ADC12DJ3200ZMX/EM [TI]

耐辐射加固保障 (RHA)、QMLV、300krad、12 位、双通道 3.2GSPS 或单通道 6.4GSPS ADC | ZMX | 196 | 25 to 25;
ADC12DJ3200ZMX/EM
型号: ADC12DJ3200ZMX/EM
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

耐辐射加固保障 (RHA)、QMLV、300krad、12 位、双通道 3.2GSPS 或单通道 6.4GSPS ADC | ZMX | 196 | 25 to 25

文件: 总158页 (文件大小:4020K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
ADC12DJ3200QML-SP 6.4GSPS 单通道3.2GSPS 双通道、12 位射频采样模数  
转换(ADC)  
通道数双通道模式和奎斯特带宽单通道模式的  
可编程交换功能可用于开发灵活的硬件以满足高通道  
数或宽瞬时信号带宽应用的需求。7GHz 的全功率输入  
带宽 (3dB)可用频率在双通道和单通道模式下均超  
过 –3dB可对频率捷变系统的 LSC X 带进行  
直接射频采样。  
1 特性  
ADC 内核:  
12 位分辨率  
– 单通道模式下的采样率高6.4GSPS  
– 双通道模式下的采样率高3.2GSPS  
• 本底噪声无信号VFS = 1VPP-DIFF):  
– 双通道模式-149.5dBFS/Hz  
– 单通道模式-152.4dBFS/Hz  
• 峰值噪声功率(NPR)45.4dB  
VCMI 0V 时的缓冲模拟输入:  
– 模拟输入带(-3dB)7GHz  
– 可用输入频率范围>10GHz  
– 满量程输入电压VFS默认值):0.8V VPP  
• 无噪声孔径延(tAD) 调节:  
ADC12DJ3200QML-SP 采用具有多达 16 个串行信道  
和子类 1 合规性的高速 JESD204B 输出接口可实现  
确定性延迟和多器件同步。串行输出信道支持高达  
12.8Gbps 的速率并可通过配置来进行位速率与信道  
数之间的折衷。无噪声孔径延迟 (tAD) 调节和 SYSREF  
窗口等创新的同步特性简化了合成孔径雷达 (SAR)  
和相控阵 MIMO 通信的系统设计。采用双通道模式的  
可选数字下变频器 (DDC) 可以降低接口速率实际和  
复杂抽取模式),支持数字化信号混合仅复杂抽取模  
。  
– 精确采样控制19fs 步长  
– 温度和电压不变延迟  
• 简便易用的同步特性  
器件信息  
封装(1)  
封装尺寸标称值)  
器件型号  
– 自SYSREF 计时校准  
– 样片标记时间戳  
• 符JESD204B 1 标准的接口:  
CLGA (196)  
ADC12DJ3200QML-SP CCGA (196)  
覆晶  
15.00mm × 15.00mm  
– 最大通道速率12.8Gbps  
– 多16 个通道可降低通道速率  
• 双通道模式下的数字下变频器:  
(1) 如需了解所有可用封装请参阅数据表末尾的封装选项附录。  
3
– 实际输出DDC 旁路或双倍抽取  
– 复杂输出4 倍、8 16 倍抽取  
• 辐射性能:  
0
-3  
– 电离辐射总剂(TID)300krad (Si)  
– 单粒子锁(SEL)120 MeV-cm2/mg  
– 单粒子翻(SEU) 抗扰度寄存器  
• 功耗3W  
-6  
Single Channel Mode  
Dual Channel Mode  
-9  
-12  
0
2
4
6
Input Frequency (GHz)  
8
10  
2 应用  
D_BW  
• 卫星通(SATCOM)  
• 相控阵雷达、信号情报和电子情报  
• 合成孔径雷(SAR)  
ADC12DJ3200QML-SP 测量的输入带宽  
飞行时和激光雷达测距  
• 射频采样软件定义无线(SDR)  
• 光谱测量  
3 说明  
ADC12DJ3200QML-SP 器件是一款射频采样千兆采样  
模数转换器 (ADC)可对从直流到 10GHz 以上的输入  
频 率 进 行 直 接 采 样 。 在 双 通 道 模 式 下 ,  
ADC12DJ3200QML-SP 的采样率高达 3200MSPS。  
在单通道模式下该器件的采样率高达 6400MSPS。  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSDR2  
 
 
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
Table of Contents  
7 Detailed Description......................................................38  
7.1 Overview...................................................................38  
7.2 Functional Block Diagram.........................................39  
7.3 Feature Description...................................................40  
7.4 Device Functional Modes..........................................63  
7.5 Programming............................................................ 82  
7.6 Register Maps...........................................................84  
8 Application Information Disclaimer...........................134  
8.1 Application Information........................................... 134  
8.2 Typical Application.................................................. 137  
8.3 Initialization Set Up................................................. 142  
9 Layout...........................................................................145  
9.1 Layout Guidelines................................................... 145  
9.2 Layout Example...................................................... 146  
10 Device and Documentation Support........................149  
10.1 Device Support..................................................... 149  
10.2 Documentation Support........................................ 149  
10.3 Receiving Notification of Documentation Updates149  
10.4 Community Resources..........................................150  
10.5 Trademarks...........................................................150  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 9  
6.1 Absolute Maximum Ratings........................................ 9  
6.2 ESD Ratings............................................................... 9  
6.3 Recommended Operating Conditions.......................10  
6.4 Thermal Information..................................................10  
6.5 Electrical Characteristics: DC Specifications............ 11  
6.6 Electrical Characteristics: Power Consumption........ 13  
6.7 Electrical Characteristics: AC Specifications  
(Dual-Channel Mode)..................................................14  
6.8 Electrical Characteristics: AC Specifications  
(Single-Channel Mode)............................................... 17  
6.9 Timing Requirements................................................20  
6.10 Switching Characteristics........................................21  
6.11 Timing Diagrams..................................................... 24  
6.12 Typical Characteristics............................................26  
4 Revision History  
Changes from Revision A (May 2019) to Revision B (March 2021)  
Page  
• 向器件信中添加CCGA (196) 封装..........................................................................................................1  
Added package CCGA (196) to the Pin Configuration and Functions ...............................................................3  
Added package CCGA (196) to the Thermal Information table........................................................................10  
Changes from Revision * (November 2018) to Revision A (May 2019)  
Page  
1 NPR.................................................................................................................................... 1  
Updated the Specifications with production data................................................................................................9  
Added the Typical Characteristics section .......................................................................................................26  
Added requirement for at least 3 SYSREF rising edges at SYSREF± pins to receive a valid SYSREF  
windowing output (see SYSREF Windowing section) ..................................................................................... 46  
Updated Application Information section. ...................................................................................................... 134  
Added NPR measurement data to Typical Application section ......................................................................137  
Updated list of related content in the Development Support section and the Related Documentation section ...  
149  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
5 Pin Configuration and Functions  
A
B
C
D
E
F
AGND  
AGND  
TMSTP+  
TMSTP-  
VA19  
BG  
SYNCSE  
VA19  
VA19  
VA19  
VA11  
AGND  
AGND  
VA11  
VA19  
VA19  
VA19  
AGND  
AGND  
VA19  
VA11  
VA11  
VA11  
VA11  
VA11  
VA11  
VA11  
VA11  
VA19  
INA+  
AGND  
VA19  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
VA19  
AGND  
INB+  
INA-  
AGND  
VA19  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
VA19  
AGND  
INB-  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
6
NCOA0  
NCOA1  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
NCOB1  
NCOB0  
7
ORA0 CALTRIG  
ORA1 CALSTAT  
DA3+  
DA7+  
VD11  
DGND  
DGND  
DGND  
DGND  
DGND  
DGND  
DGND  
DGND  
VD11  
DB7+  
DB3+  
10  
DA3-  
DA7-  
DA2+  
DA6+  
VD11  
VD11  
VD11  
VD11  
VD11  
VD11  
VD11  
VD11  
VD11  
VD11  
DB6+  
DB2+  
12  
DA2-  
DA6-  
DA5+  
DA5-  
DA4+  
DA4-  
SCS  
SDI  
DGND  
DGND  
DA1+  
DA1-  
DA0+  
DA0-  
SCLK  
SDO  
DGND  
DGND  
DGND  
DGND  
DGND  
DGND  
DGND  
DGND  
DGND  
DGND  
ORB1  
ORB0  
8
DGND  
DGND  
DGND  
DGND  
DGND  
DGND  
DGND  
DGND  
DGND  
DGND  
DGND  
PD  
VD11  
DGND  
DGND  
DGND  
DGND  
DGND  
DGND  
DGND  
DGND  
VD11  
DB7-  
AGND  
CLK+  
G
H
J
CLK-  
AGND  
VA19  
DB4-  
DB4+  
DB5-  
DB5+  
DB6-  
DB2-  
13  
DB0-  
DB0+  
DB1-  
DB1+  
DGND  
DGND  
14  
K
L
SYSREF  
+
M
N
P
SYSREF-  
AGND TDIODE+ AGND  
AGND  
TDIODE-  
AGND  
DB3-  
1
2
3
4
5
9
11  
5-1. ZMX (CGLA) and NWE (CCGA)Package, 196-Pad Flip Chip Ceramic LGA, Top View  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: ADC12DJ3200QML-SP  
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
A1, A3, A6,  
B1, B3, B4,  
B6, B6, C6,  
C7, D4, D5,  
D6, D7, E4,  
E5, E6, E7,  
F1, F4, F5,  
F6, F7, G2,  
G4, G5, G6,  
G7, H2, H4,  
H5, H6, H7,  
J1, J4, J5, J6,  
J7, K4, K5,  
K6, K7, L4,  
L5, L6, L7,  
M6, M7, N1,  
N3, N4, N5,  
N6, P1, P3,  
P6  
AGND  
Analog supply ground. AGND and DGND should be directly connected on circuit board.  
Bandgap voltage output. This pin is capable of sourcing 100 μA and can drive a load up to  
80 pF. See the Analog Reference Voltage section for more details. This pin can be left  
disconnected if not used.  
BG  
A2  
B9  
A9  
O
O
I
Foreground calibration status output or device alarm output. Functionality is programmed  
through CAL_STATUS_SEL. This pin can be left disconnected if not used.  
CALSTAT  
CALTRIG  
Foreground calibration trigger input. This pin is only used if hardware calibration triggering is  
selected in CAL_TRIG_EN, otherwise software triggering is performed using  
CAL_SOFT_TRIG. This pin should be tied to GND if not used.  
Device (sampling) clock positive input. The clock signal must be AC coupled to this input. In  
single-channel mode, the analog input signal is sampled on both rising and falling edges. In  
dual-channel mode, the analog signal is sampled on the rising edge. This differential input  
has an internal 100-Ωdifferential termination and is self-biased to the optimal input common  
mode voltage.  
CLK+  
G1  
I
H1  
I
Device (sampling) clock negative input. Must be AC coupled.  
CLK–  
High-speed serialized-data output for channel A, lane 0, positive connection. This differential  
output must be AC-coupled and must always be terminated with a 100-Ωdifferential  
termination at the receiver. This pin can be left disconnected if not used.  
DA0+  
E14  
O
High-speed serialized-data output for channel A, lane 0, negative connection. This pin can  
be left disconnected if not used.  
F14  
C14  
D14  
A12  
A13  
A10  
A11  
E13  
O
O
O
O
O
O
O
O
DA0–  
DA1+  
DA1–  
DA2+  
DA2–  
DA3+  
DA3–  
DA4+  
High-speed serialized-data output for channel A, lane 1, positive connection. This differential  
output must be AC-coupled and must always be terminated with a 100-Ωdifferential  
termination at the receiver. This pin can be left disconnected if not used.  
High-speed serialized-data output for channel A, lane 1, negative connection. This pin can  
be left disconnected if not used.  
High-speed serialized-data output for channel A, lane 2, positive connection. This differential  
output must be AC-coupled and must always be terminated with a 100-Ωdifferential  
termination at the receiver. This pin can be left disconnected if not used.  
High-speed serialized-data output for channel A, lane 2, negative connection. This pin can  
be left disconnected if not used.  
High-speed serialized-data output for channel A, lane 3, positive connection. This differential  
output must be AC-coupled and must always be terminated with a 100-Ωdifferential  
termination at the receiver. This pin can be left disconnected if not used.  
High-speed serialized-data output for channel A, lane 3, negative connection. This pin can  
be left disconnected if not used.  
High-speed serialized-data output for channel A, lane 4, positive connection. This differential  
output must be AC-coupled and must always be terminated with a 100-Ωdifferential  
termination at the receiver. This pin can be left disconnected if not used.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
High-speed serialized-data output for channel A, lane 4, negative connection. This pin can  
be left disconnected if not used.  
F13  
O
DA4–  
High-speed serialized-data output for channel A, lane 5, positive connection. This differential  
output must be AC-coupled and must always be terminated with a 100-Ωdifferential  
termination at the receiver. This pin can be left disconnected if not used.  
DA5+  
DA5–  
DA6+  
DA6–  
DA7+  
DA7–  
DB0+  
DB0–  
DB1+  
DB1–  
DB2+  
DB2–  
DB3+  
DB3–  
DB4+  
DB4–  
DB5+  
DB5–  
DB6+  
DB6–  
C13  
D13  
B12  
B13  
B10  
B11  
K14  
J14  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
High-speed serialized-data output for channel A, lane 5, negative connection. This pin can  
be left disconnected if not used.  
High-speed serialized-data output for channel A, lane 6, positive connection. This differential  
output must be AC-coupled and must always be terminated with a 100-Ωdifferential  
termination at the receiver. This pin can be left disconnected if not used.  
High-speed serialized-data output for channel A, lane 6, negative connection. This pin can  
be left disconnected if not used.  
High-speed serialized-data output for channel A, lane 7, positive connection. This differential  
output must be AC-coupled and must always be terminated with a 100-Ωdifferential  
termination at the receiver. This pin can be left disconnected if not used.  
High-speed serialized-data output for channel A, lane 7, negative connection. This pin can  
be left disconnected if not used.  
High-speed serialized-data output for channel B, lane 0, positive connection. This differential  
output must be AC-coupled and must always be terminated with a 100-Ωdifferential  
termination at the receiver. This pin can be left disconnected if not used.  
High-speed serialized-data output for channel B, lane 0, negative connection. This pin can  
be left disconnected if not used.  
High-speed serialized-data output for channel B, lane 1, positive connection. This differential  
output must be AC-coupled and must always be terminated with a 100-Ωdifferential  
termination at the receiver. This pin can be left disconnected if not used.  
M14  
L14  
P12  
P13  
P10  
P11  
K13  
J13  
High-speed serialized-data output for channel B, lane 1, negative connection. This pin can  
be left disconnected if not used.  
High-speed serialized-data output for channel B, lane 2, positive connection. This differential  
output must be AC-coupled and must always be terminated with a 100-Ωdifferential  
termination at the receiver. This pin can be left disconnected if not used.  
High-speed serialized-data output for channel B, lane 2, negative connection. This pin can  
be left disconnected if not used.  
High-speed serialized-data output for channel B, lane 3, positive connection. This differential  
output must be AC-coupled and must always be terminated with a 100-Ωdifferential  
termination at the receiver. This pin can be left disconnected if not used.  
High-speed serialized-data output for channel B, lane 3, negative connection. This pin can  
be left disconnected if not used.  
High-speed serialized-data output for channel B, lane 4, positive connection. This differential  
output must be AC-coupled and must always be terminated with a 100-Ωdifferential  
termination at the receiver. This pin can be left disconnected if not used.  
High-speed serialized-data output for channel B, lane 4, negative connection. This pin can  
be left disconnected if not used.  
High-speed serialized-data output for channel B, lane 5, positive connection. This differential  
output must be AC-coupled and must always be terminated with a 100-Ωdifferential  
termination at the receiver. This pin can be left disconnected if not used.  
M13  
L13  
N12  
N13  
High-speed serialized-data output for channel B, lane 5, negative connection. This pin can  
be left disconnected if not used.  
High-speed serialized-data output for channel B, lane 6, positive connection. This differential  
output must be AC-coupled and must always be terminated with a 100-Ωdifferential  
termination at the receiver. This pin can be left disconnected if not used.  
High-speed serialized-data output for channel B, lane 6, negative connection. This pin can  
be left disconnected if not used.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: ADC12DJ3200QML-SP  
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
High-speed serialized-data output for channel B, lane 7, positive connection. This differential  
output must be AC-coupled and must always be terminated with a 100-Ωdifferential  
termination at the receiver. This pin can be left disconnected if not used.  
DB7+  
N10  
O
O
High-speed serialized-data output for channel B, lane 7, negative connection. This pin can  
be left disconnected if not used.  
N11  
DB7–  
A14, B14, C8,  
C9, D8, D9,  
D10, D11, E8,  
E9, E10, E11,  
F8, F9, F10,  
F11, G8, G9,  
G10, G11, H8,  
H9, H10, H11,  
J8, J9, J10,  
DGND  
Digital supply ground. AGND and DGND should be directly connected on circuit board.  
J11, K8, K9,  
K10, K11, L8,  
L9, L10, L11,  
M8, M9, N9,  
N14, P14  
Channel A analog input positive connection. The differential full-scale input range is  
determined by the full-scale voltage adjust register. The input common mode voltage should  
be set to AGND. This input is terminated to ground through a 50-Ωtermination resistor. Use  
of INA is recommended for single-channel mode due to optimized performance. This pin can  
be left disconnected if not used.  
INA+  
A4  
A5  
I
I
Channel A analog input negative connection. This input is terminated to ground through a  
50-Ωtermination resistor. Use of INA is recommended for single-channel mode due to  
optimized performance. This pin can be left disconnected if not used.  
INA–  
Channel B analog input positive connection. The differential full-scale input range is  
determined by the full-scale voltage adjust register. The input common mode voltage should  
be set to AGND. This input is terminated to ground through a 50-Ωtermination resistor. This  
pin can be left disconnected if not used.  
INB+  
P4  
P5  
I
I
Channel B analog input negative connection. This input is terminated to ground through a  
50-Ωtermination resistor. This pin can be left disconnected if not used.  
INB–  
NCO accumulator selection control LSB for DDC A. NCOA0 and NCOA1 select which NCO,  
of a possible four NCOs, is used for digital mixing. The remaining unselected NCOs continue  
to run to maintain phase coherency and can be swapped in by changing the values of  
NCOA0 and NCOA1. This is an asynchronous input. This pin should be tied to GND if not  
used.  
NCOA0  
NCOA1  
NCOB0  
A7  
B7  
P7  
I
I
I
NCO accumulator selection control MSB for DDC A. This pin should be tied to GND if not  
used.  
NCO accumulator selection control LSB for DDC B. NCOB0 and NCOB1 select which NCO,  
of a possible four NCOs, is used for digital mixing. The remaining unselected NCOs continue  
to run to maintain phase coherency and can be swapped in by changing the values of  
NCOB0 and NCOB1. This is an asynchronous input. This pin should be tied to GND if not  
used.  
NCO accumulator selection control MSB for DDC B. This pin should be tied to GND if not  
used.  
NCOB1  
ORA0  
N7  
A8  
I
Fast overrange detection status for channel A for T0 threshold. When the analog input  
exceeds the threshold programmed into OVR_T0, this status will go high. The minimum  
pulse duration is set by OVR_N. This pin can be left disconnected if not used.  
O
Fast overrange detection status for channel A for T1 threshold. When the analog input  
exceeds the threshold programmed into OVR_T1, this status will go high. The minimum  
pulse duration is set by OVR_N. This pin can be left disconnected if not used.  
ORA1  
ORB0  
B8  
P8  
O
O
Fast overrange detection status for channel B for T0 threshold. When the analog input  
exceeds the threshold programmed into OVR_T0, this status will go high. The minimum  
pulse duration is set by OVR_N. This pin can be left disconnected if not used.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Fast overrange detection status for channel B for T1 threshold. When the analog input  
exceeds the threshold programmed into OVR_T1, this status will go high. The minimum  
pulse duration is set by OVR_N. This pin can be left disconnected if not used.  
ORB1  
N8  
O
This pin disables all analog circuits and serializer outputs when set high for temperature  
diode calibration only. Do not use this pin to power down the device for power savings. Tie  
this pin to GND during normal operation. For information regarding reliable serializer  
operation, see the Power down Modes section.  
PD  
P9  
I
I
Serial interface clock. This pin functions as the serial-interface clock input which clocks the  
serial programming data in and out. Using the Serial Inrterface describes the serial interface  
in more detail. This pin supports 1.1 V to 1.9 V CMOS levels.  
SCLK  
G14  
Serial interface chip select active low input. Using the Serial Inrterface describes the serial  
interface in more detail. This pin supports 1.1 V to 1.9 V CMOS levels. This pin has a 82-kΩ  
pull-up resistor to VD11.  
SCS  
SDI  
G13  
H13  
I
I
Serial interface data input. Using the Serial Inrterface describes the serial interface in more  
detail. This pin supports 1.1 V to 1.9 V CMOS levels.  
Serial interface data output. Using the Serial Inrterface describes the serial interface in more  
detail. This pin is high impedance during normal device operation. This pin outputs 1.9-V  
CMOS levels during serial interface read operations. This pin can be left disconnected if not  
used.  
SDO  
H14  
B2  
O
JESD204B SYNC signal single-ended active low input. This pin provides the JESD204B-  
required synchronization request input. A logic low applied to this input initiates code group  
synchronization and the initial lane alignment sequence. The choice of single-ended or  
differential SYNC (using TMSTP+ and TMSTP- pins) is selected by programming  
SYNC_SEL. This pin should be tied to GND if differential SYNC (TMSTP±) is used as the  
JESD204B SYNC signal.  
SYNCSE  
I
SYSREF positive input used to achieve synchronization and deterministic latency across the  
JESD204B interface. This differential input (SYSREF+ to SYSREF) has an internal 100-Ω  
differential termination. It is self-biased when AC coupled (SYSREF_LVPECL_EN must be  
set to 0), but can be DC coupled by setting SYSREF_LVPECL_EN to 1, which changes the  
internal termination to 50-Ωsingle-ended termination to ground on each SYSREF+ and  
SYSREF- input. The common mode voltage must be within the recommended range when  
DC coupled.  
SYSREF+  
L1  
I
M1  
N2  
I
I
SYSREF negative input.  
SYSREF–  
Temperature diode positive (anode) connection. An external temperature sensor can be  
connected to TDIODE+ and TDIODEto monitor the junction temperature of the device.  
This pin can be left disconnected if not used.  
TDIODE+  
Temperature diode negative (cathode) connection. This pin can be left disconnected if not  
used.  
P2  
C1  
D1  
I
I
TDIODE–  
Timestamp input positive connection or differential JESD204B SYNC positive connection.  
This input is used as the timestamp input when SYNC_SEL is set to use SYNCSE as the  
JESD204B SYNC signal. This input is used as the JESD204B SYNC signal when  
SYNC_SEL is set to use TMSTP+ and TMSTPas the JESD204B SYNC signal. For  
additional usage information as timestamp input, see the Timestamp section. This pin can  
be left disconnected if SYNCSE is used and timestamp is not required.  
TMSTP+  
Timestamp input positive connection or differential JESD204B SYNC negative connection.  
This pin can be left disconnected if SYNCSE is used and timestamp is not required.  
I
I
TMSTP–  
D3, E3, F2,  
F3, G3, H3,  
J2, J3, K3, L3  
VA11  
1.1-V analog supply.  
C2, C3, C4,  
C5, D2, E1,  
E2, K1, K2,  
L2, M2, M3,  
M4, M5  
VA19  
I
1.9-V analog supply.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: ADC12DJ3200QML-SP  
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
C10, C11,  
C12, D12,  
E12, F12,  
G12, H12,  
J12, K12,  
L12, M10,  
M11, M12  
VD11  
I
1.1-V digital supply.  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
1.32  
0.1  
MAX  
2.35  
1.32  
1.32  
1.32  
0.1  
UNIT  
V
VA19(2)  
VA11(2)  
VDD  
Supply voltage range  
VD11(3)  
Voltage between VD11 and VA11  
VGND  
Voltage between AGND and DGND  
V
DA[7:0]+, DA[7:0], DB[7:0]+, DB[7:0],  
TMSTP+, TMSTP(3)  
VD11 +  
0.5(5)  
0.5  
0.5  
0.5  
1  
VA11 + 0.5(4)  
CLK+, CLK, SYSREF+, SYSREF(2)  
VA19 +  
0.5(6)  
BG, TDIODE+, TDIODE(2)  
VPIN  
Pin voltage range  
V
INA+, INA, INB+, INB(2)  
1
CALSTAT, CALTRIG, NCOA0, NCOA1,  
NCOB0, NCOB1, ORA0, ORA1, ORB0, ORB1,  
PD, SCLK, SCS, SDI, SDO, SYNCSE (2)  
VA19 +  
0.5(6)  
0.5  
IMAX(ANY)  
IMAX(INx)  
PMAX(INx)  
25  
50  
mA  
mA  
Peak input current (any input except INA+, INA, INB+, INB)  
Peak input current (INA+, INA, INB+, INB)  
25  
50  
16.4  
dBm  
Peak RF input power (INA+, INA, INB+, INB) Single-ended with ZS-SE = 50 Ω  
Peak total input current (sum of absolute value of all currents forced in or out, not including power-  
supply current)  
IMAX(ALL)  
100  
mA  
Tj  
Junction temperature  
Storage temperature  
150  
150  
°C  
°C  
Tstg  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) Measured to AGND.  
(3) Measured to DGND.  
(4) Maximum voltage not to exceed VA11 absolute maximum rating.  
(5) Maximum voltage not to exceed VD11 absolute maximum rating.  
(6) Maximum voltage not to exceed VA19 absolute maximum rating.  
6.2 ESD Ratings  
VALUE  
±2500  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: ADC12DJ3200QML-SP  
 
 
 
 
 
 
 
 
 
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
over operating temperature range (unless otherwise noted)  
MIN  
1.8  
1.05  
1.05  
50  
0
NOM  
1.9  
1.1  
1.1  
0
MAX  
UNIT  
VA19, analog 1.9-V supply(2)  
2
1.15  
1.15  
100  
VDD  
Supply voltage range  
VA11, analog 1.1-V supply(2)  
VD11, digital 1.1-V supply(3)  
INA+, INA, INB+, INB(2)  
CLK+, CLK, SYSREF+, SYSREF(2) (4)  
TMSTP+, TMSTP(3) (5)  
V
mV  
V
VCMI  
Input common-mode voltage  
0.3  
0.3  
0.55  
0.55  
0
CLK+ to CLK, SYSREF+ to SYSREF,  
TMSTP+ to TMSTP–  
0.4  
0.7  
1.0  
2.0  
1(6)  
VID  
Input voltage, peak-to-peak differential  
VPP-DIFF  
INA+ to INA, INB+ to INB–  
CALTRIG, NCOA0, NCOA1, NCOB0, NCOB1,  
PD, SCLK, SCS, SDI, SYNCSE (2)  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
V
V
CALTRIG, NCOA0, NCOA1, NCOB0, NCOB1,  
PD, SCLK, SCS, SDI, SYNCSE (2)  
0.45  
IC_TD  
CL  
Temperature diode input current  
BG maximum load capacitance  
BG maximum output current  
Input clock duty cycle  
100  
µA  
pF  
µA  
TDIODE+ to TDIODE–  
100  
100  
IO  
DC  
TA  
30%  
50%  
70%  
Operating free-air temperature  
Operating junction temperature  
°C  
°C  
55  
Tj  
125(1)  
(1) Prolonged use above a junction temperature of 105°C may increase the device failure-in-time (FIT) rate.  
(2) Measured to AGND.  
(3) Measured to DGND.  
(4) TI strongly recommends that CLK± be AC-coupled with DEVCLK_LVPECL_EN set to 0 to allow CLK± to self bias to the optimal input  
common-mode voltage for best performance. TI recommends AC-coupling for SYSREF± unless DC-coupling is required, in which case  
LVPECL input mode must be used (SYSREF_LVPECL_EN = 1).  
(5) TMSTP± does not have internal biasing, which requires TMSTP± to be biased externally whether AC-coupled with  
TMSTP_LVPECL_EN = 0 or DC-coupled with TMSTP_LVPECL_EN = 1.  
(6) ADC output code saturates when VID for INA± or INB± exceeds the programmed full-scale voltage (VFS) set by FS_RANGE_A for INA±  
or FS_RANGE_B for INB±.  
6.4 Thermal Information  
ADC12DJ3200QML-SP  
ZMX (CLGA)  
THERMAL METRIC(1)  
UNIT  
NWE (CCGA)  
196 PINS  
24.7  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
16.5  
10.5  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
7.5  
ψJT  
10.6  
ψJB  
RθJC(bot)  
6.5(2)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) The case bottom temperature was taken at the bottom of the solder columns on a fixed temperature PCB. This parameter only applies  
when solder columns are attached to the device.  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
 
 
 
 
 
 
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
6.5 Electrical Characteristics: DC Specifications  
typical values at TA = 25°C, VA19 = 1.9 V, VA11 = 1.1 V, VD11= 1.1 V, default full-scale voltage (FS_RANGE_A =  
FS_RANGE_B = 0xA000), input signal applied to INA± in single-channel modes, fIN = 347 MHz, AIN = 1dBFS, fCLK  
=
maximum-rated clock frequency, filtered 1-VPP sine-wave clock, JMODE = 1, and background calibration (unless otherwise  
noted); minimum and maximum values are at nominal supply voltages and over the operating temperature range provided in  
the Recommended Operating Conditions table  
PARAMETER  
TEST CONDITIONS  
SUBGROUP(1)  
MIN  
TYP  
MAX  
UNIT  
DC ACCURACY  
Resolution  
Resolution with no missing codes  
12  
Bits  
Maximum positive excursion from ideal step  
size  
0.4  
LSB  
DNL  
Differential nonlinearity  
Integral nonlinearity  
Maximum negative excursion from ideal step  
size  
LSB  
LSB  
LSB  
0.3  
3
Maximum positive excursion from ideal  
transfer function  
INL  
Maximum negative excursion from ideal  
transfer function  
2  
ANALOG INPUTS (INA+, INA, INB+, INB)  
CAL_OS = 0  
CAL_OS = 1  
±2.0  
±0.5  
mV  
mV  
VOFF  
Offset error  
Available offset correction range (see  
CAL_OS bit in the CAL_CFG0 register or the  
OADJ_A_FG0_VINA register)  
Input offset voltage  
adjustment range  
VOFF_ADJ  
±55  
mV  
Foreground calibration at nominal  
temperature only  
23  
0
VOFF_DRIFT  
Offset drift  
µV/°C  
Foreground calibration at each temperature  
Default full-scale voltage (FS_RANGE_A =  
FS_RANGE_B = 0xA000)  
[1, 2, 3]  
750  
810  
850  
Analog differential input full- Maximum full-scale voltage (FS_RANGE_A  
VIN_FSR  
1050  
490  
mVPP  
scale range  
= FS_RANGE_B = 0xFFFF)  
Minimum full-scale voltage (FS_RANGE_A =  
FS_RANGE_B = 0x2000)  
Default FS_RANGE_A and FS_RANGE_B  
setting, foreground calibration at nominal  
temperature only, inputs driven by 50-Ω  
source, includes effect of RIN drift  
0.01  
Analog differential input full-  
scale range drift  
VIN_FSR_DRIFT  
%/°C  
Default FS_RANGE_A and FS_RANGE_B  
setting, foreground calibration at each  
temperature, inputs driven by 50-Ωsource,  
includes effect of RIN drift  
0.022  
Analog differential input full- Matching between INA± and INB±, default  
VIN_FSR_MATCH  
1%  
50  
scale range matching  
setting, dual-channel mode  
Single-ended input  
resistance to AGND  
Each input pin is terminated to AGND,  
measured at TA = 25°C  
RIN  
[1]  
48  
52  
Ω
RIN_TEMPCO  
Input termination linear temperature coefficient  
14.7  
0.4  
mΩ/°C  
Single-channel mode at DC  
Dual-channel mode at DC  
Single-ended input  
capacitance  
CIN  
pF  
0.4  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: ADC12DJ3200QML-SP  
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
6.5 Electrical Characteristics: DC Specifications (continued)  
typical values at TA = 25°C, VA19 = 1.9 V, VA11 = 1.1 V, VD11= 1.1 V, default full-scale voltage (FS_RANGE_A =  
FS_RANGE_B = 0xA000), input signal applied to INA± in single-channel modes, fIN = 347 MHz, AIN = 1dBFS, fCLK  
=
maximum-rated clock frequency, filtered 1-VPP sine-wave clock, JMODE = 1, and background calibration (unless otherwise  
noted); minimum and maximum values are at nominal supply voltages and over the operating temperature range provided in  
the Recommended Operating Conditions table  
PARAMETER  
TEMPERATURE DIODE CHARACTERISTICS (TDIODE+, TDIODE)  
Forced forward current of 100 µA; offset  
TEST CONDITIONS  
SUBGROUP(1)  
MIN  
TYP  
MAX  
UNIT  
voltage (approximately 0.792 V at 0°C)  
varies with process and must be measured  
for each device; perform offset measurement  
with the device unpowered or with the PD  
pin asserted to minimize device self-heating;  
only assert the PD pin long enough to take  
the offset measurement  
Temperature diode voltage  
slope  
mV/°C  
ΔVBE  
1.6  
BAND-GAP VOLTAGE OUTPUT (BG)  
VBG  
Reference output voltage  
1.1  
V
IL 100 µA  
IL 100 µA  
Reference output  
temperature drift  
VBG_DRIFT  
µV/°C  
102  
CLOCK INPUTS (CLK+, CLK, SYSREF+, SYSREF, TMSTP+, TMSTP)  
Differential termination with  
DEVCLK_LVPECL_EN = 0,  
SYSREF_LVPECL_EN = 0, and  
TMSTP_LVPECL_EN = 0  
100  
ZT  
Internal termination  
Ω
Single-ended termination to GND (per pin)  
with DEVCLK_LVPECL_EN = 0,  
SYSREF_LVPECL_EN = 0, and  
TMSTP_LVPECL_EN = 0  
50  
Self-biasing common-mode voltage for CLK±  
when AC-coupled (DEVCLK_LVPECL_EN  
must be set to 0)  
0.3  
Self-biasing common-mode voltage for  
SYSREF± when AC-coupled  
(SYSREF_LVPECL_EN must be set to 0)  
and with receiver enabled  
(SYSREF_RECV_EN = 1)  
0.3  
Input common-mode voltage,  
self-biased  
VCM  
V
Self-biasing common-mode voltage for  
SYSREF± when AC-coupled  
(SYSREF_LVPECL_EN must be set to 0)  
and with receiver disabled  
VA11  
(SYSREF_RECV_EN = 0)  
Between positive and negative differential  
input pins  
CL_DIFF  
CL_SE  
Differential input capacitance  
0.1  
0.5  
pF  
pF  
Single-ended input  
capacitance  
Each input to ground  
SERDES OUTPUTS (DA[7:0]+, DA[7:0], DB[7:0]+, DB[7:0])  
Differential output voltage,  
peak-to-peak  
VOD  
[1, 2, 3]  
550  
600  
650 mVPP-DIFF  
100-Ωload  
Output common-mode  
voltage  
VCM  
AC-coupled  
VD11 / 2  
100  
V
ZDIFF  
Differential output impedance  
Ω
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
6.5 Electrical Characteristics: DC Specifications (continued)  
typical values at TA = 25°C, VA19 = 1.9 V, VA11 = 1.1 V, VD11= 1.1 V, default full-scale voltage (FS_RANGE_A =  
FS_RANGE_B = 0xA000), input signal applied to INA± in single-channel modes, fIN = 347 MHz, AIN = 1dBFS, fCLK  
=
maximum-rated clock frequency, filtered 1-VPP sine-wave clock, JMODE = 1, and background calibration (unless otherwise  
noted); minimum and maximum values are at nominal supply voltages and over the operating temperature range provided in  
the Recommended Operating Conditions table  
PARAMETER  
TEST CONDITIONS  
SUBGROUP(1)  
MIN  
TYP  
MAX  
UNIT  
CMOS INTERFACE (SCLK, SDI, SDO, SCS, PD, NCOA0, NCOA1, NCOB0, NCOB1, CALSTAT, CALTRIG, ORA0, ORA1, ORB0, ORB1, SYNCSE)  
IIH  
High-level input current  
Low-level input current  
Input capacitance  
[1, 2, 3]  
[1, 2, 3]  
40  
µA  
µA  
pF  
V
IIL  
40  
CI  
2
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
[1, 2, 3]  
[1, 2, 3]  
1.65  
ILOAD = 400 µA  
ILOAD = 400 µA  
150  
mV  
(1) For subgroup definitions, please see 6-1.  
6.6 Electrical Characteristics: Power Consumption  
typical values at TA = 25°C, VA19 = 1.9 V, VA11 = 1.1 V, VD11= 1.1 V, default full-scale voltage (FS_RANGE_A =  
FS_RANGE_B = 0xA000), input signal applied to INA± in single-channel modes, fIN = 347 MHz, AIN = 1dBFS, fCLK  
=
maximum-rated clock frequency, filtered 1-VPP sine-wave clock, JMODE = 1, and background calibration (unless otherwise  
noted); minimum and maximum values are at nominal supply voltages and over the operating temperature range provided in  
the Recommended Operating Conditions table  
PARAMETER  
TEST CONDITIONS  
SUBGROUP(1)  
MIN  
TYP  
890  
500  
542  
2.8  
MAX  
UNIT  
mA  
mA  
mA  
W
IVA19  
IVA11  
IVD11  
PDIS  
IVA19  
IVA11  
IVD11  
PDIS  
IVA19  
IVA11  
IVD11  
PDIS  
IVA19  
IVA11  
IVD11  
PDIS  
IVA19  
IVA11  
IVD11  
PDIS  
1.9-V analog supply current  
1.1-V analog supply current  
1.1-V digital supply current  
Power dissipation  
Power mode 1: single-channel  
mode, JMODE 1 (16 lanes, DDC  
bypassed), foreground calibration  
1.9-V analog supply current  
1.1-V analog supply current  
1.1-V digital supply current  
Power dissipation  
[1, 2, 3]  
890  
500  
595  
2.9  
1000  
650  
850  
3.5  
mA  
mA  
mA  
W
Power mode 2: single-channel  
mode, JMODE 0 (8 lanes, DDC  
bypassed), foreground calibration  
[1, 2, 3]  
[1, 2, 3]  
[1, 2, 3]  
1.9-V analog supply current  
1.1-V analog supply current  
1.1-V digital supply current  
Power dissipation  
1172  
600  
561  
3.5  
mA  
mA  
mA  
W
Power mode 3: single-channel  
mode, JMODE 1 (16 lanes, DDC  
bypassed), background calibration  
1.9-V analog supply current  
1.1-V analog supply current  
1.1-V digital supply current  
Power dissipation  
1254  
600  
573  
3.7  
mA  
mA  
mA  
W
Power mode 4: dual-channel mode,  
JMODE 3 (16 lanes, DDC  
bypassed), background calibration  
1.9-V analog supply current  
1.1-V analog supply current  
1.1-V digital supply current  
Power dissipation  
971  
500  
1033  
3.6  
mA  
mA  
mA  
W
Power mode 5: dual-channel mode,  
JMODE 11 (8 lanes, 4x decimation),  
foreground calibration  
(1) For subgroup definitions, please see 6-1.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
6.7 Electrical Characteristics: AC Specifications (Dual-Channel Mode)  
typical values at TA = 25°C, VA19 = 1.9 V, VA11 = 1.1 V, VD11= 1.1 V, default full-scale voltage (FS_RANGE_A =  
FS_RANGE_B = 0xA000), fIN= 347 MHz, AIN = 1 dBFS, fCLK = maximum-rated clock frequency, filtered 1-VPP sine-wave  
clock, JMODE = 1, and background calibration (unless otherwise noted); minimum and maximum values are at nominal  
supply voltages and over the operating temperature range provided in the Recommended Operating Conditions table  
PARAMETER  
TEST CONDITIONS  
SUBGROUP(1)  
MIN  
TYP  
MAX  
UNIT  
Foreground calibration  
7.3  
Full-power input bandwidth  
(3 dB)(2)  
FPBW  
GHz  
Background calibration  
7.3  
Dual-channel mode, aggressor = 400  
MHz, 1 dBFS  
88  
56  
Dual-channel mode, aggressor = 3 GHz,  
1 dBFS  
XTALK  
Channel-to-channel crosstalk  
dB  
Dual-channel mode, aggressor = 6 GHz,  
1 dBFS  
57  
Does not include SerDes bit-error rate  
(BER)  
Errors /  
Sample  
CER  
Code error rate  
1018  
No input, foreground calibration,  
excludes DC offset, includes fixed  
interleaving spur (fS / 2 spur)  
DC input noise standard  
deviation  
NOISEDC  
2.5  
149.5  
147.5  
23.5  
LSB  
Maximum full-scale voltage  
(FS_RANGE_A = FS_RANGE_B =  
0xFFFF) setting, foreground calibration  
Noise spectral density, no input  
signal, excludes fixed  
interleaving spur (fS / 2 spur)  
NSD  
dBFS/Hz  
Default full-scale voltage  
(FS_RANGE_A = FS_RANGE_B =  
0xA000) setting, foreground calibration  
Maximum full-scale voltage  
(FS_RANGE_A = 0xFFFF) setting,  
foreground calibration  
Noise figure, no input, ZS = 100  
Ω
NF  
dB  
Default full-scale voltage  
(FS_RANGE_A = 0xA000) setting,  
foreground calibration  
25.5  
55.7  
fIN = 347 MHz, AIN = 1 dBFS  
fIN = 347 MHz, AIN = 1 dBFS,  
maximum FS_RANGE_A and  
FS_RANGE_B setting, foreground  
calibration  
57.2  
55.5  
55.0  
fIN = 997 MHz, AIN = 1 dBFS  
fIN = 2482 MHz, AIN = 1 dBFS  
Signal-to-noise ratio, large signal,  
excluding DC, HD2 to HD9 and  
interleaving spurs  
[4, 5, 6]  
51.0  
SNR  
dBFS  
fIN = 2482 MHz, AIN = 1 dBFS,  
maximum FS_RANGE_A and  
FS_RANGE_B setting, foreground  
calibration  
56.0  
53.0  
51.8  
50.4  
56.4  
56.6  
56.5  
56.3  
56.5  
56.0  
55.3  
54.9  
54.4  
51.3  
49.9  
48.1  
fIN = 4997 MHz, AIN = 1 dBFS  
fIN = 6397 MHz, AIN = 1 dBFS  
fIN = 8197 MHz, AIN = 1 dBFS  
fIN = 347 MHz, AIN = 16 dBFS  
fIN = 997 MHz, AIN = 16 dBFS  
fIN = 2482 MHz, AIN = 16 dBFS  
fIN = 4997 MHz, AIN = 16 dBFS  
fIN = 6397 MHz, AIN = 16 dBFS  
fIN = 8197 MHz, AIN = 16 dBFS  
fIN = 347 MHz, AIN = 1 dBFS  
fIN = 997 MHz, AIN = 1 dBFS  
fIN = 2482 MHz, AIN = 1 dBFS  
fIN = 4997 MHz, AIN = 1 dBFS  
fIN = 6397 MHz, AIN = 1 dBFS  
fIN = 8197 MHz, AIN = 1 dBFS  
Signal-to-noise ratio, small  
signal, excluding DC, HD2 to  
HD9 and interleaving spurs  
SNR  
dBFS  
Signal-to-noise and distortion  
ratio, large signal, excluding DC  
and fS / 2 fixed spurs  
[4, 5, 6]  
50.0  
SINAD  
dBFS  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
6.7 Electrical Characteristics: AC Specifications (Dual-Channel Mode) (continued)  
typical values at TA = 25°C, VA19 = 1.9 V, VA11 = 1.1 V, VD11= 1.1 V, default full-scale voltage (FS_RANGE_A =  
FS_RANGE_B = 0xA000), fIN= 347 MHz, AIN = 1 dBFS, fCLK = maximum-rated clock frequency, filtered 1-VPP sine-wave  
clock, JMODE = 1, and background calibration (unless otherwise noted); minimum and maximum values are at nominal  
supply voltages and over the operating temperature range provided in the Recommended Operating Conditions table  
PARAMETER  
TEST CONDITIONS  
fIN = 347 MHz, AIN = 1 dBFS  
fIN = 997 MHz, AIN = 1 dBFS  
fIN = 2482 MHz, AIN = 1 dBFS  
fIN = 4997 MHz, AIN = 1 dBFS  
fIN = 6397 MHz, AIN = 1 dBFS  
fIN = 8197 MHz, AIN = 1 dBFS  
fIN = 347 MHz, AIN = 1 dBFS  
SUBGROUP(1)  
MIN  
TYP  
8.9  
8.8  
8.7  
8.2  
8.0  
7.7  
69  
MAX  
UNIT  
Effective number of bits, large  
signal, excluding DC and fS / 2  
fixed spurs  
[4, 5, 6]  
8.0  
ENOB  
Bits  
fIN = 347 MHz, AIN = 1 dBFS,  
maximum FS_RANGE_A and  
FS_RANGE_B setting, foreground  
calibration  
70  
68  
67  
fIN = 997 MHz, AIN = 1 dBFS  
fIN = 2482 MHz, AIN = 1 dBFS  
Spurious-free dynamic range,  
large signal, excluding DC and  
fS / 2 fixed spurs  
[4, 5, 6]  
58  
SFDR  
dBFS  
fIN = 2482 MHz, AIN = 1 dBFS,  
maximum FS_RANGE_A and  
FS_RANGE_B setting, foreground  
calibration  
62  
59  
56  
53  
74  
75  
74  
75  
74  
76  
fIN = 4997 MHz, AIN = 1 dBFS  
fIN = 6397 MHz, AIN = 1 dBFS  
fIN = 8197 MHz, AIN = 1 dBFS  
fIN = 347 MHz, AIN = 16 dBFS  
fIN = 997 MHz, AIN = 16 dBFS  
fIN = 2482 MHz, AIN = 16 dBFS  
fIN = 4997 MHz, AIN = 16 dBFS  
fIN = 6397 MHz, AIN = 16 dBFS  
fIN = 8197 MHz, AIN = 16 dBFS  
Spurious-free dynamic range,  
small signal, excluding DC and  
fS / 2 fixed spurs  
SFDR  
dBFS  
dBFS  
fS / 2 fixed interleaving spur,  
independent of input signal  
fS / 2  
No input  
[4, 5, 6]  
77  
75  
50  
fIN = 347 MHz, AIN = 1 dBFS  
fIN = 347 MHz, AIN = 1 dBFS,  
maximum FS_RANGE_A and  
FS_RANGE_B setting, foreground  
calibration  
75  
fIN = 997 MHz, AIN = 1 dBFS  
fIN = 2482 MHz, AIN = 1 dBFS  
74  
75  
[4, 5, 6]  
58  
HD2  
2nd-order harmonic distortion  
dBFS  
fIN = 2482 MHz, AIN = 1 dBFS,  
maximum FS_RANGE_A and  
FS_RANGE_B setting, foreground  
calibration  
74  
fIN = 4997 MHz, AIN = 1 dBFS  
fIN = 6397 MHz, AIN = 1 dBFS  
fIN = 8197 MHz, AIN = 1 dBFS  
61  
61  
64  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: ADC12DJ3200QML-SP  
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
6.7 Electrical Characteristics: AC Specifications (Dual-Channel Mode) (continued)  
typical values at TA = 25°C, VA19 = 1.9 V, VA11 = 1.1 V, VD11= 1.1 V, default full-scale voltage (FS_RANGE_A =  
FS_RANGE_B = 0xA000), fIN= 347 MHz, AIN = 1 dBFS, fCLK = maximum-rated clock frequency, filtered 1-VPP sine-wave  
clock, JMODE = 1, and background calibration (unless otherwise noted); minimum and maximum values are at nominal  
supply voltages and over the operating temperature range provided in the Recommended Operating Conditions table  
PARAMETER  
TEST CONDITIONS  
SUBGROUP(1)  
MIN  
TYP  
MAX  
UNIT  
fIN = 347 MHz, AIN = 1 dBFS  
72  
fIN = 347 MHz, AIN = 1 dBFS,  
maximum FS_RANGE_A and  
FS_RANGE_B setting, foreground  
calibration  
70  
fIN = 997 MHz, AIN = 1 dBFS  
fIN = 2482 MHz, AIN = 1 dBFS  
74  
67  
[4, 5, 6]  
58  
HD3  
3rd-order harmonic distortion  
dBFS  
fIN = 2482 MHz, AIN = 1 dBFS,  
maximum FS_RANGE_A and  
FS_RANGE_B setting, foreground  
calibration  
62  
fIN = 4997 MHz, AIN = 1 dBFS  
fIN = 6397 MHz, AIN = 1 dBFS  
fIN = 8197 MHz, AIN = 1 dBFS  
fIN = 347 MHz, AIN = 1 dBFS  
fIN = 997 MHz, AIN = 1 dBFS  
fIN = 2482 MHz, AIN = 1 dBFS  
fIN = 4997 MHz, AIN = 1 dBFS  
fIN = 6397 MHz, AIN = 1 dBFS  
fIN = 8197 MHz, AIN = 1 dBFS  
fIN = 347 MHz, AIN = 1 dBFS  
fIN = 997 MHz, AIN = 1 dBFS  
fIN = 2482 MHz, AIN = 1 dBFS  
fIN = 4997 MHz, AIN = 1 dBFS  
fIN = 6397 MHz, AIN = 1 dBFS  
fIN = 8197 MHz, AIN = 1 dBFS  
59  
56  
53  
76  
72  
73  
71  
68  
66  
76  
74  
74  
72  
69  
68  
[4, 5, 6]  
58  
fS / 2 fIN interleaving spur,  
signal dependent  
fS / 2-fIN  
dBFS  
[4, 5, 6]  
60  
Worst-harmonic, 4th-order  
distortion or higher  
SPUR  
dBFS  
fIN = 347 MHz ± 5 MHz,  
AIN = 7 dBFS per tone  
86  
82  
73  
65  
60  
52  
fIN = 997 MHz ± 5 MHz,  
AIN = 7 dBFS per tone  
fIN = 2482 MHz ± 5 MHz,  
AIN = 7 dBFS per tone  
3rd-order intermodulation  
distortion  
IMD3  
dBFS  
fIN = 4997 MHz ± 5 MHz,  
AIN = 7 dBFS per tone  
fIN = 6397 MHz ± 5 MHz,  
AIN = 7 dBFS per tone  
fIN = 8197 MHz ± 5 MHz,  
AIN = 7 dBFS per tone  
(1) For subgroup definitions, please see 6-1.  
(2) Full-power input bandwidth (FPBW) is defined as the input frequency where the reconstructed output of the ADC has dropped 3 dB  
below the power of a full-scale input signal at a low input frequency. Useable bandwidth may exceed the 3-dB full-power input  
bandwidth.  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
6.8 Electrical Characteristics: AC Specifications (Single-Channel Mode)  
typical values at TA = 25°C, VA19 = 1.9 V, VA11 = 1.1 V, VD11= 1.1 V, default full-scale voltage (FS_RANGE_A =  
FS_RANGE_B = 0xA000), input signal applied to INA±, fIN = 347 MHz, AIN = 1 dBFS,fCLK = maximum-rated clock  
frequency, filtered 1-VPP sine-wave clock, JMODE = 1, and background calibration (unless otherwise noted); minimum and  
maximum values are at nominal supply voltages and over the operating temperature range provided in the Recommended  
Operating Conditions table  
PARAMETER  
TEST CONDITIONS  
SUBGROUP(1)  
MIN  
TYP  
MAX  
UNIT  
Foreground calibration  
7.1  
Full-power input bandwidth  
FPBW  
CER  
GHz  
(3 dB)(2)  
Background calibration  
7.1  
Does not include SerDes bit-error rate  
(BER)  
Errors /  
Sample  
Code error rate  
1018  
No input, foreground calibration,  
excludes DC offset, includes fixed  
interleaving spurs (fS / 2 and fS / 4  
spurs)  
DC input noise standard  
deviation  
NOISEDC  
2.8  
LSB  
Maximum full-scale voltage  
(FS_RANGE_A = 0xFFFF) setting,  
foreground calibration  
152.4  
150.0  
20.6  
Noise spectral density, no input  
signal, excludes fixed  
interleaving spurs (fS / 2 and fS  
4 spur)  
NSD  
dBFS/Hz  
/
Default full-scale voltage  
(FS_RANGE_A = 0xA000) setting,  
foreground calibration  
Maximum full-scale voltage  
(FS_RANGE_A = 0xFFFF) setting,  
foreground calibration  
Noise figure, no input, ZS = 100  
Ω
NF  
dB  
Default full-scale voltage  
(FS_RANGE_A = 0xA000) setting,  
foreground calibration  
23.1  
55.8  
57.1  
fIN = 347 MHz, AIN = 1 dBFS  
fIN = 347 MHz, AIN = 1 dBFS,  
maximum FS_RANGE_A setting,  
foreground calibration  
55.5  
54.9  
fIN = 997 MHz, AIN = 1 dBFS  
fIN = 2482 MHz, AIN = 1 dBFS  
Signal-to-noise ratio, large signal,  
excluding DC, HD2 to HD9 and  
interleaving spurs  
[4, 5, 6]  
51.0  
SNR  
dBFS  
fIN = 2482 MHz, AIN = 1 dBFS,  
maximum FS_RANGE_A setting,  
foreground calibration  
56.1  
53.1  
51.9  
50.6  
56.5  
56.6  
56.5  
56.5  
56.5  
56.2  
54.6  
53.6  
51.3  
50.8  
49.6  
47.2  
fIN = 4997 MHz, AIN = 1 dBFS  
fIN = 6397 MHz, AIN = 1 dBFS  
fIN = 8197 MHz, AIN = 1 dBFS  
fIN = 347 MHz, AIN = 16 dBFS  
fIN = 997 MHz, AIN = 16 dBFS  
fIN = 2482 MHz, AIN = 16 dBFS  
fIN = 4997 MHz, AIN = 16 dBFS  
fIN = 6397 MHz, AIN = 16 dBFS  
fIN = 8197 MHz, AIN = 16 dBFS  
fIN = 347 MHz, AIN = 1 dBFS  
fIN = 997 MHz, AIN = 1 dBFS  
fIN = 2482 MHz, AIN = 1 dBFS  
fIN = 4997 MHz, AIN = 1 dBFS  
fIN = 6397 MHz, AIN = 1 dBFS  
fIN = 8197 MHz, AIN = 1 dBFS  
Signal-to-noise ratio, small  
signal, excluding DC, HD2 to  
HD9 and interleaving spurs  
SNR  
dBFS  
Signal-to-noise and distortion  
ratio, large signal, excluding DC  
and fS / 2 fixed spurs  
[4, 5, 6]  
43.9  
SINAD  
dBFS  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: ADC12DJ3200QML-SP  
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
6.8 Electrical Characteristics: AC Specifications (Single-Channel Mode) (continued)  
typical values at TA = 25°C, VA19 = 1.9 V, VA11 = 1.1 V, VD11= 1.1 V, default full-scale voltage (FS_RANGE_A =  
FS_RANGE_B = 0xA000), input signal applied to INA±, fIN = 347 MHz, AIN = 1 dBFS,fCLK = maximum-rated clock  
frequency, filtered 1-VPP sine-wave clock, JMODE = 1, and background calibration (unless otherwise noted); minimum and  
maximum values are at nominal supply voltages and over the operating temperature range provided in the Recommended  
Operating Conditions table  
PARAMETER  
TEST CONDITIONS  
fIN = 347 MHz, AIN = 1 dBFS  
fIN = 997 MHz, AIN = 1 dBFS  
fIN = 2482 MHz, AIN = 1 dBFS  
fIN = 4997 MHz, AIN = 1 dBFS  
fIN = 6397 MHz, AIN = 1 dBFS  
fIN = 8197 MHz, AIN = 1 dBFS  
fIN = 347 MHz, AIN = 1 dBFS  
SUBGROUP(1)  
MIN  
TYP  
8.8  
8.6  
8.2  
8.1  
7.9  
7.5  
66  
MAX  
UNIT  
Effective number of bits, large  
signal, excluding DC and fS / 2  
fixed spurs  
[4, 5, 6]  
7.0  
ENOB  
SFDR  
SFDR  
Bits  
fIN = 347 MHz, AIN = 1 dBFS,  
maximum FS_RANGE_A setting,  
foreground calibration  
67  
60  
56  
fIN = 997 MHz, AIN = 1 dBFS  
fIN = 2482 MHz, AIN = 1 dBFS  
Spurious-free dynamic range,  
large signal, excluding DC, fS / 4  
and fS / 2 fixed spurs  
[4, 5, 6]  
45  
dBFS  
fIN = 2482 MHz, AIN = 1 dBFS,  
maximum FS_RANGE_A setting,  
foreground calibration  
52  
58  
57  
52  
70  
66  
66  
67  
68  
65  
fIN = 4997 MHz, AIN = 1 dBFS  
fIN = 6397 MHz, AIN = 1 dBFS  
fIN = 8197 MHz, AIN = 1 dBFS  
fIN = 347 MHz, AIN = 16 dBFS  
fIN = 997 MHz, AIN = 16 dBFS  
fIN = 2482 MHz, AIN = 16 dBFS  
fIN = 4997 MHz, AIN = 16 dBFS  
fIN = 6397 MHz, AIN = 16 dBFS  
fIN = 8197 MHz, AIN = 16 dBFS  
Spurious-free dynamic range,  
small signal, excluding DC, fS / 4  
and fS / 2 fixed spurs  
dBFS  
fS / 2 fixed interleaving spur,  
independent of input signal  
No input, OS_CAL disabled, spur can  
be improved by running OS_CAL  
fS / 2  
fS / 4  
dBFS  
dBFS  
64  
fS / 4 fixed interleaving spur,  
independent of input signal  
No input  
[4, 5, 6]  
70  
72  
50  
fIN = 347 MHz, AIN = 1 dBFS  
fIN = 347 MHz, AIN = 1 dBFS,  
maximum FS_RANGE_A setting,  
foreground calibration  
69  
fIN = 997 MHz, AIN = 1 dBFS  
fIN = 2482 MHz, AIN = 1 dBFS  
70  
71  
[4, 5, 6]  
58  
HD2  
2nd-order harmonic distortion  
dBFS  
fIN = 2482 MHz, AIN = 1 dBFS,  
maximum FS_RANGE_A setting,  
foreground calibration  
73  
fIN = 4997 MHz, AIN = 1 dBFS  
fIN = 6397 MHz, AIN = 1 dBFS  
fIN = 8197 MHz, AIN = 1 dBFS  
66  
65  
67  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
6.8 Electrical Characteristics: AC Specifications (Single-Channel Mode) (continued)  
typical values at TA = 25°C, VA19 = 1.9 V, VA11 = 1.1 V, VD11= 1.1 V, default full-scale voltage (FS_RANGE_A =  
FS_RANGE_B = 0xA000), input signal applied to INA±, fIN = 347 MHz, AIN = 1 dBFS,fCLK = maximum-rated clock  
frequency, filtered 1-VPP sine-wave clock, JMODE = 1, and background calibration (unless otherwise noted); minimum and  
maximum values are at nominal supply voltages and over the operating temperature range provided in the Recommended  
Operating Conditions table  
PARAMETER  
TEST CONDITIONS  
SUBGROUP(1)  
MIN  
TYP  
MAX  
UNIT  
fIN = 347 MHz, AIN = 1 dBFS  
71  
fIN = 347 MHz, AIN = 1 dBFS,  
maximum FS_RANGE_A setting,  
foreground calibration  
67  
fIN = 997 MHz, AIN = 1 dBFS  
fIN = 2482 MHz, AIN = 1 dBFS  
70  
67  
[4, 5, 6]  
58  
HD3  
3rd-order harmonic distortion  
dBFS  
fIN = 2482 MHz, AIN = 1 dBFS,  
maximum FS_RANGE_A setting,  
foreground calibration  
62  
fIN = 4997 MHz, AIN = 1 dBFS  
fIN = 6397 MHz, AIN = 1 dBFS  
fIN = 8197 MHz, AIN = 1 dBFS  
fIN = 347 MHz, AIN = 1 dBFS  
fIN = 997 MHz, AIN = 1 dBFS  
fIN = 2482 MHz, AIN = 1 dBFS  
fIN = 4997 MHz, AIN = 1 dBFS  
fIN = 6397 MHz, AIN = 1 dBFS  
fIN = 8197 MHz, AIN = 1 dBFS  
fIN = 347 MHz, AIN = 1 dBFS  
fIN = 997 MHz, AIN = 1 dBFS  
fIN = 2482 MHz, AIN = 1 dBFS  
fIN = 4997 MHz, AIN = 1 dBFS  
fIN = 6397 MHz, AIN = 1 dBFS  
fIN = 8197 MHz, AIN = 1 dBFS  
fIN = 347 MHz, AIN = 1 dBFS  
fIN = 997 MHz, AIN = 1 dBFS  
fIN = 2482 MHz, AIN = 1 dBFS  
fIN = 4997 MHz, AIN = 1 dBFS  
fIN = 6397 MHz, AIN = 1 dBFS  
fIN = 8197 MHz, AIN = 1 dBFS  
61  
59  
56  
68  
63  
56  
58  
57  
56  
76  
74  
75  
73  
69  
70  
74  
75  
74  
70  
70  
66  
[4, 5, 6]  
[4, 5, 6]  
[4, 5, 6]  
45  
58  
60  
fS / 2 fIN interleaving spur,  
signal dependent  
fS / 2-fIN  
fS / 4±fIN  
SPUR  
dBFS  
dBFS  
dBFS  
fS / 4 ± fIN interleaving spurs,  
signal dependent  
Worst harmonic 4th-order  
distortion or higher  
fIN = 347 MHz ± 5 MHz,  
AIN = 7 dBFS per tone  
89  
79  
73  
65  
61  
54  
fIN = 997 MHz ± 5 MHz,  
AIN = 7 dBFS per tone  
fIN = 2482 MHz ± 5 MHz,  
AIN = 7 dBFS per tone  
3rd-order intermodulation  
distortion  
IMD3  
dBFS  
fIN = 4997 MHz ± 5 MHz,  
AIN = 7 dBFS per tone  
fIN = 6397 MHz ± 5 MHz,  
AIN = 7 dBFS per tone  
fIN = 8197 MHz ± 5 MHz,  
AIN = 7 dBFS per tone  
(1) For subgroup definitions, please see 6-1.  
(2) Full-power input bandwidth (FPBW) is defined as the input frequency where the reconstructed output of the ADC has dropped 3 dB  
below the power of a full-scale input signal at a low input frequency. Useable bandwidth may exceed the 3-dB full-power input  
bandwidth.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
6.9 Timing Requirements  
SUBGROUP(1)  
MIN  
NOM  
MAX  
UNIT  
DEVICE (Sampling) CLOCK (CLK+, CLK)  
Maximum input clock  
frequency  
[4, 5, 6]  
3200  
MHz  
MHz  
Input clock frequency (CLK+, CLK), both single-  
fCLK  
channel and dual-channel modes(2)  
Minimum input clock  
frequency  
800  
SYSREF (SYSREF+, SYSREF)  
Maximum input clock  
frequency  
[4, 5, 6]  
312.5  
ps  
ps  
Input clock period (CLK+, CLK), both single-  
tCLK  
channel and dual-channel modes(2)  
Minimum input clock  
frequency  
1250  
48  
Duration of invalid SYSREF capture region of CLK± period, indicating setup or  
hold time violation, as measured by the SYSREF_POS status register(3)  
tINV(SYSREF)  
tINV(TEMP)  
tINV(VA11)  
ps  
Drift of invalid SYSREF capture region over temperature, a positive number  
indicates a shift toward the MSB of the SYSREF_POS register  
0
ps/°C  
ps/mV  
Drift of invalid SYSREF capture region over the VA11 supply voltage, a positive  
number indicates a shift toward the MSB of the SYSREF_POS register  
0.36  
SYSREF_ZOOM = 0  
Delay of the SYSREF_POS LSB  
77  
24  
4
tSTEP(SP)  
ps  
SYSREF_ZOOM = 1  
t(PH_SYS)  
t(PL_SYS)  
Minimum SYSREF± assertion duration after a SYSREF± rising edge event  
Minimum SYSREF± de-assertion duration after a SYSREF± falling edge event  
ns  
ns  
4
JESD204B SYNC TIMING ( SYNCSE OR TMSTP±)  
JMODE = 0, 2, 4, 6, 10,  
13 or 15  
Minimum hold time from multiframe boundary  
(SYSREF rising edge captured high) to de-assertion  
21  
tCLK  
cycles  
tH( SYNCSE)  
of JESD204B SYNC signal ( SYNCSE if SYNC_SEL JMODE = 1, 3, 5, 7, 9, 11,  
17  
9
= 0 or TMSTP± if SYNC_SEL = 1) for NCO  
synchronization (NCO_SYNC_ILA = 1)  
14 or 16  
JMODE = 12, 17 or 18  
JMODE = 0, 2, 4, 6, 10,  
13 or 15  
Minimum setup time from de-assertion of JESD204B  
SYNC signal ( SYNCSE if SYNC_SEL = 0 or  
TMSTP± if SYNC_SEL = 1) to multiframe boundary  
(SYSREF rising edge captured high) for NCO  
synchronization (NCO_SYNC_ILA = 1)  
2  
tCLK  
cycles  
tSU( SYNCSE)  
JMODE = 1, 3, 5, 7, 9, 11,  
14 or 16  
2
JMODE = 12, 17 or 18  
10  
4
t( SYNCSE)  
SYNCSE minimum assertion time to trigger link resynchronization  
Frames  
SERIAL PROGRAMMING INTERFACE (SCLK, SDI, SCS)  
fCLK(SCLK)  
t(PH)  
Serial clock frequency  
[4, 5, 6]  
[4, 5, 6]  
[4, 5, 6]  
[4, 5, 6]  
[4, 5, 6]  
[4, 5, 6]  
[4, 5, 6]  
0.0  
32  
32  
25  
3
15.625  
MHz  
ns  
Serial clock high value pulse duration  
Serial clock low value pulse duration  
Setup time from SCS to rising edge of SCLK  
Hold time from rising edge of SCLK to SCS  
Setup time from SDI to rising edge of SCLK  
Hold time from rising edge of SCLK to SDI  
t(PL)  
ns  
tSU( SCS)  
tH( SCS)  
tSU(SDI)  
tH(SDI)  
ns  
ns  
25  
3
ns  
ns  
(1) For subgroup definitions, please see 6-1.  
(2) Unless functionally limited to a smaller range in 7-18 based on the programmed JMODE.  
(3) Use SYSREF_POS to select an optimal SYSREF_SEL value for SYSREF capture, see SYSREF Position Detector and Sampling  
Position Selection (SYSREF Windowing) for more information on SYSREF windowing. The invalid region, specified by tINV(SYSREF)  
,
indicates the portion of the CLK± period (tCLK), as measured by SYSREF_SEL, that may result in a setup and hold violation. Verify that  
the timing skew between SYSREF± and CLK± over system operating conditions from the nominal conditions (that used to find optimal  
SYSREF_SEL) does not result in the invalid region occurring at the selected SYSREF_SEL position in SYSREF_POS, otherwise a  
temperature dependent SYSREF_SEL selection may be needed to track the skew between CLK± and SYSREF±.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
6.10 Switching Characteristics  
typical values at TA = 25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B = 0xA000),  
input signal applied to INA± in single-channel modes, fIN = 347 MHz, AIN = 1dBFS, fCLK = maximum-rated clock frequency,  
filtered 1-VPP sine-wave clock, JMODE = 1, and background calibration (unless otherwise noted); minimum and maximum  
values are at nominal supply voltages and over the operating temperature range provided in the Recommended Operating  
Conditions table  
PARAMETER  
TEST CONDITIONS  
SUBGROUP(1)  
MIN  
TYP  
MAX  
UNIT  
DEVICE (SAMPLING) CLOCK (CLK+, CLK)  
Sampling (aperture) delay from CLK± rising  
TAD_COARSE = 0x00,  
TAD_FINE = 0x00 and  
TAD_INV = 0  
edge (dual-channel mode) or rising and  
falling edge (single-channel mode) to  
sampling instant  
tAD  
350  
ps  
Coarse adjustment  
(TAD_COARSE = 0xFF)  
289  
4.9  
Maximum tAD Adjust programmable delay,  
not including clock inversion (TAD_INV = 0)  
tAD(MAX)  
ps  
ps  
Fine adjustment (TAD_FINE  
= 0xFF)  
Coarse adjustment  
(TAD_COARSE)  
1.13  
19  
tAD(STEP)  
tAD Adjust programmable delay step size  
Fine adjustment (TAD_FINE)  
Minimum tAD adjust coarse  
setting (TAD_COARSE =  
0x00, TAD_INV = 0)  
56  
tAJ  
Aperture jitter, rms  
fs  
Maximum tAD adjust coarse  
setting (TAD_COARSE =  
0xFF) excluding TAD_INV  
(TAD_INV = 0)  
68(4)  
SERIAL DATA OUTPUTS (DA[7:0]+, DA[7:0], DB[7:0]+, DB[7:0])  
Maximum output bit rate  
Minimum output bit rate  
[9, 10, 11]  
12.8  
Gbps  
Gbps  
ps  
fSERDES  
Serialized output bit rate  
1
Minimum output unit interval [9, 10, 11]  
Maximum output unit interval  
78.125  
UI  
Serialized output unit interval  
1000  
27  
ps  
20% to 80%, PRBS-7 test  
pattern, 12.8 Gbps, SER_PE  
= 0x04  
tTLH  
tTHL  
DDJ  
RJ  
Low-to-high transition time (differential)  
High-to-low transition time (differential)  
Data dependent jitter, peak-to-peak  
Random jitter, RMS  
ps  
ps  
ps  
ps  
20% to 80%, PRBS-7 test  
pattern, 12.8 Gbps, SER_PE  
= 0x04  
27  
11.7  
0.8  
PRBS-7 test pattern, 12.8  
Gbps, SER_PE = 0x04,  
JMODE = 2  
PRBS-7 test pattern, 12.8  
Gbps, SER_PE = 0x04,  
JMODE = 2  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: ADC12DJ3200QML-SP  
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
6.10 Switching Characteristics (continued)  
typical values at TA = 25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B = 0xA000),  
input signal applied to INA± in single-channel modes, fIN = 347 MHz, AIN = 1dBFS, fCLK = maximum-rated clock frequency,  
filtered 1-VPP sine-wave clock, JMODE = 1, and background calibration (unless otherwise noted); minimum and maximum  
values are at nominal supply voltages and over the operating temperature range provided in the Recommended Operating  
Conditions table  
PARAMETER  
TEST CONDITIONS  
SUBGROUP(1)  
MIN  
TYP  
MAX  
UNIT  
PRBS-7 test pattern, 12.8  
Gbps, SER_PE = 0x04,  
JMODE = 0, 2  
24  
PRBS-7 test pattern, 6.4  
Gbps, SER_PE = 0x04,  
JMODE = 1, 3  
20  
PRBS-7 test pattern, 8 Gbps,  
SER_PE = 0x04, JMODE =  
4, 5, 6, 7  
31  
32  
35  
PRBS-7 test pattern, 8 Gbps,  
SER_PE = 0x04, JMODE = 9  
Total jitter, peak-to-peak, with gaussian  
portion defined with respect to a BER=1e-15  
(Q = 7.94)  
TJ  
ps  
PRBS-7 test pattern, 8 Gbps,  
SER_PE = 0x04, JMODE =  
10, 11  
PRBS-7 test pattern, 3.2  
Gbps, SER_PE = 0x04,  
JMODE = 12  
24  
35  
31  
PRBS-7 test pattern, 8 Gbps,  
SER_PE = 0x04, JMODE =  
13, 14  
PRBS-7 test pattern, 8 Gbps,  
SER_PE = 0x04, JMODE =  
15, 16  
ADC CORE LATENCY  
JMODE = 0  
JMODE = 1  
JMODE = 2  
JMODE = 3  
JMODE = 4  
JMODE = 5  
JMODE = 6  
JMODE = 7  
JMODE = 9  
JMODE = 10  
JMODE = 11  
JMODE = 12  
JMODE = 13  
JMODE = 14  
JMODE = 15  
JMODE = 16  
JMODE = 17  
JMODE = 18  
8.5  
20.5  
9  
21  
4.5  
24.5  
5  
25  
60  
Deterministic delay from the CLK± edge that  
tCLK  
cycles  
tADC  
samples the reference sample to the CLK±  
edge that samples SYSREF going high(2)  
140  
136  
120  
232  
232  
446  
430  
48.5  
49  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
6.10 Switching Characteristics (continued)  
typical values at TA = 25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B = 0xA000),  
input signal applied to INA± in single-channel modes, fIN = 347 MHz, AIN = 1dBFS, fCLK = maximum-rated clock frequency,  
filtered 1-VPP sine-wave clock, JMODE = 1, and background calibration (unless otherwise noted); minimum and maximum  
values are at nominal supply voltages and over the operating temperature range provided in the Recommended Operating  
Conditions table  
PARAMETER  
TEST CONDITIONS  
SUBGROUP(1)  
MIN  
TYP  
MAX  
UNIT  
JESD204B AND SERIALIZER LATENCY  
JMODE = 0  
72(5)  
119(5)  
72(5)  
84(5)  
132(5)  
84(5)  
JMODE = 1  
JMODE = 2  
JMODE = 3  
JMODE = 4  
JMODE = 5  
JMODE = 6  
JMODE = 7  
JMODE = 9  
JMODE = 10  
JMODE = 11  
JMODE = 12  
JMODE = 13  
JMODE = 14  
JMODE = 15  
JMODE = 16  
JMODE = 17  
JMODE = 18  
119(5)  
67(5)  
132(5)  
80(5)  
106(5)  
67(5)  
119(5)  
80(5)  
106(5)  
106(5)  
67(5)  
119(5)  
119(5)  
80(5)  
Delay from the CLK± rising edge that  
samples SYSREF high to the first bit of the  
multiframe on the JESD204B serial output  
lane corresponding to the reference sample  
tCLK  
cycles  
tTX  
(3)  
106(5)  
213(5)  
67(5)  
119(5)  
225(5)  
80(5)  
of tADC  
106(5)  
67(5)  
119(5)  
80(5)  
106(5)  
195(5)  
195(5)  
119(5)  
208(5)  
208(5)  
SERIAL PROGRAMMING INTERFACE (SDO)  
Delay from falling edge of 16th SCLK cycle  
t(OZD)  
during read operation for SDO transition from  
tri-state to valid data  
1(5)  
ns  
Delay from SCS rising edge for SDO  
transition from valid data to tri-state  
t(ODZ)  
t(OD)  
10(5)  
10  
ns  
ns  
Delay from falling edge of SCLK during read  
operation to SDO valid  
[4, 5, 6]  
1
(1) For subgroup definitions, please see 6-1.  
(2) tADC is an exact, unrounded, deterministic delay. The delay can be negative if the reference sample is sampled after the SYSREF high  
capture point, in which case the total latency is smaller than the delay given by tTX  
.
(3) The values given for tTX include deterministic and non-deterministic delays. The delay varies over process, temperature, and voltage.  
JESD204B accounts for these variations when operating in subclass-1 mode in order to achieve deterministic latency. Proper receiver  
RBD values must be chosen such that the elastic buffer release point does not occur within the invalid region of the local multiframe  
clock (LMFC) cycle.  
(4) tAJ increases because of additional attenuation on the internal clock path.  
(5) This parameter is specified by design and is not tested in production.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
 
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
6.11 Timing Diagrams  
6-1. Quality Conformance Inspection(1)  
SUBGROUP  
DESCRIPTION  
TEMPERATURE (°C)  
1
2
Static tests at  
25  
125  
55  
25  
Static tests at  
3
Static tests at  
4
Dynamic tests at  
Dynamic tests at  
Dynamic tests at  
Functional tests at  
Functional tests at  
Functional tests at  
Switching tests at  
Switching tests at  
Switching tests at  
5
125  
55  
25  
6
7
8A  
8B  
9
125  
55  
25  
10  
11  
125  
55  
(1) MIL-STD-883, Method 5005 - Group A  
S1  
S2  
S0  
tAD  
tADC  
tCLK  
CLK+  
CLKœ  
SYSREF+  
SYSREFœ  
tSU(SYSREF)  
tH(SYSREF)  
tTX  
Start of Multi-Frame  
DA0+/œ(1)  
S1  
S2  
S0  
A. Only the SerDes lane DA0± is shown, but DA0± is representative of all lanes. The number of output lanes used and bit-packing format  
is dependent on the programmed JMODE value.  
6-1. ADC Timing Diagram  
CLK+  
CLKœ  
SYSREF+  
SYSREFœ  
LMFC(1)  
(Internal)  
One multi-frame  
One multi-frame  
tSU(SYNCSE)  
tH(SYNCSE)  
SYNCSE  
(SYNC_SEL = 0)  
TMSTP+/œ  
(SYNC_SEL = 1)  
tTX  
Start of ILAS  
/R  
DA0+/œ(2)  
A. It is assumed that the internal LMFC is aligned with the rising edge of CLK± that captures the SYSREF± high value.  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
B. Only SerDes lane DA0± is shown, but DA0± is representative of all lanes. All lanes output /R at approximately the same point in time.  
The number of lanes is dependent on the programmed JMODE value.  
6-2. SYNCSE and TMSTP± Timing Diagram for NCO Synchronization  
1st clock  
16th clock  
24th clock  
SCLK  
SCS  
tH(SCS)  
tSU(SCS)  
t(PH)  
t(PL)  
tH(SCS)  
tSU(SCS)  
t(PH) + t(PL) = t(P) = 1 / ƒCLK(SCLK)  
tSU(SDI) tH(SDI)  
tSU(SDI) tH(SDI)  
SDI  
D7  
D7  
D1  
D0  
Write Command  
COMMAND FIELD  
Hi-Z  
t(OD)  
Hi-Z  
t(ODZ)  
SDO  
D1  
D0  
t(OZD)  
Read Command  
6-3. Serial Interface Timing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: ADC12DJ3200QML-SP  
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
6.12 Typical Characteristics  
typical values are at TA = 25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B =  
0xA000), input signal applied to INA± in single-channel modes, fIN = 347 MHz, AIN = 1 dBFS, fCLK = maximum-rated clock  
frequency, filtered 1-VPP sine-wave clock, JMODE = 1, and background calibration (unless otherwise noted); SNR results  
exclude DC, HD2 to HD9 and interleaving spurs; SINAD and ENOB exclude DC and fS / 2 fixed spurs; SFDR results exclude  
DC and signal-independent interleaving spurs (fS / 4 and fS / 2 spurs)  
60  
58  
56  
54  
52  
50  
48  
46  
44  
42  
40  
60  
58  
56  
54  
52  
50  
48  
46  
44  
42  
40  
-1 dBFS, FG Cal  
-1 dBFS, BG Cal  
-7 dBFS, FG Cal  
-7 dBFS, BG Cal  
-1 dBFS, FG Cal  
-1 dBFS, BG Cal  
-7 dBFS, FG Cal  
-7 dBFS, BG Cal  
0
2000  
4000 6000  
Input Frequency (MHz)  
8000  
10000  
D002  
0
2000  
4000 6000  
Input Frequency (MHz)  
8000  
10000  
D001  
JMODE 1, fS = 6400 MHz, FG and BG calibration  
JMODE 3, fS = 3200 MHz, foreground (FG) and background  
(BG) calibration  
6-5. SNR vs Input Frequency  
6-4. SNR vs Input Frequency  
60  
58  
56  
54  
52  
50  
48  
60  
58  
56  
54  
52  
50  
48  
46  
46  
-1 dBFS, FG Cal  
-1 dBFS, BG Cal  
-7 dBFS, FG Cal  
-1 dBFS, FG Cal  
-1 dBFS, BG Cal  
-7 dBFS, FG Cal  
44  
44  
42  
42  
-7 dBFS, BG Cal  
40  
-7 dBFS, BG Cal  
40  
0
2000  
4000 6000  
Input Frequency (MHz)  
8000  
10000  
D003  
0
2000  
4000 6000  
Input Frequency (MHz)  
8000  
10000  
D004  
JMODE 3, fS = 3200 MHz, FG and BG calibration  
JMODE 1, fS = 6400 MHz, FG and BG calibration  
6-6. SINAD vs Input Frequency  
6-7. SINAD vs Input Frequency  
9.5  
9.5  
9
8.5  
8
9
8.5  
8
7.5  
7.5  
-1 dBFS, FG Cal  
-1 dBFS, FG Cal  
-1 dBFS, BG Cal  
-7 dBFS, FG Cal  
-7 dBFS, BG Cal  
-1 dBFS, BG Cal  
-7 dBFS, FG Cal  
-7 dBFS, BG Cal  
7
7
6.5  
6.5  
0
2000  
4000 6000  
Input Frequency (MHz)  
8000  
10000  
D005  
0
2000  
4000 6000  
Input Frequency (MHz)  
8000  
10000  
D006  
JMODE 3, fS = 3200 MHz, FG and BG calibration  
JMODE 1, fS = 6400 MHz, FG and BG calibration  
6-8. ENOB vs Input Frequency  
6-9. ENOB vs Input Frequency  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
6.12 Typical Characteristics (continued)  
typical values are at TA = 25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B =  
0xA000), input signal applied to INA± in single-channel modes, fIN = 347 MHz, AIN = 1 dBFS, fCLK = maximum-rated clock  
frequency, filtered 1-VPP sine-wave clock, JMODE = 1, and background calibration (unless otherwise noted); SNR results  
exclude DC, HD2 to HD9 and interleaving spurs; SINAD and ENOB exclude DC and fS / 2 fixed spurs; SFDR results exclude  
DC and signal-independent interleaving spurs (fS / 4 and fS / 2 spurs)  
80  
75  
70  
65  
60  
55  
50  
45  
40  
80  
75  
70  
65  
60  
55  
50  
45  
40  
-1 dBFS, FG Cal  
-1 dBFS, BG Cal  
-7 dBFS, FG Cal  
-7 dBFS, BG Cal  
-1 dBFS, FG Cal  
-1 dBFS, BG Cal  
-7 dBFS, FG Cal  
-7 dBFS, BG Cal  
0
2000  
4000 6000  
Input Frequency (MHz)  
8000  
10000  
D007  
0
2000  
4000 6000  
Input Frequency (MHz)  
8000  
10000  
D008  
JMODE 3, fS = 3200 MHz, FG and BG calibration  
JMODE 1, fS = 6400 MHz, FG and BG calibration  
6-10. SFDR vs Input Frequency  
6-11. SFDR vs Input Frequency  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-85  
HD2, -1 dBFS  
HD2, -7 dBFS  
HD3, -1 dBFS  
HD3, -7 dBFS  
HD2, -1 dBFS  
HD2, -7 dBFS  
HD3, -1 dBFS  
HD3, -7 dBFS  
-90  
-90  
-95  
-95  
-100  
-100  
0
2000  
4000 6000  
Input Frequency (MHz)  
8000  
10000  
D009  
0
2000  
4000 6000  
Input Frequency (MHz)  
8000  
10000  
D010  
JMODE 3, fS = 3200 MHz, FG calibration  
JMODE 1, fS = 6400 MHz, FG calibration  
6-12. HD2 and HD3 vs Input Frequency  
6-13. HD2 and HD3 vs Input Frequency  
-40  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-1 dBFS  
-7 dBFS  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-1 dBFS  
-7 dBFS  
-85  
-90  
0
2000  
4000 6000  
Input Frequency (MHz)  
8000  
10000  
D011  
0
2000  
4000 6000  
Input Frequency (MHz)  
8000  
10000  
D012  
JMODE 3, fS = 3200 MHz, FG calibration, includes fS / 2 fIN  
JMODE 1, fS = 6400 MHz, FG calibration, includes fS / 2 fIN  
spur only  
and fS /4 ± fIN spurs only  
6-14. Worst Interleaving Spur vs Input Frequency  
6-15. Worst Interleaving Spur vs Input Frequency  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: ADC12DJ3200QML-SP  
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
6.12 Typical Characteristics (continued)  
typical values are at TA = 25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B =  
0xA000), input signal applied to INA± in single-channel modes, fIN = 347 MHz, AIN = 1 dBFS, fCLK = maximum-rated clock  
frequency, filtered 1-VPP sine-wave clock, JMODE = 1, and background calibration (unless otherwise noted); SNR results  
exclude DC, HD2 to HD9 and interleaving spurs; SINAD and ENOB exclude DC and fS / 2 fixed spurs; SFDR results exclude  
DC and signal-independent interleaving spurs (fS / 4 and fS / 2 spurs)  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
BG Cal  
FG Cal  
BG Cal  
FG Cal  
800  
1200  
1600  
2000  
fS (MSPS)  
2400  
2800  
3200  
1600  
2400  
3200  
4000  
fS (MSPS)  
4800  
5600  
6400  
D020  
D021  
JMODE 3, FG and BG calibration, fIN = 2482 MHz, AIN = 1  
JMODE 1, FG and BG calibration, fIN = 2482 MHz, AIN = 1  
dBFS  
dBFS  
6-16. SNR vs Sampling Rate  
6-17. SNR vs Sampling Rate  
60  
60  
BG Cal  
FG Cal  
BG Cal  
FG Cal  
58  
58  
56  
54  
52  
50  
48  
46  
44  
42  
40  
56  
54  
52  
50  
48  
46  
44  
42  
40  
800  
1200  
1600  
2000  
fS (MSPS)  
2400  
2800  
3200  
D022  
1600  
2400  
3200  
4000  
fS (MSPS)  
4800  
5600  
6400  
D023  
JMODE 3, FG and BG calibration, fIN = 2482 MHz, AIN = 1  
JMODE 1, FG and BG calibration, fIN = 2482 MHz, AIN = 1  
dBFS  
dBFS  
6-18. SINAD vs Sampling Rate  
6-19. SINAD vs Sampling Rate  
9.5  
9.5  
BG Cal  
FG Cal  
BG Cal  
FG Cal  
9
8.5  
8
9
8.5  
8
7.5  
7
7.5  
7
1600  
800  
1200  
1600  
2000  
fS (MSPS)  
2400  
2800  
3200  
D024  
2400  
3200  
4000  
fS (MSPS)  
4800  
5600  
6400  
D025  
JMODE 3, FG and BG calibration, fIN = 2482 MHz, AIN = 1  
JMODE 1, FG and BG calibration, fIN = 2482 MHz, AIN = 1  
dBFS  
dBFS  
6-20. ENOB vs Sampling Rate  
6-21. ENOB vs Sampling Rate  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
6.12 Typical Characteristics (continued)  
typical values are at TA = 25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B =  
0xA000), input signal applied to INA± in single-channel modes, fIN = 347 MHz, AIN = 1 dBFS, fCLK = maximum-rated clock  
frequency, filtered 1-VPP sine-wave clock, JMODE = 1, and background calibration (unless otherwise noted); SNR results  
exclude DC, HD2 to HD9 and interleaving spurs; SINAD and ENOB exclude DC and fS / 2 fixed spurs; SFDR results exclude  
DC and signal-independent interleaving spurs (fS / 4 and fS / 2 spurs)  
70  
65  
60  
55  
50  
45  
40  
70  
65  
60  
55  
50  
45  
40  
BG Cal  
FG Cal  
BG Cal  
FG Cal  
800  
1200  
1600  
2000  
fS (MSPS)  
2400  
2800  
3200  
1600  
2400  
3200  
4000  
fS (MSPS)  
4800  
5600  
6400  
D026  
D027  
JMODE 3, FG and BG calibration, fIN = 2482 MHz, AIN = 1  
JMODE 1, FG and BG calibration, fIN = 2482 MHz, AIN = 1  
dBFS  
dBFS  
6-22. SFDR vs Sampling Rate  
6-23. SFDR vs Sampling Rate  
65  
60  
55  
50  
45  
65  
60  
55  
50  
45  
40  
40  
347 MHz, dBFS  
347 MHz, dBc  
2482 MHz, dBFS  
2482 MHz, dBc  
347 MHz, dBFS  
347 MHz, dBc  
2482 MHz, dBFS  
2482 MHz, dBc  
35  
35  
30  
25  
30  
25  
5997 MHz, dBFS  
5997 MHz, dBc  
5997 MHz, dBFS  
5997 MHz, dBc  
-24  
-20  
-16  
-12  
Input Power (dBFS)  
-8  
-4  
0
-24  
-20  
-16  
-12  
Input Power (dBFS)  
-8  
-4  
0
D030  
D031  
JMODE 3, FG calibration, fS = 3200 MSPS  
JMODE 1, FG calibration, fS = 6400 MSPS  
6-24. SNR vs Input Power  
6-25. SNR vs Input Power  
85  
80  
75  
70  
65  
60  
55  
50  
85  
80  
75  
70  
65  
60  
55  
50  
45  
45  
40  
35  
30  
25  
20  
15  
347 MHz, dBFS  
347 MHz, dBc  
2482 MHz, dBFS  
2482 MHz, dBc  
5997 MHz, dBFS  
5997 MHz, dBc  
347 MHz, dBFS  
347 MHz, dBc  
2482 MHz, dBFS  
2482 MHz, dBc  
5997 MHz, dBFS  
5997 MHz, dBc  
40  
35  
30  
25  
20  
-24  
-20  
-16  
-12  
Input Power (dBFS)  
-8  
-4  
0
-24  
-20  
-16  
-12  
Input Power (dBFS)  
-8  
-4  
0
D032  
D033  
JMODE 3, FG calibration, fS = 3200 MSPS  
JMODE 1, FG calibration, fS = 6400 MSPS  
6-26. SFDR vs Input Power  
6-27. SFDR vs Input Power  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: ADC12DJ3200QML-SP  
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
6.12 Typical Characteristics (continued)  
typical values are at TA = 25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B =  
0xA000), input signal applied to INA± in single-channel modes, fIN = 347 MHz, AIN = 1 dBFS, fCLK = maximum-rated clock  
frequency, filtered 1-VPP sine-wave clock, JMODE = 1, and background calibration (unless otherwise noted); SNR results  
exclude DC, HD2 to HD9 and interleaving spurs; SINAD and ENOB exclude DC and fS / 2 fixed spurs; SFDR results exclude  
DC and signal-independent interleaving spurs (fS / 4 and fS / 2 spurs)  
60  
58  
56  
54  
52  
50  
48  
46  
44  
42  
40  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
347 MHz  
997 MHz  
2482 MHz  
4997 MHz  
5997 MHz  
8197 MHz  
347 MHz  
997 MHz  
2488 MHz  
4997 MHz  
5997 MHz  
8197 MHz  
0
0.2 0.4 0.6 0.8  
1
Clock Differential Input Voltage (VPP-DIFF  
1.2 1.4 1.6 1.8  
)
2
0
0.2 0.4 0.6 0.8  
1
Clock Differential Input Voltage (VPP-DIFF  
1.2 1.4 1.6 1.8  
)
2
D038  
D039  
JMODE 1, FG calibration, fS = 6400 MSPS, AIN = 1 dBFS  
JMODE 1, FG calibration, fS = 6400 MSPS, AIN = 1 dBFS  
6-28. SNR vs Clock Amplitude  
6-29. SFDR vs Clock Amplitude  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
400  
800  
Frequency (MHz)  
1200  
1600  
D040  
0
800  
1600  
Frequency (MHz)  
2400  
3200  
D041  
JMODE 3, FG calibration, fS = 3200 MSPS, SNR = 56.3  
dBFS, SFDR = 69 dBFS, ENOB = 9.0 bits  
JMODE 1, FG calibration, fS = 6400 MSPS, SNR = 55.9  
dBFS, SFDR = 68 dBFS, ENOB = 8.9 bits  
6-30. Single-Tone FFT at fIN = 347 MHz, AIN = 1 dBFS  
6-31. Single-Tone FFT at fIN = 347 MHz, AIN = 1 dBFS  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
400  
800  
Frequency (MHz)  
1200  
1600  
D042  
0
800  
1600  
Frequency (MHz)  
2400  
3200  
D043  
JMODE 3, FG calibration, fS = 3200 MSPS, SNR = 55.3  
dBFS, SFDR = 66 dBFS, ENOB = 8.8 bits  
JMODE 1, FG calibration, fS = 6400 MSPS, SNR = 55.5  
dBFS, SFDR = 52 dBFS, ENOB = 8.1 bits  
6-32. Single-Tone FFT at fIN = 2482 MHz, AIN = 1 dBFS  
6-33. Single-Tone FFT at fIN = 2482 MHz, AIN = 1 dBFS  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
6.12 Typical Characteristics (continued)  
typical values are at TA = 25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B =  
0xA000), input signal applied to INA± in single-channel modes, fIN = 347 MHz, AIN = 1 dBFS, fCLK = maximum-rated clock  
frequency, filtered 1-VPP sine-wave clock, JMODE = 1, and background calibration (unless otherwise noted); SNR results  
exclude DC, HD2 to HD9 and interleaving spurs; SINAD and ENOB exclude DC and fS / 2 fixed spurs; SFDR results exclude  
DC and signal-independent interleaving spurs (fS / 4 and fS / 2 spurs)  
0
0
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
400  
800  
Frequency (MHz)  
1200  
1600  
D044  
0
800  
1600  
Frequency (MHz)  
2400  
3200  
D045  
JMODE 3, FG calibration, fS = 3200 MSPS, SNR = 56.2  
dBFS, SFDR = 77 dBFS, ENOB = 9.0 bits  
JMODE 1, FG calibration, fS = 6400 MSPS, SNR = 56.1  
dBFS, SFDR = 58 dBFS, ENOB = 8.6 bits  
6-34. Single-Tone FFT at fIN = 2482 MHz, AIN = 7 dBFS  
6-35. Single-Tone FFT at fIN = 2482 MHz, AIN = 7 dBFS  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
400  
800  
Frequency (MHz)  
1200  
1600  
D046  
0
800  
1600  
Frequency (MHz)  
2400  
3200  
D047  
JMODE 3, FG calibration, fS = 3200 MSPS, SNR = 53.0  
dBFS, SFDR = 59 dBFS, ENOB = 8.2 bits  
JMODE 1, FG calibration, fS = 6400 MSPS, SNR = 53.5  
dBFS, SFDR = 61 dBFS, ENOB = 8.2 bits  
6-36. Single-Tone FFT at fIN = 4997 MHz, AIN = 1 dBFS  
6-37. Single-Tone FFT at fIN = 4997 MHz, AIN = 1 dBFS  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
400  
800  
Frequency (MHz)  
1200  
1600  
D048  
0
800  
1600  
Frequency (MHz)  
2400  
3200  
D049  
JMODE 3, FG calibration, fS = 3200 MSPS, SNR = 51.1  
dBFS, SFDR = 53 dBFS, ENOB = 7.8 bits  
JMODE 1, FG calibration, fS = 6400 MSPS, SNR = 51.4  
dBFS, SFDR = 48 dBFS, ENOB = 7.3 bits  
6-38. Single-Tone FFT at fIN = 8197 MHz, AIN = 1 dBFS  
6-39. Single-Tone FFT at fIN = 8197 MHz, AIN = 1 dBFS  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: ADC12DJ3200QML-SP  
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
6.12 Typical Characteristics (continued)  
typical values are at TA = 25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B =  
0xA000), input signal applied to INA± in single-channel modes, fIN = 347 MHz, AIN = 1 dBFS, fCLK = maximum-rated clock  
frequency, filtered 1-VPP sine-wave clock, JMODE = 1, and background calibration (unless otherwise noted); SNR results  
exclude DC, HD2 to HD9 and interleaving spurs; SINAD and ENOB exclude DC and fS / 2 fixed spurs; SFDR results exclude  
DC and signal-independent interleaving spurs (fS / 4 and fS / 2 spurs)  
0
0
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
400  
800  
Frequency (MHz)  
1200  
1600  
D050  
0
800  
1600  
Frequency (MHz)  
2400  
3200  
D051  
JMODE 3, FG calibration, fS = 3200 MSPS, f1 = 342 MHz, f2 =  
352 MHz, AIN = 7 dBFS per tone, SFDR = 73 dBFS, IMD3  
= 87 dBFS, IMD2 = 74 dBFS  
JMODE 1, FG calibration, fS = 6400 MSPS, f1 = 342 MHz, f2 =  
352 MHz, AIN = 7 dBFS per tone, SFDR = 70 dBFS, IMD3  
= 91 dBFS, IMD2 = 71 dBFS  
6-40. Two-Tone FFT at fIN = 347 MHz, AIN = 1 dBFS  
6-41. Two-Tone FFT at fIN = 347 MHz, AIN = 1 dBFS  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
400  
800  
Frequency (MHz)  
1200  
1600  
D052  
0
800  
1600  
Frequency (MHz)  
2400  
3200  
D053  
JMODE 3, FG calibration, fS = 3200 MSPS, f1 = 2477 MHz, f2  
= 2487 MHz, AIN = 7 dBFS per tone, SFDR = 70 dBFS,  
IMD3 = 74 dBFS, IMD2 = 70 dBFS  
JMODE 1, FG calibration, fS = 6400 MSPS, f1 = 2477 MHz, f2  
= 2487 MHz, AIN = 7 dBFS per tone, SFDR = 58 dBFS,  
IMD3 = 70 dBFS, IMD2 = 75 dBFS  
6-42. Two-Tone FFT at fIN = 2482 MHz, AIN = 1 dBFS  
6-43. Two-Tone FFT at fIN = 2482 MHz, AIN = 1 dBFS  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
400  
800  
Frequency (MHz)  
1200  
1600  
D054  
0
800  
1600  
Frequency (MHz)  
2400  
3200  
D055  
JMODE 3, FG calibration, fS = 3200 MSPS, f1 = 4992 MHz, f2  
= 5002 MHz, AIN = 7 dBFS per tone, SFDR = 62 dBFS,  
IMD3 = 63 dBFS, IMD2 = 80 dBFS  
JMODE 1, FG calibration, fS = 6400 MSPS, f1 = 4992 MHz, f2  
= 5002 MHz, AIN = 7 dBFS per tone, SFDR = 62 dBFS,  
IMD3 = 65 dBFS, IMD2 = 71 dBFS  
6-44. Two-Tone FFT at fIN = 4997 MHz, AIN = 1 dBFS  
6-45. Two-Tone FFT at fIN = 4997 MHz, AIN = 1 dBFS  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
6.12 Typical Characteristics (continued)  
typical values are at TA = 25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B =  
0xA000), input signal applied to INA± in single-channel modes, fIN = 347 MHz, AIN = 1 dBFS, fCLK = maximum-rated clock  
frequency, filtered 1-VPP sine-wave clock, JMODE = 1, and background calibration (unless otherwise noted); SNR results  
exclude DC, HD2 to HD9 and interleaving spurs; SINAD and ENOB exclude DC and fS / 2 fixed spurs; SFDR results exclude  
DC and signal-independent interleaving spurs (fS / 4 and fS / 2 spurs)  
0.4  
0.3  
0.2  
0.1  
0
4
3
2
1
0
-0.1  
-0.2  
-0.3  
-0.4  
-1  
-2  
-3  
-4  
0
1024  
2048  
Code  
3072  
4095  
D060  
0
1024  
2048  
Code  
3072  
4095  
D061  
JMODE 1, FG calibration, fS = 6400 MSPS, fIN = 99.97 MHz  
JMODE 1, FG calibration, fS = 6400 MSPS, fIN = 99.97 MHz  
6-46. DNL vs Code  
6-47. INL vs Code  
60  
-20  
HD2  
HD3  
fS/4+fIN  
fS/4-fIN  
fS/2-fIN  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
56  
52  
48  
44  
SNR  
SINAD  
SFDR  
40  
-75  
-50  
-25  
0
Ambient Temperature (°C)  
25  
50  
75  
100 125  
-75  
-50  
-25  
0
Ambient Temperature (°C)  
25  
50  
75  
100  
125  
D070  
D071  
JMODE 1, BG calibration, fS = 6400 MSPS, fIN = 2482 MHz,  
JMODE 1, FG calibration, fS = 6400 MSPS, fIN = 2482 MHz,  
AIN = 1 dBFS  
AIN = 1 dBFS  
6-48. Performance vs Temperature  
6-49. Performance vs Temperature  
60  
58  
56  
54  
52  
50  
48  
46  
60  
58  
56  
54  
52  
50  
48  
46  
44  
44  
BG Calibration  
FG Calibration at Each Temperature  
BG Calibration  
FG Calibration at Each Temperature  
42  
42  
FG Calibration at 25°C  
40  
FG Calibration at 25°C  
40  
-75  
-50  
-25  
0
Ambient Temperature (°C)  
25  
50  
75  
100  
125  
-75  
-50  
-25  
0
Ambient Temperature (°C)  
25  
50  
75  
100  
125  
D080  
D081  
JMODE 3, fS = 3200 MSPS, fIN = 347 MHz, AIN = 1 dBFS  
6-50. SNR vs Temperature and Calibration Mode  
JMODE 1, fS = 6400 MSPS, fIN = 347 MHz, AIN = 1 dBFS  
6-51. SNR vs Temperature and Calibration Mode  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: ADC12DJ3200QML-SP  
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
6.12 Typical Characteristics (continued)  
typical values are at TA = 25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B =  
0xA000), input signal applied to INA± in single-channel modes, fIN = 347 MHz, AIN = 1 dBFS, fCLK = maximum-rated clock  
frequency, filtered 1-VPP sine-wave clock, JMODE = 1, and background calibration (unless otherwise noted); SNR results  
exclude DC, HD2 to HD9 and interleaving spurs; SINAD and ENOB exclude DC and fS / 2 fixed spurs; SFDR results exclude  
DC and signal-independent interleaving spurs (fS / 4 and fS / 2 spurs)  
60  
58  
56  
54  
52  
50  
48  
46  
44  
42  
40  
60  
58  
56  
54  
52  
50  
48  
46  
44  
42  
40  
BG Calibration  
FG Calibration at Each Temperature  
FG Calibration at 25°C  
BG Calibration  
FG Calibration at Each Temperature  
FG Calibration at 25°C  
-75  
-50  
-25  
0
Ambient Temperature (°C)  
25  
50  
75  
100  
125  
-75  
-50  
-25  
0
Ambient Temperature (°C)  
25  
50  
75  
100  
125  
D082  
D083  
JMODE 3, fS = 3200 MSPS, fIN = 347 MHz, AIN = 1 dBFS  
JMODE 1, fS = 6400 MSPS, fIN = 347 MHz, AIN = 1 dBFS  
6-52. SINAD vs Temperature and Calibration Mode  
6-53. SINAD vs Temperature and Calibration Mode  
9.5  
9.5  
9
8.5  
8
9
8.5  
8
7.5  
7.5  
BG Calibration  
FG Calibration at Each Temperature  
FG Calibration at 25°C  
BG Calibration  
FG Calibration at Each Temperature  
FG Calibration at 25°C  
7
7
6.5  
6.5  
-75  
-50  
-25  
0
Ambient Temperature (°C)  
25  
50  
75  
100  
125  
-75  
-50  
-25  
0
Ambient Temperature (°C)  
25  
50  
75  
100  
125  
D084  
D085  
JMODE 3, fS = 3200 MSPS, fIN = 347 MHz, AIN = 1 dBFS  
JMODE 1, fS = 6400 MSPS, fIN = 347 MHz, AIN = 1 dBFS  
6-54. ENOB vs Temperature and Calibration Mode  
6-55. ENOB vs Temperature and Calibration Mode  
75  
70  
65  
60  
55  
50  
75  
70  
65  
60  
55  
50  
45  
45  
BG Calibration  
FG Calibration at Each Temperature  
FG Calibration at 25°C  
BG Calibration  
FG Calibration at Each Temperature  
FG Calibration at 25°C  
40  
35  
40  
35  
-75  
-50  
-25  
0
Ambient Temperature (°C)  
25  
50  
75  
100  
125  
-75  
-50  
-25  
0
Ambient Temperature (°C)  
25  
50  
75  
100  
125  
D086  
D087  
JMODE 3, fS = 3200 MSPS, fIN = 347 MHz, AIN = 1 dBFS  
6-56. SFDR vs Temperature and Calibration Mode  
JMODE 1, fS = 6400 MSPS, fIN = 347 MHz, AIN = 1 dBFS  
6-57. SFDR vs Temperature and Calibration Mode  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
6.12 Typical Characteristics (continued)  
typical values are at TA = 25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B =  
0xA000), input signal applied to INA± in single-channel modes, fIN = 347 MHz, AIN = 1 dBFS, fCLK = maximum-rated clock  
frequency, filtered 1-VPP sine-wave clock, JMODE = 1, and background calibration (unless otherwise noted); SNR results  
exclude DC, HD2 to HD9 and interleaving spurs; SINAD and ENOB exclude DC and fS / 2 fixed spurs; SFDR results exclude  
DC and signal-independent interleaving spurs (fS / 4 and fS / 2 spurs)  
60  
58  
56  
54  
52  
50  
48  
46  
44  
42  
40  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
HD2  
HD3  
fS/4+fIN  
fS/4-fIN  
fS/2-fIN  
SNR  
SINAD  
SFDR  
-5  
-4  
-3  
-2  
Supply Voltage Variation from Nominal (%)  
-1  
0
1
2
3
4
5
-5  
-4  
-3  
-2  
Supply Voltage Variation from Nominal (%)  
-1  
0
1
2
3
4
5
D100  
D101  
JMODE 1, FG calibration, fS = 6400 MSPS, fIN = 2482 MHz,  
JMODE 1, FG calibration, fS = 6400 MSPS, fIN = 2482 MHz,  
AIN = 1 dBFS  
AIN = 1 dBFS  
6-58. Performance vs Supply Voltage  
6-59. Performance vs Supply Voltage  
1.3  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
1.2  
1.1  
1
0.9  
0.8  
0.1  
0
BG Calibration  
FG Calibration  
BG Calibration  
FG Calibration  
0.7  
800  
1200  
1600  
2000  
fCLK (MHz)  
2400  
2800  
3200  
D110  
800  
1200  
1600  
2000  
fCLK (MHz)  
2400  
2800  
3200  
D111  
JMODE 1, fIN = 2482 MHz, AIN = 1 dBFS  
JMODE 1, fIN = 2482 MHz, AIN = 1 dBFS  
6-60. VA19 Supply Current vs Clock Rate  
6-61. VA11 Supply Current vs Clock Rate  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
5
BG Calibration  
FG Calibration  
4.5  
4
3.5  
3
2.5  
2
0.1  
0
1.5  
1
BG Calibration  
FG Calibration  
800  
1200  
1600  
2000  
fCLK (MHz)  
2400  
2800  
3200  
800  
1200  
1600  
2000  
fCLK (MHz)  
2400  
2800  
3200  
D112  
D116  
JMODE 1, fIN = 2482 MHz, AIN = 1 dBFS  
6-62. VD11 Supply Current vs Clock Rate  
JMODE 1, fIN = 2482 MHz, AIN = 1 dBFS  
6-63. Power Consumption vs Clock Rate  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: ADC12DJ3200QML-SP  
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
6.12 Typical Characteristics (continued)  
typical values are at TA = 25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B =  
0xA000), input signal applied to INA± in single-channel modes, fIN = 347 MHz, AIN = 1 dBFS, fCLK = maximum-rated clock  
frequency, filtered 1-VPP sine-wave clock, JMODE = 1, and background calibration (unless otherwise noted); SNR results  
exclude DC, HD2 to HD9 and interleaving spurs; SINAD and ENOB exclude DC and fS / 2 fixed spurs; SFDR results exclude  
DC and signal-independent interleaving spurs (fS / 4 and fS / 2 spurs)  
1.4  
1.2  
1
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
VA19  
VA11  
VD11  
IA19  
IA11  
ID11  
0
2
4
6
8 10  
JMODE  
12  
14  
16  
18  
0
2
4
6
8 10  
JMODE  
12  
14  
16  
18  
D113  
D114  
fCLK = 3200 MHz, FG calibration, fIN = 2482 MHz, AIN = 1  
fCLK = 3200 MHz, BG calibration, fIN = 2482 MHz, AIN = 1  
dBFS  
dBFS  
6-64. Supply Current vs JMODE  
6-65. Supply Current vs JMODE  
5
4.5  
4
5
4.5  
4
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
BG Calibration  
FG Calibration  
BG Calibration  
FG Calibration  
0
2
4
6
8 10  
JMODE  
12  
14  
16  
18  
-75  
-50  
-25  
0
Ambient Temperature (°C)  
25  
50  
75  
100  
125  
D115  
D117  
fCLK = 3200 MHz, fIN = 2482 MHz, AIN = 1 dBFS  
JMODE 1, fS = 6400 MSPS, fIN = 2482 MHz, AIN = 1 dBFS  
6-66. Power Consumption vs JMODE  
6-67. Power Consumption vs Temperature  
3
4000  
3500  
3000  
0
2500  
2000  
1500  
1000  
500  
Zoomed Area  
in Following Plot  
-3  
-6  
Single Channel Mode  
Dual Channel Mode  
-9  
-12  
0
0
2
4
6
Input Frequency (GHz)  
8
10  
0
5000 10000 15000 20000 25000 30000 35000  
Sample Number  
D_BW  
D125  
JMODE 1, fS = 6400 MSPS, fIN = 3199.9 MHz  
6-68. Gain Response vs Input Frequency  
6-69. Background Calibration Core Transition (AC Signal)  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
6.12 Typical Characteristics (continued)  
typical values are at TA = 25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B =  
0xA000), input signal applied to INA± in single-channel modes, fIN = 347 MHz, AIN = 1 dBFS, fCLK = maximum-rated clock  
frequency, filtered 1-VPP sine-wave clock, JMODE = 1, and background calibration (unless otherwise noted); SNR results  
exclude DC, HD2 to HD9 and interleaving spurs; SINAD and ENOB exclude DC and fS / 2 fixed spurs; SFDR results exclude  
DC and signal-independent interleaving spurs (fS / 4 and fS / 2 spurs)  
2200  
2000  
1800  
1600  
1400  
4096  
3584  
3072  
2560  
2048  
1536  
1024  
512  
+0.35 V Differential  
-0.35 V Differential  
0 V Differential  
Zoomed Area  
in Following Plot  
0
14800  
15200  
15600  
Sample Number  
16000  
16400  
D126  
0
1000 2000 3000 4000 5000 6000 7000 8000  
Sample Number  
D127  
JMODE 1, fS = 6400 MSPS, fIN = 3199.9 MHz  
JMODE 1, fS = 6400 MSPS, DC input  
6-70. Background Calibration Core Transition (AC Signal  
6-71. Background Calibration Core Transition (DC Signal)  
Zoomed)  
500  
400  
300  
200  
100  
0
-0.35V Differential  
1600 1700 1800 1900 2000 2100 2200 2300 2400  
Sample Number  
D128  
JMODE 1, fS = 6400 MSPS, DC input  
6-72. Background Calibration Core Transition (DC Signal Zoomed)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: ADC12DJ3200QML-SP  
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The ADC12DJ3200QML-SP device is an RF-sampling, giga-sample, analog-to-digital converter (ADC) that can  
directly sample input frequencies from DC to above 10 GHz. In dual-channel mode, the ADC12DJ3200QML-SP  
can sample up to 3200 MSPS and up to 6400 MSPS in single-channel mode. Programmable tradeoffs in  
channel count (dual-channel mode) and Nyquist bandwidth (single-channel mode) allow development of flexible  
hardware that meets the needs of both high channel count or wide instantaneous signal bandwidth applications.  
Full-power input bandwidth (3 dB) of 7.0 GHz, with usable frequencies exceeding the 3-dB point in both  
dual- and single-channel modes, allows direct RF sampling of L-band, S-band, C-band, and X-band for  
frequency agile systems.  
ADC12DJ3200QML-SP uses a high-speed JESD204B output interface with up to 16 serialized lanes. The serial  
output lanes support up to 12.8 Gbps and can be configured to trade-off bit rate and number of lanes. The  
JESD204B block supports the subclass-1 method for deterministic latency and multi-device synchronization  
using SYSREF. A number of innovative synchronization features, including noiseless aperture delay (tAD  
)
adjustment and SYSREF windowing, simplify system design for multi-channel systems. Aperture delay  
adjustment can be used to simplify SYSREF capture, to align the sampling instance between multiple ADCs or  
to sample an ideal location of a front-end track and hold (T&H) amplifier output. SYSREF windowing offers a  
simplistic way to measure invalid timing regions of SYSREF relative to the device clock and then choose an  
optimal sampling location. Dual-edge sampling (DES) is implemented in single-channel mode to reduce the  
maximum clock rate applied to the ADC to support a wide range of clock sources and relax setup and hold  
timing for SYSREF capture.  
Optional digital down converters (DDC) are available in dual-channel mode. The DDC block provides a range of  
decimation settings that allow the device to work in ultra-wideband, wideband, and more-narrow-band receive  
systems. Decimation reduces the interface rate or the number of lanes required to transfer the data to the logic  
device. Additionally, data from a single ADC channel (in dual-channel mode) can be sent to separate DDC  
blocks for multi-band receive applications or to support redundant logic devices.  
ADC12DJ3200QML-SP provides foreground and background calibration options for gain, offset and static  
linearity errors. Foreground calibration is run at system startup or at specified times during which the ADC is  
offline and not sending data to the logic device. Background calibration allows the ADC to run continually while  
the cores are calibrated in the background so that the system does not experience downtime. The calibration  
routine is also used to match the gain and offset between sub-ADC cores to minimize spurious artifacts from  
time interleaving.  
The ADC12DJ3200QML-SP has a single event latch-up tolerance to 120 MeV-cm2/mg and a total ionizing dose  
to 300 krad (Si) for radiation-sensitive applications. Serial programming interface and programming registers are  
protected against radiation upsets while other key circuitry is monitored by alarms for quick detection of upsets.  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.2 Functional Block Diagram  
NCOA0  
NCOA1 NCOB0  
NCOB1 CALTRG  
PD  
SCLK  
SDI  
SDO  
SCS\  
SPI Registers and  
Device Control  
DDC Bypass / Single-Channel Mode  
DDCA  
TMSTP+  
NCO  
Bank A  
DA0+  
DA0œ  
TMSTPœ  
JESD20  
4B  
Link A  
Input  
MUX  
ADC A  
N
INA+  
DA7+  
DA7œ  
Mixer  
Filter  
INAœ  
JMODE  
DDC Bypass / Single-Channel Mode  
Over-  
range  
SYNCSE\  
DDC B  
NCO  
Bank B  
DB0+  
DB0œ  
INB+  
INBœ  
JESD20  
4B  
Link B  
Input  
MUX  
ADC B  
N
Filter  
DB7+  
DB7œ  
Mixer  
DIGBIND  
Aperture  
Delay Adjust  
JMODE  
CLK+  
Clock Distribution  
and Synchronization  
CLKœ  
ORA0  
ORA1  
ORB0  
ORB1  
CALSTAT  
Status  
Indicators  
SYSREF+  
SYSREF  
Windowing  
SYSREFœ  
TDIODE+  
TDIODEœ  
7-1. Functional Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: ADC12DJ3200QML-SP  
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Analog Inputs  
The analog inputs of the ADC12DJ3200QML-SP have internal buffers to enable high input bandwidth and to  
isolate sampling capacitor glitch noise from the input circuit. Analog inputs must be driven differentially because  
operation with a single-ended signal results in degraded performance. Both AC-coupling and DC-coupling of the  
analog inputs is supported. The analog inputs are designed for an input common-mode voltage (VCMI) of 0 V,  
which is terminated internally through single-ended, 50-Ω resistors to ground (GND) on each input pin. DC-  
coupled input signals must have a common-mode voltage that meets the device input common-mode  
requirements specified as VCMI in the Recommended Operating Conditions table. The 0-V input common-mode  
voltage simplifies the interface to split-supply, fully-differential amplifiers and to a variety of transformers and  
baluns. The ADC12DJ3200QML-SP includes internal analog input protection to protect the ADC inputs during  
overranged input conditions; see the Analog Input Protection section. 7-2 shows a simplified analog input  
model.  
AGND  
Analog Input  
Protection  
Diodes  
50  
INA+, INB+  
ADC  
INAœ, INBœ  
Input Buffer  
50 ꢀ  
7-2. ADC12DJ3200QML-SP Analog Input Internal Termination and Protection Diagram  
There is minimal degradation in analog input bandwidth when using single-channel mode versus dual-channel  
mode. In single-channel mode, INA± is strongly recommended to be used as the input to the ADC because ADC  
performance is optimized for INA±. However, either analog input (INA+ and INAor INB+ and INB) can be  
used. Using INB± results in degraded performance unless custom trim routines are used to optimize  
performance for INB± in each device. The desired input can be chosen using SINGLE_INPUT in the input mux  
control register.  
Note  
INA± is strongly recommended to be used as the input to the ADC in single-channel mode for  
optimized performance.  
7.3.1.1 Analog Input Protection  
The analog inputs are protected against overdrive conditions by internal clamping diodes that are capable of  
sourcing or sinking input currents during overrange conditions, see the voltage and current limits in the Absolute  
Maximum Ratings table. The overrange protection is also defined for a peak RF input power in the Absolute  
Maximum Ratings table, which is frequency independent. Operation above the maximum conditions listed in the  
Recommended Operating Conditions table results in an increase in failure-in-time (FIT) rate, so the system must  
correct the overdrive condition as quickly as possible. 7-2 shows the analog input protection diodes.  
7.3.1.2 Full-Scale Voltage (VFS) Adjustment  
Input full-scale voltage (VFS) adjustment is available, in fine increments, for each analog input through the  
FS_RANGE_A register setting (see the INA full-scale range adjust register) and FS_RANGE_B register setting  
(see the INB full-scale range adjust register) for INA± and INB±, respectively. The available adjustment range is  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
specified in the Electrical Characteristics: DC Specifications table. Larger full-scale voltages improve SNR and  
noise floor (in dBFS/Hz) performance, but can degrade harmonic distortion. The full-scale voltage adjustment is  
useful for matching the full-scale range of multiple ADCs when developing a multi-converter system or for  
external interleaving of multiple ADC12DJ3200QML-SPs to achieve higher sampling rates.  
7.3.1.3 Analog Input Offset Adjust  
The input offset voltage for each input can be adjusted through the OADJ_x_INy registers (registers 0x08A and  
0x095), where x represents the ADC core (A, B, or C) and y represents the analog input (INA± or INB±). The  
adjustment range is approximately 28 mV to 28 mV differential. See the Calibration Modes and Trimming  
section for more information.  
7.3.2 ADC Core  
The ADC12DJ3200QML-SP consists of a total of six ADC cores. The cores are interleaved for higher sampling  
rates and swapped on-the-fly for calibration as required by the operating mode. This section highlights the theory  
and key features of the ADC cores.  
7.3.2.1 ADC Theory of Operation  
The differential voltages at the analog inputs are captured by the rising edge of CLK± in dual-channel mode or  
by the rising and falling edges of CLK± in single-channel mode. After capturing the input signal, the ADC  
converts the analog voltage to a digital value by comparing the voltage to the internal reference voltage. If the  
voltage on INAor INBis higher than the voltage on INA+ or INB+, respectively, then the digital output is a  
negative 2's complement value. If the voltage on INA+ or INB+ is higher than the voltage on INAor INB,  
respectively, then the digital output is a positive 2's complement value. 方程式 1 can calculate the differential  
voltage at the input pins from the digital output.  
Code  
2
N  
VIN  
=
VFS  
(1)  
where  
Code is the signed decimation output code (for example, 2048 to +2047)  
N is the ADC resolution  
and VFS is the full-scale input voltage of the ADC as specified in the 6.3 table, including any adjustment  
performed by programming FS_RANGE_A or FS_RANGE_B  
7.3.2.2 ADC Core Calibration  
ADC core calibration is required to optimize the analog performance of the ADC cores. Calibration must be  
repeated when operating conditions change significantly, namely temperature, in order to maintain optimal  
performance. The ADC12DJ3200QML-SP has a built-in calibration routine that can be run as a foreground  
operation or a background operation. Foreground operation requires ADC downtime, where the ADC is no  
longer sampling the input signal, to complete the process. Background calibration can be used to overcome this  
limitation and allow constant operation of the ADC. See the Calibration Modes and Trimming section for detailed  
information on each mode.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: ADC12DJ3200QML-SP  
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.3.2.3 ADC Overrange Detection  
To make sure that system gain management has the quickest possible response time, a low-latency configurable  
overrange function is included. The overrange function works by monitoring the converted 12-bit samples at the  
ADC to quickly detect if the ADC is near saturation or already in an overrange condition. The absolute value of  
the upper 8 bits of the ADC data are checked against two programmable thresholds, OVR_T0 and OVR_T1.  
These thresholds apply to both channel A and channel B in dual-channel mode. 7-1 lists how an ADC sample  
is converted to an absolute value for a comparison of the thresholds.  
7-1. Conversion of ADC Sample for Overrange Comparison  
ADC SAMPLE  
(Offset Binary)  
ADC SAMPLE  
(2's Complement)  
UPPER 8 BITS USED FOR  
COMPARISON  
ABSOLUTE VALUE  
1111 1111 1111 (4095)  
1111 1111 0000 (4080)  
1000 0000 0000 (2048)  
0000 0001 0000 (16)  
0000 0000 0000 (0)  
0111 1111 1111 (+2047)  
0111 1111 0000 (+2032)  
0000 0000 0000 (0)  
111 1111 1111 (2047)  
111 1111 0000 (2032)  
000 0000 0000 (0)  
1111 1111 (255)  
1111 1110 (254)  
0000 0000 (0)  
1111 1110 (254)  
1111 1111 (255)  
111 1111 0000 (2032)  
111 1111 1111 (2047)  
1000 0001 0000 (2032)  
1000 0000 0000 (2048)  
If the upper 8 bits of the absolute value equal or exceed the OVR_T0 or OVR_T1 thresholds during the  
monitoring period, then the overrange bit associated with the threshold is set to 1, otherwise the overrange bit is  
0. In dual-channel mode, the overrange status can be monitored on the ORA0 and ORA1 pins for channel A and  
the ORB0 and ORB1 pins for channel B, where ORx0 corresponds to the OVR_T0 threshold and ORx1  
corresponds to the OVR_T1 threshold. In single-channel mode, the overrange status for the OVR_T0 threshold  
is determined by monitoring both the ORA0 and ORB0 outputs and the OVR_T1 threshold is determined by  
monitoring both ORA1 and ORB1 outputs. In single-channel mode, the two outputs for each threshold must be  
OR'd together to determine whether an overrange condition occurred. OVR_N can be used to set the output  
pulse duration from the last overrange event. 7-2 lists the overrange pulse lengths for the various OVR_N  
settings (see the overrange configuration register). In decimation modes (only in the JMODEs where CS = 1 in  
7-18), the overrange status is also embedded into the output data samples. For complex decimation modes,  
the OVR_T0 threshold status is embedded as the LSB along with the upper 15 bits of every complex I sample  
and the OVR_T1 threshold status is embedded as the LSB along with the upper 15 bits of every complex Q  
sample. For real decimation modes, the OVR_T0 threshold status is embedded as the LSB of every even-  
numbered sample and the OVR_T1 threshold status is embedded as the LSB of every odd-numbered sample.  
7-3 lists the outputs, related data samples, threshold settings, and the monitoring period equation. The  
embedded overrange bit goes high if the associated channel exceeds the associated overrange threshold within  
the monitoring period set by OVR_N. Use 7-3 to calculate the monitoring period.  
7-2. Overrange Monitoring Period for the ORA0, ORA1, ORB0, and ORB1 Outputs  
OVERRANGE PULSE LENGTH SINCE LAST OVERRANGE  
OVR_N  
EVENT (DEVCLK Cycles)  
0
1
2
3
4
5
6
7
8
16  
32  
64  
128  
256  
512  
1024  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7-3. Threshold and Monitoring Period for Embedded Overrange Indicators in Dual-Channel  
Decimation Modes  
OVERRANGE  
INDICATOR  
ASSOCIATED  
THRESHOLD  
OVERRANGE STATUS MONITORING PERIOD  
DECIMATION TYPE  
EMBEDDED IN  
(ADC Samples)  
Channel A even-  
numbered samples  
Real decimation (JMODE 9)  
2OVR_N+1 (1)  
ORA0  
ORA1  
ORB0  
ORB1  
OVR_T0  
OVR_T1  
OVR_T0  
OVR_T1  
Complex down-conversion (JMODE  
10-16, except JMODE 12)  
Channel A in-phase (I)  
samples  
2OVR_N (1)  
2OVR_N+1 (1)  
2OVR_N (1)  
2OVR_N+1 (1)  
2OVR_N (1)  
2OVR_N+1 (1)  
2OVR_N (1)  
Channel A odd-  
numbered samples  
Real decimation (JMODE 9)  
Complex down-conversion (JMODE  
10-16, except JMODE 12)  
Channel A quadrature  
(Q) samples  
Channel B even-  
numbered samples  
Real decimation (JMODE 9)  
Complex down-conversion (JMODE  
10-16, except JMODE 12)  
Channel B in-phase (I)  
samples  
Channel B odd-  
numbered samples  
Real decimation (JMODE 9)  
Complex down-conversion (JMODE  
10-16, except JMODE 12)  
Channel B quadrature  
(Q) samples  
(1) OVR_N is the monitoring period register setting.  
Typically, the OVR_T0 threshold can be set near the full-scale value (228 for example). When the threshold is  
triggered, a typical system can turn down the system gain to avoid clipping. The OVR_T1 threshold can be set  
much lower. For example, the OVR_T1 threshold can be set to 64 (peak input voltage of 12 dBFS). If the input  
signal is strong, the OVR_T1 threshold is tripped occasionally. If the input is quite weak, the threshold is never  
tripped. The downstream logic device monitors the OVR_T1 bit. If OVR_T1 stays low for an extended period of  
time, then the system gain can be increased until the threshold is occasionally tripped (meaning the peak level of  
the signal is above 12 dBFS).  
7.3.2.4 Code Error Rate (CER)  
ADC cores can generate bit errors within a sample, often called code errors (CER) or referred to as sparkle  
codes, resulting from metastability caused by non-ideal comparator limitations. The ADC12DJ3200QML-SP uses  
a unique ADC architecture that inherently allows significant code error rate improvements from traditional  
pipelined flash or successive approximation register (SAR) ADCs. The code error rate of the  
ADC12DJ3200QML-SP is multiple orders of magnitude better than what can be achieved in alternative  
architectures at equivalent sampling rates providing significant signal reliability improvements.  
7.3.3 Timestamp  
The TMSTP+ and TMSTPdifferential input can be used as a time-stamp input to mark a specific sample  
based on the timing of an external trigger event relative to the sampled signal. TIMESTAMP_EN (see the LSB  
control bit output register) must be set in order to use the timestamp feature and output the timestamp data.  
When enabled, the LSB of the 12-bit ADC digital output reports the status of the TMSTP± input. In effect, the 12-  
bit output sample consists of the upper 11-bits of the 12-bit converter and the LSB of the 12-bit output sample is  
the output of a parallel 1-bit converter (TMSTP±) with the same latency as the ADC core. In the 8-bit operating  
modes, the LSB of the 8-bit output sample is used to output the timestamp status. The trigger must be applied to  
the differential TMSTP+ and TMSTPinputs. The trigger can be asynchronous to the ADC sampling clock and  
is sampled at approximately the same time as the analog input. Timestamp cannot be used when a JMODE with  
decimation is selected and instead SYSREF must be used to achieve synchronization through the JESD204B  
subclass-1 method for achieving deterministic latency.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.3.4 Clocking  
The clocking subsystem of the ADC12DJ3200QML-SP has two input signals, device clock (CLK+, CLK) and  
SYSREF (SYSREF+, SYSREF). Within the clocking subsystem there is a noiseless aperture delay adjustment  
(tAD adjust), a clock duty cycle corrector, and a SYSREF capture block. 7-3 shows the clocking subsystem.  
Duty Cycle  
Correction  
tAD Adjust  
Clock Distribution  
and Synchronization  
CLK+  
(ADC cores, digital,  
JESD204B, etc.)  
CLK-  
E
SE  
AR  
N
I
V
N
F
I
_
_
O
C
_
AD  
AD  
T
T
AD  
T
SYSREF Capture  
Automatic  
SYSREF  
Calibration  
SYSREF+  
SYSREF-  
SYSREF Windowing  
SYSREF_POS  
SYSREF_SEL SRC_EN  
7-3. ADC12DJ3200QML-SP Clocking Subsystem  
The device clock is used as the sampling clock for the ADC core as well as the clocking for the digital processing  
and serializer outputs. Use a low-noise (low jitter) device clock to maintain high signal-to-noise ratio (SNR) within  
the ADC. In dual-channel mode, the analog input signal for each input is sampled on the rising edge of the  
device clock. In single-channel mode, both the rising and falling edges of the device clock are used to capture  
the analog signal to reduce the maximum clock rate required by the ADC. A noiseless aperture delay adjustment  
(tAD adjust) allows the user to shift the sampling instance of the ADC in fine steps in order to synchronize  
multiple ADC12DJ3200QML-SPs or to fine-tune system latency. Duty cycle correction is implemented in the  
ADC12DJ3200QML-SP to ease the requirements on the external device clock while maintaining high  
performance. 7-4 summarizes the device clock interface in dual-channel mode and single-channel mode.  
7-4. Device Clock vs Mode of Operation  
MODE OF OPERATION  
Dual-channel mode  
SAMPLING RATE VS fCLK  
SAMPLING INSTANT  
Rising edge  
1 × fCLK  
Single-channel mode  
2 × fCLK  
Rising and falling edge  
SYSREF is a system timing reference used for JESD204B subclass-1 implementations of deterministic latency.  
SYSREF is used to achieve deterministic latency and for multi-device synchronization. SYSREF must be  
captured by the correct device clock edge in order to achieve repeatable latency and synchronization. The  
ADC12DJ3200QML-SP includes SYSREF windowing and automatic SYSREF calibration to ease the  
requirements on the external clocking circuits and to simplify the synchronization process. SYSREF can be  
implemented as a single pulse or as a periodic clock. In periodic implementations, SYSREF must be equal to, or  
an integer division of, the local multiframe clock frequency. 程式 2 is used to calculate valid SYSREF  
frequencies.  
R ì fCLK  
fSYSREF  
=
10
ì
F
ì
K
ì
n  
(2)  
where  
R and F are set by the JMODE setting (see 7-18)  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
fCLK is the device clock frequency (CLK±)  
K is the programmed multiframe length (see 7-18 for valid K settings)  
and n is any positive integer  
7.3.4.1 Noiseless Aperture Delay Adjustment (tAD Adjust)  
The ADC12DJ3200QML-SP contains a delay adjustment on the device clock (sampling clock) input path, called  
tAD adjust, that can be used to shift the sampling instance within the device in order to align sampling instances  
among multiple devices or for external interleaving of multiple ADC12DJ3200QML-SPs. Further, tAD adjust can  
be used for automatic SYSREF calibration to simplify synchronization; see the Automatic SYSREF Calibration  
section. Aperture delay adjustment is implemented in a way that adds no additional noise to the clock path,  
however a slight degradation in aperture jitter (tAJ) is possible at large values of TAD_COARSE because of  
internal clock path attenuation. The degradation in aperture jitter results in minor SNR degradations at high input  
frequencies (see tAJ in the Switching Characteristics table). This feature is programmed using TAD_INV,  
TAD_COARSE, and TAD_FINE in the DEVCLK timing adjust ramp control register.. Setting TAD_INV inverts the  
input clock resulting in a delay equal to half the clock period. 7-5 summarizes the step sizes and ranges of the  
TAD_COARSE and TAD_FINE variable analog delays. All three delay options are independent and can be used  
in conjunction. All clocks within the device are shifted by the programmed tAD adjust amount, which results in a  
shift of the timing of the JESD204B serialized outputs and affects the capture of SYSREF.  
7-5. tAD Adjust Adjustment Ranges  
ADJUSTMENT PARAMETER  
ADJUSTMENT STEP  
DELAY SETTINGS  
MAXIMUM DELAY  
TAD_INV  
1 / (fCLK × 2)  
1
1 / (fCLK × 2)  
See tTAD(STEP) in the Switching  
Characteristics table  
See tTAD(MAX) in the Switching  
Characteristics table  
TAD_COARSE  
TAD_FINE  
256  
256  
See tTAD(STEP) in the Switching  
Characteristics table  
See tTAD(MAX) in the Switching  
Characteristics table  
In order to maintain timing alignment between converters, stable and matched power-supply voltages and device  
temperatures must be provided.  
Aperture delay adjustment can be changed on-the-fly during normal operation but may result in brief upsets to  
the JESD204B data link. Use TAD_RAMP to reduce the probability of the JESD204B link losing synchronization;  
see the Aperture Delay Ramp Control (TAD_RAMP) section.  
7.3.4.2 Aperture Delay Ramp Control (TAD_RAMP)  
The ADC12DJ3200QML-SP contains a function to gradually adjust the tAD adjust setting towards the newly  
written TAD_COARSE value. This functionality allows the tAD adjust setting to be adjusted with minimal internal  
clock circuitry glitches. The TAD_RAMP_RATE parameter allows either a slower (one TAD_COARSE LSB per  
256 tCLK cycles) or faster ramp (four TAD_COARSE LSBs per 256 tCLK cycles) to be selected. The  
TAD_RAMP_EN parameter enables the ramp feature and any subsequent writes to TAD_COARSE initiate a  
new cramp.  
7.3.4.3 SYSREF Capture for Multi-Device Synchronization and Deterministic Latency  
The clocking subsystem is largely responsible for achieving multi-device synchronization and deterministic  
latency. The ADC12DJ3200QML-SP uses the JESD204B subclass-1 method to achieve deterministic latency  
and synchronization. Subclass 1 requires that the SYSREF signal be captured by a deterministic device clock  
(CLK±) edge at each system power-on and at each device in the system. This requirement imposes setup and  
hold constraints on SYSREF relative to CLK±, which can be difficult to meet at giga-sample clock rates over all  
system operating conditions. The ADC12DJ3200QML-SP includes a number of features to simplify this  
synchronization process and to relax system timing constraints:  
The ADC12DJ3200QML-SP uses dual-edge sampling (DES) in single-channel mode to reduce the CLK±  
input frequency by half and double the timing window for SYSREF (see 7-4)  
A SYSREF position detector (relative to CLK±) and selectable SYSREF sampling position aid the user in  
meeting setup and hold times over all conditions; see the SYSREF Position Detector and Sampling Position  
Selection (SYSREF Windowing) section  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
Easy-to-use automatic SYSREF calibration uses the aperture timing adjust block (tAD adjust) to shift the ADC  
sampling instance based on the phase of SYSREF (rather than adjusting SYSREF based on the phase of the  
ADC sampling instance); see the Automatic SYSREF Calibration section  
7.3.4.3.1 SYSREF Position Detector and Sampling Position Selection (SYSREF Windowing)  
The SYSREF windowing block is used to first detect the position of SYSREF relative to the CLK± rising edge  
and then to select a desired SYSREF sampling instance, which is a delay version of CLK±, to maximize setup  
and hold timing margins. In many cases a single SYSREF sampling position (SYSREF_SEL) is sufficient to meet  
timing for all systems (device-to-device variation) and conditions (temperature and voltage variations). However,  
this feature can also be used by the system to expand the timing window by tracking the movement of SYSREF  
as operating conditions change or to remove system-to-system variation at production test by finding a unique  
optimal value at nominal conditions for each system.  
This section describes proper usage of the SYSREF windowing block. First, apply the device clock and SYSREF  
to the device. The location of SYSREF relative to the device clock cycle is determined and stored in the  
SYSREF_POS bits of the SYSREF capture position register. At least three rising edges must be applied to the  
SYSREF± input before SYSREF_POS is valid. Each bit of SYSREF_POS represents a potential SYSREF  
sampling position. If a bit in SYSREF_POS is set to 1, then the corresponding SYSREF sampling position has a  
potential setup or hold violation. Upon determining the valid SYSREF sampling positions (the positions of  
SYSREF_POS that are set to 0) the desired sampling position can be chosen by setting SYSREF_SEL in the  
clock control register 0 to the value corresponding to that SYSREF_POS position. In general, the middle  
sampling position between two setup and hold instances is chosen. Ideally, SYSREF_POS and SYSREF_SEL  
are performed at the nominal operating conditions of the system (temperature and supply voltage) to provide  
maximum margin for operating condition variations. This process can be performed at final test and the optimal  
SYSREF_SEL setting can be stored for use at every system power up. Further, SYSREF_POS can be used to  
characterize the skew between CLK± and SYSREF± over operating conditions for a system by sweeping the  
system temperature and supply voltages. For systems that have large variations in CLK± to SYSREF± skew, this  
characterization can be used to track the optimal SYSREF sampling position as system operating conditions  
change. In general, a single value can be found that meets timing over all conditions for well-matched systems,  
such as those where CLK± and SYSREF± come from a single clocking device.  
Note  
SYSREF_SEL must be set to 0 when using automatic SYSREF calibration; see the Automatic  
SYSREF Calibration section.  
The step size between each SYSREF_POS sampling position can be adjusted using SYSREF_ZOOM. When  
SYSREF_ZOOM is set to 0, the delay steps are coarser. When SYSREF_ZOOM is set to 1, the delay steps are  
finer. See the Switching Characteristics table for delay step sizes when SYSREF_ZOOM is enabled and  
disabled. In general, SYSREF_ZOOM is recommended to always be used (SYSREF_ZOOM = 1) unless a  
transition region (defined by 1's in SYSREF_POS) is not observed, which can be the case for low clock rates.  
Bits 0 and 23 of SYSREF_POS are always be set to 1 because there is insufficient information to determine if  
these settings are close to a timing violation, although the actual valid window can extend beyond these  
sampling positions. The value programmed into SYSREF_SEL is the decimal number representing the desired  
bit location in SYSREF_POS. 7-6 lists some example SYSREF_POS readings and the optimal SYSREF_SEL  
settings. Although 24 sampling positions are provided by the SYSREF_POS status register, SYSREF_SEL only  
allows selection of the first 16 sampling positions, corresponding to SYSREF_POS bits 0 to 15. The additional  
SYSREF_POS status bits are intended only to provide additional knowledge of the SYSREF valid window. In  
general, lower values of SYSREF_SEL are selected because of delay variation over supply voltage, however in  
the fourth example a value of 15 provides additional margin and can be selected instead.  
7-6. Examples of SYSREF_POS Readings and SYSREF_SEL Selections  
SYSREF_POS[23:0]  
OPTIMAL SYSREF_SEL  
0x02E[7:0]  
(Largest Delay)  
0x02C[7:0](1)  
(Smallest Delay)  
0x02D[7:0](1)  
SETTING  
b10000000  
b0110000 0  
b00011001  
8 or 9  
Copyright © 2021 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7-6. Examples of SYSREF_POS Readings and SYSREF_SEL Selections (continued)  
SYSREF_POS[23:0]  
OPTIMAL SYSREF_SEL  
SETTING  
0x02E[7:0]  
(Largest Delay)  
0x02C[7:0](1)  
(Smallest Delay)  
0x02D[7:0](1)  
b10011000  
b10000000  
b10000000  
b10001100  
b00000000  
b01100000  
b00000011  
b01100011  
b00110001  
b0 0000001  
b00000001  
b00011001  
12  
6 or 7  
4 or 15  
6
(1) Red coloration indicates the bits that are selected, as given in the last column of this table.  
7.3.4.3.2 Automatic SYSREF Calibration  
The ADC12DJ3200QML-SP has an automatic SYSREF calibration feature to alleviate the often challenging  
setup and hold times associated with capturing SYSREF for giga-sample data converters. Automatic SYSREF  
calibration uses the tAD adjust feature to shift the device clock to maximize the SYSREF setup and hold times or  
to align the sampling instance based on the SYSREF rising edge.  
The ADC12DJ3200QML-SP must have a proper device clock applied and be programmed for normal operation  
before starting the automatic SYSREF calibration. When ready to initiate automatic SYSREF calibration, a  
continuous SYSREF signal must be applied. SYSREF must be a continuous (periodic) signal when using the  
automatic SYSREF calibration. Start the calibration process by setting SRC_EN high in the SYSREF calibration  
enable register after configuring the automatic SYSREF calibration using the SRC_CFG register. Upon setting  
SRC_EN high, the ADC12DJ3200QML-SP searches for the optimal tAD adjust setting until the device clock  
falling edge is internally aligned to the SYSREF rising edge. TAD_DONE in the SYSREF calibration status  
register can be monitored to make sure that the SYSREF calibration has finished. By aligning the device clock  
falling edge with the SYSREF rising edge, automatic SYSREF calibration maximizes the internal SYSREF setup  
and hold times relative to the device clock and also sets the sampling instant based on the SYSREF rising edge.  
After the automatic SYSREF calibration finishes, the rest of the startup procedure can be performed to finish  
bringing up the system.  
For multi-device synchronization, the SYSREF rising edge timing must be matched at all devices and therefore  
trace lengths must be matched from a common SYSREF source to each ADC12DJ3200QML-SP. Any skew  
between the SYSREF rising edge at each device results in additional error in the sampling instance between  
devices, however repeatable deterministic latency from system startup to startup through each device must still  
be achieved. No other design requirements are needed in order to achieve multi-device synchronization as long  
as a proper elastic buffer release point is chosen in the JESD2048 receiver.  
7-4 shows a timing diagram of the SYSREF calibration procedure. The optimized setup and hold times are  
shown as tSU(OPT) and tH(OPT), respectively. Device clock and SYSREF are referred to as internal in this diagram  
because the phase of the internal signals are aligned within the device and not to the external (applied) phase of  
the device clock or SYSREF.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
Sampled Input Signal  
Internal Unadjusted  
Device Clock  
Internal Calibrated  
Device Clock  
tTAD(SRC)  
Internal SYSREF  
tCAL(SRC)  
tH(OPT)  
tSU(OPT)  
Before calibration, device clock falling edge does  
not align with SYSREF rising edge  
SRC_EN  
(SPI register bit)  
Calibration  
enabled  
After calibration, device clock falling edge  
aligns with SYSREF rising edge  
TAD_DONE  
(SPI register bit)  
Calibration  
finished  
7-4. SYSREF Calibration Timing Diagram  
When finished, the tAD adjust setting found by the automatic SYSREF calibration can be read from SRC_TAD in  
the SYSREF calibration status register. After calibration, the system continues to use the calibrated tAD adjust  
setting for operation until the system is powered down. However, if desired, the user can then disable the  
SYSREF calibration and fine-tune the tAD adjust setting according to the systems needs. Alternatively, the use of  
the automatic SYSREF calibration can be done at product test (or periodic recalibration) of the optimal tAD adjust  
setting for each system. This value can be stored and written to the TAD register (TAD_INV, TAD_COARSE, and  
TAD_FINE) upon system startup.  
Do not run the SYSREF calibration when the ADC calibration (foreground or background) is running. If  
background calibration is the desired use case, disable the background calibration when the SYSREF calibration  
is used, then reenable the background calibration after TAD_DONE goes high. SYSREF_SEL in the clock  
control register 0 must be set to 0 when using SYSREF calibration.  
SYSREF calibration searches the TAD_COARSE delays using both noninverted (TAD_INV = 0) and inverted  
clock polarity (TAD_INV = 1) to minimize the required TAD_COARSE setting in order to minimize loss on the  
clock path to reduce aperture jitter (tAJ).  
7.3.5 Digital Down Converters (Dual-Channel Mode Only)  
After converting the analog voltage to a digital value, the digitized sample can either be sent directly to the  
JESD204B interface block (DDC bypass) or sent to the digital down conversion (DDC) block for frequency  
conversion and decimation (in dual-channel mode only). Frequency conversion and decimation allow a specific  
frequency band to be selected and output in the digital data stream while reducing the effective data rate and  
interface speed or width. The DDC is designed such that the digital processing does not degrade the noise  
spectral density (NSD) performance of the ADC. 7-5 illustrates the digital down converter for channel A of the  
ADC12DJ3200QML-SP. Channel B has the same structure with the input data selected by DIG_BIND_B and the  
NCO selection mux controlled by pins NCOB[1:0] or through CSELB[1:0].  
Copyright © 2021 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
NCO Bank A  
NCOA[1:0] or  
CSELA[1:0]  
MUX  
Complex  
15-bit  
at Fs/N  
N
Real  
12-bit  
at Fs  
2
Complex  
Mixer  
Decimate-by-N  
(based on JMODE)  
ADC  
Channel A  
JESD204B  
Real  
15-bit  
at Fs/2  
2
DIG_BIND_A  
JMODE  
JMODE  
(DDC Bypass)  
Low Pass  
Spectral  
Inversion  
2
ADC  
Channel B  
D2_HIGH_PASS  
High Pass  
INVERT_SPECTRUM  
7-5. Channel A Digital Down Conversion Block (Dual-Channel Mode Only)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: ADC12DJ3200QML-SP  
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.3.5.1 Numerically-Controlled Oscillator and Complex Mixer  
The DDC contains a complex numerically-controlled oscillator (NCO) and a complex mixer. 方程式 3 shows the  
complex exponential sequence generated by the oscillator.  
x[n] = ejωn  
(3)  
The frequency (ω) is specified by a 32-bit register setting. The complex exponential sequence is multiplied by  
the real input from the ADC to mix the desired carrier to a frequency equal to fIN + fNCO, where fIN is the analog  
input frequency after aliasing (in undersampling systems) and fNCO is the programmed NCO frequency.  
7.3.5.1.1 NCO Fast Frequency Hopping (FFH)  
Fast frequency hopping (FFH) is made possible by each DDC having four independent NCOs that can be  
controlled by the NCOA0 and NCOA1 pins for DDC A and the NCOB0 and NCOB1 pins for DDC B. Each NCO  
has independent frequency settings (see the Basic NCO Frequency Setting Mode section) and initial phase  
settings (see the NCO Phase Offset Setting section) that can be set independently. Further, all NCOs have  
independent phase accumulators that continue to run when the specific NCO is not selected, allowing the NCOs  
to maintain their phase between selection so that downstream processing does not need to perform carrier  
recovery after each hop, for instance.  
NCO hopping occurs when the NCO GPIO pins change state. The pins are controlled asynchronously and  
therefore synchronous switching is not possible. Associated latencies are demonstrated in 7-6, where tTX and  
tADC are provided in the Switching Characteristics table. All latencies in 7-7 are approximations only.  
DDC Block  
NCO Bank A  
tGPIO-MIXER  
tMIXER-TX  
NCOx[1:0]  
MUX  
Dx0  
Dx1  
Dx2  
INx+  
ADC  
N
JESD204B  
INxœ  
Complex  
Mixer  
Decimate-by-N  
(based on JMODE)  
Dx7  
tADC-MIXER  
7-6. NCO Fast Frequency Hopping Latency Diagram  
7-7. NCO Fast Frequency Hopping Latency Definitions  
LATENCY PARAMETER  
VALUE OR CALCULATION  
UNITS  
tGPIO-MIXER  
~36 to ~40  
tCLK cycles  
tCLK cycles  
tCLK cycles  
tADC-MIXER  
~36  
tMIXER-TX  
(tTX + tADC) tADC-MIXER  
Copyright © 2021 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.3.5.1.2 NCO Selection  
Within each channel DDC, four different frequency and phase settings are available for use. Each of the four  
settings use a different phase accumulator within the NCO. Because all four phase accumulators are  
independent and continuously running, rapid switching between different NCO frequencies is possible allowing  
for phase coherent frequency hopping.  
The specific frequency-phase pair used for each channel is selected through the NCOA[1:0] or NCOB[1:0] input  
pins when CMODE is set to 1. Alternatively, the selected NCO can be chosen through SPI by CSELA for DDC A  
and CSELB for DDC B by setting CMODE to 0 (default). The logic table for NCO selection is provided in 7-8  
for both the GPIO and SPI selection options.  
7-8. Logic Table for NCO Selection Using GPIO or SPI  
NCO SELECTION  
NCO 0 using GPIO  
NCO 1 using GPIO  
NCO 2 using GPIO  
NCO 3 using GPIO  
NCO 0 using SPI  
NCO 1 using SPI  
NCO 2 using SPI  
NCO 3 using SPI  
CMODE  
NCOx1  
NCOx0  
CSELx[1]  
CSELx[0]  
1
1
1
1
0
0
0
0
0
0
0
1
X
X
X
X
0
0
1
1
X
X
X
X
0
1
0
1
1
0
1
1
X
X
X
X
X
X
X
X
The frequency for each phase accumulator is programmed independently through the FREQAx, FREQBx (x = 0  
to 3) and, optionally, NCO_RDIV register settings. The phase offset for each accumulator is programmed  
independently through the PHASEAx and PHASEBx (x = 0 to 3) register settings.  
7.3.5.1.3 Basic NCO Frequency Setting Mode  
In basic NCO frequency-setting mode (NCO_RDIV = 0x0000), the NCO frequency setting is set by the 32-bit  
register value, FREQAx and FREQBx (x = 0 to 3). The NCO frequency for DDC A can be calculated using 方程  
4, where FREQAx can be replaced by FREQBx to calculate the NCO frequency for DDC B.  
ƒ(NCO) = FREQAx × 232 × ƒ(DEVCLK) (x = 0 3)  
(4)  
Note  
Changing the FREQAx and FREQBx register settings during operation results in a non-deterministic  
NCO phase. If deterministic phase is required, the NCOs must be resynchronized; see the NCO  
Phase Synchronization section.  
7.3.5.1.4 Rational NCO Frequency Setting Mode  
In basic NCO frequency mode, the frequency step size is very small and many frequencies can be synthesized,  
but sometimes an application requires very specific frequencies that fall between two frequency steps. For  
example with ƒS equal to 2457.6 MHz and a desired ƒ(NCO) equal to 5.02 MHz, the value for FREQAx is  
8773085.867. Truncating the fractional portion results in an ƒ(NCO) equal to 5.0199995 MHz, which is not the  
desired frequency.  
To produce the desired frequency, the NCO_RDIV parameter is used to force the phase accumulator to arrive at  
specific frequencies without error. First, select a frequency step size (ƒ(STEP)) that is appropriate for the NCO  
frequency steps required. The typical value of ƒ(STEP) is 10 kHz. Next, use 方程式 5 to program the NCO_RDIV  
value.  
¦
(
/ ¦STEP  
)
DEVCLK  
NCO_RDIV =  
64  
(5)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
 
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
The result of 方程式 5 must be an integer value. If the value is not an integer, adjust either of the parameters  
until the result is an integer value.  
For example, select a value of 1920 for NCO_RDIV.  
Note  
NCO_RDIV values larger than 8192 can degrade the NCO SFDR performance and are not  
recommended.  
Now use 方程6 to calculate the FREQAx register value.  
FREQAx = round 232 ´ ¦NCO / ¦DEVCLK  
(
)
(6)  
Alternatively, the following equations can be used:  
ƒ(NCO)  
N =  
ƒ(STEP)  
(7)  
(8)  
FREQAx = round 226 ´ N / NCO_RDIV  
(
)
7-9 lists common values for NCO_RDIV in 10-kHz frequency steps.  
7-9. Common NCO_RDIV Values (For 10-kHz Frequency Steps)  
fCLK (MHz)  
3200  
NCO_RDIV  
5000  
3072  
4800  
2949.12  
2457.6  
1966.08  
1600  
4608  
3840  
3072  
2500  
1474.56  
1228.8  
2304  
1920  
7.3.5.1.5 NCO Phase Offset Setting  
The NCO phase-offset setting for each NCO is set by the 16-bit register value PHASEAx and PHASEBx (where  
x = 0 to 3). The value is left-justified into a 32-bit field and then added to the phase accumulator.  
Use 方程9 to calculate the phase offset in radians.  
Φ(rad) = PHASEA/Bx × 216 × 2 × π(x=0 to 3)  
(9)  
7.3.5.1.6 NCO Phase Synchronization  
The NCOs must be synchronized after setting or changing the value of FREQAx or FREQBx. NCO  
synchronization is performed when the JESD204B link is initialized or by SYSREF, based on the settings of  
NCO_SYNC_ILA and NCO_SYNC_NEXT. The procedures are as follows for the JESD204B initialization  
procedure and the SYSREF procedure for both DC-coupled and AC-coupled SYSREF signals.  
NCO synchronization using the JESD204B SYNC signal ( SYNCSE or TMSTP±):  
1. The device must be programmed for normal operation  
2. Set NCO_SYNC_ILA to 1  
3. Set JESD_EN to 0  
4. Program FREQAx, FREQBx, PHASEAx, and PHASEBx to the desired settings  
Copyright © 2021 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
 
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
5. In the JESD204B receiver (logic device), deassert the SYNC signal by setting SYNC high  
6. Set JESD_EN to 1  
7. Assert the SYNC signal by setting SYNC low in the JESD204B receiver to start the code group  
synchronization (CGS) process  
8. After achieving CGS, deassert the SYNC signal by setting SYNC high at the same time for all ADCs to be  
synchronized and verify that the SYNC setup and hold times are met (as specified in the 6.9 table)  
NCO synchronization using SYSREF (DC-coupled):  
1. The device must be programmed for normal operation  
2. Set JESD_EN to 1 to start the JESD204B link (the SYNC signal can respond as normal during the CGS  
process)  
3. Program FREQAx, FREQBx, PHASEAx, and PHASEBx to the desired settings  
4. Verify that SYSREF is disabled (held low)  
5. Arm NCO synchronization by setting NCO_SYNC_NEXT to 1  
6. Issue a single SYSREF pulse to all ADCs to synchronize NCOs within all devices  
NCO synchronization using SYSREF (AC-coupled):  
1. The device must be programmed for normal operation  
2. Set JESD_EN to 1 to start the JESD204B link (the SYNC signal can respond as normal during the CGS  
process)  
3. Program FREQAx, FREQBx, PHASEAx, and PHASEBx to the desired settings  
4. Run SYSREF continuously  
5. Arm NCO synchronization by setting NCO_SYNC_NEXT to 1 at the same time at all ADCs by timing the  
rising edge of SCLK for the last data bit (LSB) at the end of the SPI write so that the SCLK rising edge  
occurs after a SYSREF rising edge and early enough before the next SYSREF rising edge so that the trigger  
is armed before the next SYSREF rising edge (a long SYSREF period is recommended)  
6. NCOs in all ADCs are synchronized by the next SYSREF rising edge  
7.3.5.2 Decimation Filters  
The decimation filters are arranged to provide a programmable overall decimation of 2, 4, 8, or 16. All filter  
outputs have a resolution of 15 bits. The decimate-by-2 filter has a real output and the decimate-by-4, decimate-  
by-8, and decimate-by-16 filters have complex outputs. 7-10 lists the effective output sample rates, available  
signal bandwidths, output formats, and stop-band attenuation for each decimation mode. The available  
bandwidths of the complex output modes are twice that of equivalent real decimation modes because of the  
nature of the I/Q data and complex signaling. This higher bandwidth results in the decimate-by-2 real and  
decimate-by-4 complex modes having approximately the same useful output bandwidth.  
7-10. Output Sample Rates and Signal Bandwidths  
ƒ(DEVCLK)  
DECIMATION  
SETTING  
OUTPUT FORMAT  
OUTPUT RATE MAX ALIAS PROTECTED SIGNAL  
STOP-BAND  
ATTENUATION  
PASS-BAND  
RIPPLE  
(MSPS)  
BANDWIDTH (MHz)  
Real signal, 12-bit  
data  
No decimation  
Decimate-by-2  
< ±0.001 dB  
< ±0.001 dB  
< ±0.001 dB  
< ±0.005 dB  
< ±0.001 dB  
< ±0.001 dB  
ƒ(DEVCLK)  
ƒ(DEVCLK) / 2  
Real signal, 15-bit  
data  
> 89 dB  
> 90 dB  
> 66 dB  
> 90 dB  
> 90 dB  
ƒ(DEVCLK) / 2  
ƒ(DEVCLK) / 4  
ƒ(DEVCLK) / 4  
ƒ(DEVCLK) / 8  
ƒ(DEVCLK) / 16  
0.4 × ƒ(DEVCLK) / 2  
0.8 × ƒ(DEVCLK) / 4  
0.875 × ƒ(DEVCLK) / 4  
0.8 × ƒ(DEVCLK) / 8  
0.8 × ƒ(DEVCLK) / 16  
Decimate-by-4  
(D4_AP87 = 0)  
Complex signal, 15-bit  
data  
Decimate-by-4  
(D4_AP87 = 1)  
Complex signal, 15-bit  
data  
Complex signal, 15-bit  
data  
Decimate-by-8  
Decimate-by-16  
Complex signal, 15-bit  
data  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: ADC12DJ3200QML-SP  
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
Decimate-by-2 Composite Response (D2_HIGH_PASS = 0) to Decimate-by-16 Composite Zoomed Pass-Band  
Response provide the composite decimation filter responses. The pass-band section (black trace) shows the  
alias-protected region of the response. The transition band (red trace) shows the transition region of the  
response, or the regions that alias into the transition region, which is not alias protected and therefore desired  
signals must not be within this band. The aliasing band (blue trace) shows the attenuation applied to the bands  
that alias back into the pass band after decimation and are sufficiently low to prevent undesired signals from  
showing up in the pass band. Use analog input filtering for additional attenuation of the aliasing band or to  
prevent harmonics, interleaving spurs, or other undesired spurious signals from folding into the desired signal  
band before the decimation filter.  
0
-20  
0.001  
0.0005  
0
Passband  
Transition Band  
Aliasing Band  
Passband  
Transition Band  
-40  
-60  
-80  
-0.0005  
-0.001  
-100  
-120  
0
0.1  
0.2 0.3  
Normalized Frequency (Fs)  
0.4  
0.5  
0
0.05  
0.1 0.15  
Normalized Frequency (Fs)  
0.2  
0.25  
h2co  
h2co  
7-7. Decimate-by-2 Composite Response  
7-8. Decimate-by-2 Composite Zoomed Pass-  
(D2_HIGH_PASS = 0)  
Band Response (D2_HIGH_PASS = 0)  
0
0.001  
Passband  
Transition Band  
Aliasing Band  
Passband  
Transition Band  
Aliasing Band  
-20  
-40  
0.0005  
-60  
0
-80  
-0.0005  
-100  
-120  
-0.001  
0
0.1  
0.2 0.3  
Normalized Frequency (Fs)  
0.4  
0.5  
0.25  
0.3  
0.35 0.4  
Normalized Frequency (Fs)  
0.45  
0.5  
h2co  
h2co  
7-9. Decimate-by-2 Composite Response  
7-10. Decimate-by-2 Composite Zoomed Pass-  
(D2_HIGH_PASS = 1)  
Band Response (D2_HIGH_PASS = 1)  
0
0.001  
Passband  
Transition Band  
Aliasing Band  
Passband  
Transition Band  
-20  
-40  
0.0005  
-60  
0
-80  
-0.0005  
-0.001  
-100  
-120  
0
0.1  
0.2 0.3  
Normalized Frequency (Fs)  
0.4  
0.5  
0
0.02  
0.04  
0.06  
Normalized Frequency (Fs)  
0.08  
0.1  
0.12  
h4co  
h4co  
7-11. Decimate-by-4 Composite Response  
7-12. Decimate-by-4 Composite Zoomed Pass-  
(D4_AP87 = 0)  
Band Response (D4_AP87 = 0)  
Copyright © 2021 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
0
0.01  
0.005  
0
Passband  
Transition Band  
Passband  
Transition Band  
Aliasing Band  
-20  
-40  
-60  
-80  
-0.005  
-0.01  
-100  
-120  
0
0
0.02  
0.04  
0.06  
0.08  
Normalized Frequency (Fs)  
0.1  
0.12  
0.1  
0.2 0.3  
Normalized Frequency (Fs)  
0.4  
0.5  
h4_9  
h4_9  
7-14. Decimate-by-4 Composite Zoomed Pass-  
7-13. Decimate-by-4 Composite Response  
Band Response (D4_AP87 = 1)  
(D4_AP87 = 1)  
0.001  
0
Passband  
Transition Band  
Passband  
Transition Band  
Aliasing Band  
-20  
-40  
0.0005  
0
-60  
-80  
-0.0005  
-0.001  
-100  
-120  
0
0.01  
0.02  
0.03  
0.04  
Normalized Frequency (Fs)  
0.05  
0.06  
0
0.1  
0.2 0.3  
Normalized Frequency (Fs)  
0.4  
0.5  
h8co  
h8co  
7-16. Decimate-by-8 Composite Zoomed Pass-  
7-15. Decimate-by-8 Composite Response  
Band Response  
0.001  
0
Passband  
Transition Band  
Passband  
Transition Band  
Aliasing Band  
-20  
-40  
0.0005  
0
-60  
-80  
-0.0005  
-0.001  
-100  
-120  
0
0.005  
0.01  
0.015  
0.02  
Normalized Frequency (Fs)  
0.025  
0.03  
0
0.1  
0.2 0.3  
Normalized Frequency (Fs)  
0.4  
0.5  
h16c  
h16c  
7-18. Decimate-by-16 Composite Zoomed Pass-  
7-17. Decimate-by-16 Composite Response  
Band Response  
For maximum efficiency, a group of high-speed filter blocks are implemented with specific blocks used for each  
decimation setting to achieve the composite responses illustrated in Decimate-by-2 Composite Response  
(D2_HIGH_PASS = 0) to Decimate-by-16 Composite Zoomed Pass-Band Response. 7-11 describes the  
combination of filter blocks used for each decimation setting and 7-12 lists the coefficient details and  
decimation factor of each filter block. The coefficients are symmetric with the center tap indicated by bold text.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: ADC12DJ3200QML-SP  
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7-11. Decimation Mode Filter Usage  
DECIMATION SETTING  
FILTER BLOCKS USED  
2
CS80  
4 (D4_AP87 = 0)  
CS45, CS80  
4 (D4_AP87 = 1)  
CS45, CS87  
8
CS20, CS40, CS80  
CS10, CS20, CS40, CS80  
16  
7-12. Filter Coefficient Details  
FILTER COEFFICIENT SET (Decimation Factor of Filter)  
CS10 (2)  
CS20 (2)  
CS40 (2) CS45 (2)  
CS80 (2)  
CS87 (2)  
109  
0
109  
0
56  
0
56  
0
65  
0
65  
0
327  
0
327  
0
37  
37  
15  
15  
0
0
0
23  
0
577  
1024  
577  
2231  
0
2231  
0
118  
118  
23  
837  
0
837  
0
401  
0
401  
0
0
0
0
0
4824  
8192  
4824  
1596  
0
1596  
0
8881  
0
8881  
0
291  
291  
40  
0
40  
0
0
0
39742  
65536  
39742  
612  
612  
64  
64  
4979  
0
4979  
0
0
0
0
0
97  
0
20113  
32768  
20113  
1159  
1159  
97  
0
0
2031  
0
0
2031  
142  
0
142  
0
0
3356  
0
3356  
201  
0
201  
0
0
5308  
0
5308  
279  
0
279  
0
0
8140  
0
8140  
0
380  
0
380  
0
12284  
0
12284  
0
513  
0
513  
0
18628  
0
18628  
0
690  
0
690  
0
29455  
0
29455  
0
939  
0
939  
0
53191  
0
53191  
0
1313  
0
1313  
0
166059  
262144  
166059  
1956  
0
1956  
0
3398  
0
3398  
0
10404  
16384  
10404  
Copyright © 2021 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.3.5.3 Output Data Format  
The DDC output data varies depending on the selected JMODE. Real decimate-by-2 mode (JMODE 9) consists  
of 15-bit real output data. Complex decimation modes (JMODE 10 to 16), except for JMODE 12, consist of 15-bit  
complex data plus the two overrange threshold-detection control bits. JMODE 12 output data consists of 12-bit  
complex data, but does not include the two overrange threshold-detection control bits that must instead be  
monitored using the ORA0, ORA1 and ORB0, ORB1 output pins. 7-13 lists the data format for JMODE 9 and  
7-14 lists the data format for all JMODEs except JMODE 12.  
7-13. Real Decimation (JMODE 9) Output Sample Format  
ODD,  
EVEN  
SAMPLE  
16-BIT OUTPUT WORD  
DDC  
CHANNEL  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
A
A
B
B
Even  
Odd  
DDC A even-numbered sample, 15-bit output data  
DDC A odd-numbered sample, 15-bit output data  
DDC B even-numbered sample, 15-bit output data  
DDC B odd-numbered sample, 15-bit output data  
OVR_T0  
OVR_T1  
OVR_T0  
OVR_T1  
Even  
Odd  
7-14. Complex Decimation Output Sample Format (Except JMODE 12)  
16-BIT OUTPUT WORD  
I/Q  
SAMPLE  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
I
DDC in-phase (I) 15-bit output data  
DDC quadrature (Q) 15-bit output data  
OVR_T0  
OVR_T1  
Q
7.3.5.4 Decimation Settings  
7.3.5.4.1 Decimation Factor  
The decimation setting is adjustable over the following settings and is set by the JMODE parameter. See 7-18  
for the available JMODE values and the corresponding decimation settings.  
DDC Bypass: No decimation, real output  
Decimate-by-2: Real output (JMODE 9)  
Decimate-by-4: Complex output (JMODE 10 to 12)  
Decimate-by-8: Complex output (JMODE 13 to 14)  
Decimate-by-16: Complex output (JMODE 15 to 16)  
7.3.5.4.2 DDC Gain Boost  
The DDC gain boost (see the DDC configuration register) provides additional gain through the DDC block.  
Setting BOOST to 1 sets the total decimation filter chain gain to 6.02 dB. With a setting of 0, the total decimation  
filter chain has a 0-dB gain. Only use this setting when the negative image of the input signal is filtered out by  
the decimation filters, otherwise clipping may occur. There is no reduction in analog performance when gain  
boost is enabled or disabled, but care must be taken to understand the reference output power for proper  
performance calculations.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.3.6 JESD204B Interface  
The ADC12DJ3200QML-SP uses the JESD204B high-speed serial interface for data converters to transfer data  
from the ADC to the receiving logic device. The ADC12DJ3200QML-SP serialized lanes are capable of  
operating up to 12.8 Gbps, slightly above the JESD204B maximum lane rate. A maximum of 16 lanes can be  
used to allow lower lane rates for interfacing with speed-limited logic devices. 7-19 shows a simplified block  
diagram of the JESD204B interface protocol.  
ADC  
JESD204B Block  
JESD204B  
TRANSPORT  
LAYER  
SCRAMBLER  
(Optional)  
JESD204B  
LINK LAYER  
8b/10b  
ENCODER  
JESD204B  
TX  
ADC  
ANALOG  
CHANNEL  
Logic Device  
JESD204B Block  
JESD204B  
TRANSPORT  
LAYER  
APPLICATION  
LAYER  
DESCRAMBLE  
(Optional)  
JESD204B  
LINK LAYER  
8b/10b  
DECODER  
JESD204B  
RX  
7-19. Simplified JESD204B Interface Diagram  
The various signals used in the JESD204B interface and the associated ADC12DJ3200QML-SP pin names are  
summarized briefly in 7-15 for reference.  
7-15. Summary of JESD204B Signals  
SIGNAL NAME  
ADC12DJ3200QML-SP PIN NAMES  
DESCRIPTION  
DA0+...DA7+, DA0...DA7, DB0+...DB7+,  
DB0...DB7–  
High-speed serialized data after 8b,  
10b encoding  
Data  
Link initialization signal (handshake),  
toggles low to start code group  
synchronization (CGS) process  
SYNC  
SYNCSE, TMSTP+, TMSTP–  
CLK+, CLK–  
ADC sampling clock, also used for  
clocking digital logic and output  
serializers  
Device clock  
System timing reference used to  
deterministically reset the internal local  
multiframe counters in each  
JESD204B device  
SYSREF  
SYSREF+, SYSREF–  
7.3.6.1 Transport Layer  
The transport layer takes samples from the ADC output (in decimation bypass mode) or from the DDC output  
and maps the samples into octets, frames, multiframes, and lanes. Sample mapping is defined by the  
JESD204B mode that is used, defined by parameters such as L, M, F, S, N, N', CF, and so forth. There are a  
number of predefined transport layer modes in the ADC12DJ3200QML-SP that are defined in 7-18. The high  
level configuration parameters for the transport layer in the ADC12DJ3200QML-SP are described in 7-16. For  
simplicity, the transport layer mode is chosen by simply setting the JMODE parameter and the desired K value.  
For reference, the various configuration parameters for JESD204B are defined in 7-17.  
7.3.6.2 Scrambler  
An optional data scrambler can be used to scramble the octets before transmission across the channel.  
Scrambling is recommended in order to remove the possibility of spectral peaks in the transmitted data. The  
JESD204B receiver automatically synchronizes its descrambler to the incoming scrambled data stream. The  
initial lane alignment sequence (ILA) is never scrambled. Scrambling can be enabled by setting SCR (in the  
JESD204B Control register).  
Copyright © 2021 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.3.6.3 Link Layer  
The link layer serves multiple purposes in JESD204B, including establishing the code boundaries (see the Code  
Group Synchronization (CGS) section), initializing the link (see the Initial Lane Alignment Sequence (ILAS)  
section), encoding the data (see the 8b, 10b Encoding section), and monitoring the health of the link (see the  
Frame and Multiframe Monitoring section).  
7.3.6.3.1 Code Group Synchronization (CGS)  
The first step in initializing the JESD204B link, after SYSREF is processed, is to achieve code group  
synchronization. The receiver first asserts the SYNC signal when ready to initialize the link. The transmitter  
responds to the request by sending a stream of K28.5 characters. The receiver then aligns its character clock to  
the K28.5 character sequence. Code group synchronization is achieved after receiving four K28.5 characters  
successfully. The receiver deasserts SYNC on the next local multiframe clock (LMFC) edge after CGS is  
achieved and waits for the transmitter to start the initial lane alignment sequence.  
7.3.6.3.2 Initial Lane Alignment Sequence (ILAS)  
After the transmitter detects the SYNC signal deassert, the transmitter waits until its next LMFC edge to start  
sending the initial lane alignment sequence. The ILAS consists of four multiframes each containing a  
predetermined sequence. The receiver searches for the start of the ILAS to determine the frame and multiframe  
boundaries. As the ILAS reaches the receiver for each lane, the lane starts to buffer its data until all receivers  
have received the ILAS and subsequently release the ILAS from all lanes at the same time in order to align the  
lanes. The second multiframe of the ILAS contains configuration parameters for the JESD204B that can be used  
by the receiver to verify that the transmitter and receiver configurations match.  
7.3.6.3.3 8b, 10b Encoding  
The data link layer converts the 8-bit octets from the transport layer into 10-bit characters for transmission across  
the link using 8b, 10b encoding. 8b, 10b encoding provides DC balance for AC-coupling of the SerDes links and  
a sufficient number of edge transitions for the receiver to reliably recover the data clock. 8b, 10b also provides  
some amount of error detection where a single bit error in a character likely results in either not being able to find  
the 10-bit character in the 8b, 10b decoder lookup table or incorrect character disparity.  
7.3.6.3.4 Frame and Multiframe Monitoring  
The ADC12DJ3200QML-SP supports frame and multiframe monitoring for verifying the health of the JESD204B  
link. If the last octet of a frame matches the last octet of the previous frame, then the last octet in the second  
frame is replaced with an /F/ (/K28.7/) character. If the second frame is the last frame of a multiframe, then an /A/  
(/K28.3/) character is used instead. When scrambling is enabled, if the last octet of a frame is 0xFC then the  
transmitter replaces the octet with an /F/ (/K28.7/) character. With scrambling, if the last octet of a multiframe is  
0x7C then the transmitter replaces the octet with an /A/ (/K28.3/) character. When the receiver detects an /F/  
or /A/ character, the receiver checks if the character occurs at the end of a frame or multiframe, and replaces  
that octet with the appropriate data character. The receiver can report an error if the alignment characters occur  
in the incorrect place and trigger a link realignment.  
7.3.6.4 Physical Layer  
The JESD204B physical layer consists of a current mode logic (CML) output driver and receiver. The receiver  
consists of a clock detection and recovery (CDR) unit to extract the data clock from the serialized data stream  
and can contain an equalizer to correct for the low-pass response of the physical transmission channel.  
Likewise, the transmitter can contain pre-equalization to account for frequency dependent losses across the  
channel. The total reach of the SerDes links depends on the data rate, board material, connectors, equalization,  
noise and jitter, and required bit-error performance. The SerDes lanes do not have to be matched in length  
because the receiver aligns the lanes during the initial lane alignment sequence.  
7.3.6.4.1 SerDes Pre-Emphasis  
The ADC12DJ3200QML-SP high-speed output drivers can pre-equalize the transmitted data stream by using  
pre-emphasis in order to compensate for the low-pass response of the transmission channel. Configurable pre-  
emphasis settings allow the output drive waveform to be optimized for different PCB materials and signal  
transmission distances. The pre-emphasis setting is adjusted through the serializer pre-emphasis setting  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
SER_PE (in the serializer pre-emphasis control register). Higher values increase the pre-emphasis to  
compensate for more lossy PCB materials. This adjustment is best used in conjunction with an eye-diagram  
analysis capability in the receiver. Adjust the pre-emphasis setting to optimize the eye-opening for the specific  
hardware configuration and line rates needed.  
7.3.6.5 JESD204B Enable  
The JESD204B interface must be disabled through JESD_EN (in the JESD204B enable register) while any of  
the other JESD204B parameters are being changed. When JESD_EN is set to 0 the block is held in reset and  
the serializers are powered down. The clocks for this section are also gated off to further save power. When the  
parameters are set as desired, the JESD204B block can be enabled (JESD_EN is set to 1).  
7.3.6.6 Multi-Device Synchronization and Deterministic Latency  
JESD204B subclass 1 outlines a method to achieve deterministic latency across the serial link. If two devices  
achieve the same deterministic latency then they can be considered synchronized. This latency must be  
achieved from system startup to startup to be deterministic. There are two key requirements to achieve  
deterministic latency. The first is proper capture of SYSREF for which the ADC12DJ3200QML-SP provides a  
number of features to simplify this requirement at giga-sample clock rates (see the SYSREF Capture for Multi-  
Device Synchronization and Deterministic Latency section for more information).  
The second requirement is to choose a proper elastic buffer release point in the receiver. Because the  
ADC12DJ3200QML-SP is an ADC, the ADC12DJ3200QML-SP is the transmitter (TX) in the JESD204B link and  
the logic device is the receiver (RX). The elastic buffer is the key block for achieving deterministic latency, and  
does so by absorbing variations in the propagation delays of the serialized data as the data travels from the  
transmitter to the receiver. A proper release point is one that provides sufficient margin against delay variations.  
An incorrect release point results in a latency variation of one LMFC period. Choosing a proper release point  
requires knowing the average arrival time of data at the elastic buffer, referenced to an LMFC edge, and the total  
expected delay variation for all devices. With this information the region of invalid release points within the LMFC  
period can be defined, which stretches from the minimum to maximum delay for all lanes. Essentially, the  
designer must make certain that the data for all lanes arrives at all devices before the release point occurs.  
7-20 illustrates a timing diagram that demonstrates this requirement. In this figure, the data for two ADCs is  
shown. The second ADC has a longer routing distance (tPCB) and results in a longer link delay. First, the invalid  
region of the LMFC period is marked off as determined by the data arrival times for all devices. Then, the release  
point is set by using the release buffer delay (RBD) parameter to shift the release point an appropriate number of  
frame clocks from the LMFC edge so that the release point occurs within the valid region of the LMFC cycle. In  
the case of 7-20, the LMFC edge (RBD = 0) is a good choice for the release point because there is sufficient  
margin on each side of the valid region.  
Nominal Link Delay  
Link Delay  
(Arrival at Elastic Buffer)  
Variation  
ADC 1 Data  
Propagation  
tTX  
tPCB  
tRX-DESER  
ADC 2 Data  
Propagation  
tTX  
tPCB  
tRX-DESER  
Choose LMFC  
edge as release  
point (RBD = 0)  
Release point  
margin  
TX LMFC  
RX LMFC  
Time  
Invalid Region  
of LMFC  
Valid Region  
of LMFC  
7-20. LMFC Valid Region Definition for Elastic Buffer Release Point Selection  
The TX and RX LMFCs do not necessarily need to be phase aligned, but knowledge of their phase is important  
for proper elastic buffer release point selection. Also, the elastic buffer release point occurs within every LMFC  
Copyright © 2021 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
cycle, but the buffers only release when all lanes have arrived. Therefore, the total link delay can exceed a single  
LMFC period; see the JESD204B multi-device synchronization: Breaking down the requirements techincal brief  
for more information.  
7.3.6.7 Operation in Subclass 0 Systems  
The ADC12DJ3200QML-SP can operate with subclass 0 compatibility provided that multi-ADC synchronization  
and deterministic latency are not required. With these limitations, the device can operate without the application  
of SYSREF. The internal local multiframe clock is automatically self-generated with unknown timing. SYNC is  
used as normal to initiate the CGS and ILA.  
7.3.7 Alarm Monitoring  
A number of built-in alarms are available to monitor internal events. Several types of alarms and upsets are  
detected by this feature:  
1. Serializer PLL is not locked  
2. JESD204B link is not transmitting data (not in the data transmission state)  
3. SYSREF causes internal clocks to be realigned  
4. An upset that impacts the internal clocks  
When an alarm occurs, a bit for each specific alarm is set in ALM_STATUS. Each alarm bit remains set until the  
host system writes a 1 to clear the alarm. If the alarm type is not masked (see the alarm mask register), then the  
alarm is also indicated by the ALARM register. The CALSTAT output pin can be configured as an alarm output  
that goes high when an alarm occurs; see the CAL_STATUS_SEL bit in the calibration pin configuration register.  
7.3.7.1 NCO Upset Detection  
The NCO_ALM register bit indicates if the NCO in channel A or B has been upset. The NCO phase  
accumulators in channel A are continuously compared to channel B. If the accumulators differ for even one clock  
cycle, the NCO_ALM register bit is set and remains set until cleared by the host system by writing a 1. This  
feature requires the phase and frequency words for each NCO accumulator in DDC A (PHASEAx, FREQAx) to  
be set to the same values as the NCO accumulators in DDC B (PHASEBx, FREQBx). For example, PHASEA0  
must be the same as PHASEB0 and FREQA0 must be the same as FREQB0, however, PHASEA1 can be set to  
a different value than PHASEA0. This requirement ultimately reduces the number of NCO frequencies available  
for phase coherent frequency hopping from four to two for each DDC. DDC B can use a different NCO frequency  
than DDC A by setting the NCOB[1:0] pins to a different value than NCOA[1:0]. This detection is only valid after  
the NCOs are synchronized by either SYSREF or the start of the ILA sequence (as determined by the NCO  
synchronization register). For the NCO upset detection to work properly, follow these steps:  
1. Program JESD_EN = 0  
2. Make sure the device is configured to use both channels (PD_ACH = 0, PD_BCH = 0)  
3. Select a JMODE that uses the NCO  
4. Program all NCO frequencies and phases to be the same for channel A and B (for example, FREQA0 =  
FREQB0, FREQA1 = FREQB1, FREQA2 = FREQB2, and FREQA3 = FREQB3)  
5. If desired, use the CMODE and CSEL registers or the NCOA[1:0] and NCOB[1:0] pins to choose a unique  
frequency for channel A and channel B  
6. Program JESD_EN = 1  
7. Synchronize the NCOs (using the ILA or using SYSREF); see NCO Phase Synchronization  
8. Write a 1 to the NCO_ALM register bit to clear it  
9. Monitor the NCO_ALM status bit or the CALSTAT output pin if CAL_STATUS_SEL is properly configured  
10. If the frequency or phase registers are changed while the NCO is enabled, the NCOs can get out of  
synchronization  
11. Repeat steps 7-9  
12. If the device enters and exits global power down, repeat steps 7-9  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: ADC12DJ3200QML-SP  
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.3.7.2 Clock Upset Detection  
The CLK_ALM register bit indicates if the internal clocks have been upset. The clocks in channel A are  
continuously compared to channel B. If the clocks differ for even one DEVCLK / 2 cycle, the CLK_ALM register  
bit is set and remains set until cleared by the host system by writing a 1. For the CLK_ALM register bit to  
function properly, follow these steps:  
1. Program JESD_EN = 0  
2. Make sure the part is configured to use both channels (PD_ACH = 0, PD_BCH = 0)  
3. Program JESD_EN = 1  
4. Write CLK_ALM = 1 to clear CLK_ALM  
5. Monitor the CLK_ALM status bit or the CALSTAT output pin if CAL_STATUS_SEL is properly configured  
6. When exiting global power-down (via MODE or the PD pin), the CLK_ALM status bit may be set and must be  
cleared by writing a 1 to CLK_ALM  
7.3.8 Temperature Monitoring Diode  
A built-in thermal monitoring diode is made available on the TDIODE+ and TDIODEpins. This diode facilitates  
temperature monitoring and characterization of the device in higher ambient temperature environments.  
Although the on-chip diode is not highly characterized, the diode can be used effectively by performing a  
baseline measurement (offset) at a known ambient or board temperature and creating a linear equation with the  
diode voltage slope provided in the Electrical Characteristics: DC Specifications table. Perform offset  
measurement with the device unpowered or with the PD pin asserted to minimize device self-heating. Only  
assert the PD pin long enough to take the offset measurement. Recommended monitoring devices include the  
LM95233 device and similar remote-diode temperature monitoring products from Texas Instruments.  
7.3.9 Analog Reference Voltage  
The reference voltage for the ADC12DJ3200QML-SP is derived from an internal band-gap reference. A buffered  
version of the reference voltage is available at the BG pin for user convenience. This output has an output-  
current capability of ±100 µA. The BG output must be buffered if more current is required. No provision exists for  
the use of an external reference voltage, but the full-scale input voltage can be adjusted through the full-scale-  
range register settings. In unique cases, the VA11 supply voltage can act as the reference voltage by setting  
BG_BYPASS (see the internal reference bypass register).  
Copyright © 2021 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.4 Device Functional Modes  
The ADC12DJ3200QML-SP can be configured to operate in a number of functional modes. These modes are  
described in this section.  
7.4.1 Dual-Channel Mode  
The ADC12DJ3200QML-SP can be used as a dual-channel ADC where the sampling rate is equal to the clock  
frequency (fS = fCLK) provided at the CLK+ and CLKpins. The two inputs, AIN± and BIN±, serve as the  
respective inputs for each channel in this mode. This mode is chosen simply by setting JMODE to the  
appropriate setting for the desired configuration as described in 7-18. The analog inputs can be swapped by  
setting DUAL_INPUT (see the input mux control register)  
7.4.2 Single-Channel Mode (DES Mode)  
The ADC12DJ3200QML-SP can also be used as a single-channel ADC where the sampling rate is equal to two  
times the clock frequency (fS = 2 × fCLK) provided at the CLK+ and CLKpins. This mode effectively interleaves  
the two ADC channels together to form a single-channel ADC at twice the sampling rate. This mode is chosen  
simply by setting JMODE to the appropriate setting for the desired configuration as described in 7-18. Either  
analog input, INA± or INB±, can serve as the input to the ADC, however INA± is recommended for best  
performance. The analog input can be selected using SINGLE_INPUT (see the input mux control register). The  
digital down-converters cannot be used in single-channel mode.  
Note  
For optimized performance in single-channel mode, use INA± as the input to the ADC.  
7.4.3 JESD204B Modes  
The ADC12DJ3200QML-SP can be programmed as a single-channel or dual-channel ADC, with or without  
decimation, and a number JESD204B output formats. 7-16 summarizes the basic operating mode  
configuration parameters and whether they are user configured or derived.  
CAUTION  
Powering down high-speed data outputs (DA0± ... DA7±, DB0± ... DB7±) for extended times can  
damage the output serializers, especially at high data rates. For information regarding reliable  
serializer operation, see the Power-Down Modes section.  
7-16. ADC12DJ3200QML-SP Operating Mode Configuration Parameters  
USER CONFIGURED  
PARAMETER  
DESCRIPTION  
VALUE  
OR DERIVED  
JESD204B operating mode, automatically  
derives the rest of the JESD204B  
parameters, single-channel or dual-channel  
mode and the decimation factor  
Set by JMODE (see the JESD204B mode  
register)  
JMODE  
User configured  
D
Decimation factor  
Derived  
Derived  
See 7-18  
See 7-18  
1 = single-channel mode, 0 = dual-channel  
mode  
DES  
Number of bits transmitted per lane per  
DEVCLK cycle. The JESD204B line rate is  
the DEVCLK frequency times R. This  
parameter sets the SerDes PLL multiplication  
factor or controls bypassing of the SerDes  
PLL.  
R
Derived  
See 7-18  
See 7-18  
Links  
K
Number of JESD204B links used  
Number of frames per multiframe  
Derived  
Set by KM1 (see the JESD204B K parameter  
register), see the allowed values in 7-18  
User configured  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
There are a number of parameters required to define the JESD204B format, all of which are sent across the link  
during the initial lane alignment sequence. In the ADC12DJ3200QML-SP, most parameters are automatically  
derived based on the selected JMODE; however, a few are configured by the user. 7-17 describes these  
parameters.  
7-17. JESD204B Initial Lane Alignment Sequence Parameters  
USER CONFIGURED  
PARAMETER  
ADJCNT  
DESCRIPTION  
VALUE  
OR DERIVED  
LMFC adjustment amount (not applicable)  
LMFC adjustment direction (not applicable)  
Bank ID  
Derived  
Always 0  
Always 0  
Always 0  
Always 0  
ADJDIR  
BID  
Derived  
Derived  
Derived  
CF  
Number of control words per frame  
Always set to 0 in ILAS, see 7-18 for  
actual usage  
CS  
Control bits per sample  
Derived  
Set by DID (see the JESD204B DID  
parameter register), see 7-19  
DID  
F
Device identifier, used to identify the link  
User configured  
Number of octets (bytes) per frame (per lane) Derived  
See 7-18  
Always 0  
High-density format (samples split between  
lanes)  
HD  
JESDV  
K
Derived  
JESD204 standard revision  
Derived  
Always 1  
Set by the KM1 register, see the JESD204B  
K parameter register  
Number of frames per multiframe  
User configured  
L
Number of serial output lanes per link  
Lane identifier for each lane  
Derived  
Derived  
See 7-18  
See 7-19  
LID  
Number of converters used to determine lane  
bit packing; may not match number of ADC  
channels in the device  
M
Derived  
See 7-18  
Sample resolution (before adding control and  
tail bits)  
N
N'  
S
Derived  
Derived  
Derived  
See 7-18  
See 7-18  
See 7-18  
Bits per sample after adding control and tail  
bits  
Number of samples per converter (M) per  
frame  
SCR  
Scrambler enabled  
Device subclass version  
Reserved field 1  
User configured  
Derived  
Set by the JESD204B control register  
SUBCLASSV  
RES1  
Always 1  
Always 0  
Always 0  
Derived  
RES2  
Reserved field 2  
Derived  
Checksum for ILAS checking (sum of all  
above parameters modulo 256)  
CHKSUM  
Derived  
Computed based on parameters in this table  
Configuring the ADC12DJ3200QML-SP is made easy by using a single configuration parameter called JMODE  
(see the JESD204B mode register). Using 7-18, the correct JMODE value can be found for the desired  
operating mode. The modes listed in 7-18 are the only available operating modes. This table also gives a  
range and allowable step size for the K parameter (set by KM1, see the JESD204B K parameter register), which  
sets the multiframe length in number of frames.  
7-18. ADC12DJ3200QML-SP Operating Modes  
USER-SPECIFIED  
PARAMETER  
DERIVED PARAMETERS  
INPUT  
CLOCK  
RANGE  
(MHz)  
ADC12DJ3200QML-SP  
OPERATING MODE  
K
JMODE [Min:Step:Ma  
x]  
L
(Per  
Link) Link)  
M
(Per  
R
(Fbit /  
Fclk)  
N
D
DES Links  
N
CS  
F
S
12-bit, single-channel, 8 lanes  
12-bit, single-channel, 16 lanes  
0
1
3:1:32  
3:1:32  
1
1
1
1
2
2
12  
12  
0
0
12  
12  
4
8
4(1)  
8(1)  
8
8
5
5
4
2
800-3200  
800-3200  
Copyright © 2021 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7-18. ADC12DJ3200QML-SP Operating Modes (continued)  
USER-SPECIFIED  
PARAMETER  
DERIVED PARAMETERS  
INPUT  
CLOCK  
RANGE  
(MHz)  
ADC12DJ3200QML-SP  
OPERATING MODE  
K
JMODE [Min:Step:Ma  
x]  
L
(Per  
Link) Link)  
M
(Per  
R
(Fbit /  
Fclk)  
N
D
DES Links  
N
CS  
F
S
12-bit, dual-channel, 8 lanes  
12-bit, dual-channel, 16 lanes  
8-bit, single-channel, 4 lanes  
8-bit, single-channel, 8 lanes  
8-bit, dual-channel, 4 lanes  
8-bit, dual-channel, 8 lanes  
Reserved  
2
3
4
5
6
7
8
3:1:32  
3:1:32  
18:2:32  
18:2:32  
18:2:32  
18:2:32  
1
1
0
0
2
2
12  
12  
8
0
0
0
0
0
0
12  
12  
8
4
8
4(1)  
8(1)  
1
8
8
1
1
1
1
5
5
2
4
2
4
4
2
800-3200  
800-3200  
800-2560  
800-3200  
800-2560  
800-3200  
1
1
2
2
5
1
1
2
8
8
4
1
2.5  
5
1
0
2
8
8
2
1
1
0
2
8
8
4
1
2.5  
— —  
— —  
15-bit, real data, decimate-  
by-2, 8 lanes  
800-3200  
9
9:1:32  
2
0
2
15 1(2) 16  
4
1
2
4
2.5  
15-bit, decimate-by-4, 4 lanes  
15-bit, decimate-by-4, 8 lanes  
12-bit, decimate-by-4, 16 lanes  
15-bit, decimate-by-8, 2 lanes  
15-bit, decimate-by-8, 4 lanes  
15-bit, decimate-by-16, 1 lane  
15-bit, decimate-by-16, 2 lanes  
8-bit, single-channel, 16 lanes  
8-bit, dual-channel, 16 lanes  
10  
11  
12  
13  
14  
15  
16  
17  
18  
9:1:32  
9:1:32  
3:1:32  
5:1:32  
9:1:32  
3:1:32  
5:1:32  
18:2:32  
18:2:32  
4
4
0
0
0
0
0
0
0
1
0
2
2
2
2
2
1
2
2
2
15 1(2) 16  
15 1(2) 16  
2
4
8
1
2
1
1
8
8
2
2
2
2
8
4
2
8
4
1
1
1
2
5
1
1
1
1
8
8
5
2.5  
1
800-2560  
800-3200  
1000-3200  
800-2560  
800-3200  
800-2560  
800-3200  
800-3200  
800-3200  
4
12  
0
12  
8(1)  
8
15 1(2) 16  
15 1(2) 16  
15 1(2) 16  
15 1(2) 16  
2
5
8
2
2.5  
5
16  
16  
1
4
2
2.5  
1.25  
1.25  
8
8
0
0
8
8
1
1
1
(1) M equals L in these modes to allow the samples to be sent in time-order over L lanes. The M parameter does not represent the actual  
number of converters. Interleave the M sample streams from each link in the receiver to produce the correct sample data; see 7-20  
to 7-37 for more details.  
(2) CS is always reported as 0 in the initial lane alignment sequence (ILAS) for the ADC12DJ3200QML-SP.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
The ADC12DJ3200QML-SP has a total of 16 high-speed output drivers that are grouped into two 8-lane  
JESD204B links. Most operating modes use two links with up to eight lanes per link. The lanes and their derived  
configuration parameters are described in 7-19. For a specified JMODE, the lowest indexed lanes for each  
link are used and the higher indexed lanes for each link are automatically powered down. Always route the  
lowest indexed lanes to the logic device.  
7-19. ADC12DJ3200QML-SP Lane Assignment and Parameters  
DEVICE PIN  
DESIGNATION  
LINK  
DID (User Configured)  
LID (Derived)  
DA0±  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
DA1±  
DA2±  
Set by DID (see theJESD204B DID parameter  
register), the effective DID is equal to the DID register  
setting (DID)  
DA3±  
A
DA4±  
DA5±  
DA6±  
DA7±  
DB0±  
DB1±  
DB2±  
Set by DID (see theJESD204B DID parameter  
register), the effective DID is equal to the DID register  
setting plus 1 (DID+1)  
DB3±  
B
DB4±  
DB5±  
DB6±  
DB7±  
7.4.3.1 JESD204B Output Data Formats  
Output data are formatted in a specific optimized fashion for each JMODE setting. When the DDC is not used  
(decimation = 1) the 12-bit offset binary values are mapped into octets. For the DDC mode, the 16-bit values  
(15-bit complex data plus 1 overrange bit) are mapped into octets. The following tables show the specific  
mapping formats for a single frame. In all mappings the tail bits (T) are 0 (zero). In 7-20 to 7-37, the single-  
channel format samples are defined as Sn, where n is the sample number within the frame. In the dual-channel  
real output formats (DDC bypass and decimate-by-2), the samples are defined as An and Bn, where An are  
samples from channel A and Bn are samples from channel B. In the complex output formats (decimate-by-4,  
decimate-by-8, decimate-by-16), the samples are defined as AIn, AQn, BIn and BQn, where AIn and AQn are  
the in-phase and quadrature-phase samples of channel A and BIn and BQn are the in-phase and quadrature-  
phase samples of channel B. All samples are formatted as MSB first, LSB last.  
Copyright © 2021 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7-20. JMODE 0 (12-bit, Decimate-by-1, Single-Channel, 8 Lanes)  
OCTET  
NIBBLE  
DA0  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
T
T
T
T
T
T
T
T
S0  
S2  
S4  
S6  
S1  
S3  
S5  
S7  
S8  
S16  
S18  
S20  
S22  
S17  
S19  
S21  
S23  
S24  
S26  
S28  
S30  
S25  
S27  
S29  
S31  
S32  
S34  
S36  
S38  
S33  
S35  
S37  
S39  
DA1  
S10  
S12  
S14  
S9  
DA2  
DA3  
DB0  
DB1  
S11  
S13  
S15  
DB2  
DB3  
7-21. JMODE 1 (12-Bit, Decimate-by-1, Single-Channel, 16 Lanes)  
OCTET  
NIBBLE  
DA0  
DA1  
DA2  
DA3  
DA4  
DA5  
DA6  
DA7  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
S0  
S16  
S18  
S20  
S22  
S24  
S26  
S28  
S30  
S17  
S19  
S21  
S23  
S25  
S27  
S29  
S31  
S32  
S34  
S36  
S38  
S40  
S42  
S44  
S46  
S33  
S35  
S37  
S39  
S41  
S43  
S45  
S47  
S48  
S50  
S52  
S54  
S56  
S58  
S60  
S62  
S49  
S51  
S53  
S55  
S57  
S59  
S61  
S63  
S64  
S66  
S68  
S70  
S72  
S74  
S76  
S78  
S65  
S67  
S69  
S71  
S73  
S75  
S77  
S79  
S2  
S4  
S6  
S8  
S10  
S12  
S14  
S1  
S3  
S5  
S7  
S9  
S11  
S13  
S15  
7-22. JMODE 2 (12-Bit, Decimate-by-1, Dual-Channel, 8 Lanes)  
OCTET  
NIBBLE  
DA0  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
T
T
T
T
T
T
T
T
A0  
A1  
A2  
A3  
B0  
B1  
B2  
B3  
A4  
A5  
A6  
A7  
B4  
B5  
B6  
B7  
A8  
A12  
A13  
A14  
A15  
B12  
B13  
B14  
B15  
A16  
A17  
A18  
A19  
B16  
B17  
B18  
B19  
DA1  
A9  
DA2  
A10  
A11  
B8  
DA3  
DB0  
DB1  
B9  
DB2  
B10  
B11  
DB3  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: ADC12DJ3200QML-SP  
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7
7-23. JMODE 3 (12-Bit, Decimate-by-1, Dual-Channel, 16 Lanes)  
OCTET  
NIBBLE  
DA0  
DA1  
DA2  
DA3  
DA4  
DA5  
DA6  
DA7  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
A8  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
A24  
A25  
A26  
A27  
A28  
A29  
A30  
A31  
B24  
B25  
B26  
B27  
B28  
B29  
B30  
B31  
A32  
A33  
A34  
A35  
A36  
A37  
A38  
A39  
B32  
B33  
B34  
B35  
B36  
B37  
B38  
B39  
A9  
A10  
A11  
A12  
A13  
A14  
A15  
B8  
B9  
B10  
B11  
B12  
B13  
B14  
B15  
7-24. JMODE 4 (8-Bit, Decimate-by-1, Single-Channel, 4 Lanes)  
OCTET  
NIBBLE  
DA0  
0
0
1
S0  
S2  
S1  
S3  
DA1  
DB0  
DB1  
7-25. JMODE 5 (8-Bit, Decimate-by-1, Single-Channel, 8 Lanes)  
OCTET  
NIBBLE  
DA0  
0
0
1
S0  
S2  
S4  
S6  
S1  
S3  
S5  
S7  
DA1  
DA2  
DA3  
DB0  
DB1  
DB2  
DB3  
7-26. JMODE 6 (8-Bit, Decimate-by-1, Dual-Channel, 4 Lanes)  
OCTET  
NIBBLE  
DA0  
0
0
1
A0  
A1  
B0  
B1  
DA1  
DB0  
DB1  
Copyright © 2021 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7-27. JMODE 7 (8-Bit, Decimate-by-1, Dual-Channel, 8 Lanes)  
OCTET  
NIBBLE  
DA0  
0
0
1
A0  
A1  
A2  
A3  
B0  
B1  
B2  
B3  
DA1  
DA2  
DA3  
DB0  
DB1  
DB2  
DB3  
7-28. JMODE 9 (15-Bit, Decimate-by-2, Dual-Channel, 8 Lanes)  
OCTET  
0
1
NIBBLE  
DA0  
0
1
2
3
A0  
A1  
A2  
A3  
B0  
B1  
B2  
B3  
DA1  
DA2  
DA3  
DB0  
DB1  
DB2  
DB3  
7-29. JMODE 10 (15-Bit, Decimate-by-4, Dual-Channel, 4 Lanes)  
OCTET  
0
1
NIBBLE  
DA0  
0
1
2
3
AI0  
AQ0  
BI0  
DA1  
DB0  
DB1  
BQ0  
7-30. JMODE 11 (15-Bit, Decimate-by-4, Dual-Channel, 8 Lanes)  
OCTET  
0
1
NIBBLE  
DA0  
0
1
2
3
AI0  
AI1  
DA1  
DA2  
AQ0  
AQ1  
BI0  
DA3  
DB0  
DB1  
BI1  
DB2  
BQ0  
BQ1  
DB3  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: ADC12DJ3200QML-SP  
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7
7-31. JMODE 12 (12-Bit, Decimate-by-4, Dual-Channel, 16 Lanes)  
OCTET  
NIBBLE  
DA0  
DA1  
DA2  
DA3  
DA4  
DA5  
DA6  
DA7  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
AI0  
AI4  
AI8  
AI12  
AI16  
AQ16  
AI17  
AQ17  
AI18  
AQ0  
AI1  
AQ4  
AI5  
AQ8  
AI9  
AQ12  
AI13  
AQ1  
AI2  
AQ5  
AI6  
AQ9  
AI10  
AQ10  
AI11  
AQ11  
BI8  
AQ13  
AI14  
AQ2  
AI3  
AQ6  
AI7  
AQ14  
AI15  
AQ218  
AI19  
AQ3  
BI0  
AQ7  
BI4  
AQ15  
BI12  
AQ19  
BI16  
BQ0  
BI1  
BQ4  
BI5  
BQ8  
BI9  
BQ12  
BI13  
BQ16  
BI17  
BQ1  
BI2  
BQ5  
BI6  
BQ9  
BI10  
BQ10  
BI11  
BQ11  
BQ13  
BI14  
BQ17  
BI18  
BQ2  
BI3  
BQ6  
BI7  
BQ14  
BI15  
BQ218  
BI19  
BQ3  
BQ7  
BQ15  
BQ19  
7-32. JMODE 13 (15-Bit, Decimate-by-8, Dual-Channel, 2 Lanes)  
OCTET  
0
1
2
3
NIBBLE  
DA0  
0
1
2
3
4
5
6
7
AI0  
BI0  
AQ0  
BQ0  
DB0  
7-33. JMODE 14 (15-Bit, Decimate-by-8, Dual-Channel, 4 Lanes)  
OCTET  
NIBBLE  
DA0  
0
1
0
1
2
3
AI0  
AQ0  
BI0  
DA1  
DB0  
DB1  
BQ0  
7-34. JMODE 15 (15-Bit, Decimate-by-16, Dual-Channel, 1 Lane)  
OCTET  
0
1
2
3
4
5
6
7
NIBBLE  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
DA0  
AI0  
AQ0  
BI0  
BQ0  
7-35. JMODE 16 (15-Bit, Decimate-by-16, Dual-Channel, 2 Lanes)  
OCTET  
0
1
2
3
NIBBLE  
DA0  
0
1
2
3
4
5
6
7
AI0  
BI0  
AQ0  
BQ0  
DB0  
Copyright © 2021 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7-36. JMODE 17 (8-bit, Decimate-by-1, Single-Channel, 16 lanes)  
OCTET  
NIBBLE  
DA0  
DA1  
DA2  
DA3  
DA4  
DA5  
DA6  
DA7  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
0
0
1
S0  
S2  
S4  
S6  
S8  
S10  
S12  
S14  
S1  
S3  
S5  
S7  
S9  
S11  
S13  
S15  
7-37. JMODE 18 (8-Bit, Decimate-by-1, Dual-Channel, 16 Lanes)  
OCTET  
NIBBLE  
DA0  
DA1  
DA2  
DA3  
DA4  
DA5  
DA6  
DA7  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
0
0
1
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: ADC12DJ3200QML-SP  
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.4.3.2 Dual DDC and Redundant Data Mode  
When operating in dual-channel mode, the data from one channel can be routed to both digital down-converter  
blocks by using DIG_BIND_A or DIG_BIND_B (see the digital channel binding register). This feature enables  
down-conversion of two separate captured bands from a single ADC channel. The second ADC can be powered  
down in this mode by setting PD_ACH or PD_BCH (see the device configuration register).  
Additionally, DIG_BIND_A or DIG_BIND_B can be used to provide redundant data to separate digital processors  
by routing data from one ADC channel to both JESD204B links. Redundant data mode is available for all  
JMODE modes except for the single-channel modes. Both dual DDC mode and redundant data mode are  
demonstrated in 7-21 where the data for ADC channel A is routed to both DDCs and then transmitted to a  
single processor or two processors (for redundancy).  
DDC Bypass  
JESD204B  
LINK A  
(DA0-DA7)  
ADC  
Channel A  
DDC A  
JMODE  
DIG_BIND_A = 0  
DDC Bypass  
JESD204B  
LINK B  
DDC B  
(DB0-DB7)  
ADC  
Channel B  
JMODE  
DIG_BIND_B = 0  
.
7-21. Dual DDC Mode or Redundant Data Mode for Channel A  
Copyright © 2021 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.4.4 Power-Down Modes  
The PD input pin allows the ADC12DJ3200QML-SP devices to be entirely powered down. Power-down can also  
be controlled by MODE (see the Device Configuration register). The serial data output drivers are disabled when  
PD is high. When the device returns to normal operation, the JESD204 link must be re-established, and the ADC  
pipeline and decimation filters contain meaningless information so the system must wait a sufficient time for the  
data to be flushed. If power-down for power savings is desired, the system must power down the supply voltages  
regulators for VA19, VA11, and VD11 rather than make use of the PD input or MODE settings.  
CAUTION  
Powering down the high-speed data outputs (DA0± ... DA7±, DB0± ... DB7±) for extended times may  
damage the output serializers, especially at high data rates. Powering down the serializers occurs  
when the PD pin is held high, the MODE register is programmed to a value other than 0x00 or 0x01,  
the PD_ACH or PD_BCH registers settings are programmed to 1, or when the JMODE register  
setting is programmed to a mode that uses less than the 16 total lanes that the device allows. For  
instance, JMODE 0 uses eight total lanes and therefore the four highest-indexed lanes for each  
JESD204B link (DA4± ... DA7±, DB4± ... DB7±) are powered down in this mode. When the PD pin is  
held high or the MODE register is programmed to a value other than 0x00 or 0x01, all output  
serializers are powered down. When the PD_ACH or PD_BCH register settings are programmed to  
1, the associated ADC channel and lanes are powered down. To prevent unreliable operation, the  
PD pin and MODE register must only be used for brief periods of time to measure temperature diode  
offsets and not used for long-term power savings. Furthermore, using a JMODE that uses fewer than  
16 lanes results in unreliable operation of the unused lanes. If the system will never use the unused  
lanes during the lifetime of the device, then the unused lanes do not cause issues and can be  
powered down. If the system may make use of the unused lanes at a later time, the reliable  
operation of the serializer outputs can be maintained by enabling JEXTRA_A and JEXTRA_B, which  
results in the VD11 power consumption to increase and the output serializers to toggle.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: ADC12DJ3200QML-SP  
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.4.5 Test Modes  
A number of device test modes are available. These modes insert known patterns of information into the device  
data path for assistance with system debug, development, or characterization.  
7.4.5.1 Serializer Test-Mode Details  
Test modes are enabled by setting JTEST (see the JESD204B test pattern control register) to the desired test  
mode. Each test mode is described in detail in the following sections. Regardless of the test mode, the serializer  
outputs are powered up based on JMODE. Only enable the test modes when the JESD204B link is disabled. 图  
7-22 provides a diagram showing the various test mode insertion points.  
ADC  
JESD204B Block  
JESD204B  
TRANSPORT  
LAYER  
JESD204B  
LINK  
LAYER  
Active Lanes and  
Serial Rates  
Set by JMODE  
SCRAMBLER  
(Optional)  
8b/10b  
ENCODER  
JESD204B  
TX  
ADC  
Long/Short Transport  
Octet Ramp  
Test Mode Enable  
Repeated ILA  
Modified RPAT  
Test Mode Enable  
PRBS  
D21.5  
K28.5  
Serial Outputs High/Low  
Test Mode Enable  
7-22. Test Mode Insertion Points  
7.4.5.2 PRBS Test Modes  
The PRBS test modes bypass the 8b, 10b encoder. These test modes produce pseudo-random bit streams that  
comply with the ITU-T O.150 specification. These bit streams are used with lab test equipment that can self-  
synchronize to the bit pattern and, therefore, the initial phase of the pattern is not defined.  
The sequences are defined by a recursive equation. For example, 方程10 defines the PRBS7 sequence.  
y[n] = y[n 6]y[n 7]  
(10)  
where  
bit n is the XOR of bit [n 6] and bit [n 7], which are previously transmitted bits  
7-38 lists equations and sequence lengths for the available PRBS test modes. The initial phase of the pattern  
is unique for each lane.  
7-38. PBRS Mode Equations  
PRBS TEST MODE  
PRBS7  
SEQUENCE  
SEQUENCE LENGTH (bits)  
127  
y[n] = y[n 6]y[n 7]  
y[n] = y[n 14]y[n 15]  
y[n] = y[n 18]y[n 23]  
PRBS15  
PRBS23  
32767  
8388607  
7.4.5.3 Ramp Test Mode  
In the ramp test mode, the JESD204B link layer operates normally, but the transport layer is disabled and the  
input from the formatter is ignored. After the ILA sequence, each lane transmits an identical octet stream that  
increments from 0x00 to 0xFF and repeats.  
Copyright © 2021 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.4.5.4 Short and Long Transport Test Mode  
JESD204B defines both short and long transport test modes to verify that the transport layers in the transmitter  
and receiver are operating correctly. The ADC12DJ3200QML-SP has three different transport layer test patterns  
depending on the N' value of the specified JMODE (see 7-18).  
7.4.5.4.1 Short Transport Test Pattern  
Short transport test patterns send a predefined octet format that repeats every frame. In the ADC12DJ3200QML-  
SP, all JMODE configurations that have an N' value of 8 or 12 use the short transport test pattern. 7-39 and 表  
7-40 define the short transport test patterns for N' values of 8 and 12. All applicable lanes are shown, however  
only the enabled lanes (lowest indexed) for the configured JMODE are used.  
7-39. Short Transport Test Pattern for N' = 8 Modes (Length = 2 Frames)  
FRAME  
DA0  
DA1  
DA2  
DA3  
DB0  
DB1  
DB2  
DB3  
0
1
0x00  
0x01  
0x02  
0x03  
0x00  
0x01  
0x02  
0x03  
0xFF  
0xFE  
0xFD  
0xFC  
0xFF  
0xFE  
0xFD  
0xFC  
7-40. Short Transport Test Pattern for N' = 12 Modes (Length = 1 Frame)  
OCTET  
NIBBLE  
DA0  
DA1  
DA2  
DA3  
DA4  
DA5  
DA6  
DA7  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
0xF01  
0xE11  
0xD21  
0xC31  
0xB41  
0xA51  
0x961  
0x871  
0xF01  
0xE11  
0xD21  
0xC31  
0xB41  
0xA51  
0x961  
0x871  
0xF02  
0xE12  
0xD22  
0xC32  
0xB42  
0xA52  
0x962  
0x872  
0xF02  
0xE12  
0xD22  
0xC32  
0xB42  
0xA52  
0x962  
0x872  
0xF03  
0xE13  
0xD23  
0xC33  
0xB43  
0xA53  
0x963  
0x873  
0xF03  
0xE13  
0xD23  
0xC33  
0xB43  
0xA53  
0x963  
0x873  
0xF04  
0xE14  
0xD24  
0xC34  
0xB44  
0xA54  
0x964  
0x874  
0xF04  
0xE14  
0xD24  
0xC34  
0xB44  
0xA54  
0x964  
0x874  
0xF05  
0xE15  
0xD25  
0xC35  
0xB45  
0xA55  
0x965  
0x875  
0xF05  
0xE15  
0xD25  
0xC35  
0xB45  
0xA55  
0x965  
0x875  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.4.5.4.2 Long Transport Test Pattern  
The long-transport test mode is used in all of the JMODE modes where N' equals 16. Patterns are generated in  
accordance with the JESD204B standard and are different for each output format as defined in 7-18. The  
rules for the pattern are defined below. 方程式 11 gives the length of the test pattern. The long transport test  
pattern is the same for link A and link B, where DAx lanes belong to link A and DBx lanes belong to link B.  
Long Test Pattern Length (Frames) = K × ceil[(M × S + 2) / K]  
(11)  
Sample Data:  
Frame 0: Each sample contains N bits, with all samples set to the converter ID (CID) plus 1 (CID + 1). The  
CID is defined based on the converter number within the link; two links are used in all modes except  
JMODE 15. Within a link, the converters are numbered by channel (A or B) and in-phase (I) and  
quadrature-phase (Q) and reset between links. For instance, in JMODE 10, two links are used so channel  
A and B data are separated into separate links and the in-phase component for each channel has CID = 0  
and the quadrature-phase component has CID = 1. In JMODE 15, one link is used, so channel A and B  
are within the same link and AI has CID = 0, AQ has CID = 1, BI has CID = 2, and BQ has CID = 3.  
Frame 1: Each sample contains N bits, with each sample (for each converter) set as its individual sample  
ID (SID) within the frame plus 1 (SID + 1)  
Frame 2 +: Each sample contains N bits, with the data set to 2N1 for all samples (for example, if N is 15  
then 2N1 = 16384)  
Control Bits (if CS > 0):  
Frame 0 to M × S 1: The control bit belonging to the sample mod (i, S) of the converter floor (i, S) is set  
to 1 and all others are set to 0, where i is the frame index (i = 0 is the first frame of the pattern).  
Essentially, the control bit walks from the lowest indexed sample to the highest indexed sample and from  
the lowest indexed converter to the highest indexed converter, changing position every frame.  
Frame M × S +: All control bits are set to 0  
7-41 describes an example long transport test pattern for when JMODE = 10, K = 10.  
7-41. Example Long Transport Test Pattern (JMODE = 10, K = 10)  
TIME →  
PATTERN REPEATS →  
18 19 20 21  
0x8000 0x0003  
OCTET  
NUM  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
DA0  
DA1  
DB0  
DB1  
0x0003  
0x0004  
0x0003  
0x0004  
0x0002  
0x0003  
0x0002  
0x0003  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x8000  
0x0004  
0x0003  
0x0004  
Frame  
n
Frame  
n + 1  
Frame  
n + 2  
Frame  
n + 3  
Frame  
n + 4  
Frame  
n + 5  
Frame  
n + 6  
Frame  
n + 7  
Frame  
n + 8  
Frame  
n + 9  
Frame  
n + 10  
The pattern starts at the end of the initial lane alignment sequence (ILAS) and repeats indefinitely as long as the  
link remains running. For more details see the JESD204B specification, section 5.1.6.3.  
Copyright © 2021 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.4.5.5 D21.5 Test Mode  
In this test mode, the controller transmits a continuous stream of D21.5 characters (alternating 0s and 1s).  
7.4.5.6 K28.5 Test Mode  
In this test mode, the controller transmits a continuous stream of K28.5 characters.  
7.4.5.7 Repeated ILA Test Mode  
In this test mode, the JESD204B link layer operates normally, except that the ILA sequence (ILAS) repeats  
indefinitely instead of starting the data phase. Whenever the receiver issues a synchronization request, the  
transmitter initiates code group synchronization. Upon completion of code group synchronization, the transmitter  
repeatedly transmits the ILA sequence.  
7.4.5.8 Modified RPAT Test Mode  
A 12-octet repeating pattern is defined in INCITS TR-35-2004. The purpose of this pattern is to generate white  
spectral content for JESD204B compliance and jitter testing. 7-42 lists the pattern before and after 8b, 10b  
encoding.  
7-42. Modified RPAT Pattern Values  
20b OUTPUT OF 8b, 10b ENCODER  
OCTET NUMBER  
Dx.y NOTATION  
8-BIT INPUT TO 8b, 10b ENCODER  
(Two Characters)  
0
1
D30.5  
D23.6  
D3.1  
0xBE  
0xD7  
0x23  
0x47  
0x6B  
0x8F  
0xB3  
0x14  
0x5E  
0xFB  
0x35  
0x59  
0x86BA6  
2
0xC6475  
0xD0E8D  
0xCA8B4  
0x7949E  
0xAA665  
3
D7.2  
4
D11.3  
D15.4  
D19.5  
D20.0  
D30.2  
D27.7  
D21.1  
D25.2  
5
6
7
8
9
10  
11  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: ADC12DJ3200QML-SP  
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.4.6 Calibration Modes and Trimming  
The ADC12DJ3200QML-SP has two calibration modes available: foreground calibration and background  
calibration. When foreground calibration is initiated the ADCs are automatically taken offline and the output data  
becomes mid-code (0x000 in 2's complement) while a calibration is occurring. Background calibration allows the  
ADC to continue normal operation while the ADC cores are calibrated in the background by swapping in a  
different ADC core to take its place. Additional offset calibration features are available in both foreground and  
background calibration modes. Further, a number of ADC parameters can be trimmed to optimize performance  
in a user system.  
The ADC12DJ3200QML-SP consists of a total of six sub-ADCs, each referred to as a bank, with two banks  
forming an ADC core. The banks sample out-of-phase so that each ADC core is two-way interleaved. The six  
banks form three ADC cores, referred to as ADC A, ADC B, and ADC C. In foreground calibration mode, ADC A  
samples INA± and ADC B samples INB± in dual-channel mode and both ADC A and ADC B sample INA± (or  
INB±) in single-channel mode. In the background calibration modes, the third ADC core, ADC C, is swapped in  
periodically for ADC A and ADC B so that they can be calibrated without disrupting operation. 7-23 illustrates  
a diagram of the calibration system including labeling of the banks that make up each ADC core. When  
calibration is performed the linearity, gain, and offset voltage for each bank are calibrated to an internally  
generated calibration signal. The analog inputs can be driven during calibration, both foreground and  
background, except that when offset calibration (OS_CAL or BGOS_CAL) is used there must be no signals (or  
aliased signals) near DC for proper estimation of the offset (see the Offset Calibration section).  
ADC A  
Bank 0  
MUX  
Calibration  
INA+  
Bank 1  
Signal  
INAœ  
ADC A  
Output  
MUX  
Calibration  
Engine  
ADC C  
Bank 2  
Bank 3  
Calibration  
Engine  
MUX  
Calibration  
Signal  
Calibration  
Engine  
ADC B  
Output  
ADC B  
MUX  
INB+  
Bank 4  
Bank 5  
INBœ  
MUX  
Calibration  
Engine  
Calibration  
Signal  
Calibration  
Engine  
7-23. ADC12DJ3200QML-SP Calibration System Block Diagram  
In addition to calibration, a number of ADC parameters are user controllable to provide trimming for optimal  
performance. These parameters include input offset voltage, ADC gain, interleaving timing, and input termination  
resistance. The default trim values are programmed at the factory to unique values for each device that are  
determined to be optimal at the test system operating conditions. The user can read the factory-programmed  
Copyright © 2021 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
values from the trim registers and adjust as desired. The register fields that control the trimming are labeled  
according to the input that is being sampled (INA± or INB±), the bank that is being trimmed, or the ADC core that  
is being trimmed. The user is not expected to change the trim values as operating conditions change, however  
optimal performance can be obtained by doing so. Any custom trimming must be done on a per device basis  
because of process variations, meaning that there is no global optimal setting for all parts. See the Trimming  
section for information about the available trim parameters and associated registers.  
7.4.6.1 Foreground Calibration Mode  
Foreground calibration requires the ADC to stop converting the analog input signals during the procedure.  
Foreground calibration always runs on power-up and the user must wait a sufficient time before programming  
the device to make sure that the calibration is finished. Foreground calibration can be initiated by triggering the  
calibration engine. The trigger source can be either the CAL_TRIG pin or CAL_SOFT_TRIG (see the calibration  
software trigger register) and is chosen by setting CAL_TRIG_EN (see the calibration pin configuration register).  
7.4.6.2 Background Calibration Mode  
Background calibration mode allows the ADC to continuously operate, with no interruption of data. This  
continuous operation is accomplished by activating an extra ADC core that is calibrated and then takes over  
operation for one of the other previously active ADC cores. When that ADC core is taken offline, that ADC is  
calibrated and can in turn take over to allow the next ADC to be calibrated. This process operates continuously,  
making sure that the ADC cores always provide the optimum performance regardless of system operating  
condition changes. Because of the additional active ADC core, background calibration mode has increased  
power consumption in comparison to foreground calibration mode. The low-power background calibration  
(LPBG) mode discussed in the Low-Power Background Calibration (LPBG) Mode section provides reduced  
average power consumption in comparison with the standard background calibration mode. Background  
calibration can be enabled by setting CAL_BG (see the calibration configuration 0 register). CAL_TRIG_EN must  
be set to 0 and CAL_SOFT_TRIG must be set to 1.  
Great care has been taken to minimize effects on converted data as the core switching process occurs; however,  
small brief glitches may still occur on the converter data as the cores are swapped.  
7.4.6.3 Low-Power Background Calibration (LPBG) Mode  
Low-power background calibration (LPBG) mode reduces the power-overhead of enabling additional ADC cores.  
Off-line cores are powered down until ready to be calibrated and put on-line. Set LP_EN = 1 to enable the low-  
power background calibration feature. LP_SLEEP_DLY is used to adjust the amount of time an ADC sleeps  
before waking up for calibration (if LP_EN = 1 and LP_TRIG = 0). LP_WAKE_DLY sets how long the core is  
allowed to stabilize before calibration and being put on-line. LP_TRIG is used to select between an automatic  
switching process or one that is controlled by the user via CAL_SOFT_TRIG or CAL_TRIG. In this mode there is  
an increase in power consumption during the ADC core calibration. The power consumption roughly alternates  
between the power consumption in foreground calibration when the spare ADC core is sleeping to the power  
consumption in background calibration when the spare ADC is being calibrated. Design the power-supply  
network to handle the transient power requirements for this mode.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: ADC12DJ3200QML-SP  
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.4.7 Offset Calibration  
Foreground calibration and background calibration modes inherently calibrate the offsets of the ADC cores;  
however, the input buffers sit outside of the calibration loop and therefore their offsets are not calibrated by the  
standard calibration process. In both dual-channel mode and single-channel mode, uncalibrated input buffer  
offsets result in a shift in the mid-code output (dc offset) with no input. Further, in single-channel mode  
uncalibrated input buffer offsets can result in a fixed spur at fS / 2. A separate calibration is provided to correct  
the input buffer offsets.  
There must be no signals at or near dc, or aliased signals that fall at or near dc, in order to properly calibrate the  
offsets. These input signals must not exist during normal operation, or the system must be designed to mute the  
input signal during calibration. Foreground offset calibration is enabled using CAL_OS and only performs the  
calibration one time as part of the foreground calibration procedure. Background offset calibration is enabled via  
CAL_BGOS and continues to correct the offset as part of the background calibration routine to account for  
operating condition changes. When CAL_BGOS is set, the system must make sure that there are no dc or near-  
dc signals or aliased signals that fall at or near dc during normal operation. Offset calibration can be performed  
as a foreground operation when using background calibration by setting CAL_OS to 1 before setting CAL_EN,  
but does not correct for variations as operating conditions change.  
The offset calibration correction uses the input offset voltage trim registers (see 7-43) to correct the offset and  
therefore must not be written by the user when offset calibration is used. The user can read the calibrated values  
by reading the OADJ_x_VINy registers, where x is the ADC core and y is the input (INA± or INB±), after  
calibration is completed. Only read the values when FG_DONE is read as 1 when using foreground offset  
calibration (CAL_OS = 1) and do not read the values when using background offset calibration (CAL_BGOS =  
1).  
Copyright © 2021 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.4.8 Trimming  
7-43 lists the parameters that can be trimmed and the associated registers.  
7-43. Trim Register Descriptions  
TRIM PARAMETER  
TRIM REGISTER  
NOTES  
Band-gap reference  
BG_TRIM  
Measurement on BG output pin.  
RTRIM_x,  
where x = A for INA± or B for INB±)  
The device must be powered on with a clock  
applied.  
Input termination resistance  
Input offset voltage  
A different trim value is allowed for each ADC  
core (A, B, or C) to allow more consistent  
offset performance in background calibration  
mode.  
OADJ_x_VINy,  
where x = ADC core (A, B or C)  
and y = A for INA± or B for INB±)  
Set FS_RANGE_A and FS_RANGE_B to  
default values before trimming the input. Use  
FS_RANGE_A and FS_RANGE_B to adjust  
the full-scale input voltage.  
GAIN_TRIM_x,  
where x = A for INA± or B for INB±)  
INA± and INB± gain  
Full-scale input voltage adjustment for each  
input. The default value is effected by  
GAIN_TRIM_x (x = A or B). Trim  
GAIN_TRIM_x with FS_RANGE_x set to the  
default value. FS_RANGE_x can then be  
used to trim the full-scale input voltage.  
FS_RANGE_x,  
where x = A for INA± or B for INB±)  
INA± and INB± full-scale input voltage  
Intra-ADC core timing (bank timing)  
Inter-ADC core timing (dual-channel mode)  
Trims the timing between the two banks of an  
ADC core (ADC A, B, or C) for two clock  
phases, either 0° or 90°. The 90° clock  
phase is used in single-channel mode only.  
Bx_TIME_y,  
where x = bank number (05)  
and y = 0° or 90° clock phase  
The suffix letter (A, B, CA, or CB) indicates  
the ADC core that is being trimmed. CA  
indicates the timing trim in background  
calibration mode for ADC C when standing in  
for ADC A, whereas CB is the timing trim for  
ADC C when standing in for ADC B.  
TADJ_A, TADJ_B, TADJ_CA, TADJ_CB  
The middle letter (A, B, or C) indicates the  
ADC core that is being trimmed. FG indicates  
a trim for foreground calibration while BG  
indicates background calibration. The suffix  
of 0 or 90 indicates the clock phase applied  
to the ADC core. 0 indicates a 0° clock and is  
sampling in-phase with the clock input. 90  
indicates a 90° clock and therefore is  
TADJ_A_FG90, TADJ_B_FG0,  
TADJ_A_BG90, TADJ_C_BG0,  
TADJ_C_BG90, TADJ_B_BG0  
Inter-ADC core timing (single-channel mode)  
sampling out-of-phase with the clock input.  
These timings must be trimmed for optimal  
performance if the user prefers to use INB± in  
single-channel mode. These timings are  
trimmed for INA± at the factory.  
7.4.9 Offset Filtering  
The ADC12DJ3200QML-SP has an additional feature that can be enabled to reduce offset-related interleaving  
spurs at fS / 2 and fS / 4 (single input mode only). Offset filtering is enabled via CAL_OSFILT. The OSFILT_BW  
and OSFILT_SOAK parameters can be adjusted to tradeoff offset spur reduction with potential impact on  
information in the mission mode signal being processed. Set these two parameters to the same value under  
most situations. The DC_RESTORE setting is used to either retain or filter out all DC-related content in the  
signal.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.5 Programming  
7.5.1 Using the Serial Interface  
The serial interface is accessed using the following four pins: serial clock (SCLK), serial data in (SDI), serial data  
out (SDO), and serial interface chip-select ( SCS). Register access is enabled through the SCS pin.  
7.5.1.1 SCS  
This signal must be asserted low to access a register through the serial interface. Setup and hold times with  
respect to the SCLK must be observed.  
7.5.1.2 SCLK  
Serial data input is accepted at the rising edge of this signal. SCLK has no minimum frequency requirement.  
7.5.1.3 SDI  
Each register access requires a specific 24-bit pattern at this input. This pattern consists of a read-and-write  
(R/W) bit, register address, and register value. The data are shifted in MSB first and multi-byte registers are  
always in little-endian format (least significant byte stored at the lowest address). Setup and hold times with  
respect to the SCLK must be observed (see the Timing requirements table).  
7.5.1.4 SDO  
The SDO signal provides the output data requested by a read command. This output is high impedance during  
write bus cycles and during the read bit and register address portion of read bus cycles.  
As shown in 7-24, each register access consists of 24 bits. The first bit is high for a read and low for a write.  
The next 15 bits are the address of the register that is to be written to. During write operations, the last eight bits  
are the data written to the addressed register. During read operations, the last eight bits on SDI are ignored and,  
during this time, the SDO outputs the data from the addressed register. 7-24 shows the serial protocol details.  
Single Register Access  
SCS  
1
8
16  
17  
24  
SCLK  
SDI  
Command Field  
Data Field  
R/W A14 A13 A12 A11 A10 A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1 A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1 D0  
Data Field  
High Z  
High Z  
SDO  
(read mode)  
D7  
D6  
D5  
D4  
D3 D2  
D1  
D0  
7-24. Serial Interface Protocol: Single Read/Write  
Copyright © 2021 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.5.1.5 Streaming Mode  
The serial interface supports streaming reads and writes. In this mode, the initial 24 bits of the transaction  
specifics the access type, register address, and data value as normal. Additional clock cycles of write or read  
data are immediately transferred, as long as the SCS input is maintained in the asserted (logic low) state. The  
register address auto increments (default) or decrements for each subsequent 8-bit transfer of the streaming  
transaction. The ADDR_ASC bit (register 000h, bits 5 and 2) controls whether the address value ascends  
(increments) or descends (decrements). Streaming mode can be disabled by setting the ADDR_HOLD bit (see  
the user SPI configuration register). 7-25 shows the streaming mode transaction details.  
Multiple Register Access  
SCS  
1
8
16  
17  
24  
25  
32  
SCLK  
SDI  
Command Field  
Data Field (write mode)  
D4 D3 D2 D1  
Data Field (write mode)  
D5 D4 D3 D2  
A1  
1
R/W A14 A13 A12  
A10 A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D0  
D7  
D6  
D1  
D0  
Data Field  
D4 D3 D2  
Data Field  
D3 D2  
High Z  
High Z  
SDO  
(read mode)  
D7  
D6  
D5  
D4  
D1  
D0  
D7  
D6  
D5  
D1  
D0  
7-25. Serial Interface Protocol: Streaming Read and Write  
See the 7.6 section for detailed information regarding the registers.  
Note  
The serial interface must not be accessed during ADC calibration. Accessing the serial interface  
during this time impairs the performance of the device until the device is calibrated correctly. Writing or  
reading the serial registers also reduces dynamic ADC performance for the duration of the register  
access time.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: ADC12DJ3200QML-SP  
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.6 Register Maps  
Memory Map lists all the ADC12DJ3200QML-SP registers.  
7-44.  
ADDRESS  
RESET  
ACRONYM  
TYPE  
REGISTER NAME  
STANDARD SPI-3.0 (0x000 to 0x00F)  
0x000  
0x001  
0x30  
Undefined  
0x00  
CONFIG_A  
RESERVED  
DEVICE_CONFIG  
CHIP_TYPE  
CHIP_ID  
R/W  
R
Configuration A Register  
RESERVED  
0x002  
R/W  
R
Device Configuration Register  
Chip Type Register  
Chip ID Registers  
Chip Version Register  
RESERVED  
0x003  
0x03  
0x004-0x005  
0x006  
0x0020  
0x0A  
R
CHIP_VERSION  
RESERVED  
VENDOR_ID  
RESERVED  
R
0x007-0x00B  
0x00C-0x00D  
0x00E-0x00F  
Undefined  
0x0451  
Undefined  
R
R
Vendor Identification Register  
RESERVED  
R
USER SPI CONFIGURATION (0x010 to 0x01F)  
0x010  
0x00  
USR0  
R/W  
R
User SPI Configuration Register  
RESERVED  
0x011-0x01F  
Undefined  
RESERVED  
MISCELLANEOUS ANALOG REGISTERS (0x020 to 0x047)  
0x020-0x028  
0x029  
Undefined  
0x00  
RESERVED  
CLK_CTRL0  
CLK_CTRL1  
RESERVED  
SYSREF_POS  
RESERVED  
FS_RANGE_A  
FS_RANGE_B  
RESERVED  
BG_BYPASS  
RESERVED  
TMSTP_CTRL  
RESERVED  
R
R/W  
R/W  
R
RESERVED  
Clock Control Register 0  
Clock Control Register 1  
RESERVED  
0x02A  
0x20  
0x02B  
Undefined  
Undefined  
Undefined  
0xA000  
0xA000  
Undefined  
0x00  
0x02C-0x02E  
0x02F  
R
SYSREF Capture Position Register  
RESERVED  
R
0x030-0x031  
0x032-0x033  
0x034-0x037  
0x038  
R/W  
R/W  
R
INA Full-Scale Range Adjust Register  
INB Full-Scale Range Adjust Register  
RESERVED  
R/W  
R
Internal Reference Bypass Register  
RESERVED  
0x039-0x03A  
0x03B  
Undefined  
0x00  
R/W  
R
TMSTP± Control Register  
RESERVED  
0x03C-0x047  
Undefined  
SERIALIZER REGISTERS (0x048 to 0x05F)  
0x048  
0x00  
SER_PE  
R/W  
R
Serializer Pre-Emphasis Control Register  
RESERVED  
0x049-0x05F  
Undefined  
RESERVED  
CALIBRATION REGISTERS (0x060 to 0x0FF)  
0x060  
0x061  
0x01  
0x01  
INPUT_MUX  
CAL_EN  
R/W  
R/W  
R/W  
R
Input Mux Control Register  
Calibration Enable Register  
Calibration Configuration 0 Register  
RESERVED  
0x062  
0x01  
CAL_CFG0  
0x063-0x069  
0x06A  
Undefined  
Undefined  
0x00  
RESERVED  
CAL_STATUS  
CAL_PIN_CFG  
CAL_SOFT_TRIG  
RESERVED  
CAL_LP  
R
Calibration Status Register  
Calibration Pin Configuration Register  
Calibration Software Trigger Register  
RESERVED  
0x06B  
R/W  
R/W  
R
0x06C  
0x01  
0x06D  
Undefined  
0x88  
0x06E  
R/W  
R
Low-Power Background Calibration Register  
RESERVED  
0x06F  
Undefined  
0x00  
RESERVED  
CAL_DATA_EN  
0x070  
R/W  
Calibration Data Enable Register  
Copyright © 2021 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7-44. (continued)  
ADDRESS  
0x071  
RESET  
ACRONYM  
CAL_DATA  
RESERVED  
GAIN_TRIM_A  
GAIN_TRIM_B  
BG_TRIM  
TYPE  
REGISTER NAME  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
R/W  
R
Calibration Data Register  
RESERVED  
0x072-0x079  
0x07A  
R/W  
R/W  
R/W  
R
Channel A Gain Trim Register  
Channel B Gain Trim Register  
Band-Gap Reference Trim Register  
RESERVED  
0x07B  
0x07C  
0x07D  
RESERVED  
RTRIM_A  
0x07E  
R/W  
R/W  
VINA Input Resistor Trim Register  
VINB Input Resistor Trim Register  
0x07F  
RTRIM_B  
Timing Adjustment for A-ADC, Single-Channel Mode,  
Foreground Calibration Register  
0x080  
0x081  
0x082  
0x083  
0x084  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
TADJ_A_FG90  
TADJ_B_FG0  
TADJ_A_BG90  
TADJ_C_BG0  
TADJ_C_BG90  
R/W  
R/W  
R/W  
R/W  
R/W  
Timing Adjustment for B-ADC, Single-Channel Mode,  
Foreground Calibration Register  
Timing Adjustment for A-ADC, Single-Channel Mode,  
Background Calibration Register  
Timing Adjustment for C-ADC, Single-Channel Mode,  
Background Calibration Register  
Timing Adjustment for C-ADC, Single-Channel Mode,  
Background Calibration Register  
Timing Adjustment for B-ADC, Single-Channel Mode,  
Background Calibration Register  
0x085  
0x086  
0x087  
Undefined  
Undefined  
Undefined  
TADJ_B_BG0  
TADJ_A  
R/W  
R/W  
R/W  
Timing Adjustment for A-ADC, Dual-Channel Mode Register  
Timing Adjustment for C-ADC Acting for A-ADC, Dual-  
Channel Mode Register  
TADJ_CA  
Timing Adjustment for C-ADC Acting for B-ADC, Dual-  
Channel Mode Register  
0x088  
Undefined  
TADJ_CB  
R/W  
0x089  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
0x00  
TADJ_B  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Timing Adjustment for B-ADC, Dual-Channel Mode Register  
Offset Adjustment for A-ADC and INA Register  
Offset Adjustment for A-ADC and INB Register  
Offset Adjustment for C-ADC and INA Register  
Offset Adjustment for C-ADC and INB Register  
Offset Adjustment for B-ADC and INA Register  
Offset Adjustment for B-ADC and INB Register  
RESERVED  
0x08A-0x08B  
0x08C-0x08D  
0x08E-0x08F  
0x090-0x091  
0x092-0x093  
0x094-0x095  
0x096  
OADJ_A_INA  
OADJ_A_INB  
OADJ_C_INA  
OADJ_C_INB  
OADJ_B_INA  
OADJ_B_INB  
RESERVED  
OSFILT0  
0x097  
R/W  
R/W  
R
Offset Filtering Control 0  
0x098  
0x33  
OSFILT1  
Offset Filtering Control 1  
0x099-0x0FF  
Undefined  
RESERVED  
RESERVED  
ADC BANK REGISTERS (0x100 to 0x15F)  
0x100-0x101  
0x102  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
RESERVED  
B0_TIME_0  
B0_TIME_90  
RESERVED  
B1_TIME_0  
B1_TIME_90  
RESERVED  
B2_TIME_0  
B2_TIME_90  
RESERVED  
B3_TIME_0  
R
RESERVED  
R/W  
R/W  
R
Timing Adjustment for Bank 0 (0° Clock) Register  
Timing Adjustment for Bank 0 (90° Clock) Register  
RESERVED  
0x103  
0x104-0x111  
0x112  
R/W  
R/W  
R
Timing Adjustment for Bank 1 (0° Clock) Register  
Timing Adjustment for Bank 1 (90° Clock) Register  
RESERVED  
0x113  
0x114-0x121  
0x122  
R/W  
R/W  
R
Timing Adjustment for Bank 2 (0° Clock) Register  
Timing Adjustment for Bank 2 (90° Clock) Register  
RESERVED  
0x123  
0x124-0x131  
0x132  
R/W  
Timing Adjustment for Bank 3 (0° Clock) Register  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: ADC12DJ3200QML-SP  
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7-44. (continued)  
ADDRESS  
0x133  
RESET  
ACRONYM  
B3_TIME_90  
RESERVED  
B4_TIME_0  
B4_TIME_90  
RESERVED  
B5_TIME_0  
B5_TIME_90  
RESERVED  
TYPE  
REGISTER NAME  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
R/W  
R
Timing Adjustment for Bank 3 (90° Clock) Register  
RESERVED  
0x134-0x141  
0x142  
R/W  
R/W  
R
Timing Adjustment for Bank 4 (0° Clock) Register  
Timing Adjustment for Bank 4 (90° Clock) Register  
RESERVED  
0x143  
0x144-0x151  
0x152  
R/W  
R/W  
R
Timing Adjustment for Bank 5 (0° Clock) Register  
Timing Adjustment for Bank 5 (90° Clock) Register  
RESERVED  
0x153  
0x154-0x15F  
LSB CONTROL REGISTERS (0x160 to 0x1FF)  
0x160  
0x00  
ENC_LSB  
R/W  
R
LSB Control Bit Output Register  
RESERVED  
0x161-0x1FF  
Undefined  
RESERVED  
JESD204B REGISTERS (0x200 to 0x20F)  
0x200  
0x201  
0x01  
0x02  
JESD_EN  
JMODE  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
JESD204B Enable Register  
JESD204B Mode (JMODE) Register  
JESD204B K Parameter Register  
JESD204B Manual SYNC Request Register  
JESD204B Control Register  
0x202  
0x1F  
KM1  
0x203  
0x01  
JSYNC_N  
JCTRL  
0x204  
0x02  
0x205  
0x00  
JTEST  
JESD204B Test Pattern Control Register  
JESD204B DID Parameter Register  
JESD204B Frame Character Register  
JESD204B, System Status Register  
JESD204B Channel Power-Down  
JESD204B Extra Lane Enable (Link A)  
JESD204B Extra Lane Enable (Link B)  
RESERVED  
0x206  
0x00  
DID  
0x207  
0x00  
FCHAR  
0x208  
Undefined  
0x00  
JESD_STATUS  
PD_CH  
0x209  
0x20A  
0x00  
JEXTRA_A  
JEXTRA_B  
RESERVED  
0x20B  
0x00  
0x20C-0x20F  
Undefined  
DIGITAL DOWN CONVERTER REGISTERS (0x210-0x2AF)  
0x210  
0x211  
0x00  
0xF2  
DDC_CFG  
OVR_T0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
DDC Configuration Register  
Overrange Threshold 0 Register  
Overrange Threshold 1 Register  
Overrange Configuration Register  
DDC Configuration Preset Mode Register  
DDC Configuration Preset Select Register  
Digital Channel Binding Register  
Rational NCO Reference Divisor Register  
NCO Synchronization Register  
RESERVED  
0x212  
0xAB  
OVR_T1  
0x213  
0x07  
OVR_CFG  
CMODE  
0x214  
0x00  
0x215  
0x00  
CSEL  
0x216  
0x02  
DIG_BIND  
NCO_RDIV  
NCO_SYNC  
RESERVED  
FREQA0  
0x217-0x218  
0x219  
0x0000  
0x02  
0x21A-0x21F  
0x220-0x223  
0x224-0x225  
0x226-0x227  
0x228-0x22B  
0x22C-0x22D  
0x22E-0x22F  
0x230-0x233  
0x234-0x235  
0x236-0x237  
Undefined  
0xC0000000  
0x0000  
Undefined  
0xC0000000  
0x0000  
Undefined  
0xC0000000  
0x0000  
Undefined  
R/W  
R/W  
R
NCO Frequency (DDC A Preset 0)  
NCO Phase (DDC A Preset 0)  
RESERVED  
PHASEA0  
RESERVED  
FREQA1  
R/W  
R/W  
R
NCO Frequency (DDC A Preset 1)  
NCO Phase (DDC A Preset 1)  
RESERVED  
PHASEA1  
RESERVED  
FREQA2  
R/W  
R/W  
R
NCO Frequency (DDC A Preset 2)  
NCO Phase (DDC A Preset 2)  
RESERVED  
PHASEA2  
RESERVED  
Copyright © 2021 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7-44. (continued)  
ADDRESS  
0x238-0x23B  
0x23C-0x23D  
0x23E-0x23F  
0x240-0x243  
0x244-0x245  
0x246-0x247  
0x248-0x24B  
0x24C-0x24D  
0x24E-0x24F  
0x250-0x253  
0x254-0x255  
0x256-0x257  
0x258-0x25B  
0x25C-0x25D  
0x25E-0x296  
0x297  
RESET  
0xC0000000  
0x0000  
ACRONYM  
FREQA3  
TYPE  
REGISTER NAME  
R/W  
R/W  
R
NCO Frequency (DDC A Preset 3)  
NCO Phase (DDC A Preset 3)  
RESERVED  
PHASEA3  
RESERVED  
FREQB0  
Undefined  
0xC0000000  
0x0000  
R/W  
R/W  
R
NCO Frequency (DDC B Preset 0)  
NCO Phase (DDC B Preset 0)  
RESERVED  
PHASEB0  
RESERVED  
FREQB1  
Undefined  
0xC0000000  
0x0000  
R/W  
R/W  
R
NCO Frequency (DDC B Preset 1)  
NCO Phase (DDC B Preset 1)  
RESERVED  
PHASEB1  
RESERVED  
FREQB2  
Undefined  
0xC0000000  
0x0000  
R/W  
R/W  
R
NCO Frequency (DDC B Preset 2)  
NCO Phase (DDC B Preset 2)  
RESERVED  
PHASEB2  
RESERVED  
FREQB3  
Undefined  
0xC0000000  
0x0000  
R/W  
R/W  
R
NCO Frequency (DDC B Preset 3)  
NCO Phase (DDC B Preset 3)  
RESERVED  
PHASEB3  
RESERVED  
SPIN_ID  
Undefined  
Undefined  
Undefined  
R
Spin Identification Value  
RESERVED  
0x298-0x2AF  
RESERVED  
R
SYSREF CALIBRATION REGISTERS (0x2B0 to 0x2BF)  
0x2B0  
0x2B1  
0x00  
0x05  
SRC_EN  
SRC_CFG  
SRC_STATUS  
TAD  
R/W  
R/W  
R
SYSREF Calibration Enable Register  
SYSREF Calibration Configuration Register  
SYSREF Calibration Status  
0x2B2-0x2B4  
0x2B5-0x2B7  
0x2B8  
Undefined  
0x00  
R/W  
R/W  
R
DEVCLK Aperture Delay Adjustment Register  
DEVCLK Timing Adjust Ramp Control Register  
RESERVED  
0x00  
TAD_RAMP  
RESERVED  
0x2B9-0x2BF  
Undefined  
ALARM REGISTERS (0x2C0 to 0x2C2)  
0x2C0  
0x2C1  
0x2C2  
Undefined  
0x1F  
ALARM  
R
Alarm Interrupt Status Register  
Alarm Status Register  
ALM_STATUS  
ALM_MASK  
R/W  
R/W  
0x1F  
Alarm Mask Register  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: ADC12DJ3200QML-SP  
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.6.1 Register Descriptions  
7.6.1.1 Standard SPI-3.0 (0x000 to 0x00F)  
7-45. Standard SPI-3.0 Registers  
ADDRESS  
0x000  
RESET  
0x30  
ACRONYM  
CONFIG_A  
RESERVED  
REGISTER NAME  
Configuration A Register  
RESERVED  
SECTION  
7.6.1.2  
0x001  
Undefined  
0x00  
0x002  
DEVICE_CONFIG Device Configuration Register  
7.6.1.3  
7.6.1.4  
7.6.1.5  
7.6.1.6  
0x003  
0x03  
CHIP_TYPE  
CHIP_ID  
Chip Type Register  
Chip ID Registers  
0x004-0x005  
0x006  
0x0020  
0x0A  
CHIP_VERSION Chip Version Register  
0x007-0x00B  
0x00C-0x00D  
0x00E-0x00F  
Undefined  
0x0451  
Undefined  
RESERVED  
VENDOR_ID  
RESERVED  
RESERVED  
Vendor Identification Register  
RESERVED  
7.6.1.7  
7.6.1.2 Configuration A Register (address = 0x000) [reset = 0x30]  
7-14. Configuration A Register (CONFIG_A)  
7
6
5
4
3
2
1
0
SOFT_RESET  
R/W-0  
RESERVED  
R-0  
ADDR_ASC  
R/W-1  
SDO_ACTIVE  
R-1  
RESERVED  
R-0000  
7-46. CONFIG_A Field Descriptions  
Bit  
Field  
SOFT_RESET  
Type  
Reset  
Description  
7
R/W  
0
Setting this bit results in a full reset of the device. This bit is self-  
clearing. After writing this bit, the device may take up to 750 ns  
to reset. During this time, do not perform any SPI transactions.  
6
5
RESERVED  
ADDR_ASC  
R
0
1
RESERVED  
R/W  
0: Descend decrement address while streaming reads/writes  
1: Ascend increment address while streaming reads/writes  
(default)  
4
SDO_ACTIVE  
RESERVED  
R
R
1
Always returns 1, indicating that the device always uses 4-wire  
SPI mode.  
3-0  
0000  
RESERVED  
Copyright © 2021 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.6.1.3 Device Configuration Register (address = 0x002) [reset = 0x00]  
7-15. Device Configuration Register (DEVICE_CONFIG)  
7
6
5
4
3
2
1
0
RESERVED  
R-0000 00  
MODE  
R/W-00  
7-47. DEVICE_CONFIG Field Descriptions  
Bit  
7-2  
1-0  
Field  
Type  
Reset  
0000 00  
00  
Description  
RESERVED  
MODE  
R
RESERVED  
R/W  
The SPI 3.0 specification lists 1 as the low-power functional  
mode, 2 as the low-power fast resume, and 3 as power-down.  
This device does not support these modes.  
0: Normal operation full power and full performance (default)  
1: Normal operation full power and full performance  
2: Power down - everything is powered down. Only use this  
setting for brief periods of time to calibrate the on-chip  
temperature diode measurement. See the 6.3 table for more  
information.  
3: Power down - everything is powered down. Only use this  
setting for brief periods of time to calibrate the on-chip  
temperature diode measurement. See the 6.3 table for more  
information.  
7.6.1.4 Chip Type Register (address = 0x003) [reset = 0x03]  
7-16. Chip Type Register (CHIP_TYPE)  
7
6
5
4
3
2
1
0
RESERVED  
R-0000  
CHIP_TYPE  
R-0011  
7-48. CHIP_TYPE Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
Reset  
0000  
0011  
Description  
RESERVED  
CHIP_TYPE  
R
RESERVED  
R
Always returns 0x3, indicating that the device is a high-speed  
ADC.  
7.6.1.5 Chip ID Register (address = 0x004 to 0x005) [reset = 0x0020]  
7-17. Chip ID Register (CHIP_ID)  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
CHIP_ID[15:8]  
R-0x00h  
7
6
5
4
3
CHIP_ID[7:0]  
R-0x20h  
7-49. CHIP_ID Field Descriptions  
Bit  
15-0  
Field  
Type  
Reset  
Description  
CHIP_ID  
R
0x0020h  
Always returns 0x0020, indicating that this device is an  
ADC12DJ3200QML-SP device.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.6.1.6 Chip Version Register (address = 0x006) [reset = 0x01]  
7-18. Chip Version Register (CHIP_VERSION)  
7
6
5
4
3
2
1
0
CHIP_VERSION  
R-0000 1010  
7-50. CHIP_VERSION Field Descriptions  
Bit  
Field  
CHIP_VERSION  
Type  
Reset  
Description  
7-0  
R
0000 1010 Chip version, returns 0x0A.  
7.6.1.7 Vendor Identification Register (address = 0x00C to 0x00D) [reset = 0x0451]  
7-19. Vendor Identification Register (VENDOR_ID)  
15  
14  
13  
12  
11  
10  
9
1
8
0
VENDOR_ID[15:8]  
R-0x04h  
7
6
5
4
3
2
VENDOR_ID[7:0]  
R-0x51h  
7-51. VENDOR_ID Field Descriptions  
Bit  
15-0  
Field  
VENDOR_ID  
Type  
Reset  
Description  
R
0x0451h  
Always returns 0x0451 (TI vendor ID).  
7.6.1.8 User SPI Configuration (0x010 to 0x01F)  
7-52. User SPI Configuration Registers  
ADDRESS  
RESET  
ACRONYM  
REGISTER NAME  
User SPI Configuration Register  
RESERVED  
SECTION  
7.6.1.9  
0x010  
0x00  
USR0  
0x011-0x01F  
Undefined  
RESERVED  
7.6.1.9 User SPI Configuration Register (address = 0x010) [reset = 0x00]  
7-20. User SPI Configuration Register (USR0)  
7
6
5
4
3
2
1
0
RESERVED  
R-0000 000  
ADDR_HOLD  
R/W-0  
7-53. USR0 Field Descriptions  
Bit  
7-1  
0
Field  
Type  
R/W  
R/W  
Reset  
0000 000  
0
Description  
RESERVED  
RESERVED  
ADDR_HOLD  
0: Use the ADDR_ASC bit to define what happens to the  
address during streaming (default)  
1: Address remains static throughout streaming operation; this  
setting is useful for reading/writing calibration vector information  
at the CAL_DATA register  
Copyright © 2021 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.6.1.10 Miscellaneous Analog Registers (0x020 to 0x047)  
7-54. Miscellaneous Analog Registers  
ADDRESS  
0x020-0x028  
0x029  
RESET  
Undefined  
0x00  
ACRONYM  
RESERVED  
CLK_CTRL0  
CLK_CTRL1  
RESERVED  
REGISTER NAME  
SECTION  
RESERVED  
7.6.1.11  
7.6.1.12  
Clock Control Register 0  
Clock Control Register 1  
RESERVED  
0x02A  
0x20  
0x02B  
Undefined  
Undefined  
Undefined  
0xA000  
0xA000  
Undefined  
0x00  
0x02C-0x02E  
0x02F  
SYSREF_POS SYSREF Capture Position Register  
RESERVED RESERVED  
7.6.1.13  
0x030-0x031  
0x032-0x033  
0x034-0x037  
0x038  
FS_RANGE_A INA Full-Scale Range Adjust Register  
FS_RANGE_B INB Full-Scale Range Adjust Register  
7.6.1.14  
7.6.1.15  
RESERVED  
BG_BYPASS  
RESERVED  
SYNC_CTRL  
RESERVED  
RESERVED  
Internal Reference Bypass Register  
RESERVED  
7.6.1.16  
0x039-0x03A  
0x03B  
Undefined  
0x00  
TMSTP± Control Register  
RESERVED  
7.6.1.17  
0x03C-0x047  
Undefined  
7.6.1.11 Clock Control Register 0 (address = 0x029) [reset = 0x00]  
7-21. Clock Control Register 0 (CLK_CTRL0)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0  
SYSREF_PROC_EN SYSREF_RECV_EN  
R/W-0 R/W-0  
SYSREF_ZOOM  
R/W-0  
SYSREF_SEL  
R/W-0000  
7-55. CLK_CTRL0 Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7
6
RESERVED  
0
0
RESERVED  
SYSREF_PROC_EN  
This bit enables the SYSREF processor. This bit must be set to  
allow the device to process SYSREF events.  
SYSREF_RECV_EN must be set before setting  
SYSREF_PROC_EN.  
5
4
SYSREF_RECV_EN  
SYSREF_ZOOM  
R/W  
R/W  
0
0
Set this bit to enable the SYSREF receiver circuit.  
Set this bit to zoom in the SYSREF strobe status (affects  
SYSREF_POS).  
3-0  
SYSREF_SEL  
R/W  
0000  
Set this field to select which SYSREF delay to use. Set this field  
based on the results returned by SYSREF_POS. Set this field to  
0 to use SYSREF calibration.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.6.1.12 Clock Control Register 1 (address = 0x02A) [reset = 0x00]  
7-22. Clock Control Register 1 (CLK_CTRL1)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0010 0  
DEVCLK_LVPECL_EN SYSREF_LVPECL_EN SYSREF_INVERTED  
R/W-0 R/W-0 R/W-0  
7-56. CLK_CTRL1 Field Descriptions  
Bit  
7-3  
2
Field  
RESERVED  
Type  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
0010 0  
RESERVED  
DEVCLK_LVPECL_EN  
SYSREF_LVPECL_EN  
SYSREF_INVERTED  
0
0
0
Activate low-voltage PECL mode for DEVCLK.  
Activate low-voltage PECL mode for SYSREF.  
Inverts the SYSREF signal used for alignment.  
1
0
7.6.1.13 SYSREF Capture Position Register (address = 0x02C-0x02E) [reset = Undefined]  
7-23. SYSREF Capture Position Register (SYSREF_POS)  
23  
15  
7
22  
14  
6
21  
13  
5
20  
19  
18  
10  
2
17  
16  
SYSREF_POS[23:16]  
R-Undefined  
12  
11  
9
8
0
SYSREF_POS[15:8]  
R-Undefined  
4
3
1
SYSREF_POS[7:0]  
R-Undefined  
7-57. SYSREF_POS Field Descriptions  
Bit  
23-0  
Field  
SYSREF_POS  
Type  
Reset  
Description  
R
Undefined This field returns a 24-bit status value that indicates the position  
of the SYSREF edge with respect to DEVCLK. Use this field to  
program SYSREF_SEL.  
7.6.1.14 INA Full-Scale Range Adjust Register (address = 0x030-0x031) [reset = 0xA000]  
7-24. INA Full-Scale Range Adjust Register (FS_RANGE_A)  
15  
14  
13  
12  
11  
10  
9
8
0
FS_RANGE_A[15:8]  
R/W-0xA0h  
7
6
5
4
3
2
1
FS_RANGE_A[7:0]  
R/W-0x00h  
7-58. FS_RANGE_A Field Descriptions  
Bit  
15-0  
Field  
FS_RANGE_A  
Type  
Reset  
Description  
R/W  
0xA000h  
This field enables adjustment of the analog full-scale range for  
INA.  
0x0000: Settings below 0x2000 may result in degraded device  
performance  
0x2000: 500 mVPP - Recommended minimum setting  
0xA000: 800 mVPP (default)  
0xFFFF: 1000 mVPP  
Copyright © 2021 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.6.1.15 INB Full-Scale Range Adjust Register (address = 0x032-0x033) [reset = 0xA000]  
7-25. INB Full Scale Range Adjust Register (FS_RANGE_B)  
15  
14  
13  
12  
11  
10  
9
8
0
FS_RANGE_B[15:8]  
R/W-0xA0  
7
6
5
4
3
2
1
FS_RANGE_B[7:0]  
R/W-0x00  
7-59. FS_RANGE_B Field Descriptions  
Bit  
15-0  
Field  
FS_RANGE_B  
Type  
Reset  
Description  
R/W  
0xA000h  
This field enables adjustment of the analog full-scale range for  
INB.  
0x0000: Settings below 0x2000 may result in degraded device  
performance  
0x2000: 500 mVPP - Recommended minimum setting  
0xA000: 800 mVPP (default)  
0xFFFF: 1000 mVPP  
7.6.1.16 Internal Reference Bypass Register (address = 0x038) [reset = 0x00]  
7-26. Internal Reference Bypass Register (BG_BYPASS)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000 000  
BG_BYPASS  
R/W-0  
7-60. BG_BYPASS Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
0000 000  
0
Description  
7-1  
0
RESERVED  
BG_BYPASS  
RESERVED  
When set, VA11 is used as the voltage reference instead of the  
internal reference.  
7.6.1.17 TMSTP± Control Register (address = 0x03B) [reset = 0x00]  
7-27. TMSTP± Control Register (TMSTP_CTRL)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000 00  
TMSTP_LVPECL_EN  
R/W-0  
TMSTP_RECV_EN  
R/W-0  
7-61. TMSTP_CTRL Field Descriptions  
Bit  
7-2  
1
Field  
Type  
R/W  
R/W  
Reset  
0000 00  
0
Description  
RESERVED  
RESERVED  
TMSTP_LVPECL_EN  
When set, this bit activates the low-voltage PECL mode for the  
differential TMSTP± input.  
0
TMSTP_RECV_EN  
R/W  
0
This bit enables the differential TMSTP± input.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.6.1.18 Serializer Registers (0x048 to 0x05F)  
7-62. Serializer Registers  
ADDRESS  
RESET  
ACRONYM  
REGISTER NAME  
SECTION  
0x048  
0x00  
SER_PE  
Serializer Pre-Emphasis Control  
Register  
7.6.1.19  
0x049-0x05F  
Undefined  
RESERVED  
RESERVED  
7.6.1.19 Serializer Pre-Emphasis Control Register (address = 0x048) [reset = 0x00]  
7-28. Serializer Pre-Emphasis Control Register (SER_PE)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000  
SER_PE  
R/W-0000  
7-63. SER_PE Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
R/W  
R/W  
Reset  
0000  
0000  
Description  
RESERVED  
SER_PE  
RESERVED  
This field sets the pre-emphasis for the serial lanes to  
compensate for the low-pass response of the PCB trace. This  
setting is a global setting that affects all 16 lanes.  
Copyright © 2021 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.6.1.20 Calibration Registers (0x060 to 0x0FF)  
7-64. Calibration Registers  
ADDRESS  
0x060  
RESET  
0x01  
ACRONYM  
INPUT_MUX  
CAL_EN  
REGISTER NAME  
Input Mux Control Register  
Calibration Enable Register  
Calibration Configuration 0 Register  
RESERVED  
SECTION  
7.6.1.21  
7.6.1.22  
7.6.1.23  
0x061  
0x01  
0x062  
0x01  
CAL_CFG0  
RESERVED  
CAL_STATUS  
0x063-0x069  
0x06A  
Undefined  
Undefined  
0x00  
Calibration Status Register  
7.6.1.24  
7.6.1.25  
7.6.1.26  
0x06B  
CAL_PIN_CFG Calibration Pin Configuration Register  
CAL_SOFT_TRIG Calibration Software Trigger Register  
0x06C  
0x01  
0x06D  
Undefined  
0x88  
RESERVED  
CAL_LP  
RESERVED  
0x06E  
Low-Power Background Calibration  
Register  
7.6.1.27  
0x06F  
0x070  
Undefined  
0x00  
RESERVED  
RESERVED  
CAL_DATA_EN Calibration Data Enable Register  
7.6.1.28  
7.6.1.29  
0x071  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
CAL_DATA  
RESERVED  
Calibration Data Register  
RESERVED  
0x072-0x079  
0x07A  
GAIN_TRIM_A Channel A Gain Trim Register  
GAIN_TRIM_B Channel B Gain Trim Register  
7.6.1.30  
7.6.1.31  
7.6.1.32  
0x07B  
0x07C  
BG_TRIM  
RESERVED  
RTRIM_A  
RTRIM_B  
Band-Gap Reference Trim Register  
RESERVED  
0x07D  
0x07E  
VINA Input Resistor Trim Register  
VINB Input Resistor Trim Register  
7.6.1.33  
7.6.1.34  
7.6.1.35  
0x07F  
0x080  
TADJ_A_FG90 Timing Adjustment for A-ADC, Single-  
Channel Mode, Foreground  
Calibration Register  
0x081  
0x082  
0x083  
0x084  
0x085  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
TADJ_B_FG0  
Timing Adjustment for B-ADC, Single-  
Channel Mode, Foreground  
Calibration Register  
7.6.1.36  
7.6.1.37  
7.6.1.39  
7.6.1.39  
7.6.1.40  
TADJ_A_BG90 Timing Adjustment for A-ADC, Single-  
Channel Mode, Background  
Calibration Register  
TADJ_C_BG0  
Timing Adjustment for C-ADC, Single-  
Channel Mode, Background  
Calibration Register  
TADJ_C_BG90 Timing Adjustment for C-ADC, Single-  
Channel Mode, Background  
Calibration Register  
TADJ_B_BG0  
Timing Adjustment for B-ADC, Single-  
Channel Mode, Background  
Calibration Register  
0x086  
0x087  
Undefined  
Undefined  
TADJ_A  
Timing Adjustment for A-ADC, Dual-  
Channel Mode Register  
7.6.1.41  
7.6.1.42  
TADJ_CA  
Timing Adjustment for C-ADC Acting  
for A-ADC, Dual-Channel Mode  
Register  
0x088  
Undefined  
TADJ_CB  
Timing Adjustment for C-ADC Acting  
for B-ADC, Dual-Channel Mode  
Register  
7.6.1.43  
0x089  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
TADJ_B  
Timing Adjustment for B-ADC, Dual-  
Channel Mode Register  
7.6.1.44  
7.6.1.45  
7.6.1.46  
7.6.1.47  
7.6.1.48  
0x08A-0x08B  
0x08C-0x08D  
0x08E-0x08F  
0x090-0x091  
OADJ_A_INA  
OADJ_A_INB  
OADJ_C_INA  
OADJ_C_INB  
Offset Adjustment for A-ADC and INA  
Register  
Offset Adjustment for A-ADC and INB  
Register  
Offset Adjustment for C-ADC and INA  
Register  
Offset Adjustment for C-ADC and INB  
Register  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: ADC12DJ3200QML-SP  
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7-64. Calibration Registers (continued)  
ADDRESS  
RESET  
ACRONYM  
REGISTER NAME  
SECTION  
0x092-0x093  
Undefined  
OADJ_B_INA  
Offset Adjustment for B-ADC and INA  
Register  
7.6.1.49  
0x094-0x095  
Undefined  
OADJ_B_INB  
Offset Adjustment for B-ADC and INB  
Register  
7.6.1.50  
0x096  
0x097  
Undefined  
0x00  
RESERVED  
0SFILT0  
RESERVED  
Offset Filtering Control 0  
Offset Filtering Control 1  
RESERVED  
7.6.1.51  
7.6.1.52  
0x098  
0x33  
OSFILT1  
0x099-0x0FF  
Undefined  
RESERVED  
7.6.1.21 Input Mux Control Register (address = 0x060) [reset = 0x01]  
7-29. Input Mux Control Register (INPUT_MUX)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-000  
DUAL_INPUT  
R/W-0  
RESERVED  
R/W-00  
SINGLE_INPUT  
R/W-01  
7-65. INPUT_MUX Field Descriptions  
Bit  
7-5  
4
Field  
Type  
R/W  
R/W  
Reset  
000  
0
Description  
RESERVED  
RESERVED  
DUAL_INPUT  
This bit selects inputs for dual-channel modes. If JMODE is  
selecting a single-channel mode, this register has no effect.  
0: A channel samples INA, B channel samples INB (no swap,  
default)  
1: A channel samples INB, B channel samples INA (swap)  
3-2  
1-0  
RESERVED  
R/W  
R/W  
00  
01  
RESERVED  
SINGLE_INPUT  
Thid field defines which input is sampled in single-channel  
mode. If JMODE is not selecting a single-channel mode, this  
register has no effect.  
0: Reserved  
1: INA is used (default)  
2: INB is used  
3: Reserved  
Copyright © 2021 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.6.1.22 Calibration Enable Register (address = 0x061) [reset = 0x01]  
7-30. Calibration Enable Register (CAL_EN)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000 000  
CAL_EN  
R/W-1  
7-66. CAL_EN Field Descriptions  
Bit  
7-1  
0
Field  
Type  
R/W  
R/W  
Reset  
0000 000  
1
Description  
RESERVED  
CAL_EN  
RESERVED  
Calibration enable. Set this bit high to run calibration. Set this bit  
low to hold the calibration in reset to program new calibration  
settings. Clearing CAL_EN also resets the clock dividers that  
clock the digital block and JESD204B interface.  
Some calibration registers require clearing CAL_EN before  
making any changes. All registers with this requirement contain  
a note in their descriptions. After changing the registers, set  
CAL_EN to re-run calibration with the new settings.  
Always set CAL_EN before setting JESD_EN. Always clear  
JESD_EN before clearing CAL_EN.  
7.6.1.23 Calibration Configuration 0 Register (address = 0x062) [reset = 0x01]  
Only change this register when CAL_EN is 0.  
7-31. Calibration Configuration 0 Register (CAL_CFG0)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-000  
CAL_OSFILT  
R/W-0  
CAL_BGOS  
R/W-0  
CAL_OS  
R/W-0  
CAL_BG  
R/W-0  
CAL_FG  
R/W-1  
7-67. CAL_CFG0 Field Descriptions  
Bit  
7-5  
4
Field  
Type  
R/W  
R/W  
R/W  
Reset  
0000  
0
Description  
RESERVED  
CAL_OSFILT  
CAL_BGOS  
RESERVED  
Enable offset filtering by setting this bit high.  
3
0
0 : Disables background offset calibration (default)  
1: Enables background offset calibration (requires CAL_BG to  
be set).  
2
CAL_OS  
R/W  
0
0 : Disables foreground offset calibration (default)  
1: Enables foreground offset calibration (requires CAL_FG to be  
set)  
1
0
CAL_BG  
CAL_FG  
R/W  
R/W  
0
1
0 : Disables background calibration (default)  
1: Enables background calibration  
0 : Resets calibration values, skips foreground calibration  
1: Resets calibration values, then runs foreground calibration  
(default)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.6.1.24 Calibration Status Register (address = 0x06A) [reset = Undefined]  
7-32. Calibration Status Register (CAL_STATUS)  
7
6
5
4
3
2
1
0
RESERVED  
R
CAL_STOPPED  
R
FG_DONE  
R
7-68. CAL_STATUS Field Descriptions  
Bit  
7-2  
1
Field  
Type  
Reset  
Description  
RESERVED  
R
RESERVED  
CAL_STOPPED  
R
This bit returns a 1 when the background calibration has  
successfully stopped at the requested phase. This bit returns a 0  
when calibration starts operating again. If background calibration  
is disabled, this bit is set when foreground calibration is  
completed or skipped.  
0
FG_DONE  
R
This bit is set high when the foreground calibration completes.  
7.6.1.25 Calibration Pin Configuration Register (address = 0x06B) [reset = 0x00]  
7-33. Calibration Pin Configuration Register (CAL_PIN_CFG)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000 0  
CAL_STATUS_SEL  
R/W-00  
CAL_TRIG_EN  
R/W-0  
7-69. CAL_PIN_CFG Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
0000 0  
00  
Description  
7-3  
2-1  
RESERVED  
RESERVED  
CAL_STATUS_SEL  
0: CALSTAT output pin matches FG_DONE  
1: RESERVED  
2: CALSTAT output pin matches ALARM  
3: CALSTAT output pin is always low  
0
CAL_TRIG_EN  
R/W  
0
Choose the hardware or software trigger source with this bit.  
0: Use the CAL_SOFT_TRIG register for the calibration trigger;  
the CAL_TRIG input is disabled (ignored)  
1: Use the CAL_TRIG input for the calibration trigger; the  
CAL_SOFT_TRIG register is ignored  
7.6.1.26 Calibration Software Trigger Register (address = 0x06C) [reset = 0x01]  
7-34. Calibration Software Trigger Register (CAL_SOFT_TRIG)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000 000  
CAL_SOFT_TRIG  
R/W-1  
7-70. CAL_SOFT_TRIG Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
0000 000  
1
Description  
7-1  
0
RESERVED  
RESERVED  
CAL_SOFT_TRIG  
CAL_SOFT_TRIG is a software bit to provide functionality of the  
CAL_TRIG input. Program CAL_TRIG_EN = 0 to use  
CAL_SOFT_TRIG for the calibration trigger. If no calibration  
trigger is needed, leave CAL_TRIG_EN = 0 and  
CAL_SOFT_TRIG = 1 (trigger is set high).  
Copyright © 2021 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.6.1.27 Low-Power Background Calibration Register (address = 0x06E) [reset = 0x88]  
7-35. Low-Power Background Calibration Register (CAL_LP)  
7
6
5
4
3
2
1
0
LP_SLEEP_DLY  
R/W-010  
LP_WAKE_DLY  
R/W-01  
RESERVED  
R/W-0  
LP_TRIG  
R/W-0  
LP_EN  
R/W-0  
7-71. CAL_LP Field Descriptions  
Bit  
Field  
LP_SLEEP_DLY  
Type  
Reset  
Description  
7-5  
R/W  
010  
Adjust how long an ADC sleeps before waking up for calibration  
(only applies when LP_EN = 1 and LP_TRIG = 0). Values below  
4 are not recommended because of limited overall power  
reduction benefits.  
0: Sleep delay = (23 + 1) × 256 × tDEVCLK  
1: Sleep delay = (215 + 1) × 256 × tDEVCLK  
2: Sleep delay = (218 + 1) × 256 × tDEVCLK  
3: Sleep delay = (221 + 1) × 256 × tDEVCLK  
4: Sleep delay = (224 + 1) × 256 × tDEVCLK : default is  
approximately 1338 ms with a 3.2-GHz clock  
5: Sleep delay = (227 + 1) × 256 × tDEVCLK  
6: Sleep delay = (230 + 1) × 256 × tDEVCLK  
7: Sleep delay = (233 + 1) × 256 × tDEVCLK  
4-3  
LP_WAKE_DLY  
R/W  
01  
Adjust how much time is given up for settling before calibrating  
an ADC after wake-up (only applies when LP_EN = 1). Values  
lower than 1 are not recommended because there is insufficient  
time for the core to stabilize before calibration begins.  
0:Wake Delay = (23 + 1) × 256 × tDEVCLK  
1: Wake Delay = (218 + 1) × 256 × tDEVCLK : default is  
approximately 21 ms with a 3.2-GHz clock  
2: Wake Delay = (221 + 1) × 256 × tDEVCLK  
3: Wake Delay = (224 + 1) × 256 × tDEVCLK  
2
1
RESERVED  
LP_TRIG  
R/W  
R/W  
0
0
RESERVED  
0: ADC sleep duration is set by LP_SLEEP_DLY (autonomous  
mode)  
1: ADCs sleep until woken by a trigger; an ADC is awoken when  
the calibration trigger (CAL_SOFT_TRIG bit or CAL_TRIG input)  
is low  
0
LP_EN  
R/W  
0
0: Disables low-power background calibration (default)  
1: Enables low-power background calibration (only applies when  
CAL_BG = 1)  
7.6.1.28 Calibration Data Enable Register (address = 0x070) [reset = 0x00]  
7-36. Calibration Data Enable Register (CAL_DATA_EN)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000 000  
CAL_DATA_EN  
R/W-0  
7-72. CAL_DATA_EN Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
0000 000  
0
Description  
7-1  
0
RESERVED  
RESERVED  
CAL_DATA_EN  
Set this bit to enable the CAL_DATA register to enable reading  
and writing of calibration data; see the 7.6.1.29 for more  
information.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.6.1.29 Calibration Data Register (address = 0x071) [reset = Undefined]  
7-37. Calibration Data Register (CAL_DATA)  
7
6
5
4
3
2
1
0
CAL_DATA  
R/W  
7-73. CAL_DATA Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
CAL_DATA  
R/W  
Undefined After setting CAL_DATA_EN, repeated reads of this register  
return all calibration values for the ADCs. Repeated writes of  
this register input all calibration values for the ADCs. To read the  
calibration data, read the register 673 times. To write the vector,  
write the register 673 times with previously stored calibration  
data.  
To speed up the read/write operation, set ADDR_HOLD = 1 and  
use the streaming read or write process.  
Accessing the CAL_DATA register when CAL_STOPPED = 0  
corrupts the calibration. Also, stopping the process before  
reading or writing 673 times leaved the calibration data in an  
invalid state.  
7.6.1.30 Channel A Gain Trim Register (address = 0x07A) [reset = Undefined]  
7-38. Channel A Gain Trim Register (GAIN_TRIM_A)  
7
6
5
4
3
2
1
0
GAIN_TRIM_A  
R/W  
7-74. GAIN_TRIM_A Field Descriptions  
Bit  
Field  
GAIN_TRIM_A  
Type  
Reset  
Description  
7-0  
R/W  
Undefined This register enables gain trim of channel A. After reset, the  
factory-trimmed value can be read and adjusted as required.  
7.6.1.31 Channel B Gain Trim Register (address = 0x07B) [reset = Undefined]  
7-39. Channel B Gain Trim Register (GAIN_TRIM_B)  
7
6
5
4
3
2
1
0
GAIN_TRIM_B  
R/W  
7-75. GAIN_TRIM_B Field Descriptions  
Bit  
Field  
GAIN_TRIM_B  
Type  
Reset  
Description  
7-0  
R/W  
Undefined This register enables gain trim of channel B. After reset, the  
factory-trimmed value can be read and adjusted as required.  
Copyright © 2021 Texas Instruments Incorporated  
100 Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.6.1.32 Band-Gap Reference Trim Register (address = 0x07C) [reset = Undefined]  
7-40. Band-Gap Reference Trim Register (BG_TRIM)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000  
BG_TRIM  
R/W  
7-76. BG_TRIM Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
BG_TRIM  
0000  
RESERVED  
Undefined This register enables the internal band-gap reference to be  
trimmed. After reset, the factory-trimmed value can be read and  
adjusted as required.  
7.6.1.33 VINA Input Resistor Trim Register (address = 0x07E) [reset = Undefined]  
7-41. VINA Input Resistor Trim Register (RTRIM_A)  
7
6
5
4
3
2
1
0
RTRIM  
R/W  
7-77. RTRIM_A Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
RTRIM_A  
R/W  
Undefined This register controls the VINA ADC input termination trim. After  
reset, the factory-trimmed value can be read and adjusted as  
required.  
7.6.1.34 VINB Input Resistor Trim Register (address = 0x07F) [reset = Undefined]  
7-42. VINB Input Resistor Trim Register (RTRIM_B)  
7
6
5
4
3
2
1
0
RTRIM  
R/W  
7-78. RTRIM_B Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
RTRIM_B  
R/W  
Undefined This register controls the VINB ADC input termination trim. After  
reset, the factory-trimmed value can be read and adjusted as  
required.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 101  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.6.1.35 Timing Adjust for A-ADC, Single-Channel Mode, Foreground Calibration Register (address =  
0x080) [reset = Undefined]  
7-43. Register (TADJ_A_FG90)  
7
6
5
4
3
2
1
0
TADJ_A_FG90  
R/W  
7-79. TADJ_A_FG90 Field Descriptions  
Bit  
Field  
TADJ_A_FG90  
Type  
Reset  
Description  
7-0  
R/W  
Undefined This register (and other subsequent TADJ* registers) are used  
to adjust the sampling instant of each ADC core. Different TADJ  
registers apply to different ADCs under different modes or  
phases of background calibration. After reset, the factory-  
trimmed value can be read and adjusted as required.  
7.6.1.36 Timing Adjust for B-ADC, Single-Channel Mode, Foreground Calibration Register (address =  
0x081) [reset = Undefined]  
7-44. Register (TADJ_B_FG0)  
7
6
5
4
3
2
1
0
TADJ_B_FG0  
R/W  
7-80. TADJ_B_FG0 Field Descriptions  
Bit  
Field  
TADJ_B_FG0  
Type  
Reset  
Description  
7-0  
R/W  
Undefined This register (and other subsequent TADJ* registers) are used  
to adjust the sampling instant of each ADC core. Different TADJ  
registers apply to different ADCs under different modes or  
phases of background calibration. After reset, the factory-  
trimmed value can be read and adjusted as required.  
7.6.1.37 Timing Adjust for A-ADC, Single-Channel Mode, Background Calibration Register (address =  
0x082) [reset = Undefined]  
7-45. Register (TADJ_A_BG90)  
7
6
5
4
3
2
1
0
TADJ_A_BG90  
R/W  
7-81. TADJ_B_FG0 Field Descriptions  
Bit  
Field  
TADJ_A_BG90  
Type  
Reset  
Description  
7-0  
R/W  
Undefined This register (and other subsequent TADJ* registers) are used  
to adjust the sampling instant of each ADC core. Different TADJ  
registers apply to different ADCs under different modes or  
phases of background calibration. After reset, the factory-  
trimmed value can be read and adjusted as required.  
Copyright © 2021 Texas Instruments Incorporated  
102 Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.6.1.38 Timing Adjust for C-ADC, Single-Channel Mode, Background Calibration Register (address =  
0x083) [reset = Undefined]  
7-46. Timing Adjust for C-ADC, Single-Channel Mode, Background Calibration Register (TADJ_C_BG0)  
7
6
5
4
3
2
1
0
TADJ_C_BG0  
R/W  
7-82. TADJ_B_FG0 Field Descriptions  
Bit  
Field  
TADJ_C_BG0  
Type  
Reset  
Description  
7-0  
R/W  
Undefined This register (and other subsequent TADJ* registers) are used  
to adjust the sampling instant of each ADC core. Different TADJ  
registers apply to different ADCs under different modes or  
phases of background calibration. After reset, the factory-  
trimmed value can be read and adjusted as required.  
7.6.1.39 Timing Adjust for C-ADC, Single-Channel Mode, Background Calibration Register (address =  
0x084) [reset = Undefined]  
7-47. Timing Adjust for C-ADC, Single-Channel Mode, Background Calibration Register  
(TADJ_C_BG90)  
7
6
5
4
3
2
1
0
TADJ_C_BG90  
R/W  
7-83. TADJ_B_FG0 Field Descriptions  
Bit  
Field  
TADJ_C_BG90  
Type  
Reset  
Description  
7-0  
R/W  
Undefined This register (and other subsequent TADJ* registers) are used  
to adjust the sampling instant of each ADC core. Different TADJ  
registers apply to different ADCs under different modes or  
phases of background calibration. After reset, the factory-  
trimmed value can be read and adjusted as required.  
7.6.1.40 Timing Adjust for B-ADC, Single-Channel Mode, Background Calibration Register (address =  
0x085) [reset = Undefined]  
7-48. Timing Adjust for B-ADC, Single-Channel Mode, Background Calibration Register (TADJ_B_BG0)  
7
6
5
4
3
2
1
0
TADJ_B_BG0  
R/W  
7-84. TADJ_B_FG0 Field Descriptions  
Bit  
Field  
TADJ_B_BG0  
Type  
Reset  
Description  
7-0  
R/W  
Undefined This register (and other subsequent TADJ* registers) are used  
to adjust the sampling instant of each ADC core. Different TADJ  
registers apply to different ADCs under different modes or  
phases of background calibration. After reset, the factory-  
trimmed value can be read and adjusted as required.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.6.1.41 Timing Adjust for A-ADC, Dual-Channel Mode Register (address = 0x086) [reset = Undefined]  
7-49. Timing Adjust for A-ADC, Dual-Channel Mode Register (TADJ_A)  
7
6
5
4
3
2
1
0
TADJ_A  
R/W  
7-85. TADJ_A Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TADJ_A  
R/W  
Undefined This register (and other subsequent TADJ* registers) are used  
to adjust the sampling instant of each ADC core. Different TADJ  
registers apply to different ADCs under different modes or  
phases of background calibration. After reset, the factory-  
trimmed value can be read and adjusted as required.  
7.6.1.42 Timing Adjust for C-ADC Acting for A-ADC, Dual-Channel Mode Register (address = 0x087)  
[reset = Undefined]  
7-50. Timing Adjust for C-ADC Acting for A-ADC, Dual-Channel Mode Register (TADJ_CA)  
7
6
5
4
3
2
1
0
TADJ_CA  
R/W  
7-86. TADJ_CA Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TADJ_CA  
R/W  
Undefined This register (and other subsequent TADJ* registers) are used  
to adjust the sampling instant of each ADC core. Different TADJ  
registers apply to different ADCs under different modes or  
phases of background calibration. After reset, the factory-  
trimmed value can be read and adjusted as required.  
7.6.1.43 Timing Adjust for C-ADC Acting for B-ADC, Dual-Channel Mode Register (address = 0x088)  
[reset = Undefined]  
7-51. Timing Adjust for C-ADC Acting for B-ADC, Dual-Channel Mode Register (TADJ_CB)  
7
6
5
4
3
2
1
0
TADJ_CB  
R/W  
7-87. TADJ_CB Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TADJ_CB  
R/W  
Undefined This register (and other subsequent TADJ* registers) are used  
to adjust the sampling instant of each ADC core. Different TADJ  
registers apply to different ADCs under different modes or  
phases of background calibration. After reset, the factory-  
trimmed value can be read and adjusted as required.  
Copyright © 2021 Texas Instruments Incorporated  
104 Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.6.1.44 Timing Adjust for B-ADC, Dual-Channel Mode Register (address = 0x089) [reset = Undefined]  
7-52. Timing Adjust for B-ADC, Dual-Channel Mode Register (TADJ_B)  
7
6
5
4
3
2
1
0
TADJ_B  
R/W  
7-88. TADJ_B Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TADJ_B  
R/W  
Undefined This register (and other subsequent TADJ* registers) are used  
to adjust the sampling instant of each ADC core. Different TADJ  
registers apply to different ADCs under different modes or  
phases of background calibration. After reset, the factory-  
trimmed value can be read and adjusted as required.  
7.6.1.45 Offset Adjustment for A-ADC and INA Register (address = 0x08A-0x08B) [reset = Undefined]  
7-53. Offset Adjustment for A-ADC and INA Register (OADJ_A_INA)  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
R/W-0000  
OADJ_A_INA[11:8]  
R/W  
7
6
5
4
3
2
1
0
OADJ_A_INA[7:0]  
R/W  
7-89. OADJ_A_INA Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
15-12  
11-0  
RESERVED  
0000  
RESERVED  
OADJ_A_INA  
Undefined Offset adjustment value for ADC0 (A-ADC) applied when ADC0  
samples INA. The format is unsigned. After reset, the factory-  
trimmed value can be read and adjusted as required.  
Important notes:  
Never write OADJ* registers while foreground calibration is  
underway  
Never write OADJ* registers if CAL_BG and CAL_BGOS  
are set  
If CAL_OS = 1 and CAL_BGOS = 0, only read OADJ*  
registers if FG_DONE = 1  
If CAL_BG = 1 and CAL_BGOS = 1, only read OADJ*  
register if CAL_STOPPED = 1  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 105  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.6.1.46 Offset Adjustment for A-ADC and INB Register (address = 0x08C-0x08D) [reset = Undefined]  
7-54. Offset Adjustment for A-ADC and INB Register (OADJ_A_INB)  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
R/W-0000  
OADJ_A_INB[11:8]  
R/W  
7
6
5
4
3
2
1
0
OADJ_A_INB[7:0]  
R/W  
7-90. OADJ_A_INB Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
15-12  
11-0  
RESERVED  
0000  
RESERVED  
OADJ_A_INB  
Undefined Offset adjustment value for ADC0 (A-ADC) applied when ADC0  
samples INB. The format is unsigned. After reset, the factory-  
trimmed value can be read and adjusted as required.  
Important notes:  
Never write OADJ* registers while foreground calibration is  
underway  
Never write OADJ* registers if CAL_BG and CAL_BGOS  
are set  
If CAL_OS = 1 and CAL_BGOS = 0, only read OADJ*  
registers if FG_DONE = 1  
If CAL_BG = 1 and CAL_BGOS = 1, only read OADJ*  
register if CAL_STOPPED = 1  
7.6.1.47 Offset Adjustment for C-ADC and INA Register (address = 0x08E-0x08F) [reset = Undefined]  
7-55. Offset Adjustment for C-ADC and INA Register (OADJ_C_INA)  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
R/W-0000  
OADJ_C_INA[11:8]  
R/W  
7
6
5
4
3
2
1
0
OADJ_C_INA[7:0]  
R/W  
7-91. OADJ_C_INA Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
15-12  
11-0  
RESERVED  
0000  
RESERVED  
OADJ_C_INA  
Undefined Offset adjustment value for ADC1 (A-ADC) applied when ADC1  
samples INA. The format is unsigned. After reset, the factory-  
trimmed value can be read and adjusted as required.  
Important notes:  
Never write OADJ* registers while foreground calibration is  
underway  
Never write OADJ* registers if CAL_BG and CAL_BGOS  
are set  
If CAL_OS = 1 and CAL_BGOS = 0, only read OADJ*  
registers if FG_DONE = 1  
If CAL_BG = 1 and CAL_BGOS = 1, only read OADJ*  
register if CAL_STOPPED = 1  
Copyright © 2021 Texas Instruments Incorporated  
106 Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.6.1.48 Offset Adjustment for C-ADC and INB Register (address = 0x090-0x091) [reset = Undefined]  
7-56. Offset Adjustment for C-ADC and INB Register (OADJ_C_INB)  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
R/W-0000  
OADJ_C_INB[11:8]  
R/W  
7
6
5
4
3
2
1
0
OADJ_C_INB[7:0]  
R/W  
7-92. OADJ_C_INB Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
15-12  
11-0  
RESERVED  
0000  
RESERVED  
OADJ_C_INB  
Undefined Offset adjustment value for ADC1 (A-ADC) applied when ADC1  
samples INB. The format is unsigned. After reset, the factory-  
trimmed value can be read and adjusted as required.  
Important notes:  
Never write OADJ* registers while foreground calibration is  
underway  
Never write OADJ* registers if CAL_BG and CAL_BGOS  
are set  
If CAL_OS = 1 and CAL_BGOS = 0, only read OADJ*  
registers if FG_DONE = 1  
If CAL_BG = 1 and CAL_BGOS = 1, only read OADJ*  
register if CAL_STOPPED = 1  
7.6.1.49 Offset Adjustment for B-ADC and INA Register (address = 0x092-0x093) [reset = Undefined]  
7-57. Offset Adjustment for B-ADC and INA Register (OADJ_B_INA)  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
R/W-0000  
OADJ_B_INA[11:8]  
R/W  
7
6
5
4
3
2
1
0
OADJ_B_INA[7:0]  
R/W  
7-93. OADJ_B_INA Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
15-12  
11-0  
RESERVED  
0000  
RESERVED  
OADJ_B_INA  
Undefined Offset adjustment value for ADC2 (B-ADC) applied when ADC2  
samples INA. The format is unsigned. After reset, the factory-  
trimmed value can be read and adjusted as required.  
Important notes:  
Never write OADJ* registers while foreground calibration is  
underway  
Never write OADJ* registers if CAL_BG and CAL_BGOS  
are set  
If CAL_OS = 1 and CAL_BGOS = 0, only read OADJ*  
registers if FG_DONE = 1  
If CAL_BG = 1 and CAL_BGOS = 1, only read OADJ*  
register if CAL_STOPPED = 1  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 107  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.6.1.50 Offset Adjustment for B-ADC and INB Register (address = 0x094-0x095) [reset = Undefined]  
7-58. Offset Adjustment for B-ADC and INB Register (OADJ_B_INB)  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
R/W-0000  
OADJ_B_INB[11:8]  
R/W  
7
6
5
4
3
2
1
0
OADJ_B_INB[7:0]  
R/W  
7-94. OADJ_B_INB Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
15-12  
11-0  
RESERVED  
0000  
RESERVED  
OADJ_B_INB  
Undefined Offset adjustment value for ADC2 (B-ADC) applied when ADC2  
samples INB. The format is unsigned. After reset, the factory-  
trimmed value can be read and adjusted as required.  
Important notes:  
Never write OADJ* registers while foreground calibration is  
underway  
Never write OADJ* registers if CAL_BG and CAL_BGOS  
are set  
If CAL_OS = 1 and CAL_BGOS=0, only read OADJ*  
registers if FG_DONE = 1  
If CAL_BG = 1 and CAL_BGOS=1, only read OADJ*  
register if CAL_STOPPED = 1  
7.6.1.51 Offset Filtering Control 0 Register (address = 0x097) [reset = 0x00]  
7-59. Offset Filtering Control 0 Register (OSFILT0)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000 000  
DC_RESTORE  
R/W  
7-95. OSFILT0 Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
0000 000  
0
Description  
7-1  
0
RESERVED  
RESERVED  
DC_RESTORE  
When set, the offset filtering feature (enabled by CAL_OSFILT)  
filters only the offset mismatch across ADC banks and does not  
remove the frequency content near DC. When cleared, the  
feature filters all offsets from all banks, thus filtering all DC  
content in the signal; see the 7.4.9 section.  
Copyright © 2021 Texas Instruments Incorporated  
108 Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.6.1.52 Offset Filtering Control 1 Register (address = 0x098) [reset = 0x33]  
7-60. Offset Filtering Control 1 Register (OSFILT1)  
7
6
5
4
3
2
1
0
OSFILT_BW  
R/W-0011  
OSFILT_SOAK  
R/W-0011  
7-96. OSFILT1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
OSFILT_BW  
R/W  
0011  
This field adjusts the IIR filter bandwidth for the offset filtering  
feature (enabled by CAL_OSFILT). More bandwidth suppresses  
more flicker noise from the ADCs and reduces the offset spurs.  
Less bandwidth minimizes the impact of the filters on the  
mission mode signal.  
OSFILT_BW: IIR coefficient: 3-dB bandwidth (single sided)  
0: Reserved  
1: 2-10 : 609e-9 × FDEVCLK  
2: 2-11 : 305e-9 × FDEVCLK  
3: 2-12 : 152e-9 × FDEVCLK  
4: 2-13 : 76e-9 × FDEVCLK  
5: 2-14 : 38e-9 × FDEVCLK  
6-15: Reserved  
3-0  
OSFILT_SOAK  
R/W  
0011  
This field adjusts the IIR soak time for the offset filtering feature.  
This field applies when offset filtering and background  
calibration are both enabled. This field determines how long the  
IIR filter is allowed to settle when first connected to an ADC after  
the ADC is calibrated. After the soak time completes, the ADC is  
placed online using the IIR filter. Set OSFILT_SOAK =  
OSFILT_BW.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 109  
Product Folder Links: ADC12DJ3200QML-SP  
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.6.1.53 ADC Bank Registers (0x100 to 0x15F)  
7-97. ADC Bank Registers  
ADDRESS  
0x100-0x101  
0x102  
RESET  
ACRONYM  
RESERVED  
B0_TIME_0  
REGISTER NAME  
SECTION  
Undefined  
Undefined  
RESERVED  
Timing Adjustment for Bank 0 (0°  
Clock) Register  
7.6.1.54  
0x103  
Undefined  
B0_TIME_90  
Timing Adjustment for Bank 0 (90°  
7.6.1.55  
Clock) Register  
0x104-0x111  
0x112  
Undefined  
Undefined  
RESERVED  
B1_TIME_0  
RESERVED  
Timing Adjustment for Bank 1 (0°  
Clock) Register  
7.6.1.56  
0x113  
Undefined  
B1_TIME_90  
Timing Adjustment for Bank 1 (90°  
7.6.1.57  
Clock) Register  
0x114-0x121  
0x122  
Undefined  
Undefined  
RESERVED  
B2_TIME_0  
RESERVED  
Timing Adjustment for Bank 2 (0°  
Clock) Register  
7.6.1.58  
0x123  
Undefined  
B2_TIME_90  
Timing Adjustment for Bank 2 (90°  
7.6.1.59  
Clock) Register  
0x124-0x131  
0x132  
Undefined  
Undefined  
RESERVED  
B3_TIME_0  
RESERVED  
Timing Adjustment for Bank 3 (0°  
Clock) Register  
7.6.1.60  
0x133  
Undefined  
B3_TIME_90  
Timing Adjustment for Bank 3 (90°  
7.6.1.61  
Clock) Register  
0x134-0x141  
0x142  
Undefined  
Undefined  
RESERVED  
B4_TIME_0  
RESERVED  
Timing Adjustment for Bank 4 (0°  
Clock) Register  
7.6.1.62  
0x143  
Undefined  
B4_TIME_90  
Timing Adjustment for Bank 4 (90°  
7.6.1.63  
Clock) Register  
0x144-0x151  
0x152  
Undefined  
Undefined  
RESERVED  
B5_TIME_0  
RESERVED  
Timing Adjustment for Bank 5 (0°  
Clock) Register  
7.6.1.64  
0x153  
Undefined  
Undefined  
B5_TIME_90  
RESERVED  
Timing Adjustment for Bank 5 (90°  
Clock) Register  
7.6.1.65  
0x154-0x15F  
RESERVED  
7.6.1.54 Timing Adjustment for Bank 0 (0° Clock) Register (address = 0x102) [reset = Undefined]  
7-61. Timing Adjustment for Bank 0 (0° Clock) Register (B0_TIME_0)  
7
6
5
4
3
2
1
0
B0_TIME_0  
R/W  
7-98. B0_TIME_0 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
B0_TIME_0  
R/W  
Undefined Time adjustment for bank 0 (applied when the ADC is  
configured for 0° clock phase). After reset, the factory-trimmed  
value can be read and adjusted as required.  
Copyright © 2021 Texas Instruments Incorporated  
110  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.6.1.55 Timing Adjustment for Bank 0 (90° Clock) Register (address = 0x103) [reset = Undefined]  
7-62. Timing Adjustment for Bank 0 (90° Clock) Register (B0_TIME_90)  
7
6
5
4
3
2
1
0
B0_TIME_90  
R/W  
7-99. B0_TIME_90 Field Descriptions  
Bit  
Field  
B0_TIME_90  
Type  
Reset  
Description  
7-0  
R/W  
Undefined Time adjustment for bank 0 (applied when the ADC is  
configured for 90° clock phase). After reset, the factory-  
trimmed value can be read and adjusted as required.  
7.6.1.56 Timing Adjustment for Bank 1 (0° Clock) Register (address = 0x112) [reset = Undefined]  
7-63. Timing Adjustment for Bank 1 (0° Clock) Register (B1_TIME_0)  
7
6
5
4
3
2
1
0
B1_TIME_0  
R/W  
7-100. B1_TIME_0 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
B1_TIME_0  
R/W  
Undefined Time adjustment for bank 1 (applied when the ADC is  
configured for 0° clock phase). After reset, the factory-trimmed  
value can be read and adjusted as required.  
7.6.1.57 Timing Adjustment for Bank 1 (90° Clock) Register (address = 0x113) [reset = Undefined]  
7-64. Timing Adjustment for Bank 1 (90° Clock) Register (B1_TIME_90)  
7
6
5
4
3
2
1
0
B1_TIME_90  
R/W  
7-101. B1_TIME_90 Field Descriptions  
Bit  
Field  
B1_TIME_90  
Type  
Reset  
Description  
7-0  
R/W  
Undefined Time adjustment for bank 1 (applied when the ADC is  
configured for 90° clock phase). After reset, the factory-  
trimmed value can be read and adjusted as required.  
7.6.1.58 Timing Adjustment for Bank 2 (0° Clock) Register (address = 0x122) [reset = Undefined]  
7-65. Timing Adjustment for Bank 2 (0° Clock) Register (B2_TIME_0)  
7
6
5
4
3
2
1
0
B2_TIME_0  
R/W  
7-102. B2_TIME_0 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
B2_TIME_0  
R/W  
Undefined Time adjustment for bank 2 (applied when the ADC is  
configured for 0° clock phase). After reset, the factory-trimmed  
value can be read and adjusted as required.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
111  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.6.1.59 Timing Adjustment for Bank 2 (90° Clock) Register (address = 0x123) [reset = Undefined]  
7-66. Timing Adjustment for Bank 2 (90° Clock) Register (B2_TIME_90)  
7
6
5
4
3
2
1
0
B2_TIME_90  
R/W  
7-103. B2_TIME_90 Field Descriptions  
Bit  
Field  
B2_TIME_90  
Type  
Reset  
Description  
7-0  
R/W  
Undefined Time adjustment for bank 2 (applied when the ADC is  
configured for 90° clock phase). After reset, the factory-  
trimmed value can be read and adjusted as required.  
7.6.1.60 Timing Adjustment for Bank 3 (0° Clock) Register (address = 0x132) [reset = Undefined]  
7-67. Timing Adjustment for Bank 3 (0° Clock) Register (B3_TIME_0)  
7
6
5
4
3
2
1
0
B3_TIME_0  
R/W  
7-104. B3_TIME_0 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
B3_TIME_0  
R/W  
Undefined Time adjustment for bank 3 (applied when the ADC is  
configured for 0° clock phase). After reset, the factory-trimmed  
value can be read and adjusted as required.  
7.6.1.61 Timing Adjustment for Bank 3 (90° Clock) Register (address = 0x133) [reset = Undefined]  
7-68. Timing Adjustment for Bank 3 (90° Clock) Register (B3_TIME_90)  
7
6
5
4
3
2
1
0
B3_TIME_90  
R/W  
7-105. B3_TIME_90 Field Descriptions  
Bit  
Field  
B3_TIME_90  
Type  
Reset  
Description  
7-0  
R/W  
Undefined Time adjustment for bank 3 (applied when the ADC is  
configured for 90° clock phase). After reset, the factory-  
trimmed value can be read and adjusted as required.  
7.6.1.62 Timing Adjustment for Bank 4 (0° Clock) Register (address = 0x142) [reset = Undefined]  
7-69. Timing Adjustment for Bank 4 (0° Clock) Register (B4_TIME_0)  
7
6
5
4
3
2
1
0
B4_TIME_0  
R/W  
7-106. B4_TIME_0 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
B4_TIME_0  
R/W  
Undefined Time adjustment for bank 4 (applied when the ADC is  
configured for 0° clock phase). After reset, the factory-trimmed  
value can be read and adjusted as required.  
Copyright © 2021 Texas Instruments Incorporated  
112  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.6.1.63 Timing Adjustment for Bank 4 (90° Clock) Register (address = 0x143) [reset = Undefined]  
7-70. Timing Adjustment for Bank 4 (90° Clock) Register (B4_TIME_90)  
7
6
5
4
3
2
1
0
B4_TIME_90  
R/W  
7-107. B4_TIME_90 Field Descriptions  
Bit  
Field  
B4_TIME_90  
Type  
Reset  
Description  
7-0  
R/W  
Undefined Time adjustment for bank 4 (applied when the ADC is  
configured for 90° clock phase). After reset, the factory-  
trimmed value can be read and adjusted as required.  
7.6.1.64 Timing Adjustment for Bank 5 (0° Clock) Register (address = 0x152) [reset = Undefined]  
7-71. Timing Adjustment for Bank 5 (0° Clock) Register (B5_TIME_0)  
7
6
5
4
3
2
1
0
B5_TIME_0  
R/W  
7-108. B5_TIME_0 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
B5_TIME_0  
R/W  
Undefined Time adjustment for bank 5 (applied when the ADC is  
configured for 0° clock phase). After reset, the factory-trimmed  
value can be read and adjusted as required.  
7.6.1.65 Timing Adjustment for Bank 5 (90° Clock) Register (address = 0x153) [reset = Undefined]  
7-72. Timing Adjustment for Bank 5 (90° Clock) Register (B5_TIME_90)  
7
6
5
4
3
2
1
0
B5_TIME_90  
R/W  
7-109. B5_TIME_90 Field Descriptions  
Bit  
Field  
B5_TIME_90  
Type  
Reset  
Description  
7-0  
R/W  
Undefined Time adjustment for bank 5 (applied when the ADC is  
configured for 90° clock phase). After reset, the factory-  
trimmed value can be read and adjusted as required.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
113  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.6.1.66 LSB Control Registers (0x160 to 0x1FF)  
7-110. LSB Control Registers  
ADDRESS  
0x160  
RESET  
0x00  
ACRONYM  
ENC_LSB  
REGISTER NAME  
LSB Control Bit Output Register  
RESERVED  
SECTION  
7-73  
0x161-0x1FF  
Undefined  
RESERVED  
7.6.1.67 LSB Control Bit Output Register (address = 0x160) [reset = 0x00]  
7-73. LSB Control Bit Output Register (ENC_LSB)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000 000  
TIMESTAMP_EN  
R/W-0  
7-111. ENC_LSB Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
0000 000  
0
Description  
7-1  
0
RESERVED  
RESERVED  
TIMESTAMP_EN  
When set, the transport layer transmits the timestamp signal on  
the LSB of the output samples. Only supported in decimate-by-1  
(DDC bypass) modes. TIMESTAMP_EN has priority over  
CAL_STATE_EN. TMSTP_RECV_EN must also be set high  
when using timestamp. The latency of the timestamp signal  
(through the entire device) matches the latency of the analog  
ADC inputs.  
In 8-bit modes, the control bit is placed on the LSB of the 8-bit  
samples (leaving 7 bits of sample data). If the device is  
configured for 12-bit data, the control bit is placed on the LSB of  
the 12-bit data (leaving 11 bits of sample data).  
The control bit enabled by this register is never advertised in the  
ILA (the CS field is 0 in the ILA).  
Copyright © 2021 Texas Instruments Incorporated  
114  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.6.1.68 JESD204B Registers (0x200 to 0x20F)  
7-112. JESD204B Registers  
ADDRESS  
0x200  
RESET  
0x01  
ACRONYM  
JESD_EN  
JMODE  
REGISTER NAME  
JESD204B Enable Register  
JESD204B Mode Register  
SECTION  
7.6.1.69  
7.6.1.70  
7.6.1.71  
7.6.1.72  
0x201  
0x02  
0x202  
0x1F  
0x01  
KM1  
JESD204B K Parameter Register  
0x203  
JSYNC_N  
JESD204B Manual SYNC Request  
Register  
0x204  
0x205  
0x02  
0x00  
JCTRL  
JTEST  
JESD204B Control Register  
7.6.1.73  
7.6.1.74  
JESD204B Test Pattern Control  
Register  
0x206  
0x207  
0x00  
0x00  
DID  
JESD204B DID Parameter Register  
JESD204B Frame Character Register  
7.6.1.75  
7.6.1.76  
7.6.1.77  
7.6.1.78  
7.6.1.79  
7.6.1.80  
FCHAR  
0x208  
Undefined  
0x00  
JESD_STATUS JESD204B, System Status Register  
0x209  
PD_CH  
JESD204B Channel Power-Down  
JESD204B Extra Lane Enable (Link A)  
JESD204B Extra Lane Enable (Link B)  
RESERVED  
0x20A  
0x00  
JEXTRA_A  
JEXTRA_B  
RESERVED  
0x20B  
0x00  
0x20C-0x20F  
Undefined  
7.6.1.69 JESD204B Enable Register (address = 0x200) [reset = 0x01]  
7-74. JESD204B Enable Register (JESD_EN)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000 000  
JESD_EN  
R/W-1  
7-113. JESD_EN Field Descriptions  
Bit  
7-1  
0
Field  
Type  
R/W  
R/W  
Reset  
0000 000  
1
Description  
RESERVED  
JESD_EN  
RESERVED  
0 : Disables JESD204B interface  
1 : Enables JESD204B interface  
Before altering other JESD204B registers, JESD_EN must be  
cleared. When JESD_EN is 0, the block is held in reset and the  
serializers are powered down. The clocks are gated off to save  
power. The LMFC counter is also held in reset, so SYSREF  
does not align the LMFC.  
Always set CAL_EN before setting JESD_EN.  
Always clear JESD_EN before clearing CAL_EN.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
115  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.6.1.70 JESD204B Mode Register (address = 0x201) [reset = 0x02]  
7-75. JESD204B Mode Register (JMODE)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-000  
JMODE  
R/W-0001 0  
7-114. JMODE Field Descriptions  
Bit  
7-5  
4-0  
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
JMODE  
000  
RESERVED  
0001 0  
Specify the JESD204B output mode (including DDC decimation  
factor).  
Only change this register when JESD_EN = 0 and CAL_EN = 0.  
7.6.1.71 JESD204B K Parameter Register (address = 0x202) [reset = 0x1F]  
7-76. JESD204B K Parameter Register (KM1)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-000  
KM1  
R/W-1111 1  
7-115. KM1 Field Descriptions  
Bit  
7-5  
4-0  
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
KM1  
000  
RESERVED  
1111 1  
K is the number of frames per multiframe and this register must  
be programmed as K-1. Depending on the JMODE setting, there  
are constraints on the legal values of K. (default: KM1 = 31, K =  
32).  
Only change this register when JESD_EN is 0.  
7.6.1.72 JESD204B Manual SYNC Request Register (address = 0x203) [reset = 0x01]  
7-77. JESD204B Manual SYNC Request Register (JSYNC_N)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000 000  
JSYNC_N  
R/W-1  
7-116. JSYNC_N Field Descriptions  
Bit  
7-1  
0
Field  
Type  
R/W  
R/W  
Reset  
0000 000  
1
Description  
RESERVED  
JSYNC_N  
RESERVED  
Set this bit to 0 to request JESD204B synchronization  
(equivalent to the SYNCSE pin being asserted). For normal  
operation, leave this bit set to 1.  
The JSYNC_N register can always generate a synchronization  
request, regardless of the SYNC_SEL register. However, if the  
selected sync pin is stuck low, the synchronization request  
cannot be de-asserted unless SYNC_SEL = 2 is programmed.  
Copyright © 2021 Texas Instruments Incorporated  
116  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.6.1.73 JESD204B Control Register (address = 0x204) [reset = 0x02]  
7-78. JESD204B Control Register (JCTRL)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000  
SYNC_SEL  
R/W-00  
SFORMAT  
R/W-1  
SCR  
R/W-0  
7-117. JCTRL Field Descriptions  
Bit  
7-4  
3-2  
Field  
Type  
R/W  
R/W  
Reset  
0000  
00  
Description  
RESERVED  
SYNC_SEL  
RESERVED  
0: Use the SYNCSE input for the SYNC~ function (default)  
1: Use the TMSTP± differential input for the SYNC~ function;  
TMSTP_RECV_EN must also be set  
2: Do not use any sync input signal (use software SYNC~  
through JSYNC_N)  
1
0
SFORMAT  
SCR  
R/W  
R/W  
1
0
Output sample format for JESD204B samples.  
0: Offset binary  
1: Signed 2s complement (default)  
0: Scrambler disabled (default)  
1: Scrambler enabled  
Only change this register when JESD_EN is 0.  
7.6.1.74 JESD204B Test Pattern Control Register (address = 0x205) [reset = 0x00]  
7-79. JESD204B Test Pattern Control Register (JTEST)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000  
JTEST  
R/W-0000  
7-118. JTEST Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
R/W  
R/W  
Reset  
0000  
0000  
Description  
RESERVED  
JTEST  
RESERVED  
0: Test mode disabled; normal operation (default)  
1: PRBS7 test mode  
2: PRBS15 test mode  
3: PRBS23 test mode  
4: Ramp test mode  
5: Transport layer test mode  
6: D21.5 test mode  
7: K28.5 test mode  
8: Repeated ILA test mode  
9: Modified RPAT test mode  
10: Serial outputs held low  
11: Serial outputs held high  
1215: Reserved  
Only change this register when JESD_EN is 0.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
117  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.6.1.75 JESD204B DID Parameter Register (address = 0x206) [reset = 0x00]  
7-80. JESD204B DID Parameter Register (DID)  
7
6
5
4
3
2
1
0
DID  
R/W-0000 0000  
7-119. DID Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DID  
R/W  
0000 0000 Specifies the device ID (DID) value that is transmitted during the  
second multiframe of the JESD204B ILA. Link A transmits DID,  
and link B transmits DID+1. Bit 0 is ignored and always returns 0  
(if an odd number is programmed, that number is decremented  
to an even number).  
Only change this register when JESD_EN is 0.  
7.6.1.76 JESD204B Frame Character Register (address = 0x207) [reset = 0x00]  
7-81. JESD204B Frame Character Register (FCHAR)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000 00  
FCHAR  
R/W-00  
7-120. FCHAR Field Descriptions  
Bit  
7-2  
1-0  
Field  
Type  
R/W  
R/W  
Reset  
0000 00  
00  
Description  
RESERVED  
FCHAR  
RESERVED  
Specify which comma character is used to denote end-of-frame.  
This character is transmitted opportunistically (see the 节  
7.3.6.3.4 section).  
0: Use K28.7 (default, JESD204B compliant)  
1: Use K28.1 (not JESD204B compliant)  
2: Use K28.5 (not JESD204B compliant)  
3: Reserved  
When using a JESD204B receiver, always use FCHAR = 0.  
When using a general-purpose 8b, 10b receiver, the K28.7  
character may cause issues. When K28.7 is combined with  
certain data characters, a false, misaligned comma character  
can result, and some receivers realign to the false comma. To  
avoid this condition, program FCHAR to 1 or 2.  
Only change this register when JESD_EN is 0.  
7.6.1.77 JESD204B, System Status Register (address = 0x208) [reset = Undefined]  
7-82. JESD204B, System Status Register (JESD_STATUS)  
7
RESERVED  
R
6
LINK_UP  
R
5
4
3
2
1
0
SYNC_STATUS  
R
REALIGNED  
R/W  
ALIGNED  
R/W  
PLL_LOCKED  
R
RESERVED  
R
7-121. JESD_STATUS Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
RESERVED  
LINK_UP  
R
Undefined RESERVED  
6
R
Undefined When set, this bit indicates that the JESD204B link is up.  
5
SYNC_STATUS  
R
Undefined Returns the state of the JESD204B SYNC~ signal.  
0: SYNC~ asserted  
1: SYNC~ de-asserted  
Copyright © 2021 Texas Instruments Incorporated  
118  
Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7-121. JESD_STATUS Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
4
REALIGNED  
R/W  
Undefined When high, this bit indicates that an internal digital clock, frame  
clock, or multiframe (LMFC) clock phase was realigned by  
SYSREF. Write a 1 to clear this bit.  
3
ALIGNED  
R/W  
Undefined When high, this bit indicates that the multiframe (LMFC) clock  
phase has been established by SYSREF. The first SYSREF  
event after enabling the JESD204B encoder will set this bit.  
Write a 1 to clear this bit.  
2
PLL_LOCKED  
RESERVED  
R
R
Undefined When high, this bit indicates that the PLL is locked.  
Undefined RESERVED  
1-0  
7.6.1.78 JESD204B Channel Power-Down Register (address = 0x209) [reset = 0x00]  
7-83. JESD204B Channel Power-Down Register (PD_CH)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000 00  
PD_BCH  
R/W-0  
PD_ACH  
R/W-0  
7-122. PD_CH Field Descriptions  
Bit  
7-2  
1
Field  
Type  
R/W  
R/W  
Reset  
0000 00  
0
Description  
RESERVED  
PD_BCH  
RESERVED  
When set, the B ADC channel is powered down. The digital  
channels that are bound to the B ADC channel are also powered  
down (see the 7.6.1.88 ).  
Important notes:  
Set JESD_EN = 0 before changing PD_CH.  
To power-down both ADC channels, use MODE.  
If both channels are powered down, then the entire JESD204B  
subsystem (including the PLL and LMFC) are powered down  
If the selected JESD204B mode transmits A and B data on link  
A, and the B digital channel is disabled, link A remains  
operational, but the B-channel samples are undefined.  
0
PD_ACH  
R/W  
0
When set, the A ADC channel is powered down. The digital  
channels that are bound to the A ADC channel are also powered  
down (7.6.1.88 ).  
Important notes:  
Set JESD_EN = 0 before changing PD_CH.  
To power-down both ADC channels, use MODE.  
If both channels are powered down, then the entire JESD204B  
subsystem (including the PLL and LMFC) are powered down  
If the selected JESD204B mode transmits A and B data on link  
A, and the B digital channel is disabled, link A remains  
operational, but the B-channel samples are undefined.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
119  
Product Folder Links: ADC12DJ3200QML-SP  
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.6.1.79 JESD204B Extra Lane Enable (Link A) Register (address = 0x20A) [reset = 0x00]  
7-84. JESD204B Extra Lane Enable (Link A) Register (JEXTRA_A)  
7
6
5
4
3
2
1
0
EXTRA_LANE_A  
R/W-0000 000  
EXTRA_SER_A  
R/W-0  
7-123. JESD204B Extra Lane Enable (Link A) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
EXTRA_LANE_A  
R/W  
0000 000  
Program these register bits to enable extra lanes (even if the  
selected JMODE does not require the lanes to be enabled).  
EXTRA_LANE_A(n) enables An (n = 1 to 7). This register  
enables the link layer clocks for the affected lanes. To also  
enable the extra serializes set EXTRA_SER_A = 1.  
0
EXTRA_SER_A  
R/W  
0
0: Only the link layer clocks for extra lanes are enabled.  
1: Serializers for extra lanes are also enabled. Use this mode to  
transmit data from the extra lanes.  
Important notes:  
Only change this register when JESD_EN = 0.  
The bit-rate and mode of the extra lanes are set by the JMODE  
and JTEST parameters.  
This register does not override the PD_CH register, so ensure  
that the link is enabled to use this feature.  
To enable serializer n, the lower number lanes 0 to n-1 must  
also be enabled, otherwise serializer n does not receive a clock.  
7.6.1.80 JESD204B Extra Lane Enable (Link B) Register (address = 0x20B) [reset = 0x00]  
7-85. JESD204B Extra Lane Enable (Link B) Register (JEXTRA_B)  
7
6
5
4
3
2
1
0
EXTRA_LANE_B  
R/W-0000 000  
EXTRA_SER_B  
R/W-0  
7-124. JESD204B Extra Lane Enable (Link B) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
EXTRA_LANE_B  
R/W  
0000 000  
Program these register bits to enable extra lanes (even if the  
selected JMODE does not require the lanes to be enabled).  
EXTRA_LANE_B(n) enables Bn (n = 1 to 7). This register  
enables the link layer clocks for the affected lanes. To also  
enable the extra serializes set EXTRA_SER_B = 1.  
0
EXTRA_SER_B  
R/W  
0
0: Only the link layer clocks for extra lanes are enabled.  
1: Serializers for extra lanes are also enabled. Use this mode to  
transmit data from the extra lanes.  
Important notes:  
Only change this register when JESD_EN = 0.  
The bit-rate and mode of the extra lanes are set by the JMODE  
and JTEST parameters.  
This register does not override the PD_CH register, so ensure  
that the link is enabled to use this feature.  
To enable serializer n, the lower number lanes 0 to n-1 must  
also be enabled, otherwise serializer n does not receive a clock.  
Copyright © 2021 Texas Instruments Incorporated  
120 Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.6.1.81 Digital Down Converter Registers (0x210-0x2AF)  
7-125. Digital Down Converter and Overrange Registers  
ADDRESS  
0x210  
RESET  
0x00  
ACRONYM  
DDC_CFG  
OVR_T0  
REGISTER NAME  
SECTION  
7.6.1.82  
7.6.1.83  
7.6.1.84  
7.6.1.85  
7.6.1.86  
DDC Configuration Register  
0x211  
0xF2  
0xAB  
0x07  
Overrange Threshold 0 Register  
Overrange Threshold 1 Register  
Overrange Configuration Register  
0x212  
OVR_T1  
0x213  
OVR_CFG  
CMODE  
0x214  
0x00  
DDC Configuration Preset Mode  
Register  
0x215  
0x00  
CSEL  
DDC Configuration Preset Select  
Register  
7.6.1.87  
0x216  
0x02  
DIG_BIND  
NCO_RDIV  
Digital Channel Binding Register  
7.6.1.88  
7.6.1.89  
0x217-0x218  
0x0000  
Rational NCO Reference Divisor  
Register  
0x219  
0x02  
NCO_SYNC  
RESERVED  
FREQA0  
NCO Synchronization Register  
RESERVED  
7.6.1.90  
0x21A-0x21F  
0x220-0x223  
0x224-0x225  
0x226-0x227  
0x228-0x22B  
0x22C-0x22D  
0x22E-0x22F  
0x230-0x233  
0x234-0x235  
0x236-0x237  
0x238-0x23B  
0x23C-0x23D  
0x23E-0x23F  
0x240-0x243  
0x244-0x245  
0x246-0x247  
0x248-0x24B  
0x24C-0x24D  
0x24E-0x24F  
0x250-0x253  
0x254-0x255  
0x256-0x257  
0x258-0x25B  
0x25C-0x25D  
0x25E-0x296  
0x297  
Undefined  
0xC0000000  
0x0000  
NCO Frequency (DDC A Preset 0)  
NCO Phase (DDC A Preset 0)  
RESERVED  
7.6.1.91  
7.6.1.92  
PHASEA0  
RESERVED  
FREQA1  
Undefined  
0xC0000000  
0x0000  
NCO Frequency (DDC A Preset 1)  
NCO Phase (DDC A Preset 1)  
RESERVED  
7.6.1.91  
7.6.1.92  
PHASEA1  
RESERVED  
FREQA2  
Undefined  
0xC0000000  
0x0000  
NCO Frequency (DDC A Preset 2)  
NCO Phase (DDC A Preset 2)  
RESERVED  
7.6.1.91  
7.6.1.92  
PHASEA2  
RESERVED  
FREQA3  
Undefined  
0xC0000000  
0x0000  
NCO Frequency (DDC A Preset 3)  
NCO Phase (DDC A Preset 3)  
RESERVED  
7.6.1.91  
7.6.1.92  
PHASEA3  
RESERVED  
FREQB0  
Undefined  
0xC0000000  
0x0000  
NCO Frequency (DDC B Preset 0)  
NCO Phase (DDC B Preset 0)  
RESERVED  
7.6.1.91  
7.6.1.92  
PHASEB0  
RESERVED  
FREQB1  
Undefined  
0xC0000000  
0x0000  
NCO Frequency (DDC B Preset 1)  
NCO Phase (DDC B Preset 1)  
RESERVED  
7.6.1.91  
7.6.1.92  
PHASEB1  
RESERVED  
FREQB2  
Undefined  
0xC0000000  
0x0000  
NCO Frequency (DDC B Preset 2)  
NCO Phase (DDC B Preset 2)  
RESERVED  
7.6.1.91  
7.6.1.92  
PHASEB2  
RESERVED  
FREQB3  
Undefined  
0xC0000000  
0x0000  
NCO Frequency (DDC B Preset 3)  
NCO Phase (DDC B Preset 3)  
RESERVED  
7.6.1.91  
7.6.1.92  
PHASEB3  
RESERVED  
SPIN_ID  
Undefined  
Undefined  
Undefined  
Spin Identification Value  
RESERVED  
7.6.1.93  
0x298-0x2AF  
RESERVED  
7.6.1.82 DDC Configuration Register (address = 0x210) [reset = 0x00]  
7-86. DDC Configuration Register (DDC_CFG)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000  
D4_AP87  
R/W-0  
D2_HIGH_PASS  
R/W-0  
INVERT_SPECTRUM  
R/W-0  
BOOST  
R/W-0  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 121  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7-126. DDC_CFG Field Descriptions  
Bit  
7-4  
3
Field  
Type  
R/W  
R/W  
Reset  
0000  
0
Description  
RESERVED  
D4_AP87  
RESERVED  
0: Decimate-by-4 mode uses 80% alias protection, > 80-dB  
suppression  
1: Decimate-by-4 mode uses 87.5% alias protection, > 60-dB  
suppression  
2
1
D2_HIGH_PASS  
R/W  
R/W  
0
0
0: Decimate-by-2 mode uses a low-pass filter  
1: Decimate-by-2 mode uses a high-pass filter. Decimating the  
high-pass signal causes spectral inversion. This inversion can  
be undone by setting INVERT_SPECTRUM.  
INVERT_SPECTRUM  
0: No inversion applied to output spectrum  
1: Output spectrum is inverted  
This register only applies when the DDC is enabled and is  
producing a real output (not complex). The spectrum is inverted  
by mixing the signal with FSOUT / 2 (for example, invert all odd  
samples).  
0
BOOST  
R/W  
0
DDC gain control. Only applies to DDC modes with complex  
decimation.  
0: Final filter has 0-dB gain (default)  
1: Final filter has 6.02-dB gain. Only use this setting when  
certain that the negative image of the input signal is filtered out  
by the DDC, otherwise digital clipping may occur.  
7.6.1.83 Overrange Threshold 0 Register (address = 0x211) [reset = 0xF2]  
7-87. Overrange Threshold 0 Register (OVR_T0)  
7
6
5
4
3
2
1
0
OVR_T0  
R/W-1111 0010  
7-127. OVR_T0 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
OVR_T0  
R/W  
1111 0010 Overrange threshold 0. This parameter defines the absolute  
sample level that causes control bit 0 to be set. The detection  
level in dBFS (peak) is:  
20log10(OVR_T0 / 256)  
Default: 0xF2 = 242 0.5 dBFS.  
Copyright © 2021 Texas Instruments Incorporated  
122 Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.6.1.84 Overrange Threshold 1 Register (address = 0x212) [reset = 0xAB]  
7-88. Overrange Threshold 1 Register (OVR_T1)  
7
6
5
4
3
2
1
0
OVR_T1  
R/W-1010 1011  
7-128. OVR_T1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
OVR_T1  
R/W  
1010 1011 Overrange threshold 1. This parameter defines the absolute  
sample level that causes control bit 1 to be set. The detection  
level in dBFS (peak) is:  
20log10(OVR_T1 / 256)  
Default: 0xAB = 171 3.5 dBFS.  
7.6.1.85 Overrange Configuration Register (address = 0x213) [reset = 0x07]  
7-89. Overrange Configuration Register (OVR_CFG)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000  
OVR_EN  
R/W-0  
OVR_N  
R/W-111  
7-129. OVR_CFG Field Descriptions  
Bit  
7-4  
3
Field  
Type  
R/W  
R/W  
Reset  
0000 0  
0
Description  
RESERVED  
OVR_EN  
RESERVED  
Enables overrange status output pins when set high. The ORA0,  
ORA1, ORB0, and ORB1 outputs are held low when OVR_EN is  
set low. This register only effects the overrange output pins  
(ORxx) and not the overrange status embedded in the data  
samples.  
2-0  
OVR_N(1)  
R/W  
111  
Program this register to adjust the pulse extension for the  
ORA0, ORA1 and ORB0, ORB1 outputs. The minimum pulse  
duration of the overrange outputs is 8 × 2OVR_N DEVCLK cycles.  
Incrementing this field doubles the monitoring period.  
(1) Changing the OVR_N setting while JESD_EN=1 may cause the phase of the monitoring period to change.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 123  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.6.1.86 DDC Configuration Preset Mode Register (address = 0x214) [reset = 0x00]  
7-90. DDC Configuration Preset Mode Register (CMODE)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000 00  
CMODE  
R/W-00  
7-130. CMODE Field Descriptions  
Bit  
7-2  
1-0  
Field  
Type  
R/W  
R/W  
Reset  
0000 00  
00  
Description  
RESERVED  
CMODE  
RESERVED  
The NCO frequency and phase for DDC A are set by the  
FREQAx and PHASEAx registers and the NCO frequency and  
phase for DDC B are set by the FREQBx and PHASEBx  
registers, where x is the configuration preset (0 through 3).  
0: Use CSEL register to select the active NCO configuration  
preset for DDC A and DDC B  
1: Use NCOA[1:0] pins to select the active NCO configuration  
preset for DDC A and use NCOB[1:0] pins to select the active  
NCO configuration preset for DDC B  
2: Use NCOA[1:0] pins to select the active NCO configuration  
preset for both DDC A and DDC B  
3: Reserved  
7.6.1.87 DDC Configuration Preset Select Register (address = 0x215) [reset = 0x00]  
7-91. DDC Configuration Preset Select Register (CSEL)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000  
CSELB  
R/W-00  
CSELA  
R/W-00  
7-131. CSEL Field Descriptions  
Bit  
7-4  
3-2  
Field  
Type  
R/W  
R/W  
Reset  
0000  
00  
Description  
RESERVED  
CSELB  
RESERVED  
When CMODE = 0, this register is used to select the active NCO  
configuration preset for DDC B.  
1-0  
CSELA  
R/W  
00  
When CMODE = 0, this register is used to select the active NCO  
configuration preset for DDC A.  
Example: If CSELA = 0, then FREQA0 and PHASEA0 are the  
active settings. If CSELA = 1, then FREQA1 and PHASEA1 are  
the active settings.  
Copyright © 2021 Texas Instruments Incorporated  
124 Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.6.1.88 Digital Channel Binding Register (address = 0x216) [reset = 0x02]  
7-92. Digital Channel Binding Register (DIG_BIND)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000 00  
DIG_BIND_B  
R/W-1  
DIG_BIND_A  
R/W-0  
7-132. DIG_BIND Field Descriptions  
Bit  
7-2  
1
Field  
Type  
R/W  
R/W  
Reset  
0000 00  
0
Description  
RESERVED  
RESERVED  
DIG_BIND_B  
Digital channel B input select:  
0: Digital channel B receives data from ADC channel A  
1: Digital channel B receives data from ADC channel B (default)  
0
DIG_BIND_A  
R/W  
0
Digital channel A input select:  
0: Digital channel A receives data from ADC channel A (default)  
1: Digital channel A receives data from ADC channel B  
When using single-channel mode, always use the default setting  
for DIG_BIND or the device does not work.  
Set JESD_EN = 0 and CAL_EN = 0 before changing DIG_BIND.  
The DIG_BIND setting is combined with PD_ACH, PD_BCH to  
determine if a digital channel is powered down. Each digital  
channel (and link) is powered down when the ADC channel it is  
bound to is powered down (by PD_ACH, PD_BCH).  
7.6.1.89 Rational NCO Reference Divisor Register (address = 0x217 to 0x218) [reset = 0x0000]  
7-93. Rational NCO Reference Divisor Register (NCO_RDIV)  
15  
14  
13  
12  
11  
10  
9
8
0
NCO_RDIV[15:8]  
R/W-0000 0000  
7
6
5
4
3
2
1
NCO_RDIV[7:0]  
R/W-0000 0000  
7-133. NCO_RDIV Field Descriptions  
Bit  
15-0  
Field  
Type  
Reset  
Description  
NCO_RDIV  
R/W  
0x0000h  
Sometimes the 32-bit NCO frequency word does not provide the  
desired frequency step size and can only approximate the  
desired frequency. This condition results in a frequency error.  
Use this register to eliminate the frequency error. This register is  
used for all configuration presets; see the 7.3.5.1.4 section.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 125  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.6.1.90 NCO Synchronization Register (address = 0x219) [reset = 0x02]  
7-94. NCO Synchronization Register (NCO_SYNC)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000 00  
NCO_SYNC_ILA  
R/W-1  
NCO_SYNC_NEXT  
R/W-0  
7-134. NCO_SYNC Field Descriptions  
Bit  
7-2  
1
Field  
Type  
R/W  
R/W  
Reset  
0000 00  
0
Description  
RESERVED  
RESERVED  
NCO_SYNC_ILA  
When this bit is set, the NCO phase is initialized by the LMFC  
edge that starts the ILA sequence (default).  
0
NCO_SYNC_NEXT  
R/W  
0
After writing a 0 and then a 1 to this bit, the next SYSREF rising  
edge initializes the NCO phase. When the NCO phase is  
initialized by SYSREF, the NCO does not reinitialize on future  
SYSREF edges unless a 0 and a 1 is written to this bit again.  
Follow these steps to align the NCO in multiple parts:  
Ensure the device is powered up, JESD_EN is set, and the  
device clock is running.  
Ensure that SYSREF is disabled (not toggling).  
Program NCO_SYNC_ILA = 0 on all devices.  
Write NCO_SYNC_NEXT = 0 on all devices.  
Write NCO_SYNC_NEXT = 1 on all devices. NCO sync is  
armed.  
Instruct the SYSREF source to generate 1 or more SYSREF  
pulses.  
All devices initialize their NCO using the first SYSREF rising  
edge.  
7.6.1.91 NCO Frequency (DDC A or DDC B and Preset x) Register (address = see 7-125) [reset = see 表  
7-125]  
7-95. NCO Frequency (DDC A or DDC B and Preset x) Register (FREQAx or FREQBx)  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
27  
26  
18  
10  
2
25  
17  
9
24  
16  
8
FREQAx[31:24] or FREQBx[31:24]  
R/W-0xC0  
20  
19  
FREQAx[23:16] or FREQBx[23:16]  
R/W-0x00  
12  
11  
FREQAx[15:8] or FREQBx[15:8]  
R/W-0x00  
4
3
1
0
FREQAx[7:0] or FREQBx[7:0]  
R/W-0x00  
Copyright © 2021 Texas Instruments Incorporated  
126 Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7-135. FREQAx or FREQBx Field Descriptions  
Bit  
Field  
FREQAx or FREQBx  
Type  
Reset  
Description  
31-0  
R/W  
Changing this register after the JESD204B interface is running  
results in non-deterministic NCO phase. If deterministic phase is  
required, the JESD204B interface must be re-initialized after  
changing this register. This register can be interpreted as signed  
or unsigned. When interpreted as signed (2's complement) the  
NCO frequency is between fS / 2 to fS / 2. When interpreted as  
unsigned the NCO frequency is between 0 and fS.  
See 表  
7-125  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 127  
Product Folder Links: ADC12DJ3200QML-SP  
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.6.1.92 NCO Phase (DDC A or DDC B and Preset x) Register (address = see 7-125) [reset = see 表  
7-125]  
7-96. NCO Phase (DDC A or DDC B and Preset x) Register (PHASEAx or PHASEBx)  
15  
14  
13  
12  
11  
10  
9
8
PHASEAx[15:8] or PHASEBx[15:8]  
R/W-0x00  
7
6
5
4
3
2
1
0
PHASEAx[7:0] or PHASEBx[7:0]  
R/W-0x00  
7-136. PHASEAx or PHASEBx Field Descriptions  
Bit  
15-0  
Field  
Type  
Reset  
Description  
PHASEAx or PHASEBx  
R/W  
This value is MSB-justified into a 32-bit field and then added to  
the phase accumulator. This register can be interpreted as  
signed or unsigned; see the 7.3.5.1.5 section.  
See 表  
7-125  
7.6.1.93 Spin Identification Register (address = 0x297) [reset = Undefined]  
7-97. Spin Identification Register (SPIN_ID)  
7
6
5
4
3
2
SPIN_ID  
R
1
0
RESERVED  
R-000  
7-137. SPIN_ID Field Descriptions  
Bit  
7-5  
4-0  
Field  
Type  
Reset  
000  
5
Description  
RESERVED  
SPIN_ID  
R
RESERVED  
R
Spin identification value.  
5 : ADC12DJ3200QML-SP  
Copyright © 2021 Texas Instruments Incorporated  
128 Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.6.2 SYSREF Calibration Registers (0x2B0 to 0x2BF)  
7-138. SYSREF Calibration Registers  
ADDRESS  
0x2B0  
RESET  
0x00  
ACRONYM  
REGISTER NAME  
SECTION  
7.6.2.2  
7.6.2.3  
SRC_EN  
SYSREF Calibration Enable Register  
0x2B1  
0x05  
SRC_CFG  
SYSREF Calibration Configuration  
Register  
0x2B2-0x2B4  
0x2B5-0x2B7  
Undefined  
0x00  
SRC_STATUS  
TAD  
SYSREF Calibration Status  
7.6.2.4  
7.6.2.5  
DEVCLK Aperture Delay Adjustment  
Register  
0x2B8  
0x00  
TAD_RAMP  
RESERVED  
DEVCLK Timing Adjust Ramp Control  
Register  
7.6.2.6  
0x2B9-0x2BF  
Undefined  
RESERVED  
7.6.2.1 SYSREF Calibration Enable Register (address = 0x2B0) [reset = 0x00]  
7-98. SYSREF Calibration Enable Register (SRC_EN)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000 000  
SRC_EN  
R/W-0  
7-139. SRC_EN Field Descriptions  
Bit  
7-1  
0
Field  
Type  
R/W  
R/W  
Reset  
0000 000  
0
Description  
RESERVED  
SRC_EN  
RESERVED  
0: SYSREF calibration disabled; use the TAD register to  
manually control the TAD[16:0] output and adjust the DEVCLK  
delay (default)  
1: SYSREF calibration enabled; the DEVCLK delay is  
automatically calibrated; the TAD register is ignored  
A 0-to-1 transition on SRC_EN starts the SYSREF calibration  
sequence. Program SRC_CFG before setting SRC_EN. Ensure  
that ADC calibration is not currently running before setting  
SRC_EN.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 129  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.6.2.2 SYSREF Calibration Configuration Register (address = 0x2B1) [reset = 0x05]  
7-99. SYSREF Calibration Configuration Register (SRC_CFG)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000  
SRC_AVG  
R/W-01  
SRC_HDUR  
R/W-01  
7-140. SRC_CFG Field Descriptions  
Bit  
7-4  
3-2  
Field  
Type  
R/W  
R/W  
Reset  
0000 00  
01  
Description  
RESERVED  
SRC_AVG  
RESERVED  
Specifies the amount of averaging used for SYSREF calibration.  
Larger values increase calibration time and reduce the variance  
of the calibrated value.  
0: 4 averages  
1: 16 averages  
2: 64 averages  
3: 256 averages  
1-0  
SRC_HDUR  
R/W  
01  
Specifies the duration of each high-speed accumulation for  
SYSREF Calibration. If the SYSREF period exceeds the  
supported value, the calibration fails. Larger values increase  
calibration time and support longer SYSREF periods. For a  
given SYSREF period, larger values also reduce the variance of  
the calibrated value.  
0: 4 cycles per accumulation, max SYSREF period of 85  
DEVCLK cycles  
1: 16 cycles per accumulation, max SYSREF period of 1100  
DEVCLK cycles  
2: 64 cycles per accumulation, max SYSREF period of 5200  
DEVCLK cycles  
3: 256 cycles per accumulation, max SYSREF period of 21580  
DEVCLK cycles  
Max duration of SYSREF calibration is bounded by:  
TSYSREFCAL (in DEVCLK cycles) = 256 × 19 × 4(SRC_AVG +  
SRC_HDUR + 2)  
7.6.2.3 SYSREF Calibration Status Register (address = 0x2B2 to 0x2B4) [reset = Undefined]  
7-100. SYSREF Calibration Status Register (SRC_STATUS)  
23  
15  
7
22  
14  
6
21  
13  
5
20  
19  
18  
10  
2
17  
SRC_DONE  
R
16  
SRC_TAD[16]  
R
RESERVED  
R
12  
11  
9
8
SRC_TAD[15:8]  
R
4
3
1
0
SRC_TAD[7:0]  
R
7-141. SRC_STATUS Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23-18  
17  
RESERVED  
SRC_DONE  
R
Undefined RESERVED  
R
Undefined This bit returns a 1 when SRC_EN = 1 and SYSREF calibration  
is complete.  
16-0  
SRC_TAD  
R
Undefined This field returns the value for TAD[16:0] computed by the  
SYSREF calibration. This field is only valid if SRC_DONE = 1.  
Copyright © 2021 Texas Instruments Incorporated  
130 Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.6.2.4 DEVCLK Aperture Delay Adjustment Register (address = 0x2B5 to 0x2B7) [reset = 0x000000]  
7-101. DEVCLK Aperture Delay Adjustment Register (TAD)  
23  
15  
7
22  
14  
6
21  
13  
5
20  
19  
18  
10  
2
17  
16  
RESERVED  
R/W-0000 000  
TAD_INV  
R/W-0  
12  
11  
9
8
TAD_COARSE  
R/W-0000 0000  
4
3
1
0
TAD_FINE  
R/W-0000 0000  
7-142. TAD Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
R/W  
Reset  
0000 000  
0
Description  
23-17  
16  
RESERVED  
TAD_INV  
RESERVED  
Invert DEVCLK by setting this bit equal to 1.  
15-8  
TAD_COARSE  
0000 0000 This register controls the DEVCLK aperture delay adjustment  
when SRC_EN = 0. Use this register to manually control the  
DEVCLK aperture delay when SYSREF calibration is disabled. If  
ADC calibration or JESD204B is running, TI recommends  
gradually increasing or decreasing this value (1 code at a time)  
to avoid clock glitches. See the 6.10 table for TAD_COARSE  
resolution.  
7-0  
TAD_FINE  
R/W  
0000 0000  
See the 6.10 table for TAD_FINE resolution.  
7.6.2.5 DEVCLK Timing Adjust Ramp Control Register (address = 0x2B8) [reset = 0x00]  
7-102. DEVCLK Timing Adjust Ramp Control Register (TAD_RAMP)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0000 00  
TAD_RAMP_RATE  
R/W-0  
TAD_RAMP_EN  
R/W-0  
7-143. TAD_RAMP Field Descriptions  
Bit  
7-2  
1
Field  
Type  
R/W  
R/W  
Reset  
0000 00  
0
Description  
RESERVED  
RESERVED  
TAD_RAMP_RATE  
Specifies the ramp rate for the TAD[15:8] output when the  
TAD[15:8] register is written when TAD_RAMP_EN = 1.  
0: TAD[15:8] ramps up or down one code per 256 DEVCLK  
cycles.  
1: TAD[15:8] ramps up or down 4 codes per 256 DEVCLK  
cycles.  
0
TAD_RAMP_EN  
R/W  
0
TAD ramp enable. Set this bit if coarse TAD adjustments are  
desired to ramp up or down instead of changing abruptly.  
0: After writing the TAD[15:8] register the aperture delay is  
updated within 1024 DEVCLK cycles  
1: After writing the TAD[15:8] register the aperture delay ramps  
up or down until the aperture delay matches the TAD[15:8]  
register  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 131  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.6.3 Alarm Registers (0x2C0 to 0x2C2)  
7-144. Alarm Registers  
REGISTER NAME  
ADDRESS  
0x2C0  
RESET  
Undefined  
0x1F  
ACRONYM  
ALARM  
SECTION  
7.6.3.2  
7.6.3.3  
7.6.3.4  
Alarm Interrupt Status Register  
0x2C1  
ALM_STATUS  
ALM_MASK  
Alarm Status Register  
Alarm Mask Register  
0x2C2  
0x1F  
7.6.3.1 Alarm Interrupt Register (address = 0x2C0) [reset = Undefined]  
7-103. Alarm Interrupt Register (ALARM)  
7
6
5
4
RESERVED  
R
3
2
1
0
ALARM  
R
7-145. ALARM Field Descriptions  
Bit  
7-1  
0
Field  
Type  
Reset  
Description  
RESERVED  
ALARM  
R
Undefined RESERVED  
R
Undefined This bit returns a 1 whenever any alarm occurs that is  
unmasked in the ALM_STATUS register. Use ALM_MASK to  
mask (disable) individual alarms. CAL_STATUS_SEL can be  
used to drive the ALARM bit onto the CALSTAT output pin to  
provide a hardware alarm interrupt signal.  
7.6.3.2 Alarm Status Register (address = 0x2C1) [reset = 0x1F]  
7-104. Alarm Status Register (ALM_STATUS)  
7
6
5
4
3
2
1
0
RESERVED  
R/W-000  
PLL_ALM  
R/W-1  
LINK_ALM  
R/W-1  
REALIGNED_ALM  
R/W-1  
NCO_ALM  
R/W-1  
CLK_ALM  
R/W-1  
7-146. ALM_STATUS Field Descriptions  
Bit  
7-5  
4
Field  
Type  
R/W  
R/W  
Reset  
000  
1
Description  
RESERVED  
PLL_ALM  
RESERVED  
PLL lock lost alarm. This bit is set whenever the PLL is not  
locked. Write a 1 to clear this bit.  
3
2
1
LINK_ALM  
R/W  
R/W  
R/W  
1
1
1
Link alarm. This bit is set whenever the JESD204B link is  
enabled, but is not in the DATA_ENC state. Write a 1 to clear  
this bit.  
REALIGNED_ALM  
NCO_ALM  
Realigned alarm. This bit is set whenever SYSREF causes the  
internal clocks (including the LMFC) to be realigned. Write a 1 to  
clear this bit.  
NCO alarm. This bit can be used to detect an upset to the NCO  
phase. This bit is set when any of the following occur:  
The NCOs are disabled (JESD_EN = 0)  
The NCOs are synchronized (intentionally or unintentionally)  
Any phase accumulators in channel A do not match channel  
B
Write a 1 to clear this bit.  
0
CLK_ALM  
R/W  
1
Clock alarm. This bit can be used to detect an upset to the  
digital block and JESD204B clocks. This bit is set whenever the  
internal clock dividers for the A and B channels do not match.  
Write a 1 to clear this bit.  
Copyright © 2021 Texas Instruments Incorporated  
132 Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
7.6.3.3 Alarm Mask Register (address = 0x2C2) [reset = 0x1F]  
7-105. Alarm Mask Register (ALM_MASK)  
7
6
5
4
3
2
1
0
RESERVED  
MASK_PLL_ALM  
MASK_LINK_ALM MASK_REALIGNE MASK_NCO_ALM  
D_ALM  
MASK_CLK_ALM  
R/W-000  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
7-147. ALM_MASK Field Descriptions  
Bit  
7-5  
4
Field  
Type  
R/W  
R/W  
Reset  
000  
1
Description  
RESERVED  
RESERVED  
MASK_PLL_ALM  
When set, PLL_ALM is masked and does not impact the  
ALARM register bit.  
3
2
1
0
MASK_LINK_ALM  
MASK_REALIGNED_ALM  
MASK_NCO_ALM  
MASK_CLK_ALM  
R/W  
R/W  
R/W  
R/W  
1
1
1
1
When set, LINK_ALM is masked and does not impact the  
ALARM register bit.  
When set, REALIGNED_ALM is masked and does not impact  
the ALARM register bit.  
When set, NCO_ALM is masked and does not impact the  
ALARM register bit.  
When set, CLK_ALM is masked and does not impact the  
ALARM register bit.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 133  
Product Folder Links: ADC12DJ3200QML-SP  
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
8 Application Information Disclaimer  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
The ADC12DJ3200QML-SP can be used in a wide range of space-based applications including wideband  
satellite communications (SATCOM) and synthetic aperture radar (SAR). The wide input bandwidth enables  
direct RF sampling to at least 8 GHz and the high sampling rate allows signal bandwidths of greater than 2 GHz.  
The 8.2 section describes one configuration that meets the needs of a number of these applications while the  
following sections describe generic application information.  
8.1.1 Analog Inputs  
Most applications can be narrowed down into two categories: those that need DC coupling and those that do not  
need DC coupling. The needs and interface recommendations for each category are different. In most cases, the  
driving circuit will need to perform a conversion from single-ended signaling at the signal source to differential  
signaling for the ADC12DJ3200QML-SP inputs.  
Applications that require DC coupling will need to use a DC coupled amplifier to drive the ADC. DC coupling is  
often more difficult due to the need for matched common-mode voltage (VCM) between the driver amplifier and  
ADC12DJ3200QML-SP. ADC12DJ3200QML-SP makes this easy for many applications due to the 0-V input  
common-mode voltage (VICM). A 0-V VICM allows a split supply differential amplifier to drive the ADC directly with  
no VCM shift which in turn allows the amplifier to operate at its optimal operating point, typically with an output  
common-mode voltage (VOCM) equal to the midpoint of the two supplies. If the differential amplifier has a pin to  
set its VOCM then that pin can be tied directly to GND. An example amplifier that is capable of driving  
ADC12DJ3200QML-SP is the LMH5401-SP which is capable of converting from single-ended to differential  
signaling and has a high gain-bandwidth product to match the ADC12DJ3200QML-SP bandwidth capabilties.  
The second category, applications that do not require DC coupling, will often find that best performance can be  
achieved using transformers or baluns to convert from single-ended to differential signaling. These transformers  
can also perform impedance conversion such that a 50-Ω, single-ended source is well matched to the 100-Ω,  
differential termination inside the ADC12DJ3200QML-SP. For instance, a 1:2 impedance ratio transformer can  
provide both single-ended to differential conversion and proper impedance matching. The transformer outputs  
can be either AC-coupled, or directly connected to the ADC differential inputs, which are terminated internally to  
GND on each input pin through a 50-Ω resistor. Baluns must be selected to cover the needed frequency range,  
have a 1:2 impedance ratio, and have acceptable gain and phase balance over the frequency range of interest.  
Poor gain and phase balance will result in degraded 2nd-harmonic distortion performance. 8-1 lists a number  
of recommended baluns for different frequency ranges, but is not fully inclusive.  
8-1. Recommended Baluns  
PART NUMBER  
BAL-0009SMG  
BAL-0208SMG  
TCM2-43X+  
MANUFACTURER(1)  
Marki Microwave  
Marki Microwave  
Mini-Circuits  
MINIMUM FREQUENCY (MHz) MAXIMUM FREQUENCY (MHz)  
0.5  
2000  
10  
9000  
8000  
4000  
3000  
3000  
TCM2-33WX+  
B0430J50100AHF  
Mini-Circuits  
10  
Anaren  
400  
(1) See the Third-Party Products Disclaimer section.  
Copyright © 2021 Texas Instruments Incorporated  
134 Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
8.1.2 Analog Input Bandwidth  
ADC12DJ3200QML-SP has a very high full-power input bandwidth to allow direct sampling of signals up to 10  
GHz. In many cases, a transformer or balun is used to convert the front-end signal chain's single-ended signals  
to the differential signals ADC12DJ3200QML-SP requires. A 2:1 transformer will present a 100-Ω differential  
source impedance to the ADC from a single-ended 50-Ω source, however baluns or transformers with poor  
output return loss (not well matched to differential 100 Ω impedance) will result in frequency ripple in the  
ADC12DJ3200QML-SP frequency response. To improve the frequency ripple, resistive attenuators (Pi- or T-  
type) can be used to improve the output return loss of the drive component to dampen frequency response  
ripples at the cost of additional gain and drive strength in the preceding amplifier chain. Typically, 3 dB of  
attenuation is sufficient to dampen frequency response ripple introduced by poor output return loss. To be more  
general, achieving maximum frequency response flatness (as shown in Gain Response vs Input Frequency) with  
ADC12DJ3200QML-SP requires the output impedance of the device or passive component preceding the  
ADC12DJ3200QML-SP to be well matched to a differential, 100-Ω resistance. Additional impedance matching  
will not typically improve bandwidth.  
8.1.3 Clocking  
The ADC12DJ3200QML-SP clock inputs must be AC-coupled to the device to provide rated performance. The  
clock source must have extremely low jitter (integrated phase noise) to achieve rated performance.  
Recommended clock synthesizers include the LMX2615-SP.  
The JESD204B data converter system (ADC plus FPGA) requires additional SYSREF and device clocks. The  
LMK04832 device is an excellent choice to generate these clocks. Depending on the ADC clock frequency and  
jitter requirements, this device may also be used as the system clock synthesizer or as a device clock and  
SYSREF distribution device when multiple ADC12DJ3200QML-SP devices are used in a system.  
8.1.4 Radiation Environment Recommendations  
Careful consideration should be given to the environmental conditions when using a product in a radiation  
environment.  
8.1.4.1 Single Event Latch-Up (SEL)  
One-time single event latch-up (SEL) testing was performed according to EIA/JEDEC Standard, EIA/JEDEC57.  
The linear energy transfer threshold (LETth) shown in Features is the maximum LET tested.  
8.1.4.2 Single Event Functional Interrupt (SEFI)  
The register map of ADC12DJ3200QML-SP was designed to hold the programmed values during radiation  
events up to the maximum LET used for SEL testing.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 135  
Product Folder Links: ADC12DJ3200QML-SP  
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
8.1.4.3 Single Event Upset (SEU)  
The high speed digital path of ADC12DJ3200QML-SP, including the DDC block and JESD204B block, is  
susceptible to radiation events. The following recommendations are provided to allow automatic recovery and to  
improve the recovery time of the JESD204B interface block of ADC12DJ3200QML-SP after being upset.  
Always use a continuous, periodic SYSREF in order to quickly recover internal clocks and counters. Set the  
period to be long enough to limit spurious performance degradation caused by coupling, but short enough to  
recover within the system requirements. SYSREF will help both the transmitter (ADC12DJ3200QML-SP) and  
receiver (FPGA or ASIC) recover after an SEU. SYSREF sets an upper bound for the time the link takes to  
discover a frame or multi-frame misalignment. As a minimum requirement, SYSREF must be activated when  
the receiver asserts the JESD204B SYNC signal.  
The receiver (FPGA or ASIC) must perform frame and multiframe alignment monitoring. Monitoring should  
include looking for misplaced or missing end-of-frame and end-of-multiframe characters. Misplaced  
characters are those that occur in the incorrect spot of a frame or multiframe, meaning not the last character  
of a frame or multiframe. Missing characters are those that the receiver deems should be included at the end  
of a frame or multiframe based on the character replacement rules of JESD204B. When two or more  
misplaced or missing characters are found (without receiving any in the correct position), the link should be  
reestablished by asserting SYNC to restart the CGS and ILAS processes.  
Enable scrambling to make sure the alignment characters are generated with consistent probabilities  
independent of the ADC data. Not using scrambling could result in long recovery times after a shift in frame  
or multiframe alignment.  
Make sure that the receiver frame-alignment state machine is implemented according to the JESD204B  
standard, including support for reinitialization over the data interface. If the transmitter (ADC12DJ3200QML-  
SP) re-initializes the link (indicated by sending K28.5 characters without the receiver asserting the SYNC  
signal) the receiver should transition to the initial frame and lane alignment states.  
Additional robustness can be achieved in the 12-bit, DDC bypass JMODEs by monitoring the four tail bits at  
the end of each frame. Missing or misplaced tail bits can be treated the same as a frame misalignment error.  
The accumulators of the numerically-controlled oscillators (NCOs) used by the DDC block are also susceptible to  
upsets. An upset of the NCO phase can be detected by using the NCO upset alarm feature described in 节  
7.3.7.1. After an upset has been detected, the NCO must be reinitialized if phase synchronization between  
multiple ADC12DJ3200QML-SP devices is required. A more robust solution can be achieved if the NCO  
frequency is chosen to be a harmonic of the SYSREF frequency (integer related to the SYSREF frequency) and  
NCO synchronization using SYSREF (AC coupled) described in NCO Phase Synchronization is used. This  
allows SYSREF to automatically reset the NCO phase after an upset and automatically recovers the phase  
synchronization between multiple ADC12DJ3200QML-SP devices without having to resynchronize all  
ADC12DJ3200QML-SP devices in the system. This condition is met if fNCO = n × fSYSREF  
.
Copyright © 2021 Texas Instruments Incorporated  
136 Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
8.2 Typical Application  
A common use-case for ADC12DJ3200QML-SP is as the digitizer in a wideband RF sampling receiver. Many  
applications, such as wideband satellite communications or synthetic aperture radar (SAR), will fall into this  
common configuration. In this case, DC coupling is not required and therefore a transformer or balun is used to  
interface the single-ended amplifier with the differential inputs of ADC12DJ3200QML-SP.  
ADC12DJ3200QML-SP  
Up to 16 lanes  
JESD204B  
LNA  
LNA Anti-Alias BPF  
JESD  
204B  
ADC A  
DDC  
SYNC~  
LNA  
LNA Anti-Alias BPF  
JESD  
204B  
ADC B  
DDC  
Clocking  
Subsystem  
User Control  
Logic  
FPGA or ASIC  
SPI  
LMX2615-SP  
LMK04832  
PLL +  
VCO  
÷
÷
Device  
Clock  
Reference  
Clock  
SYSREF  
SYSREF  
PLL +  
VCO  
Device Clock  
÷
÷
SYSREF  
8-1. Typical Configuration for Wideband RF Sampling Receiver  
8.2.1 Design Requirements  
A wideband RF sampling receiver can be configured in a number of different modes. For instance,  
ADC12DJ3200QML-SP could operate in dual channel mode and sample in either the 1st, 2nd or 3rd Nyquist  
zone. However, in this example assume that ADC12DJ3200QML-SP operates in single-channel mode at a  
sampling rate of 6.4 GSPS and the 2nd Nyquist zone is used. The input signals can then be between 3.2 GHz to  
6.4 GHz, less anti-alias filtering margin, when running in single-channel mode at 6.4 GSPS. The RF components  
are not addressed in detail here, but instead is discussed in generalities in the RF Input Signal Path section.  
8-2. Wideband RF Sampling Receiver System Requirements  
System Requirement  
Specification  
Units  
GSPS  
GHz  
Sampling rate  
6.4  
2.5  
Instantaneous signal bandwidth  
Input signal center frequency  
ADC interface  
4.8  
GHz  
JESD204B  
6.4  
Maximum SerDes line rate  
Gbps  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 137  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
The component selection and ADC12DJ3200QML-SP configuration for the application described in 8.2.1 is  
discussed is this section. The components of the wideband RF sampling receiver are given in 8-3 along with  
the reason for the selection.  
8-3. Wideband RF Sampling Receiver Component Selection  
COMPONENT  
SELECTION  
REASON  
Sampling rate requirement (6.4 GSPS) and  
ADC  
Texas Instruments' ADC12DJ3200QML-SP high input frequency makes  
ADC12DJ3200QML-SP a natural choice.  
LMX2615-SP generates a high performing  
sampling clock due to low jitter (45 fs) and  
high output swing. The SYSREF features  
simplify multi-device synchronization.  
Sampling clock generation  
Texas Instruments' LMX2615-SP  
Support for 7 JESD204 ADCs, DACs or logic  
devices (FPGA or ASIC) and a number of  
operating modes such as single PLL mode,  
dual PLL mode or clock distribution mode.  
Clock distribution  
Transformer/Balun  
Texas Instruments' LMK04832  
Small size, wide frequency coverage and  
good performance within required frequency  
band.  
Marki Microwave's BAL-0208SMG(1)  
(1) See the Third-Party Products Disclaimer section.  
The ADC12DJ3200QML-SP configuration and key parameters are given in 8-4. The calculations or sources  
for the various parameters are provided where applicable.  
8-4. ADC12DJ3200QML-SP Configuration and Key Parameters  
PARAMETER  
JMODE  
CALCULATION  
SETTING OR VALUE  
UNITS  
1
DDC mode  
ADC channels  
From JMODE selection  
From JMODE selection  
N/A (dual-channel mode only)  
1
INA± provides best performance  
in single-channel mode  
Analog input used  
Total SerDes lanes  
INA±  
From JMODE selection  
From JMODE selection  
fLINERATE = fCLK * R  
16  
2
Lanes  
Gbps / GHz  
Gbps  
R (fBIT / fCLK  
)
SerDes line rate  
6.4  
2
Links  
From JMODE selection  
From JMODE selection  
From JMODE selection  
From JMODE selection  
From JMODE selection  
Links  
L (per link)  
8
Lanes / Link  
Converters / Link  
Frames / Lane  
Samples / Frame  
M (per link)  
8
F
S
8
5
ceil(17/F) K min(32,  
K
8 (others allowed)  
3.2  
Frames / Multiframe  
GHz  
floor(1024/F))  
fCLK = fS / 2 (for single-channel  
mode)  
CLK± Frequency  
fSYSREF = fLINERATE / (10 * F * K *  
n)  
SYSREF frequency  
Total clock jitter  
10 / n  
83  
MHz  
fs  
τT = sqrt( τCLK 2 + τAJ  
)
2
Copyright © 2021 Texas Instruments Incorporated  
138 Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
8.2.2.1 RF Input Signal Path  
Most RF sampling receivers will include a number of low-noise amplifiers (LNAs) or gain blocks after the antenna  
to increase the signal level of the desired signal. The use of appropriate band-limiting filters after the LNAs  
reduces receiver sensitivity loss due to blocking signals by rejecting unwanted frequencies. The final amplifier,  
which will drive the ADC12DJ3200QML-SP through the transformer, must be selected to provide high linearity  
(IMD3, SFDR) at the full-scale input power level of the ADC12DJ3200QML-SP plus the insertion loss of the  
transformer. The noise figure performance of the final driver amplifier is less important than its linearity as long  
as sufficient gain is provided by the previous gain stages. The maximum output power must be less than the  
absolute maximum input power of the ADC12DJ3200QML-SP in case of overdrive conditions. If the amplifier is  
capable of driving an output power larger than the ADC12DJ3200QML-SP can tolerate then an external  
clamping or limiting circuit must be implemented to protect the ADC12DJ3200QML-SP input. Overdrive  
conditions must be corrected quickly to prevent cumulative damage to the ADC12DJ3200QML-SP.  
8.2.2.2 Calculating Values of AC-Coupling Capacitors  
AC-coupling capacitors are used in the input CLK± and JESD204B output data pairs. The capacitor values must  
be large enough to address the lowest frequency signals of interest, but not so large as to cause excessively  
long startup biasing times, or unwanted parasitic inductance.  
The minimum capacitor value can be calculated based on the lowest frequency signal that is transferred through  
the capacitor. Given a 50-Ω single-ended clock or data path impedance, good practice is to set the capacitor  
impedance to be <1 Ωat the lowest frequency of interest. This setting provides minimal impact on signal level at  
that frequency. For the CLK± path, the minimum-rated clock frequency is 800 MHz. Therefore, the minimum  
capacitor value can be calculated from:  
ZC = 1/ 2 ´ p ´ ¦  
(
´ C  
)
CLK  
(12)  
Setting Zc = 1 Ωand rearranging gives:  
C = 1/ 2 ´ p ´ 800 MHz ´ 1 W = 199 pF  
)
(
(13)  
Therefore, a capacitance value of at least 199 pF is needed to provide the low-frequency response for the CLK±  
path. If the minimum clock frequency is higher than 800 MHz, this calculation can be revisited for that frequency.  
Similar calculations can be done for the JESD204B output data capacitors based on the minimum frequency in  
that interface. Capacitors must also be selected for good response at high frequencies (low inductance) and with  
dimensions that match the high-frequency signal traces they are connected to. Capacitors of the 0201 size are  
frequently well suited to these applications.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 139  
Product Folder Links: ADC12DJ3200QML-SP  
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
8.2.3 Application Curves  
The ADC12DJ3200QML-SP can be used in a number of different operating modes to suit multiple applications.  
Single-tone and two-tone performance is shown in detail in the 6 section. Noise-power ratio (NPR) is a  
performance metric that is often used to quantify performance of a wideband multi-channel receiver. These  
systems receive a large number of closely spaced signals that are uncorrelated. The summation of these  
uncorrelated signals forms a signal that looks like a normally (Gaussian) distributed noise source and NPR  
attempts to quantify performance for this type of signal. NPR measures the ratio of noise power in a notched  
band to the signal power in an equal size band. Example NPR Measurement at Optimal Loading for  
ADC12DJ3200QML-SP in Dual-Channel Mode shows an example NPR measurement in dual-channel mode.  
The input signal spans from 100 MHz to 1.5 GHz and the notch is 45 MHz wide centered at a frequency of 839.7  
MHz. The input power is swept to find the optimal RMS noise loading which is the input power where the NPR is  
at a maximum. The peak NPR, occurring at the optimal input power loading, becomes the desired operating  
point for wideband multi-channel receivers with normally distributed input signals. An input power sweep for  
dual-channel mode is shown in NPR vs Input RMS Noise Loading in Dual-Channel Mode which shows the peak  
NPR of 45.2 dB occurring at the optimal loading of 12.6 dB relative to the peak (saturated) input power of the  
ADC. This peak NPR roughly corresponds to the performance of an 8.8-bit ADC, so the effective number of bits  
(ENOB) is 8.8 bits. Example measurements in single-channel mode are shown in Example NPR Measurement  
at Optimal Loading for ADC12DJ3200QML-SP in Single-Channel Mode and NPR vs Input RMS Noise Loading  
in Single-Channel Mode. The signal generator output was limited to 1.5 GHz in order to achieve sufficient output  
power to saturate the ADC input for the single-channel mode measurement. The NPR calculation compensates  
for the limited signal bandwidth.  
0
-20  
48  
46  
44  
42  
40  
38  
36  
34  
32  
30  
-40  
-60  
-80  
-100  
-120  
Theoretical NPR for 8.8-bit ENOB  
Measured NPR  
0
400  
800  
Frequency (MHz)  
1200  
1600  
-28  
-24  
-20 -16  
RMS Noise Loading (dB)  
-12  
-8  
D201  
D200  
JMODE 3 , fS = 3200 MSPS, signal band is 100 MHz to 1500  
MHz, notch center frequency = 839.7 MHz, notch bandwidth =  
45 MHz  
JMODE 3 , fS = 3200 MSPS, signal band is 100 MHz to 1500  
MHz, notch center frequency = 839.7 MHz, notch bandwidth =  
45 MHz, peak NPR = 45.2 dB at noise loading of -12.6 dB  
8-2. Example NPR Measurement at Optimal  
Loading for ADC12DJ3200QML-SP in Dual-  
Channel Mode  
8-3. NPR vs Input RMS Noise Loading in Dual-  
Channel Mode  
Copyright © 2021 Texas Instruments Incorporated  
140 Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
0
48  
46  
44  
42  
40  
38  
36  
34  
32  
30  
-20  
-40  
-60  
-80  
-100  
Theoretical NPR for 8.8-bit ENOB  
Measured NPR  
-120  
0
800  
1600  
Frequency (MHz)  
2400  
3200  
-28  
-24  
-20 -16  
RMS Noise Loading (dB)  
-12  
-8  
D203  
D202  
JMODE 1 , fS = 6400 MSPS, signal band is 100 MHz to 1500  
MHz, notch center frequency = 839.7 MHz, notch bandwidth =  
45 MHz  
JMODE 1 , fS = 6400 MSPS, signal band is 100 MHz to 1500  
MHz, notch center frequency = 839.7 MHz, notch bandwidth =  
45 MHz, peak NPR = 45.4 dB at noise loading of -12.4 dB  
8-4. Example NPR Measurement at Optimal  
Loading for ADC12DJ3200QML-SP in Single-  
Channel Mode  
8-5. NPR vs Input RMS Noise Loading in Single-  
Channel Mode  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 141  
Product Folder Links: ADC12DJ3200QML-SP  
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
8.3 Initialization Set Up  
The device and JESD204 interface require a specific startup and alignment sequence. The general order of that  
sequence is listed in the following steps.  
1. Power-up or reset the device.  
2. Apply a stable device CLK signal at the desired frequency.  
3. Program JESD_EN = 0 to stop the JESD204B state machine and allow setting changes.  
4. Program CAL_EN = 0 to stop the calibration state machine and allow setting changes.  
5. Program the desired JMODE.  
6. Program the desired KM1 value. KM1 = K1.  
7. Program SYNC_SEL as needed. Choose SYNCSE or timestamp differential inputs.  
8. Configure device calibration settings as desired. Select foreground or background calibration modes and  
offset calibration as needed.  
9. Program CAL_EN = 1 to enable the calibration state machine.  
10. Enable overrange via OVR_EN and adjust settings if desired.  
11. Enable continuous SYSREF generation at the SYSREF source.  
12. Verify that SYSREF meets setup and hold times relative to CLK± by either running automatic SYSREF  
calibration or using SYSREF windowing (see the SYSREF Capture for Multi-Device Synchronization and  
Deterministic Latency section for more information).  
13. Program JESD_EN = 1 to re-start the JESD204B state machine and allow the link to restart.  
14. The JESD204B interface operates in response to the applied SYNC signal from the receiver.  
15. Program CAL_SOFT_TRIG = 0.  
16. Program CAL_SOFT_TRIG = 1 to initiate a calibration.  
Copyright © 2021 Texas Instruments Incorporated  
142 Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
Power Supply Recommendations  
The device requires two different power-supply voltages. 1.9 V DC is required for the VA19 power bus and 1.1 V  
DC is required for the VA11 and VD11 power buses. The power-supply voltages must be low noise and provide  
the needed current to achieve rated device performance.  
There are two recommended power supply architectures:  
1. Step down from the system voltage using high-efficiency DC/DC switching converters followed by a second  
stage of low-noise regulation by a low drop-out linear regulator (LDO). The LDO provides switching noise  
reduction, reduces passive filtering requirements and improves voltage accuracy if placed locally at the ADC.  
2. Directly step down from the system voltage to the final ADC supply voltages using high-efficiency DC/DC  
switching converters. This approach provides the best efficiency, but care must be taken to make sure  
switching noise is minimized to prevent degraded ADC performance. Additional passive filtering is required  
for best performance and any lossy series components may reduce the actual voltage at the ADC.  
TI WEBENCH® Power Designer can be used to select and design the individual power supply elements needed:  
see the WEBENCH® Power Designer.  
A recommended DC/DC switching regulator for the first stage is the TPS50601A-SP, but other similar devices  
can be used as well. Recommended LDOs for the second stage include TPS7H1101A-SP, TPS7A4501-SP and  
other similar devices.  
For the switcher only approach, the ripple filter must be designed to provide sufficient filtering at the switching  
frequency of the DC-DC converter and it's harmonics. WEBENCH® reports the switching frequency when used  
to design the supply. Each application will have different tolerances for noise on the supply voltage so strict  
ripple requirements are not provided. 9-1 and 9-2 illustrate the two approaches.  
Local Filtering  
2.2 V  
1.9 V  
5 V œ 12 V  
FB  
VA19  
VA11  
VD11  
DC/DC  
Buck  
LDO  
10 F  
0.1 F  
0.1 F  
+
Power  
Good  
œ
GND  
GND  
GND  
GND  
GND  
Local Filtering  
1.4 V  
1.1 V  
FB  
DC/DC  
Buck  
LDO  
10 F  
0.1 F  
0.1 F  
GND  
GND  
GND  
GND  
Local Filtering and Digital Noise Rejection  
FB  
10 F  
0.1 F  
10 F  
0.1 F  
GND  
GND  
9-1. LDO Linear Regulator Example  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 143  
Product Folder Links: ADC12DJ3200QML-SP  
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
Ripple Filter  
FB  
Local Filtering  
1.9 V  
5 V œ 12 V  
FB  
VA19  
VA11  
VD11  
DC/DC  
Buck  
10 F  
0.1 F  
0.1 F  
+
Power  
Good  
œ
GND  
GND  
GND  
GND  
GND  
Ripple Filter  
FB  
Local Filtering  
1.1 V  
FB  
DC/DC  
Buck  
10 F  
0.1 F  
0.1 F  
GND  
GND  
GND  
GND  
Local Filtering and Digital Noise Rejection  
FB  
10 F  
0.1 F  
10 F  
0.1 F  
GND  
GND  
9-2. DC/DC Switching Regulator Example  
9.1 Power Sequencing  
The voltage regulators must be sequenced using the power-good outputs and enable inputs to make sure that  
the Vx11 regulator is enabled after the VA19 supply is good. Similarly, as soon as the VA19 supply drops out of  
regulation on power-down, the Vx11 regulator is disabled.  
The general requirement for the ADC is that VA19 Vx11 during power-up, operation, and power-down.  
TI also recommends that VA11 and VD11 are derived from a common 1.1-V regulator. This recommendation  
makes sure that all 1.1-V blocks are at the same voltage, and no sequencing problems exist between these  
supplies. Also use ferrite bead filters to isolate any noise on the VA11 and VD11 buses from affecting each other.  
Copyright © 2021 Texas Instruments Incorporated  
144 Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
9 Layout  
9.1 Layout Guidelines  
There are many critical signals that require specific care during board design:  
1. Analog input signals  
2. CLK and SYSREF  
3. JESD204B data outputs:  
a. DA[0:3] and DB[0:3] operating at up to 12.8 Gbit per second  
b. DA[4:7] and DB[4:7] operating at up to 6.4 Gbit per second  
4. Power connections  
5. Ground connections  
The analog input signals, clock signals and JESD204B data outputs must be routed for excellent signal quality at  
high frequencies, but should also be routed for maximum isolation from each other. Use the following general  
practices:  
1. Route using loosely coupled 100-Ωdifferential traces when possible. This routing minimizes impact of  
corners and length-matching serpentines on pair impedance.  
2. Provide adequate pair-to-pair spacing to minimize crosstalk, especially with loosely coupled differential  
traces. Tightly coupled differential traces may be used to reduce self-radiated noise or to improve  
neighboring trace noise immunity when adequate spacing cannot be provided.  
3. Provide adequate ground plane pour spacing to minimize coupling with the high-speed traces. Any ground  
plane pour must have sufficient via connections to the main ground plane of the board. Do not use floating or  
poorly connected ground pours.  
4. Use smoothly radiused corners. Avoid 45- or 90-degree bends to reduce impedance mismatches.  
5. Incorporate ground plane cutouts at component landing pads to avoid impedance discontinuities at these  
locations. Cut-out below the landing pads on one or multiple ground planes to achieve a pad size or stackup  
height that achieves the needed 50-Ω, single-ended impedance.  
6. Avoid routing traces near irregularities in the reference ground planes. Irregularities include cuts in the  
ground plane or ground plane clearances associated with power and signal vias and through-hole  
component leads.  
7. Provide symmetrically located ground tie vias adjacent to any high-speed signal vias at an appropriate  
spacing as determined by the maximum frequency the trace will transport (<< λMIN/8).  
8. When high-speed signals must transition to another layer using vias, transition as far through the board as  
possible (top to bottom is best case) to minimize via stubs on top or bottom of the vias. If layer selection is  
not flexible, use back-drilled or buried, blind vias to eliminate stubs. Always place ground vias close to the  
signal vias when transitioning between layers to provide a nearby ground return path.  
Pay particular attention to potential coupling between JESD204B data output routing and the analog input  
routing. Switching noise from the JESD204B outputs can couple into the analog input traces and show up as  
wideband noise due to the high input bandwidth fo the ADC. Ideally, route the JESD204B data outputs on a  
separate layer from the ADC input traces to avoid noise coupling (not shown in the Layout Example section).  
Tightly coupled traces can also be used to reduce noise coupling.  
Impedance mismatch between the CLK± input pins and the clock source can result in reduced amplitude of the  
clock signal at the ADC CLK± pins due to signal reflections or standing waves. A reduction in the clock amplitude  
may degrade ADC noise performance, especially at high input frequencies. To avoid this, keep the clock source  
close to the ADC (as shown in the Layout Example section) or implement impedance matching at the ADC CLK±  
input pins.  
In addition, TI recommends performing signal quality simulations of the critical signal traces before committing to  
fabrication. Insertion loss, return loss, and time domain reflectometry (TDR) evaluations should be done.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 145  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
The power and ground connections for the device are also very important. These rules must be followed:  
1. Provide low-resistance connection paths to all power and ground pins.  
2. Use multiple power layers if necessary to access all pins.  
3. Avoid narrow isolated paths that increase connection resistance.  
4. Use a signal, ground, or power circuit board stackup to maximum coupling between the ground and power  
planes.  
9.2 Layout Example  
9-1 to 9-3 provide examples of the critical traces routed on the device evaluation module (EVM).  
9-1. Top Layer Routing: Analog Inputs, CLK and SYSREF, DA0-3, DB0-3  
Copyright © 2021 Texas Instruments Incorporated  
146 Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
9-2. GND1 Cutouts to Optimize Impedance of Component Pads  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 147  
Product Folder Links: ADC12DJ3200QML-SP  
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
9-3. Bottom Layer Routing: Additional CLK Routing, DA4-7, DB4-7  
Copyright © 2021 Texas Instruments Incorporated  
148 Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
10 Device and Documentation Support  
10.1 Device Support  
10.1.1 Development Support  
WEBENCH® Power Designer  
Direct RF-Sampling Radar Receiver for L-, S-, C-, and X-Band Using ADC12DJ3200 Reference Design  
Flexible 3.2 GSPS Multi-Channel AFE Reference Design for DSOs, RADAR, and 5G Wireless Test Systems  
Multi-Channel JESD204B 15 GHz Clocking Reference Design for DSO, Radar and 5G Wireless Testers  
10.2 Documentation Support  
10.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, JESD204B multi-device synchronization: Breaking down the requirements Technical Brief  
Texas Instruments, LMX2615-SP Space Grade 40-MHz to 15-GHz Wideband Synthesizer With Phase  
Synchronization and JESD204B Support  
Texas Instruments, LMK04832 Ultra Low-Noise JESD204B Compliant Clock Jitter Cleaner With Dual Loop  
PLLs  
Texas Instruments, LMH5401-SP radiation hardened 6.5-GHz, low-noise, low-power, gain-configurable fully  
differential amplifier  
Texas Instruments, TMP461-SP Radiation Hardened Remote and Local Digital Temperature Sensor  
Texas Instruments, LMT01-SP radiation hardened 2-pin precision digital output temperature sensor  
Texas Instruments, MSP430FR5969-SP Radiation Hardened Mixed-Signal Microcontroller  
Texas Instruments, TPS50601A-SP Radiation Hardened 3-V to 7-V Input, 6-A Synchronous Buck Converter  
Texas Instruments, TPS7H1101A-SP 1.5-V to 7-V Input, 3-A, Radiation-Hardened LDO Regulator  
Texas Instruments, TPS7A4501-SP Low-Dropout Voltage Regulator  
Texas Instruments, ADC12DJ3200EVMCVAL Evaluation Module User's Guide  
10.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 149  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
 
 
 
 
ADC12DJ3200QML-SP  
ZHCSJ15B NOVEMBER 2018 REVISED MARCH 2021  
www.ti.com.cn  
10.4 Community Resources  
10.5 Trademarks  
WEBENCH® is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
150 Submit Document Feedback  
Product Folder Links: ADC12DJ3200QML-SP  
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Jun-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
5962F1820901VXC  
5962F1820901VYF  
ACTIVE  
CLGA  
CCGA  
CCGA  
CLGA  
ZMX  
196  
196  
196  
196  
1
RoHS-Exempt  
& Green  
Call TI  
N / A for Pkg Type  
N / A for Pkg Type  
N / A for Pkg Type  
N / A for Pkg Type  
-55 to 125  
-55 to 125  
25 to 25  
F1820901VXC  
ADC12DJ32FM  
Samples  
Samples  
Samples  
Samples  
ACTIVE  
ACTIVE  
ACTIVE  
NWE  
1
RoHS-Exempt  
& Green  
Call TI  
Call TI  
Call TI  
F1820901VYF  
ADC12DJ32FM  
ADC12DJ3200NWE/EM  
ADC12DJ3200ZMX/EM  
NWE  
1
RoHS-Exempt  
& Green  
ADC12DJ32EM  
EVAL  
ZMX  
1
RoHS-Exempt  
& Green  
25 to 25  
ADC12DJ32EM  
EVAL  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Jun-2022  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jun-2023  
TRAY  
L - Outer tray length without tabs  
KO -  
Outer  
tray  
height  
W -  
Outer  
tray  
width  
Text  
P1 - Tray unit pocket pitch  
CW - Measurement for tray edge (Y direction) to corner pocket center  
CL - Measurement for tray edge (X direction) to corner pocket center  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
ADC12DJ3200ZMX/EM  
ZMX  
CLGA  
196  
1
7 X 17  
150  
315 135.9 12190 18.1  
12.7  
12.9  
Pack Materials-Page 1  
PACKAGE OUTLINE  
ZMX0196A  
CLGA - 3.844 mm max height  
SCALE 0.850  
Ceramic Land Grid Array  
15.15  
14.85  
A
B
12.15  
11.85  
SEAL RING  
15.15  
14.85  
(4X 45 X 0.5)  
3.844 MAX  
8X (R0.5)  
C
2.4  
2.0  
13 TYP  
1
TYP  
P
N
M
L
K
J
SYMM  
H
G
F
13  
TYP  
0.65  
196X  
E
D
C
0.55  
0.3  
0.1  
C A B  
C
B
A
1
3
8
9 10  
2
4
5
6
7
11  
12 13  
14  
1
TYP  
SYMM  
4222071/D 06/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
PACKAGE OUTLINE  
NWE0196A  
CCGA - 6.194 mm max height  
SCALE 0.850  
CERAMIC COLUMN GRID ARRAY  
15.15  
14.85  
A
B
12.15  
11.85  
SEAL RING  
15.15  
14.85  
(4X 45 X 0.5)  
8X (R0.5)  
C
2.4  
2.0  
6.194 MAX  
2.35  
2.05  
13 TYP  
1
TYP  
P
N
M
L
K
J
SYMM  
H
G
F
13  
TYP  
0.51  
196X  
0.31  
E
D
C
0.3  
0.1  
C A B  
C
B
A
1
3
8
9 10  
2
4
5
6
7
11  
12 13  
14  
1
TYP  
SYMM  
4224655/B 12/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
NWE0196A  
CCGA - 6.194 mm max height  
CERAMIC COLUMN GRID ARRAY  
(1) TYP  
196X ( 0.61)  
1
2 3  
4
5
6
7
8
9 10 11 12 13 14  
A
(1) TYP  
B
C
D
E
F
SYMM  
G
H
J
K
L
M
N
P
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 5X  
0.05 MAX  
SOLDER MASK  
OPENING  
EXPOSED METAL  
METAL EDGE  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK DETAIL  
NOT TO SCALE  
4224655/B 12/2018  
www.ti.com  
EXAMPLE STENCIL DESIGN  
NWE0196A  
CCGA - 6.194 mm max height  
CERAMIC COLUMN GRID ARRAY  
(1) TYP  
196X ( 0.61)  
1
2 3  
4
5
6
7
8
9 10 11 12 13 14  
A
(1) TYP  
B
C
D
E
F
SYMM  
G
H
J
K
L
M
N
P
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE: 5X  
4224655/B 12/2018  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY