, resulting from metastability caused by non-ideal comparator limitations. The ADC12DJ2700 uses a  
unique ADC architecture that inherently allows significant code error rate improvements from traditional pipelined  
flash or successive approximation register (SAR) ADCs. The code error rate of the ADC12DJ2700 is multiple  
orders of magnitude better than what can be achieved in alternative architectures at equivalent sampling rates  
providing significant signal reliability improvements.  
7.3.4 Temperature Monitoring Diode  
A built-in thermal monitoring diode is made available on the TDIODE+ and TDIODE– pins. This diode facilitates  
temperature monitoring and characterization of the device in higher ambient temperature environments. Although  
the on-chip diode is not highly characterized, the diode can be used effectively by performing a baseline  
measurement (offset) at a known ambient or board temperature and creating a linear equation with the diode  
voltage slope provided in the Electrical Characteristics: DC Specifications table. Perform offset measurement  
with the device unpowered or with the PD pin asserted to minimize device self-heating. Only assert the PD pin  
long enough to take the offset measurement. Recommended monitoring devices include the LM95233 device  
and similar remote-diode temperature monitoring products from Texas Instruments.  
7.3.5 Timestamp  
The TMSTP+ and TMSTP– differential input can be used as a time-stamp input to mark a specific sample based  
on the timing of an external trigger event relative to the sampled signal. TIMESTAMP_EN (see the LSB control  
bit output register) must be set in order to use the timestamp feature and output the timestamp data. When  
enabled, the LSB of the 12-bit ADC digital output reports the status of the TMSTP± input. In effect, the 12-bit  
output sample consists of the upper 11-bits of the 12-bit converter and the LSB of the 12-bit output sample is the  
output of a parallel 1-bit converter (TMSTP±) with the same latency as the ADC core. In the 8-bit operating  
40  
版权 © 2018–2020, Texas Instruments Incorporated  
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
modes, the LSB of the 8-bit output sample is used to output the timestamp status. The trigger must be applied to  
the differential TMSTP+ and TMSTP– inputs. The trigger can be asynchronous to the ADC sampling clock and is  
sampled at approximately the same time as the analog input. Timestamp cannot be used when a JMODE with  
decimation is selected and instead SYSREF must be used to achieve synchronization through the JESD204B  
subclass-1 method for achieving deterministic latency.  
7.3.6 Clocking  
The clocking subsystem of the ADC12DJ2700 has two input signals, device clock (CLK+, CLK–) and SYSREF  
(SYSREF+, SYSREF–). Within the clocking subsystem there is a noiseless aperture delay adjustment (tAD  
adjust), a clock duty cycle corrector, and a SYSREF capture block. 65 describes the clocking subsystem.  
Duty Cycle  
Correction  
tAD Adjust  
Clock Distribution  
and Synchronization  
CLK+  
(ADC cores, digital,  
JESD204B, etc.)  
CLK-  
SYSREF Capture  
Automatic  
SYSREF  
Calibration  
SYSREF+  
SYSREF-  
SYSREF Windowing  
SYSREF_POS  
SYSREF_SEL SRC_EN  
65. ADC12DJ2700 Clocking Subsystem  
The device clock is used as the sampling clock for the ADC core as well as the clocking for the digital processing  
and serializer outputs. Use a low-noise (low jitter) device clock to maintain high signal-to-noise ratio (SNR) within  
the ADC. In dual-channel mode, the analog input signal for each input is sampled on the rising edge of the  
device clock. In single-channel mode, both the rising and falling edges of the device clock are used to capture  
the analog signal to reduce the maximum clock rate required by the ADC. A noiseless aperture delay adjustment  
(tAD adjust) allows the user to shift the sampling instance of the ADC in fine steps in order to synchronize multiple  
ADC12DJ2700s or to fine-tune system latency. Duty cycle correction is implemented in the ADC12DJ2700 to  
ease the requirements on the external device clock while maintaining high performance. 5 summarizes the  
device clock interface in dual-channel mode and single-channel mode.  
5. Device Clock vs Mode of Operation  
MODE OF OPERATION  
Dual-channel mode  
SAMPLING RATE VS fCLK  
1 × fCLK  
SAMPLING INSTANT  
Rising edge  
Single-channel mode  
2 × fCLK  
Rising and falling edge  
SYSREF is a system timing reference used for JESD204B subclass-1 implementations of deterministic latency.  
SYSREF is used to achieve deterministic latency and for multi-device synchronization. SYSREF must be  
captured by the correct device clock edge in order to achieve repeatable latency and synchronization. The  
ADC12DJ2700 includes SYSREF windowing and automatic SYSREF calibration to ease the requirements on the  
external clocking circuits and to simplify the synchronization process. SYSREF can be implemented as a single  
pulse or as a periodic clock. In periodic implementations, SYSREF must be equal to, or an integer division of, the  
local multiframe clock frequency. 公式 2 is used to calculate valid SYSREF frequencies.  
R ì fCLK  
fSYSREF  
=
10
ì
F
ì
K
ì
n  
版权 © 2018–2020, Texas Instruments Incorporated  
41  
 
 
 
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
where  
R and F are set by the JMODE setting (see 19)  
fCLK is the device clock frequency (CLK±)  
K is the programmed multiframe length (see 19 for valid K settings)  
and n is any positive integer  
(2)  
7.3.6.1 Noiseless Aperture Delay Adjustment (tAD Adjust)  
The ADC12DJ2700 contains a delay adjustment on the device clock (sampling clock) input path, called tAD  
adjust, that can be used to shift the sampling instance within the device in order to align sampling instances  
among multiple devices or for external interleaving of multiple ADC12DJ2700s. Further, tAD adjust can be used  
for automatic SYSREF calibration to simplify synchronization; see the Automatic SYSREF Calibration section.  
Aperture delay adjustment is implemented in a way that adds no additional noise to the clock path, however a  
slight degradation in aperture jitter (tAJ) is possible at large values of TAD_COARSE because of internal clock  
path attenuation. The degradation in aperture jitter can result in minor SNR degradations at high input  
frequencies (see tAJ in the Switching Characteristics table). This feature is programmed using TAD_INV,  
TAD_COARSE, and TAD_FINE in the DEVCLK timing adjust ramp control register. Setting TAD_INV inverts the  
input clock resulting in a delay equal to half the clock period. 6 summarizes the step sizes and ranges of the  
TAD_COARSE and TAD_FINE variable analog delays. All three delay options are independent and can be used  
in conjunction. All clocks within the device are shifted by the programmed tAD adjust amount, which results in a  
shift of the timing of the JESD204B serialized outputs and affects the capture of SYSREF.  
6. tAD Adjust Adjustment Ranges  
ADJUSTMENT PARAMETER  
ADJUSTMENT STEP  
DELAY SETTINGS  
MAXIMUM DELAY  
TAD_INV  
1 / (fCLK × 2)  
1
1 / (fCLK × 2)  
See tTAD(STEP) in the Switching  
Characteristics table  
See tTAD(MAX) in the Switching  
Characteristics table  
TAD_COARSE  
TAD_FINE  
256  
256  
See tTAD(STEP) in the Switching  
Characteristics table  
See tTAD(MAX) in the Switching  
Characteristics table  
In order to maintain timing alignment between converters, stable and matched power-supply voltages and device  
temperatures must be provided.  
Aperture delay adjustment can be changed on-the-fly during normal operation but may result in brief upsets to  
the JESD204B data link. Use TAD_RAMP to reduce the probability of the JESD204B link losing synchronization;  
see the Aperture Delay Ramp Control (TAD_RAMP) section.  
7.3.6.2 Aperture Delay Ramp Control (TAD_RAMP)  
The ADC12DJ2700 contains a function to gradually adjust the tAD adjust setting towards the newly written  
TAD_COARSE value. This functionality allows the tAD adjust setting to be adjusted with minimal internal clock  
circuitry glitches. The TAD_RAMP_RATE parameter allows either a slower (one TAD_COARSE LSB per 256  
tCLK cycles) or faster ramp (four TAD_COARSE LSBs per 256 tCLK cycles) to be selected. The TAD_RAMP_EN  
parameter enables the ramp feature and any subsequent writes to TAD_COARSE initiate a new cramp.  
7.3.6.3 SYSREF Capture for Multi-Device Synchronization and Deterministic Latency  
The clocking subsystem is largely responsible for achieving multi-device synchronization and deterministic  
latency. The ADC12DJ2700 uses the JESD204B subclass-1 method to achieve deterministic latency and  
synchronization. Subclass 1 requires that the SYSREF signal be captured by a deterministic device clock (CLK±)  
edge at each system power-on and at each device in the system. This requirement imposes setup and hold  
constraints on SYSREF relative to CLK±, which can be difficult to meet at giga-sample clock rates over all  
system operating conditions. The ADC12DJ2700 includes a number of features to simplify this synchronization  
process and to relax system timing constraints:  
The ADC12DJ2700 uses dual-edge sampling (DES) in single-channel mode to reduce the CLK± input  
frequency by half and double the timing window for SYSREF (see 5)  
A SYSREF position detector (relative to CLK±) and selectable SYSREF sampling position aid the user in  
meeting setup and hold times over all conditions; see the SYSREF Position Detector and Sampling Position  
Selection (SYSREF Windowing) section  
Easy-to-use automatic SYSREF calibration uses the aperture timing adjust block (tAD adjust) to shift the ADC  
42  
版权 © 2018–2020, Texas Instruments Incorporated  
 
 
 
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
sampling instance based on the phase of SYSREF (rather than adjusting SYSREF based on the phase of the  
ADC sampling instance); see the Automatic SYSREF Calibration section  
7.3.6.3.1 SYSREF Position Detector and Sampling Position Selection (SYSREF Windowing)  
The SYSREF windowing block is used to first detect the position of SYSREF relative to the CLK± rising edge and  
then to select a desired SYSREF sampling instance, which is a delay version of CLK±, to maximize setup and  
hold timing margins. In many cases a single SYSREF sampling position (SYSREF_SEL) is sufficient to meet  
timing for all systems (device-to-device variation) and conditions (temperature and voltage variations). However,  
this feature can also be used by the system to expand the timing window by tracking the movement of SYSREF  
as operating conditions change or to remove system-to-system variation at production test by finding a unique  
optimal value at nominal conditions for each system.  
This section describes proper usage of the SYSREF windowing block. First, apply the device clock and SYSREF  
to the device. The location of SYSREF relative to the device clock cycle is determined and stored in the  
SYSREF_POS bits of the SYSREF capture position register. ADC12DJ2700 must see at least 3 rising edges of  
SYSREF before the SYSREF_POS output is valid. Each bit of SYSREF_POS represents a potential SYSREF  
sampling position. If a bit in SYSREF_POS is set to 1, then the corresponding SYSREF sampling position has a  
potential setup or hold violation. Upon determining the valid SYSREF sampling positions (the positions of  
SYSREF_POS that are set to 0) the desired sampling position can be chosen by setting SYSREF_SEL in the  
clock control register 0 to the value corresponding to that SYSREF_POS position. In general, the middle  
sampling position between two setup and hold instances is chosen. Ideally, SYSREF_POS and SYSREF_SEL  
are performed at the nominal operating conditions of the system (temperature and supply voltage) to provide  
maximum margin for operating condition variations. This process can be performed at final test and the optimal  
SYSREF_SEL setting can be stored for use at every system power up. Further, SYSREF_POS can be used to  
characterize the skew between CLK± and SYSREF± over operating conditions for a system by sweeping the  
system temperature and supply voltages. For systems that have large variations in CLK± to SYSREF± skew, this  
characterization can be used to track the optimal SYSREF sampling position as system operating conditions  
change. In general, a single value can be found that meets timing over all conditions for well-matched systems,  
such as those where CLK± and SYSREF± come from a single clocking device.  
SYSREF_SEL must be set to 0 when using automatic SYSREF calibration; see the  
Automatic SYSREF Calibration section.  
The step size between each SYSREF_POS sampling position can be adjusted using SYSREF_ZOOM. When  
SYSREF_ZOOM is set to 0, the delay steps are coarser. When SYSREF_ZOOM is set to 1, the delay steps are  
finer. See the Switching Characteristics table for delay step sizes when SYSREF_ZOOM is enabled and  
disabled. In general, SYSREF_ZOOM is recommended to always be used (SYSREF_ZOOM = 1) unless a  
transition region (defined by 1's in SYSREF_POS) is not observed, which can be the case for low clock rates.  
Bits 0 and 23 of SYSREF_POS are always be set to 1 because there is insufficient information to determine if  
these settings are close to a timing violation, although the actual valid window can extend beyond these sampling  
positions. The value programmed into SYSREF_SEL is the decimal number representing the desired bit location  
in SYSREF_POS. 7 lists some example SYSREF_POS readings and the optimal SYSREF_SEL settings.  
Although 24 sampling positions are provided by the SYSREF_POS status register, SYSREF_SEL only allows  
selection of the first 16 sampling positions, corresponding to SYSREF_POS bits 0 to 15. The additional  
SYSREF_POS status bits are intended only to provide additional knowledge of the SYSREF valid window. In  
general, lower values of SYSREF_SEL are selected because of delay variation over supply voltage, however in  
the fourth example a value of 15 provides additional margin and can be selected instead.  
7. Examples of SYSREF_POS Readings and SYSREF_SEL Selections  
SYSREF_POS[23:0]  
OPTIMAL SYSREF_SEL  
0x02E[7:0]  
(Largest Delay)  
0x02C[7:0](1)  
(Smallest Delay)  
0x02D[7:0](1)  
SETTING  
b10000000  
b10011000  
b10000000  
b01100000  
b00000000  
b01100000  
b00011001  
b00110001  
b00000001  
8 or 9  
12  
6 or 7  
(1) Red coloration indicates the bits that are selected, as given in the last column of this table.  
版权 © 2018–2020, Texas Instruments Incorporated  
43  
 
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
7. Examples of SYSREF_POS Readings and SYSREF_SEL Selections (接下页)  
SYSREF_POS[23:0]  
0x02D[7:0](1)  
OPTIMAL SYSREF_SEL  
0x02E[7:0]  
(Largest Delay)  
0x02C[7:0](1)  
(Smallest Delay)  
SETTING  
b10000000  
b10001100  
b00000011  
b01100011  
b00000001  
b00011001  
4 or 15  
6
7.3.6.3.2 Automatic SYSREF Calibration  
The ADC12DJ2700 has an automatic SYSREF calibration feature to alleviate the often challenging setup and  
hold times associated with capturing SYSREF for giga-sample data converters. Automatic SYSREF calibration  
uses the tAD adjust feature to shift the device clock to maximize the SYSREF setup and hold times or to align the  
sampling instance based on the SYSREF rising edge.  
The ADC12DJ2700 must have a proper device clock applied and be programmed for normal operation before  
starting the automatic SYSREF calibration. When ready to initiate automatic SYSREF calibration, a continuous  
SYSREF signal must be applied. SYSREF must be a continuous (periodic) signal when using the automatic  
SYSREF calibration. Start the calibration process by setting SRC_EN high in the SYSREF calibration enable  
register after configuring the automatic SYSREF calibration using the SRC_CFG register. Upon setting SRC_EN  
high, the ADC12DJ2700 searches for the optimal tAD adjust setting until the device clock falling edge is internally  
aligned to the SYSREF rising edge. TAD_DONE in the SYSREF calibration status register can be monitored to  
ensure that the SYSREF calibration has finished. By aligning the device clock falling edge with the SYSREF  
rising edge, automatic SYSREF calibration maximizes the internal SYSREF setup and hold times relative to the  
device clock and also sets the sampling instant based on the SYSREF rising edge. After the automatic SYSREF  
calibration finishes, the rest of the startup procedure can be performed to finish bringing up the system.  
For multi-device synchronization, the SYSREF rising edge timing must be matched at all devices and therefore  
trace lengths must be matched from a common SYSREF source to each ADC12DJ2700. Any skew between the  
SYSREF rising edge at each device results in additional error in the sampling instance between devices,  
however repeatable deterministic latency from system startup to startup through each device must still be  
achieved. No other design requirements are needed in order to achieve multi-device synchronization as long as  
a proper elastic buffer release point is chosen in the JESD2048 receiver.  
66 provides a timing diagram of the SYSREF calibration procedure. The optimized setup and hold times are  
shown as tSU(OPT) and tH(OPT), respectively. Device clock and SYSREF are referred to as internal in this diagram  
because the phase of the internal signals are aligned within the device and not to the external (applied) phase of  
the device clock or SYSREF.  
44  
版权 © 2018–2020, Texas Instruments Incorporated  
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
Sampled Input Signal  
Internal Unadjusted  
Device Clock  
Internal Calibrated  
Device Clock  
tTAD(SRC)  
Internal SYSREF  
tCAL(SRC)  
tH(OPT)  
tSU(OPT)  
Before calibration, device clock falling edge does  
not align with SYSREF rising edge  
SRC_EN  
(SPI register bit)  
Calibration  
enabled  
After calibration, device clock falling edge  
aligns with SYSREF rising edge  
TAD_DONE  
(SPI register bit)  
Calibration  
finished  
66. SYSREF Calibration Timing Diagram  
When finished, the tAD adjust setting found by the automatic SYSREF calibration can be read from SRC_TAD in  
the SYSREF calibration status register. After calibration, the system continues to use the calibrated tAD adjust  
setting for operation until the system is powered down. However, if desired, the user can then disable the  
SYSREF calibration and fine-tune the tAD adjust setting according to the systems needs. Alternatively, the use of  
the automatic SYSREF calibration can be done at product test (or periodic recalibration) of the optimal tAD adjust  
setting for each system. This value can be stored and written to the TAD register (TAD_INV, TAD_COARSE, and  
TAD_FINE) upon system startup.  
Do not run the SYSREF calibration when the ADC calibration (foreground or background) is running. If  
background calibration is the desired use case, disable the background calibration when the SYSREF calibration  
is used, then reenable the background calibration after TAD_DONE goes high. SYSREF_SEL in the clock control  
register 0 must be set to 0 when using SYSREF calibration.  
SYSREF calibration searches the TAD_COARSE delays using both noninverted (TAD_INV = 0) and inverted  
clock polarity (TAD_INV = 1) to minimize the required TAD_COARSE setting in order to minimize loss on the  
clock path to reduce aperture jitter (tAJ).  
7.3.7 Digital Down Converters (Dual-Channel Mode Only)  
After converting the analog voltage to a digital value, the digitized sample can either be sent directly to the  
JESD204B interface block (DDC bypass) or sent to the digital down conversion (DDC) block for frequency  
conversion and decimation (in dual-channel mode only). Frequency conversion and decimation allow a specific  
frequency band to be selected and output in the digital data stream while reducing the effective data rate and  
interface speed or width. The DDC is designed such that the digital processing does not degrade the noise  
spectral density (NSD) performance of the ADC. 67 illustrates the digital down converter for channel A of the  
ADC12DJ2700. Channel B has the same structure with the input data selected by DIG_BIND_B and the NCO  
selection mux controlled by pins NCOB[1:0] or through CSELB[1:0].  
版权 © 2018–2020, Texas Instruments Incorporated  
45  
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
NCO Bank A  
NCOA[1:0] or  
CSELA[1:0]  
MUX  
Complex  
15-bit  
at Fs/N  
N
Real  
12-bit  
at Fs  
2
Complex  
Mixer  
Decimate-by-N  
(based on JMODE)  
ADC  
Channel A  
JESD204B  
Real  
15-bit  
at Fs/2  
2
DIG_BIND_A  
JMODE  
JMODE  
(DDC Bypass)  
Low Pass  
Spectral  
Inversion  
2
ADC  
Channel B  
D2_HIGH_PASS  
High Pass  
INVERT_SPECTRUM  
67. Channel A Digital Down Conversion Block (Dual-Channel Mode Only)  
7.3.7.1 Numerically-Controlled Oscillator and Complex Mixer  
The DDC contains a complex numerically-controlled oscillator (NCO) and a complex mixer. 公式 3 shows the  
complex exponential sequence generated by the oscillator.  
x[n] = ejωn  
(3)  
The frequency (ω) is specified by a 32-bit register setting. The complex exponential sequence is multiplied by the  
real input from the ADC to mix the desired carrier to a frequency equal to fIN + fNCO, where fIN is the analog input  
frequency after aliasing (in undersampling systems) and fNCO is the programmed NCO frequency.  
7.3.7.1.1 NCO Fast Frequency Hopping (FFH)  
Fast frequency hopping (FFH) is made possible by each DDC having four independent NCOs that can be  
controlled by the NCOA0 and NCOA1 pins for DDC A and the NCOB0 and NCOB1 pins for DDC B. Each NCO  
has independent frequency settings (see the Basic NCO Frequency Setting Mode section) and initial phase  
settings (see the NCO Phase Offset Setting section) that can be set independently. Further, all NCOs have  
independent phase accumulators that continue to run when the specific NCO is not selected, allowing the NCOs  
to maintain their phase between selection so that downstream processing does not need to perform carrier  
recovery after each hop, for instance.  
46  
版权 © 2018–2020, Texas Instruments Incorporated  
 
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
NCO hopping occurs when the NCO GPIO pins change state. The pins are controlled asynchronously and  
therefore synchronous switching is not possible. Associated latencies are demonstrated in 68, where tTX and  
tADC are provided in the Switching Characteristics table. All latencies in 8 are approximations only.  
DDC Block  
NCO Bank A  
tGPIO-MIXER  
tMIXER-TX  
NCOx[1:0]  
MUX  
Dx0  
Dx1  
Dx2  
INx+  
ADC  
N
JESD204B  
INxœ  
Complex  
Mixer  
Decimate-by-N  
(based on JMODE)  
Dx7  
tADC-MIXER  
68. NCO Fast Frequency Hopping Latency Diagram  
8. NCO Fast Frequency Hopping Latency Definitions  
LATENCY PARAMETER  
tGPIO-MIXER  
VALUE OR CALCULATION  
~36 to ~40  
UNITS  
tCLK cycles  
tCLK cycles  
tCLK cycles  
tADC-MIXER  
~36  
tMIXER-TX  
(tTX + tADC) – tADC-MIXER  
7.3.7.1.2 NCO Selection  
Within each channel DDC, four different frequency and phase settings are available for use. Each of the four  
settings use a different phase accumulator within the NCO. Because all four phase accumulators are  
independent and continuously running, rapid switching between different NCO frequencies is possible allowing  
for phase coherent frequency hopping.  
The specific frequency-phase pair used for each channel is selected through the NCOA[1:0] or NCOB[1:0] input  
pins when CMODE is set to 1. Alternatively, the selected NCO can be chosen through SPI by CSELA for DDC A  
and CSELB for DDC B by setting CMODE to 0 (default). The logic table for NCO selection is provided in 9 for  
both the GPIO and SPI selection options.  
9. Logic Table for NCO Selection Using GPIO or SPI  
NCO SELECTION  
NCO 0 using GPIO  
NCO 1 using GPIO  
NCO 2 using GPIO  
NCO 3 using GPIO  
NCO 0 using SPI  
NCO 1 using SPI  
NCO 2 using SPI  
NCO 3 using SPI  
CMODE  
NCOx1  
NCOx0  
CSELx[1]  
CSELx[0]  
1
1
1
1
0
0
0
0
0
0
0
1
X
X
X
X
0
0
1
1
X
X
X
X
0
1
0
1
1
0
1
1
X
X
X
X
X
X
X
X
版权 © 2018–2020, Texas Instruments Incorporated  
47  
 
 
 
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
The frequency for each phase accumulator is programmed independently through the FREQAx, FREQBx (x = 0  
to 3) and, optionally, NCO_RDIV register settings. The phase offset for each accumulator is programmed  
independently through the PHASEAx and PHASEBx (x = 0 to 3) register settings.  
7.3.7.1.3 Basic NCO Frequency Setting Mode  
In basic NCO frequency-setting mode (NCO_RDIV = 0x0000), the NCO frequency setting is set by the 32-bit  
register value, FREQAx and FREQBx (x = 0 to 3). The NCO frequency for DDC A can be calculated using 公式  
4, where FREQAx can be replaced by FREQBx to calculate the NCO frequency for DDC B.  
ƒ(NCO) = FREQAx × 2–32 × ƒ(DEVCLK) (x = 0 – 3)  
(4)  
Changing the FREQAx and FREQBx register settings during operation results in a non-  
deterministic NCO phase. If deterministic phase is required, the NCOs must be  
resynchronized; see the NCO Phase Synchronization section.  
7.3.7.1.4 Rational NCO Frequency Setting Mode  
In basic NCO frequency mode, the frequency step size is very small and many frequencies can be synthesized,  
but sometimes an application requires very specific frequencies that fall between two frequency steps. For  
example with ƒS equal to 2457.6 MHz and a desired ƒ(NCO) equal to 5.02 MHz, the value for FREQAx is  
8773085.867. Truncating the fractional portion results in an ƒ(NCO) equal to 5.0199995 MHz, which is not the  
desired frequency.  
To produce the desired frequency, the NCO_RDIV parameter is used to force the phase accumulator to arrive at  
specific frequencies without error. First, select a frequency step size (ƒ(STEP)) that is appropriate for the NCO  
frequency steps required. The typical value of ƒ(STEP) is 10 kHz. Next, use 公式 5 to program the NCO_RDIV  
value.  
¦
(
/ ¦STEP  
)
DEVCLK  
NCO_RDIV =  
64  
(5)  
The result of 公式 5 must be an integer value. If the value is not an integer, adjust either of the parameters until  
the result is an integer value.  
For example, select a value of 1920 for NCO_RDIV.  
NCO_RDIV values larger than 8192 can degrade the NCO SFDR performance and are  
not recommended.  
Now use 公式 6 to calculate the FREQAx register value.  
FREQAx = round 232 ´ ¦NCO / ¦DEVCLK  
(
)
(6)  
Alternatively, the following equations can be used:  
ƒ(NCO)  
N =  
ƒ(STEP)  
(7)  
(8)  
FREQAx = round 226 ´ N / NCO_RDIV  
(
)
48  
版权 © 2018–2020, Texas Instruments Incorporated  
 
 
 
 
 
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
10 lists common values for NCO_RDIV in 10-kHz frequency steps.  
10. Common NCO_RDIV Values (For 10-kHz Frequency Steps)  
fCLK (MHz)  
2457.6  
NCO_RDIV  
3840  
1966.08  
1600  
3072  
2500  
1474.56  
1228.8  
2304  
1920  
7.3.7.1.5 NCO Phase Offset Setting  
The NCO phase-offset setting for each NCO is set by the 16-bit register value PHASEAx and PHASEBx (where  
x = 0 to 3). The value is left-justified into a 32-bit field and then added to the phase accumulator.  
Use 公式 9 to calculate the phase offset in radians.  
Φ(rad) = PHASEA/Bx × 2–16 × 2 × π (x = 0 to 3)  
(9)  
7.3.7.1.6 NCO Phase Synchronization  
The NCOs must be synchronized after setting or changing the value of FREQAx or FREQBx. NCO  
synchronization is performed when the JESD204B link is initialized or by SYSREF, based on the settings of  
NCO_SYNC_ILA and NCO_SYNC_NEXT. The procedures are as follows for the JESD204B initialization  
procedure and the SYSREF procedure for both DC-coupled and AC-coupled SYSREF signals.  
NCO synchronization using the JESD204B SYNC signal (SYNCSE or TMSTP±):  
1. The device must be programmed for normal operation  
2. Set NCO_SYNC_ILA to 1 to enable NCO synchronization using the SYNC signal  
3. Set JESD_EN to 0  
4. Program FREQAx, FREQBx, PHASEAx, and PHASEBx to the desired settings  
5. In the JESD204B receiver (logic device), deassert the SYNC signal by setting SYNC high  
6. Set JESD_EN to 1  
7. Assert the SYNC signal by setting SYNC low in the JESD204B receiver to start the code group  
synchronization (CGS) process  
8. After achieving CGS, deassert the SYNC signal by setting SYNC high at the same time for all ADCs to be  
synchronized and verify that the SYNC setup and hold times are met (as specified in the Timing  
Requirements table)  
NCO synchronization using SYSREF (DC-coupled):  
1. The device must be programmed for normal operation  
2. Set JESD_EN to 1 to start the JESD204B link (the SYNC signal can respond as normal during the CGS  
process)  
3. Program NCO_SYNC_ILA=0 on all devices.  
4. Issue one or more SYSREF pulses to all ADCs to synchronize the local multiframe clock. Verify that  
SYSREF is disabled (held low) before continuing.  
5. Program FREQAx, FREQBx, PHASEAx, and PHASEBx to the desired settings  
6. Write NCO_SYNC_NEXT to 0.  
7. Arm NCO synchronization by setting NCO_SYNC_NEXT to 1  
8. Issue a single SYSREF pulse to all ADCs to synchronize NCOs within all devices. The SYSREF pulse must  
have the same phase relationship to the LMFC as the SYSREF pulse(s) from step 4 above.  
版权 © 2018–2020, Texas Instruments Incorporated  
49  
 
 
 
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
NCO synchronization using SYSREF (AC-coupled):  
1. The device must be programmed for normal operation  
2. Set JESD_EN to 1 to start the JESD204B link (the SYNC signal can respond as normal during the CGS  
process)  
3. Program NCO_SYNC_ILA=0 on all devices.  
4. Enable the SYSREF generator for all ADCs to synchronize the local multiframe clock. Leave SYSREF  
running contniuously.  
5. Program FREQAx, FREQBx, PHASEAx, and PHASEBx to the desired settings  
6. Write NCO_SYNC_NEXT to 0.  
7. Arm NCO synchronization by setting NCO_SYNC_NEXT to 1 at the same time at all ADCs by timing the  
rising edge of SCLK for the last data bit (LSB) at the end of the SPI write so that the SCLK rising edge  
occurs after a SYSREF rising edge and early enough before the next SYSREF rising edge so that the trigger  
is armed before the next SYSREF rising edge (a long SYSREF period is recommended)  
8. NCOs in all ADCs are synchronized by the next SYSREF rising edge  
7.3.7.2 Decimation Filters  
The decimation filters are arranged to provide a programmable overall decimation of 2, 4, 8, or 16. All filter  
outputs have a resolution of 15 bits. The decimate-by-2 filter has a real output and the decimate-by-4, decimate-  
by-8, and decimate-by-16 filters have complex outputs. 11 lists the effective output sample rates, available  
signal bandwidths, output formats, and stop-band attenuation for each decimation mode. The available  
bandwidths of the complex output modes are twice that of equivalent real decimation modes because of the  
nature of the I/Q data and complex signaling. This higher bandwidth results in the decimate-by-2 real and  
decimate-by-4 complex modes having approximately the same useful output bandwidth.  
11. Output Sample Rates and Signal Bandwidths  
ƒ(DEVCLK)  
DECIMATION  
SETTING  
OUTPUT FORMAT  
OUTPUT RATE MAX ALIAS PROTECTED SIGNAL  
STOP-BAND  
ATTENUATION  
PASS-BAND  
RIPPLE  
(MSPS)  
BANDWIDTH (MHz)  
Real signal,  
12-bit data  
No decimation  
Decimate-by-2  
ƒ(DEVCLK)  
ƒ(DEVCLK) / 2  
< ±0.001 dB  
< ±0.001 dB  
< ±0.001 dB  
< ±0.005 dB  
< ±0.001 dB  
< ±0.001 dB  
Real signal,  
15-bit data  
ƒ(DEVCLK) / 2  
ƒ(DEVCLK) / 4  
ƒ(DEVCLK) / 4  
ƒ(DEVCLK) / 8  
ƒ(DEVCLK) / 16  
0.4 × ƒ(DEVCLK) / 2  
0.8 × ƒ(DEVCLK) / 4  
0.875 × ƒ(DEVCLK) / 4  
0.8 × ƒ(DEVCLK) / 8  
0.8 × ƒ(DEVCLK) / 16  
> 89 dB  
> 90 dB  
> 66 dB  
> 90 dB  
> 90 dB  
Decimate-by-4  
(D4_AP87 = 0)  
Complex signal,  
15-bit data  
Decimate-by-4  
(D4_AP87 = 1)  
Complex signal,  
15-bit data  
Complex signal,  
15-bit data  
Decimate-by-8  
Decimate-by-16  
Complex signal,  
15-bit data  
69 to 80 provide the composite decimation filter responses. The pass-band section (black trace) shows the  
alias-protected region of the response. The transition band (red trace) shows the transition region of the  
response, or the regions that alias into the transition region, which is not alias protected and therefore desired  
signals must not be within this band. The aliasing band (blue trace) shows the attenuation applied to the bands  
that alias back into the pass band after decimation and are sufficiently low to prevent undesired signals from  
showing up in the pass band. Use analog input filtering for additional attenuation of the aliasing band or to  
prevent harmonics, interleaving spurs, or other undesired spurious signals from folding into the desired signal  
band before the decimation filter.  
50  
版权 © 2018–2020, Texas Instruments Incorporated  
 
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
0
0.001  
0.0005  
0
Passband  
Transition Band  
Aliasing Band  
Passband  
Transition Band  
-20  
-40  
-60  
-80  
-0.0005  
-0.001  
-100  
-120  
0
0.1  
0.2 0.3  
Normalized Frequency (Fs)  
0.4  
0.5  
0
0.05  
0.1 0.15  
Normalized Frequency (Fs)  
0.2  
0.25  
h2co  
h2co  
69. Decimate-by-2 Composite Response  
70. Decimate-by-2 Composite Zoomed Pass-Band  
(D2_HIGH_PASS = 0)  
Response (D2_HIGH_PASS = 0)  
0
-20  
0.001  
Passband  
Transition Band  
Aliasing Band  
Passband  
Transition Band  
Aliasing Band  
0.0005  
-40  
-60  
0
-80  
-0.0005  
-100  
-120  
0
-0.001  
0.1  
0.2 0.3  
Normalized Frequency (Fs)  
0.4  
0.5  
0.25  
0.3  
0.35 0.4  
Normalized Frequency (Fs)  
0.45  
0.5  
h2co  
h2co  
71. Decimate-by-2 Composite Response  
72. Decimate-by-2 Composite Zoomed Pass-Band  
(D2_HIGH_PASS = 1)  
Response (D2_HIGH_PASS = 1)  
0
-20  
0.001  
Passband  
Transition Band  
Aliasing Band  
Passband  
Transition Band  
0.0005  
-40  
-60  
0
-80  
-0.0005  
-0.001  
-100  
-120  
0
0.1  
0.2 0.3  
Normalized Frequency (Fs)  
0.4  
0.5  
0
0.02  
0.04  
0.06  
Normalized Frequency (Fs)  
0.08  
0.1  
0.12  
h4co  
h4co  
73. Decimate-by-4 Composite Response  
74. Decimate-by-4 Composite Zoomed Pass-Band  
Response (D4_AP87 = 0)  
(D4_AP87 = 0)  
版权 © 2018–2020, Texas Instruments Incorporated  
51  
 
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
0
-20  
0.01  
0.005  
0
Passband  
Transition Band  
Aliasing Band  
Passband  
Transition Band  
-40  
-60  
-80  
-0.005  
-0.01  
-100  
-120  
0
0.1  
0.2 0.3  
Normalized Frequency (Fs)  
0.4  
0.5  
0
0.02  
0.04  
0.06  
0.08  
Normalized Frequency (Fs)  
0.1  
0.12  
h4_9  
h4_9  
75. Decimate-by-4 Composite Response  
76. Decimate-by-4 Composite Zoomed Pass-Band  
Response (D4_AP87 = 1)  
(D4_AP87 = 1)  
0
-20  
0.001  
Passband  
Transition Band  
Aliasing Band  
Passband  
Transition Band  
0.0005  
-40  
-60  
0
-80  
-0.0005  
-0.001  
-100  
-120  
0
0.1  
0.2 0.3  
Normalized Frequency (Fs)  
0.4  
0.5  
0
0.01  
0.02  
0.03  
Normalized Frequency (Fs)  
0.04  
0.05  
0.06  
h8co  
h8co  
77. Decimate-by-8 Composite Response  
78. Decimate-by-8 Composite Zoomed Pass-Band  
Response  
0
-20  
0.001  
Passband  
Transition Band  
Aliasing Band  
Passband  
Transition Band  
0.0005  
-40  
-60  
0
-80  
-0.0005  
-0.001  
-100  
-120  
0
0.1  
0.2 0.3  
Normalized Frequency (Fs)  
0.4  
0.5  
0
0.005  
0.01  
0.015  
Normalized Frequency (Fs)  
0.02  
0.025  
0.03  
h16c  
h16c  
79. Decimate-by-16 Composite Response  
80. Decimate-by-16 Composite Zoomed Pass-Band  
Response  
52  
版权 © 2018–2020, Texas Instruments Incorporated  
 
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
For maximum efficiency, a group of high-speed filter blocks are implemented with specific blocks used for each  
decimation setting to achieve the composite responses illustrated in 69 to 80. 12 describes the  
combination of filter blocks used for each decimation setting and 13 lists the coefficient details and decimation  
factor of each filter block. The coefficients are symmetric with the center tap indicated by bold text.  
12. Decimation Mode Filter Usage  
DECIMATION SETTING  
FILTER BLOCKS USED  
CS80  
2
4 (D4_AP87 = 0)  
CS45, CS80  
4 (D4_AP87 = 1)  
CS45, CS87  
8
CS20, CS40, CS80  
CS10, CS20, CS40, CS80  
16  
13. Filter Coefficient Details  
FILTER COEFFICIENT SET (Decimation Factor of Filter)  
CS40 (2) CS45 (2)  
CS10 (2)  
CS20 (2)  
CS80 (2)  
CS87 (2)  
–65  
0
–65  
0
109  
0
109  
0
–327  
0
–327  
0
56  
0
56  
0
–37  
–37  
0
–15  
0
–15  
0
0
577  
1024  
577  
–837  
0
–837  
0
2231  
0
2231  
0
–401  
0
–401  
0
118  
118  
0
23  
23  
0
–291  
0
0
0
4824  
8192  
4824  
–8881  
0
–8881  
0
1596  
0
1596  
0
–291  
0
–40  
0
–40  
0
39742  
65536  
39742  
–4979  
0
–4979  
0
612  
0
612  
0
64  
64  
0
0
20113  
32768  
20113  
–1159  
0
–1159  
0
–97  
0
–97  
0
2031  
0
2031  
0
142  
0
142  
0
–3356  
0
–3356  
0
–201  
0
–201  
0
5308  
0
5308  
0
279  
0
279  
0
–8140  
0
–8140  
0
–380  
0
–380  
0
12284  
0
12284  
0
513  
0
513  
0
–18628  
0
–18628  
0
–690  
0
–690  
0
29455  
0
29455  
0
939  
0
939  
0
–53191  
0
–53191  
0
–1313  
0
–1313  
0
166059  
262144  
166059  
1956  
0
1956  
0
–3398  
0
–3398  
0
10404  
16384  
10404  
7.3.7.3 Output Data Format  
The DDC output data varies depending on the selected JMODE. Real decimate-by-2 mode (JMODE 9) consists  
of 15-bit real output data. Complex decimation modes (JMODE 10 to 16), except for JMODE 12, consist of 15-bit  
complex data plus the two overrange threshold-detection control bits. JMODE 12 output data consists of 12-bit  
complex data, but does not include the two overrange threshold-detection control bits that must instead be  
monitored using the ORA0, ORA1 and ORB0, ORB1 output pins. 14 lists the data format for JMODE 9 and 表  
15 lists the data format for all JMODEs except JMODE 12.  
版权 © 2018–2020, Texas Instruments Incorporated  
53  
 
 
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
14. Real Decimation (JMODE 9) Output Sample Format  
ODD,  
EVEN  
SAMPLE  
16-BIT OUTPUT WORD  
DDC  
CHANNEL  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
A
A
B
B
Even  
Odd  
DDC A even-numbered sample, 15-bit output data  
DDC A odd-numbered sample, 15-bit output data  
DDC B even-numbered sample, 15-bit output data  
DDC B odd-numbered sample, 15-bit output data  
OVR_T0  
OVR_T1  
OVR_T0  
OVR_T1  
Even  
Odd  
15. Complex Decimation Output Sample Format (Except JMODE 12)  
16-BIT OUTPUT WORD  
I/Q  
SAMPLE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
I
DDC in-phase (I) 15-bit output data  
DDC quadrature (Q) 15-bit output data  
OVR_T0  
OVR_T1  
Q
7.3.7.4 Decimation Settings  
7.3.7.4.1 Decimation Factor  
The decimation setting is adjustable over the following settings and is set by the JMODE parameter. See 19  
for the available JMODE values and the corresponding decimation settings.  
DDC Bypass: No decimation, real output  
Decimate-by-2: Real output (JMODE 9)  
Decimate-by-4: Complex output (JMODE 10 to 12)  
Decimate-by-8: Complex output (JMODE 13 to 14)  
Decimate-by-16: Complex output (JMODE 15 to 16)  
7.3.7.4.2 DDC Gain Boost  
The DDC gain boost (see the DDC configuration register) provides additional gain through the DDC block.  
Setting BOOST to 1 sets the total decimation filter chain gain to 6.02 dB. With a setting of 0, the total decimation  
filter chain has a 0-dB gain. Only use this setting when the negative image of the input signal is filtered out by the  
decimation filters, otherwise clipping may occur. There is no reduction in analog performance when gain boost is  
enabled or disabled, but care must be taken to understand the reference output power for proper performance  
calculations.  
54  
版权 © 2018–2020, Texas Instruments Incorporated  
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
7.3.8 JESD204B Interface  
The ADC12DJ2700 uses the JESD204B high-speed serial interface for data converters to transfer data from the  
ADC to the receiving logic device. The ADC12DJ2700 serialized lanes are capable of operating up to 12.8 Gbps,  
slightly above the JESD204B maximum lane rate. A maximum of 16 lanes can be used to allow lower lane rates  
for interfacing with speed-limited logic devices. 81 shows a simplified block diagram of the JESD204B  
interface protocol.  
ADC  
JESD204B Block  
JESD204B  
TRANSPORT  
LAYER  
SCRAMBLER  
(Optional)  
JESD204B  
LINK LAYER  
8b/10b  
ENCODER  
JESD204B  
TX  
ADC  
ANALOG  
CHANNEL  
Logic Device  
JESD204B Block  
JESD204B  
TRANSPORT  
LAYER  
APPLICATION  
LAYER  
DESCRAMBLE  
(Optional)  
JESD204B  
LINK LAYER  
8b/10b  
DECODER  
JESD204B  
RX  
81. Simplified JESD204B Interface Diagram  
The various signals used in the JESD204B interface and the associated ADC12DJ2700 pin names are  
summarized briefly in 16 for reference.  
16. Summary of JESD204B Signals  
SIGNAL NAME  
ADC12DJ2700 PIN NAMES  
DESCRIPTION  
High-speed serialized data after 8b,  
10b encoding  
Data  
DA[7:0]+, DA[7:0]–, DB[7:0]+, DB[7:0]–)  
Link initialization signal, toggles low to  
start code group synchronization  
(CGS) process  
SYNC  
SYNCSE, TMSTP+, TMSTP–  
CLK+, CLK–  
ADC sampling clock, also used for  
clocking digital logic and output  
serializers  
Device clock  
System timing reference used to  
deterministically reset the internal local  
multiframe counters in each  
JESD204B device  
SYSREF  
SYSREF+, SYSREF–  
7.3.8.1 Transport Layer  
The transport layer takes samples from the ADC output (in decimation bypass mode) or from the DDC output  
and maps the samples into octets, frames, multiframes, and lanes. Sample mapping is defined by the JESD204B  
mode that is used, defined by parameters such as L, M, F, S, N, N', CF, and so forth. There are a number of  
predefined transport layer modes in the ADC12DJ2700 that are defined in 19. The high level configuration  
parameters for the transport layer in the ADC12DJ2700 are described in 17. For simplicity, the transport layer  
mode is chosen by simply setting the JMODE parameter and the desired K value. For reference, the various  
configuration parameters for JESD204B are defined in 18.  
版权 © 2018–2020, Texas Instruments Incorporated  
55  
 
 
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
7.3.8.2 Scrambler  
An optional data scrambler can be used to scramble the octets before transmission across the channel.  
Scrambling is recommended in order to remove the possibility of spectral peaks in the transmitted data. The  
JESD204B receiver automatically synchronizes its descrambler to the incoming scrambled data stream. The  
initial lane alignment sequence (ILA) is never scrambled. Scrambling can be enabled by setting SCR (in the  
JESD204B control register).  
7.3.8.3 Link Layer  
The link layer serves multiple purposes in JESD204B, including establishing the code boundaries (see the Code  
Group Synchronization (CGS) section), initializing the link (see the Initial Lane Alignment Sequence (ILAS)  
section), encoding the data (see the 8b, 10b Encoding section), and monitoring the health of the link (see the  
Frame and Multiframe Monitoring section).  
7.3.8.3.1 Code Group Synchronization (CGS)  
The first step in initializing the JESD204B link, after SYSREF is processed, is to achieve code group  
synchronization. The receiver first asserts the SYNC signal when ready to initialize the link. The transmitter  
responds to the request by sending a stream of K28.5 characters. The receiver then aligns its character clock to  
the K28.5 character sequence. Code group synchronization is achieved after receiving four K28.5 characters  
successfully. The receiver deasserts SYNC on the next local multiframe clock (LMFC) edge after CGS is  
achieved and waits for the transmitter to start the initial lane alignment sequence.  
7.3.8.3.2 Initial Lane Alignment Sequence (ILAS)  
After the transmitter detects the SYNC signal deassert, the transmitter waits until its next LMFC edge to start  
sending the initial lane alignment sequence. The ILAS consists of four multiframes each containing a  
predetermined sequence. The receiver searches for the start of the ILAS to determine the frame and multiframe  
boundaries. As the ILAS reaches the receiver for each lane, the lane starts to buffer its data until all receivers  
have received the ILAS and subsequently release the ILAS from all lanes at the same time in order to align the  
lanes. The second multiframe of the ILAS contains configuration parameters for the JESD204B that can be used  
by the receiver to verify that the transmitter and receiver configurations match.  
7.3.8.3.3 8b, 10b Encoding  
The data link layer converts the 8-bit octets from the transport layer into 10-bit characters for transmission across  
the link using 8b, 10b encoding. 8b, 10b encoding provides DC balance for AC-coupling of the SerDes links and  
a sufficient number of edge transitions for the receiver to reliably recover the data clock. 8b, 10b also provides  
some amount of error detection where a single bit error in a character likely results in either not being able to find  
the 10-bit character in the 8b, 10b decoder lookup table or incorrect character disparity.  
7.3.8.3.4 Frame and Multiframe Monitoring  
The ADC12DJ2700 supports frame and multiframe monitoring for verifying the health of the JESD204B link. If  
the last octet of a frame matches the last octet of the previous frame, then the last octet in the second frame is  
replaced with an /F/ (/K28.7/) character. If the second frame is the last frame of a multiframe, then an /A/  
(/K28.3/) character is used instead. When scrambling is enabled, if the last octet of a frame is 0xFC then the  
transmitter replaces the octet with an /F/ (/K28.7/) character. With scrambling, if the last octet of a multiframe is  
0x7C then the transmitter replaces the octet with an /A/ (/K28.3/) character. When the receiver detects an /F/ or  
/A/ character, the receiver checks if the character occurs at the end of a frame or multiframe, and replaces that  
octet with the appropriate data character. The receiver can report an error if the alignment characters occur in  
the incorrect place and trigger a link realignment.  
7.3.8.4 Physical Layer  
The JESD204B physical layer consists of a current mode logic (CML) output driver and receiver. The receiver  
consists of a clock detection and recovery (CDR) unit to extract the data clock from the serialized data stream  
and can contain an equalizer to correct for the low-pass response of the physical transmission channel. Likewise,  
the transmitter can contain pre-equalization to account for frequency dependent losses across the channel. The  
total reach of the SerDes links depends on the data rate, board material, connectors, equalization, noise and  
jitter, and required bit-error performance. The SerDes lanes do not have to be matched in length because the  
receiver aligns the lanes during the initial lane alignment sequence.  
56  
版权 © 2018–2020, Texas Instruments Incorporated  
 
 
 
 
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
7.3.8.4.1 SerDes Pre-Emphasis  
The ADC12DJ2700 high-speed output drivers can pre-equalize the transmitted data stream by using pre-  
emphasis in order to compensate for the low-pass response of the transmission channel. Configurable pre-  
emphasis settings allow the output drive waveform to be optimized for different PCB materials and signal  
transmission distances. The pre-emphasis setting is adjusted through the serializer pre-emphasis setting  
SER_PE (in the serializer pre-emphasis control register). Higher values increase the pre-emphasis to  
compensate for more lossy PCB materials. This adjustment is best used in conjunction with an eye-diagram  
analysis capability in the receiver. Adjust the pre-emphasis setting to optimize the eye-opening for the specific  
hardware configuration and line rates needed.  
7.3.8.5 JESD204B Enable  
The JESD204B interface must be disabled through JESD_EN (in the JESD204B enable register) while any of the  
other JESD204B parameters are being changed. When JESD_EN is set to 0 the block is held in reset and the  
serializers are powered down. The clocks for this section are also gated off to further save power. When the  
parameters are set as desired, the JESD204B block can be enabled (JESD_EN is set to 1).  
7.3.8.6 Multi-Device Synchronization and Deterministic Latency  
JESD204B subclass 1 outlines a method to achieve deterministic latency across the serial link. If two devices  
achieve the same deterministic latency then they can be considered synchronized. This latency must be  
achieved from system startup to startup to be deterministic. There are two key requirements to achieve  
deterministic latency. The first is proper capture of SYSREF for which the ADC12DJ2700 provides a number of  
features to simplify this requirement at giga-sample clock rates (see the SYSREF Capture for Multi-Device  
Synchronization and Deterministic Latency section for more information).  
The second requirement is to choose a proper elastic buffer release point in the receiver. Because the  
ADC12DJ2700 is an ADC, the ADC12DJ2700 is the transmitter (TX) in the JESD204B link and the logic device  
is the receiver (RX). The elastic buffer is the key block for achieving deterministic latency, and does so by  
absorbing variations in the propagation delays of the serialized data as the data travels from the transmitter to  
the receiver. A proper release point is one that provides sufficient margin against delay variations. An incorrect  
release point results in a latency variation of one LMFC period. Choosing a proper release point requires  
knowing the average arrival time of data at the elastic buffer, referenced to an LMFC edge, and the total  
expected delay variation for all devices. With this information the region of invalid release points within the LMFC  
period can be defined, which stretches from the minimum to maximum delay for all lanes. Essentially, the  
designer must ensure that the data for all lanes arrives at all devices before the release point occurs.  
82 provides a timing diagram that demonstrates this requirement. In this figure, the data for two ADCs is  
shown. The second ADC has a longer routing distance (tPCB) and results in a longer link delay. First, the invalid  
region of the LMFC period is marked off as determined by the data arrival times for all devices. Then, the release  
point is set by using the release buffer delay (RBD) parameter to shift the release point an appropriate number of  
frame clocks from the LMFC edge so that the release point occurs within the valid region of the LMFC cycle. In  
the case of 82, the LMFC edge (RBD = 0) is a good choice for the release point because there is sufficient  
margin on each side of the valid region.  
版权 © 2018–2020, Texas Instruments Incorporated  
57  
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
Nominal Link Delay  
(Arrival at Elastic Buffer)  
Link Delay  
Variation  
ADC 1 Data  
Propagation  
tTX  
tPCB  
tRX-DESER  
ADC 2 Data  
Propagation  
tTX  
tPCB  
tRX-DESER  
Choose LMFC  
edge as release  
point (RBD = 0)  
Release point  
margin  
TX LMFC  
RX LMFC  
Time  
Invalid Region  
of LMFC  
Valid Region  
of LMFC  
82. LMFC Valid Region Definition for Elastic Buffer Release Point Selection  
The TX and RX LMFCs do not necessarily need to be phase aligned, but knowledge of their phase is important  
for proper elastic buffer release point selection. Also, the elastic buffer release point occurs within every LMFC  
cycle, but the buffers only release when all lanes have arrived. Therefore, the total link delay can exceed a single  
LMFC period; see JESD204B multi-device synchronization: Breaking down the requirements for more  
information.  
7.3.8.7 Operation in Subclass 0 Systems  
The ADC12DJ2700 can operate with subclass 0 compatibility provided that multi-ADC synchronization and  
deterministic latency are not required. With these limitations, the device can operate without the application of  
SYSREF. The internal local multiframe clock is automatically self-generated with unknown timing. SYNC is used  
as normal to initiate the CGS and ILA.  
7.3.9 Alarm Monitoring  
A number of built-in alarms are available to monitor internal events. Several types of alarms and upsets are  
detected by this feature:  
1. Serializer PLL is not locked  
2. JESD204B link is not transmitting data (not in the data transmission state)  
3. SYSREF causes internal clocks to be realigned  
4. An upset that impacts the NCO  
5. An upset that impacts the internal clocks  
When an alarm occurs, a bit for each specific alarm is set in ALM_STATUS. Each alarm bit remains set until the  
host system writes a 1 to clear the alarm. If the alarm type is not masked (see the alarm mask register), then the  
alarm is also indicated by the ALARM register. The CALSTAT output pin can be configured as an alarm output  
that goes high when an alarm occurs; see the CAL_STATUS_SEL bit in the calibration pin configuration register.  
7.3.9.1 NCO Upset Detection  
The NCO_ALM register bit indicates if the NCO in channel A or B has been upset. The NCO phase accumulators  
in channel A are continuously compared to channel B. If the accumulators differ for even one clock cycle, the  
NCO_ALM register bit is set and remains set until cleared by the host system by writing a 1. This feature  
requires the phase and frequency words for each NCO accumulator in DDC A (PHASEAx, FREQAx) to be set to  
the same values as the NCO accumulators in DDC B (PHASEBx, FREQBx). For example, PHASEA0 must be  
the same as PHASEB0 and FREQA0 must be the same as FREQB0, however, PHASEA1 can be set to a  
different value than PHASEA0. This requirement ultimately reduces the number of NCO frequencies available for  
phase coherent frequency hopping from four to two for each DDC. DDC B can use a different NCO frequency  
than DDC A by setting the NCOB[1:0] pins to a different value than NCOA[1:0]. This detection is only valid after  
the NCOs are synchronized by either SYSREF or the start of the ILA sequence (as determined by the NCO  
synchronization register). For the NCO upset detection to work properly, follow these steps:  
58  
版权 © 2018–2020, Texas Instruments Incorporated  
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
1. Program JESD_EN = 0  
2. Ensure the device is configured to use both channels (PD_ACH = 0, PD_BCH = 0)  
3. Select a JMODE that uses the NCO  
4. Program all NCO frequencies and phases to be the same for channel A and B (for example, FREQA0 =  
FREQB0, FREQA1 = FREQB1, FREQA2 = FREQB2, and FREQA3 = FREQB3)  
5. If desired, use the CMODE and CSEL registers or the NCOA[1:0] and NCOB[1:0] pins to choose a unique  
frequency for channel A and channel B  
6. Program JESD_EN = 1  
7. Synchronize the NCOs (using the ILA or using SYSREF); see the NCO synchronization register  
8. Write a 1 to the NCO_ALM register bit to clear it  
9. Monitor the NCO_ALM status bit or the CALSTAT output pin if CAL_STATUS_SEL is properly configured  
10. If the frequency or phase registers are changed while the NCO is enabled, the NCOs can get out of  
synchronization  
11. Repeat steps 7-9  
12. If the device enters and exits global power down, repeat steps 7-9  
7.3.9.2 Clock Upset Detection  
The CLK_ALM register bit indicates if the internal clocks have been upset. The clocks in channel A are  
continuously compared to channel B. If the clocks differ for even one DEVCLK / 2 cycle, the CLK_ALM register  
bit is set and remains set until cleared by the host system by writing a 1. For the CLK_ALM register bit to function  
properly, follow these steps:  
1. Program JESD_EN = 0  
2. Ensure the part is configured to use both channels (PD_ACH = 0, PD_BCH = 0)  
3. Program JESD_EN = 1  
4. Write CLK_ALM = 1 to clear CLK_ALM  
5. Monitor the CLK_ALM status bit or the CALSTAT output pin if CAL_STATUS_SEL is properly configured  
6. When exiting global power-down (via MODE or the PD pin), the CLK_ALM status bit may be set and must be  
cleared by writing a 1 to CLK_ALM  
版权 © 2018–2020, Texas Instruments Incorporated  
59  
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
7.4 Device Functional Modes  
The ADC12DJ2700 can be configured to operate in a number of functional modes. These modes are described  
in this section.  
7.4.1 Dual-Channel Mode  
The ADC12DJ2700 can be used as a dual-channel ADC where the sampling rate is equal to the clock frequency  
(fS = fCLK) provided at the CLK+ and CLK– pins. The two inputs, INA± and INB±, serve as the respective inputs  
for each channel in this mode. This mode is chosen simply by setting JMODE to the appropriate setting for the  
desired configuration as described in 19. The analog inputs can be swapped by setting DUAL_INPUT (see the  
input mux control register)  
7.4.2 Single-Channel Mode (DES Mode)  
The ADC12DJ2700 can also be used as a single-channel ADC where the sampling rate is equal to two times the  
clock frequency (fS = 2 × fCLK) provided at the CLK+ and CLK– pins. This mode effectively interleaves the two  
ADC channels together to form a single-channel ADC at twice the sampling rate. This mode is chosen simply by  
setting JMODE to the appropriate setting for the desired configuration as described in 19. Either analog input,  
INA± or INB±, can serve as the input to the ADC, however INA± is recommended for best performance. The  
analog input can be selected using SINGLE_INPUT (see the input mux control register). The digital down-  
converters cannot be used in single-channel mode.  
INA± is strongly recommended to be used as the input to the ADC for optimized  
performance in single-channel mode.  
7.4.3 JESD204B Modes  
The ADC12DJ2700 can be programmed as a single-channel or dual-channel ADC, with or without decimation,  
and a number JESD204B output formats. 17 summarizes the basic operating mode configuration parameters  
and whether they are user configured or derived.  
Powering down high-speed data outputs (DA0± ... DA7±, DB0± ... DB7±) for extended  
times can reduce performance of the output serializers, especially at high data rates. For  
information regarding reliable serializer operation, see the Power-Down Modes section.  
17. ADC12DJ2700 Operating Mode Configuration Parameters  
USER CONFIGURED  
PARAMETER  
DESCRIPTION  
VALUE  
OR DERIVED  
JESD204B operating mode, automatically  
derives the rest of the JESD204B  
parameters, single-channel or dual-channel  
mode and the decimation factor  
Set by JMODE (see the JESD204B mode  
register)  
JMODE  
User configured  
D
Decimation factor  
Derived  
Derived  
See 19  
See 19  
1 = single-channel mode, 0 = dual-channel  
mode  
DES  
Number of bits transmitted per lane per  
DEVCLK cycle. The JESD204B line rate is  
the DEVCLK frequency times R. This  
parameter sets the SerDes PLL  
multiplication factor or controls bypassing of  
the SerDes PLL.  
R
Derived  
See 19  
See 19  
Links  
K
Number of JESD204B links used  
Derived  
Set by KM1 (see the JESD204B K  
parameter register), see the allowed values  
in 19  
Number of frames per multiframe  
User configured  
60  
版权 © 2018–2020, Texas Instruments Incorporated  
 
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
There are a number of parameters required to define the JESD204B format, all of which are sent across the link  
during the initial lane alignment sequence. In the ADC12DJ2700, most parameters are automatically derived  
based on the selected JMODE; however, a few are configured by the user. 18 describes these parameters.  
18. JESD204B Initial Lane Alignment Sequence Parameters  
USER CONFIGURED  
PARAMETER  
ADJCNT  
DESCRIPTION  
VALUE  
OR DERIVED  
LMFC adjustment amount (not applicable)  
LMFC adjustment direction (not applicable)  
Bank ID  
Derived  
Always 0  
Always 0  
Always 0  
Always 0  
ADJDIR  
BID  
Derived  
Derived  
Derived  
CF  
Number of control words per frame  
Always set to 0 in ILAS, see 19 for actual  
usage  
CS  
DID  
F
Control bits per sample  
Derived  
Set by DID (see the JESD204B DID  
parameter register), see 20  
Device identifier, used to identify the link  
User configured  
Derived  
Number of octets (bytes) per frame (per  
lane)  
See 19  
High-density format (samples split between  
lanes)  
HD  
Derived  
Always 0  
Always 1  
JESDV  
K
JESD204 standard revision  
Derived  
Set by the KM1 register, see the JESD204B  
K parameter register  
Number of frames per multiframe  
User configured  
L
Number of serial output lanes per link  
Lane identifier for each lane  
Derived  
Derived  
See 19  
See 20  
LID  
Number of converters used to determine  
lane bit packing; may not match number of  
ADC channels in the device  
M
Derived  
See 19  
Sample resolution (before adding control  
and tail bits)  
N
N'  
S
Derived  
Derived  
Derived  
See 19  
See 19  
See 19  
Bits per sample after adding control and tail  
bits  
Number of samples per converter (M) per  
frame  
SCR  
Scrambler enabled  
Device subclass version  
Reserved field 1  
User configured  
Derived  
Set by the JESD204B control register  
SUBCLASSV  
RES1  
Always 1  
Always 0  
Always 0  
Derived  
RES2  
Reserved field 2  
Derived  
Checksum for ILAS checking (sum of all  
above parameters modulo 256)  
CHKSUM  
Derived  
Computed based on parameters in this table  
Configuring the ADC12DJ2700 is made easy by using a single configuration parameter called JMODE (see the  
JESD204B mode register). Using 19, the correct JMODE value can be found for the desired operating mode.  
The modes listed in 19 are the only available operating modes. This table also gives a range and allowable  
step size for the K parameter (set by KM1, see the JESD204B K parameter register), which sets the multiframe  
length in number of frames.  
版权 © 2018–2020, Texas Instruments Incorporated  
61  
 
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
19. ADC12DJ2700 Operating Modes  
USER-SPECIFIED  
PARAMETER  
DERIVED PARAMETERS  
INPUT CLOCK  
RANGE (MHz)  
ADC12DJ2700 OPERATING MODE  
L
M
K
R
JMODE  
D
DES  
LINKS  
N
CS  
N’  
(Per  
(Per  
F
S
[Min:Step:Max]  
(Fbit / Fclk)  
Link)  
Link)  
12-bit, single-channel, 8 lanes  
12-bit, single-channel, 16 lanes  
12-bit, dual-channel, 8 lanes  
12-bit, dual-channel, 16 lanes  
8-bit, single-channel, 4 lanes  
8-bit, single-channel, 8 lanes  
8-bit, dual-channel, 4 lanes  
8-bit, dual-channel, 8 lanes  
Reserved  
0
1
3:1:32  
3:1:32  
3:1:32  
3:1:32  
18:2:32  
18:2:32  
18:2:32  
18:2:32  
1
1
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
1
0
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
2
2
2
12  
12  
12  
12  
8
0
0
12  
12  
12  
12  
8
4
8
4
8
2
4
2
4
4
2
4
8
1
2
1
1
8
8
4(1)  
8(1)  
4(1)  
8(1)  
1
8
8
8
8
1
1
1
1
2
2
2
8
4
2
8
4
1
1
5
5
5
5
2
4
2
4
4
1
2
5
1
1
1
1
8
8
4
2
800-2700  
800-2700  
800-2700  
800-2700  
800-2560  
800-2700  
800-2560  
800-2700  
2
1
0
4
3
1
0
2
4
1
0
5
5
1
8
0
8
1
2.5  
5
6
1
8
0
8
1
7
1
8
0
8
1
2.5  
2.5  
5
8
2
15  
15  
15  
12  
15  
15  
15  
15  
8
1(2)  
1(2)  
1(2)  
0
1(2)  
1(2)  
1(2)  
1(2)  
0
16  
16  
16  
12  
16  
16  
16  
16  
8
1
15-bit, real data, decimate-by-2, 8 lanes  
15-bit, decimate-by-4, 4 lanes  
15-bit, decimate-by-4, 8 lanes  
12-bit, decimate-by-4, 16 lanes  
15-bit, decimate-by-8, 2 lanes  
15-bit, decimate-by-8, 4 lanes  
15-bit, decimate-by-16, 1 lane  
15-bit, decimate-by-16, 2 lanes  
8-bit, single-channel, 16 lanes  
8-bit, dual-channel, 16 lanes  
9
9:1:32  
9:1:32  
9:1:32  
3:1:32  
5:1:32  
9:1:32  
3:1:32  
5:1:32  
18:2:32  
18:2:32  
800-2700  
800-2560  
800-2700  
1000-2700  
800-2560  
800-2700  
800-2560  
800-2700  
800-2700  
800-2700  
10  
11  
12  
13  
14  
15  
16  
17  
18  
4
2
4
2
8(1)  
2.5  
1
4
8
2
5
8
2
2.5  
5
16  
16  
1
4
2
2.5  
1.25  
1.25  
1
1
8
0
8
1
(1) M equals L in these modes to allow the samples to be sent in time-order over L lanes. The M parameter does not represent the actual number of converters. Interleave the M sample  
streams from each link in the receiver to produce the correct sample data; see 21 to 38 for more details.  
(2) CS is always reported as 0 in the initial lane alignment sequence (ILAS) for the ADC12DJ2700.  
62  
版权 © 2018–2020, Texas Instruments Incorporated  
 
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
The ADC12DJ2700 has a total of 16 high-speed output drivers that are grouped into two 8-lane JESD204B links.  
Most operating modes use two links with up to eight lanes per link. The lanes and their derived configuration  
parameters are described in 20. For a specified JMODE, the lowest indexed lanes for each link are used and  
the higher indexed lanes for each link are automatically powered down. Always route the lowest indexed lanes to  
the logic device.  
20. ADC12DJ2700 Lane Assignment and Parameters  
DEVICE PIN  
DESIGNATION  
LINK  
DID (User Configured)  
LID (Derived)  
DA0±  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
DA1±  
DA2±  
Set by DID (see the JESD204B DID parameter  
register), the effective DID is equal to the DID register  
setting (DID)  
DA3±  
A
DA4±  
DA5±  
DA6±  
DA7±  
DB0±  
DB1±  
DB2±  
Set by DID (see the JESD204B DID parameter  
register), the effective DID is equal to the DID register  
setting plus 1 (DID+1)  
DB3±  
B
DB4±  
DB5±  
DB6±  
DB7±  
7.4.3.1 JESD204B Output Data Formats  
Output data are formatted in a specific optimized fashion for each JMODE setting. When the DDC is not used  
(decimation = 1) the 12-bit offset binary values are mapped into octets. For the DDC mode, the 16-bit values (15-  
bit complex data plus 1 overrange bit) are mapped into octets. The following tables show the specific mapping  
formats for a single frame. In all mappings the tail bits (T) are 0 (zero). In 21 to 38, the single-channel  
format samples are defined as Sn, where n is the sample number within the frame. In the dual-channel real  
output formats (DDC bypass and decimate-by-2), the samples are defined as An and Bn, where An are samples  
from channel A and Bn are samples from channel B. In the complex output formats (decimate-by-4, decimate-by-  
8, decimate-by-16), the samples are defined as AIn, AQn, BIn and BQn, where AIn and AQn are the in-phase  
and quadrature-phase samples of channel A and BIn and BQn are the in-phase and quadrature-phase samples  
of channel B. All samples are formatted as MSB first, LSB last.  
版权 © 2018–2020, Texas Instruments Incorporated  
63  
 
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
21. JMODE 0 (12-bit, Decimate-by-1, Single-Channel, 8 Lanes)  
OCTET  
NIBBLE  
DA0  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
T
T
T
T
T
T
T
T
S0  
S2  
S4  
S6  
S1  
S3  
S5  
S7  
S8  
S16  
S18  
S20  
S22  
S17  
S19  
S21  
S23  
S24  
S26  
S28  
S30  
S25  
S27  
S29  
S31  
S32  
S34  
S36  
S38  
S33  
S35  
S37  
S39  
DA1  
S10  
S12  
S14  
S9  
DA2  
DA3  
DB0  
DB1  
S11  
S13  
S15  
DB2  
DB3  
22. JMODE 1 (12-Bit, Decimate-by-1, Single-Channel, 16 Lanes)  
OCTET  
NIBBLE  
DA0  
DA1  
DA2  
DA3  
DA4  
DA5  
DA6  
DA7  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
S0  
S16  
S18  
S20  
S22  
S24  
S26  
S28  
S30  
S17  
S19  
S21  
S23  
S25  
S27  
S29  
S31  
S32  
S34  
S36  
S38  
S40  
S42  
S44  
S46  
S33  
S35  
S37  
S39  
S41  
S43  
S45  
S47  
S48  
S50  
S52  
S54  
S56  
S58  
S60  
S62  
S49  
S51  
S53  
S55  
S57  
S59  
S61  
S63  
S64  
S66  
S68  
S70  
S72  
S74  
S76  
S78  
S65  
S67  
S69  
S71  
S73  
S75  
S77  
S79  
S2  
S4  
S6  
S8  
S10  
S12  
S14  
S1  
S3  
S5  
S7  
S9  
S11  
S13  
S15  
23. JMODE 2 (12-Bit, Decimate-by-1, Dual-Channel, 8 Lanes)  
OCTET  
NIBBLE  
DA0  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
T
T
T
T
T
T
T
T
A0  
A1  
A2  
A3  
B0  
B1  
B2  
B3  
A4  
A5  
A6  
A7  
B4  
B5  
B6  
B7  
A8  
A12  
A13  
A14  
A15  
B12  
B13  
B14  
B15  
A16  
A17  
A18  
A19  
B16  
B17  
B18  
B19  
DA1  
A9  
DA2  
A10  
A11  
B8  
DA3  
DB0  
DB1  
B9  
DB2  
B10  
B11  
DB3  
64  
版权 © 2018–2020, Texas Instruments Incorporated  
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
24. JMODE 3 (12-Bit, Decimate-by-1, Dual-Channel, 16 Lanes)  
OCTET  
NIBBLE  
DA0  
DA1  
DA2  
DA3  
DA4  
DA5  
DA6  
DA7  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
A8  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
A24  
A25  
A26  
A27  
A28  
A29  
A30  
A31  
B24  
B25  
B26  
B27  
B28  
B29  
B30  
B31  
A32  
A33  
A34  
A35  
A36  
A37  
A38  
A39  
B32  
B33  
B34  
B35  
B36  
B37  
B38  
B39  
A9  
A10  
A11  
A12  
A13  
A14  
A15  
B8  
B9  
B10  
B11  
B12  
B13  
B14  
B15  
25. JMODE 4 (8-Bit, Decimate-by-1, Single-Channel, 4 Lanes)  
OCTET  
NIBBLE  
DA0  
0
0
1
S0  
S2  
S1  
S3  
DA1  
DB0  
DB1  
26. JMODE 5 (8-Bit, Decimate-by-1, Single-Channel, 8 Lanes)  
OCTET  
NIBBLE  
DA0  
0
0
1
S0  
S2  
S4  
S6  
S1  
S3  
S5  
S7  
DA1  
DA2  
DA3  
DB0  
DB1  
DB2  
DB3  
27. JMODE 6 (8-Bit, Decimate-by-1, Dual-Channel, 4 Lanes)  
OCTET  
NIBBLE  
DA0  
0
0
1
A0  
A1  
B0  
B1  
DA1  
DB0  
DB1  
版权 © 2018–2020, Texas Instruments Incorporated  
65  
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
28. JMODE 7 (8-Bit, Decimate-by-1, Dual-Channel, 8 Lanes)  
OCTET  
NIBBLE  
DA0  
0
0
1
A0  
A1  
A2  
A3  
B0  
B1  
B2  
B3  
DA1  
DA2  
DA3  
DB0  
DB1  
DB2  
DB3  
29. JMODE 9 (15-Bit, Decimate-by-2, Dual-Channel, 8 Lanes)  
OCTET  
NIBBLE  
DA0  
0
1
0
1
2
3
A0  
A1  
A2  
A3  
B0  
B1  
B2  
B3  
DA1  
DA2  
DA3  
DB0  
DB1  
DB2  
DB3  
30. JMODE 10 (15-Bit, Decimate-by-4, Dual-Channel, 4 Lanes)  
OCTET  
NIBBLE  
DA0  
0
1
0
1
2
3
AI0  
AQ0  
BI0  
DA1  
DB0  
DB1  
BQ0  
31. JMODE 11 (15-Bit, Decimate-by-4, Dual-Channel, 8 Lanes)  
OCTET  
NIBBLE  
DA0  
0
1
0
1
2
3
AI0  
AI1  
DA1  
DA2  
AQ0  
AQ1  
BI0  
DA3  
DB0  
DB1  
BI1  
DB2  
BQ0  
BQ1  
DB3  
66  
版权 © 2018–2020, Texas Instruments Incorporated  
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
32. JMODE 12 (12-Bit, Decimate-by-4, Dual-Channel, 16 Lanes)  
OCTET  
NIBBLE  
DA0  
DA1  
DA2  
DA3  
DA4  
DA5  
DA6  
DA7  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
AI0  
AI4  
AI8  
AI12  
AI16  
AQ16  
AI17  
AQ17  
AI18  
AQ0  
AI1  
AQ4  
AI5  
AQ8  
AI9  
AQ12  
AI13  
AQ1  
AI2  
AQ5  
AI6  
AQ9  
AI10  
AQ10  
AI11  
AQ11  
BI8  
AQ13  
AI14  
AQ2  
AI3  
AQ6  
AI7  
AQ14  
AI15  
AQ218  
AI19  
AQ3  
BI0  
AQ7  
BI4  
AQ15  
BI12  
AQ19  
BI16  
BQ0  
BI1  
BQ4  
BI5  
BQ8  
BI9  
BQ12  
BI13  
BQ16  
BI17  
BQ1  
BI2  
BQ5  
BI6  
BQ9  
BI10  
BQ10  
BI11  
BQ11  
BQ13  
BI14  
BQ17  
BI18  
BQ2  
BI3  
BQ6  
BI7  
BQ14  
BI15  
BQ218  
BI19  
BQ3  
BQ7  
BQ15  
BQ19  
33. JMODE 13 (15-Bit, Decimate-by-8, Dual-Channel, 2 Lanes)  
OCTET  
0
1
2
3
NIBBLE  
DA0  
0
1
2
3
4
5
6
7
AI0  
BI0  
AQ0  
BQ0  
DB0  
34. JMODE 14 (15-Bit, Decimate-by-8, Dual-Channel, 4 Lanes)  
OCTET  
NIBBLE  
DA0  
0
1
0
1
2
3
AI0  
AQ0  
BI0  
DA1  
DB0  
DB1  
BQ0  
35. JMODE 15 (15-Bit, Decimate-by-16, Dual-Channel, 1 Lane)  
OCTET  
0
1
2
3
4
5
6
7
NIBBLE  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
DA0  
AI0  
AQ0  
BI0  
BQ0  
36. JMODE 16 (15-Bit, Decimate-by-16, Dual-Channel, 2 Lanes)  
OCTET  
0
1
2
3
NIBBLE  
DA0  
0
1
2
3
4
5
6
7
AI0  
BI0  
AQ0  
BQ0  
DB0  
版权 © 2018–2020, Texas Instruments Incorporated  
67  
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
37. JMODE 17 (8-bit, Decimate-by-1, Single-Channel, 16 lanes)  
OCTET  
NIBBLE  
DA0  
DA1  
DA2  
DA3  
DA4  
DA5  
DA6  
DA7  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
0
0
1
S0  
S2  
S4  
S6  
S8  
S10  
S12  
S14  
S1  
S3  
S5  
S7  
S9  
S11  
S13  
S15  
38. JMODE 18 (8-Bit, Decimate-by-1, Dual-Channel, 16 Lanes)  
OCTET  
NIBBLE  
DA0  
DA1  
DA2  
DA3  
DA4  
DA5  
DA6  
DA7  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
0
0
1
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
7.4.3.2 Dual DDC and Redundant Data Mode  
When operating in dual-channel mode, the data from one channel can be routed to both digital down-converter  
blocks by using DIG_BIND_A or DIG_BIND_B (see the digital channel binding register). This feature enables  
down-conversion of two separate captured bands from a single ADC channel. The second ADC can be powered  
down in this mode by setting PD_ACH or PD_BCH (see the device configuration register).  
Additionally, DIG_BIND_A or DIG_BIND_B can be used to provide redundant data to separate digital processors  
by routing data from one ADC channel to both JESD204B links. Redundant data mode is available for all JMODE  
modes except for the single-channel modes. Both dual DDC mode and redundant data mode are demonstrated  
in 83 where the data for ADC channel A is routed to both DDCs and then transmitted to a single processor or  
two processors (for redundancy).  
68  
版权 © 2018–2020, Texas Instruments Incorporated  
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
DDC Bypass  
DDC A  
JESD204B  
LINK A  
(DA0-DA7)  
ADC  
Channel A  
JMODE  
DIG_BIND_A = 0  
DDC Bypass  
DDC B  
JESD204B  
LINK B  
(DB0-DB7)  
ADC  
Channel B  
JMODE  
DIG_BIND_B = 0  
.
83. Dual DDC Mode or Redundant Data Mode for Channel A  
7.4.4 Power-Down Modes  
The PD input pin allows the ADC12DJ2700 devices to be entirely powered down. Power-down can also be  
controlled by MODE (see the device configuration register). The serial data output drivers are disabled when PD  
is high. When the device returns to normal operation, the JESD204 link must be re-established, and the ADC  
pipeline and decimation filters contain meaningless information so the system must wait a sufficient time for the  
data to be flushed. If power-down for power savings is desired, the system must power down the supply voltages  
regulators for VA19, VA11, and VD11 rather than make use of the PD input or MODE settings.  
CAUTION  
Powering down the high-speed data outputs (DA0± ... DA7±, DB0± ... DB7±) for  
extended times may damage the output serializers, especially at high data rates.  
Powering down the serializers occurs when the PD pin is held high, the MODE register  
is programmed to a value other than 0x00 or 0x01, the PD_ACH or PD_BCH registers  
settings are programmed to 1, or when the JMODE register setting is programmed to a  
mode that uses less than the 16 total lanes that the device allows. For instance,  
JMODE 0 uses eight total lanes and therefore the four highest-indexed lanes for each  
JESD204B link (DA4± ... DA7±, DB4± ... DB7±) are powered down in this mode. When  
the PD pin is held high or the MODE register is programmed to a value other than  
0x00 or 0x01, all output serializers are powered down. When the PD_ACH or PD_BCH  
register settings are programmed to 1, the associated ADC channel and lanes are  
powered down. To prevent unreliable operation, the PD pin and MODE register must  
only be used for brief periods of time to measure temperature diode offsets and not  
used for long-term power savings. Furthermore, using a JMODE that uses fewer than  
16 lanes results in unreliable operation of the unused lanes. If the system never uses  
the unused lanes during the lifetime of the device, then the unused lanes do not cause  
issues and can be powered down. If the system may make use of the unused lanes at  
a later time, the reliable operation of the serializer outputs can be maintained by  
enabling JEXTRA_A and JEXTRA_B, which results in the VD11 power consumption to  
increase and the output serializers to toggle.  
7.4.5 Test Modes  
A number of device test modes are available. These modes insert known patterns of information into the device  
data path for assistance with system debug, development, or characterization.  
版权 © 2018–2020, Texas Instruments Incorporated  
69  
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
7.4.5.1 Serializer Test-Mode Details  
Test modes are enabled by setting JTEST (see the JESD204B test pattern control register) to the desired test  
mode. Each test mode is described in detail in the following sections. Regardless of the test mode, the serializer  
outputs are powered up based on JMODE. Only enable the test modes when the JESD204B link is disabled. 图  
84 provides a diagram showing the various test mode insertion points.  
ADC  
JESD204B Block  
JESD204B  
TRANSPORT  
LAYER  
JESD204B  
LINK  
LAYER  
Active Lanes and  
Serial Rates  
Set by JMODE  
SCRAMBLER  
(Optional)  
8b/10b  
ENCODER  
JESD204B  
TX  
ADC  
Long/Short Transport  
Octet Ramp  
Test Mode Enable  
Repeated ILA  
Modified RPAT  
Test Mode Enable  
PRBS  
D21.5  
K28.5  
Serial Outputs High/Low  
Test Mode Enable  
84. Test Mode Insertion Points  
7.4.5.2 PRBS Test Modes  
The PRBS test modes bypass the 8b, 10b encoder. These test modes produce pseudo-random bit streams that  
comply with the ITU-T O.150 specification. These bit streams are used with lab test equipment that can self-  
synchronize to the bit pattern and, therefore, the initial phase of the pattern is not defined.  
The sequences are defined by a recursive equation. For example, 公式 10 defines the PRBS7 sequence.  
y[n] = y[n – 6]y[n – 7]  
where  
bit n is the XOR of bit [n – 6] and bit [n – 7], which are previously transmitted bits  
(10)  
39 lists equations and sequence lengths for the available PRBS test modes. The initial phase of the pattern is  
unique for each lane.  
39. PBRS Mode Equations  
PRBS TEST MODE  
PRBS7  
SEQUENCE  
y[n] = y[n – 6]y[n – 7]  
y[n] = y[n – 14]y[n – 15]  
y[n] = y[n – 18]y[n – 23]  
SEQUENCE LENGTH (bits)  
127  
PRBS15  
PRBS23  
32767  
8388607  
7.4.5.3 Ramp Test Mode  
In the ramp test mode, the JESD204B link layer operates normally, but the transport layer is disabled and the  
input from the formatter is ignored. After the ILA sequence, each lane transmits an identical octet stream that  
increments from 0x00 to 0xFF and repeats.  
7.4.5.4 Short and Long Transport Test Mode  
JESD204B defines both short and long transport test modes to verify that the transport layers in the transmitter  
and receiver are operating correctly. The ADC12DJ2700 has three different transport layer test patterns  
depending on the N' value of the specified JMODE (see 19).  
70  
版权 © 2018–2020, Texas Instruments Incorporated  
 
 
 
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
7.4.5.4.1 Short Transport Test Pattern  
Short transport test patterns send a predefined octet format that repeats every frame. In the ADC12DJ2700, all  
JMODE configurations that have an N' value of 8 or 12 use the short transport test pattern. 40 and 41  
define the short transport test patterns for N' values of 8 and 12. All applicable lanes are shown, however only  
the enabled lanes (lowest indexed) for the configured JMODE are used.  
40. Short Transport Test Pattern for N' = 8 Modes (Length = 2 Frames)  
FRAME  
DA0  
DA1  
DA2  
DA3  
DB0  
DB1  
DB2  
DB3  
0
1
0x00  
0x01  
0x02  
0x03  
0x00  
0x01  
0x02  
0x03  
0xFF  
0xFE  
0xFD  
0xFC  
0xFF  
0xFE  
0xFD  
0xFC  
41. Short Transport Test Pattern for N' = 12 Modes (Length = 1 Frame)  
OCTET  
NIBBLE  
DA0  
DA1  
DA2  
DA3  
DA4  
DA5  
DA6  
DA7  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
0xF01  
0xE11  
0xD21  
0xC31  
0xB41  
0xA51  
0x961  
0x871  
0xF01  
0xE11  
0xD21  
0xC31  
0xB41  
0xA51  
0x961  
0x871  
0xF02  
0xE12  
0xD22  
0xC32  
0xB42  
0xA52  
0x962  
0x872  
0xF02  
0xE12  
0xD22  
0xC32  
0xB42  
0xA52  
0x962  
0x872  
0xF03  
0xE13  
0xD23  
0xC33  
0xB43  
0xA53  
0x963  
0x873  
0xF03  
0xE13  
0xD23  
0xC33  
0xB43  
0xA53  
0x963  
0x873  
0xF04  
0xE14  
0xD24  
0xC34  
0xB44  
0xA54  
0x964  
0x874  
0xF04  
0xE14  
0xD24  
0xC34  
0xB44  
0xA54  
0x964  
0x874  
0xF05  
0xE15  
0xD25  
0xC35  
0xB45  
0xA55  
0x965  
0x875  
0xF05  
0xE15  
0xD25  
0xC35  
0xB45  
0xA55  
0x965  
0x875  
版权 © 2018–2020, Texas Instruments Incorporated  
71  
 
 
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
7.4.5.4.2 Long Transport Test Pattern  
The long-transport test mode is used in all of the JMODE modes where N' equals 16. Patterns are generated in  
accordance with the JESD204B standard and are different for each output format as defined in 19. The rules  
for the pattern are defined below. 公式 11 gives the length of the test pattern. The long transport test pattern is  
the same for link A and link B, where DAx lanes belong to link A and DBx lanes belong to link B.  
Long Test Pattern Length (Frames) = K × ceil[(M × S + 2) / K]  
(11)  
Sample Data:  
Frame 0: Each sample contains N bits, with all samples set to the converter ID (CID) plus 1 (CID + 1). The  
CID is defined based on the converter number within the link; two links are used in all modes except  
JMODE 15. Within a link, the converters are numbered by channel (A or B) and in-phase (I) and  
quadrature-phase (Q) and reset between links. For instance, in JMODE 10, two links are used so channel  
A and B data are separated into separate links and the in-phase component for each channel has CID = 0  
and the quadrature-phase component has CID = 1. In JMODE 15, one link is used, so channel A and B  
are within the same link and AI has CID = 0, AQ has CID = 1, BI has CID = 2, and BQ has CID = 3.  
Frame 1: Each sample contains N bits, with each sample (for each converter) set as its individual sample  
ID (SID) within the frame plus 1 (SID + 1)  
Frame 2 +: Each sample contains N bits, with the data set to 2N–1 for all samples (for example, if N is 15  
then 2N–1 = 16384)  
Control Bits (if CS > 0):  
Frame 0 to M × S – 1: The control bit belonging to the sample mod (i, S) of the converter floor (i, S) is set  
to 1 and all others are set to 0, where i is the frame index (i = 0 is the first frame of the pattern).  
Essentially, the control bit walks from the lowest indexed sample to the highest indexed sample and from  
the lowest indexed converter to the highest indexed converter, changing position every frame.  
Frame M × S +: All control bits are set to 0  
42 describes an example long transport test pattern for when JMODE = 10, K = 10.  
42. Example Long Transport Test Pattern (JMODE = 10, K = 10)  
TIME  
PATTERN REPEATS →  
18 19 20 21  
0x8000 0x0003  
OCTET  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
NUM  
DA0  
DA1  
DB0  
DB1  
0x0003  
0x0004  
0x0003  
0x0004  
0x0002  
0x0003  
0x0002  
0x0003  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x0004  
0x0003  
0x0004  
Frame  
n
Frame  
n + 1  
Frame  
n + 2  
Frame  
n + 3  
Frame  
n + 4  
Frame  
n + 5  
Frame  
n + 6  
Frame  
n + 7  
Frame  
n + 8  
Frame  
n + 9  
Frame  
n + 10  
The pattern starts at the end of the initial lane alignment sequence (ILAS) and repeats indefinitely as long as the  
link remains running. For more details see the JESD204B specification, section 5.1.6.3.  
7.4.5.5 D21.5 Test Mode  
In this test mode, the controller transmits a continuous stream of D21.5 characters (alternating 0s and 1s).  
7.4.5.6 K28.5 Test Mode  
In this test mode, the controller transmits a continuous stream of K28.5 characters.  
7.4.5.7 Repeated ILA Test Mode  
In this test mode, the JESD204B link layer operates normally, except that the ILA sequence (ILAS) repeats  
indefinitely instead of starting the data phase. Whenever the receiver issues a synchronization request, the  
transmitter initiates code group synchronization. Upon completion of code group synchronization, the transmitter  
repeatedly transmits the ILA sequence.  
72  
版权 © 2018–2020, Texas Instruments Incorporated  
 
 
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
7.4.5.8 Modified RPAT Test Mode  
A 12-octet repeating pattern is defined in INCITS TR-35-2004. The purpose of this pattern is to generate white  
spectral content for JESD204B compliance and jitter testing. 43 lists the pattern before and after 8b, 10b  
encoding.  
43. Modified RPAT Pattern Values  
20b OUTPUT OF 8b, 10b ENCODER  
OCTET NUMBER  
Dx.y NOTATION  
8-BIT INPUT TO 8b, 10b ENCODER  
(Two Characters)  
0
1
D30.5  
D23.6  
D3.1  
0xBE  
0xD7  
0x23  
0x47  
0x6B  
0x8F  
0xB3  
0x14  
0x5E  
0xFB  
0x35  
0x59  
0x86BA6  
2
0xC6475  
0xD0E8D  
0xCA8B4  
0x7949E  
0xAA665  
3
D7.2  
4
D11.3  
D15.4  
D19.5  
D20.0  
D30.2  
D27.7  
D21.1  
D25.2  
5
6
7
8
9
10  
11  
7.4.6 Calibration Modes and Trimming  
The ADC12DJ2700 has two calibration modes available: foreground calibration and background calibration.  
When foreground calibration is initiated the ADCs are automatically taken offline and the output data becomes  
mid-code (0x000 in 2's complement) while a calibration is occurring. Background calibration allows the ADC to  
continue normal operation while the ADC cores are calibrated in the background by swapping in a different ADC  
core to take its place. Additional offset calibration features are available in both foreground and background  
calibration modes. Further, a number of ADC parameters can be trimmed to optimize performance in a user  
system.  
The ADC12DJ2700 consists of a total of six sub-ADCs, each referred to as a bank, with two banks forming an  
ADC core. The banks sample out-of-phase so that each ADC core is two-way interleaved. The six banks form  
three ADC cores, referred to as ADC A, ADC B, and ADC C. In foreground calibration mode, ADC A samples  
INA± and ADC B samples INB± in dual-channel mode and both ADC A and ADC B sample INA± (or INB±) in  
single-channel mode. In the background calibration modes, the third ADC core, ADC C, is swapped in  
periodically for ADC A and ADC B so that they can be calibrated without disrupting operation. 85 provides a  
diagram of the calibration system including labeling of the banks that make up each ADC core. When calibration  
is performed the linearity, gain, and offset voltage for each bank are calibrated to an internally generated  
calibration signal. The analog inputs can be driven during calibration, both foreground and background, except  
that when offset calibration (OS_CAL or BGOS_CAL) is used there must be no signals (or aliased signals) near  
DC for proper estimation of the offset (see the Offset Calibration section).  
版权 © 2018–2020, Texas Instruments Incorporated  
73  
 
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
ADC A  
ADC C  
ADC B  
Bank 0  
Bank 1  
MUX  
Calibration  
Signal  
INA+  
INAœ  
ADC A  
Output  
MUX  
Calibration  
Engine  
Bank 2  
Bank 3  
Calibration  
Engine  
MUX  
Calibration  
Signal  
Calibration  
Engine  
ADC B  
Output  
MUX  
INB+  
Bank 4  
Bank 5  
INBœ  
MUX  
Calibration  
Engine  
Calibration  
Signal  
Calibration  
Engine  
85. ADC12DJ2700 Calibration System Block Diagram  
In addition to calibration, a number of ADC parameters are user controllable to provide trimming for optimal  
performance. These parameters include input offset voltage, ADC gain, interleaving timing, and input termination  
resistance. The default trim values are programmed at the factory to unique values for each device that are  
determined to be optimal at the test system operating conditions. The user can read the factory-programmed  
values from the trim registers and adjust as desired. The register fields that control the trimming are labeled  
according to the input that is being sampled (INA± or INB±), the bank that is being trimmed, or the ADC core that  
is being trimmed. The user is not expected to change the trim values as operating conditions change, however  
optimal performance can be obtained by doing so. Any custom trimming must be done on a per device basis  
because of process variations, meaning that there is no global optimal setting for all parts. See the Trimming  
section for information about the available trim parameters and associated registers.  
7.4.6.1 Foreground Calibration Mode  
Foreground calibration requires the ADC to stop converting the analog input signals during the procedure.  
Foreground calibration always runs on power-up and the user must wait a sufficient time before programming the  
device to ensure that the calibration is finished. Foreground calibration can be initiated by triggering the  
calibration engine. The trigger source can be either the CAL_TRIG pin or CAL_SOFT_TRIG (see the calibration  
software trigger register) and is chosen by setting CAL_TRIG_EN (see the calibration pin configuration register).  
7.4.6.2 Background Calibration Mode  
Background calibration mode allows the ADC to continuously operate, with no interruption of data. This  
continuous operation is accomplished by activating an extra ADC core that is calibrated and then takes over  
operation for one of the other previously active ADC cores. When that ADC core is taken off-line, that ADC is  
calibrated and can in turn take over to allow the next ADC to be calibrated. This process operates continuously,  
ensuring the ADC cores always provide the optimum performance regardless of system operating condition  
changes. Because of the additional active ADC core, background calibration mode has increased power  
74  
版权 © 2018–2020, Texas Instruments Incorporated  
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
consumption in comparison to foreground calibration mode. The low-power background calibration (LPBG) mode  
discussed in the Low-Power Background Calibration (LPBG) Mode section provides reduced average power  
consumption in comparison with the standard background calibration mode. Background calibration can be  
enabled by setting CAL_BG (see the calibration configuration 0 register). CAL_TRIG_EN must be set to 0 and  
CAL_SOFT_TRIG must be set to 1.  
Great care has been taken to minimize effects on converted data as the core switching process occurs, however,  
small brief glitches may still occur on the converter data as the cores are swapped. See the Typical  
Characteristics section for examples of possible glitches in sine-wave and DC signals.  
7.4.6.3 Low-Power Background Calibration (LPBG) Mode  
Low-power background calibration (LPBG) mode reduces the power-overhead of enabling the additional ADC  
core while still allowing background calibration of the ADC cores to maintain optimal performance as operating  
conditions change. LPBG calibration modifies the background calibration procedure by powering down the spare  
ADC core until it is ready to be calibrated. Set LP_EN = 1 to enable the low-power background calibration  
feature. Calibration and swapping of ADC cores can be controlled either automatically by the device or manually  
by the system by setting LP_TRIG appropriately. Manual control (LP_TRIG=1) allows the system to trigger  
calibration in order to limit the number of calibration cycles that occur to avoid unnecessary core swaps or to  
keep power consumption at a minimum. For instance, the user may decide to run calibration only when the  
system temperature changes by some fixed temperature. If manual control is not necessary the automatic  
calibration control can be enabled (LP_TRIG=0) to calibrate at fixed time intervals.  
In automatic calibration mode (LP_TRIG=0) the spare ADC core sleep time can be controlled by the  
LP_SLEEP_DLY register setting. LP_SLEEP_DLY is used to adjust the amount of time an ADC sleeps before  
waking up for calibration (when LP_EN=1 and LP_TRIG = 0). LP_WAKE_DLY sets how long the core is allowed  
to stabilize after being awoken before calibration begins. In automatic calibration control mode the freshly  
calibrated core is swapped in for an active core as soon as calibration finishes and the new spare core is  
powered down for the sleep duration before waking up and calibrating.  
Manual calibration control is enabled by setting LP_TRIG high in order to use the calibration trigger  
(CAL_SOFT_TRIG or CALTRIG) to trigger calibrations and core swaps. When manual control is enabled  
(LP_TRIG=1) the spare ADC is held in sleep mode while the calibration trigger is high. Setting the calibration  
trigger low then wakes up the spare ADC core and starts the calibration routine after waiting for the specified  
wake delay (LP_WAKE_DLY). The spare ADC core is swapped in for an active core once calibration is complete  
and the calibration trigger is set high again. If the calibration trigger is held low, then the spare ADC core  
calibrates and remains powered until the calibration trigger goes high; therefore consuming power. can report  
when the spare ADC finishes calibration on the CALSTAT output pin by setting the CALSTAT pin to output the  
CAL_STOPPED signal (CAL_STATUS_SEL = 1). For lowest power consumption, set the calibration trigger high  
before calibration finishes to allow the spare ADC to swap in for an active ADC core as soon as calibration  
finishes. Otherwise, the ADC core swap can be timed manually by setting the calibration trigger high at the  
desired time to minimize system impact of potential glitches caused by the swapping procedure.  
In LPBG mode there is an increase in power consumption during the ADC core calibration. The longer the spare  
ADC is held asleep the lower the average power consumption, however large shifts in operating conditions  
during the sleep cycle may cause degraded ADC performance due to non-optimized calibration data for the  
active ADC core. The power consumption roughly alternates between the power consumption in foreground  
calibration when the spare ADC core is sleeping to the power consumption in background calibration when the  
spare ADC is being calibrated. Design the power-supply network to handle the transient power requirements for  
this mode, including bulk capacitance after any power supply filtering network to help regulate the supply voltage  
during the supply transient.  
7.4.7 Offset Calibration  
Foreground calibration and background calibration modes inherently calibrate the offsets of the ADC cores;  
however, the input buffers sit outside of the calibration loop and therefore their offsets are not calibrated by the  
standard calibration process. In both dual-channel mode and single-channel mode, uncalibrated input buffer  
offsets result in a shift in the mid-code output (DC offset) with no input. Further, in single-channel mode  
uncalibrated input buffer offsets can result in a fixed spur at fS / 2. A separate calibration is provided to correct  
the input buffer offsets.  
版权 © 2018–2020, Texas Instruments Incorporated  
75  
 
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
There must be no signals at or near DC or aliased signals that fall at or near DC in order to properly calibration  
the offsets, requiring the system to ensure this condition during normal operation or have the ability to mute the  
input signal during calibration. Foreground offset calibration is enabled via CAL_OS and only performs the  
calibration one time as part of the foreground calibration procedure. Background offset calibration is enabled via  
CAL_BGOS and continues to correct the offset as part of the background calibration routine to account for  
operating condition changes. When CAL_BGOS is set, the system must ensure that there are no DC or near DC  
signals or aliased signals that fall at or near DC during normal operation. Offset calibration can be performed as  
a foreground operation when using background calibration by setting CAL_OS to 1 before setting CAL_EN, but  
does not correct for variations as operating conditions change.  
The offset calibration correction uses the input offset voltage trim registers (see 44) to correct the offset and  
therefore must not be written by the user when offset calibration is used. The user can read the calibrated values  
by reading the OADJ_x_VINy registers, where x is the ADC core and y is the input (INA± or INB±), after  
calibration is completed. Only read the values when FG_DONE is read as 1 when using foreground offset  
calibration (CAL_OS = 1) and do not read the values when using background offset calibration (CAL_BGOS = 1).  
Setting CAL_OS to 1 and CAL_BG to 1 performs an offset calibration of all three ADC cores during the  
foreground calibration process.  
76  
版权 © 2018–2020, Texas Instruments Incorporated  
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
7.4.8 Trimming  
44 lists the parameters that can be trimmed and the associated registers. User trimming is limited to  
foreground (FG) calibration only.  
44. Trim Register Descriptions  
TRIM PARAMETER  
Band-gap reference  
TRIM REGISTER  
NOTES  
BG_TRIM  
Measurement on BG output pin.  
RTRIM_x,  
where x = A for INA± or B for INB±)  
The device must be powered on with a clock  
applied.  
Input termination resistance  
Input offset adjustment in dual channel mode  
consists of changing OADJ_A_VINA for  
channel A and OADJ_B_VINB for channel B.  
In single channel mode, OADJ_A_VINx and  
OADJ_B_VINx must be adjusted together to  
trim the input offset or adjusted separate to  
compensate the fS/2 offset spur.  
OADJ_x_VINy,  
where x = ADC core (A or B)  
and y = A for INA± or B for INB±)  
Input offset voltage  
Set FS_RANGE_A and FS_RANGE_B to  
default values before trimming the input. Use  
FS_RANGE_A and FS_RANGE_B to adjust  
the full-scale input voltage. To trim the gain  
of ADC core A, change GAIN_B0 and  
GAIN_B1 together in the same direction. To  
trim the gain of ADC core B, change  
GAIN_B4 and GAIN_B5 together in the same  
direction. To trim the gain of the two banks  
within ADC A, change GAIN_B0 and  
GAIN_B1 in opposite directions. To trim the  
gain of the two banks within ADC B, change  
GAIN_B4 and GAIN_B5 in opposite  
GAIN_TRIM_x,  
where x = A for INA± or B for INB±)  
INA± and INB± gain  
directions.  
Full-scale input voltage adjustment for each  
input. The default value is effected by  
GAIN_TRIM_x (x = A or B). Trim  
GAIN_TRIM_x with FS_RANGE_x set to the  
default value. FS_RANGE_x can then be  
used to trim the full-scale input voltage.  
FS_RANGE_x,  
where x = A for INA± or B for INB±)  
INA± and INB± full-scale input voltage  
Trims the timing between the two banks of  
an ADC core (ADC A or B). The 0° clock  
phase is used for dual channel mode and for  
ADC B in single channel mode. The –90°  
clock phase is used only for ADC A in single-  
channel mode. A mismatch in the timing  
between the two banks of an ADC core can  
result in an fS/2-fIN spur in dual channel  
mode or fS/4±fIN spurs in single channel  
mode.  
Bx_TIME_y,  
where x = bank number (0, 1, 4 or 5)  
and y = 0° or –90° clock phase  
Intra-ADC core timing (bank timing)  
The suffix letter (A or B) indicates the ADC  
core that is being trimmed. Changing either  
TADJ_A or TADJ_B adjusts the sampling  
instance of ADC A relative to ADC B in dual  
channel mode.  
Inter-ADC core timing (dual-channel mode)  
Inter-ADC core timing (single-channel mode)  
TADJ_A, TADJ_B  
These trim registers are used to adjust the  
timing of ADC core A relative to ADC core B  
in single channel mode. A mismatch in the  
timing results in an fS/2-fIN spur that is signal  
dependent. Changing either TADJ_A_FG90  
or TADJ_B_FG0 changes the relative timing  
of ADC core A relative to ADC core B in  
single channel mode. These registers are  
trimmed at production to optimize  
TADJ_A_FG90, TADJ_B_FG0  
performance for INA±.  
版权 © 2018–2020, Texas Instruments Incorporated  
77  
 
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
7.4.9 Offset Filtering  
The ADC12DJ2700 has an additional feature that can be enabled to reduce offset-related interleaving spurs at fS  
/ 2 and fS / 4 (single input mode only). Offset filtering is enabled via CAL_OSFILT. The OSFILT_BW and  
OSFILT_SOAK parameters can be adjusted to tradeoff offset spur reduction with potential impact on information  
in the mission mode signal being processed. Set these two parameters to the same value under most situations.  
The DC_RESTORE setting is used to either retain or filter out all DC-related content in the signal. This feature  
implements a notch filter at fS / 2 and fS / 4 (single input mode only) and also filters out signals that fall at these  
frequency locations. Reducing the notch filter bandwidth using OSFILT_BW can reduce the range of signals that  
are filtered by this feature.  
78  
版权 © 2018–2020, Texas Instruments Incorporated  
 
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
7.5 Programming  
7.5.1 Using the Serial Interface  
The serial interface is accessed using the following four pins: serial clock (SCLK), serial data in (SDI), serial data  
out (SDO), and serial interface chip-select (SCS). Register access is enabled through the SCS pin.  
7.5.1.1 SCS  
This signal must be asserted low to access a register through the serial interface. Setup and hold times with  
respect to the SCLK must be observed.  
7.5.1.2 SCLK  
Serial data input is accepted at the rising edge of this signal. SCLK has no minimum frequency requirement.  
7.5.1.3 SDI  
Each register access requires a specific 24-bit pattern at this input. This pattern consists of a read-and-write  
(R/W) bit, register address, and register value. The data are shifted in MSB first and multi-byte registers are  
always in little-endian format (least significant byte stored at the lowest address). Setup and hold times with  
respect to the SCLK must be observed (see the Timing Requirements table).  
7.5.1.4 SDO  
The SDO signal provides the output data requested by a read command. This output is high impedance during  
write bus cycles and during the read bit and register address portion of read bus cycles.  
As shown in 86, each register access consists of 24 bits. The first bit is high for a read and low for a write.  
The next 15 bits are the address of the register that is to be written to. During write operations, the last eight bits  
are the data written to the addressed register. During read operations, the last eight bits on SDI are ignored and,  
during this time, the SDO outputs the data from the addressed register. 86 shows the serial protocol details.  
Single Register Access  
SCS  
1
8
16  
17  
24  
SCLK  
SDI  
Command Field  
Data Field  
R/W A14 A13 A12 A11 A10 A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1 A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1 D0  
Data Field  
High Z  
High Z  
SDO  
(read mode)  
D7  
D6  
D5  
D4  
D3 D2  
D1  
D0  
86. Serial Interface Protocol: Single Read/Write  
版权 © 2018–2020, Texas Instruments Incorporated  
79  
 
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
Programming (接下页)  
7.5.1.5 Streaming Mode  
The serial interface supports streaming reads and writes. In this mode, the initial 24 bits of the transaction  
specifics the access type, register address, and data value as normal. Additional clock cycles of write or read  
data are immediately transferred, as long as the SCS input is maintained in the asserted (logic low) state. The  
register address auto increments (default) or decrements for each subsequent 8-bit transfer of the streaming  
transaction. The ADDR_ASC bit (register 000h, bits 5 and 2) controls whether the address value ascends  
(increments) or descends (decrements). Streaming mode can be disabled by setting the ADDR_HOLD bit (see  
the user SPI configuration register). 87 shows the streaming mode transaction details.  
Multiple Register Access  
SCS  
1
8
16  
17  
24  
25  
32  
SCLK  
SDI  
Command Field  
Data Field (write mode)  
D4 D3 D2 D1  
Data Field (write mode)  
D5 D4 D3 D2  
A1  
1
R/W A14 A13 A12  
A10 A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D0  
D7  
D6  
D1  
D0  
Data Field  
D4 D3 D2  
Data Field  
D3 D2  
High Z  
High Z  
SDO  
(read mode)  
D7  
D6  
D5  
D4  
D1  
D0  
D7  
D6  
D5  
D1  
D0  
87. Serial Interface Protocol: Streaming Read/Write  
See the Register Maps section for detailed information regarding the registers.  
The serial interface must not be accessed during ADC calibration. Accessing the serial  
interface during this time impairs the performance of the device until the device is  
calibrated correctly. Writing or reading the serial registers also reduces dynamic ADC  
performance for the duration of the register access time.  
7.6 Register Maps  
The Memory Map lists all the ADC12DJ2700 registers.  
Memory Map  
ADDRESS  
RESET  
ACRONYM  
TYPE  
REGISTER NAME  
STANDARD SPI-3.0 (0x000 to 0x00F)  
0x000  
0x001  
0x30  
Undefined  
0x00  
CONFIG_A  
RESERVED  
DEVICE_CONFIG  
CHIP_TYPE  
CHIP_ID  
R/W  
R
Configuration A Register  
RESERVED  
0x002  
R/W  
R
Device Configuration Register  
Chip Type Register  
Chip ID Registers  
Chip Version Register  
RESERVED  
0x003  
0x03  
0x004-0x005  
0x006  
0x0020  
0x0A  
R
CHIP_VERSION  
RESERVED  
VENDOR_ID  
RESERVED  
R
0x007-0x00B  
0x00C-0x00D  
0x00E-0x00F  
Undefined  
0x0451  
Undefined  
R
R
Vendor Identification Register  
RESERVED  
R
USER SPI CONFIGURATION (0x010 to 0x01F)  
0x010  
0x00  
USR0  
R/W  
R
User SPI Configuration Register  
RESERVED  
0x011-0x01F  
Undefined  
RESERVED  
80  
Copyright © 2018–2020, Texas Instruments Incorporated  
 
 
 
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
Register Maps (continued)  
Memory Map (continued)  
ADDRESS  
RESET  
ACRONYM  
TYPE  
REGISTER NAME  
MISCELLANEOUS ANALOG REGISTERS (0x020 to 0x047)  
0x020-0x028  
0x029  
Undefined  
0x00  
RESERVED  
CLK_CTRL0  
CLK_CTRL1  
RESERVED  
SYSREF_POS  
RESERVED  
FS_RANGE_A  
FS_RANGE_B  
RESERVED  
BG_BYPASS  
RESERVED  
TMSTP_CTRL  
RESERVED  
R
R/W  
R/W  
R
RESERVED  
Clock Control Register 0  
Clock Control Register 1  
RESERVED  
0x02A  
0x20  
0x02B  
Undefined  
Undefined  
Undefined  
0xA000  
0xA000  
Undefined  
0x00  
0x02C-0x02E  
0x02F  
R
SYSREF Capture Position Register  
RESERVED  
R
0x030-0x031  
0x032-0x033  
0x034-0x037  
0x038  
R/W  
R/W  
R
INA Full-Scale Range Adjust Register  
INB Full-Scale Range Adjust Register  
RESERVED  
R/W  
R
Internal Reference Bypass Register  
RESERVED  
0x039-0x03A  
0x03B  
Undefined  
0x00  
R/W  
R
TMSTP± Control Register  
RESERVED  
0x03C-0x047  
Undefined  
SERIALIZER REGISTERS (0x048 to 0x05F)  
0x048  
0x00  
SER_PE  
R/W  
R
Serializer Pre-Emphasis Control Register  
RESERVED  
0x049-0x05F  
Undefined  
RESERVED  
CALIBRATION REGISTERS (0x060 to 0x0FF)  
0x060  
0x061  
0x01  
INPUT_MUX  
CAL_EN  
R/W  
R/W  
R/W  
R
Input Mux Control Register  
Calibration Enable Register  
Calibration Configuration 0 Register  
RESERVED  
0x01  
0x062  
0x01  
CAL_CFG0  
RESERVED  
CAL_STATUS  
CAL_PIN_CFG  
CAL_SOFT_TRIG  
RESERVED  
CAL_LP  
0x063-0x069  
0x06A  
Undefined  
Undefined  
0x00  
R
Calibration Status Register  
Calibration Pin Configuration Register  
Calibration Software Trigger Register  
RESERVED  
0x06B  
R/W  
R/W  
R
0x06C  
0x01  
0x06D  
Undefined  
0x88  
0x06E  
R/W  
R
Low-Power Background Calibration Register  
RESERVED  
0x06F  
Undefined  
0x00  
RESERVED  
CAL_DATA_EN  
CAL_DATA  
RESERVED  
GAIN_TRIM_A  
GAIN_TRIM_B  
BG_TRIM  
0x070  
R/W  
R/W  
R
Calibration Data Enable Register  
Calibration Data Register  
RESERVED  
0x071  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
0x072-0x079  
0x07A  
R/W  
R/W  
R/W  
R
Channel A Gain Trim Register  
Channel B Gain Trim Register  
Band-Gap Reference Trim Register  
RESERVED  
0x07B  
0x07C  
0x07D  
RESERVED  
RTRIM_A  
0x07E  
R/W  
R/W  
VINA Input Resistor Trim Register  
VINB Input Resistor Trim Register  
0x07F  
RTRIM_B  
Timing Adjustment for A-ADC, Single-Channel Mode,  
Foreground Calibration Register  
0x080  
0x081  
0x082  
0x083  
0x084  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
TADJ_A_FG90  
TADJ_B_FG0  
TADJ_A_BG90  
TADJ_C_BG0  
TADJ_C_BG90  
R/W  
R/W  
R/W  
R/W  
R/W  
Timing Adjustment for B-ADC, Single-Channel Mode,  
Foreground Calibration Register  
Timing Adjustment for A-ADC, Single-Channel Mode,  
Background Calibration Register  
Timing Adjustment for C-ADC, Single-Channel Mode,  
Background Calibration Register  
Timing Adjustment for C-ADC, Single-Channel Mode,  
Background Calibration Register  
Copyright © 2018–2020, Texas Instruments Incorporated  
81  
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
Register Maps (continued)  
Memory Map (continued)  
ADDRESS  
0x085  
RESET  
ACRONYM  
TADJ_B_BG0  
TADJ_A  
TYPE  
REGISTER NAME  
Timing Adjustment for B-ADC, Single-Channel Mode,  
Background Calibration Register  
Undefined  
Undefined  
Undefined  
R/W  
R/W  
R/W  
0x086  
Timing Adjustment for A-ADC, Dual-Channel Mode Register  
Timing Adjustment for C-ADC Acting for A-ADC, Dual-  
Channel Mode Register  
0x087  
TADJ_CA  
Timing Adjustment for C-ADC Acting for B-ADC, Dual-  
Channel Mode Register  
0x088  
Undefined  
TADJ_CB  
R/W  
0x089  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
0x00  
TADJ_B  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Timing Adjustment for B-ADC, Dual-Channel Mode Register  
Offset Adjustment for A-ADC and INA Register  
Offset Adjustment for A-ADC and INB Register  
Offset Adjustment for C-ADC and INA Register  
Offset Adjustment for C-ADC and INB Register  
Offset Adjustment for B-ADC and INA Register  
Offset Adjustment for B-ADC and INB Register  
RESERVED  
0x08A-0x08B  
0x08C-0x08D  
0x08E-0x08F  
0x090-0x091  
0x092-0x093  
0x094-0x095  
0x096  
OADJ_A_INA  
OADJ_A_INB  
OADJ_C_INA  
OADJ_C_INB  
OADJ_B_INA  
OADJ_B_INB  
RESERVED  
OSFILT0  
0x097  
R/W  
R/W  
R
Offset Filtering Control 0  
0x098  
0x33  
OSFILT1  
Offset Filtering Control 1  
0x099-0x0FF  
Undefined  
RESERVED  
RESERVED  
ADC BANK REGISTERS (0x100 to 0x15F)  
0x100-0x101  
0x102  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
RESERVED  
B0_TIME_0  
B0_TIME_90  
RESERVED  
B1_TIME_0  
B1_TIME_90  
RESERVED  
B2_TIME_0  
B2_TIME_90  
RESERVED  
B3_TIME_0  
B3_TIME_90  
RESERVED  
B4_TIME_0  
B4_TIME_90  
RESERVED  
B5_TIME_0  
B5_TIME_90  
RESERVED  
R
RESERVED  
R/W  
R/W  
R
Timing Adjustment for Bank 0 (0° Clock) Register  
Timing Adjustment for Bank 0 (–90° Clock) Register  
RESERVED  
0x103  
0x104-0x111  
0x112  
R/W  
R/W  
R
Timing Adjustment for Bank 1 (0° Clock) Register  
Timing Adjustment for Bank 1 (–90° Clock) Register  
RESERVED  
0x113  
0x114-0x121  
0x122  
R/W  
R/W  
R
Timing Adjustment for Bank 2 (0° Clock) Register  
Timing Adjustment for Bank 2 (–90° Clock) Register  
RESERVED  
0x123  
0x124-0x131  
0x132  
R/W  
R/W  
R
Timing Adjustment for Bank 3 (0° Clock) Register  
Timing Adjustment for Bank 3 (–90° Clock) Register  
RESERVED  
0x133  
0x134-0x141  
0x142  
R/W  
R/W  
R
Timing Adjustment for Bank 4 (0° Clock) Register  
Timing Adjustment for Bank 4 (–90° Clock) Register  
RESERVED  
0x143  
0x144-0x151  
0x152  
R/W  
R/W  
R
Timing Adjustment for Bank 5 (0° Clock) Register  
Timing Adjustment for Bank 5 (–90° Clock) Register  
RESERVED  
0x153  
0x154-0x15F  
LSB CONTROL REGISTERS (0x160 to 0x1FF)  
0x160  
0x00  
ENC_LSB  
R/W  
R
LSB Control Bit Output Register  
RESERVED  
0x161-0x1FF  
Undefined  
RESERVED  
JESD204B REGISTERS (0x200 to 0x20F)  
0x200  
0x201  
0x202  
0x203  
0x204  
0x01  
0x02  
0x1F  
0x01  
0x02  
JESD_EN  
JMODE  
KM1  
R/W  
R/W  
R/W  
R/W  
R/W  
JESD204B Enable Register  
JESD204B Mode (JMODE) Register  
JESD204B K Parameter Register  
JESD204B Manual SYNC Request Register  
JESD204B Control Register  
JSYNC_N  
JCTRL  
82  
Copyright © 2018–2020, Texas Instruments Incorporated  
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
Register Maps (continued)  
Memory Map (continued)  
ADDRESS  
0x205  
RESET  
0x00  
ACRONYM  
JTEST  
TYPE  
REGISTER NAME  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
JESD204B Test Pattern Control Register  
JESD204B DID Parameter Register  
0x206  
0x00  
DID  
0x207  
0x00  
FCHAR  
JESD204B Frame Character Register  
JESD204B, System Status Register  
JESD204B Channel Power-Down  
JESD204B Extra Lane Enable (Link A)  
JESD204B Extra Lane Enable (Link B)  
RESERVED  
0x208  
Undefined  
0x00  
JESD_STATUS  
PD_CH  
0x209  
0x20A  
0x00  
JEXTRA_A  
JEXTRA_B  
RESERVED  
0x20B  
0x00  
0x20C-0x20F  
Undefined  
DIGITAL DOWN CONVERTER REGISTERS (0x210-0x2AF)  
0x210  
0x00  
0xF2  
DDC_CFG  
OVR_T0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
DDC Configuration Register  
Overrange Threshold 0 Register  
Overrange Threshold 1 Register  
Overrange Configuration Register  
DDC Configuration Preset Mode Register  
DDC Configuration Preset Select Register  
Digital Channel Binding Register  
Rational NCO Reference Divisor Register  
NCO Synchronization Register  
RESERVED  
0x211  
0x212  
0xAB  
OVR_T1  
0x213  
0x07  
OVR_CFG  
CMODE  
0x214  
0x00  
0x215  
0x00  
CSEL  
0x216  
0x02  
DIG_BIND  
NCO_RDIV  
NCO_SYNC  
RESERVED  
FREQA0  
0x217-0x218  
0x219  
0x0000  
0x02  
0x21A-0x21F  
0x220-0x223  
0x224-0x225  
0x226-0x227  
0x228-0x22B  
0x22C-0x22D  
0x22E-0x22F  
0x230-0x233  
0x234-0x235  
0x236-0x237  
0x238-0x23B  
0x23C-0x23D  
0x23E-0x23F  
0x240-0x243  
0x244-0x245  
0x246-0x247  
0x248-0x24B  
0x24C-0x24D  
0x24E-0x24F  
0x250-0x253  
0x254-0x255  
0x256-0x257  
0x258-0x25B  
0x25C-0x25D  
0x25E-0x296  
0x297  
Undefined  
0xC0000000  
0x0000  
R/W  
R/W  
R
NCO Frequency (DDC A Preset 0)  
NCO Phase (DDC A Preset 0)  
RESERVED  
PHASEA0  
RESERVED  
FREQA1  
Undefined  
0xC0000000  
0x0000  
R/W  
R/W  
R
NCO Frequency (DDC A Preset 1)  
NCO Phase (DDC A Preset 1)  
RESERVED  
PHASEA1  
RESERVED  
FREQA2  
Undefined  
0xC0000000  
0x0000  
R/W  
R/W  
R
NCO Frequency (DDC A Preset 2)  
NCO Phase (DDC A Preset 2)  
RESERVED  
PHASEA2  
RESERVED  
FREQA3  
Undefined  
0xC0000000  
0x0000  
R/W  
R/W  
R
NCO Frequency (DDC A Preset 3)  
NCO Phase (DDC A Preset 3)  
RESERVED  
PHASEA3  
RESERVED  
FREQB0  
Undefined  
0xC0000000  
0x0000  
R/W  
R/W  
R
NCO Frequency (DDC B Preset 0)  
NCO Phase (DDC B Preset 0)  
RESERVED  
PHASEB0  
RESERVED  
FREQB1  
Undefined  
0xC0000000  
0x0000  
R/W  
R/W  
R
NCO Frequency (DDC B Preset 1)  
NCO Phase (DDC B Preset 1)  
RESERVED  
PHASEB1  
RESERVED  
FREQB2  
Undefined  
0xC0000000  
0x0000  
R/W  
R/W  
R
NCO Frequency (DDC B Preset 2)  
NCO Phase (DDC B Preset 2)  
RESERVED  
PHASEB2  
RESERVED  
FREQB3  
Undefined  
0xC0000000  
0x0000  
R/W  
R/W  
R
NCO Frequency (DDC B Preset 3)  
NCO Phase (DDC B Preset 3)  
RESERVED  
PHASEB3  
RESERVED  
SPIN_ID  
Undefined  
Undefined  
Undefined  
R
Spin Identification Value  
0x298-0x2AF  
RESERVED  
R
RESERVED  
Copyright © 2018–2020, Texas Instruments Incorporated  
83  
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
Register Maps (continued)  
Memory Map (continued)  
ADDRESS  
RESET  
ACRONYM  
TYPE  
REGISTER NAME  
SYSREF CALIBRATION REGISTERS (0x2B0 to 0x2BF)  
0x2B0  
0x2B1  
0x00  
0x05  
SRC_EN  
SRC_CFG  
SRC_STATUS  
TAD  
R/W  
R/W  
R
SYSREF Calibration Enable Register  
SYSREF Calibration Configuration Register  
SYSREF Calibration Status  
0x2B2-0x2B4  
0x2B5-0x2B7  
0x2B8  
Undefined  
0x00  
R/W  
R/W  
R
DEVCLK Aperture Delay Adjustment Register  
DEVCLK Timing Adjust Ramp Control Register  
RESERVED  
0x00  
TAD_RAMP  
RESERVED  
0x2B9-0x2BF  
Undefined  
ALARM REGISTERS (0x2C0 to 0x2C2)  
0x2C0  
0x2C1  
0x2C2  
Undefined  
0x1F  
ALARM  
R
Alarm Interrupt Status Register  
Alarm Status Register  
ALM_STATUS  
ALM_MASK  
R/W  
R/W  
0x1F  
Alarm Mask Register  
84  
Copyright © 2018–2020, Texas Instruments Incorporated  
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
7.6.1 Register Descriptions  
Table 45 lists the access codes for the ADC12DJ2700 registers.  
Table 45. ADC12DJ2700 Access Type Codes  
Access Type  
Code  
R
Description  
Read  
R
R-W  
W
R/W  
W
Read or write  
Write  
-n  
Value after reset or the default  
value  
7.6.1.1 Standard SPI-3.0 (0x000 to 0x00F)  
Table 46. Standard SPI-3.0 Registers  
ADDRESS  
0x000  
RESET  
0x30  
ACRONYM  
REGISTER NAME  
Configuration A Register  
RESERVED  
SECTION  
CONFIG_A  
RESERVED  
Configuration A Register (address = 0x000) [reset = 0x30]  
0x001  
Undefined  
0x00  
0x002  
DEVICE_CONFIG Device Configuration Register  
Device Configuration Register (address = 0x002) [reset =  
0x00]  
0x003  
0x03  
CHIP_TYPE  
CHIP_ID  
Chip Type Register  
Chip ID Registers  
Chip Type Register (address = 0x003) [reset = 0x03]  
0x004-0x005  
0x0020  
Chip ID Register (address = 0x004 to 0x005) [reset =  
0x0020]  
0x006  
0x0A  
Undefined  
0x0451  
CHIP_VERSION Chip Version Register  
Chip Version Register (address = 0x006) [reset = 0x01]  
0x007-0x00B  
0x00C-0x00D  
RESERVED  
VENDOR_ID  
RESERVED  
Vendor Identification Register  
Vendor Identification Register (address = 0x00C to  
0x00D) [reset = 0x0451]  
0x00E-0x00F  
Undefined  
RESERVED  
RESERVED  
7.6.1.1.1 Configuration A Register (address = 0x000) [reset = 0x30]  
Figure 88. Configuration A Register (CONFIG_A)  
7
6
5
4
3
2
1
0
SOFT_RESET  
R/W-0  
RESERVED  
R-0  
ADDR_ASC  
R/W-1  
SDO_ACTIVE  
R-1  
RESERVED  
R-0000  
Table 47. CONFIG_A Field Descriptions  
Bit  
Field  
SOFT_RESET  
Type  
Reset  
Description  
7
R/W  
0
Setting this bit results in a full reset of the device. This bit is self-  
clearing. After writing this bit, the device may take up to 750 ns  
to reset. During this time, do not perform any SPI transactions.  
6
5
RESERVED  
ADDR_ASC  
R
0
1
RESERVED  
R/W  
0: Descend – decrement address while streaming reads/writes  
1: Ascend – increment address while streaming reads/writes  
(default)  
4
SDO_ACTIVE  
RESERVED  
R
R
1
Always returns 1, indicating that the device always uses 4-wire  
SPI mode.  
3-0  
0000  
RESERVED  
Copyright © 2018–2020, Texas Instruments Incorporated  
85  
 
 
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
7.6.1.1.2 Device Configuration Register (address = 0x002) [reset = 0x00]  
Figure 89. Device Configuration Register (DEVICE_CONFIG)  
7
6
5
4
3
2
1
0
RESERVED  
R-0000 00  
MODE  
R/W-00  
Table 48. DEVICE_CONFIG Field Descriptions  
Bit  
7-2  
1-0  
Field  
Type  
R
Reset  
0000 00  
00  
Description  
RESERVED  
MODE  
RESERVED  
R/W  
The SPI 3.0 specification lists 1 as the low-power functional  
mode, 2 as the low-power fast resume, and 3 as power-down.  
This device does not support these modes.  
0: Normal operation – full power and full performance (default)  
1: Normal operation – full power and full performance  
2: Power down - everything is powered down. Only use this  
setting for brief periods of time to calibrate the on-chip  
temperature diode measurement. See the Recommended  
Operating Conditions table for more information.  
3: Power down - everything is powered down. Only use this  
setting for brief periods of time to calibrate the on-chip  
temperature diode measurement. See the Recommended  
Operating Conditions table for more information.  
7.6.1.1.3 Chip Type Register (address = 0x003) [reset = 0x03]  
Figure 90. Chip Type Register (CHIP_TYPE)  
7
6
5
4
3
2
1
0
RESERVED  
R-0000  
CHIP_TYPE  
R-0011  
Table 49. CHIP_TYPE Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
R
Reset  
0000  
0011  
Description  
RESERVED  
RESERVED  
CHIP_TYPE  
R
Always returns 0x3, indicating that the device is a high-speed  
ADC.  
7.6.1.1.4 Chip ID Register (address = 0x004 to 0x005) [reset = 0x0020]  
Figure 91. Chip ID Register (CHIP_ID)  
15  
14  
13  
12  
11  
10  
9
1
8
0
CHIP_ID[15:8]  
R-0x00h  
7
6
5
4
3
2
CHIP_ID[7:0]  
R-0x20h  
Table 50. CHIP_ID Field Descriptions  
Bit  
15-0  
Field  
Type  
Reset  
Description  
CHIP_ID  
R
0x0020h  
Always returns 0x0020, indicating that this device is part of the  
ADC12DJxx00 family.  
86  
Copyright © 2018–2020, Texas Instruments Incorporated  
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
7.6.1.1.5 Chip Version Register (address = 0x006) [reset = 0x01]  
Figure 92. Chip Version Register (CHIP_VERSION)  
7
6
5
4
3
2
1
0
CHIP_VERSION  
R-0000 1010  
Table 51. CHIP_VERSION Field Descriptions  
Bit  
Field  
CHIP_VERSION  
Type  
Reset  
Description  
7-0  
R
0000 1010 Chip version, returns 0x0A.  
7.6.1.1.6 Vendor Identification Register (address = 0x00C to 0x00D) [reset = 0x0451]  
Figure 93. Vendor Identification Register (VENDOR_ID)  
15  
14  
13  
12  
VENDOR_ID[15:8]  
R-0x04h  
11  
10  
9
1
8
0
7
6
5
4
3
2
VENDOR_ID[7:0]  
R-0x51h  
Table 52. VENDOR_ID Field Descriptions  
Bit  
15-0  
Field  
VENDOR_ID  
Type  
Reset  
Description  
R
0x0451h  
Always returns 0x0451 (TI vendor ID).  
7.6.1.2 User SPI Configuration (0x010 to 0x01F)  
Table 53. User SPI Configuration Registers  
ADDRESS  
RESET  
ACRONYM  
REGISTER NAME  
SECTION  
0x010  
0x00  
USR0  
User SPI Configuration Register  
User SPI Configuration Register (address = 0x010) [reset  
= 0x00]  
0x011-0x01F  
Undefined  
RESERVED  
RESERVED  
7.6.1.2.1 User SPI Configuration Register (address = 0x010) [reset = 0x00]  
Figure 94. User SPI Configuration Register (USR0)  
7
6
5
4
3
2
1
0
RESERVED  
R-0000 000  
ADDR_HOLD  
R/W-0  
Table 54. USR0 Field Descriptions  
Bit  
7-1  
0
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
0000 000 RESERVED  
ADDR_HOLD  
0
0: Use the ADDR_ASC bit to define what happens to the  
address during streaming (default)  
1: Address remains static throughout streaming operation; this  
setting is useful for reading/writing calibration vector information  
at the CAL_DATA register  
Copyright © 2018–2020, Texas Instruments Incorporated  
87  
 
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
7.6.1.3 Miscellaneous Analog Registers (0x020 to 0x047)  
Table 55. Miscellaneous Analog Registers  
ADDRESS  
0x020-0x028  
0x029  
RESET  
Undefined  
0x00  
ACRONYM  
REGISTER NAME  
SECTION  
RESERVED  
CLK_CTRL0  
CLK_CTRL1  
RESERVED  
SYSREF_POS  
RESERVED  
Clock Control Register 0  
Clock Control Register 1  
RESERVED  
Clock Control Register 0 (address = 0x029) [reset = 0x00]  
0x02A  
0x20  
Clock Control Register 1 (address = 0x02A) [reset = 0x00]  
0x02B  
Undefined  
Undefined  
0x02C-0x02E  
SYSREF Capture Position Register  
SYSREF Capture Position Register (address = 0x02C-  
0x02E) [reset = Undefined]  
0x02F  
Undefined  
0xA000  
RESERVED  
RESERVED  
0x030-0x031  
FS_RANGE_A  
INA Full-Scale Range Adjust Register INA Full-Scale Range Adjust Register (address = 0x030-  
0x031) [reset = 0xA000]  
0x032-0x033  
0xA000  
FS_RANGE_B  
INB Full-Scale Range Adjust Register INB Full-Scale Range Adjust Register (address = 0x032-  
0x033) [reset = 0xA000]  
0x034-0x037  
0x038  
Undefined  
0x00  
RESERVED  
BG_BYPASS  
RESERVED  
Internal Reference Bypass Register  
Internal Reference Bypass Register (address = 0x038)  
[reset = 0x00]  
0x039-0x03A  
0x03B  
Undefined  
0x00  
RESERVED  
SYNC_CTRL  
RESERVED  
TMSTP± Control Register  
TMSTP± Control Register (address = 0x03B) [reset =  
0x00]  
0x03C-0x047  
Undefined  
RESERVED  
RESERVED  
7.6.1.3.1 Clock Control Register 0 (address = 0x029) [reset = 0x00]  
Figure 95. Clock Control Register 0 (CLK_CTRL0)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0  
SYSREF_PROC_EN SYSREF_RECV_EN  
R/W-0 R/W-0  
SYSREF_ZOOM  
R/W-0  
SYSREF_SEL  
R/W-0000  
Table 56. CLK_CTRL0 Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7
6
RESERVED  
0
0
RESERVED  
SYSREF_PROC_EN  
This bit enables the SYSREF processor. This bit must be set to  
allow the device to process SYSREF events.  
SYSREF_RECV_EN must be set before setting  
SYSREF_PROC_EN.  
5
4
SYSREF_RECV_EN  
SYSREF_ZOOM  
R/W  
R/W  
0
0
Set this bit to enable the SYSREF receiver circuit.  
Set this bit to zoom in the SYSREF strobe status (affects  
SYSREF_POS).  
3-0  
SYSREF_SEL  
R/W  
0000  
Set this field to select which SYSREF delay to use. Set this field  
based on the results returned by SYSREF_POS. Set this field to  
0 to use SYSREF calibration.  
88  
Copyright © 2018–2020, Texas Instruments Incorporated  
 
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
7.6.1.3.2 Clock Control Register 1 (address = 0x02A) [reset = 0x00]  
Figure 96. Clock Control Register 1 (CLK_CTRL1)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0010 0  
DEVCLK_LVPECL_EN SYSREF_LVPECL_EN SYSREF_INVERTED  
R/W-0 R/W-0 R/W-0  
Table 57. CLK_CTRL1 Field Descriptions  
Bit  
7-3  
2
Field  
RESERVED  
Type  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
0010 0  
RESERVED  
DEVCLK_LVPECL_EN  
SYSREF_LVPECL_EN  
SYSREF_INVERTED  
0
0
0
Activate low-voltage PECL mode for DEVCLK.  
Activate low-voltage PECL mode for SYSREF.  
Inverts the SYSREF signal used for alignment.  
1
0
7.6.1.3.3 SYSREF Capture Position Register (address = 0x02C-0x02E) [reset = Undefined]  
Figure 97. SYSREF Capture Position Register (SYSREF_POS)  
23  
15  
7
22  
14  
6
21  
13  
5
20  
19  
18  
10  
2
17  
9
16  
SYSREF_POS[23:16]  
R-Undefined  
12  
11  
8
0
SYSREF_POS[15:8]  
R-Undefined  
4
3
1
SYSREF_POS[7:0]  
R-Undefined  
Table 58. SYSREF_POS Field Descriptions  
Bit  
23-0  
Field  
SYSREF_POS  
Type  
Reset  
Description  
R
Undefined This field returns a 24-bit status value that indicates the position  
of the SYSREF edge with respect to DEVCLK. Use this field to  
program SYSREF_SEL.  
7.6.1.3.4 INA Full-Scale Range Adjust Register (address = 0x030-0x031) [reset = 0xA000]  
Figure 98. INA Full-Scale Range Adjust Register (FS_RANGE_A)  
15  
14  
13  
12  
11  
10  
9
1
8
0
FS_RANGE_A[15:8]  
R/W-0xA0h  
7
6
5
4
3
2
FS_RANGE_A[7:0]  
R/W-0x00h  
Table 59. FS_RANGE_A Field Descriptions  
Bit  
15-0  
Field  
FS_RANGE_A  
Type  
Reset  
Description  
R/W  
0xA000h  
This field enables adjustment of the analog full-scale range for  
INA.  
0x0000: Settings below 0x2000 may result in degraded device  
performance  
0x2000: 500 mVPP - Recommended minimum setting  
0xA000: 800 mVPP (default)  
0xFFFF: 1000 mVPP  
Copyright © 2018–2020, Texas Instruments Incorporated  
89  
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
7.6.1.3.5 INB Full-Scale Range Adjust Register (address = 0x032-0x033) [reset = 0xA000]  
Figure 99. INB Full Scale Range Adjust Register (FS_RANGE_B)  
15  
14  
13  
12  
11  
10  
9
1
8
0
FS_RANGE_B[15:8]  
R/W-0xA0  
7
6
5
4
3
2
FS_RANGE_B[7:0]  
R/W-0x00  
Table 60. FS_RANGE_B Field Descriptions  
Bit  
15-0  
Field  
FS_RANGE_B  
Type  
Reset  
Description  
R/W  
0xA000h  
This field enables adjustment of the analog full-scale range for  
INB.  
0x0000: Settings below 0x2000 may result in degraded device  
performance  
0x2000: 500 mVPP - Recommended minimum setting  
0xA000: 800 mVPP (default)  
0xFFFF: 1000 mVPP  
7.6.1.3.6 Internal Reference Bypass Register (address = 0x038) [reset = 0x00]  
Figure 100. Internal Reference Bypass Register (BG_BYPASS)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000 000  
BG_BYPASS  
R/W-0  
Table 61. BG_BYPASS Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-1  
0
RESERVED  
BG_BYPASS  
0000 000 RESERVED  
0
When set, VA11 is used as the voltage reference instead of the  
internal reference.  
7.6.1.3.7 TMSTP± Control Register (address = 0x03B) [reset = 0x00]  
Figure 101. TMSTP± Control Register (TMSTP_CTRL)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000 00  
TMSTP_LVPECL_EN  
R/W-0  
TMSTP_RECV_EN  
R/W-0  
Table 62. TMSTP_CTRL Field Descriptions  
Bit  
7-2  
1
Field  
Type  
R/W  
R/W  
Reset  
0000 00  
0
Description  
RESERVED  
RESERVED  
TMSTP_LVPECL_EN  
When set, this bit activates the low-voltage PECL mode for the  
differential TMSTP± input.  
0
TMSTP_RECV_EN  
R/W  
0
This bit enables the differential TMSTP± input.  
90  
Copyright © 2018–2020, Texas Instruments Incorporated  
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
7.6.1.4 Serializer Registers (0x048 to 0x05F)  
Table 63. Serializer Registers  
ADDRESS  
RESET  
ACRONYM  
REGISTER NAME  
SECTION  
0x048  
0x00  
SER_PE  
Serializer Pre-Emphasis Control  
Register  
Serializer Pre-Emphasis Control Register (address =  
0x048) [reset = 0x00]  
0x049-0x05F  
Undefined  
RESERVED  
RESERVED  
7.6.1.4.1 Serializer Pre-Emphasis Control Register (address = 0x048) [reset = 0x00]  
Figure 102. Serializer Pre-Emphasis Control Register (SER_PE)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000  
SER_PE  
R/W-0000  
Table 64. SER_PE Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
R/W  
R/W  
Reset  
0000  
0000  
Description  
RESERVED  
SER_PE  
RESERVED  
This field sets the pre-emphasis for the serial lanes to  
compensate for the low-pass response of the PCB trace. This  
setting is a global setting that affects all 16 lanes.  
Copyright © 2018–2020, Texas Instruments Incorporated  
91  
 
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
7.6.1.5 Calibration Registers (0x060 to 0x0FF)  
Table 65. Calibration Registers  
ADDRESS  
RESET  
ACRONYM  
REGISTER NAME  
SECTION  
0x060  
0x01  
INPUT_MUX  
Input Mux Control Register  
Input Mux Control Register (address = 0x060) [reset =  
0x01]  
0x061  
0x062  
0x01  
0x01  
CAL_EN  
Calibration Enable Register  
Calibration Enable Register (address = 0x061) [reset =  
0x01]  
CAL_CFG0  
Calibration Configuration 0 Register  
Calibration Configuration 0 Register (address = 0x062)  
[reset = 0x01]  
0x063-0x069  
0x06A  
Undefined  
Undefined  
RESERVED  
RESERVED  
CAL_STATUS  
Calibration Status Register  
Calibration Status Register (address = 0x06A) [reset =  
Undefined]  
0x06B  
0x06C  
0x00  
0x01  
CAL_PIN_CFG  
Calibration Pin Configuration  
Register  
Calibration Pin Configuration Register (address = 0x06B)  
[reset = 0x00]  
CAL_SOFT_TRIG Calibration Software Trigger Register  
Calibration Software Trigger Register (address = 0x06C)  
[reset = 0x01]  
0x06D  
0x06E  
Undefined  
0x88  
RESERVED  
CAL_LP  
RESERVED  
Low-Power Background Calibration  
Register  
Low-Power Background Calibration Register (address =  
0x06E) [reset = 0x88]  
0x06F  
0x070  
Undefined  
0x00  
RESERVED  
RESERVED  
CAL_DATA_EN Calibration Data Enable Register  
Calibration Data Enable Register (address = 0x070) [reset  
= 0x00]  
0x071  
Undefined  
CAL_DATA  
Calibration Data Register  
Calibration Data Register (address = 0x071) [reset =  
Undefined]  
0x072-0x079  
0x07A  
Undefined  
Undefined  
RESERVED  
RESERVED  
GAIN_TRIM_A  
Channel A Gain Trim Register  
Channel A Gain Trim Register (address = 0x07A) [reset =  
Undefined]  
0x07B  
0x07C  
Undefined  
Undefined  
GAIN_TRIM_B  
BG_TRIM  
Channel B Gain Trim Register  
Channel B Gain Trim Register (address = 0x07B) [reset =  
Undefined]  
Band-Gap Reference Trim Register  
Band-Gap Reference Trim Register (address = 0x07C)  
[reset = Undefined]  
0x07D  
0x07E  
Undefined  
Undefined  
RESERVED  
RTRIM_A  
RESERVED  
VINA Input Resistor Trim Register  
VINA Input Resistor Trim Register (address = 0x07E)  
[reset = Undefined]  
0x07F  
0x080  
Undefined  
Undefined  
RTRIM_B  
VINB Input Resistor Trim Register  
VINB Input Resistor Trim Register (address = 0x07F)  
[reset = Undefined]  
TADJ_A_FG90  
Timing Adjustment for A-ADC,  
Single-Channel Mode, Foreground  
Calibration Register  
Timing Adjust for A-ADC, Single-Channel Mode,  
Foreground Calibration Register (address = 0x080) [reset  
= Undefined]  
0x081  
0x082  
0x083  
0x084  
0x085  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
TADJ_B_FG0  
TADJ_A_BG90  
TADJ_C_BG0  
TADJ_C_BG90  
TADJ_B_BG0  
Timing Adjustment for B-ADC,  
Single-Channel Mode, Foreground  
Calibration Register  
Timing Adjust for B-ADC, Single-Channel Mode,  
Foreground Calibration Register (address = 0x081) [reset  
= Undefined]  
Timing Adjustment for A-ADC,  
Single-Channel Mode, Background  
Calibration Register  
Timing Adjust for A-ADC, Single-Channel Mode,  
Background Calibration Register (address = 0x082) [reset  
= Undefined]  
Timing Adjustment for C-ADC,  
Single-Channel Mode, Background  
Calibration Register  
Timing Adjust for C-ADC, Single-Channel Mode,  
Background Calibration Register (address = 0x084) [reset  
= Undefined]  
Timing Adjustment for C-ADC,  
Single-Channel Mode, Background  
Calibration Register  
Timing Adjust for C-ADC, Single-Channel Mode,  
Background Calibration Register (address = 0x084) [reset  
= Undefined]  
Timing Adjustment for B-ADC,  
Single-Channel Mode, Background  
Calibration Register  
Timing Adjust for B-ADC, Single-Channel Mode,  
Background Calibration Register (address = 0x085) [reset  
= Undefined]  
0x086  
0x087  
Undefined  
Undefined  
TADJ_A  
Timing Adjustment for A-ADC, Dual-  
Channel Mode Register  
Timing Adjust for A-ADC, Dual-Channel Mode Register  
(address = 0x086) [reset = Undefined]  
TADJ_CA  
Timing Adjustment for C-ADC Acting Timing Adjust for C-ADC Acting for A-ADC, Dual-Channel  
for A-ADC, Dual-Channel Mode  
Register  
Mode Register (address = 0x087) [reset = Undefined]  
0x088  
Undefined  
TADJ_CB  
Timing Adjustment for C-ADC Acting Timing Adjust for C-ADC Acting for B-ADC, Dual-Channel  
for B-ADC, Dual-Channel Mode  
Register  
Mode Register (address = 0x088) [reset = Undefined]  
92  
Copyright © 2018–2020, Texas Instruments Incorporated  
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
Table 65. Calibration Registers (continued)  
ADDRESS  
RESET  
ACRONYM  
REGISTER NAME  
SECTION  
0x089  
Undefined  
TADJ_B  
Timing Adjustment for B-ADC, Dual-  
Channel Mode Register  
Timing Adjust for B-ADC, Dual-Channel Mode Register  
(address = 0x089) [reset = Undefined]  
0x08A-0x08B  
0x08C-0x08D  
0x08E-0x08F  
0x090-0x091  
0x092-0x093  
0x094-0x095  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
OADJ_A_INA  
OADJ_A_INB  
OADJ_C_INA  
OADJ_C_INB  
OADJ_B_INA  
OADJ_B_INB  
Offset Adjustment for A-ADC and INA Offset Adjustment for A-ADC and INA Register (address =  
Register 0x08A-0x08B) [reset = Undefined]  
Offset Adjustment for A-ADC and INB Offset Adjustment for A-ADC and INB Register (address =  
Register  
0x08C-0x08D) [reset = Undefined]  
Offset Adjustment for C-ADC and  
INA Register  
Offset Adjustment for C-ADC and INA Register (address =  
0x08E-0x08F) [reset = Undefined]  
Offset Adjustment for C-ADC and  
INB Register  
Offset Adjustment for C-ADC and INB Register (address =  
0x090-0x091) [reset = Undefined]  
Offset Adjustment for B-ADC and INA Offset Adjustment for B-ADC and INA Register (address =  
Register 0x092-0x093) [reset = Undefined]  
Offset Adjustment for B-ADC and INB Offset Adjustment for B-ADC and INB Register (address =  
Register  
0x094-0x095) [reset = Undefined]  
0x096  
0x097  
Undefined  
0x00  
RESERVED  
0SFILT0  
RESERVED  
Offset Filtering Control 0  
Offset Filtering Control 0 Register (address = 0x097)  
[reset = 0x00]  
0x098  
0x33  
OSFILT1  
Offset Filtering Control 1  
RESERVED  
Offset Filtering Control 1 Register (address = 0x098)  
[reset = 0x33]  
0x099-0x0FF  
Undefined  
RESERVED  
7.6.1.5.1 Input Mux Control Register (address = 0x060) [reset = 0x01]  
Figure 103. Input Mux Control Register (INPUT_MUX)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-000  
DUAL_INPUT  
R/W-0  
RESERVED  
R/W-00  
SINGLE_INPUT  
R/W-01  
Table 66. INPUT_MUX Field Descriptions  
Bit  
7-5  
4
Field  
Type  
R/W  
R/W  
Reset  
000  
0
Description  
RESERVED  
RESERVED  
DUAL_INPUT  
This bit selects inputs for dual-channel modes. If JMODE is  
selecting a single-channel mode, this register has no effect.  
0: A channel samples INA, B channel samples INB (no swap,  
default)  
1: A channel samples INB, B channel samples INA (swap)  
3-2  
1-0  
RESERVED  
R/W  
R/W  
00  
01  
RESERVED  
SINGLE_INPUT  
Thid field defines which input is sampled in single-channel  
mode. If JMODE is not selecting a single-channel mode, this  
register has no effect.  
0: Reserved  
1: INA is used (default)  
2: INB is used  
3: Reserved  
Copyright © 2018–2020, Texas Instruments Incorporated  
93  
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
7.6.1.5.2 Calibration Enable Register (address = 0x061) [reset = 0x01]  
Figure 104. Calibration Enable Register (CAL_EN)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000 000  
CAL_EN  
R/W-1  
Table 67. CAL_EN Field Descriptions  
Bit  
7-1  
0
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
CAL_EN  
0000 000 RESERVED  
1
Calibration enable. Set this bit high to run calibration. Set this bit  
low to hold the calibration in reset to program new calibration  
settings. Clearing CAL_EN also resets the clock dividers that  
clock the digital block and JESD204B interface.  
Some calibration registers require clearing CAL_EN before  
making any changes. All registers with this requirement contain  
a note in their descriptions. After changing the registers, set  
CAL_EN to re-run calibration with the new settings.  
Always set CAL_EN before setting JESD_EN. Always clear  
JESD_EN before clearing CAL_EN.  
7.6.1.5.3 Calibration Configuration 0 Register (address = 0x062) [reset = 0x01]  
Only change this register when CAL_EN is 0.  
Figure 105. Calibration Configuration 0 Register (CAL_CFG0)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-000  
CAL_OSFILT  
R/W-0  
CAL_BGOS  
R/W-0  
CAL_OS  
R/W-0  
CAL_BG  
R/W-0  
CAL_FG  
R/W-1  
Table 68. CAL_CFG0 Field Descriptions  
Bit  
7-5  
4
Field  
Type  
R/W  
R/W  
R/W  
Reset  
0000  
0
Description  
RESERVED  
CAL_OSFILT  
CAL_BGOS  
RESERVED  
Enable offset filtering by setting this bit high.  
3
0
0 : Disables background offset calibration (default)  
1: Enables background offset calibration (requires CAL_BG to  
be set).  
2
CAL_OS  
R/W  
0
0 : Disables foreground offset calibration (default)  
1: Enables foreground offset calibration (requires CAL_FG to be  
set)  
1
0
CAL_BG  
CAL_FG  
R/W  
R/W  
0
1
0 : Disables background calibration (default)  
1: Enables background calibration  
0 : Resets calibration values, skips foreground calibration  
1: Resets calibration values, then runs foreground calibration  
(default)  
94  
Copyright © 2018–2020, Texas Instruments Incorporated  
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
7.6.1.5.4 Calibration Status Register (address = 0x06A) [reset = Undefined]  
Figure 106. Calibration Status Register (CAL_STATUS)  
7
6
5
4
3
2
1
0
FG_DONE  
R
RESERVED  
R
CAL_STOPPED  
R
Table 69. CAL_STATUS Field Descriptions  
Bit  
7-2  
1
Field  
Type  
R
Reset  
Description  
RESERVED  
RESERVED  
CAL_STOPPED  
R
This bit returns a 1 when the background calibration has  
successfully stopped at the requested phase. This bit returns a 0  
when calibration starts operating again. If background calibration  
is disabled, this bit is set when foreground calibration is  
completed or skipped.  
0
FG_DONE  
R
This bit is set high when the foreground calibration completes.  
7.6.1.5.5 Calibration Pin Configuration Register (address = 0x06B) [reset = 0x00]  
Figure 107. Calibration Pin Configuration Register (CAL_PIN_CFG)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000 0  
CAL_STATUS_SEL  
R/W-00  
CAL_TRIG_EN  
R/W-0  
Table 70. CAL_PIN_CFG Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
0000 0  
00  
Description  
7-3  
2-1  
RESERVED  
RESERVED  
CAL_STATUS_SEL  
0: CALSTAT output pin matches FG_DONE  
1: RESERVED  
2: CALSTAT output pin matches ALARM  
3: CALSTAT output pin is always low  
0
CAL_TRIG_EN  
R/W  
0
Choose the hardware or software trigger source with this bit.  
0: Use the CAL_SOFT_TRIG register for the calibration trigger;  
the CAL_TRIG input is disabled (ignored)  
1: Use the CAL_TRIG input for the calibration trigger; the  
CAL_SOFT_TRIG register is ignored  
7.6.1.5.6 Calibration Software Trigger Register (address = 0x06C) [reset = 0x01]  
Figure 108. Calibration Software Trigger Register (CAL_SOFT_TRIG)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000 000  
CAL_SOFT_TRIG  
R/W-1  
Table 71. CAL_SOFT_TRIG Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-1  
0
RESERVED  
0000 000 RESERVED  
CAL_SOFT_TRIG  
1
CAL_SOFT_TRIG is a software bit to provide functionality of the  
CAL_TRIG input. Program CAL_TRIG_EN = 0 to use  
CAL_SOFT_TRIG for the calibration trigger. If no calibration  
trigger is needed, leave CAL_TRIG_EN = 0 and  
CAL_SOFT_TRIG = 1 (trigger is set high).  
Copyright © 2018–2020, Texas Instruments Incorporated  
95  
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
7.6.1.5.7 Low-Power Background Calibration Register (address = 0x06E) [reset = 0x88]  
Figure 109. Low-Power Background Calibration Register (CAL_LP)  
7
6
5
4
3
2
1
0
LP_SLEEP_DLY  
R/W-010  
LP_WAKE_DLY  
R/W-01  
RESERVED  
R/W-0  
LP_TRIG  
R/W-0  
LP_EN  
R/W-0  
Table 72. CAL_LP Field Descriptions  
Bit  
Field  
LP_SLEEP_DLY  
Type  
Reset  
Description  
7-5  
R/W  
010  
Adjust how long an ADC sleeps before waking up for calibration  
(only applies when LP_EN = 1 and LP_TRIG = 0). Values below  
4 are not recommended because of limited overall power  
reduction benefits.  
0: Sleep delay = (23 + 1) × 256 × tDEVCLK  
1: Sleep delay = (215 + 1) × 256 × tDEVCLK  
2: Sleep delay = (218 + 1) × 256 × tDEVCLK  
3: Sleep delay = (221 + 1) × 256 × tDEVCLK  
4: Sleep delay = (224 + 1) × 256 × tDEVCLK : default is  
approximately 1338 ms with a 3.2-GHz clock  
5: Sleep delay = (227 + 1) × 256 × tDEVCLK  
6: Sleep delay = (230 + 1) × 256 × tDEVCLK  
7: Sleep delay = (233 + 1) × 256 × tDEVCLK  
4-3  
LP_WAKE_DLY  
R/W  
01  
Adjust how much time is given up for settling before calibrating  
an ADC after wake-up (only applies when LP_EN = 1). Values  
lower than 1 are not recommended because there is insufficient  
time for the core to stabilize before calibration begins.  
0:Wake Delay = (23 + 1) × 256 × tDEVCLK  
1: Wake Delay = (218 + 1) × 256 × tDEVCLK : default is  
approximately 21 ms with a 3.2-GHz clock  
2: Wake Delay = (221 + 1) × 256 × tDEVCLK  
3: Wake Delay = (224 + 1) × 256 × tDEVCLK  
2
1
RESERVED  
LP_TRIG  
R/W  
R/W  
0
0
RESERVED  
0: ADC sleep duration is set by LP_SLEEP_DLY (autonomous  
mode)  
1: ADCs sleep until woken by a trigger; an ADC is awoken when  
the calibration trigger (CAL_SOFT_TRIG bit or CAL_TRIG input)  
is low  
0
LP_EN  
R/W  
0
0: Disables low-power background calibration (default)  
1: Enables low-power background calibration (only applies when  
CAL_BG = 1)  
7.6.1.5.8 Calibration Data Enable Register (address = 0x070) [reset = 0x00]  
Figure 110. Calibration Data Enable Register (CAL_DATA_EN)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000 000  
CAL_DATA_EN  
R/W-0  
Table 73. CAL_DATA_EN Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-1  
0
RESERVED  
0000 000 RESERVED  
CAL_DATA_EN  
0
Set this bit to enable the CAL_DATA register to enable reading  
and writing of calibration data; see the calibration data register  
for more information.  
96  
Copyright © 2018–2020, Texas Instruments Incorporated  
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
7.6.1.5.9 Calibration Data Register (address = 0x071) [reset = Undefined]  
Figure 111. Calibration Data Register (CAL_DATA)  
7
6
5
4
3
2
1
0
CAL_DATA  
R/W  
Table 74. CAL_DATA Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
CAL_DATA  
R/W  
Undefined After setting CAL_DATA_EN, repeated reads of this register  
return all calibration values for the ADCs. Repeated writes of this  
register input all calibration values for the ADCs. To read the  
calibration data, read the register 673 times. To write the vector,  
write the register 673 times with previously stored calibration  
data.  
To speed up the read/write operation, set ADDR_HOLD = 1 and  
use the streaming read or write process.  
Accessing the CAL_DATA register when CAL_STOPPED = 0  
corrupts the calibration. Also, stopping the process before  
reading or writing 673 times leaved the calibration data in an  
invalid state.  
7.6.1.5.10 Channel A Gain Trim Register (address = 0x07A) [reset = Undefined]  
Figure 112. Channel A Gain Trim Register (GAIN_TRIM_A)  
7
6
5
4
3
2
1
0
GAIN_TRIM_A  
R/W  
Table 75. GAIN_TRIM_A Field Descriptions  
Bit  
Field  
GAIN_TRIM_A  
Type  
Reset  
Description  
7-0  
R/W  
Undefined This register enables gain trim of channel A. After reset, the  
factory-trimmed value can be read and adjusted as required.  
7.6.1.5.11 Channel B Gain Trim Register (address = 0x07B) [reset = Undefined]  
Figure 113. Channel B Gain Trim Register (GAIN_TRIM_B)  
7
6
5
4
3
2
1
0
GAIN_TRIM_B  
R/W  
Table 76. GAIN_TRIM_B Field Descriptions  
Bit  
Field  
GAIN_TRIM_B  
Type  
Reset  
Description  
7-0  
R/W  
Undefined This register enables gain trim of channel B. After reset, the  
factory-trimmed value can be read and adjusted as required.  
Copyright © 2018–2020, Texas Instruments Incorporated  
97  
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
7.6.1.5.12 Band-Gap Reference Trim Register (address = 0x07C) [reset = Undefined]  
Figure 114. Band-Gap Reference Trim Register (BG_TRIM)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000  
BG_TRIM  
R/W  
Table 77. BG_TRIM Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
BG_TRIM  
0000  
RESERVED  
Undefined This register enables the internal band-gap reference to be  
trimmed. After reset, the factory-trimmed value can be read and  
adjusted as required.  
7.6.1.5.13 VINA Input Resistor Trim Register (address = 0x07E) [reset = Undefined]  
Figure 115. VINA Input Resistor Trim Register (RTRIM_A)  
7
6
5
4
3
2
1
0
RTRIM  
R/W  
Table 78. RTRIM_A Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
RTRIM_A  
R/W  
Undefined This register controls the VINA ADC input termination trim. After  
reset, the factory-trimmed value can be read and adjusted as  
required.  
7.6.1.5.14 VINB Input Resistor Trim Register (address = 0x07F) [reset = Undefined]  
Figure 116. VINB Input Resistor Trim Register (RTRIM_B)  
7
6
5
4
3
2
1
0
RTRIM  
R/W  
Table 79. RTRIM_B Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
RTRIM_B  
R/W  
Undefined This register controls the VINB ADC input termination trim. After  
reset, the factory-trimmed value can be read and adjusted as  
required.  
98  
Copyright © 2018–2020, Texas Instruments Incorporated  
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
7.6.1.5.15 Timing Adjust for A-ADC, Single-Channel Mode, Foreground Calibration Register (address = 0x080) [reset  
= Undefined]  
Figure 117. Register (TADJ_A_FG90)  
7
6
5
4
3
2
1
0
TADJ_A_FG90  
R/W  
Table 80. TADJ_A_FG90 Field Descriptions  
Bit  
Field  
TADJ_A_FG90  
Type  
Reset  
Description  
7-0  
R/W  
Undefined This register (and other subsequent TADJ* registers) are used  
to adjust the sampling instant of each ADC core. Different TADJ  
registers apply to different ADCs under different modes or  
phases of background calibration. After reset, the factory-  
trimmed value can be read and adjusted as required.  
7.6.1.5.16 Timing Adjust for B-ADC, Single-Channel Mode, Foreground Calibration Register (address = 0x081) [reset  
= Undefined]  
Figure 118. Register (TADJ_B_FG0)  
7
6
5
4
3
2
1
0
TADJ_B_FG0  
R/W  
Table 81. TADJ_B_FG0 Field Descriptions  
Bit  
Field  
TADJ_B_FG0  
Type  
Reset  
Description  
7-0  
R/W  
Undefined This register (and other subsequent TADJ* registers) are used  
to adjust the sampling instant of each ADC core. Different TADJ  
registers apply to different ADCs under different modes or  
phases of background calibration. After reset, the factory-  
trimmed value can be read and adjusted as required.  
7.6.1.5.17 Timing Adjust for A-ADC, Single-Channel Mode, Background Calibration Register (address = 0x082)  
[reset = Undefined]  
Figure 119. Register (TADJ_A_BG90)  
7
6
5
4
3
2
1
0
TADJ_A_BG90  
R/W  
Table 82. TADJ_B_FG0 Field Descriptions  
Bit  
Field  
TADJ_A_BG90  
Type  
Reset  
Description  
7-0  
R/W  
Undefined This register (and other subsequent TADJ* registers) are used  
to adjust the sampling instant of each ADC core. Different TADJ  
registers apply to different ADCs under different modes or  
phases of background calibration. After reset, the factory-  
trimmed value can be read and adjusted as required.  
Copyright © 2018–2020, Texas Instruments Incorporated  
99  
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
7.6.1.5.18 Timing Adjust for C-ADC, Single-Channel Mode, Background Calibration Register (address = 0x083)  
[reset = Undefined]  
Figure 120. Timing Adjust for C-ADC, Single-Channel Mode, Background Calibration Register  
(TADJ_C_BG0)  
7
6
5
4
3
2
1
0
TADJ_C_BG0  
R/W  
Table 83. TADJ_B_FG0 Field Descriptions  
Bit  
Field  
TADJ_C_BG0  
Type  
Reset  
Description  
7-0  
R/W  
Undefined This register (and other subsequent TADJ* registers) are used  
to adjust the sampling instant of each ADC core. Different TADJ  
registers apply to different ADCs under different modes or  
phases of background calibration. After reset, the factory-  
trimmed value can be read and adjusted as required.  
7.6.1.5.19 Timing Adjust for C-ADC, Single-Channel Mode, Background Calibration Register (address = 0x084)  
[reset = Undefined]  
Figure 121. Timing Adjust for C-ADC, Single-Channel Mode, Background Calibration Register  
(TADJ_C_BG90)  
7
6
5
4
3
2
1
0
TADJ_C_BG90  
R/W  
Table 84. TADJ_B_FG0 Field Descriptions  
Bit  
Field  
TADJ_C_BG90  
Type  
Reset  
Description  
7-0  
R/W  
Undefined This register (and other subsequent TADJ* registers) are used  
to adjust the sampling instant of each ADC core. Different TADJ  
registers apply to different ADCs under different modes or  
phases of background calibration. After reset, the factory-  
trimmed value can be read and adjusted as required.  
7.6.1.5.20 Timing Adjust for B-ADC, Single-Channel Mode, Background Calibration Register (address = 0x085)  
[reset = Undefined]  
Figure 122. Timing Adjust for B-ADC, Single-Channel Mode, Background Calibration Register  
(TADJ_B_BG0)  
7
6
5
4
3
2
1
0
TADJ_B_BG0  
R/W  
Table 85. TADJ_B_FG0 Field Descriptions  
Bit  
Field  
TADJ_B_BG0  
Type  
Reset  
Description  
7-0  
R/W  
Undefined This register (and other subsequent TADJ* registers) are used  
to adjust the sampling instant of each ADC core. Different TADJ  
registers apply to different ADCs under different modes or  
phases of background calibration. After reset, the factory-  
trimmed value can be read and adjusted as required.  
100  
Copyright © 2018–2020, Texas Instruments Incorporated  
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
7.6.1.5.21 Timing Adjust for A-ADC, Dual-Channel Mode Register (address = 0x086) [reset = Undefined]  
Figure 123. Timing Adjust for A-ADC, Dual-Channel Mode Register (TADJ_A)  
7
6
5
4
3
2
1
0
TADJ_A  
R/W  
Table 86. TADJ_A Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TADJ_A  
R/W  
Undefined This register (and other subsequent TADJ* registers) are used  
to adjust the sampling instant of each ADC core. Different TADJ  
registers apply to different ADCs under different modes or  
phases of background calibration. After reset, the factory-  
trimmed value can be read and adjusted as required.  
7.6.1.5.22 Timing Adjust for C-ADC Acting for A-ADC, Dual-Channel Mode Register (address = 0x087) [reset =  
Undefined]  
Figure 124. Timing Adjust for C-ADC Acting for A-ADC, Dual-Channel Mode Register (TADJ_CA)  
7
6
5
4
3
2
1
0
TADJ_CA  
R/W  
Table 87. TADJ_CA Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TADJ_CA  
R/W  
Undefined This register (and other subsequent TADJ* registers) are used  
to adjust the sampling instant of each ADC core. Different TADJ  
registers apply to different ADCs under different modes or  
phases of background calibration. After reset, the factory-  
trimmed value can be read and adjusted as required.  
7.6.1.5.23 Timing Adjust for C-ADC Acting for B-ADC, Dual-Channel Mode Register (address = 0x088) [reset =  
Undefined]  
Figure 125. Timing Adjust for C-ADC Acting for B-ADC, Dual-Channel Mode Register (TADJ_CB)  
7
6
5
4
3
2
1
0
TADJ_CB  
R/W  
Table 88. TADJ_CB Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TADJ_CB  
R/W  
Undefined This register (and other subsequent TADJ* registers) are used  
to adjust the sampling instant of each ADC core. Different TADJ  
registers apply to different ADCs under different modes or  
phases of background calibration. After reset, the factory-  
trimmed value can be read and adjusted as required.  
Copyright © 2018–2020, Texas Instruments Incorporated  
101  
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
7.6.1.5.24 Timing Adjust for B-ADC, Dual-Channel Mode Register (address = 0x089) [reset = Undefined]  
Figure 126. Timing Adjust for B-ADC, Dual-Channel Mode Register (TADJ_B)  
7
6
5
4
3
2
1
0
TADJ_B  
R/W  
Table 89. TADJ_B Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TADJ_B  
R/W  
Undefined This register (and other subsequent TADJ* registers) are used  
to adjust the sampling instant of each ADC core. Different TADJ  
registers apply to different ADCs under different modes or  
phases of background calibration. After reset, the factory-  
trimmed value can be read and adjusted as required.  
7.6.1.5.25 Offset Adjustment for A-ADC and INA Register (address = 0x08A-0x08B) [reset = Undefined]  
Figure 127. Offset Adjustment for A-ADC and INA Register (OADJ_A_INA)  
15  
14  
13  
12  
11  
10  
9
8
0
RESERVED  
R/W-0000  
OADJ_A_INA[11:8]  
R/W  
7
6
5
4
3
2
1
OADJ_A_INA[7:0]  
R/W  
Table 90. OADJ_A_INA Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
15-12  
11-0  
RESERVED  
0000  
RESERVED  
OADJ_A_INA  
Undefined Offset adjustment value for ADC0 (A-ADC) applied when ADC0  
samples INA. The format is unsigned. After reset, the factory-  
trimmed value can be read and adjusted as required.  
Important notes:  
Never write OADJ* registers while foreground calibration is  
underway  
Never write OADJ* registers if CAL_BG and CAL_BGOS  
are set  
If CAL_OS = 1 and CAL_BGOS = 0, only read OADJ*  
registers if FG_DONE = 1  
If CAL_BG = 1 and CAL_BGOS = 1, only read OADJ*  
register if CAL_STOPPED = 1  
102  
Copyright © 2018–2020, Texas Instruments Incorporated  
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
7.6.1.5.26 Offset Adjustment for A-ADC and INB Register (address = 0x08C-0x08D) [reset = Undefined]  
Figure 128. Offset Adjustment for A-ADC and INB Register (OADJ_A_INB)  
15  
14  
13  
12  
11  
10  
9
8
0
RESERVED  
R/W-0000  
OADJ_A_INB[11:8]  
R/W  
7
6
5
4
3
2
1
OADJ_A_INB[7:0]  
R/W  
Table 91. OADJ_A_INB Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
15-12  
11-0  
RESERVED  
0000  
RESERVED  
OADJ_A_INB  
Undefined Offset adjustment value for ADC0 (A-ADC) applied when ADC0  
samples INB. The format is unsigned. After reset, the factory-  
trimmed value can be read and adjusted as required.  
Important notes:  
Never write OADJ* registers while foreground calibration is  
underway  
Never write OADJ* registers if CAL_BG and CAL_BGOS  
are set  
If CAL_OS = 1 and CAL_BGOS = 0, only read OADJ*  
registers if FG_DONE = 1  
If CAL_BG = 1 and CAL_BGOS = 1, only read OADJ*  
register if CAL_STOPPED = 1  
7.6.1.5.27 Offset Adjustment for C-ADC and INA Register (address = 0x08E-0x08F) [reset = Undefined]  
Figure 129. Offset Adjustment for C-ADC and INA Register (OADJ_C_INA)  
15  
14  
13  
12  
11  
10  
9
8
0
RESERVED  
R/W-0000  
OADJ_C_INA[11:8]  
R/W  
7
6
5
4
3
2
1
OADJ_C_INA[7:0]  
R/W  
Table 92. OADJ_C_INA Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
15-12  
11-0  
RESERVED  
0000  
RESERVED  
OADJ_C_INA  
Undefined Offset adjustment value for ADC1 (A-ADC) applied when ADC1  
samples INA. The format is unsigned. After reset, the factory-  
trimmed value can be read and adjusted as required.  
Important notes:  
Never write OADJ* registers while foreground calibration is  
underway  
Never write OADJ* registers if CAL_BG and CAL_BGOS  
are set  
If CAL_OS = 1 and CAL_BGOS = 0, only read OADJ*  
registers if FG_DONE = 1  
If CAL_BG = 1 and CAL_BGOS = 1, only read OADJ*  
register if CAL_STOPPED = 1  
Copyright © 2018–2020, Texas Instruments Incorporated  
103  
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
7.6.1.5.28 Offset Adjustment for C-ADC and INB Register (address = 0x090-0x091) [reset = Undefined]  
Figure 130. Offset Adjustment for C-ADC and INB Register (OADJ_C_INB)  
15  
14  
13  
12  
11  
10  
9
8
0
RESERVED  
R/W-0000  
OADJ_C_INB[11:8]  
R/W  
7
6
5
4
3
2
1
OADJ_C_INB[7:0]  
R/W  
Table 93. OADJ_C_INB Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
15-12  
11-0  
RESERVED  
0000  
RESERVED  
OADJ_C_INB  
Undefined Offset adjustment value for ADC1 (A-ADC) applied when ADC1  
samples INB. The format is unsigned. After reset, the factory-  
trimmed value can be read and adjusted as required.  
Important notes:  
Never write OADJ* registers while foreground calibration is  
underway  
Never write OADJ* registers if CAL_BG and CAL_BGOS  
are set  
If CAL_OS = 1 and CAL_BGOS = 0, only read OADJ*  
registers if FG_DONE = 1  
If CAL_BG = 1 and CAL_BGOS = 1, only read OADJ*  
register if CAL_STOPPED = 1  
7.6.1.5.29 Offset Adjustment for B-ADC and INA Register (address = 0x092-0x093) [reset = Undefined]  
Figure 131. Offset Adjustment for B-ADC and INA Register (OADJ_B_INA)  
15  
14  
13  
12  
11  
10  
9
8
0
RESERVED  
R/W-0000  
OADJ_B_INA[11:8]  
R/W  
7
6
5
4
3
2
1
OADJ_B_INA[7:0]  
R/W  
Table 94. OADJ_B_INA Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
15-12  
11-0  
RESERVED  
0000  
RESERVED  
OADJ_B_INA  
Undefined Offset adjustment value for ADC2 (B-ADC) applied when ADC2  
samples INA. The format is unsigned. After reset, the factory-  
trimmed value can be read and adjusted as required.  
Important notes:  
Never write OADJ* registers while foreground calibration is  
underway  
Never write OADJ* registers if CAL_BG and CAL_BGOS  
are set  
If CAL_OS = 1 and CAL_BGOS = 0, only read OADJ*  
registers if FG_DONE = 1  
If CAL_BG = 1 and CAL_BGOS = 1, only read OADJ*  
register if CAL_STOPPED = 1  
104  
Copyright © 2018–2020, Texas Instruments Incorporated  
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
7.6.1.5.30 Offset Adjustment for B-ADC and INB Register (address = 0x094-0x095) [reset = Undefined]  
Figure 132. Offset Adjustment for B-ADC and INB Register (OADJ_B_INB)  
15  
14  
13  
12  
11  
10  
9
8
0
RESERVED  
R/W-0000  
OADJ_B_INB[11:8]  
R/W  
7
6
5
4
3
2
1
OADJ_B_INB[7:0]  
R/W  
Table 95. OADJ_B_INB Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
15-12  
11-0  
RESERVED  
0000  
RESERVED  
OADJ_B_INB  
Undefined Offset adjustment value for ADC2 (B-ADC) applied when ADC2  
samples INB. The format is unsigned. After reset, the factory-  
trimmed value can be read and adjusted as required.  
Important notes:  
Never write OADJ* registers while foreground calibration is  
underway  
Never write OADJ* registers if CAL_BG and CAL_BGOS  
are set  
If CAL_OS  
registers if FG_DONE = 1  
If CAL_BG and CAL_BGOS=1, only read OADJ*  
register if CAL_STOPPED = 1  
= 1 and CAL_BGOS=0, only read OADJ*  
=
1
7.6.1.5.31 Offset Filtering Control 0 Register (address = 0x097) [reset = 0x00]  
Figure 133. Offset Filtering Control 0 Register (OSFILT0)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000 000  
DC_RESTORE  
R/W  
Table 96. OSFILT0 Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-1  
0
RESERVED  
0000 000 RESERVED  
DC_RESTORE  
0
When set, the offset filtering feature (enabled by CAL_OSFILT)  
filters only the offset mismatch across ADC banks and does not  
remove the frequency content near DC. When cleared, the  
feature filters all offsets from all banks, thus filtering all DC  
content in the signal; see the Offset Filtering section.  
Copyright © 2018–2020, Texas Instruments Incorporated  
105  
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
7.6.1.5.32 Offset Filtering Control 1 Register (address = 0x098) [reset = 0x33]  
Figure 134. Offset Filtering Control 1 Register (OSFILT1)  
7
6
5
4
3
2
1
0
OSFILT_BW  
R/W-0011  
OSFILT_SOAK  
R/W-0011  
Table 97. OSFILT1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
OSFILT_BW  
R/W  
0011  
This field adjusts the IIR filter bandwidth for the offset filtering  
feature (enabled by CAL_OSFILT). More bandwidth suppresses  
more flicker noise from the ADCs and reduces the offset spurs.  
Less bandwidth minimizes the impact of the filters on the  
mission mode signal.  
OSFILT_BW: IIR coefficient: –3-dB bandwidth (single sided)  
0: Reserved  
1: 2-10 : 609e-9 × FDEVCLK  
2: 2-11 : 305e-9 × FDEVCLK  
3: 2-12 : 152e-9 × FDEVCLK  
4: 2-13 : 76e-9 × FDEVCLK  
5: 2-14 : 38e-9 × FDEVCLK  
6-15: Reserved  
3-0  
OSFILT_SOAK  
R/W  
0011  
This field adjusts the IIR soak time for the offset filtering feature.  
This field applies when offset filtering and background calibration  
are both enabled. This field determines how long the IIR filter is  
allowed to settle when first connected to an ADC after the ADC  
is calibrated. After the soak time completes, the ADC is placed  
online using the IIR filter. Set OSFILT_SOAK = OSFILT_BW.  
106  
Copyright © 2018–2020, Texas Instruments Incorporated  
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
7.6.1.6 ADC Bank Registers (0x100 to 0x15F)  
Table 98. ADC Bank Registers  
ADDRESS  
0x100-0x101  
0x102  
RESET  
ACRONYM  
RESERVED  
B0_TIME_0  
REGISTER NAME  
RESERVED  
SECTION  
Undefined  
Undefined  
Timing Adjustment for Bank 0 (0°  
Clock) Register  
Timing Adjustment for Bank 0 (0° Clock) Register  
(address = 0x102) [reset = Undefined]  
0x103  
Undefined  
B0_TIME_90  
Timing Adjustment for Bank 0 (–90°  
Clock) Register  
Timing Adjustment for Bank 0 (–90° Clock) Register  
(address = 0x103) [reset = Undefined]  
0x104-0x111  
0x112  
Undefined  
Undefined  
RESERVED  
B1_TIME_0  
RESERVED  
Timing Adjustment for Bank 1 (0°  
Clock) Register  
Timing Adjustment for Bank 1 (0° Clock) Register  
(address = 0x112) [reset = Undefined]  
0x113  
Undefined  
B1_TIME_90  
Timing Adjustment for Bank 1 (–90°  
Clock) Register  
Timing Adjustment for Bank 1 (–90° Clock) Register  
(address = 0x113) [reset = Undefined]  
0x114-0x121  
0x122  
Undefined  
Undefined  
RESERVED  
B2_TIME_0  
RESERVED  
Timing Adjustment for Bank 2 (0°  
Clock) Register  
Timing Adjustment for Bank 2 (0° Clock) Register  
(address = 0x122) [reset = Undefined]  
0x123  
Undefined  
B2_TIME_90  
Timing Adjustment for Bank 2 (–90°  
Clock) Register  
Timing Adjustment for Bank 2 (–90° Clock) Register  
(address = 0x123) [reset = Undefined]  
0x124-0x131  
0x132  
Undefined  
Undefined  
RESERVED  
B3_TIME_0  
RESERVED  
Timing Adjustment for Bank 3 (0°  
Clock) Register  
Timing Adjustment for Bank 3 (0° Clock) Register  
(address = 0x132) [reset = Undefined]  
0x133  
Undefined  
B3_TIME_90  
Timing Adjustment for Bank 3 (–90°  
Clock) Register  
Timing Adjustment for Bank 3 (–90° Clock) Register  
(address = 0x133) [reset = Undefined]  
0x134-0x141  
0x142  
Undefined  
Undefined  
RESERVED  
B4_TIME_0  
RESERVED  
Timing Adjustment for Bank 4 (0°  
Clock) Register  
Timing Adjustment for Bank 4 (0° Clock) Register  
(address = 0x142) [reset = Undefined]  
0x143  
Undefined  
B4_TIME_90  
Timing Adjustment for Bank 4 (–90°  
Clock) Register  
Timing Adjustment for Bank 4 (–90° Clock) Register  
(address = 0x143) [reset = Undefined]  
0x144-0x151  
0x152  
Undefined  
Undefined  
RESERVED  
B5_TIME_0  
RESERVED  
Timing Adjustment for Bank 5 (0°  
Clock) Register  
Timing Adjustment for Bank 5 (0° Clock) Register  
(address = 0x152) [reset = Undefined]  
0x153  
Undefined  
Undefined  
B5_TIME_90  
RESERVED  
Timing Adjustment for Bank 5 (–90°  
Clock) Register  
Timing Adjustment for Bank 5 (–90° Clock) Register  
(address = 0x153) [reset = Undefined]  
0x154-0x15F  
RESERVED  
7.6.1.6.1 Timing Adjustment for Bank 0 (0° Clock) Register (address = 0x102) [reset = Undefined]  
Figure 135. Timing Adjustment for Bank 0 (0° Clock) Register (B0_TIME_0)  
7
6
5
4
3
2
1
0
B0_TIME_0  
R/W  
Table 99. B0_TIME_0 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
B0_TIME_0  
R/W  
Undefined Time adjustment for bank 0 (applied when the ADC is configured  
for 0° clock phase). After reset, the factory-trimmed value can be  
read and adjusted as required.  
Copyright © 2018–2020, Texas Instruments Incorporated  
107  
 
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
7.6.1.6.2 Timing Adjustment for Bank 0 (–90° Clock) Register (address = 0x103) [reset = Undefined]  
Figure 136. Timing Adjustment for Bank 0 (–90° Clock) Register (B0_TIME_90)  
7
6
5
4
3
2
1
0
B0_TIME_90  
R/W  
Table 100. B0_TIME_90 Field Descriptions  
Bit  
Field  
B0_TIME_90  
Type  
Reset  
Description  
7-0  
R/W  
Undefined Time adjustment for bank 0 (applied when the ADC is configured  
for –90° clock phase). After reset, the factory-trimmed value can  
be read and adjusted as required.  
7.6.1.6.3 Timing Adjustment for Bank 1 (0° Clock) Register (address = 0x112) [reset = Undefined]  
Figure 137. Timing Adjustment for Bank 1 (0° Clock) Register (B1_TIME_0)  
7
6
5
4
3
2
1
0
B1_TIME_0  
R/W  
Table 101. B1_TIME_0 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
B1_TIME_0  
R/W  
Undefined Time adjustment for bank 1 (applied when the ADC is configured  
for 0° clock phase). After reset, the factory-trimmed value can be  
read and adjusted as required.  
7.6.1.6.4 Timing Adjustment for Bank 1 (–90° Clock) Register (address = 0x113) [reset = Undefined]  
Figure 138. Timing Adjustment for Bank 1 (–90° Clock) Register (B1_TIME_90)  
7
6
5
4
3
2
1
0
B1_TIME_90  
R/W  
Table 102. B1_TIME_90 Field Descriptions  
Bit  
Field  
B1_TIME_90  
Type  
Reset  
Description  
7-0  
R/W  
Undefined Time adjustment for bank 1 (applied when the ADC is configured  
for –90° clock phase). After reset, the factory-trimmed value can  
be read and adjusted as required.  
7.6.1.6.5 Timing Adjustment for Bank 2 (0° Clock) Register (address = 0x122) [reset = Undefined]  
Figure 139. Timing Adjustment for Bank 2 (0° Clock) Register (B2_TIME_0)  
7
6
5
4
3
2
1
0
B2_TIME_0  
R/W  
Table 103. B2_TIME_0 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
B2_TIME_0  
R/W  
Undefined Time adjustment for bank 2 (applied when the ADC is configured  
for 0° clock phase). After reset, the factory-trimmed value can be  
read and adjusted as required.  
108  
Copyright © 2018–2020, Texas Instruments Incorporated  
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
7.6.1.6.6 Timing Adjustment for Bank 2 (–90° Clock) Register (address = 0x123) [reset = Undefined]  
Figure 140. Timing Adjustment for Bank 2 (–90° Clock) Register (B2_TIME_90)  
7
6
5
4
3
2
1
0
B2_TIME_90  
R/W  
Table 104. B2_TIME_90 Field Descriptions  
Bit  
Field  
B2_TIME_90  
Type  
Reset  
Description  
7-0  
R/W  
Undefined Time adjustment for bank 2 (applied when the ADC is configured  
for –90° clock phase). After reset, the factory-trimmed value can  
be read and adjusted as required.  
7.6.1.6.7 Timing Adjustment for Bank 3 (0° Clock) Register (address = 0x132) [reset = Undefined]  
Figure 141. Timing Adjustment for Bank 3 (0° Clock) Register (B3_TIME_0)  
7
6
5
4
3
2
1
0
B3_TIME_0  
R/W  
Table 105. B3_TIME_0 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
B3_TIME_0  
R/W  
Undefined Time adjustment for bank 3 (applied when the ADC is configured  
for 0° clock phase). After reset, the factory-trimmed value can be  
read and adjusted as required.  
7.6.1.6.8 Timing Adjustment for Bank 3 (–90° Clock) Register (address = 0x133) [reset = Undefined]  
Figure 142. Timing Adjustment for Bank 3 (–90° Clock) Register (B3_TIME_90)  
7
6
5
4
3
2
1
0
B3_TIME_90  
R/W  
Table 106. B3_TIME_90 Field Descriptions  
Bit  
Field  
B3_TIME_90  
Type  
Reset  
Description  
7-0  
R/W  
Undefined Time adjustment for bank 3 (applied when the ADC is configured  
for –90° clock phase). After reset, the factory-trimmed value can  
be read and adjusted as required.  
7.6.1.6.9 Timing Adjustment for Bank 4 (0° Clock) Register (address = 0x142) [reset = Undefined]  
Figure 143. Timing Adjustment for Bank 4 (0° Clock) Register (B4_TIME_0)  
7
6
5
4
3
2
1
0
B4_TIME_0  
R/W  
Table 107. B4_TIME_0 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
B4_TIME_0  
R/W  
Undefined Time adjustment for bank 4 (applied when the ADC is configured  
for 0° clock phase). After reset, the factory-trimmed value can be  
read and adjusted as required.  
Copyright © 2018–2020, Texas Instruments Incorporated  
109  
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
7.6.1.6.10 Timing Adjustment for Bank 4 (–90° Clock) Register (address = 0x143) [reset = Undefined]  
Figure 144. Timing Adjustment for Bank 4 (–90° Clock) Register (B4_TIME_90)  
7
6
5
4
3
2
1
0
B4_TIME_90  
R/W  
Table 108. B4_TIME_90 Field Descriptions  
Bit  
Field  
B4_TIME_90  
Type  
Reset  
Description  
7-0  
R/W  
Undefined Time adjustment for bank 4 (applied when the ADC is configured  
for –90° clock phase). After reset, the factory-trimmed value can  
be read and adjusted as required.  
7.6.1.6.11 Timing Adjustment for Bank 5 (0° Clock) Register (address = 0x152) [reset = Undefined]  
Figure 145. Timing Adjustment for Bank 5 (0° Clock) Register (B5_TIME_0)  
7
6
5
4
3
2
1
0
B5_TIME_0  
R/W  
Table 109. B5_TIME_0 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
B5_TIME_0  
R/W  
Undefined Time adjustment for bank 5 (applied when the ADC is configured  
for 0° clock phase). After reset, the factory-trimmed value can be  
read and adjusted as required.  
7.6.1.6.12 Timing Adjustment for Bank 5 (–90° Clock) Register (address = 0x153) [reset = Undefined]  
Figure 146. Timing Adjustment for Bank 5 (–90° Clock) Register (B5_TIME_90)  
7
6
5
4
3
2
1
0
B5_TIME_90  
R/W  
Table 110. B5_TIME_90 Field Descriptions  
Bit  
Field  
B5_TIME_90  
Type  
Reset  
Description  
7-0  
R/W  
Undefined Time adjustment for bank 5 (applied when the ADC is configured  
for –90° clock phase). After reset, the factory-trimmed value can  
be read and adjusted as required.  
110  
Copyright © 2018–2020, Texas Instruments Incorporated  
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
7.6.1.7 LSB Control Registers (0x160 to 0x1FF)  
Table 111. LSB Control Registers  
ADDRESS  
RESET  
ACRONYM  
REGISTER NAME  
SECTION  
0x160  
0x00  
ENC_LSB  
LSB Control Bit Output Register  
LSB Control Bit Output Register (address = 0x160) [reset  
= 0x00]  
0x161-0x1FF  
Undefined  
RESERVED  
RESERVED  
7.6.1.7.1 LSB Control Bit Output Register (address = 0x160) [reset = 0x00]  
Figure 147. LSB Control Bit Output Register (ENC_LSB)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000 000  
TIMESTAMP_EN  
R/W-0  
Table 112. ENC_LSB Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-1  
0
RESERVED  
0000 000 RESERVED  
TIMESTAMP_EN  
0
When set, the transport layer transmits the timestamp signal on  
the LSB of the output samples. Only supported in decimate-by-1  
(DDC bypass) modes. TIMESTAMP_EN has priority over  
CAL_STATE_EN. TMSTP_RECV_EN must also be set high  
when using timestamp. The latency of the timestamp signal  
(through the entire device) matches the latency of the analog  
ADC inputs.  
In 8-bit modes, the control bit is placed on the LSB of the 8-bit  
samples (leaving 7 bits of sample data). If the device is  
configured for 12-bit data, the control bit is placed on the LSB of  
the 12-bit data (leaving 11 bits of sample data).  
The control bit enabled by this register is never advertised in the  
ILA (the CS field is 0 in the ILA).  
Copyright © 2018–2020, Texas Instruments Incorporated  
111  
 
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
7.6.1.8 JESD204B Registers (0x200 to 0x20F)  
Table 113. JESD204B Registers  
ADDRESS  
RESET  
ACRONYM  
REGISTER NAME  
SECTION  
0x200  
0x01  
JESD_EN  
JESD204B Enable Register  
JESD204B Enable Register (address = 0x200) [reset =  
0x01]  
0x201  
0x202  
0x02  
0x1F  
JMODE  
KM1  
JESD204B Mode Register  
JESD204B Mode Register (address = 0x201) [reset =  
0x02]  
JESD204B K Parameter Register  
JESD204B K Parameter Register (address = 0x202)  
[reset = 0x1F]  
0x203  
0x01  
JSYNC_N  
JCTRL  
JESD204B Manual SYNC Request  
Register  
JESD204B Manual SYNC Request Register (address =  
0x203) [reset = 0x01]  
0x204  
0x02  
JESD204B Control Register  
JESD204B Control Register (address = 0x204) [reset =  
0x02]  
0x205  
0x00  
JTEST  
JESD204B Test Pattern Control  
Register  
JESD204B Test Pattern Control Register (address =  
0x205) [reset = 0x00]  
0x206  
0x00  
DID  
JESD204B DID Parameter Register  
JESD204B DID Parameter Register (address = 0x206)  
[reset = 0x00]  
0x207  
0x00  
FCHAR  
JESD204B Frame Character  
Register  
JESD204B Frame Character Register (address = 0x207)  
[reset = 0x00]  
0x208  
Undefined  
0x00  
JESD_STATUS  
PD_CH  
JESD204B, System Status Register  
JESD204B, System Status Register (address = 0x208)  
[reset = Undefined]  
0x209  
JESD204B Channel Power-Down  
JESD204B Channel Power-Down Register (address =  
0x209) [reset = 0x00]  
0x20A  
0x00  
JEXTRA_A  
JEXTRA_B  
RESERVED  
JESD204B Extra Lane Enable (Link  
A)  
JESD204B Extra Lane Enable (Link A) Register (address  
= 0x20A) [reset = 0x00]  
0x20B  
0x00  
JESD204B Extra Lane Enable (Link  
B)  
JESD204B Extra Lane Enable (Link B) Register (address  
= 0x20B) [reset = 0x00]  
0x20C-0x20F  
Undefined  
RESERVED  
7.6.1.8.1 JESD204B Enable Register (address = 0x200) [reset = 0x01]  
Figure 148. JESD204B Enable Register (JESD_EN)  
7
6
5
4
3
2
1
0
RESERVED  
JESD_EN  
R/W-1  
R/W-0000 000  
Table 114. JESD_EN Field Descriptions  
Bit  
7-1  
0
Field  
Type  
R/W  
R/W  
Reset  
0000 000 RESERVED  
0 : Disables JESD204B interface  
1 : Enables JESD204B interface  
Description  
RESERVED  
JESD_EN  
1
Before altering other JESD204B registers, JESD_EN must be  
cleared. When JESD_EN is 0, the block is held in reset and the  
serializers are powered down. The clocks are gated off to save  
power. The LMFC counter is also held in reset, so SYSREF  
does not align the LMFC.  
Always set CAL_EN before setting JESD_EN.  
Always clear JESD_EN before clearing CAL_EN.  
112  
Copyright © 2018–2020, Texas Instruments Incorporated  
 
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
7.6.1.8.2 JESD204B Mode Register (address = 0x201) [reset = 0x02]  
Figure 149. JESD204B Mode Register (JMODE)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-000  
JMODE  
R/W-0001 0  
Table 115. JMODE Field Descriptions  
Bit  
7-5  
4-0  
Field  
Type  
R/W  
R/W  
Reset  
000  
Description  
RESERVED  
JMODE  
RESERVED  
0001 0  
Specify the JESD204B output mode (including DDC decimation  
factor).  
Only change this register when JESD_EN = 0 and CAL_EN = 0.  
7.6.1.8.3 JESD204B K Parameter Register (address = 0x202) [reset = 0x1F]  
Figure 150. JESD204B K Parameter Register (KM1)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-000  
KM1  
R/W-1111 1  
Table 116. KM1 Field Descriptions  
Bit  
7-5  
4-0  
Field  
Type  
R/W  
R/W  
Reset  
000  
Description  
RESERVED  
KM1  
RESERVED  
1111 1  
K is the number of frames per multiframe and this register must  
be programmed as K-1. Depending on the JMODE setting, there  
are constraints on the legal values of K. (default: KM1 = 31, K =  
32).  
Only change this register when JESD_EN is 0.  
7.6.1.8.4 JESD204B Manual SYNC Request Register (address = 0x203) [reset = 0x01]  
Figure 151. JESD204B Manual SYNC Request Register (JSYNC_N)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000 000  
JSYNC_N  
R/W-1  
Table 117. JSYNC_N Field Descriptions  
Bit  
7-1  
0
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
JSYNC_N  
0000 000 RESERVED  
1
Set this bit to 0 to request JESD204B synchronization  
(equivalent to the SYNCSE pin being asserted). For normal  
operation, leave this bit set to 1.  
The JSYNC_N register can always generate a synchronization  
request, regardless of the SYNC_SEL register. However, if the  
selected sync pin is stuck low, the synchronization request  
cannot be de-asserted unless SYNC_SEL = 2 is programmed.  
Copyright © 2018–2020, Texas Instruments Incorporated  
113  
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
7.6.1.8.5 JESD204B Control Register (address = 0x204) [reset = 0x02]  
Figure 152. JESD204B Control Register (JCTRL)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000  
SYNC_SEL  
R/W-00  
SFORMAT  
R/W-1  
SCR  
R/W-0  
Table 118. JCTRL Field Descriptions  
Bit  
7-4  
3-2  
Field  
Type  
R/W  
R/W  
Reset  
0000  
00  
Description  
RESERVED  
SYNC_SEL  
RESERVED  
0: Use the SYNCSE input for the SYNC~ function (default)  
1: Use the TMSTP± differential input for the SYNC~ function;  
TMSTP_RECV_EN must also be set  
2: Do not use any sync input signal (use software SYNC~  
through JSYNC_N)  
1
0
SFORMAT  
SCR  
R/W  
R/W  
1
0
Output sample format for JESD204B samples.  
0: Offset binary  
1: Signed 2’s complement (default)  
0: Scrambler disabled (default)  
1: Scrambler enabled  
Only change this register when JESD_EN is 0.  
7.6.1.8.6 JESD204B Test Pattern Control Register (address = 0x205) [reset = 0x00]  
Figure 153. JESD204B Test Pattern Control Register (JTEST)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000  
JTEST  
R/W-0000  
Table 119. JTEST Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
R/W  
R/W  
Reset  
0000  
0000  
Description  
RESERVED  
JTEST  
RESERVED  
0: Test mode disabled; normal operation (default)  
1: PRBS7 test mode  
2: PRBS15 test mode  
3: PRBS23 test mode  
4: Ramp test mode  
5: Transport layer test mode  
6: D21.5 test mode  
7: K28.5 test mode  
8: Repeated ILA test mode  
9: Modified RPAT test mode  
10: Serial outputs held low  
11: Serial outputs held high  
12–15: Reserved  
Only change this register when JESD_EN is 0.  
114  
Copyright © 2018–2020, Texas Instruments Incorporated  
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
7.6.1.8.7 JESD204B DID Parameter Register (address = 0x206) [reset = 0x00]  
Figure 154. JESD204B DID Parameter Register (DID)  
7
6
5
4
3
2
1
0
DID  
R/W-0000 0000  
Table 120. DID Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DID  
R/W  
0000 0000 Specifies the device ID (DID) value that is transmitted during the  
second multiframe of the JESD204B ILA. Link A transmits DID,  
and link B transmits DID+1. Bit 0 is ignored and always returns 0  
(if an odd number is programmed, that number is decremented  
to an even number).  
Only change this register when JESD_EN is 0.  
7.6.1.8.8 JESD204B Frame Character Register (address = 0x207) [reset = 0x00]  
Figure 155. JESD204B Frame Character Register (FCHAR)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000 00  
FCHAR  
R/W-00  
Table 121. FCHAR Field Descriptions  
Bit  
7-2  
1-0  
Field  
Type  
R/W  
R/W  
Reset  
0000 00  
00  
Description  
RESERVED  
FCHAR  
RESERVED  
Specify which comma character is used to denote end-of-frame.  
This character is transmitted opportunistically (see the Frame  
and Multiframe Monitoring section).  
0: Use K28.7 (default, JESD204B compliant)  
1: Use K28.1 (not JESD204B compliant)  
2: Use K28.5 (not JESD204B compliant)  
3: Reserved  
When using a JESD204B receiver, always use FCHAR = 0.  
When using a general-purpose 8b, 10b receiver, the K28.7  
character may cause issues. When K28.7 is combined with  
certain data characters, a false, misaligned comma character  
can result, and some receivers realign to the false comma. To  
avoid this condition, program FCHAR to 1 or 2.  
Only change this register when JESD_EN is 0.  
Copyright © 2018–2020, Texas Instruments Incorporated  
115  
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
7.6.1.8.9 JESD204B, System Status Register (address = 0x208) [reset = Undefined]  
Figure 156. JESD204B, System Status Register (JESD_STATUS)  
7
RESERVED  
R
6
LINK_UP  
R
5
4
3
2
1
0
RESERVED  
R
SYNC_STATUS  
R
REALIGNED  
R/W  
ALIGNED  
R/W  
PLL_LOCKED  
R
Table 122. JESD_STATUS Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
Description  
RESERVED  
LINK_UP  
Undefined RESERVED  
6
R
Undefined When set, this bit indicates that the JESD204B link is up.  
5
SYNC_STATUS  
REALIGNED  
ALIGNED  
R
Undefined Returns the state of the JESD204B SYNC~ signal.  
0: SYNC~ asserted  
1: SYNC~ de-asserted  
4
3
R/W  
R/W  
Undefined When high, this bit indicates that an internal digital clock, frame  
clock, or multiframe (LMFC) clock phase was realigned by  
SYSREF. Write a 1 to clear this bit.  
Undefined When high, this bit indicates that the multiframe (LMFC) clock  
phase has been established by SYSREF. The first SYSREF  
event after enabling the JESD204B encoder will set this bit.  
Write a 1 to clear this bit.  
2
PLL_LOCKED  
RESERVED  
R
R
Undefined When high, this bit indicates that the PLL is locked.  
Undefined RESERVED  
1-0  
7.6.1.8.10 JESD204B Channel Power-Down Register (address = 0x209) [reset = 0x00]  
Figure 157. JESD204B Channel Power-Down Register (PD_CH)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000 00  
PD_BCH  
R/W-0  
PD_ACH  
R/W-0  
Table 123. PD_CH Field Descriptions  
Bit  
7-2  
1
Field  
Type  
R/W  
R/W  
Reset  
0000 00  
0
Description  
RESERVED  
PD_BCH  
RESERVED  
When set, the B ADC channel is powered down. The digital  
channels that are bound to the B ADC channel are also powered  
down (see the digital channel binding register).  
Important notes:  
Set JESD_EN = 0 before changing PD_CH.  
To power-down both ADC channels, use MODE.  
If both channels are powered down, then the entire JESD204B  
subsystem (including the PLL and LMFC) are powered down  
If the selected JESD204B mode transmits A and B data on link  
A, and the B digital channel is disabled, link A remains  
operational, but the B-channel samples are undefined.  
0
PD_ACH  
R/W  
0
When set, the A ADC channel is powered down. The digital  
channels that are bound to the A ADC channel are also powered  
down (digital channel binding register).  
Important notes:  
Set JESD_EN = 0 before changing PD_CH.  
To power-down both ADC channels, use MODE.  
If both channels are powered down, then the entire JESD204B  
subsystem (including the PLL and LMFC) are powered down  
If the selected JESD204B mode transmits A and B data on link  
A, and the B digital channel is disabled, link A remains  
operational, but the B-channel samples are undefined.  
116  
Copyright © 2018–2020, Texas Instruments Incorporated  
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
7.6.1.8.11 JESD204B Extra Lane Enable (Link A) Register (address = 0x20A) [reset = 0x00]  
Figure 158. JESD204B Extra Lane Enable (Link A) Register (JEXTRA_A)  
7
6
5
4
3
2
1
0
EXTRA_LANE_A  
R/W-0000 000  
EXTRA_SER_A  
R/W-0  
Table 124. JESD204B Extra Lane Enable (Link A) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
EXTRA_LANE_A  
R/W  
0000 000 Program these register bits to enable extra lanes (even if the  
selected JMODE does not require the lanes to be enabled).  
EXTRA_LANE_A(n) enables An (n = 1 to 7). This register  
enables the link layer clocks for the affected lanes. To also  
enable the extra serializes set EXTRA_SER_A = 1.  
0
EXTRA_SER_A  
R/W  
0
0: Only the link layer clocks for extra lanes are enabled.  
1: Serializers for extra lanes are also enabled. Use this mode to  
transmit data from the extra lanes.  
Important notes:  
Only change this register when JESD_EN = 0.  
The bit-rate and mode of the extra lanes are set by the JMODE  
and JTEST parameters.  
This register does not override the PD_CH register, so ensure  
that the link is enabled to use this feature.  
To enable serializer n, the lower number lanes 0 to n-1 must  
also be enabled, otherwise serializer n does not receive a clock.  
7.6.1.8.12 JESD204B Extra Lane Enable (Link B) Register (address = 0x20B) [reset = 0x00]  
Figure 159. JESD204B Extra Lane Enable (Link B) Register (JEXTRA_B)  
7
6
5
4
3
2
1
0
EXTRA_LANE_B  
R/W-0000 000  
EXTRA_SER_B  
R/W-0  
Table 125. JESD204B Extra Lane Enable (Link B) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
EXTRA_LANE_B  
R/W  
0000 000 Program these register bits to enable extra lanes (even if the  
selected JMODE does not require the lanes to be enabled).  
EXTRA_LANE_B(n) enables Bn (n = 1 to 7). This register  
enables the link layer clocks for the affected lanes. To also  
enable the extra serializes set EXTRA_SER_B = 1.  
0
EXTRA_SER_B  
R/W  
0
0: Only the link layer clocks for extra lanes are enabled.  
1: Serializers for extra lanes are also enabled. Use this mode to  
transmit data from the extra lanes.  
Important notes:  
Only change this register when JESD_EN = 0.  
The bit-rate and mode of the extra lanes are set by the JMODE  
and JTEST parameters.  
This register does not override the PD_CH register, so ensure  
that the link is enabled to use this feature.  
To enable serializer n, the lower number lanes 0 to n-1 must  
also be enabled, otherwise serializer n does not receive a clock.  
Copyright © 2018–2020, Texas Instruments Incorporated  
117  
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
7.6.1.9 Digital Down Converter Registers (0x210-0x2AF)  
Table 126. Digital Down Converter and Overrange Registers  
ADDRESS  
RESET  
ACRONYM  
DDC_CFG  
REGISTER NAME  
DDC Configuration Register  
SECTION  
0x210  
0x00  
DDC Configuration Register (address = 0x210) [reset =  
0x00]  
0x211  
0x212  
0xF2  
0xAB  
0x07  
OVR_T0  
OVR_T1  
Overrange Threshold 0 Register  
Overrange Threshold 1 Register  
Overrange Configuration Register  
Overrange Threshold 0 Register (address = 0x211) [reset  
= 0xF2]  
Overrange Threshold 1 Register (address = 0x212) [reset  
= 0xAB]  
0x213  
OVR_CFG  
CMODE  
Overrange Configuration Register (address = 0x213)  
[reset = 0x07]  
0x214  
0x00  
DDC Configuration Preset Mode  
Register  
DDC Configuration Preset Mode Register (address =  
0x214) [reset = 0x00]  
0x215  
0x00  
CSEL  
DDC Configuration Preset Select  
Register  
DDC Configuration Preset Select Register (address =  
0x215) [reset = 0x00]  
0x216  
0x02  
DIG_BIND  
NCO_RDIV  
NCO_SYNC  
Digital Channel Binding Register  
Digital Channel Binding Register (address = 0x216) [reset  
= 0x02]  
0x217-0x218  
0x219  
0x0000  
0x02  
Rational NCO Reference Divisor  
Register  
Rational NCO Reference Divisor Register (address =  
0x217 to 0x218) [reset = 0x0000]  
NCO Synchronization Register  
NCO Synchronization Register (address = 0x219) [reset =  
0x02]  
0x21A-0x21F  
0x220-0x223  
Undefined  
RESERVED  
FREQA0  
RESERVED  
0xC0000000  
NCO Frequency (DDC A Preset 0)  
NCO Frequency (DDC A or DDC B and Preset x) Register  
(address = see Table 126) [reset = see Table 126]  
0x224-0x225  
0x0000  
PHASEA0  
NCO Phase (DDC A Preset 0)  
NCO Phase (DDC A or DDC B and Preset x) Register  
(address = see Table 126) [reset = see Table 126]  
0x226-0x227  
0x228-0x22B  
Undefined  
RESERVED  
FREQA1  
RESERVED  
0xC0000000  
NCO Frequency (DDC A Preset 1)  
NCO Frequency (DDC A or DDC B and Preset x) Register  
(address = see Table 126) [reset = see Table 126]  
0x22C-0x22D  
0x0000  
PHASEA1  
NCO Phase (DDC A Preset 1)  
NCO Phase (DDC A or DDC B and Preset x) Register  
(address = see Table 126) [reset = see Table 126]  
0x22E-0x22F  
0x230-0x233  
Undefined  
RESERVED  
FREQA2  
RESERVED  
0xC0000000  
NCO Frequency (DDC A Preset 2)  
NCO Frequency (DDC A or DDC B and Preset x) Register  
(address = see Table 126) [reset = see Table 126]  
0x234-0x235  
0x0000  
PHASEA2  
NCO Phase (DDC A Preset 2)  
NCO Phase (DDC A or DDC B and Preset x) Register  
(address = see Table 126) [reset = see Table 126]  
0x236-0x237  
0x238-0x23B  
Undefined  
RESERVED  
FREQA3  
RESERVED  
0xC0000000  
NCO Frequency (DDC A Preset 3)  
NCO Frequency (DDC A or DDC B and Preset x) Register  
(address = see Table 126) [reset = see Table 126]  
0x23C-0x23D  
0x0000  
PHASEA3  
NCO Phase (DDC A Preset 3)  
NCO Phase (DDC A or DDC B and Preset x) Register  
(address = see Table 126) [reset = see Table 126]  
0x23E-0x23F  
0x240-0x243  
Undefined  
RESERVED  
FREQB0  
RESERVED  
0xC0000000  
NCO Frequency (DDC B Preset 0)  
NCO Frequency (DDC A or DDC B and Preset x) Register  
(address = see Table 126) [reset = see Table 126]  
0x244-0x245  
0x0000  
PHASEB0  
NCO Phase (DDC B Preset 0)  
NCO Phase (DDC A or DDC B and Preset x) Register  
(address = see Table 126) [reset = see Table 126]  
0x246-0x247  
0x248-0x24B  
Undefined  
RESERVED  
FREQB1  
RESERVED  
0xC0000000  
NCO Frequency (DDC B Preset 1)  
NCO Frequency (DDC A or DDC B and Preset x) Register  
(address = see Table 126) [reset = see Table 126]  
0x24C-0x24D  
0x0000  
PHASEB1  
NCO Phase (DDC B Preset 1)  
NCO Phase (DDC A or DDC B and Preset x) Register  
(address = see Table 126) [reset = see Table 126]  
0x24E-0x24F  
0x250-0x253  
Undefined  
RESERVED  
FREQB2  
RESERVED  
0xC0000000  
NCO Frequency (DDC B Preset 2)  
NCO Frequency (DDC A or DDC B and Preset x) Register  
(address = see Table 126) [reset = see Table 126]  
0x254-0x255  
0x0000  
PHASEB2  
NCO Phase (DDC B Preset 2)  
NCO Phase (DDC A or DDC B and Preset x) Register  
(address = see Table 126) [reset = see Table 126]  
0x256-0x257  
0x258-0x25B  
Undefined  
RESERVED  
FREQB3  
RESERVED  
0xC0000000  
NCO Frequency (DDC B Preset 3)  
NCO Frequency (DDC A or DDC B and Preset x) Register  
(address = see Table 126) [reset = see Table 126]  
0x25C-0x25D  
0x0000  
PHASEB3  
NCO Phase (DDC B Preset 3)  
NCO Phase (DDC A or DDC B and Preset x) Register  
(address = see Table 126) [reset = see Table 126]  
118  
Copyright © 2018–2020, Texas Instruments Incorporated  
 
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
Table 126. Digital Down Converter and Overrange Registers (continued)  
ADDRESS  
0x25E-0x296  
0x297  
RESET  
ACRONYM  
RESERVED  
SPIN_ID  
REGISTER NAME  
RESERVED  
SECTION  
Undefined  
Undefined  
Spin Identification Value  
Spin Identification Register (address = 0x297) [reset =  
Undefined]  
0x298-0x2AF  
Undefined  
RESERVED  
RESERVED  
7.6.1.9.1 DDC Configuration Register (address = 0x210) [reset = 0x00]  
Figure 160. DDC Configuration Register (DDC_CFG)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000  
D4_AP87  
R/W-0  
D2_HIGH_PASS  
R/W-0  
INVERT_SPECTRUM  
R/W-0  
BOOST  
R/W-0  
Table 127. DDC_CFG Field Descriptions  
Bit  
7-4  
3
Field  
Type  
R/W  
R/W  
Reset  
0000  
0
Description  
RESERVED  
D4_AP87  
RESERVED  
0: Decimate-by-4 mode uses 80% alias protection, > 80-dB  
suppression  
1: Decimate-by-4 mode uses 87.5% alias protection, > 60-dB  
suppression  
2
1
D2_HIGH_PASS  
R/W  
R/W  
0
0
0: Decimate-by-2 mode uses a low-pass filter  
1: Decimate-by-2 mode uses a high-pass filter. Decimating the  
high-pass signal causes spectral inversion. This inversion can  
be undone by setting INVERT_SPECTRUM.  
INVERT_SPECTRUM  
0: No inversion applied to output spectrum  
1: Output spectrum is inverted  
This register only applies when the DDC is enabled and is  
producing a real output (not complex). The spectrum is inverted  
by mixing the signal with FSOUT / 2 (for example, invert all odd  
samples).  
0
BOOST  
R/W  
0
DDC gain control. Only applies to DDC modes with complex  
decimation.  
0: Final filter has 0-dB gain (default)  
1: Final filter has 6.02-dB gain. Only use this setting when  
certain that the negative image of the input signal is filtered out  
by the DDC, otherwise digital clipping may occur.  
7.6.1.9.2 Overrange Threshold 0 Register (address = 0x211) [reset = 0xF2]  
Figure 161. Overrange Threshold 0 Register (OVR_T0)  
7
6
5
4
3
2
1
0
OVR_T0  
R/W-1111 0010  
Table 128. OVR_T0 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
OVR_T0  
R/W  
1111 0010 Overrange threshold 0. This parameter defines the absolute  
sample level that causes control bit 0 to be set. The detection  
level in dBFS (peak) is:  
20log10(OVR_T0 / 256)  
Default: 0xF2 = 242 –0.5 dBFS.  
Copyright © 2018–2020, Texas Instruments Incorporated  
119  
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
7.6.1.9.3 Overrange Threshold 1 Register (address = 0x212) [reset = 0xAB]  
Figure 162. Overrange Threshold 1 Register (OVR_T1)  
7
6
5
4
3
2
1
0
OVR_T1  
R/W-1010 1011  
Table 129. OVR_T1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
OVR_T1  
R/W  
1010 1011 Overrange threshold 1. This parameter defines the absolute  
sample level that causes control bit 1 to be set. The detection  
level in dBFS (peak) is:  
20log10(OVR_T1 / 256)  
Default: 0xAB = 171 –3.5 dBFS.  
7.6.1.9.4 Overrange Configuration Register (address = 0x213) [reset = 0x07]  
Figure 163. Overrange Configuration Register (OVR_CFG)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000  
OVR_EN  
R/W-0  
OVR_N  
R/W-111  
Table 130. OVR_CFG Field Descriptions  
Bit  
7-4  
3
Field  
Type  
R/W  
R/W  
Reset  
0000 0  
0
Description  
RESERVED  
OVR_EN  
RESERVED  
Enables overrange status output pins when set high. The ORA0,  
ORA1, ORB0, and ORB1 outputs are held low when OVR_EN is  
set low. This register only effects the overrange output pins  
(ORxx) and not the overrange status embedded in the data  
samples.  
2-0  
OVR_N(1)  
R/W  
111  
Program this register to adjust the pulse extension for the ORA0,  
ORA1 and ORB0, ORB1 outputs. The minimum pulse duration  
of the overrange outputs is 8 × 2OVR_N DEVCLK cycles.  
Incrementing this field doubles the monitoring period.  
(1) Changing the OVR_N setting while JESD_EN=1 may cause the phase of the monitoring period to change.  
120  
Copyright © 2018–2020, Texas Instruments Incorporated  
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
7.6.1.9.5 DDC Configuration Preset Mode Register (address = 0x214) [reset = 0x00]  
Figure 164. DDC Configuration Preset Mode Register (CMODE)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000 00  
CMODE  
R/W-00  
Table 131. CMODE Field Descriptions  
Bit  
7-2  
1-0  
Field  
Type  
R/W  
R/W  
Reset  
0000 00  
00  
Description  
RESERVED  
CMODE  
RESERVED  
The NCO frequency and phase for DDC A are set by the  
FREQAx and PHASEAx registers and the NCO frequency and  
phase for DDC B are set by the FREQBx and PHASEBx  
registers, where x is the configuration preset (0 through 3).  
0: Use CSEL register to select the active NCO configuration  
preset for DDC A and DDC B  
1: Use NCOA[1:0] pins to select the active NCO configuration  
preset for DDC A and use NCOB[1:0] pins to select the active  
NCO configuration preset for DDC B  
2: Use NCOA[1:0] pins to select the active NCO configuration  
preset for both DDC A and DDC B  
3: Reserved  
7.6.1.9.6 DDC Configuration Preset Select Register (address = 0x215) [reset = 0x00]  
Figure 165. DDC Configuration Preset Select Register (CSEL)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000  
CSELB  
R/W-00  
CSELA  
R/W-00  
Table 132. CSEL Field Descriptions  
Bit  
7-4  
3-2  
Field  
Type  
R/W  
R/W  
Reset  
0000  
00  
Description  
RESERVED  
CSELB  
RESERVED  
When CMODE = 0, this register is used to select the active NCO  
configuration preset for DDC B.  
1-0  
CSELA  
R/W  
00  
When CMODE = 0, this register is used to select the active NCO  
configuration preset for DDC A.  
Example: If CSELA = 0, then FREQA0 and PHASEA0 are the  
active settings. If CSELA = 1, then FREQA1 and PHASEA1 are  
the active settings.  
Copyright © 2018–2020, Texas Instruments Incorporated  
121  
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
7.6.1.9.7 Digital Channel Binding Register (address = 0x216) [reset = 0x02]  
Figure 166. Digital Channel Binding Register (DIG_BIND)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000 00  
DIG_BIND_B  
R/W-1  
DIG_BIND_A  
R/W-0  
Table 133. DIG_BIND Field Descriptions  
Bit  
7-2  
1
Field  
Type  
R/W  
R/W  
Reset  
0000 00  
0
Description  
RESERVED  
RESERVED  
DIG_BIND_B  
Digital channel B input select:  
0: Digital channel B receives data from ADC channel A  
1: Digital channel B receives data from ADC channel B (default)  
0
DIG_BIND_A  
R/W  
0
Digital channel A input select:  
0: Digital channel A receives data from ADC channel A (default)  
1: Digital channel A receives data from ADC channel B  
When using single-channel mode, always use the default setting  
for DIG_BIND or the device does not work.  
Set JESD_EN = 0 and CAL_EN = 0 before changing DIG_BIND.  
The DIG_BIND setting is combined with PD_ACH, PD_BCH to  
determine if a digital channel is powered down. Each digital  
channel (and link) is powered down when the ADC channel it is  
bound to is powered down (by PD_ACH, PD_BCH).  
7.6.1.9.8 Rational NCO Reference Divisor Register (address = 0x217 to 0x218) [reset = 0x0000]  
Figure 167. Rational NCO Reference Divisor Register (NCO_RDIV)  
15  
14  
13  
12  
11  
10  
9
8
0
NCO_RDIV[15:8]  
R/W-0000 0000  
7
6
5
4
3
2
1
NCO_RDIV[7:0]  
R/W-0000 0000  
Table 134. NCO_RDIV Field Descriptions  
Bit  
15-0  
Field  
Type  
Reset  
Description  
NCO_RDIV  
R/W  
0x0000h  
Sometimes the 32-bit NCO frequency word does not provide the  
desired frequency step size and can only approximate the  
desired frequency. This condition results in a frequency error.  
Use this register to eliminate the frequency error. This register is  
used for all configuration presets; see the Rational NCO  
Frequency Setting Mode section.  
122  
Copyright © 2018–2020, Texas Instruments Incorporated  
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
7.6.1.9.9 NCO Synchronization Register (address = 0x219) [reset = 0x02]  
Figure 168. NCO Synchronization Register (NCO_SYNC)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000 00  
NCO_SYNC_ILA  
R/W-1  
NCO_SYNC_NEXT  
R/W-0  
Table 135. NCO_SYNC Field Descriptions  
Bit  
7-2  
1
Field  
Type  
R/W  
R/W  
Reset  
0000 00  
0
Description  
RESERVED  
RESERVED  
NCO_SYNC_ILA  
When this bit is set, the NCO phase is initialized by the LMFC  
edge that starts the ILA sequence (default).  
0
NCO_SYNC_NEXT  
R/W  
0
After writing a 0 and then a 1 to this bit, the next SYSREF rising  
edge initializes the NCO phase. When the NCO phase is  
initialized by SYSREF, the NCO does not reinitialize on future  
SYSREF edges unless a 0 and a 1 is written to this bit again.  
Follow these steps to align the NCO in multiple parts:  
Ensure the device is powered up, JESD_EN is set, and the  
device clock is running.  
Ensure that SYSREF is disabled (not toggling).  
Program NCO_SYNC_ILA = 0 on all devices.  
Write NCO_SYNC_NEXT = 0 on all devices.  
Write NCO_SYNC_NEXT = 1 on all devices. NCO sync is  
armed.  
Instruct the SYSREF source to generate 1 or more SYSREF  
pulses.  
All devices initialize their NCO using the first SYSREF rising  
edge.  
7.6.1.9.10 NCO Frequency (DDC A or DDC B and Preset x) Register (address = see Table 126) [reset = see  
Table 126]  
Figure 169. NCO Frequency (DDC A or DDC B and Preset x) Register (FREQAx or FREQBx)  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
27  
26  
18  
10  
2
25  
17  
9
24  
16  
8
FREQAx[31:24] or FREQBx[31:24]  
R/W-0xC0  
20  
19  
FREQAx[23:16] or FREQBx[23:16]  
R/W-0x00  
12  
11  
FREQAx[15:8] or FREQBx[15:8]  
R/W-0x00  
4
3
1
0
FREQAx[7:0] or FREQBx[7:0]  
R/W-0x00  
Table 136. FREQAx or FREQBx Field Descriptions  
Bit  
31-0  
Field  
FREQAx or FREQBx  
Type  
Reset  
Description  
R/W  
See  
Changing this register after the JESD204B interface is running  
Table 126 results in non-deterministic NCO phase. If deterministic phase is  
required, the JESD204B interface must be re-initialized after  
changing this register. This register can be interpreted as signed  
or unsigned; see the Basic NCO Frequency Setting Mode  
section.  
Copyright © 2018–2020, Texas Instruments Incorporated  
123  
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
7.6.1.9.11 NCO Phase (DDC A or DDC B and Preset x) Register (address = see Table 126) [reset = see Table 126]  
Figure 170. NCO Phase (DDC A or DDC B and Preset x) Register (PHASEAx or PHASEBx)  
15  
14  
13  
12  
11  
10  
9
8
PHASEAx[15:8] or PHASEBx[15:8]  
R/W-0x00  
7
6
5
4
3
2
1
0
PHASEAx[7:0] or PHASEBx[7:0]  
R/W-0x00  
Table 137. PHASEAx or PHASEBx Field Descriptions  
Bit  
15-0  
Field  
PHASEAx or PHASEBx  
Type  
Reset  
Description  
R/W  
See  
This value is MSB-justified into a 32-bit field and then added to  
Table 126 the phase accumulator. This register can be interpreted as  
signed or unsigned; see the NCO Phase Offset Setting section.  
7.6.1.10 Spin Identification Register (address = 0x297) [reset = Undefined]  
Figure 171. Spin Identification Register (SPIN_ID)  
7
6
5
4
3
2
SPIN_ID  
R
1
0
RESERVED  
R-000  
Table 138. SPIN_ID Field Descriptions  
Bit  
7-5  
4-0  
Field  
Type  
R
Reset  
000  
1
Description  
RESERVED  
SPIN_ID  
RESERVED  
R
Spin identification value.  
1 : ADC12DJ2700  
124  
Copyright © 2018–2020, Texas Instruments Incorporated  
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
7.6.2 SYSREF Calibration Registers (0x2B0 to 0x2BF)  
Table 139. SYSREF Calibration Registers  
ADDRESS  
RESET  
ACRONYM  
REGISTER NAME  
SECTION  
0x2B0  
0x00  
SRC_EN  
SYSREF Calibration Enable Register  
SYSREF Calibration Enable Register (address = 0x2B0)  
[reset = 0x00]  
0x2B1  
0x05  
Undefined  
0x00  
SRC_CFG  
SRC_STATUS  
TAD  
SYSREF Calibration Configuration  
Register  
SYSREF Calibration Configuration Register (address =  
0x2B1) [reset = 0x05]  
0x2B2-0x2B4  
0x2B5-0x2B7  
0x2B8  
SYSREF Calibration Status  
SYSREF Calibration Status Register (address = 0x2B2 to  
0x2B4) [reset = Undefined]  
DEVCLK Aperture Delay Adjustment  
Register  
DEVCLK Aperture Delay Adjustment Register (address =  
0x2B5 to 0x2B7) [reset = 0x000000]  
0x00  
TAD_RAMP  
RESERVED  
DEVCLK Timing Adjust Ramp  
Control Register  
DEVCLK Timing Adjust Ramp Control Register (address  
= 0x2B8) [reset = 0x00]  
0x2B9-0x2BF  
Undefined  
RESERVED  
7.6.2.1 SYSREF Calibration Enable Register (address = 0x2B0) [reset = 0x00]  
Figure 172. SYSREF Calibration Enable Register (SRC_EN)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000 000  
SRC_EN  
R/W-0  
Table 140. SRC_EN Field Descriptions  
Bit  
7-1  
0
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
SRC_EN  
0000 000 RESERVED  
0
0: SYSREF calibration disabled; use the TAD register to  
manually control the TAD[16:0] output and adjust the DEVCLK  
delay (default)  
1: SYSREF calibration enabled; the DEVCLK delay is  
automatically calibrated; the TAD register is ignored  
A 0-to-1 transition on SRC_EN starts the SYSREF calibration  
sequence. Program SRC_CFG before setting SRC_EN. Ensure  
that ADC calibration is not currently running before setting  
SRC_EN.  
Copyright © 2018–2020, Texas Instruments Incorporated  
125  
 
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
7.6.2.2 SYSREF Calibration Configuration Register (address = 0x2B1) [reset = 0x05]  
Figure 173. SYSREF Calibration Configuration Register (SRC_CFG)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000  
SRC_AVG  
R/W-01  
SRC_HDUR  
R/W-01  
Table 141. SRC_CFG Field Descriptions  
Bit  
7-4  
3-2  
Field  
Type  
R/W  
R/W  
Reset  
0000 00  
01  
Description  
RESERVED  
SRC_AVG  
RESERVED  
Specifies the amount of averaging used for SYSREF calibration.  
Larger values increase calibration time and reduce the variance  
of the calibrated value.  
0: 4 averages  
1: 16 averages  
2: 64 averages  
3: 256 averages  
1-0  
SRC_HDUR  
R/W  
01  
Specifies the duration of each high-speed accumulation for  
SYSREF Calibration. If the SYSREF period exceeds the  
supported value, the calibration fails. Larger values increase  
calibration time and support longer SYSREF periods. For a  
given SYSREF period, larger values also reduce the variance of  
the calibrated value.  
0: 4 cycles per accumulation, max SYSREF period of 85  
DEVCLK cycles  
1: 16 cycles per accumulation, max SYSREF period of 1100  
DEVCLK cycles  
2: 64 cycles per accumulation, max SYSREF period of 5200  
DEVCLK cycles  
3: 256 cycles per accumulation, max SYSREF period of 21580  
DEVCLK cycles  
Max duration of SYSREF calibration is bounded by:  
TSYSREFCAL (in DEVCLK cycles) = 256 × 19 × 4(SRC_AVG +  
SRC_HDUR + 2)  
7.6.2.3 SYSREF Calibration Status Register (address = 0x2B2 to 0x2B4) [reset = Undefined]  
Figure 174. SYSREF Calibration Status Register (SRC_STATUS)  
23  
15  
7
22  
14  
6
21  
13  
5
20  
19  
18  
10  
2
17  
SRC_DONE  
R
16  
SRC_TAD[16]  
R
RESERVED  
R
12  
11  
9
8
SRC_TAD[15:8]  
R
4
3
1
0
SRC_TAD[7:0]  
R
Table 142. SRC_STATUS Field Descriptions  
Bit  
Field  
Type  
R
Reset  
Description  
23-18  
17  
RESERVED  
SRC_DONE  
Undefined RESERVED  
R
Undefined This bit returns a 1 when SRC_EN = 1 and SYSREF calibration  
is complete.  
16-0  
SRC_TAD  
R
Undefined This field returns the value for TAD[16:0] computed by the  
SYSREF calibration. This field is only valid if SRC_DONE = 1.  
126  
Copyright © 2018–2020, Texas Instruments Incorporated  
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
7.6.2.4 DEVCLK Aperture Delay Adjustment Register (address = 0x2B5 to 0x2B7) [reset = 0x000000]  
Figure 175. DEVCLK Aperture Delay Adjustment Register (TAD)  
23  
15  
7
22  
14  
6
21  
13  
5
20  
19  
11  
18  
10  
2
17  
9
16  
RESERVED  
R/W-0000 000  
TAD_INV  
R/W-0  
12  
8
TAD_COARSE  
R/W-0000 0000  
4
3
1
0
TAD_FINE  
R/W-0000 0000  
Table 143. TAD Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
R/W  
Reset  
0000 000 RESERVED  
Invert DEVCLK by setting this bit equal to 1.  
Description  
23-17  
16  
RESERVED  
TAD_INV  
0
15-8  
TAD_COARSE  
0000 0000 This register controls the DEVCLK aperture delay adjustment  
when SRC_EN = 0. Use this register to manually control the  
DEVCLK aperture delay when SYSREF calibration is disabled. If  
ADC calibration or JESD204B is running, TI recommends  
gradually increasing or decreasing this value (1 code at a time)  
to avoid clock glitches. See the Switching Characteristics table  
for TAD_COARSE resolution.  
7-0  
TAD_FINE  
R/W  
0000 0000 See the Switching Characteristics table for TAD_FINE  
resolution.  
7.6.2.5 DEVCLK Timing Adjust Ramp Control Register (address = 0x2B8) [reset = 0x00]  
Figure 176. DEVCLK Timing Adjust Ramp Control Register (TAD_RAMP)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000 00  
TAD_RAMP_RATE  
R/W-0  
TAD_RAMP_EN  
R/W-0  
Table 144. TAD_RAMP Field Descriptions  
Bit  
7-2  
1
Field  
Type  
R/W  
R/W  
Reset  
0000 00  
0
Description  
RESERVED  
RESERVED  
TAD_RAMP_RATE  
Specifies the ramp rate for the TAD[15:8] output when the  
TAD[15:8] register is written when TAD_RAMP_EN = 1.  
0: TAD[15:8] ramps up or down one code per 256 DEVCLK  
cycles.  
1: TAD[15:8] ramps up or down 4 codes per 256 DEVCLK  
cycles.  
0
TAD_RAMP_EN  
R/W  
0
TAD ramp enable. Set this bit if coarse TAD adjustments are  
desired to ramp up or down instead of changing abruptly.  
0: After writing the TAD[15:8] register the aperture delay is  
updated within 1024 DEVCLK cycles  
1: After writing the TAD[15:8] register the aperture delay ramps  
up or down until the aperture delay matches the TAD[15:8]  
register  
Copyright © 2018–2020, Texas Instruments Incorporated  
127  
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
7.6.3 Alarm Registers (0x2C0 to 0x2C2)  
Table 145. Alarm Registers  
ADDRESS  
RESET  
ACRONYM  
REGISTER NAME  
SECTION  
0x2C0  
Undefined  
ALARM  
Alarm Interrupt Status Register  
Alarm Interrupt Register (address = 0x2C0) [reset =  
Undefined]  
0x2C1  
0x2C2  
0x1F  
0x1F  
ALM_STATUS  
ALM_MASK  
Alarm Status Register  
Alarm Mask Register  
Alarm Status Register (address = 0x2C1) [reset = 0x1F]  
Alarm Mask Register (address = 0x2C2) [reset = 0x1F]  
7.6.3.1 Alarm Interrupt Register (address = 0x2C0) [reset = Undefined]  
Figure 177. Alarm Interrupt Register (ALARM)  
7
6
5
4
RESERVED  
R
3
2
1
0
ALARM  
R
Table 146. ALARM Field Descriptions  
Bit  
7-1  
0
Field  
Type  
R
Reset  
Description  
RESERVED  
ALARM  
Undefined RESERVED  
R
Undefined This bit returns a 1 whenever any alarm occurs that is  
unmasked in the ALM_STATUS register. Use ALM_MASK to  
mask (disable) individual alarms. CAL_STATUS_SEL can be  
used to drive the ALARM bit onto the CALSTAT output pin to  
provide a hardware alarm interrupt signal.  
7.6.3.2 Alarm Status Register (address = 0x2C1) [reset = 0x1F]  
Figure 178. Alarm Status Register (ALM_STATUS)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-000  
PLL_ALM  
R/W-1  
LINK_ALM  
R/W-1  
REALIGNED_ALM  
R/W-1  
NCO_ALM  
R/W-1  
CLK_ALM  
R/W-1  
Table 147. ALM_STATUS Field Descriptions  
Bit  
7-5  
4
Field  
Type  
R/W  
R/W  
Reset  
000  
1
Description  
RESERVED  
PLL_ALM  
RESERVED  
PLL lock lost alarm. This bit is set whenever the PLL is not  
locked. Write a 1 to clear this bit.  
3
2
1
LINK_ALM  
R/W  
R/W  
R/W  
1
1
1
Link alarm. This bit is set whenever the JESD204B link is  
enabled, but is not in the DATA_ENC state. Write a 1 to clear  
this bit.  
REALIGNED_ALM  
NCO_ALM  
Realigned alarm. This bit is set whenever SYSREF causes the  
internal clocks (including the LMFC) to be realigned. Write a 1 to  
clear this bit.  
NCO alarm. This bit can be used to detect an upset to the NCO  
phase. This bit is set when any of the following occur:  
The NCOs are disabled (JESD_EN = 0)  
The NCOs are synchronized (intentionally or unintentionally)  
Any phase accumulators in channel A do not match channel  
B
Write a 1 to clear this bit.  
0
CLK_ALM  
R/W  
1
Clock alarm. This bit can be used to detect an upset to the  
digital block and JESD204B clocks. This bit is set whenever the  
internal clock dividers for the A and B channels do not match.  
Write a 1 to clear this bit.  
128  
Copyright © 2018–2020, Texas Instruments Incorporated  
 
 
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
7.6.3.3 Alarm Mask Register (address = 0x2C2) [reset = 0x1F]  
Figure 179. Alarm Mask Register (ALM_MASK)  
7
6
5
4
3
2
1
0
MASK_REALIGNED_  
ALM  
RESERVED  
R/W-000  
MASK_PLL_ALM  
R/W-1  
MASK_LINK_ALM  
R/W-1  
MASK_NCO_ALM  
R/W-1  
MASK_CLK_ALM  
R/W-1  
R/W-1  
Table 148. ALM_MASK Field Descriptions  
Bit  
7-5  
4
Field  
RESERVED  
Type  
R/W  
R/W  
Reset  
000  
1
Description  
RESERVED  
MASK_PLL_ALM  
When set, PLL_ALM is masked and does not impact the ALARM  
register bit.  
3
2
1
0
MASK_LINK_ALM  
MASK_REALIGNED_ALM  
MASK_NCO_ALM  
MASK_CLK_ALM  
R/W  
R/W  
R/W  
R/W  
1
1
1
1
When set, LINK_ALM is masked and does not impact the  
ALARM register bit.  
When set, REALIGNED_ALM is masked and does not impact  
the ALARM register bit.  
When set, NCO_ALM is masked and does not impact the  
ALARM register bit.  
When set, CLK_ALM is masked and does not impact the  
ALARM register bit.  
版权 © 2018–2020, Texas Instruments Incorporated  
129  
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The ADC12DJ2700 can be used in a wide range of applications including radar, satellite communications, test  
equipment (communications testers and oscilloscopes), and software-defined radios (SDRs). The wide input  
bandwidth enables direct RF sampling to at least 8 GHz and the high sampling rate allows signal bandwidths of  
greater than 2 GHz. The Typical Applications section describes one configuration that meets the needs of a  
number of these applications.  
8.2 Typical Applications  
8.2.1 Wideband RF Sampling Receiver  
Up to 16 Lanes  
JESD204B  
LNA  
LNA  
Antialias BPF  
JESD  
204B  
ADC A  
DDC  
SYNC~  
LNA  
LNA  
Antialias BPF  
JESD  
204B  
ADC B  
DDC  
FPGA or ASIC  
Clocking  
Subsystem  
User Control  
Logic  
SPI  
LMK04832  
Device Clock  
÷
÷
÷
÷
SYSREF  
10-MHz  
Reference  
N÷  
R÷  
Device Clock  
SYSREF  
Copyright © 2018, Texas Instruments Incorporated  
180. Typical Configuration for Wideband RF Sampling  
8.2.1.1 Design Requirements  
8.2.1.1.1 Input Signal Path  
Use appropriate band-limiting filters to reject unwanted frequencies in the input signal path.  
A 1:2 balun transformer is needed to convert the 50-Ω, single-ended signal to 100-Ω differential for input to the  
ADC. The balun outputs can be either AC-coupled, or directly connected to the ADC differential inputs, which are  
terminated internally to GND.  
130  
版权 © 2018–2020, Texas Instruments Incorporated  
 
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
Typical Applications (接下页)  
Drivers must be selected to provide any needed signal gain and that have the necessary bandwidth capabilities.  
Baluns must be selected to cover the needed frequency range, have a 1:2 impedance ratio, and have acceptable  
gain and phase balance over the frequency range of interest. 149 lists a number of recommended baluns for  
different frequency ranges.  
149. Recommended Baluns  
PART NUMBER  
BAL-0009SMG  
BAL-0208SMG  
TCM2-43X+  
MANUFACTURER(1)  
Marki Microwave  
Marki Microwave  
Mini-Circuits  
MINIMUM FREQUENCY (MHz) MAXIMUM FREQUENCY (MHz)  
0.5  
2000  
10  
9000  
8000  
4000  
3000  
3000  
TCM2-33WX+  
B0430J50100AHF  
Mini-Circuits  
10  
Anaren  
400  
(1) See the Third-Party Products Disclaimer section.  
8.2.1.1.2 Clocking  
The ADC12DJ2700 clock inputs must be AC-coupled to the device to ensure rated performance. The clock  
source must have extremely low jitter (integrated phase noise) to enable rated performance. Recommended  
clock synthesizers include the LMX2594, LMX2592, and LMX2582.  
The JESD204B data converter system (ADC plus FPGA) requires additional SYSREF and device clocks. The  
LMK04828, LMK04826, and LMK04821 devices are suitable to generate these clocks. Depending on the ADC  
clock frequency and jitter requirements, this device may also be used as the system clock synthesizer or as a  
device clock and SYSREF distribution device when multiple ADC12DJ2700 devices are used in a system.  
8.2.1.2 Detailed Design Procedure  
Certain component values used in conjunction with the ADC12DJ2700 must be calculated based on system  
parameters. Those items are covered in this section.  
8.2.1.2.1 Calculating Values of AC-Coupling Capacitors  
AC-coupling capacitors are used in the input CLK± and JESD204B output data pairs. The capacitor values must  
be large enough to address the lowest frequency signals of interest, but not so large as to cause excessively  
long startup biasing times, or unwanted parasitic inductance.  
The minimum capacitor value can be calculated based on the lowest frequency signal that is transferred through  
the capacitor. Given a 50-Ω single-ended clock or data path impedance, good practice is to set the capacitor  
impedance to be <1 Ω at the lowest frequency of interest. This setting ensures minimal impact on signal level at  
that frequency. For the CLK± path, the minimum-rated clock frequency is 800 MHz. Therefore, the minimum  
capacitor value can be calculated from:  
ZC = 1/ 2 ´ p ´ ¦  
(
´ C  
)
CLK  
(12)  
Setting Zc = 1 Ω and rearranging gives:  
C = 1/ 2 ´ p ´ 800 MHz ´ 1 W = 199 pF  
)
(
(13)  
Therefore, a capacitance value of at least 199 pF is needed to provide the low-frequency response for the CLK±  
path. If the minimum clock frequency is higher than 800 MHz, this calculation can be revisited for that frequency.  
Similar calculations can be done for the JESD204B output data capacitors based on the minimum frequency in  
that interface. Capacitors must also be selected for good response at high frequencies, and with dimensions that  
match the high-frequency signal traces they are connected to. Capacitors of the 0201 size are frequently well  
suited to these applications.  
版权 © 2018–2020, Texas Instruments Incorporated  
131  
 
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
8.2.1.3 Application Curves  
The ADC12DJ2700 can be used in a number of different operating modes to suit multiple applications. 181 to  
183 describe operation with a 497.77-MHz input signal in the following configurations:  
5.4-GSPS, single-input mode, 12-bit output, JMODE0  
2.7-GSPS, dual-input mode, 12-bit output, JMODE2  
2.7 GSPS with 16x decimation, dual-input mode, 15-bit complex output, JMODE16  
181. FFT for 497.77-MHz Input Signal, 5.4 GSPS,  
182. FFT for 497.77-MHz Input Signal, 2.7 GSPS,  
JMODE0  
JMODE2  
183. FFT for 497.77-MHz Input Signal, 2.7 GSPS, Decimation-by-16, fNCO = 500 MHz, JMODE16  
132  
版权 © 2018–2020, Texas Instruments Incorporated  
 
 
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
8.2.2 Reconfigurable Dual-Channel 2.5-GSPS or Single-Channel 5.0-Gsps Oscilloscope  
This section demonstrates the use of the ADC12DJ2700 in a reconfigurable oscilloscope. The oscilloscope can  
operate as a dual-channel oscilloscope running at 2.5 GSPS or can be reconfigured through SPI programming  
as a single-channel, 5-GSPS oscilloscope. This reconfigurable setup allows users to trade off the number of  
channels and the sampling rate of the oscilloscope as needed without changing the hardware. Set the input  
bandwidth to the desired maximum signal bandwidth through the use of an antialiasing, low-pass filter. Digital  
filtering can then be used to reconfigure the analog bandwidth as required. For instance, the maximum  
bandwidth can be set to 1 GHz for use during pulsed transient detection and then reconfigured to 100 MHz  
through digital filtering for low-noise, sine-wave observation. 184 shows the application block diagram.  
Up to 16 Lanes  
JESD204B  
LMH5401  
LMH6401  
Antialias LPF  
Front Panel  
Channel A  
Programmable  
Termination  
JESD  
204B  
ADC A  
DC Offset  
Adjustment  
DAC  
SYNC~  
LMH6559  
OPA703  
DAC8560  
LMH6401  
LMH5401  
Antialias LPF  
Front Panel  
Channel B  
Programmable  
Termination  
JESD  
204B  
ADC B  
FPGA or ASIC  
DC Offset  
Adjustment  
DAC  
Clocking  
Subsystem  
User Control  
Logic  
LMH6559  
OPA703  
DAC8560  
SPI  
LMK04832  
Device Clock  
÷
÷
÷
÷
SYSREF  
10-MHz  
Reference  
N÷  
R÷  
Device Clock  
SYSREF  
Copyright © 2018, Texas Instruments Incorporated  
184. Typical Configuration for Reconfigurable Oscilloscope  
8.2.2.1 Design Requirements  
8.2.2.1.1 Input Signal Path  
Most oscilloscopes are required to be DC-coupled in order to monitor DC or low-frequency signals. This  
requirement forces the design to use DC-coupled, fully differential amplifiers to convert from single-ended  
signaling at the front panel to differential signaling at the ADC. This design uses two differential amplifiers. The  
first amplifier shown in 184 is the LMH5401 that converts from single-ended to differential signaling. The  
LMH5401 interfaces with the front panel through a programmable termination network and has an offset  
adjustment input. The amplifier has an 8-GHz, gain-bandwidth product that is sufficient to support a 1-GHz  
bandwidth oscilloscope. A second amplifier, the LMH6401, comes after the LMH5401 to provide a digitally  
programmable gain control for the oscilloscope. The LMH6401 supports a gain range from –6 dB to 26 dB in 1-  
dB steps. If gain control is not necessary or is performed in a different location in the signal chain, then this  
amplifier can be replaced with a second LMH5401 for additional fixed gain or omitted altogether.  
The input of the oscilloscope contains a programmable termination block that is not covered in detail here. This  
block enables the front-panel input termination to be programmed. For instance, many oscilloscopes allow the  
termination to be programmed as either 50-Ω or 1-MΩ to meet the needs of various applications. A 75-Ω  
termination can also be desired to support cable infrastructure use cases. This block can also contain an option  
for DC blocking to remove the DC component of the external signal and therefore pass only AC signals.  
版权 © 2018–2020, Texas Instruments Incorporated  
133  
 
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
A precision DAC is used to configure the offset of the oscilloscope front-end to prevent saturation of the analog  
signal chain for input signals containing large DC offsets. The DAC8560 is shown in 184 along with signal-  
conditioning amplifiers OPA703 and LMH6559. The first differential amplifier, LMH5401, is driven by the front  
panel input circuitry on one input, and the DC offset bias on the second input. The impedance of these driving  
signals must be matched at DC and over frequency to ensure good even-order harmonic performance in the  
single-ended to differential conversion operation. The high bandwidth of the LMH6559 allows the device to  
maintain low impedance over a wide frequency range.  
An antialiasing, low-pass filter is positioned at the input of the ADC to limit the bandwidth of the input signal into  
the ADC. This amplifier also band-limits the front-end noise to prevent aliased noise from degrading the signal-to-  
noise ratio of the overall system. Design this filter for the maximum input signal bandwidth specified by the  
oscilloscope. The input bandwidth can then be reconfigured through the use of digital filters in the FPGA or ASIC  
to limit the oscilloscope input bandwidth to a bandwidth less than the maximum.  
8.2.2.1.2 Clocking  
The ADC12DJ2700 clock inputs must be AC-coupled to the device to ensure rated performance. The clock  
source must have extremely low jitter (integrated phase noise) to enable rated performance. Recommended  
clock synthesizers include the LMX2594, LMX2592, and LMX2582.  
The JESD204B data converter system (ADC plus FPGA) requires additional SYSREF and device clocks. The  
LMK04832, LMK04828, LMK04826, and LMK04821 devices are suitable to generate these clocks. Depending on  
the ADC clock frequency and jitter requirements, this device can also be used as the system clock synthesizer or  
as a device clock and SYSREF distribution device when multiple ADC12DJ2700 devices are used in a system.  
8.2.2.1.3 ADC12DJ2700  
The ADC12DJ2700 is ideally suited for oscilloscope applications. The ability to tradeoff channel count and  
sampling speed allows designers to build flexible hardware to meet multiple needs. This flexibility saves  
development time and cost, allows hardware reuse for various projects and enables software upgrade paths for  
additional functionality. The low code-error rate eliminates concerns about undesired time domain glitches or  
sparkle codes. This rate makes the ADC12DJ2700 a perfect fit for long-duration transient detection  
measurements and reduces the probability of false triggers. The input common-mode voltage of 0 V allows the  
driving amplifiers to use equal split power supplies that center the amplifier output common-mode voltage at 0 V  
and eliminates the need for common-mode voltage shifting before the ADC inputs. The high input bandwidth of  
the ADC12DJ2700 simplifies the design of the driving amplifier circuit and antialiasing, low-pass filter. The use of  
dual-edge sampling (DES) in single-channel mode eliminates the need to change the clock frequency when  
switching between dual- and single-channel modes and simplifies synchronization by relaxing the setup and hold  
timing requirements of SYSREF. The tAD adjust circuit allows the user to time-align the sampling instances of  
multiple ADC12DJ2700 devices.  
134  
版权 © 2018–2020, Texas Instruments Incorporated  
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
8.2.2.2 Application Curves  
The following application curves demonstrate performance and results only of the ADC. The amplifier front-end is  
not included in these measurements. The following configurations and measurements are shown in 185 to 图  
191:  
12-bit, 5-GSPS, single-channel oscilloscope using JMODE0 (8 lanes at 10 Gbps)  
Idle-channel noise (no input)  
40-MHz, square-wave time domain  
200-MHz, sine-wave time domain  
200-MHz, sine-wave frequency domain (FFT)  
12-bit, 2.5-GSPS, dual-channel oscilloscope using JMODE2 (8 lanes at 10 Gbps)  
Idle-channel noise (no input)  
40-MHz, square-wave (channel B) and 200-MHz, sine-wave (channel A) time domain  
40-MHz, square-wave (channel B) time domain and 200-MHz, sine-wave (channel A) frequency domain  
(FFT)  
185. Idle-Channel Noise (No Input) for 5-GSPS, Single-  
186. 40-MHz, Square-Wave Time Domain for 5-GSPS,  
Channel Oscilloscope  
Single-Channel Oscilloscope  
187. 200-MHz, Sine-Wave Time Domain for 5-GSPS,  
188. 200-MHz, Sine-Wave Frequency Domain (FFT) for  
Single-Channel Oscilloscope  
5-GSPS, Single-Channel Oscilloscope  
版权 © 2018–2020, Texas Instruments Incorporated  
135  
 
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
189. Idle-Channel Noise (No Input) for 2.5-GSPS, Dual-  
190. 200-MHz, Sine-Wave (Channel A) and 40-MHz,  
Channel Oscilloscope  
Square-Wave (Channel B) Time Domain for 5-GSPS,  
Single-Channel Oscilloscope  
191. 200-MHz, Sine-Wave (Channel A) Frequency Domain (FFT) and 40-MHz, Square-Wave (Channel B) Time Domain for 5-  
GSPS, Single-Channel Oscilloscope  
136  
版权 © 2018–2020, Texas Instruments Incorporated  
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
8.3 Initialization Set Up  
The device and JESD204 interface require a specific startup and alignment sequence. The general order of that  
sequence is listed in the following steps.  
1. Power-up or reset the device.  
2. Apply a stable device CLK signal at the desired frequency.  
3. Program JESD_EN = 0 to stop the JESD204B state machine and allow setting changes.  
4. Program CAL_EN = 0 to stop the calibration state machine and allow setting changes.  
5. Program the desired JMODE.  
6. Program the desired KM1 value. KM1 = K–1.  
7. Program SYNC_SEL as needed. Choose SYNCSE or timestamp differential inputs.  
8. Configure device calibration settings as desired. Select foreground or background calibration modes and  
offset calibration as needed.  
9. Program CAL_EN = 1 to enable the calibration state machine.  
10. Enable overrange via OVR_EN and adjust settings if desired.  
11. Program JESD_EN = 1 to re-start the JESD204B state machine and allow the link to restart.  
12. The JESD204B interface operates in response to the applied SYNC signal from the receiver.  
13. Program CAL_SOFT_TRIG = 0.  
14. Program CAL_SOFT_TRIG = 1 to initiate a calibration.  
9 Power Supply Recommendations  
The device requires two different power-supply voltages. 1.9 V DC is required for the VA19 power bus and 1.1 V  
DC is required for the VA11 and VD11 power buses.  
The power-supply voltages must be low noise and provide the needed current to achieve rated device  
performance.  
There are two recommended power supply architectures:  
1. Step down using high-efficiency switching converters, followed by a second stage of regulation to provide  
switching noise reduction and improved voltage accuracy.  
2. Directly step down the final ADC supply voltage using high-efficiency switching converters. This approach  
provides the best efficiency, but care must be taken to ensure switching noise is minimized to prevent  
degraded ADC performance.  
TI WEBENCH® Power Designer can be used to select and design the individual power supply elements needed:  
see the WEBENCH® Power Designer  
Recommended switching regulators for the first stage include the TPS62085, TPS82130, TPS62130A, and  
similar devices.  
Recommended Low Drop-Out (LDO) linear regulators include the TPS7A7200, TPS74401, and similar devices.  
For the switcher only approach, the ripple filter must be designed with a notch frequency that aligns with the  
switching ripple frequency of the DC-DC converter. Make a note of the switching frequency reported from  
WEBENCH® and design the EMI filter and capacitor combination to have the notch frequency centered as  
needed. 192 and 193 illustrate the two approaches.  
版权 © 2018–2020, Texas Instruments Incorporated  
137  
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
2.2 V  
1.9 V  
47 F  
VA19  
5 V - 12 V  
Buck  
LDO  
FB  
FB  
47 F  
10 F 0.1 F 0.1 F  
+
œ
Power  
Good  
GND  
GND  
GND  
GND  
1.4 V  
1.1 V  
47 F  
VA11  
Buck  
LDO  
FB  
FB  
47 F  
10 F 0.1 F 0.1 F  
GND  
GND  
GND  
VD11  
FB  
10 F 0.1 F 0.1 F  
GND  
Copyright © 2018, Texas Instruments Incorporated  
NOTE: FB = ferrite bead filter.  
192. LDO Linear Regulator Approach Example  
Ripple Filter  
VA19  
5 V - 12 V  
1.9 V  
Buck  
FB  
FB  
10 F 10 F 10 F  
10 F 0.1 F 0.1 F  
+
œ
Power  
Good  
GND  
GND  
GND  
Ripple Filter  
VA11  
1.1 V  
Buck  
FB  
FB  
10 F 10 F 10 F  
10 F 0.1 F 0.1 F  
GND  
GND  
VD11  
FB  
10 F 0.1 F 0.1 F  
GND  
Copyright © 2018, Texas Instruments Incorporated  
NOTE: Ripple filter notch frequency to match the fs of the buck converter.  
NOTE: FB = ferrite bead filter.  
193. Switcher-Only Approach Example  
138  
版权 © 2018–2020, Texas Instruments Incorporated  
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
9.1 Power Sequencing  
The voltage regulators must be sequenced using the power-good outputs and enable inputs to ensure that the  
Vx11 regulator is enabled after the VA19 supply is good. Similarly, as soon as the VA19 supply drops out of  
regulation on power-down, the Vx11 regulator is disabled.  
The general requirement for the ADC is that VA19 Vx11 during power-up, operation, and power-down.  
TI also recommends that VA11 and VD11 are derived from a common 1.1-V regulator. This recommendation  
ensures that all 1.1-V blocks are at the same voltage, and no sequencing problems exist between these supplies.  
Also use ferrite bead filters to isolate any noise on the VA11 and VD11 buses from affecting each other.  
10 Layout  
10.1 Layout Guidelines  
There are many critical signals that require specific care during board design:  
1. Analog input signals  
2. CLK and SYSREF  
3. JESD204B data outputs:  
1. Lower eight pairs operating at up to 12.8 Gbit per second  
2. Upper eight pairs operating at up to 6.4 Gbit per second  
4. Power connections  
5. Ground connections  
Items 1, 2, and 3 must be routed for excellent signal quality at high frequencies. Use the following general  
practices:  
1. Route using loosely coupled 100-Ω differential traces. This routing minimizes impact of corners and length-  
matching serpentines on pair impedance.  
2. Provide adequate pair-to-pair spacing to minimize crosstalk.  
3. Provide adequate ground plane pour spacing to minimize coupling with the high-speed traces.  
4. Use smoothly radiused corners. Avoid 45- or 90-degree bends.  
5. Incorporate ground plane cutouts at component landing pads to avoid impedance discontinuities at these  
locations. Cut-out below the landing pads on one or multiple ground planes to achieve a pad size or stackup  
height that achieves the needed 50-Ω, single-ended impedance.  
6. Avoid routing traces near irregularities in the reference ground planes. Irregularities include ground plane  
clearances associated with power and signal vias and through-hole component leads.  
7. Provide symmetrically located ground tie vias adjacent to any high-speed signal vias.  
8. When high-speed signals must transition to another layer using vias, transition as far through the board as  
possible (top to bottom is best case) to minimize via stubs on top or bottom of the vias. If layer selection is  
not flexible, use back-drilled or buried, blind vias to eliminate stubs.  
In addition, TI recommends performing signal quality simulations of the critical signal traces before committing to  
fabrication. Insertion loss, return loss, and time domain reflectometry (TDR) evaluations should be done.  
The power and ground connections for the device are also very important. These rules must be followed:  
1. Provide low-resistance connection paths to all power and ground pins.  
2. Use multiple power layers if necessary to access all pins.  
3. Avoid narrow isolated paths that increase connection resistance.  
4. Use a signal, ground, or power circuit board stackup to maximum coupling between the ground and power  
planes.  
版权 © 2018–2020, Texas Instruments Incorporated  
139  
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
10.2 Layout Example  
194 to 196 provide examples of the critical traces routed on the device evaluation module (EVM).  
194. Top Layer Routing: Analog Inputs, CLK and SYSREF, DA0-3, DB0-3  
140  
版权 © 2018–2020, Texas Instruments Incorporated  
 
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
Layout Example (接下页)  
195. GND1 Cutouts to Optimize Impedance of Component Pads  
版权 © 2018–2020, Texas Instruments Incorporated  
141  
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
Layout Example (接下页)  
196. Bottom Layer Routing: Additional CLK Routing, DA4-7, DB4-7  
142  
版权 © 2018–2020, Texas Instruments Incorporated  
ADC12DJ2700  
www.ti.com.cn  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
11 器件和文档支持  
11.1 器件支持  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
11.1.2 开发支持  
WEBENCH® 电源设计器  
11.2 文档支持  
11.2.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)JESD204B 多器件同步:将要求进行分解》  
德州仪器 (TI)《采用 SMBus 接口和 TruTherm™ 技术的 LM95233 双路远程二极管和本地温度传感器》  
德州仪器 (TI)《提供相位同步功能和 JESD204B 支持的 LMX2594 15GHz 宽带 PLLatinum™ 射频合成器》  
德州仪器 (TI)《具有集成型 VCO LMX2592 高性能宽带 PLLatinum™ 射频合成器》  
德州仪器 (TI)《具有集成型 VCO LMX2582 高性能宽带 PLLatinum™ 射频合成器》  
德州仪器 (TI)《具有双环路 PLL 且符合 JESD204B 标准的 LMK0482x 超低噪声时钟抖动消除器》  
德州仪器 (TI)《采用 2 × 2 QFN 封装且具有断续短路保护功能的 TPS6208x 3A 降压转换器》  
德州仪器 (TI)《具有集成电感器的 TPS82130 17V 输入电压、3A 降压转换器 MicroSiP™ 模块》  
德州仪器 (TI)《采用 3 x 3 QFN 封装的 TPS6213x 3V 17V3A 降压转换器》  
德州仪器 (TI)TPS7A7200 2A 快速瞬变低压降稳压器》  
德州仪器 (TI)《具有可编程软启动功能的 TPS74401 3.0A 超级 LDO》  
德州仪器 (TI)《采用 ADC12DJ3200 且适用于 LSC X 带的直接射频采样雷达接收器参考设计》  
德州仪器 (TI)ADC12DJ2700 评估模块》 用户指南  
德州仪器 (TI)《适用于 DSO、雷达和 5G 无线测试器的多通道 JESD204B 15GHz 时钟参考设计》  
德州仪器 (TI)LMH5401 8GHz 低噪声、低功耗全差分放大器》  
德州仪器 (TI)LMH6401 直流至 4.5GHz、全差分数字可变增益放大器》  
德州仪器 (TI)《具有 2.5V2ppm/°C 内部基准的 DAC8560 16 位、超低干扰、电压输出数模转换器》  
德州仪器 (TI)OPA70x CMOS 轨至轨 I/O 运算放大器》  
德州仪器 (TI)LMH6559 高速闭环缓冲器》  
德州仪器 (TI)《具有双环路 PLL LMK04832 超低噪声且符合 JESD204B 标准的时钟抖动清除器》  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 支持资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.5 商标  
E2E is a trademark of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
版权 © 2018–2020, Texas Instruments Incorporated  
143  
ADC12DJ2700  
ZHCSHD7A JANUARY 2018REVISED APRIL 2020  
www.ti.com.cn  
11.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
144  
版权 © 2018–2020, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
13-Feb-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADC12DJ2700AAV  
ADC12DJ2700AAVT  
ADC12DJ2700ZEG  
ACTIVE  
ACTIVE  
ACTIVE  
FCCSP  
FCCSP  
FCCSP  
AAV  
AAV  
ZEG  
144  
144  
144  
168  
250  
168  
RoHS & Green  
RoHS & Green  
SNAGCU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-235C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
ADC12DJ27  
Samples  
Samples  
Samples  
SNAGCU  
Call TI  
ADC12DJ27  
Non-RoHS  
& Green  
ADC12DJ27Z  
ADC12DJ2700ZEGT  
ACTIVE  
FCCSP  
ZEG  
144  
250  
Non-RoHS  
& Green  
Call TI  
Level-3-235C-168 HR  
-40 to 85  
ADC12DJ27Z  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
13-Feb-2023  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Feb-2023  
TRAY  
L - Outer tray length without tabs  
KO -  
Outer  
tray  
height  
W -  
Outer  
tray  
width  
Text  
P1 - Tray unit pocket pitch  
CW - Measurement for tray edge (Y direction) to corner pocket center  
CL - Measurement for tray edge (X direction) to corner pocket center  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
ADC12DJ2700AAV  
ADC12DJ2700ZEG  
AAV  
ZEG  
FCCSP  
FCCSP  
144  
144  
168  
168  
8 X 21  
8 X 21  
150  
150  
315 135.9 7620 14.65  
315 135.9 7620 14.65  
11  
11  
11.95  
11.95  
Pack Materials-Page 1  
PACKAGE OUTLINE  
AAV0144A  
FCBGA - 1.91 mm max height  
SCALE 1.400  
BALL GRID ARRAY  
10.15  
9.85  
A
B
BALL A1 CORNER  
10.15  
9.85  
(
8)  
(0.67)  
1.91  
1.70  
(0.5)  
C
SEATING PLANE  
NOTE 4  
BALL TYP  
0.405  
0.325  
TYP  
0.1 C  
8.8 TYP  
SYMM  
(0.6) TYP  
(0.6) TYP  
0.8 TYP  
M
L
K
J
H
G
F
SYMM  
8.8  
TYP  
E
D
C
B
A
0.51  
0.41  
144X  
0.15  
0.08  
C A B  
NOTE 3  
C
1
2
3
4
5
6
7
8
9
10  
11  
12  
0.8 TYP  
4219578/C 05/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Dimension is measured at the maximum solder ball diameter, parallel to primary datum C.  
4. Primary datum C and seating plane are defined by the spherical crowns of the solder balls.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
AAV0144A  
FCBGA - 1.91 mm max height  
BALL GRID ARRAY  
(0.8) TYP  
1
3
5
6
7
8
9
10 11  
4
12  
2
A
B
(0.8) TYP  
C
D
E
F
144X ( 0.4)  
SYMM  
G
H
J
K
L
M
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
(
0.4)  
0.05 MAX  
METAL UNDER  
SOLDER MASK  
0.05 MIN  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
(
0.4)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4219578/C 05/2022  
NOTES: (continued)  
5. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SPRU811 (www.ti.com/lit/spru811).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
AAV0144A  
FCBGA - 1.91 mm max height  
BALL GRID ARRAY  
(0.8) TYP  
144X ( 0.4)  
10 11  
1
3
5
6
7
8
9
4
12  
2
A
B
(0.8) TYP  
C
D
E
F
SYMM  
G
H
J
K
L
M
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.15 mm THICK STENCIL  
SCALE:8X  
4219578/C 05/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY