ADC12DL3200ALJ [TI]

12 位双通道 3.2GSPS 或单通道 6.4GSPS 射频采样数模转换器(LVDS 接口) | ALJ | 256 | -40 to 85;
ADC12DL3200ALJ
型号: ADC12DL3200ALJ
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

12 位双通道 3.2GSPS 或单通道 6.4GSPS 射频采样数模转换器(LVDS 接口) | ALJ | 256 | -40 to 85

射频 转换器 数模转换器
文件: 总160页 (文件大小:4079K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
ADC12DL3200 LVDS 接口6.4GSPS 单通道3.2GSPS 双通道  
12 位模数转换(ADC)  
1 特性  
3 说明  
ADC 内核:  
ADC12DL3200 是一款射频采样千兆采样模数转换器  
(ADC)可对从直流到 10GHz 以上的输入频率进行直  
接采样。ADC12DL3200 在双通道模式下的最大采样速  
率为 3200MSPS在单通道模式下的最大采样速率为  
6400MSPS。该器件可通过编程方式针对通道数双  
通道模式和奈奎斯特带宽单通道模式进行权衡,  
方便用户开发灵活的硬件从而满足高通道数或宽瞬时  
信号带宽应用的需求。它具8.0GHz 的全功率输入带  
(-3dB) 和实用的频率范围可对频率捷变系统的  
LSC X 频带进行直接射频采样。  
12 位分辨率  
– 单通道模式下采样速率高6.4GSPS  
– 双通道模式下采样速率高3.2GSPS  
• 内部抖动技术可产生低幅高位谐波  
• 低延LVDS 接口:  
– 总延迟< 10ns  
– 多48 个速率1.6Gbps 的数据对  
– 四DDR 数据时钟  
– 选通信号会简化同步  
• 本底噪声无输入VFS = 1.0VPP-DIFF):  
ADC12DL3200 针对延迟敏感型应用采用低延迟的低电  
压差分信号 (LVDS) 接口或在需要 LVDS 的简易性时  
使用该接口。该接口使用多达 48 个数据对、四个双倍  
数据速率 (DDR) 时钟和四个选通信号安排在四条 12  
位数据总线中。该接口支持高达 1.6Gbps 的信号速  
率。选通信号可简化总线间和多个器件间的同步工作。  
选通信号是在内部产生的并且 SYSREF 输入可在确  
定的时间将其复位。无噪声孔径延迟 (TAD) 调节和  
SYSREF 窗口化等创新的同步特性进一步简化了多器  
件同步。  
– 双通道模式-151.1dBFS/Hz  
– 单通道模式-154.3dBFS/Hz  
VCMI 0V 的缓冲模拟输入:  
– 模拟输入带(3dB)8.0 GHz  
– 可用输入频率范围> 10 GHz  
– 满量程输入电压VFS默认值):0.8 VPP  
• 无噪声孔径延(TAD) 调节:  
– 精确采样控制19 fs 步长  
– 简化同步和交错  
– 温度和电压不变延迟  
• 简便易用的同步特性:  
封装信息  
封装(1)  
封装尺寸(2)  
器件型号  
– 自SYSREF 计时校准  
– 样片标记时间戳  
ADC12DL3200  
FCBGA (256)  
17 mm x 17 mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
• 功耗3.15W  
(2) 封装尺寸x 为标称值并包括引脚如适用。  
2 应用  
3
0
• 示波器和宽带数字转换器  
• 电子战信号情报、电子情报)  
• 飞行时间和激光雷达测距  
• 微波回程  
• 汽车雷达测试器  
• 光谱测量  
-3  
-6  
-9  
Dual-Channel Mode  
Single-Channel Mode  
-12  
0
2000  
4000 6000  
Input Frequency (MHz)  
8000  
10000  
D_BW  
ADC12DL3200 频率响应  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSDR3  
 
 
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
Table of Contents  
6.10 Switching Characteristics........................................26  
6.11 Typical Characteristics............................................ 38  
7 Detailed Description......................................................53  
7.1 Overview...................................................................53  
7.2 Functional Block Diagram.........................................53  
7.3 Feature Description...................................................54  
7.4 Device Functional Modes..........................................65  
7.5 Programming............................................................ 74  
7.6 Register Maps...........................................................76  
8 Device and Documentation Support..........................150  
8.1 Device Support....................................................... 150  
8.2 接收文档更新通知................................................... 150  
8.3 支持资源..................................................................150  
8.4 商标.........................................................................150  
8.5 静电放电警告.......................................................... 150  
8.6 术语表..................................................................... 150  
9 Mechanical, Packaging, and Orderable Information150  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications................................................................ 12  
6.1 Absolute Maximum Ratings...................................... 12  
6.2 ESD Ratings............................................................. 12  
6.3 Recommended Operating Conditions.......................13  
6.4 Thermal Information..................................................14  
6.5 Electrical Characteristics: DC Specifications............ 14  
6.6 Electrical Characteristics: Power Consumption........ 17  
6.7 Electrical Characteristics: AC Specifications  
(Dual-Channel Mode)..................................................18  
6.8 Electrical Characteristics: AC Specifications  
(Single-Channel Mode)............................................... 22  
6.9 Timing Requirements................................................26  
4 Revision History  
Changes from June 15, 2020 to May 22, 2023 (from Revision B (June 2020) to Revision C (May  
2023))  
Page  
• 更改了封装信息 添加了注释 2.....................................................................................................................1  
Changed SYNC_RECV_EN to TMSTP_RECV_EN, the correct name for register 0x03B bit 0.......................76  
Changes from Revision A (September 2018) to Revision B (June 2020)  
Page  
Corrected mislabeled LVDS buses in 6-7. LVDS buses B and C were swapped.........................................26  
Changes from Revision * (May 2018) to Revision A (September 2018)  
Page  
• 已投入量产..........................................................................................................................................................1  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR3  
2
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
5 Pin Configuration and Functions  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
A
B
C
D
E
F
AGND  
AGND  
AGND  
INA+  
INAœ  
AGND  
AGND  
ORA1  
DA0+  
DA0œ  
DA6+  
DA6œ  
DC0+  
DC0œ  
DGND  
DGND  
CALSTAT CALTRIG AGND  
AGND  
AGND  
AGND  
VA11  
VA11  
VA19  
VA19  
VA19  
VA19  
VA11  
VA11  
AGND  
AGND  
AGND  
INB+  
AGND  
AGND  
AGND  
VA11  
VA11  
VA19  
VA19  
VA19  
VA19  
VA11  
VA11  
AGND  
AGND  
AGND  
INBœ  
AGND  
AGND  
AGND  
VA11  
VA11  
VA19  
VA19  
VA19  
VA19  
VA11  
VA11  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
DGND  
DGND  
DGND  
DGND  
DGND  
DGND  
DGND  
DGND  
DGND  
DGND  
AGND  
AGND  
AGND  
ORA0  
ORB1  
ORB0  
VD11  
VD11  
VD11  
DA1+  
DA2+  
DA3+  
DA4+  
DA5+  
DA1œ  
DA2œ  
DA3œ  
DA4œ  
DA5œ  
DA7+  
DA8+  
DA7œ  
DA8œ  
DC1+  
DC2+  
DC3+  
DC4+  
DC5+  
DC6+  
VLVDS  
VLVDS  
DD6+  
DD5+  
DD4+  
DD3+  
DD2+  
DD1+  
DD0+  
DC1œ  
DC2œ  
DC3œ  
DC4œ  
DC5œ  
DC6œ  
DC7+  
DC8+  
DC7œ  
DC8œ  
AGND  
AGND  
BG  
AGND  
AGND  
TMSTP+  
DA9+  
DA9œ  
DC9+  
DC9œ  
TMSTPœ SYNCSE AGND  
DA10+  
DA11+  
DA10œ  
DA11œ  
VLVDS  
VLVDS  
VLVDS  
VLVDS  
DB11œ  
DB10œ  
DB9œ  
DC10+  
DC11+  
DC10œ  
DC11œ  
AGND  
AGND  
CLK+  
CLKœ  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
VA11  
VA19  
VA19  
VA19  
VA19  
VA11  
G
H
J
DACLK+ DACLKœ VLVDS  
DCCLK+ DCCLKœ  
DGND DASTR+ DASTRœ VLVDS  
DGND DBSTR+ DBSTRœ VLVDS  
DGND DCSTR+ DCSTRœ  
DGND DDSTR+ DDSTRœ  
K
L
AGND  
AGND  
VD11  
VD11  
VD11  
SDO  
SDI  
DBCLK+ DBCLKœ VLVDS  
DD6œ  
DD5œ  
DD4œ  
DD3œ  
DD2œ  
DD1œ  
DD0œ  
DDCLK+ DDCLKœ  
DB5+  
DB4+  
DB3+  
DB2+  
DB1+  
DB0+  
DB5œ  
DB4œ  
DB3œ  
DB2œ  
DB1œ  
DB0œ  
DB11+  
DB10+  
DB9+  
DB8+  
DB7+  
DB6+  
DD11+  
DD10+  
DD9+  
DD8+  
DD7+  
DGND  
DD11œ  
DD10œ  
DD9œ  
DD8œ  
DD7œ  
M
N
P
R
T
SYSREF+ TDIODE+ AGND  
SYSREFœ TDIODEœ AGND  
AGND  
PD  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
DB8œ  
SCS  
DB7œ  
AGND  
SCLK  
DB6œ  
DGND  
Not to scale  
5-1. ACF Package, 256-Ball Flip Chip BGA  
(Top View)  
5-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NO.  
A1  
NAME  
AGND  
AGND  
AGND  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
A2  
A3  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
TYPE  
DESCRIPTION  
NO.  
NAME  
Channel A analog input positive connection. The differential full-scale input range is determined by the  
FS_RANGE_A register; see the Full-Scale Voltage (VFS) Adjustment section. This input is terminated to  
AGND through a 50-Ωtermination resistor. The input common-mode voltage must typically be set to 0 V  
(GND) and must follow the recommendations in the Recommended Operating Conditions table. This pin  
can be left disconnected if not used.  
A4  
INA+  
I
I
Channel A analog input negative connection. See INA+ (pin A4) for detailed description. This input is  
terminated to ground through a 50-Ωtermination resistor. This pin can be left disconnected if not used.  
A5  
INA–  
A6  
A7  
AGND  
AGND  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
Fast overrange detection status for channel A for the OVR_T1 threshold. When the analog input  
exceeds the threshold programmed into OVR_T1, this status indicator goes high. The minimum pulse  
duration is set by OVR_N. See the ADC Overrange Detection section for more information. Leave this  
pin disconnected if not used.  
A8  
ORA1  
O
A9  
DA0+  
DA0–  
DA6+  
O
O
O
O
O
O
LVDS output for bit 0 of LVDS bus A. Positive connection. This pin can be left disconnected if not used.  
LVDS output for bit 0 of LVDS bus A. Negative connection. This pin can be left disconnected if not used.  
LVDS output for bit 6 of LVDS bus A. Positive connection. This pin can be left disconnected if not used.  
LVDS output for bit 6 of LVDS bus A. Negative connection. This pin can be left disconnected if not used.  
LVDS output for bit 0 of LVDS bus C. Positive connection. This pin can be left disconnected if not used.  
LVDS output for bit 0 of LVDS bus C. Negative connection. This pin can be left disconnected if not used.  
Digital supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
Digital supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
DA6–  
DC0+  
DC0–  
DGND  
DGND  
Foreground calibration status output or device alarm output. Functionality is programmed through  
CAL_STATUS_SEL. This pin can be left disconnected if not used.  
B1  
B2  
CALSTAT  
CALTRIG  
O
I
Foreground calibration trigger input. This pin is only used if hardware calibration triggering is selected in  
CAL_TRIG_EN, otherwise software triggering is performed using CAL_SOFT_TRIG. Tie this pin to GND  
if not used.  
B3  
B4  
B5  
B6  
B7  
AGND  
AGND  
AGND  
AGND  
AGND  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
Fast overrange detection status for channel A for the OVR_T0 threshold. When the analog input  
exceeds the threshold programmed into OVR_T0, this status indicator goes high. The minimum pulse  
duration is set by OVR_N. See the ADC Overrange Detection section for more information. Leave this  
pin disconnected if not used.  
B8  
ORA0  
O
B9  
DA1+  
DA1–  
DA7+  
O
O
O
O
O
O
O
O
LVDS output for bit 1 of LVDS bus A. Positive connection. This pin can be left disconnected if not used.  
LVDS output for bit 1 of LVDS bus A. Negative connection. This pin can be left disconnected if not used.  
LVDS output for bit 7 of LVDS bus A. Positive connection. This pin can be left disconnected if not used.  
LVDS output for bit 7 of LVDS bus A. Negative connection. This pin can be left disconnected if not used.  
LVDS output for bit 1 of LVDS bus C. Positive connection. This pin can be left disconnected if not used.  
LVDS output for bit 1 of LVDS bus C. Negative connection. This pin can be left disconnected if not used.  
LVDS output for bit 7 of LVDS bus C. Positive connection. This pin can be left disconnected if not used.  
LVDS output for bit 7 of LVDS bus C. Negative connection. This pin can be left disconnected if not used.  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
C1  
DA7–  
DC1+  
DC1–  
DC7+  
DC7–  
AGND  
AGND  
AGND  
AGND  
AGND  
C2  
C3  
C4  
C5  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
PIN  
5-1. Pin Functions (continued)  
TYPE  
DESCRIPTION  
NO.  
C6  
NAME  
AGND  
AGND  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
C7  
Fast overrange detection status for channel B for the OVR_T1 threshold. When the analog input  
exceeds the threshold programmed into OVR_T1, this status indicator goes high. The minimum pulse  
duration is set by OVR_N. See the ADC Overrange Detection section for more information. Leave this  
pin disconnected if not used.  
C8  
ORB1  
O
C9  
DA2+  
DA2–  
DA8+  
O
O
O
O
O
O
O
O
LVDS output for bit 2 of LVDS bus A. Positive connection. This pin can be left disconnected if not used.  
LVDS output for bit 2 of LVDS bus A. Negative connection. This pin can be left disconnected if not used.  
LVDS output for bit 8 of LVDS bus A. Positive connection. This pin can be left disconnected if not used.  
LVDS output for bit 8 of LVDS bus A. Negative connection. This pin can be left disconnected if not used.  
LVDS output for bit 2 of LVDS bus C. Positive connection. This pin can be left disconnected if not used.  
LVDS output for bit 2 of LVDS bus C. Negative connection. This pin can be left disconnected if not used.  
LVDS output for bit 8 of LVDS bus C. Positive connection. This pin can be left disconnected if not used.  
LVDS output for bit 8 of LVDS bus C. Negative connection. This pin can be left disconnected if not used.  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
DA8–  
DC2+  
DC2–  
DC8+  
DC8–  
Timestamp input positive connection or differential LVDS SYNC positive connection. This input is used  
as the timestamp input, used to mark a specific sample, when TIMESTAMP_EN is set 1. This differential  
input is used as the SYNC signal input when SYNC_SEL is set to 1. This input can be used as both a  
timestamp and differential SYNC input at the same time, allowing feedback of the SYNC signal using the  
timestamp mechanism. TMSTP± uses active low signaling when used as the LVDS SYNC signal. For  
additional usage information, see the Timestamp section.  
TMSTP_RECV_EN must be set to 1 to use this input. This differential input (TMSTP+ to TMSTP) has  
an internal untrimmed 100-Ωdifferential termination and can be AC-coupled when  
D1  
TMSTP+  
I
TMSTP_LVPECL_EN is set to 0. The termination changes to 50 Ωto ground on each input pin  
(TMSTP+ and TMSTP) and can be DC-coupled when TMSTP_LVPECL_EN is set to 1. This pin is not  
self-biased and therefore must be externally biased for both AC-coupled and DC-coupled configurations.  
The common-mode voltage must be within the range provided in the Recommended Operating  
Conditions table when both AC-coupled and DC-coupled. This pin can be left disconnected and disabled  
(TMSTP_RECV_EN = 0) if SYNCSE is used for the LVDS SYNC signal and timestamp is not required.  
Band-gap voltage output. This pin is capable of sourcing only small currents and driving limited  
capacitive loads, as specified in the Recommended Operating Conditions table. See the Analog  
Reference Voltage section for more details. This pin can be left disconnected if not used.  
D2  
BG  
O
D3  
D4  
D5  
D6  
D7  
AGND  
AGND  
AGND  
AGND  
DGND  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
Digital supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
Fast overrange detection status for channel B for the OVR_T0 threshold. When the analog input  
exceeds the threshold programmed into OVR_T0, this status indicator goes high. The minimum pulse  
duration is set by OVR_N. See the ADC Overrange Detection section for more information. Leave this  
pin disconnected if not used.  
D8  
ORB0  
O
D9  
DA3+  
DA3–  
DA9+  
O
O
O
O
O
O
O
O
LVDS output for bit 3 of LVDS bus A. Positive connection. This pin can be left disconnected if not used.  
LVDS output for bit 3 of LVDS bus A. Negative connection. This pin can be left disconnected if not used.  
LVDS output for bit 9 of LVDS bus A. Positive connection. This pin can be left disconnected if not used.  
LVDS output for bit 9 of LVDS bus A. Negative connection. This pin can be left disconnected if not used.  
LVDS output for bit 3 of LVDS bus C. Positive connection. This pin can be left disconnected if not used.  
LVDS output for bit 3 of LVDS bus C. Negative connection. This pin can be left disconnected if not used.  
LVDS output for bit 9 of LVDS bus C. Positive connection. This pin can be left disconnected if not used.  
LVDS output for bit 9 of LVDS bus C. Negative connection. This pin can be left disconnected if not used.  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
DA9–  
DC3+  
DC3–  
DC9+  
DC9–  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
TYPE  
DESCRIPTION  
NO.  
E1  
NAME  
Timestamp input negative connection or differential LVDS SYNC negative connection. This pin can be  
left disconnected and disabled (TMSTP_RECV_EN = 0) if SYNCSE is used for the LVDS SYNC signal  
and timestamp is not required.  
I
I
TMSTP–  
LVDS interface SYNC signal, single-ended active low input used to control sending strobe signals for  
synchronization or digital interface test patterns. The Digital Interface Test Patterns section describes  
using the SYNC signal in more detail. The choice of single-ended or differential SYNC (using the  
TMSTP+ and TMSTPpins) is selected by programming SYNC_SEL. Tie this pin to ground if  
differential SYNC (TMSTP±) is used as the SYNC signal.  
E2  
SYNCSE  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
E10  
E11  
AGND  
VA11  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
1.1-V analog supply  
I
I
I
VA11  
1.1-V analog supply  
VA11  
1.1-V analog supply  
DGND  
VD11  
DA4+  
DA4–  
DA10+  
Digital supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
1.1-V digital supply  
I
O
LVDS output for bit 4 of LVDS bus A. Positive connection. This pin can be left disconnected if not used.  
LVDS output for bit 4 of LVDS bus A. Negative connection. This pin can be left disconnected if not used.  
LVDS output for bit 10 of LVDS bus A. Positive connection. This pin can be left disconnected if not used.  
O
O
LVDS output for bit 10 of LVDS bus A. Negative connection. This pin can be left disconnected if not  
used.  
E12  
O
DA10–  
E13  
E14  
E15  
DC4+  
DC4–  
DC10+  
O
O
O
LVDS output for bit 4 of LVDS bus C. Positive connection. This pin can be left disconnected if not used.  
LVDS output for bit 4 of LVDS bus C. Negative connection. This pin can be left disconnected if not used.  
LVDS output for bit 10 of LVDS bus C. Positive connection. This pin can be left disconnected if not used.  
LVDS output for bit 10 of LVDS bus C. Negative connection. This pin can be left disconnected if not  
used.  
E16  
O
DC10–  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
F10  
F11  
AGND  
AGND  
VA11  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
1.1-V analog supply  
I
I
I
I
VA11  
1.1-V analog supply  
VA11  
1.1-V analog supply  
VA11  
1.1-V analog supply  
DGND  
VD11  
DA5+  
DA5–  
DA11+  
Digital supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
1.1-V digital supply  
I
O
LVDS output for bit 5 of LVDS bus A. Positive connection. This pin can be left disconnected if not used.  
LVDS output for bit 5 of LVDS bus A. Negative connection. This pin can be left disconnected if not used.  
LVDS output for bit 11 of LVDS bus A. Positive connection. This pin can be left disconnected if not used.  
O
O
LVDS output for bit 11 of LVDS bus A. Negative connection. This pin can be left disconnected if not  
used.  
F12  
O
DA11–  
F13  
F14  
F15  
DC5+  
DC5–  
DC11+  
O
O
O
LVDS output for bit 5 of LVDS bus C. Positive connection. This pin can be left disconnected if not used.  
LVDS output for bit 5 of LVDS bus C. Negative connection. This pin can be left disconnected if not used.  
LVDS output for bit 11 of LVDS bus C. Positive connection. This pin can be left disconnected if not used.  
LVDS output for bit 11 of LVDS bus C. Negative connection. This pin can be left disconnected if not  
used.  
F16  
O
DC11–  
G1  
G2  
G3  
G4  
G5  
AGND  
AGND  
VA19  
VA19  
VA19  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
I
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
1.9-V analog supply  
1.9-V analog supply  
1.9-V analog supply  
I
I
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
PIN  
5-1. Pin Functions (continued)  
TYPE  
DESCRIPTION  
NO.  
G6  
NAME  
VA19  
DGND  
VD11  
I
1.9-V analog supply  
G7  
G8  
Digital supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
1.1-V digital supply  
I
LVDS output for data clock of LVDS bus A. Positive connection. This pin can be left disconnected if not  
used.  
G9  
DACLK+  
O
O
LVDS output for data clock of LVDS bus A. Negative connection. This pin can be left disconnected if not  
used.  
G10  
DACLK–  
G11  
G12  
G13  
G14  
VLVDS  
VLVDS  
DC6+  
I
1.1-V to 1.9-V LVDS digital interface supply  
I
1.1-V to 1.9-V LVDS digital interface supply  
O
O
LVDS output for bit 6 of LVDS bus C. Positive connection. This pin can be left disconnected if not used.  
LVDS output for bit 6 of LVDS bus C. Negative connection. This pin can be left disconnected if not used.  
DC6–  
LVDS output for data clock of LVDS bus C. Positive connection. This pin can be left disconnected if not  
used.  
G15  
G16  
DCCLK+  
O
O
LVDS output for data clock of LVDS bus C. Negative connection. This pin can be left disconnected if not  
used.  
DCCLK–  
Device (sampling) clock positive input. TI strongly recommends that the clock signal be AC-coupled to  
this input for best performance. In single-channel mode, the analog input signal is sampled on both  
rising and falling edges. In-dual channel mode, the analog signal is sampled on the rising edge. This  
differential input has an internal untrimmed 100-Ωdifferential termination and is self-biased to the  
optimal input common-mode voltage as long as DEVCLK_LVPECL_EN is set to 0.  
H1  
CLK+  
I
H2  
H3  
H4  
H5  
H6  
H7  
H8  
AGND  
VA19  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
I
I
I
I
1.9-V analog supply  
VA19  
1.9-V analog supply  
VA19  
1.9-V analog supply  
VA19  
1.9-V analog supply  
DGND  
DGND  
Digital supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
Digital supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
LVDS output for data strobe of LVDS bus A. Positive connection. This pin can be left disconnected if not  
used.  
H9  
DASTR+  
O
O
LVDS output for data strobe of LVDS bus A. Negative connection. This pin can be left disconnected if  
not used.  
H10  
DASTR–  
H11  
H12  
H13  
H14  
VLVDS  
VLVDS  
VLVDS  
DGND  
I
I
1.1-V to 1.9-V LVDS digital interface supply  
1.1-V to 1.9-V LVDS digital interface supply  
I
1.1-V to 1.9-V LVDS digital interface supply  
Digital supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
LVDS output for data strobe of LVDS bus C. Positive connection. This pin can be left disconnected if not  
used.  
H15  
H16  
J1  
DCSTR+  
DCSTR–  
CLK–  
O
O
I
LVDS output for data strobe of LVDS bus C. Negative connection. This pin can be left disconnected if  
not used.  
Device (sampling) clock negative input. TI strongly recommends that the clock signal be AC-coupled to  
this input for best performance.  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
AGND  
VA19  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
I
I
I
I
1.9-V analog supply  
VA19  
1.9-V analog supply  
VA19  
1.9-V analog supply  
VA19  
1.9-V analog supply  
DGND  
DGND  
Digital supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
Digital supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
TYPE  
DESCRIPTION  
NO.  
J9  
NAME  
LVDS output for data strobe of LVDS bus B. Positive connection. This pin can be left disconnected if not  
used.  
DBSTR+  
O
O
LVDS output for data strobe of LVDS bus B. Negative connection. This pin can be left disconnected if  
not used.  
J10  
DBSTR–  
J11  
J12  
J13  
J14  
VLVDS  
VLVDS  
VLVDS  
DGND  
I
I
1.1-V to 1.9-V LVDS digital interface supply  
1.1-V to 1.9-V LVDS digital interface supply  
I
1.1-V to 1.9-V LVDS digital interface supply  
Digital supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
LVDS output for data strobe of LVDS bus D. Positive connection. This pin can be left disconnected if not  
used.  
J15  
J16  
DDSTR+  
O
O
LVDS output for data strobe of LVDS bus D. Negative connection. This pin can be left disconnected if  
not used.  
DDSTR–  
K1  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
AGND  
AGND  
VA19  
VA19  
VA19  
VA19  
DGND  
VD11  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
I
I
I
I
1.9-V analog supply  
1.9-V analog supply  
1.9-V analog supply  
1.9-V analog supply  
Digital supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
1.1-V digital supply  
I
LVDS output for data clock of LVDS bus B. Positive connection. This pin can be left disconnected if not  
used.  
K9  
DBCLK+  
O
O
LVDS output for data clock of LVDS bus B. Negative connection. This pin can be left disconnected if not  
used.  
K10  
DBCLK–  
K11  
K12  
K13  
K14  
VLVDS  
VLVDS  
DD6+  
I
1.1-V to 1.9-V LVDS digital interface supply  
I
1.1-V to 1.9-V LVDS digital interface supply  
O
O
LVDS output for bit 6 of LVDS bus D. Positive connection. This pin can be left disconnected if not used.  
LVDS output for bit 6 of LVDS bus D. Negative connection. This pin can be left disconnected if not used.  
DD6–  
LVDS output for data clock of LVDS bus D. Positive connection. This pin can be left disconnected if not  
used.  
K15  
K16  
DDCLK+  
O
O
LVDS output for data clock of LVDS bus D. Negative connection. This pin can be left disconnected if not  
used.  
DDCLK–  
L1  
L2  
L3  
L4  
L5  
L6  
L7  
L8  
L9  
L10  
L11  
AGND  
AGND  
VA11  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
1.1-V analog supply  
I
I
I
I
VA11  
1.1-V analog supply  
VA11  
1.1-V analog supply  
VA11  
1.1-V analog supply  
DGND  
VD11  
DB5+  
DB5–  
DB11+  
Digital supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
1.1-V digital supply  
I
O
LVDS output for bit 5 of LVDS bus B. Positive connection. This pin can be left disconnected if not used.  
LVDS output for bit 5 of LVDS bus B. Negative connection. This pin can be left disconnected if not used.  
LVDS output for bit 11 of LVDS bus B. Positive connection. This pin can be left disconnected if not used.  
O
O
LVDS output for bit 11 of LVDS bus B. Negative connection. This pin can be left disconnected if not  
used.  
L12  
O
DB11–  
L13  
L14  
DD5+  
O
O
LVDS output for bit 5 of LVDS bus D. Positive connection. This pin can be left disconnected if not used.  
LVDS output for bit 5 of LVDS bus D. Negative connection. This pin can be left disconnected if not used.  
DD5–  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
PIN  
5-1. Pin Functions (continued)  
TYPE  
DESCRIPTION  
NO.  
L15  
NAME  
DD11+  
O
O
LVDS output for bit 11 of LVDS bus D. Positive connection. This pin can be left disconnected if not used.  
LVDS output for bit 11 of LVDS bus D. Negative connection. This pin can be left disconnected if not  
used.  
L16  
M1  
DD11–  
SYSREF input positive connection. The SYSREF input is used to achieve synchronization between  
multiple ADC12DL3200 devices and deterministic latency across the LVDS data interface. This  
differential input (SYSREF+ to SYSREF) has an internal untrimmed 100-Ωdifferential termination and  
can be AC-coupled when SYSREF_LVPECL_EN is set to 0. This input is self-biased when  
SYSREF_LVPECL_EN is set to 0. The termination changes to 50 Ωto ground on each input pin  
(SYSREF+ and SYSREF) and can be DC-coupled when SYSERF_LVPECL_EN is set to 1. This input  
is not self-biased when SYSERF_LVPECL is set to 1 and must be biased externally to the input  
common-mode voltage range provided in the Recommended Operating Conditions table.  
SYSREF+  
TDIODE+  
I
Temperature diode positive (anode) connection. An external temperature sensor can be connected to  
TDIODE+ and TDIODEto monitor the junction temperature of the device. This pin can be left  
disconnected if not used.  
M2  
I
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
AGND  
VA11  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
1.1-V analog supply  
I
I
I
VA11  
1.1-V analog supply  
VA11  
1.1-V analog supply  
DGND  
VD11  
DB4+  
DB4–  
DB10+  
Digital supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
1.1-V digital supply  
I
O
LVDS output for bit 4 of LVDS bus B. Positive connection. This pin can be left disconnected if not used.  
LVDS output for bit 4 of LVDS bus B. Negative connection. This pin can be left disconnected if not used.  
LVDS output for bit 10 of LVDS bus B. Positive connection. This pin can be left disconnected if not used.  
O
O
LVDS output for bit 10 of LVDS bus B. Negative connection. This pin can be left disconnected if not  
used.  
M12  
O
DB10–  
M13  
M14  
M15  
DD4+  
DD4–  
DD10+  
O
O
O
LVDS output for bit 4 of LVDS bus D. Positive connection. This pin can be left disconnected if not used.  
LVDS output for bit 4 of LVDS bus D. Negative connection. This pin can be left disconnected if not used.  
LVDS output for bit 10 of LVDS bus D. Positive connection. This pin can be left disconnected if not used.  
LVDS output for bit 10 of LVDS bus D. Negative connection. This pin can be left disconnected if not  
used.  
M16  
O
DD10–  
N1  
N2  
N3  
N4  
N5  
N6  
N7  
I
I
SYSREF input negative connection. See SYSREF+ (pin M1) for detailed description.  
SYSREF–  
TDIODE–  
AGND  
Temperature diode negative (cathode) connection. This pin can be left disconnected if not used.  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
Digital supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
AGND  
AGND  
AGND  
DGND  
Serial programming interface (SPI) data output. The Using the Serial Interface section describes the  
serial interface in more detail. This pin is high impedance during normal device operation. This pin  
outputs 1.9-V CMOS levels during serial interface read operations. This pin can be left disconnected if  
not used.  
N8  
SDO  
O
N9  
DB3+  
DB3–  
DB9+  
DB9–  
DD3+  
DD3–  
DD9+  
O
O
O
O
O
O
O
LVDS output for bit 3 of LVDS bus B. Positive connection. This pin can be left disconnected if not used.  
LVDS output for bit 3 of LVDS bus B. Negative connection. This pin can be left disconnected if not used.  
LVDS output for bit 9 of LVDS bus B. Positive connection. This pin can be left disconnected if not used.  
LVDS output for bit 9 of LVDS bus B. Negative connection. This pin can be left disconnected if not used.  
LVDS output for bit 3 of LVDS bus D. Positive connection. This pin can be left disconnected if not used.  
LVDS output for bit 3 of LVDS bus D. Negative connection. This pin can be left disconnected if not used.  
LVDS output for bit 9 of LVDS bus D. Positive connection. This pin can be left disconnected if not used.  
N10  
N11  
N12  
N13  
N14  
N15  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
TYPE  
DESCRIPTION  
NO.  
N16  
NAME  
DD9–  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
O
LVDS output for bit 9 of LVDS bus D. Negative connection. This pin can be left disconnected if not used.  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
Serial programming interface (SPI) data input. The Using the Serial Interface section describes the serial  
interface in more detail. Supports 1.1-V and 1.8-V CMOS levels.  
P8  
SDI  
I
P9  
DB2+  
DB2–  
DB8+  
O
O
O
O
O
O
O
O
LVDS output for bit 2 of LVDS bus B. Positive connection. This pin can be left disconnected if not used.  
LVDS output for bit 2 of LVDS bus B. Negative connection. This pin can be left disconnected if not used.  
LVDS output for bit 8 of LVDS bus B. Positive connection. This pin can be left disconnected if not used.  
LVDS output for bit 8 of LVDS bus B. Negative connection. This pin can be left disconnected if not used.  
LVDS output for bit 2 of LVDS bus D. Positive connection. This pin can be left disconnected if not used.  
LVDS output for bit 2 of LVDS bus D. Negative connection. This pin can be left disconnected if not used.  
LVDS output for bit 8 of LVDS bus D. Positive connection. This pin can be left disconnected if not used.  
LVDS output for bit 8 of LVDS bus D. Negative connection. This pin can be left disconnected if not used.  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
DB8–  
DD2+  
DD2–  
DD8+  
DD8–  
This pin disables all analog circuits and LVDS outputs when set high to save power or for temperature  
diode calibration. Tie this pin to ground during normal operation.  
R1  
PD  
I
R2  
R3  
R4  
R5  
R6  
R7  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
Serial programming interface (SPI) chip-select active low input. The Using the Serial Interface section  
describes the serial interface in more detail. Supports 1.1-V and 1.8-V CMOS levels. This pin has an 82-  
kΩpullup resistor to VD11.  
R8  
SCS  
I
R9  
DB1+  
DB1–  
DB7+  
O
O
O
O
O
O
O
O
LVDS output for bit 1 of LVDS bus B. Positive connection. This pin can be left disconnected if not used.  
LVDS output for bit 1 of LVDS bus B. Negative connection. This pin can be left disconnected if not used.  
LVDS output for bit 7 of LVDS bus B. Positive connection. This pin can be left disconnected if not used.  
LVDS output for bit 7 of LVDS bus B. Negative connection. This pin can be left disconnected if not used.  
LVDS output for bit 1 of LVDS bus D. Positive connection. This pin can be left disconnected if not used.  
LVDS output for bit 1 of LVDS bus D. Negative connection. This pin can be left disconnected if not used.  
LVDS output for bit 7 of LVDS bus D. Positive connection. This pin can be left disconnected if not used.  
LVDS output for bit 7 of LVDS bus D. Negative connection. This pin can be left disconnected if not used.  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
T1  
DB7–  
DD1+  
DD1–  
DD7+  
DD7–  
AGND  
AGND  
AGND  
T2  
T3  
Channel B analog input positive connection. The differential full-scale input range is determined by the  
FS_RANGE_B register; see the Full-Scale Voltage (VFS) Adjustment section. This input is terminated to  
AGND through a 50-Ωtermination resistor. The input common-mode voltage must typically be set to 0 V  
(GND) and must follow the recommendations in the Recommended Operating Conditions table. This pin  
can be left disconnected if not used.  
T4  
INB+  
I
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
PIN  
5-1. Pin Functions (continued)  
TYPE  
DESCRIPTION  
NO.  
NAME  
Channel B analog input negative connection. See INB+ (pin T4) for detailed description. This input is  
terminated to ground through a 50-Ωtermination resistor. This pin can be left disconnected if not used.  
T5  
I
INB–  
T6  
T7  
AGND  
AGND  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
Analog supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
Serial programming interface (SPI) clock. This pin functions as the serial-interface clock input that clocks  
the serial programming data in and out. The Using the Serial Interface section describes the serial  
interface in more detail. Supports 1.1-V and 1.8-V CMOS levels.  
T8  
SCLK  
I
T9  
DB0+  
DB0–  
DB6+  
O
O
O
O
O
O
LVDS output for bit 0 of LVDS bus B. Positive connection. This pin can be left disconnected if not used.  
LVDS output for bit 0 of LVDS bus B. Negative connection. This pin can be left disconnected if not used.  
LVDS output for bit 6 of LVDS bus B. Positive connection. This pin can be left disconnected if not used.  
LVDS output for bit 6 of LVDS bus B. Negative connection. This pin can be left disconnected if not used.  
LVDS output for bit 0 of LVDS bus D. Positive connection. This pin can be left disconnected if not used.  
LVDS output for bit 0 of LVDS bus D. Negative connection. This pin can be left disconnected if not used.  
Digital supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
Digital supply ground. Tie AGND and DGND to a common ground plane (GND) on the circuit board.  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
DB6–  
DD0+  
DD0–  
DGND  
DGND  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
0.3  
1.32  
0.1  
MAX  
2.35  
1.32  
1.32  
2.35  
1.32  
0.1  
UNIT  
V
VA19(2)  
VA11(2)  
Supply voltage range  
VD11(3)  
VLVDS(3)  
Voltage between VD11 and VA11  
Voltage between AGND and DGND  
V
DACLK+, DACLK, DASTR+, DASTR,  
DA[11:0]+, DA[11:0], DBCLK+, DBCLK,  
DBSTR+, DBSTR, DB[11:0]+, DB[11:0],  
DCCLK+, DCCLK, DCSTR+, DCSTR,  
DC[11:0]+, DC[11:0], DDCLK+, DDCLK,  
DDSTR+, DDSTR, DD[11:0]+, DD[11:0](3)  
VLVDS +  
0.5(7)  
0.5  
VA11 +  
0.5(5)  
CLK+, CLK, SYSREF+, SYSREF(2)  
TMSTP+, TMSTP(3)  
0.5  
0.5  
Pin voltage range  
V
VD11 +  
0.5(6)  
VA19 +  
0.5(4)  
BG, TDIODE+, TDIODE(2)  
0.5  
1  
INA+, INA, INB+, INB(2)  
1
CALSTAT, CALTRIG, ORA0, ORA1, ORB0,  
VA19 +  
0.5(4)  
ORB1, PD, SCLK, SCS, SDI, SDO, SYNCSE  
0.5  
(2)  
25  
50  
mA  
mA  
Peak input current (any input except INA+, INA, INB+, INB)  
Peak input current (INA+, INA, INB+, INB)  
25  
50  
Peak RF input power (INA+, INA, INB+,  
INB)  
Single-ended with ZS-SE = 50 Ωor differential  
with ZS-DIFF = 100 Ω  
16.4  
100  
dBm  
mA  
Peak total input current (sum of absolute value of all currents forced in or out, not including  
power supply current)  
Operating junction temperature, Tj  
Storage temperature, Tstg  
150  
150  
°C  
°C  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) Measured to AGND.  
(3) Measured to DGND.  
(4) Maximum voltage not to exceed VA19 absolute maximum rating.  
(5) Maximum voltage not to exceed VA11 absolute maximum rating.  
(6) Maximum voltage not to exceed VD11 absolute maximum rating.  
(7) Maximum voltage not to exceed VLVDS absolute maximum rating.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2500  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR3  
12  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
 
 
 
 
 
 
 
 
 
 
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.8  
NOM  
1.9  
1.1  
1.1  
1.9  
0
MAX  
2.0  
UNIT  
VA19, analog 1.9-V supply(2)  
VA11, analog 1.1-V supply(2)  
1.05  
1.05  
1.05  
-50  
1.15  
1.15  
2.0  
VDD  
Supply voltage range  
V
VD11, digital 1.1-V supply(3)  
VLVDS, LVDS interface supply(3)  
INA+, INA, INB+, INB(2)  
110  
mV  
V
CLK+, CLK, SYSREF+, SYSREF(2)  
VCMI  
Input common-mode voltage  
0
0
0.3  
0.3  
1.0  
0.55  
0.55  
2.0  
(4)  
TMSTP+, TMSTP(3) (5)  
CLK+ to CLK, SYSREF+ to  
SYSREF, TMSTP+ to TMSTP–  
0.4  
Input voltage, peak-to-peak  
differential  
VID  
VPP-DIFF  
1.0(6)  
INA+ to INA, INB+ to INB–  
CALTRIG, PD, SCLK, SCS, SDI,  
SYNCSE (2)  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
0.7  
V
V
CALTRIG, PD, SCLK, SCS, SDI,  
SYNCSE (2)  
0.45  
IC_TD  
CL  
Temperature diode input current  
BG maximum load capacitance  
BG maximum output current  
Input clock duty cycle  
100  
µA  
pF  
µA  
TDIODE+ to TDIODE–  
100  
100  
IO  
DC  
TA  
30%  
-40  
50%  
70%  
85  
Operating free-air temperature  
Operating junction temperature  
°C  
°C  
Tj  
105(1)  
(1) Prolonged use above this junction temperature may increase the device failure-in-time (FIT) rate.  
(2) Measured to AGND.  
(3) Measured to DGND.  
(4) It is strongly recommended that CLK± be AC coupled with DEVCLK_LVPECL_EN set to 0 to allow CLK± to self bias to the optimal  
input common mode voltage for best performance. TI recommends AC coupling for SYSREF± unless DC coupling is required, in which  
case LVPECL input mode must be used (SYSREF_LVPECL_EN = 1).  
(5) TMSTP± does not have internal biasing which requires TMSTP± to be biased externally whether AC coupled with  
TMSTP_LVPECL_EN = 0 or DC coupled with TMSTP_LVPECL_EN = 1.  
(6) ADC output code will saturate when VID for INA+/or INB+/exceeds the programmed full-scale voltage (VFS) set by  
FS_RANGE_A for INA± or FS_RANGE_B for INB±.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
 
 
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
6.4 Thermal Information  
ADC12DL3200  
THERMAL METRIC(1)  
ACF (FCBGA)  
UNIT  
256 PINS  
16.5  
0.94  
5.4  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.5  
ψJT  
5.1  
ψJB  
RθJC(bot)  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics: DC Specifications  
typical values at TA = +25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B = 0xA000),  
fIN = 248 MHz, AIN = 1 dBFS, fCLK = maximum rated clock frequency, filtered 1-VPP-DIFF sine-wave clock, DES_EN = 1,  
LDEMUX = 1, LALIGNED = 0, ADC_DITH = 0x01, LVDS driver high-swing mode (HSM), background calibration (unless  
otherwise noted); minimum and maximum values are at nominal supply voltages and over operating free-air temperature  
range provided in the Recommended Operating Conditions table  
PARAMETER  
DC ACCURACY  
Resolution  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Resolution with no missing codes  
12  
0.3  
Bits  
Maximum positive excursion from ideal step size  
Maximum negative excursion from ideal step size  
DNL  
Differential nonlinearity  
LSB  
0.3  
Maximum positive excursion from ideal transfer  
function  
1.6  
INL  
Integral nonlinearity  
LSB  
Maximum negative excursion from ideal transfer  
function  
2.0  
ANALOG INPUTS (INA±, INB±)  
CAL_OS = 0  
CAL_OS = 1  
±2.0  
±0.3  
mV  
mV  
VOFF  
Offset Error  
Available offset correction range (see CAL_OS bit in  
the CAL_CFGO register or the OADJ_A_FG0_VINA  
register)  
Input offset voltage  
adjustment range  
VOFF_ADJ  
±55  
mV  
Foreground calibration at nominal temperature only  
Foreground calibration at each temperature  
14  
4
VOFF_  
Offset drift  
µV/°C  
DRIFT  
Default full-scale voltage (FS_RANGE_A  
= FS_RANGE_B = 0xA000)  
750  
800  
1040  
480  
850  
Analog differential input full-  
scale range  
Maximum full-scale voltage (FS_RANGE_A  
= FS_RANGE_B = 0xFFFF)  
VIN_FSR  
1000  
mVPP  
Minimum full-scale voltage (FS_RANGE_A  
= FS_RANGE_B = 0x2000)  
525  
Default FS_RANGE_A and FS_RANGE_B setting,  
foreground calibration at nominal temperature only,  
inputs driven by 50-Ωsource, includes effect of RIN  
drift  
0.037  
VIN_FSR_ Analog differential input full-  
%/°C  
scale range drift  
DRIFT  
Default FS_RANGE_A and FS_RANGE_B setting,  
foreground calibration at each temperature, inputs  
driven by 50-Ωsource, includes effect of RIN drift  
0.006  
VIN_FSR_ Analog differential input full-  
Matching between INA± and INB±, default setting,  
dual channel mode  
0.53%  
scale range matching  
MATCH  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR3  
14  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
 
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
6.5 Electrical Characteristics: DC Specifications (continued)  
typical values at TA = +25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B = 0xA000),  
fIN = 248 MHz, AIN = 1 dBFS, fCLK = maximum rated clock frequency, filtered 1-VPP-DIFF sine-wave clock, DES_EN = 1,  
LDEMUX = 1, LALIGNED = 0, ADC_DITH = 0x01, LVDS driver high-swing mode (HSM), background calibration (unless  
otherwise noted); minimum and maximum values are at nominal supply voltages and over operating free-air temperature  
range provided in the Recommended Operating Conditions table  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Single-ended input resistance Each input terminal is terminated to AGND, measured  
RIN  
48  
50  
52  
Ω
to AGND  
at TA = 25°C  
RIN_  
Input termination linear  
temperature coefficient  
13.7  
mΩ/°C  
TEMPCO  
Single-channel mode measured at DC  
Dual-channel mode measured at DC  
0.45  
0.45  
Single-ended input  
capacitance  
CIN  
pF  
TEMPERATURE DIODE CHARACTERISTICS (TDIODE±)  
Forced forward current of 100 µA. Offset voltage  
(approximately 0.792 V at 0°C) varies with process  
and must be measured for each part. Perform offset  
measurements with the device unpowered or with the  
PD pin asserted to minimize device self-heating.  
Temperature diode voltage  
slope  
-1.33  
mV/°C  
ΔVBE  
BANDGAP VOLTAGE OUTPUT (BG)  
VBG  
Reference output voltage  
1.1  
V
IL 100 µA  
IL 100 µA  
VBG_  
Reference output temperature  
drift  
µV/°C  
85  
DRIFT  
CLOCK INPUTS (CLK±, SYSREF±, TMSTP±)  
Differential termination with DEVCLK_LVPECL_EN =  
0, SYSREF_LVPECL_EN = 0 and  
TMSTP_LVPECL_EN = 0  
100  
ZT  
Internal termination  
Ω
Single ended termination to GND (per pin) with  
DEVCLK_LVPECL_EN = 0, SYSREF_LVPECL_EN =  
0 and TMSTP_LVPECL_EN = 0  
50  
Self-biasing common-mode voltage for CLK± when  
AC coupled (DEVCLK_LVPECL_EN must be set to 0)  
0.3  
Self-biasing common-mode voltage for SYSREF±  
when AC coupled (SYSREF_LVPECL_EN must be  
Input common-mode voltage, set to 0) and with receiver enabled  
0.3  
VCM  
V
self-biased  
(SYSREF_RECV_EN = 1).  
Self-biasing common-mode voltage for SYSREF±  
when AC coupled (SYSREF_LVPECL_EN must be  
set to 0) and with receiver disabled  
VA11  
(SYSREF_RECV_EN = 0).  
CL_DIFF Differential input capacitance Between positive and negative differential input pins  
Single-ended input  
0.1  
0.5  
pF  
pF  
CL_SE  
Each input to ground  
capacitance  
LVDS OUTPUTS (DACLK±, DASTR±, DA[11:0]±, DBCLK±, DBSTR±, DB[11:0]±, DCCLK±, DCSTR±, DC[11:0]±, DDCLK±, DDSTR±,  
DD[11:0]±)  
400  
720  
350  
380  
1.3  
900  
Default swing (HSM), 100-Ωload  
Low swing (LSM), 100-Ωload  
Low swing high-Z mode (HZM), high-impedance load  
VLVDS = 1.9 V  
Differential output peak-to-  
peak voltage, DC  
measurement  
mVPP-  
VDIFF  
DIFF  
Output common-mode  
VCM  
V
voltage, tracks with VLVDS  
VLVDS = 1.1 V  
0.5  
Differential short-circuit  
current  
IOS_DIFF  
Positive and negative outputs shorted together  
5
mA  
IOS_GND Short-circuit current to ground Either positive or negative output tied to ground  
ZDIFF Differential output impedance Measured at DC  
20  
mA  
300  
Ω
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
6.5 Electrical Characteristics: DC Specifications (continued)  
typical values at TA = +25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B = 0xA000),  
fIN = 248 MHz, AIN = 1 dBFS, fCLK = maximum rated clock frequency, filtered 1-VPP-DIFF sine-wave clock, DES_EN = 1,  
LDEMUX = 1, LALIGNED = 0, ADC_DITH = 0x01, LVDS driver high-swing mode (HSM), background calibration (unless  
otherwise noted); minimum and maximum values are at nominal supply voltages and over operating free-air temperature  
range provided in the Recommended Operating Conditions table  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
CMOS INTERFACE: SCLK, SDI, SDO, SCS, PD, CALSTAT, CALTRIG, ORA0, ORA1, ORB0, ORB1, SYNCSE  
IIH  
High-level input current  
Low-level input current  
Input capacitance  
40  
µA  
µA  
pF  
V
IIL  
40  
CI  
2
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
1.65  
ILOAD = 400 µA  
ILOAD = 400 µA  
150  
mV  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR3  
16  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
6.6 Electrical Characteristics: Power Consumption  
typical values at TA = +25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B = 0xA000),  
fIN = 248 MHz, AIN = 1 dBFS, fCLK = maximum rated clock frequency, filtered 1-VPP-DIFF sine-wave clock, DES_EN = 1,  
LDEMUX = 1, LALIGNED = 0, ADC_DITH = 0x01, LVDS driver high-swing mode (HSM), background calibration (unless  
otherwise noted); minimum and maximum values are at nominal supply voltages and over operating free-air temperature  
range provided in the Recommended Operating Conditions table  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
846  
508  
229  
382  
3.15  
1116  
611  
271  
385  
3.82  
1195  
612  
266  
386  
3.97  
1195  
612  
266  
327  
3.60  
35  
MAX  
UNIT  
mA  
mA  
mA  
mA  
W
IVA19  
IVA11  
IVD11  
IVLVDS  
PDIS  
1.9-V analog supply current  
1.1-V analog supply current  
1.1-V digital supply current  
LVDS interface supply current  
Power dissipation  
Power mode 1: single-channel  
mode, demux-by-2, foreground  
calibration, VLVDS = 1.9 V  
IVA19  
IVA11  
IVD11  
IVLVDS  
PDIS  
1.9-V analog supply current  
1.1-V analog supply current  
1.1-V digital supply current  
LVDS interface supply current  
Power dissipation  
mA  
mA  
mA  
mA  
W
Power mode 2: single-channel  
mode, demux-by-2, background  
calibration, VLVDS = 1.9 V  
IVA19  
IVA11  
IVD11  
IVLVDS  
PDIS  
1.9-V analog supply current  
1.1-V analog supply current  
1.1-V digital supply current  
LVDS interface supply current  
Power dissipation  
1300  
700  
350  
450  
4.5  
mA  
mA  
mA  
mA  
W
Power mode 3: dual-channel mode,  
demux-by-2, background calibration,  
VLVDS = 1.9 V  
IVA19  
IVA11  
IVD11  
IVLVDS  
PDIS  
1.9-V analog supply current  
1.1-V analog supply current  
1.1-V digital supply current  
LVDS interface supply current  
Power dissipation  
mA  
mA  
mA  
mA  
W
Power mode 4: dual-channel mode,  
demux-by-2, background calibration,  
VLVDS = 1.1 V  
IVA19  
IVA11  
IVD11  
IVLVDS  
PDIS  
1.9-V analog supply current  
1.1-V analog supply current  
1.1-V digital supply current  
LVDS interface supply current  
Power dissipation  
mA  
mA  
mA  
mA  
W
23  
Power mode 5: PD pin held high, no  
clock, VLVDS = 1.9 V  
4
0
0.1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
6.7 Electrical Characteristics: AC Specifications (Dual-Channel Mode)  
typical values at TA = +25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B = 0xA000),  
fIN = 248 MHz, AIN = 1 dBFS, fCLK = maximum rated clock frequency, filtered 1-VPP-DIFF sine-wave clock, DES_EN = 1,  
LDEMUX = 1, LALIGNED = 0, ADC_DITH = 0x01, LVDS driver high-swing mode (HSM), background calibration (unless  
otherwise noted); minimum and maximum values are at nominal supply voltages and over operating free-air temperature  
range provided in the Recommended Operating Conditions table  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Foreground calibration  
8.0  
Full-power input bandwidth  
(3 dB)(1)  
FPBW  
GHz  
Background calibration  
8.0  
Aggressor = 400 MHz, 1 dBFS  
Aggressor = 3000 MHz, 1 dBFS  
Aggressor = 6000 MHz, 1 dBFS  
91  
59  
59  
XTALK  
CER  
Channel-to-channel crosstalk  
Code error rate  
dB  
errors/  
sample  
Maximum CER  
10-18  
Maximum full-scale voltage  
(FS_RANGE_A = FS_RANGE_B =  
0xFFFF) setting, foreground  
calibration  
151.1  
Noise spectral density, no input  
signal  
NSD  
dBFS/Hz  
Default full-scale voltage  
(FS_RANGE_A = FS_RANGE_B =  
0xA000) setting, foreground  
calibration  
149.8  
21.9  
Maximum full-scale voltage  
(FS_RANGE_A = FS_RANGE_B =  
0xFFFF) setting, foreground  
calibration, no input, ZS = 100 Ω  
NF  
Noise figure  
dB  
Default full-scale voltage  
(FS_RANGE_A = FS_RANGE_B =  
0xA000) setting, foreground  
calibration, no input, ZS = 100 Ω  
23.2  
No input, foreground calibration,  
excludes DC offset, includes fixed  
interleaving spur (FS/2 spur)  
NOISEDC DC input noise standard deviation  
2.9  
LSB  
57.1  
fIN = 347 MHz, AIN = 1 dBFS  
fIN = 347 MHz, AIN = 1 dBFS,  
maximum FS_RANGE_A and  
FS_RANGE_B setting, foreground  
calibration  
57.8  
56.9  
55.6  
fIN = 997 MHz, AIN = 1 dBFS  
fIN = 2482 MHz, AIN = 1 dBFS  
Signal-to-noise ratio, large signal,  
excluding DC, HD2 to HD9 and  
interleaving spurs  
52  
SNR  
dBFS  
fIN = 2482 MHz, AIN = 1 dBFS,  
maximum FS_RANGE_A and  
FS_RANGE_B setting, foreground  
calibration  
56.3  
52.8  
51.2  
49.7  
fIN = 4997 MHz, AIN = 1 dBFS  
fIN = 6397 MHz, AIN = 1 dBFS  
fIN = 8197 MHz, AIN = 1 dBFS  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR3  
18  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
6.7 Electrical Characteristics: AC Specifications (Dual-Channel Mode) (continued)  
typical values at TA = +25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B = 0xA000),  
fIN = 248 MHz, AIN = 1 dBFS, fCLK = maximum rated clock frequency, filtered 1-VPP-DIFF sine-wave clock, DES_EN = 1,  
LDEMUX = 1, LALIGNED = 0, ADC_DITH = 0x01, LVDS driver high-swing mode (HSM), background calibration (unless  
otherwise noted); minimum and maximum values are at nominal supply voltages and over operating free-air temperature  
range provided in the Recommended Operating Conditions table  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
57.7  
57.7  
57.7  
57.4  
57.1  
57.0  
56.2  
55.1  
53.7  
50.0  
47.9  
46.5  
9.0  
MAX  
UNIT  
fIN = 347 MHz, AIN = 16 dBFS  
fIN = 997 MHz, AIN = 16 dBFS  
fIN = 2482 MHz, AIN = 16 dBFS  
fIN = 4997 MHz, AIN = 16 dBFS  
fIN = 6397 MHz, AIN = 16 dBFS  
fIN = 8197 MHz, AIN = 16 dBFS  
fIN = 347 MHz, AIN = 1 dBFS  
fIN = 997 MHz, AIN = 1 dBFS  
fIN = 2482 MHz, AIN = 1 dBFS  
fIN = 4997 MHz, AIN = 1 dBFS  
fIN = 6397 MHz, AIN = 1 dBFS  
fIN = 8197 MHz, AIN = 1 dBFS  
fIN = 347 MHz, AIN = 1 dBFS  
fIN = 997 MHz, AIN = 1 dBFS  
fIN = 2482 MHz, AIN = 1 dBFS  
fIN = 4997 MHz, AIN = 1 dBFS  
fIN = 6397 MHz, AIN = 1 dBFS  
fIN = 8197 MHz, AIN = 1 dBFS  
fIN = 347 MHz, AIN = 1 dBFS  
Signal-to-noise ratio, small signal,  
excluding DC, HD2 to HD9 and  
interleaving spurs  
SNR  
dBFS  
Signal-to-noise and distortion ratio,  
large signal, excluding DC and FS/2  
fixed spurs  
50  
SINAD  
dBFS  
8.9  
8.0  
8.6  
Effective number of bits, large signal,  
excluding DC and FS/2 fixed spurs  
ENOB  
bits  
8.0  
7.7  
7.4  
70  
fIN = 347 MHz, AIN = 1 dBFS,  
maximum FS_RANGE_A and  
FS_RANGE_B setting, foreground  
calibration  
69  
66  
64  
fIN = 997 MHz, AIN = 1 dBFS  
fIN = 2482 MHz, AIN = 1 dBFS  
Spurious-free dynamic range, large  
signal, excluding DC and FS/2 fixed  
spurs  
56  
SFDR  
dBFS  
fIN = 2482 MHz, AIN = 1 dBFS,  
maximum FS_RANGE_A and  
FS_RANGE_B setting, foreground  
calibration  
61  
57  
56  
53  
78  
77  
75  
75  
78  
78  
fIN = 4997 MHz, AIN = 1 dBFS  
fIN = 6397 MHz, AIN = 1 dBFS  
fIN = 8197 MHz, AIN = 1 dBFS  
fIN = 347 MHz, AIN = 16 dBFS  
fIN = 997 MHz, AIN = 16 dBFS  
fIN = 2482 MHz, AIN = 16 dBFS  
fIN = 4997 MHz, AIN = 16 dBFS  
fIN = 6397 MHz, AIN = 16 dBFS  
fIN = 8197 MHz, AIN = 16 dBFS  
Spurious-free dynamic range, small  
signal, excluding DC and FS/2 fixed  
spurs  
SFDR  
FS/2  
dBFS  
dBFS  
FS/2 fixed interleaving spur,  
independent of input signal  
No input  
76  
55  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
6.7 Electrical Characteristics: AC Specifications (Dual-Channel Mode) (continued)  
typical values at TA = +25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B = 0xA000),  
fIN = 248 MHz, AIN = 1 dBFS, fCLK = maximum rated clock frequency, filtered 1-VPP-DIFF sine-wave clock, DES_EN = 1,  
LDEMUX = 1, LALIGNED = 0, ADC_DITH = 0x01, LVDS driver high-swing mode (HSM), background calibration (unless  
otherwise noted); minimum and maximum values are at nominal supply voltages and over operating free-air temperature  
range provided in the Recommended Operating Conditions table  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fIN = 347 MHz, AIN = 1 dBFS  
72  
fIN = 347 MHz, AIN = 1 dBFS,  
maximum FS_RANGE_A and  
FS_RANGE_B setting, foreground  
calibration  
73  
fIN = 997 MHz, AIN = 1 dBFS  
fIN = 2482 MHz, AIN = 1 dBFS  
68  
65  
56  
HD2  
2nd-order harmonic  
dBFS  
fIN = 2482 MHz, AIN = 1 dBFS,  
maximum FS_RANGE_A and  
FS_RANGE_B setting, foreground  
calibration  
63  
fIN = 4997 MHz, AIN = 1 dBFS  
fIN = 6397 MHz, AIN = 1 dBFS  
fIN = 8197 MHz, AIN = 1 dBFS  
fIN = 347 MHz, AIN = 1 dBFS  
65  
59  
65  
74  
fIN = 347 MHz, AIN = 1 dBFS,  
maximum FS_RANGE_A and  
FS_RANGE_B setting, foreground  
calibration  
71  
fIN = 997 MHz, AIN = 1 dBFS  
fIN = 2482 MHz, AIN = 1 dBFS  
69  
65  
56  
HD3  
3rd-order harmonic  
dBFS  
fIN = 2482 MHz, AIN = 1 dBFS,  
maximum FS_RANGE_A and  
FS_RANGE_B setting, foreground  
calibration  
61  
fIN = 4997 MHz, AIN = 1 dBFS  
fIN = 6397 MHz, AIN = 1 dBFS  
fIN = 8197 MHz, AIN = 1 dBFS  
fIN = 347 MHz, AIN = 1 dBFS  
fIN = 997 MHz, AIN = 1 dBFS  
fIN = 2482 MHz, AIN = 1 dBFS  
fIN = 4997 MHz, AIN = 1 dBFS  
fIN = 6397 MHz, AIN = 1 dBFS  
fIN = 8197 MHz, AIN = 1 dBFS  
fIN = 347 MHz, AIN = 1 dBFS  
fIN = 997 MHz, AIN = 1 dBFS  
fIN = 2482 MHz, AIN = 1 dBFS  
fIN = 4997 MHz, AIN = 1 dBFS  
fIN = 6397 MHz, AIN = 1 dBFS  
fIN = 8197 MHz, AIN = 1 dBFS  
57  
56  
53  
73  
73  
74  
73  
72  
66  
74  
72  
74  
73  
72  
70  
56  
FS/2-FIN interleaving spur, signal  
dependent  
FS/2-FIN  
dBFS  
60  
SPUR  
Worst harmonic 4th-order or higher  
dBFS  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR3  
20  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
6.7 Electrical Characteristics: AC Specifications (Dual-Channel Mode) (continued)  
typical values at TA = +25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B = 0xA000),  
fIN = 248 MHz, AIN = 1 dBFS, fCLK = maximum rated clock frequency, filtered 1-VPP-DIFF sine-wave clock, DES_EN = 1,  
LDEMUX = 1, LALIGNED = 0, ADC_DITH = 0x01, LVDS driver high-swing mode (HSM), background calibration (unless  
otherwise noted); minimum and maximum values are at nominal supply voltages and over operating free-air temperature  
range provided in the Recommended Operating Conditions table  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fIN = 347 MHz ± 5 MHz,  
AIN = 7 dBFS per tone  
81  
fIN = 997 MHz ± 5 MHz,  
AIN = 7 dBFS per tone  
87  
72  
61  
53  
45  
fIN = 2482 MHz ± 5 MHz,  
AIN = 7 dBFS per tone  
IMD3  
3rd-order intermodulation  
dBFS  
fIN = 4997 MHz ± 5 MHz,  
AIN = 7 dBFS per tone  
fIN = 6397 MHz ± 5 MHz,  
AIN = 7 dBFS per tone  
fIN = 8197 MHz ± 5 MHz,  
AIN = 7 dBFS per tone  
(1) Full-power input bandwidth (FPBW) is defined as the input frequency where the reconstructed output of the ADC has dropped 3 dB  
below the power of a full-scale input signal at a low input frequency. Useable bandwidth may exceed the 3-dB full-power input  
bandwidth.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
6.8 Electrical Characteristics: AC Specifications (Single-Channel Mode)  
typical values at TA = +25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B = 0xA000),  
fIN = 248 MHz, AIN = 1 dBFS, fCLK = maximum rated clock frequency, filtered 1-VPP-DIFF sine-wave clock, DES_EN = 1,  
LDEMUX = 1, LALIGNED = 0, ADC_DITH = 0x01, LVDS driver high-swing mode (HSM), background calibration (unless  
otherwise noted); minimum and maximum values are at nominal supply voltages and over operating free-air temperature  
range provided in the Recommended Operating Conditions table  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Foreground calibration  
7.5  
Full-power input bandwidth  
FPBW  
CER  
GHz  
(3 dB)(1)  
Background calibration  
Maximum CER  
7.5  
errors/  
sample  
Code error rate  
1018  
Maximum full-scale voltage  
(FS_RANGE_A = 0xFFFF) setting,  
foreground calibration  
154.3  
Noise spectral density, no input  
signal, excludes fixed interleaving  
spurs (FS/2 and FS/4 spurs)  
NSD  
dBFS/Hz  
Default full-scale voltage  
(FS_RANGE_A = 0xA000) setting,  
foreground calibration  
152.5  
Maximum full-scale voltage  
(FS_RANGE_A = 0xFFFF) setting,  
foreground calibration, no input, ZS  
100 Ω  
18.7  
=
=
NF  
Noise figure  
dB  
Default full-scale voltage  
(FS_RANGE_A = 0xA000) setting,  
foreground calibration, no input, ZS  
100 Ω  
20.5  
3.1  
No input, foreground calibration,  
excludes DC offset, includes fixed  
interleaving spurs (FS/2 and FS/4  
spurs)  
NOISEDC DC input noise standard deviation  
LSB  
57.0  
57.9  
fIN = 347 MHz, AIN = 1 dBFS  
fIN = 347 MHz, AIN = 1 dBFS,  
maximum FS_RANGE_A setting,  
foreground calibration  
56.8  
55.8  
fIN = 997 MHz, AIN = 1 dBFS  
fIN = 2482 MHz, AIN = 1 dBFS  
Signal-to-noise ratio, large signal,  
excluding DC, HD2 to HD9 and  
interleaving spurs  
52  
SNR  
dBFS  
fIN = 2482 MHz, AIN = 1 dBFS,  
maximum FS_RANGE_A setting,  
foreground calibration  
56.5  
53.2  
51.4  
50.1  
57.8  
57.7  
57.8  
57.5  
57.1  
57.1  
fIN = 4997 MHz, AIN = 1 dBFS  
fIN = 6397 MHz, AIN = 1 dBFS  
fIN = 8197 MHz, AIN = 1 dBFS  
fIN = 347 MHz, AIN = 16 dBFS  
fIN = 997 MHz, AIN = 16 dBFS  
fIN = 2482 MHz, AIN = 16 dBFS  
fIN = 4997 MHz, AIN = 16 dBFS  
fIN = 6397 MHz, AIN = 16 dBFS  
fIN = 8197 MHz, AIN = 16 dBFS  
Signal-to-noise ratio, small signal,  
excluding DC, HD2 to HD9 and  
interleaving spurs  
SNR  
dBFS  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR3  
22  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
6.8 Electrical Characteristics: AC Specifications (Single-Channel Mode) (continued)  
typical values at TA = +25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B = 0xA000),  
fIN = 248 MHz, AIN = 1 dBFS, fCLK = maximum rated clock frequency, filtered 1-VPP-DIFF sine-wave clock, DES_EN = 1,  
LDEMUX = 1, LALIGNED = 0, ADC_DITH = 0x01, LVDS driver high-swing mode (HSM), background calibration (unless  
otherwise noted); minimum and maximum values are at nominal supply voltages and over operating free-air temperature  
range provided in the Recommended Operating Conditions table  
PARAMETER  
TEST CONDITIONS  
fIN = 347 MHz, AIN = 1 dBFS  
fIN = 997 MHz, AIN = 1 dBFS  
fIN = 2482 MHz, AIN = 1 dBFS  
fIN = 4997 MHz, AIN = 1 dBFS  
fIN = 6397 MHz, AIN = 1 dBFS  
fIN = 8197 MHz, AIN = 1 dBFS  
fIN = 347 MHz, AIN = 1 dBFS  
fIN = 997 MHz, AIN = 1 dBFS  
fIN = 2482 MHz, AIN = 1 dBFS  
fIN = 4997 MHz, AIN = 1 dBFS  
fIN = 6397 MHz, AIN = 1 dBFS  
fIN = 8197 MHz, AIN = 1 dBFS  
fIN = 347 MHz, AIN = 1 dBFS  
MIN  
TYP  
55.9  
54.0  
53.3  
50.5  
48.5  
44.0  
9.0  
MAX  
UNIT  
Signal-to-noise and distortion ratio,  
large signal, excluding DC and FS/2  
fixed spurs  
48  
SINAD  
dBFS  
8.7  
7.7  
8.6  
Effective number of bits, large signal,  
excluding DC and FS/2 fixed spurs  
ENOB  
Bits  
8.1  
7.8  
7.0  
67  
fIN = 347 MHz, AIN = 1 dBFS,  
maximum FS_RANGE_A setting,  
foreground calibration  
66  
62  
61  
fIN = 997 MHz, AIN = 1 dBFS  
fIN = 2482 MHz, AIN = 1 dBFS  
Spurious-free dynamic range, large  
signal, excluding DC, FS/4 and FS/2  
fixed spurs  
50  
SFDR  
dBFS  
fIN = 2482 MHz, AIN = 1 dBFS,  
maximum FS_RANGE_A setting,  
foreground calibration  
58  
58  
56  
47  
78  
76  
73  
76  
70  
62  
fIN = 4997 MHz, AIN = 1 dBFS  
fIN = 6397 MHz, AIN = 1 dBFS  
fIN = 8197 MHz, AIN = 1 dBFS  
fIN = 347 MHz, AIN = 16 dBFS  
fIN = 997 MHz, AIN = 16 dBFS  
fIN = 2482 MHz, AIN = 16 dBFS  
fIN = 4997 MHz, AIN = 16 dBFS  
fIN = 6397 MHz, AIN = 16 dBFS  
fIN = 8197 MHz, AIN = 16 dBFS  
Spurious-free dynamic range, small  
signal, excluding DC, FS/4 and FS/2  
fixed spurs  
SFDR  
dBFS  
FS/2 fixed interleaving spur,  
independent of input signal  
FS/2  
FS/4  
No input  
No input  
dBFS  
dBFS  
62  
69  
FS/4 fixed interleaving spur,  
independent of input signal  
55  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
6.8 Electrical Characteristics: AC Specifications (Single-Channel Mode) (continued)  
typical values at TA = +25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B = 0xA000),  
fIN = 248 MHz, AIN = 1 dBFS, fCLK = maximum rated clock frequency, filtered 1-VPP-DIFF sine-wave clock, DES_EN = 1,  
LDEMUX = 1, LALIGNED = 0, ADC_DITH = 0x01, LVDS driver high-swing mode (HSM), background calibration (unless  
otherwise noted); minimum and maximum values are at nominal supply voltages and over operating free-air temperature  
range provided in the Recommended Operating Conditions table  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fIN = 347 MHz, AIN = 1 dBFS  
75  
fIN = 347 MHz, AIN = 1 dBFS,  
maximum FS_RANGE_A setting,  
foreground calibration  
73  
fIN = 997 MHz, AIN = 1 dBFS  
fIN = 2482 MHz, AIN = 1 dBFS  
68  
66  
56  
HD2  
2nd-order harmonic  
dBFS  
fIN = 2482 MHz, AIN = 1 dBFS,  
maximum FS_RANGE_A setting,  
foreground calibration  
64  
fIN = 4997 MHz, AIN = 1 dBFS  
fIN = 6397 MHz, AIN = 1 dBFS  
fIN = 8197 MHz, AIN = 1 dBFS  
fIN = 347 MHz, AIN = 1 dBFS  
69  
64  
68  
74  
fIN = 347 MHz, AIN = 1 dBFS,  
maximum FS_RANGE_A setting,  
foreground calibration  
72  
fIN = 997 MHz, AIN = 1 dBFS  
fIN = 2482 MHz, AIN = 1 dBFS  
66  
66  
56  
HD3  
3rd-order harmonic  
dBFS  
fIN = 2482 MHz, AIN = 1 dBFS,  
maximum FS_RANGE_A setting,  
foreground calibration  
61  
fIN = 4997 MHz, AIN = 1 dBFS  
fIN = 6397 MHz, AIN = 1 dBFS  
fIN = 8197 MHz, AIN = 1 dBFS  
fIN = 347 MHz, AIN = 1 dBFS  
fIN = 997 MHz, AIN = 1 dBFS  
fIN = 2482 MHz, AIN = 1 dBFS  
fIN = 4997 MHz, AIN = 1 dBFS  
fIN = 6397 MHz, AIN = 1 dBFS  
fIN = 8197 MHz, AIN = 1 dBFS  
fIN = 347 MHz, AIN = 1 dBFS  
fIN = 997 MHz, AIN = 1 dBFS  
fIN = 2482 MHz, AIN = 1 dBFS  
fIN = 4997 MHz, AIN = 1 dBFS  
fIN = 6397 MHz, AIN = 1 dBFS  
fIN = 8197 MHz, AIN = 1 dBFS  
59  
59  
56  
68  
63  
62  
62  
56  
47  
75  
71  
77  
74  
70  
68  
50  
FS/2-FIN interleaving spur, signal  
dependent  
FS/2-FIN  
dBFS  
60  
FS/4±FIN interleaving spurs, signal  
dependent  
FS/4±FIN  
dBFS  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR3  
24  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
6.8 Electrical Characteristics: AC Specifications (Single-Channel Mode) (continued)  
typical values at TA = +25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B = 0xA000),  
fIN = 248 MHz, AIN = 1 dBFS, fCLK = maximum rated clock frequency, filtered 1-VPP-DIFF sine-wave clock, DES_EN = 1,  
LDEMUX = 1, LALIGNED = 0, ADC_DITH = 0x01, LVDS driver high-swing mode (HSM), background calibration (unless  
otherwise noted); minimum and maximum values are at nominal supply voltages and over operating free-air temperature  
range provided in the Recommended Operating Conditions table  
PARAMETER  
TEST CONDITIONS  
fIN = 347 MHz, AIN = 1 dBFS  
fIN = 997 MHz, AIN = 1 dBFS  
fIN = 2482 MHz, AIN = 1 dBFS  
fIN = 4997 MHz, AIN = 1 dBFS  
fIN = 6397 MHz, AIN = 1 dBFS  
fIN = 8197 MHz, AIN = 1 dBFS  
MIN  
TYP  
73  
73  
75  
74  
69  
68  
MAX  
UNIT  
60  
SPUR  
Worst harmonic 4th-order or higher  
dBFS  
fIN = 347 MHz ± 5 MHz,  
AIN = 7 dBFS per tone  
81  
80  
72  
62  
56  
49  
fIN = 997 MHz ± 5 MHz,  
AIN = 7 dBFS per tone  
fIN = 2482 MHz ± 5 MHz,  
AIN = 7 dBFS per tone  
IMD3  
3rd-order intermodulation  
dBFS  
fIN = 4997 MHz ± 5 MHz,  
AIN = 7 dBFS per tone  
fIN = 6397 MHz ± 5 MHz,  
AIN = 7 dBFS per tone  
fIN = 8197 MHz ± 5 MHz,  
AIN = 7 dBFS per tone  
(1) Full-power input bandwidth (FPBW) is defined as the input frequency where the reconstructed output of the ADC has dropped 3 dB  
below the power of a full-scale input signal at a low input frequency. Useable bandwidth may exceed the 3-dB full-power input  
bandwidth.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
MAX UNIT  
6.9 Timing Requirements  
MIN  
NOM  
DEVICE (SAMPLING) CLOCK (CLK+, CLK)  
Input clock frequency (CLK+, CLK), both single-channel and dual-channel  
fCLK  
tCLK  
800  
3200  
1250  
MHz  
ps  
modes(1)  
Input clock period (CLK+, CLK), both single-channel and dual-channel modes(1)  
312.5  
SYSREF (SYSREF+, SYSREF)  
tINV(SYSR Width of invalid SYSREF capture region of CLK± period, indicating setup or hold  
49  
0
ps  
time violation, as measured by SYSREF_POS status register(2)  
EF)  
Drift of invalid SYSREF capture region over temperature, positive number indicates  
a shift toward MSB of SYSREF_POS register  
tINV(TEMP)  
ps/°C  
ps/mV  
Drift of invalid SYSREF capture region over VA11 supply voltage, positive number  
indicates a shift toward MSB of SYSREF_POS register  
tINV(VA11)  
0.36  
SYSREF_ZOOM = 0  
tSTEP(SP) Delay of SYSREF_POS LSB  
77  
24  
4
ps  
SYSREF_ZOOM = 1  
t(PH_SYS) Minimum SYSREF± assertion duration after SYSREF± rising edge event  
t(PL_SYS) Minimum SYSREF± deassertion duration after SYSREF± falling edge event  
SERIAL PROGRAMMING INTERFACE (SCLK, SDI, SCS)  
ns  
ns  
4
fCLK(SCLK) Serial clock frequency  
0
32  
32  
25  
3
15.625  
MHz  
ns  
t(PH)  
t(PL)  
Serial clock high value pulse width  
Serial clock low value pulse width  
ns  
tSU( SCS) Setup time from SCS to rising edge of SCLK  
ns  
tH( SCS)  
tSU(SDI)  
tH(SDI)  
Hold time from rising edge of SCLK to SCS  
Setup time from SDI to rising edge of SCLK  
Hold time from rising edge of SCLK to SDI  
ns  
25  
3
ns  
ns  
(1) Unless functionally limited to a smaller range than described in the LVDS Output Modes table based on programmed LVDS output  
mode.  
(2) Use SYSREF_POS to select an optimal SYSREF_SEL value for SYSREF capture, see the SYSREF Position Detector and Sampling  
Position Selection (SYSREF Windowing) section for more information on SYSREF windowing. The invalid region, specified by  
tINV(SYSREF), indicates the portion of the CLK± period (tCLK), as measured by SYSREF_SEL, that may result in a setup and hold  
violation. Verify that the timing skew between SYSREF± and CLK± over system operating conditions from the nominal conditions (that  
were used to find optimal SYSREF_SEL) does not result in the invalid region occurring at the selected SYSREF_SEL position in  
SYSREF_POS, otherwise a temperature dependent SYSREF_SEL selection may be needed to track the skew between CLK± and  
SYSREF±.  
6.10 Switching Characteristics  
typical values at TA = +25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B = 0xA000),  
fIN = 248 MHz, AIN = 1 dBFS, fCLK = maximum rated clock frequency, filtered 1-VPP-DIFF sine-wave clock, DES_EN = 1,  
LDEMUX = 1, LALIGNED = 0, ADC_DITH = 0x01, LVDS driver high-swing mode (HSM), background calibration (unless  
otherwise noted); minimum and maximum values are at nominal supply voltages and over operating free-air temperature  
range provided in the Recommended Operating Conditions table  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DEVICE (SAMPLING) CLOCK (CLK+, CLK)  
Sampling (aperture) delay from CLK±  
rising edge (dual channel mode) or  
TAD_COARSE = 0x00, TAD_FINE =  
tAD  
360  
289  
ps  
ps  
rising and falling edge (single channel 0x00 and TAD_INV = 0  
mode) to sampling instant(4)  
Coarse adjustment (TAD_COARSE =  
0xFF)  
Maximum tAD Adjust programmable  
delay, not including clock inversion  
(TAD_INV = 0)  
tAD(MAX)  
Fine adjustment (TAD_FINE = 0xFF)  
Coarse adjustment (TAD_COARSE)  
Fine adjustment (TAD_FINE)  
4.9  
1.13  
19  
ps  
fs  
tAD(STEP)  
Aperture delay step size  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR3  
26  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
 
 
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
6.10 Switching Characteristics (continued)  
typical values at TA = +25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B = 0xA000),  
fIN = 248 MHz, AIN = 1 dBFS, fCLK = maximum rated clock frequency, filtered 1-VPP-DIFF sine-wave clock, DES_EN = 1,  
LDEMUX = 1, LALIGNED = 0, ADC_DITH = 0x01, LVDS driver high-swing mode (HSM), background calibration (unless  
otherwise noted); minimum and maximum values are at nominal supply voltages and over operating free-air temperature  
range provided in the Recommended Operating Conditions table  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Minimum tAD Adjust coarse setting  
(TAD_COARSE = 0x00, TAD_INV =  
0), dither disabled (ADC_DITH_EN =  
0)  
55  
Minimum tAD Adjust coarse setting  
(TAD_COARSE = 0xFF, TAD_INV =  
0), dither enabled (ADC_DITH_EN =  
1)  
70  
70(1)  
80(1)  
tAJ  
Aperture jitter, rms  
fs  
Maximum tAD Adjust coarse setting  
(TAD_COARSE = 0xFF) excluding  
TAD_INV (TAD_INV = 0), dither  
disabled (ADC_DITH_EN = 0)  
Maximum tAD Adjust coarse setting  
(TAD_COARSE = 0xFF) excluding  
TAD_INV (TAD_INV = 0), dither  
enabled (ADC_DITH_EN = 1)  
LVDS OUTPUTS (DACLK±, DASTR±, DA[11:0]±, DBCLK±, DBSTR±, DB[11:0]±, DCCLK±, DCSTR±, DC[11:0]±, DDCLK±, DDSTR±,  
DD[11:0]±)  
fBIT  
Output bit rate per output data pair  
DDR data clock frequency  
1.6  
Gbps  
MHz  
fDCLK  
800  
DDR data clock total jitter, peak-to-  
peak, with random jitter portion defined  
with respect to a BER=1e15  
(Q=7.94)  
tDJ  
UPAT_CTRL = 0x10  
36  
75  
ps  
ps  
Maximum timing skew between any  
two LVDS output pairs (DxCLK±,  
Dx[11:0]±, DxSTR±) within the same  
LVDS bank over operating conditions  
tSKEW(SAME)  
Maximum timing skew between any  
two LVDS output pairs (DxCLK±,  
Dx[11:0]±, DxSTR±) in all LVDS banks  
tSKEW(ALL)  
125  
ps  
over operating conditions with tOSAB  
tOSAC and tOSBD skew excluded  
,
DES_EN = 0, LDEMUX = 0,  
LALIGNED = 0  
0
0
DES_EN = 0, LDEMUX = 0,  
LALIGNED = 1  
DES_EN = 0, LDEMUX = 1,  
LALIGNED = 0  
0
DES_EN = 0, LDEMUX = 1,  
LALIGNED = 1  
Functional timing offset between  
DACLK± rising edge and DBCLK±  
rising edge, positive number indicates  
that DACLK± leads DBCLK±  
0
tOSAB  
tCLK  
DES_EN = 1, LDEMUX = 0,  
LALIGNED = 0  
0.5  
0
DES_EN = 1, LDEMUX = 0,  
LALIGNED = 1  
DES_EN = 1, LDEMUX = 1,  
LALIGNED = 0  
0.5  
0
DES_EN = 1, LDEMUX = 1,  
LALIGNED = 1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
6.10 Switching Characteristics (continued)  
typical values at TA = +25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B = 0xA000),  
fIN = 248 MHz, AIN = 1 dBFS, fCLK = maximum rated clock frequency, filtered 1-VPP-DIFF sine-wave clock, DES_EN = 1,  
LDEMUX = 1, LALIGNED = 0, ADC_DITH = 0x01, LVDS driver high-swing mode (HSM), background calibration (unless  
otherwise noted); minimum and maximum values are at nominal supply voltages and over operating free-air temperature  
range provided in the Recommended Operating Conditions table  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DES_EN = 0, LDEMUX = 1,  
LALIGNED = 0  
1
DES_EN = 0, LDEMUX = 1,  
LALIGNED = 1  
Functional timing offset between  
DACLK± rising edge and DCCLK±  
rising edge, positive number indicates  
that DACLK± leads DCCLK±  
0
1
tOSAC  
tCLK  
DES_EN = 1, LDEMUX = 1,  
LALIGNED = 0  
DES_EN = 1, LDEMUX = 1,  
LALIGNED = 1  
0
DES_EN = 0, LDEMUX = 1,  
LALIGNED = 0  
1
DES_EN = 0, LDEMUX = 1,  
LALIGNED = 1  
Functional timing offset between  
DBCLK± rising edge and DDCLK±  
rising edge, positive number indicates  
that DBCLK± leads DDCLK±  
0
tOSBD  
tCLK  
DES_EN = 1, LDEMUX = 1,  
LALIGNED = 0  
1
DES_EN = 1, LDEMUX = 1,  
LALIGNED = 1  
0
20% to 80%, 1.6 Gbps, VLVDS = 1.9 V,  
UPAT_CTRL = 0x10  
125  
200  
125  
200  
Low-to-high transition time  
(differential)  
tTLH  
ps  
ps  
20% to 80%, 1.6 Gbps, VLVDS = 1.1 V,  
UPAT_CTRL = 0x10  
80% to 20%, 1.6 Gbps, VLVDS = 1.9 V,  
UPAT_CTRL = 0x10  
tTHL  
High-to-low transition time (differential)  
80% to 20%, 1.6 Gbps, VLVDS = 1.1 V,  
UPAT_CTRL = 0x10  
LATENCY  
Output delay from CLK± rising edge  
(dual-channel mode) or falling edge  
(single-channel mode) to DACLK±  
output(4)  
TAD_COARSE = 0x00, TAD_FINE =  
0x00 and TAD_INV = 0  
tOD  
1.5  
ns  
DES_EN = 0, LDEMUX = 0,  
LALIGNED = 0  
26  
26  
DES_EN = 0, LDEMUX = 0,  
LALIGNED = 1  
DES_EN = 0, LDEMUX = 1,  
LALIGNED = 0  
26  
DES_EN = 0, LDEMUX = 1,  
LALIGNED = 1  
27  
CLK± edge that samples input signal  
to CLK± edge that launches data,  
digital latency only(2) (4)  
tLAT(DIG)  
tCLK  
DES_EN = 1, LDEMUX = 0,  
LALIGNED = 0  
26  
DES_EN = 1, LDEMUX = 0,  
LALIGNED = 1  
26.5  
26  
DES_EN = 1, LDEMUX = 1,  
LALIGNED = 0  
DES_EN = 1, LDEMUX = 1,  
LALIGNED = 1  
27.5  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR3  
28  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
6.10 Switching Characteristics (continued)  
typical values at TA = +25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B = 0xA000),  
fIN = 248 MHz, AIN = 1 dBFS, fCLK = maximum rated clock frequency, filtered 1-VPP-DIFF sine-wave clock, DES_EN = 1,  
LDEMUX = 1, LALIGNED = 0, ADC_DITH = 0x01, LVDS driver high-swing mode (HSM), background calibration (unless  
otherwise noted); minimum and maximum values are at nominal supply voltages and over operating free-air temperature  
range provided in the Recommended Operating Conditions table  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DES_EN = 0, LDEMUX = 0,  
LALIGNED = 0  
47  
DES_EN = 0, LDEMUX = 0,  
LALIGNED = 1  
47  
47  
DES_EN = 0, LDEMUX = 1,  
LALIGNED = 0  
DES_EN = 0, LDEMUX = 1,  
LALIGNED = 1  
Latency from SYSREF± being  
sampled by rising edge of CLK± to the  
start of the corresponding data  
frame(3)  
48  
tLAT(STB)  
tCLK  
DES_EN = 1, LDEMUX = 0,  
LALIGNED = 0  
46.5  
47  
DES_EN = 1, LDEMUX = 0,  
LALIGNED = 1  
DES_EN = 1, LDEMUX = 1,  
LALIGNED = 0  
46.5  
48  
DES_EN = 1, LDEMUX = 1,  
LALIGNED = 1  
Latency from SYNCSE assertion or  
deassertion to DB0± (LSB) changing  
from normal data to strobe output or  
strobe output to normal data, digital  
latency only  
36+1*LF  
RAME  
LDEMUX = 0  
LDEMUX = 1  
26  
26  
tLAT( SYNCSE)  
tCLK  
36+2*LF  
RAME  
SERIAL PROGRAMMING INTERFACE (SDO)  
Delay from falling edge of 16th SCLK  
t(OZD)  
cycle during read operation for SDO  
transition from tri-state to valid data  
1
1
ns  
Delay from SCS rising edge for SDO  
to transition from valid data to tri-state  
t(ODZ)  
t(OD)  
10  
10  
ns  
ns  
Delay from falling edge of SCLK  
during read operation to SDO valid  
(1) tAJ increases because of additional attenuation on internal clock path.  
(2) When LDEMUX = 1 the output buses are aligned in time requiring the earlier sample(s) to be delayed before outputting on the LVDS  
buses to align with the later samples. The latency for the buses will be slightly different due to added delays. The number shown is for  
the worst case bus.  
(3) When LDEMUX = 0 the output buses are staggered in time and therefore the start of data frames occur at staggered times. The  
number shown is for the earliest output frame. The strobe signals are output at the end of a frame so the start of a data frame  
corresponds to the data output immediately after a strobe output.  
(4) Both tAD and tOD increase by the delay introduced by TAD_COARSE, TAD_FINE and TAD_INV when tAD Adjust is used to delay the  
sampling instant. The total latency through the device does not include the aperture delay. Total latency through device is tLAT  
LAT(DIG) + tOD - tAD  
=
t
.
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
A1/B1  
A0/B0  
INA+/t  
or  
INB+/t  
tAD  
tLAT(DIG)  
tOD  
tCLK  
CLK+  
CLKt  
SYSREF+  
SYSREFt  
tSU(SYSREF) tH(SYSREF)  
tLAT(STB)  
tSKEW  
DACLK+/t  
DASTR+/t  
LVDS Bus  
A
A0  
DA[11:0]+/t  
A1  
A2  
DBCLK+/t  
DBSTR+/t  
LVDS Bus  
B
B0  
DB[11:0]+/t  
B1  
B2  
tSU(SYSREF) and tH(SYSREF) are only shown for completeness. Use automatic SYSREF calibration or SYSREF windowing to meet  
SYSREF timing.  
6-1. Dual-Channel, 2-Bus Mode Timing (LDEMUX = 0, DES_EN = 0, LALIGNED = 0 or 1)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR3  
30  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
A1/B1  
A2/B2  
A0/B0  
INA+/t  
or  
INB+/t  
A3/B3  
tAD  
tLAT(DIG)  
tOD  
tCLK  
CLK+  
CLKt  
SYSREF+  
SYSREFt  
tOSAC  
tOSBD  
tSU(SYSREF) tH(SYSREF)  
tLAT(STB)  
tSKEW  
DACLK+/t  
DASTR+/t  
LVDS Bus  
A
DA[11:0]+/t  
A0  
A2  
A4  
DCCLK+/t  
DCSTR+/t  
LVDS Bus  
C
DC[11:0]+/t  
A1  
A3  
DBCLK+/t  
DBSTR+/t  
LVDS Bus  
B
DB[11:0]+/t  
B0  
B2  
B4  
DDCLK+/t  
DDSTR+/t  
LVDS Bus  
D
DD[11:0]+/t  
B1  
B3  
tSU(SYSREF) and tH(SYSREF) are only shown for completeness. Use automatic SYSREF calibration or SYSREF windowing to meet  
SYSREF timing.  
6-2. Dual-Channel, 4-Bus, Staggered-Mode Timing (LDEMUX = 1, DES_EN = 0, LALIGNED = 0)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
A1/B1  
A2/B2  
A0/B0  
INA+/t  
or  
INB+/t  
A3/B3  
tAD  
tLAT(DIG)  
tOD  
tCLK  
CLK+  
CLKt  
SYSREF+  
SYSREFt  
tSU(SYSREF) tH(SYSREF)  
tLAT(STB)  
tSKEW  
DACLK+/t  
DASTR+/t  
LVDS Bus  
A
DA[11:0]+/t  
A0  
A1  
B0  
B1  
A2  
A4  
A5  
B4  
B5  
DCCLK+/t  
DCSTR+/t  
LVDS Bus  
C
DC[11:0]+/t  
A3  
B2  
B3  
DBCLK+/t  
DBSTR+/t  
LVDS Bus  
B
DB[11:0]+/t  
DDCLK+/t  
DDSTR+/t  
LVDS Bus  
D
DD[11:0]+/t  
tSU(SYSREF) and tH(SYSREF) are only shown for completeness. Use automatic SYSREF calibration or SYSREF windowing to meet  
SYSREF timing.  
6-3. Dual-Channel, 4-Bus, Aligned-Mode Timing (LDEMUX = 1, DES_EN = 0, LALIGNED = 1)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR3  
32  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
S1  
S2  
S0  
INA+/t  
or  
INB+/t  
S3  
tAD  
tLAT(DIG)  
tOD  
tCLK  
CLK+  
CLKt  
SYSREF+  
SYSREFt  
tSU(SYSREF)  
tH(SYSREF)  
tSKEW(ALL)  
tLAT(STB)  
tOSAB  
tSKEW(SAME)  
DACLK+/t  
DASTR+/t  
LVDS Bus  
A
DA[11:0]+/t  
S0  
S2  
S4  
DBCLK+/t  
DBSTR+/t  
LVDS Bus  
B
DB[11:0]+/t  
S1  
S3  
tSU(SYSREF) and tH(SYSREF) are only shown for completeness. Use automatic SYSREF calibration or SYSREF windowing to meet  
SYSREF timing.  
6-4. Single-Channel, 2-Bus, Staggered-Mode Timing (LDEMUX = 0, DES_EN = 1, LALIGNED = 0)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
S1  
S2  
S0  
INA+/t  
or  
INB+/t  
S3  
tAD  
tLAT(DIG)  
tOD  
tCLK  
CLK+  
CLKt  
SYSREF+  
SYSREFt  
tSU(SYSREF) tH(SYSREF)  
tLAT(STB)  
tSKEW  
DACLK+/t  
DASTR+/t  
LVDS Bus  
A
S0  
DA[11:0]+/t  
S2  
S4  
DBCLK+/t  
DBSTR+/t  
LVDS Bus  
B
S1  
DB[11:0]+/t  
S3  
S5  
tSU(SYSREF) and tH(SYSREF) are only shown for completeness. Use automatic SYSREF calibration or SYSREF windowing to meet  
SYSREF timing.  
6-5. Single-Channel, 2-Bus, Aligned-Mode Timing (LDEMUX = 0, DES_EN = 1, LALIGNED = 1)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR3  
34  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
S2  
S3  
S1  
S4  
S0  
S5  
INA+/t  
S6  
or  
S7  
INB+/t  
tAD  
tLAT(DIG)  
tOD  
tCLK  
CLK+  
CLKt  
SYSREF+  
SYSREFt  
tOSBD  
tSU(SYSREF) tH(SYSREF)  
tOSAC  
tOSAB  
tLAT(STB)  
tSKEW  
DACLK+/t  
DASTR+/t  
LVDS Bus  
A
DA[11:0]+/t  
S0  
S4  
S8  
DBCLK+/t  
DBSTR+/t  
LVDS Bus  
B
DB[11:0]+/t  
S1  
S5  
DCCLK+/t  
DCSTR+/t  
LVDS Bus  
C
DC[11:0]+/t  
S2  
S6  
DDCLK+/t  
DDSTR+/t  
LVDS Bus  
D
DD[11:0]+/t  
S3  
S7  
tSU(SYSREF) and tH(SYSREF) are only shown for completeness. Use automatic SYSREF calibration or SYSREF windowing to meet  
SYSREF timing.  
6-6. Single-Channel, 4-Bus, Staggered-Mode Timing (LDEMUX = 1, DES_EN = 1, LALIGNED = 0)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
S2  
S1  
S3  
S4  
S0  
S5  
INA+/t  
S6  
or  
S7  
INB+/t  
tAD  
tLAT(DIG)  
tOD  
tCLK  
CLK+  
CLKt  
SYSREF+  
SYSREFt  
tSU(SYSREF) tH(SYSREF)  
tLAT(STB)  
tSKEW  
DACLK+/t  
DASTR+/t  
LVDS Bus  
A
DA[11:0]+/t  
S0  
S1  
S2  
S3  
S4  
S8  
DBCLK+/t  
DBSTR+/t  
LVDS Bus  
B
DB[11:0]+/t  
S5  
S6  
S7  
S9  
DCCLK+/t  
DCSTR+/t  
LVDS Bus  
C
DC[11:0]+/t  
S10  
DDCLK+/t  
DDSTR+/t  
LVDS Bus  
D
DD[11:0]+/t  
S11  
tSU(SYSREF) and tH(SYSREF) are only shown for completeness. Use automatic SYSREF calibration or SYSREF windowing to meet  
SYSREF timing.  
6-7. Single-Channel, 4-Bus, Aligned-Mode Timing (LDEMUX = 1, DES_EN = 1, LALIGNED = 1)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR3  
36  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
SYNCSE  
tLAT(SYNCSE)  
tLAT(SYNCSE)  
DxCLK+  
DxCLKœ  
Dx0+/œ  
(LSB)  
X
X
X
Frame N  
Frame 0  
Output Determined by SYNC_PAT[3:0]  
Shown: SYNC_PAT[3:0] = 0x2 (Strobe over LSB)  
Normal Data  
Normal Data  
6-8. SYNCSE Timing Diagram  
1st clock  
16th clock  
24th clock  
SCLK  
SCS  
tH(SCS)  
tSU(SCS)  
t(PH)  
t(PL)  
tH(SCS)  
tSU(SCS)  
t(PH) + t(PL) = t(P) = 1 / ƒCLK(SCLK)  
tSU(SDI) tH(SDI)  
tSU(SDI) tH(SDI)  
SDI  
D7  
D7  
D1  
D0  
Write Command  
COMMAND FIELD  
Hi-Z  
t(OD)  
Hi-Z  
SDO  
D1  
D0  
t(OZD)  
t(ODZ)  
Read Command  
6-9. Serial Interface Timing  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
6.11 Typical Characteristics  
typical values are at TA = 25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B =  
0xA000), fIN = 248 MHz, AIN = 1 dBFS, fCLK = maximum rated clock frequency, filtered 1-VPP sine-wave clock, DES_EN =  
1, LDEMUX = 1, LALIGNED = 0, ADC_DITH = 0x01, LVDS driver high-swing mode (HSM), and background calibration  
(unless otherwise noted); SNR results exclude DC, HD2 to HD9 and interleaving spurs; SINAD, ENOB, and SFDR results  
exclude DC and signal-independent interleaving spurs (fS / 4 and fS / 2 spurs)  
60  
58  
56  
54  
52  
50  
48  
46  
44  
42  
40  
60  
58  
56  
54  
52  
50  
48  
46  
44  
42  
40  
-1 dBFS, FG Cal  
-1 dBFS, BG Cal  
-7 dBFS, FG Cal  
-7 dBFS, BG Cal  
-1 dBFS, FG Cal  
-1 dBFS, BG Cal  
-7 dBFS, FG Cal  
-7 dBFS, BG Cal  
0
2000  
4000 6000  
Input Frequency (MHz)  
8000  
10000  
0
2000  
4000 6000  
Input Frequency (MHz)  
8000  
10000  
D001  
D002  
DES_EN = 0, fS = 3200 MHz, foreground (FG) and  
background (BG) calibration  
DES_EN = 1, fS = 6400 MHz, FG and BG calibration  
6-11. SNR vs Input Frequency  
6-10. SNR vs Input Frequency  
60  
58  
56  
54  
52  
50  
48  
46  
44  
42  
40  
60  
58  
56  
54  
52  
50  
48  
46  
44  
42  
40  
-1 dBFS, FG Cal  
-1 dBFS, BG Cal  
-7 dBFS, FG Cal  
-7 dBFS, BG Cal  
-1 dBFS, FG Cal  
-1 dBFS, BG Cal  
-7 dBFS, FG Cal  
-7 dBFS, BG Cal  
0
2000  
4000 6000  
Input Frequency (MHz)  
8000  
10000  
0
2000  
4000 6000  
Input Frequency (MHz)  
8000  
10000  
D003  
D004  
DES_EN = 0, fS = 3200 MHz, FG and BG calibration  
DES_EN = 1, fS = 6400 MHz, FG and BG calibration  
6-12. SINAD vs Input Frequency  
6-13. SINAD vs Input Frequency  
9.5  
9.5  
9
8.5  
8
9
8.5  
8
7.5  
7
7.5  
7
-1 dBFS, FG Cal  
-1 dBFS, BG Cal  
-7 dBFS, FG Cal  
-7 dBFS, BG Cal  
-1 dBFS, FG Cal  
-1 dBFS, BG Cal  
-7 dBFS, FG Cal  
-7 dBFS, BG Cal  
6.5  
6.5  
0
2000  
4000 6000  
Input Frequency (MHz)  
8000  
10000  
0
2000  
4000 6000  
Input Frequency (MHz)  
8000  
10000  
D005  
D006  
DES_EN = 0, fS = 3200 MHz, FG and BG calibration  
DES_EN = 1, fS = 6400 MHz, FG and BG calibration  
6-14. ENOB vs Input Frequency  
6-15. ENOB vs Input Frequency  
Copyright © 2023 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
6.11 Typical Characteristics (continued)  
typical values are at TA = 25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B =  
0xA000), fIN = 248 MHz, AIN = 1 dBFS, fCLK = maximum rated clock frequency, filtered 1-VPP sine-wave clock, DES_EN =  
1, LDEMUX = 1, LALIGNED = 0, ADC_DITH = 0x01, LVDS driver high-swing mode (HSM), and background calibration  
(unless otherwise noted); SNR results exclude DC, HD2 to HD9 and interleaving spurs; SINAD, ENOB, and SFDR results  
exclude DC and signal-independent interleaving spurs (fS / 4 and fS / 2 spurs)  
80  
75  
70  
65  
60  
55  
50  
45  
40  
80  
75  
70  
65  
60  
55  
50  
45  
40  
-1 dBFS, FG Cal  
-1 dBFS, BG Cal  
-7 dBFS, FG Cal  
-7 dBFS, BG Cal  
-1 dBFS, FG Cal  
-1 dBFS, BG Cal  
-7 dBFS, FG Cal  
-7 dBFS, BG Cal  
0
2000  
4000 6000  
Input Frequency (MHz)  
8000  
10000  
0
2000  
4000 6000  
Input Frequency (MHz)  
8000  
10000  
D007  
D008  
DES_EN = 0, fS = 3200 MHz, FG and BG calibration  
DES_EN = 1, fS = 6400 MHz, FG and BG calibration  
6-16. SFDR vs Input Frequency  
6-17. SFDR vs Input Frequency  
-50  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
HD2, -1 dBFS  
HD2, -7 dBFS  
HD3, -1 dBFS  
HD3, -7 dBFS  
HD2, -1 dBFS  
HD2, -7 dBFS  
HD3, -1 dBFS  
HD3, -7 dBFS  
0
2000  
4000 6000  
Input Frequency (MHz)  
8000  
10000  
0
2000  
4000 6000  
Input Frequency (MHz)  
8000  
10000  
D009  
D010  
DES_EN = 0, fS = 3200 MHz, FG calibration  
6-18. HD2 and HD3 vs Input Frequency  
DES_EN = 1, fS = 6400 MHz, FG calibration  
6-19. HD2 and HD3 vs Input Frequency  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-1 dBFS  
-7 dBFS  
-1 dBFS  
-7 dBFS  
0
2000  
4000 6000  
Input Frequency (MHz)  
8000  
10000  
0
2000  
4000 6000  
Input Frequency (MHz)  
8000  
10000  
D011  
D012  
DES_EN = 0, fS = 3200 MHz, FG calibration, includes fS / 2 –  
DES_EN = 1, fS = 6400 MHz, FG calibration, includes fS / 2 –  
fIN spur only  
fIN and fS /4 ± fIN spurs only  
6-20. Worst Interleaving Spur vs Input Frequency  
6-21. Worst Interleaving Spur vs Input Frequency  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
6.11 Typical Characteristics (continued)  
typical values are at TA = 25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B =  
0xA000), fIN = 248 MHz, AIN = 1 dBFS, fCLK = maximum rated clock frequency, filtered 1-VPP sine-wave clock, DES_EN =  
1, LDEMUX = 1, LALIGNED = 0, ADC_DITH = 0x01, LVDS driver high-swing mode (HSM), and background calibration  
(unless otherwise noted); SNR results exclude DC, HD2 to HD9 and interleaving spurs; SINAD, ENOB, and SFDR results  
exclude DC and signal-independent interleaving spurs (fS / 4 and fS / 2 spurs)  
60  
55  
50  
45  
40  
35  
60  
55  
50  
45  
40  
35  
347 MHz  
997 MHz  
2488 MHz  
4997 MHz  
5997 MHz  
8197 MHz  
347 MHz  
997 MHz  
2488 MHz  
4997 MHz  
5997 MHz  
8197 MHz  
800  
1200  
1600  
2000  
fS (MSPS)  
2400  
2800  
3200  
1600  
2400  
3200  
4000  
fS (MSPS)  
4800  
5600  
6400  
D020  
D021  
DES_EN = 0, FG calibration, AIN = 1 dBFS  
6-22. SNR vs Sampling Rate  
DES_EN = 1, FG calibration, AIN = 1 dBFS  
6-23. SNR vs Sampling Rate  
60  
55  
50  
45  
40  
35  
30  
25  
20  
60  
55  
50  
45  
40  
35  
30  
25  
20  
347 MHz  
997 MHz  
2488 MHz  
4997 MHz  
5997 MHz  
8197 MHz  
347 MHz  
997 MHz  
2488 MHz  
4997 MHz  
5997 MHz  
8197 MHz  
800  
1200  
1600  
2000  
fS (MSPS)  
2400  
2800  
3200  
1600  
2400  
3200  
4000  
fS (MSPS)  
4800  
5600  
6400  
D022  
D023  
DES_EN = 0, FG calibration, AIN = 1 dBFS  
6-24. SINAD vs Sampling Rate  
DES_EN = 1, FG calibration, AIN = 1 dBFS  
6-25. SINAD vs Sampling Rate  
9.5  
9
9.5  
9
8.5  
8
8.5  
8
7.5  
7
7.5  
7
6.5  
6
6.5  
6
347 MHz  
997 MHz  
2488 MHz  
4997 MHz  
5997 MHz  
8197 MHz  
347 MHz  
997 MHz  
2488 MHz  
4997 MHz  
5997 MHz  
8197 MHz  
5.5  
5
5.5  
5
4.5  
4
4.5  
4
3.5  
3.5  
800  
1200  
1600  
2000  
fS (MSPS)  
2400  
2800  
3200  
1600  
2400  
3200  
4000  
fS (MSPS)  
4800  
5600  
6400  
D024  
D025  
DES_EN = 0, FG calibration, AIN = 1 dBFS  
6-26. ENOB vs Sampling Rate  
DES_EN = 1, FG calibration, AIN = 1 dBFS  
6-27. ENOB vs Sampling Rate  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR3  
40  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
6.11 Typical Characteristics (continued)  
typical values are at TA = 25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B =  
0xA000), fIN = 248 MHz, AIN = 1 dBFS, fCLK = maximum rated clock frequency, filtered 1-VPP sine-wave clock, DES_EN =  
1, LDEMUX = 1, LALIGNED = 0, ADC_DITH = 0x01, LVDS driver high-swing mode (HSM), and background calibration  
(unless otherwise noted); SNR results exclude DC, HD2 to HD9 and interleaving spurs; SINAD, ENOB, and SFDR results  
exclude DC and signal-independent interleaving spurs (fS / 4 and fS / 2 spurs)  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
347 MHz  
997 MHz  
2488 MHz  
4997 MHz  
5997 MHz  
8197 MHz  
347 MHz  
997 MHz  
2488 MHz  
4997 MHz  
5997 MHz  
8197 MHz  
800  
1200  
1600  
2000  
fS (MSPS)  
2400  
2800  
3200  
1600  
2400  
3200  
4000  
fS (MSPS)  
4800  
5600  
6400  
D026  
D027  
DES_EN = 0, FG calibration, AIN = 1 dBFS  
6-28. SFDR vs Sampling Rate  
DES_EN = 1, FG calibration, AIN = 1 dBFS  
6-29. SFDR vs Sampling Rate  
65  
60  
55  
50  
45  
40  
35  
30  
25  
65  
60  
55  
50  
45  
40  
35  
30  
25  
347 MHz, dBFS  
347 MHz, dBc  
2488 MHz, dBFS  
2488 MHz, dBc  
5997 MHz, dBFS  
5997 MHz, dBc  
347 MHz, dBFS  
347 MHz, dBc  
2488 MHz, dBFS  
2488 MHz, dBc  
5997 MHz, dBFS  
5997 MHz, dBc  
-24  
-20  
-16  
-12  
Input Power (dBFS)  
-8  
-4  
0
-24  
-20  
-16  
-12  
Input Power (dBFS)  
-8  
-4  
0
D030  
D031  
DES_EN = 0, FG calibration, fS = 3200 MSPS  
DES_EN = 1, FG calibration, fS = 6400 MSPS  
6-30. SNR vs Input Power  
6-31. SNR vs Input Power  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
347 MHz, dBFS  
347 MHz, dBc  
2488 MHz, dBFS  
2488 MHz, dBc  
5997 MHz, dBFS  
5997 MHz, dBc  
347 MHz, dBFS  
347 MHz, dBc  
2488 MHz, dBFS  
2488 MHz, dBc  
5997 MHz, dBFS  
5997 MHz, dBc  
-24  
-20  
-16  
-12  
Input Power (dBFS)  
-8  
-4  
0
-24  
-20  
-16  
-12  
Input Power (dBFS)  
-8  
-4  
0
D032  
D033  
DES_EN = 0, FG calibration, fS = 3200 MSPS  
DES_EN = 1, FG calibration, fS = 6400 MSPS  
6-32. SFDR vs Input Power  
6-33. SFDR vs Input Power  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
6.11 Typical Characteristics (continued)  
typical values are at TA = 25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B =  
0xA000), fIN = 248 MHz, AIN = 1 dBFS, fCLK = maximum rated clock frequency, filtered 1-VPP sine-wave clock, DES_EN =  
1, LDEMUX = 1, LALIGNED = 0, ADC_DITH = 0x01, LVDS driver high-swing mode (HSM), and background calibration  
(unless otherwise noted); SNR results exclude DC, HD2 to HD9 and interleaving spurs; SINAD, ENOB, and SFDR results  
exclude DC and signal-independent interleaving spurs (fS / 4 and fS / 2 spurs)  
60  
55  
50  
45  
40  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
347 MHz  
997 MHz  
2488 MHz  
4997 MHz  
5997 MHz  
8197 MHz  
347 MHz  
997 MHz  
2488 MHz  
4997 MHz  
5997 MHz  
8197 MHz  
0
0.2 0.4 0.6 0.8  
1
Clock Differential Input Voltage (VPP-DIFF  
1.2 1.4 1.6 1.8  
)
2
0
0.2 0.4 0.6 0.8  
1
Clock Differential Input Voltage (VPP-DIFF  
1.2 1.4 1.6 1.8  
)
2
D038  
D039  
DES_EN = 1, FG calibration, fS = 6400 MSPS, AIN = 1  
DES_EN = 1, FG calibration, fS = 6400 MSPS, AIN = 1  
dBFS  
dBFS  
6-34. SNR vs Clock Amplitude  
6-35. SFDR vs Clock Amplitude  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
400  
800  
Freqency (MHz)  
1200  
1600  
0
800  
1600  
Freqency (MHz)  
2400  
3200  
D040  
D041  
DES_EN = 0, FG calibration, fS = 3200 MSPS, SNR = 57.2  
dBFS, SFDR = 74 dBFS, ENOB = 9.1 bits  
DES_EN = 1, FG calibration, fS = 6400 MSPS, SNR = 57.2  
dBFS, SFDR = 69 dBFS, ENOB = 9.1 bits  
6-36. Single-Tone FFT at fIN = 347 MHz, AIN = 1 dBFS  
6-37. Single-Tone FFT at fIN = 347 MHz, AIN = 1 dBFS  
Copyright © 2023 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
6.11 Typical Characteristics (continued)  
typical values are at TA = 25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B =  
0xA000), fIN = 248 MHz, AIN = 1 dBFS, fCLK = maximum rated clock frequency, filtered 1-VPP sine-wave clock, DES_EN =  
1, LDEMUX = 1, LALIGNED = 0, ADC_DITH = 0x01, LVDS driver high-swing mode (HSM), and background calibration  
(unless otherwise noted); SNR results exclude DC, HD2 to HD9 and interleaving spurs; SINAD, ENOB, and SFDR results  
exclude DC and signal-independent interleaving spurs (fS / 4 and fS / 2 spurs)  
0
0
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
400  
800  
Freqency (MHz)  
1200  
1600  
0
800  
1600  
Freqency (MHz)  
2400  
3200  
D042  
D043  
DES_EN = 0, FG calibration, fS = 3200 MSPS, SNR = 55.6  
dBFS, SFDR = 64 dBFS, ENOB = 8.6 bits  
DES_EN = 1, FG calibration, fS = 6400 MSPS, SNR = 55.8  
dBFS, SFDR = 58 dBFS, ENOB = 8.5 bits  
6-38. Single-Tone FFT at fIN = 2488 MHz, AIN = 1 dBFS  
6-39. Single-Tone FFT at fIN = 2488 MHz, AIN = 1 dBFS  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
400  
800  
Freqency (MHz)  
1200  
1600  
0
800  
1600  
Freqency (MHz)  
2400  
3200  
D044  
D045  
DES_EN = 0, FG calibration, fS = 3200 MSPS, SNR = 56.9  
dBFS, SFDR = 71 dBFS, ENOB = 9.1 bits  
DES_EN = 1, FG calibration, fS = 6400 MSPS, SNR = 57.5  
dBFS, SFDR = 65 dBFS, ENOB = 9.0 bits  
6-40. Single-Tone FFT at fIN = 2488 MHz, AIN = 7 dBFS  
6-41. Single-Tone FFT at fIN = 2488 MHz, AIN = 7 dBFS  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
6.11 Typical Characteristics (continued)  
typical values are at TA = 25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B =  
0xA000), fIN = 248 MHz, AIN = 1 dBFS, fCLK = maximum rated clock frequency, filtered 1-VPP sine-wave clock, DES_EN =  
1, LDEMUX = 1, LALIGNED = 0, ADC_DITH = 0x01, LVDS driver high-swing mode (HSM), and background calibration  
(unless otherwise noted); SNR results exclude DC, HD2 to HD9 and interleaving spurs; SINAD, ENOB, and SFDR results  
exclude DC and signal-independent interleaving spurs (fS / 4 and fS / 2 spurs)  
0
0
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
400  
800  
Freqency (MHz)  
1200  
1600  
0
800  
1600  
Freqency (MHz)  
2400  
3200  
D046  
D047  
DES_EN = 0, FG calibration, fS = 3200 MSPS, SNR = 53.4  
dBFS, SFDR = 57 dBFS, ENOB = 8.1 bits  
DES_EN = 1, FG calibration, fS = 6400 MSPS, SNR = 53.7  
dBFS, SFDR = 58 dBFS, ENOB = 8.2 bits  
6-42. Single-Tone FFT at fIN = 4997 MHz, AIN = 1 dBFS  
6-43. Single-Tone FFT at fIN = 4997 MHz, AIN = 1 dBFS  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
400  
800  
Freqency (MHz)  
1200  
1600  
0
800  
1600  
Freqency (MHz)  
2400  
3200  
D048  
D049  
DES_EN = 0, FG calibration, fS = 3200 MSPS, SNR = 50.6  
dBFS, SFDR = 53 dBFS, ENOB = 7.5 bits  
DES_EN = 1, FG calibration, fS = 6400 MSPS, SNR = 50.8  
dBFS, SFDR = 45 dBFS, ENOB = 6.9 bits  
6-44. Single-Tone FFT at fIN = 8197 MHz, AIN = 1 dBFS  
6-45. Single-Tone FFT at fIN = 8197 MHz, AIN = 1 dBFS  
Copyright © 2023 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
6.11 Typical Characteristics (continued)  
typical values are at TA = 25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B =  
0xA000), fIN = 248 MHz, AIN = 1 dBFS, fCLK = maximum rated clock frequency, filtered 1-VPP sine-wave clock, DES_EN =  
1, LDEMUX = 1, LALIGNED = 0, ADC_DITH = 0x01, LVDS driver high-swing mode (HSM), and background calibration  
(unless otherwise noted); SNR results exclude DC, HD2 to HD9 and interleaving spurs; SINAD, ENOB, and SFDR results  
exclude DC and signal-independent interleaving spurs (fS / 4 and fS / 2 spurs)  
0
0
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
400  
800  
Frequency (MHz)  
1200  
1600  
0
800  
1600  
Frequency (MHz)  
2400  
3200  
D050  
D051  
DES_EN = 0, FG calibration, fS = 3200 MSPS, f1 = 342 MHz,  
f2 = 352 MHz, AIN = 7 dBFS per tone, SFDR = 77 dBFS,  
IMD3 = 87 dBFS, IMD2 = 77 dBFS  
DES_EN = 1, FG calibration, fS = 6400 MSPS, f1 = 342 MHz,  
f2 = 352 MHz, AIN = 7 dBFS per tone, SFDR = 73 dBFS,  
IMD3 = 81 dBFS, IMD2 = 88 dBFS  
6-46. Two-Tone FFT at fIN = 347 MHz, AIN = 1 dBFS  
6-47. Two-Tone FFT at fIN = 347 MHz, AIN = 1 dBFS  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
400  
800  
Frequency (MHz)  
1200  
1600  
0
800  
1600  
Frequency (MHz)  
2400  
3200  
D052  
D053  
DES_EN = 0, FG calibration, fS = 3200 MSPS, f1 = 2483 MHz,  
f2 = 2493 MHz, AIN = 7 dBFS per tone, SFDR = 71 dBFS,  
IMD3 = 71 dBFS, IMD2 = 75 dBFS  
DES_EN = 1, FG calibration, fS = 6400 MSPS, f1 = 2483 MHz,  
f2 = 2493 MHz, AIN = 7 dBFS per tone, SFDR = 60 dBFS,  
IMD3 = 72 dBFS, IMD2 = 78 dBFS  
6-48. Two-Tone FFT at fIN = 2488 MHz, AIN = 1 dBFS  
6-49. Two-Tone FFT at fIN = 2488 MHz, AIN = 1 dBFS  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
6.11 Typical Characteristics (continued)  
typical values are at TA = 25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B =  
0xA000), fIN = 248 MHz, AIN = 1 dBFS, fCLK = maximum rated clock frequency, filtered 1-VPP sine-wave clock, DES_EN =  
1, LDEMUX = 1, LALIGNED = 0, ADC_DITH = 0x01, LVDS driver high-swing mode (HSM), and background calibration  
(unless otherwise noted); SNR results exclude DC, HD2 to HD9 and interleaving spurs; SINAD, ENOB, and SFDR results  
exclude DC and signal-independent interleaving spurs (fS / 4 and fS / 2 spurs)  
0
0
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
400  
800  
Frequency (MHz)  
1200  
1600  
0
800  
1600  
Frequency (MHz)  
2400  
3200  
D054  
D055  
DES_EN = 0, FG calibration, fS = 3200 MSPS, f1 = 4992 MHz,  
f2 = 5002 MHz, AIN = 7 dBFS per tone, SFDR = 61 dBFS,  
IMD3 = 61 dBFS, IMD2 = 77 dBFS  
DES_EN = 1, FG calibration, fS = 6400 MSPS, f1 = 4992 MHz,  
f2 = 5002 MHz, AIN = 7 dBFS per tone, SFDR = 60 dBFS,  
IMD3 = 62 dBFS, IMD2 = 78 dBFS  
6-50. Two-Tone FFT at fIN = 4997 MHz, AIN = 1 dBFS  
6-51. Two-Tone FFT at fIN = 4997 MHz, AIN = 1 dBFS  
0.4  
0.3  
0.2  
0.1  
0
3
2
1
0
-0.1  
-0.2  
-0.3  
-0.4  
-1  
-2  
-3  
0
1024  
2048  
Code  
3072  
4095  
0
1024  
2048  
Code  
3072  
4095  
D060  
D061  
DES_EN = 1, FG calibration, fS = 6400 MSPS, fIN = 247 MHz  
DES_EN = 1, FG calibration, fS = 6400 MSPS, fIN = 247 MHz  
6-52. DNL vs Code  
6-53. INL vs Code  
Copyright © 2023 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
6.11 Typical Characteristics (continued)  
typical values are at TA = 25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B =  
0xA000), fIN = 248 MHz, AIN = 1 dBFS, fCLK = maximum rated clock frequency, filtered 1-VPP sine-wave clock, DES_EN =  
1, LDEMUX = 1, LALIGNED = 0, ADC_DITH = 0x01, LVDS driver high-swing mode (HSM), and background calibration  
(unless otherwise noted); SNR results exclude DC, HD2 to HD9 and interleaving spurs; SINAD, ENOB, and SFDR results  
exclude DC and signal-independent interleaving spurs (fS / 4 and fS / 2 spurs)  
66  
64  
62  
60  
58  
56  
54  
52  
50  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
SNR  
SINAD  
SFDR  
HD2  
HD3  
fS/4+fIN  
fS/4-fIN  
fS/2-fIN  
-75  
-50  
-25  
0
Ambient Temperature (°C)  
25  
50  
75  
100  
125  
-75  
-50  
-25  
0
Ambient Temperature (°C)  
25  
50  
75  
100  
125  
D070  
D071  
DES_EN = 1, FG calibration, fS = 6400 MSPS, fIN = 2488  
DES_EN = 1, FG calibration, fS = 6400 MSPS, fIN = 2488  
MHz, AIN = 1 dBFS  
MHz, AIN = 1 dBFS  
6-54. Performance vs Temperature  
6-55. Performance vs Temperature  
60  
58  
56  
54  
52  
50  
48  
46  
60  
58  
56  
54  
52  
50  
48  
46  
44  
44  
BG Calibration  
FG Calibration at Each Temperature  
BG Calibration  
FG Calibration at Each Temperature  
42  
42  
FG Calibration at 25°C  
40  
FG Calibration at 25°C  
40  
-75  
-50  
-25  
0
Ambient Temperature (°C)  
25  
50  
75  
100  
125  
-75  
-50  
-25  
0
Ambient Temperature (°C)  
25  
50  
75  
100  
125  
D080  
D081  
DES_EN = 0, fS = 3200 MSPS, fIN = 347 MHz, AIN = 1  
DES_EN = 1, fS = 6400 MSPS, fIN = 347 MHz, AIN = 1  
dBFS  
dBFS  
6-56. SNR vs Temperature and Calibration Mode  
6-57. SNR vs Temperature and Calibration Mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
6.11 Typical Characteristics (continued)  
typical values are at TA = 25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B =  
0xA000), fIN = 248 MHz, AIN = 1 dBFS, fCLK = maximum rated clock frequency, filtered 1-VPP sine-wave clock, DES_EN =  
1, LDEMUX = 1, LALIGNED = 0, ADC_DITH = 0x01, LVDS driver high-swing mode (HSM), and background calibration  
(unless otherwise noted); SNR results exclude DC, HD2 to HD9 and interleaving spurs; SINAD, ENOB, and SFDR results  
exclude DC and signal-independent interleaving spurs (fS / 4 and fS / 2 spurs)  
60  
58  
56  
54  
52  
50  
48  
46  
44  
42  
40  
60  
58  
56  
54  
52  
50  
48  
46  
44  
42  
40  
BG Calibration  
FG Calibration at Each Temperature  
FG Calibration at 25°C  
BG Calibration  
FG Calibration at Each Temperature  
FG Calibration at 25°C  
-75  
-50  
-25  
0
Ambient Temperature (°C)  
25  
50  
75  
100  
125  
-75  
-50  
-25  
0
Ambient Temperature (°C)  
25  
50  
75  
100  
125  
D082  
D083  
DES_EN = 0, fS = 3200 MSPS, fIN = 347 MHz, AIN = 1  
DES_EN = 1, fS = 6400 MSPS, fIN = 347 MHz, AIN = 1  
dBFS  
dBFS  
6-58. SINAD vs Temperature and Calibration Mode  
6-59. SINAD vs Temperature and Calibration Mode  
9.5  
9.5  
9
8.5  
8
9
8.5  
8
7.5  
7.5  
BG Calibration  
FG Calibration at Each Temperature  
FG Calibration at 25°C  
BG Calibration  
FG Calibration at Each Temperature  
FG Calibration at 25°C  
7
7
6.5  
6.5  
-75  
-50  
-25  
0
Ambient Temperature (°C)  
25  
50  
75  
100  
125  
-75  
-50  
-25  
0
Ambient Temperature (°C)  
25  
50  
75  
100  
125  
D084  
D085  
DES_EN = 0, fS = 3200 MSPS, fIN = 347 MHz, AIN = 1  
DES_EN = 1, fS = 6400 MSPS, fIN = 347 MHz, AIN = 1  
dBFS  
dBFS  
6-60. ENOB vs Temperature and Calibration Mode  
6-61. ENOB vs Temperature and Calibration Mode  
Copyright © 2023 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
6.11 Typical Characteristics (continued)  
typical values are at TA = 25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B =  
0xA000), fIN = 248 MHz, AIN = 1 dBFS, fCLK = maximum rated clock frequency, filtered 1-VPP sine-wave clock, DES_EN =  
1, LDEMUX = 1, LALIGNED = 0, ADC_DITH = 0x01, LVDS driver high-swing mode (HSM), and background calibration  
(unless otherwise noted); SNR results exclude DC, HD2 to HD9 and interleaving spurs; SINAD, ENOB, and SFDR results  
exclude DC and signal-independent interleaving spurs (fS / 4 and fS / 2 spurs)  
80  
75  
70  
65  
60  
55  
50  
45  
40  
80  
75  
70  
65  
60  
55  
50  
45  
40  
BG Calibration  
FG Calibration at Each Temperature  
FG Calibration at 25°C  
BG Calibration  
FG Calibration at Each Temperature  
FG Calibration at 25°C  
-75  
-50  
-25  
0
Ambient Temperature (°C)  
25  
50  
75  
100  
125  
-75  
-50  
-25  
0
Ambient Temperature (°C)  
25  
50  
75  
100  
125  
D086  
D087  
DES_EN = 0, fS = 3200 MSPS, fIN = 347 MHz, AIN = 1  
DES_EN = 1, fS = 6400 MSPS, fIN = 347 MHz, AIN = 1  
dBFS  
dBFS  
6-62. SFDR vs Temperature and Calibration Mode  
6-63. SFDR vs Temperature and Calibration Mode  
66  
-35  
SNR  
SINAD  
SFDR  
HD2  
HD3  
fS/4+fIN  
fS/4-fIN  
fS/2-fIN  
64  
-40  
62  
-45  
60  
58  
56  
54  
52  
50  
48  
46  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-5  
-4  
-3  
-2  
Supply Voltage Variation from Nominal (%)  
-1  
0
1
2
3
4
5
-5  
-4  
-3  
-2  
Supply Voltage Variation from Nominal (%)  
-1  
0
1
2
3
4
5
D100  
D101  
DES_EN = 1, FG calibration, fS = 6400 MSPS, fIN = 2488  
DES_EN = 1, FG calibration, fS = 6400 MSPS, fIN = 2488  
MHz, AIN = 1 dBFS  
MHz, AIN = 1 dBFS  
6-64. Performance vs Supply Voltage  
6-65. Performance vs Supply Voltage  
1.2  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
1.1  
1
0.9  
0.8  
0.2  
BG Calibration  
FG Calibration  
LPBG Calibration  
BG Calibration  
FG Calibration  
LPBG Calibration  
0.7  
0.1  
0
0.6  
800  
1200  
1600  
2000  
fCLK (MHz)  
2400  
2800  
3200  
800  
1200  
1600  
2000  
fCLK (MHz)  
2400  
2800  
3200  
D110  
D111  
DES_EN = 1, fIN = 2488 MHz, AIN = 1 dBFS  
6-66. VA19 Supply Current vs Clock Rate  
DES_EN = 1, fIN = 2488 MHz, AIN = 1 dBFS  
6-67. VA11 Supply Current vs Clock Rate  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
6.11 Typical Characteristics (continued)  
typical values are at TA = 25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B =  
0xA000), fIN = 248 MHz, AIN = 1 dBFS, fCLK = maximum rated clock frequency, filtered 1-VPP sine-wave clock, DES_EN =  
1, LDEMUX = 1, LALIGNED = 0, ADC_DITH = 0x01, LVDS driver high-swing mode (HSM), and background calibration  
(unless otherwise noted); SNR results exclude DC, HD2 to HD9 and interleaving spurs; SINAD, ENOB, and SFDR results  
exclude DC and signal-independent interleaving spurs (fS / 4 and fS / 2 spurs)  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
BG Calibration  
FG Calibration  
LPBG Calibration  
BG Calibration  
FG Calibration  
LPBG Calibration  
800  
1200  
1600  
2000  
fCLK (MHz)  
2400  
2800  
3200  
800  
1200  
1600  
2000  
fCLK (MHz)  
2400  
2800  
3200  
D112  
D113  
DES_EN = 1, fIN = 2488 MHz, AIN = 1 dBFS  
6-68. VD11 Supply Current vs Clock Rate  
DES_EN = 1, fIN = 2488 MHz, AIN = 1 dBFS, VLVDS = 1.9  
V
6-69. VLVDS Supply Current vs Clock Rate  
0.5  
4
0.4  
0.3  
0.2  
0.1  
0
3.5  
3
2.5  
BG Calibration  
FG Calibration  
LPBG Calibration  
BG Calibration  
FG Calibration  
LPBG Calibration  
2
800  
800  
1200  
1600  
2000  
fCLK (MHz)  
2400  
2800  
3200  
1200  
1600  
2000  
fCLK (MHz)  
2400  
2800  
3200  
D114  
D115  
DES_EN = 1, fIN = 2488 MHz, AIN = 1 dBFS, VLVDS = 1.1  
DES_EN = 1, fIN = 2488 MHz, AIN = 1 dBFS, VLVDS = 1.9  
V
V
6-70. VLVDS Supply Current vs Clock Rate  
6-71. Power Consumption vs Clock Rate  
Copyright © 2023 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
6.11 Typical Characteristics (continued)  
typical values are at TA = 25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B =  
0xA000), fIN = 248 MHz, AIN = 1 dBFS, fCLK = maximum rated clock frequency, filtered 1-VPP sine-wave clock, DES_EN =  
1, LDEMUX = 1, LALIGNED = 0, ADC_DITH = 0x01, LVDS driver high-swing mode (HSM), and background calibration  
(unless otherwise noted); SNR results exclude DC, HD2 to HD9 and interleaving spurs; SINAD, ENOB, and SFDR results  
exclude DC and signal-independent interleaving spurs (fS / 4 and fS / 2 spurs)  
4.5  
3
0
4
-3  
3.5  
3
-6  
-9  
BG Calibration  
FG Calibration  
LPBG Calibration  
Dual-Channel Mode  
Single-Channel Mode  
-12  
2.5  
0
2000  
4000 6000  
Input Frequency (MHz)  
8000  
10000  
-75  
-50  
-25  
0
25  
50  
Ambient Temperature (°C)  
75  
100  
125  
D_BW  
D116  
6-73. Gain Response vs Input Frequency  
DES_EN = 1, fS = 6400 MSPS, fIN = 2488 MHz, AIN = 1  
dBFS, VLVDS = 1.9 V  
6-72. Power Consumption vs Temperature  
4000  
3500  
3000  
2200  
2000  
1800  
1600  
1400  
2500  
2000  
1500  
1000  
500  
Zoomed Area  
in Following Plot  
0
0
5000 10000 15000 20000 25000 30000 35000  
Sample Number  
14800  
15200  
15600  
Sample Number  
16000  
16400  
D125  
D126  
DES_EN = 1, fS = 6400 MSPS, fIN = 3199.9 MHz  
DES_EN = 1, fS = 6400 MSPS, fIN = 3199.9 MHz  
6-74. Background Calibration Core Transition (AC Signal)  
6-75. Background Calibration Core Transition (AC Signal  
Zoomed)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
6.11 Typical Characteristics (continued)  
typical values are at TA = 25°C, nominal supply voltages, default full-scale voltage (FS_RANGE_A = FS_RANGE_B =  
0xA000), fIN = 248 MHz, AIN = 1 dBFS, fCLK = maximum rated clock frequency, filtered 1-VPP sine-wave clock, DES_EN =  
1, LDEMUX = 1, LALIGNED = 0, ADC_DITH = 0x01, LVDS driver high-swing mode (HSM), and background calibration  
(unless otherwise noted); SNR results exclude DC, HD2 to HD9 and interleaving spurs; SINAD, ENOB, and SFDR results  
exclude DC and signal-independent interleaving spurs (fS / 4 and fS / 2 spurs)  
4096  
3584  
3072  
2560  
2048  
1536  
1024  
512  
500  
400  
300  
200  
100  
0
-0.35V Differential  
+0.35 V Differential  
-0.35 V Differential  
0 V Differential  
Zoomed Area  
in Following Plot  
0
0
1000 2000 3000 4000 5000 6000 7000 8000  
Sample Number  
1600 1700 1800 1900 2000 2100 2200 2300 2400  
Sample Number  
D127  
D128  
DES_EN = 1, fS = 6400 MSPS, DC input  
DES_EN = 1, fS = 6400 MSPS, DC input  
6-76. Background Calibration Core Transition (DC Signal)  
6-77. Background Calibration Core Transition (DC Signal  
Zoomed)  
Copyright © 2023 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The ADC12DL3200 is an RF-sampling, giga-sample, analog-to-digital converter (ADC) that can directly sample  
input frequencies from DC to above 10 GHz. In dual-channel mode, the ADC12DL3200 can sample up to 3200-  
MSPS and in single-channel mode up to 6400-MSPS. Programmable tradeoffs in channel count (dual-channel  
mode) and Nyquist bandwidth (single-channel mode) allow development of flexible hardware that meets the  
needs of both high channel count or wide instantaneous signal bandwidth applications. Full-power input  
bandwidth (3 dB) of 8 GHz and a useable frequency range that allows direct RF sampling of L-band, S-band,  
C-band, and X-band for frequency agile systems.  
The ADC12DL3200 uses a low latency, low-voltage differential signaling (LVDS) interface for latency sensitive  
applications or when the simplicity of LVDS is preferred. The interface uses up to 48 data pairs, 4 double data  
rate (DDR) clocks and 4 strobe signals arranged in four 12-bit data buses. The interface supports signaling rates  
of up to 1.6 Gbps. Strobe signals simplify synchronization across buses and between multiple devices. The  
strobe is generated internally and can be reset at a deterministic time by the SYSREF input. Multi-device  
synchronization is further eased by innovative synchronization features such as noiseless aperture delay (TAD  
)
adjustment and SYSREF windowing.  
7.2 Functional Block Diagram  
CALTRG  
PD  
ORA0 ORA1 ORB0 ORB1 CALSTAT  
TDIODE+  
TDIODEœ  
DACLK+  
DACLKœ  
SCLK  
SPI Registers and  
Device Control  
SDI  
Status Indicators  
DA11+  
DA11œ  
SDO  
SCS  
LVDS  
Bus A  
DA0+  
DA0œ  
DASTR+  
DASTRœ  
TMSTP+  
De-  
mux  
TMSTPœ  
DCCLK+  
DCCLKœ  
DC11+  
DC11œ  
Input  
MUX  
Sample  
Marking  
LVDS  
Bus C  
ADC A  
INA+  
DC0+  
DC0œ  
INAœ  
DCSTR+  
DCSTRœ  
Strobe  
Over-  
range  
Strobe  
Source  
Generation and  
LSB  
Replacement  
SYNCSE  
DBCLK+  
DBCLKœ  
INB+  
DB11+  
DB11œ  
LVDS  
Bus B  
Input  
MUX  
Sample  
Marking  
INBœ  
ADC B  
DB0+  
DB0œ  
DBSTR+  
DBSTRœ  
Aperture  
Delay Adjust  
De-  
mux  
CLK+  
DDCLK+  
DDCLKœ  
Clock Distribution  
and Synchronization  
CLKœ  
DD11+  
DD11œ  
LVDS  
Bus D  
SYSREF+  
DD0+  
DD0œ  
SYSREF  
Windowing  
SYSREFœ  
DDSTR+  
DDSTRœ  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Analog Inputs  
The analog inputs of the ADC12DL3200 have internal buffers to enable high input bandwidth and isolate  
sampling capacitor glitch noise from the input circuit. The analog inputs must be driven differentially as operation  
with a single-ended signal is not recommended because of performance degradation. AC-coupling or DC-  
coupling can be used with the analog inputs. The common-mode voltage of the analog inputs is 0 V and is  
biased internally through single-ended, 50-Ω resistors to AGND on each input pin. When DC-coupled input  
signals are used the applied differential signal must have a common-mode voltage that meets the device Input  
common-mode requirements. See VCMI in the 6.3 table. The 0-V input common-mode voltage simplifies the  
interface to split-supply differential amplifiers and to a variety of transformers and baluns.  
In single-channel mode, either analog input (AIN+ and AINor BIN+ and BIN) can be used as the input to the  
ADC core. There is no degradation in analog input bandwidth when using single-channel mode versus dual-  
channel mode. The input can be chosen using SINGLE_INPUT in the INPUT_MUX register. In dual-channel  
mode, the analog inputs can be swapped using DUAL_INPUT in the INPUT_MUX register.  
7.3.1.1 Analog Input Protection  
The analog inputs are protected against overdrive conditions by internal clamping diodes that are capable of  
sourcing or sinking input currents during overrange conditions; see the voltage and current limits in the 6.1  
table. The overrange protection is also defined for a peak RF input power in the 6.1 table, which is frequency  
independent. Operation above the maximum conditions listed in the 6.3 table results in an increase in failure-  
in-time (FIT) rate, so the system must correct the overdrive condition as quickly as possible. 7-1 shows the  
analog input protection diodes.  
AGND  
Analog input  
protection  
diodes.  
50  
INA+, INB+  
ADC  
INAœ, INBœ  
50 ꢀ  
Input Buffer  
7-1. ADC12DL3200 Analog Input Internal Termination  
7.3.1.2 Full-Scale Voltage (VFS) Adjustment  
Input full-scale voltage (VFS) adjustment is available, in fine increments, for each analog input through the  
FS_RANGE_A (see the INA full-scale range adjust register) and FS_RANGE_B register settings (see the INB  
full-scale range adjust register) for INA± and INB±, respectively. The available adjustment range is specified in  
the 6.5 table. Larger full-scale voltages improve SNR performance, but can degrade harmonic distortion. The  
full-scale voltage adjustment is useful for matching the full-scale range of multiple ADCs when developing a  
multi-converter system or for external interleaving of multiple ADC12DL3200s to achieve higher sampling rates.  
7.3.1.3 Analog Input Offset Adjust  
The input offset voltage for each input can be adjusted through the OADJ_x_FG0_VINy and  
OADJ_x_FG90_VINy registers (registers 0x330 to 0x34F), where x represents the ADC core (A or B) and y  
represents the analog input (INA± or INB±). The adjustment range is approximately 28 mV to 28 mV  
differential. See the 7.4.7 section for more information.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR3  
54  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
 
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.3.2 ADC Core  
The ADC12DL3200 consists of a total of six ADC cores. The cores are interleaved for higher sampling rates and  
swapped on-the-fly for calibration as required by the operating mode. In dual-channel mode each ADC channel  
is two-way interleaved. In single-channel mode the ADC is four-way interleaved. This section highlights the  
theory of operation and key features of the ADC cores.  
7.3.2.1 ADC Theory of Operation  
The differential voltages at the analog inputs are captured by the rising edge of CLK± in dual-channel mode or  
by the rising and falling edges of CLK± in single-channel mode. After capturing the input signal, the ADC  
converts the analog voltage to a digital value by comparing the voltage to the internal reference voltage. If the  
voltage on INAor INBis higher than the voltage on INA+ or INB+, respectively, then the digital output is a  
negative 2's complement value. If the voltage on INA+ or INB+ is higher than the voltage on INAor INB,  
respectively, then the digital output is a positive 2's complement value. 方程式 1 can calculate the differential  
voltage at the input pins from the digital output.  
Code  
2
N  
VIN  
=
VFS  
(1)  
where  
Code is the signed decimation output code (for example, 2048 to +2047)  
N is the ADC resolution  
VFS is the full-scale input voltage of the ADC as specified in the 6.3 table, including any adjustment  
performed by programming FS_RANGE_A or FS_RANGE_B  
7.3.2.2 ADC Core Calibration  
ADC core calibration is required to optimize the analog performance of the ADC cores. Calibration must be  
repeated when operating conditions change significantly, namely temperature, in order to maintain optimal  
performance. The ADC12DL3200 has a built-in calibration routine that can be run as a foreground operation or a  
background operation. Foreground operation requires ADC downtime, where the ADC is no longer sampling the  
input signal, to complete the process. Background calibration can be used to overcome this limitation and allow  
constant operation of the ADC. See the 7.4.7 section for detailed information on each mode.  
7.3.2.3 ADC Overrange Detection  
To ensure that system gain management has the quickest possible response time, a low-latency configurable  
overrange function is included. The overrange function works by monitoring the converted 12-bit samples at the  
ADC to quickly detect if the ADC is near saturation or already in an overrange condition. The absolute value of  
the upper eight bits of the ADC data are checked against two programmable thresholds, OVR_T0 and OVR_T1.  
These thresholds apply to both channel A and channel B in dual-channel mode. 7-1 lists how an ADC sample  
is converted to an absolute value for a comparison of the thresholds.  
7-1. Conversion of ADC Sample for Overrange Comparison  
ADC SAMPLE  
(Offset Binary)  
ADC SAMPLE  
(2's Complement)  
UPPER 8 BITS USED FOR  
COMPARISON  
ABSOLUTE VALUE  
1111 1111 1111 (4095)  
1111 1111 0000 (4080)  
1000 0000 0000 (2048)  
0000 0001 0000 (16)  
0000 0000 0000 (0)  
0111 1111 1111 (2047)  
0111 1111 0000 (2032)  
0000 0000 0000 (0)  
111 1111 1111 (2047)  
111 1111 0000 (2032)  
000 0000 0000 (0)  
1111 1111 (255)  
1111 1110 (254)  
0000 0000 (0)  
1111 1110 (254)  
1111 1111 (255)  
111 1111 0000 (2032)  
111 1111 1111 (2047)  
1000 0001 0000 (2032)  
1000 0000 0000 (2048)  
If the upper eight bits of the absolute value equal or exceed the OVR_T0 or OVR_T1 thresholds during the  
monitoring period, then the overrange bit associated with the threshold is set to 1, otherwise the overrange bit is  
0. In dual-channel mode, the overrange status can be monitored on the ORA0 and ORA1 pins for channel A and  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
the ORB0 and ORB1 pins for channel B, where ORx0 corresponds to the OVR_T0 threshold and ORx1  
corresponds to the OVR_T1 threshold. In single-channel mode, the overrange status for the OVR_T0 threshold  
is determined by monitoring both the ORA0 and ORB0 outputs and the OVR_T1 threshold is determined by  
monitoring both ORA1 and ORB1 outputs. In single-channel mode, the two outputs for each threshold must be  
OR'd together to determine whether an over-range condition occurred. OVR_N can be used to set the output  
pulse duration from the last overrange event. 7-2 lists the overrange pulse durations for the various OVR_N  
settings (see the overrange configuration register).  
7-2. Overrange Monitoring Period for the ORA0, ORA1, ORB0, and ORB1 Outputs  
OVERRANGE PULSE DURATION FROM LAST OVERRANGE  
OVR_N  
EVENT (DEVCLK Cycles)  
0
1
2
3
4
5
6
7
8
16  
32  
64  
128  
256  
512  
1024  
Typically, the OVR_T0 threshold can be set near the full-scale value (228 for example). When the threshold is  
triggered, a typical system can turn down the system gain to avoid clipping. The OVR_T1 threshold can be set  
much lower. For example, the OVR_T1 threshold can be set to 64 (peak input voltage of 12 dBFS). If the input  
signal is strong, the OVR_T1 threshold is tripped occasionally. If the input is quite weak, the threshold is never  
tripped. The downstream logic device monitors the OVR_T1 bit. If OVR_T1 stays low for an extended period of  
time, then the system gain can be increased until the threshold is occasionally tripped (meaning the peak level of  
the signal is above 12 dBFS).  
7.3.2.4 Code Error Rate (CER)  
ADC cores can generate bit errors within a sample, often called code errors (CER) or referred to as sparkle  
codes, resulting from metastability caused by non-ideal comparator limitations. The ADC12DL3200 uses a  
unique ADC architecture that inherently allows significant code error rate improvements from traditional pipelined  
flash or successive approximation register (SAR) ADCs. The code error rate of the ADC12DL3200 is multiple  
orders of magnitude better than what can be achieved in alternative architectures at equivalent sampling rates,  
providing significant signal reliability improvements.  
7.3.2.5 Internal Dither  
The ADC12DL3200 includes internal dither to smooth out the integral nonlinearity (INL) curve. Dither improves  
the high-order harmonic performance of the ADC cores that results in a reduction of spurs in the frequency  
spectrum for single-tone and narrow-band signals. The dither signal is subtracted out of converted data so that  
dither does not show up in the output signal and thus reduce the signal-to-noise signal.  
7.3.3 Timestamp  
The TMSTP+ and TMSTPdifferential inputs can be used as a timestamp input to mark a specific sample  
based on the timing of an external trigger event relative to the sampled signal. TIME_STAMP_EN (see the LSB  
control bit output register) must be set in order to use the timestamp feature and output the timestamp data.  
When enabled, the LSB of the 12-bit ADC digital output reports the status of the TMSTP± input. In effect, the 12-  
bit output sample consists of the upper 11-bits of the 12-bit converter and the LSB of the 12-bit output sample is  
the output of a parallel 1-bit converter (TMSTP±) with the same latency as the ADC core. The trigger must be  
applied to the differential TMSTP+ and TMSTPinputs. The trigger can be asynchronous to the ADC sampling  
clock and is sampled at approximately the same time as the analog input. Alternatively, the SYSREF± inputs can  
be used as the timestamp input when SYSREF_TIME_STAMP_EN is set to 1 in the CLK_CTRL1 register.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR3  
56  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.3.4 Clocking  
The clocking subsystem of the ADC12DL3200 has two input signals: the device clock (CLK+, CLK) and  
SYSREF (SYSREF+, SYSREF). Within the clocking subsystem there is a noiseless aperture delay adjustment  
(tAD adjust), a clock duty cycle corrector, and a SYSREF capture block. 7-2 shows the clocking subsystem.  
Duty Cycle  
Correction  
tAD Adjust  
CLK+  
Clock Distribution  
and Synchronization  
(ADC cores, digital,  
interface, etc.)  
CLKœ  
S
E
AR  
N
O
I
V
F
C
N
I
_
_
_
E
AD  
AD  
AD  
T
T
T
SYSREF Capture  
SYSREF+  
Automatic  
SYSREF  
Calibration  
SYSREF  
Windowing  
SYSREFœ  
SYSREF_POS SYSREF_SEL  
SRC_EN  
7-2. ADC12DL3200 Clocking Subsystem  
The device clock is used as the sampling clock for the ADC core as well as the clocking for the digital processing  
and LVDS outputs. Use a low-noise (low jitter) device clock to maintain high signal-to-noise ratio (SNR) within  
the ADC. In dual-channel mode, the analog input signal for each input is sampled on the rising edge of the  
device clock. In single-channel mode, both the rising and falling edges of the device clock are used to capture  
the analog signal to reduce the maximum clock rate required by the ADC. A noiseless aperture delay adjustment  
(tAD adjust) allows the sampling instance of the ADC to be shifted in fine steps in order to synchronize multiple  
ADC12DL3200 devices or to fine-tune system latency. Duty cycle correction is implemented in the  
ADC12DL3200 to ease the requirements on the external device clock while maintaining high performance. 表  
7-3 summarizes the device clock interface in dual-channel mode and single-channel mode.  
7-3. Device Clock versus Mode of Operation  
MODE OF OPERATION  
Dual-channel mode  
SAMPLING RATE VS fCLK  
SAMPLING INSTANT  
Rising edge  
1 × fCLK  
Single-channel mode  
2 × fCLK  
Rising and falling edge  
SYSREF is a system timing reference used to reset clock dividers and strobe generation within the  
ADC12DL3200 that is similar to the SYSREF signal used by JESD204B interface devices. SYSREF is used to  
synchronize multiple ADC12DL3200 devices. SYSREF must be captured by the correct device clock edge in  
order to achieve repeatable latency and synchronization. The ADC12DL3200 includes SYSREF windowing and  
automatic SYSREF calibration to ease the requirements on the external clocking circuits and to simplify the  
synchronization process. SYSREF can be implemented as a single pulse or as a periodic clock. In periodic  
implementations, SYSREF must be equal to, or an integer division of, the frame clock frequency. 方程式 2 can  
be used to calculate valid SYSREF frequencies.  
fCLK  
fSYSREF  
=
LDEMUX + 1 ì LFRAME ì n  
(
)
(2)  
where  
LDEMUX and LFRAME are register settings  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
fCLK is the device clock frequency (CLK±)  
n is any positive integer  
7.3.4.1 Noiseless Aperture Delay Adjustment (tAD Adjust)  
The ADC12DL3200 contains a delay adjustment on the device clock (sampling clock) input path, called tAD  
adjust, that can be used to shift the sampling instance within the device in order to align sampling instances  
among multiple devices or for external interleaving of multiple ADC12DL3200 devices. Further, tAD adjust can be  
used for automatic SYSREF calibration to simplify synchronization; see the 7.3.4.3.2 section. Aperture delay  
adjustment is implemented in a way that adds no additional noise to the clock path, however a slight degradation  
in aperture jitter (tAJ) is possible at large values of TAD_COARSE because of internal clock path attenuation.  
The degradation in aperture jitter can result in minor SNR degradations at high input frequencies (see tAJ in the  
6.10 table). This feature is programmed using TAD_INV, TAD_COARSE, and TAD_FINE in the DEVCLK  
timing adjust ramp control register. Setting TAD_INV inverts the input clock resulting in a delay equal to half the  
clock period. 7-4 summarizes the step sizes and ranges of the TAD_COARSE and TAD_FINE variable analog  
delays. All three delay options are independent and can be used in conjunction. All clocks within the device are  
shifted by the programmed tAD adjust amount, which results in a shift of the timing of the LVDS data interface  
and affects the capture of SYSREF.  
7-4. tAD Adjust Adjustment Ranges  
ADJUSTMENT PARAMETER  
TAD_INV  
ADJUSTMENT STEP  
DELAY SETTINGS  
MAXIMUM DELAY  
1 / (fCLK × 2)  
1 / (fCLK × 2)  
1
TAD_COARSE  
TAD_FINE  
256  
256  
See tTAD(STEP) in the 6.10 table  
See tTAD(STEP) in the 6.10 table  
See tTAD(MAX) in the 6.10 table  
See tTAD(MAX) in the 6.10 table  
In order to maintain timing alignment between converters, stable and matched power-supply voltages and device  
temperatures must be provided.  
Aperture delay adjustment can be changed on-the-fly during normal operation, however changing the aperture  
delay also shifts the clock for the LVDS data interface (DxCLK±, DxSTR±, and Dx[11:0]±). The receiving circuit  
must be tolerant of shifts in the LVDS data timing. Use of the TAD_RAMP feature may help the receiver avoid  
loss of synchronization; see the 7.3.4.2 section.  
7.3.4.2 Aperture Delay Ramp Control (TAD_RAMP)  
The ADC12DL3200 contains a function to gradually adjust the tAD adjust setting towards the newly written  
TAD_COARSE value. This functionality allows the tAD adjust setting to be adjusted with minimal internal clock  
circuitry glitches. The TAD_RAMP_RATE parameter allows either a slower (one TAD_COARSE LSB per 256  
tCLK cycles) or faster ramp (four TAD_COARSE LSBs per 256 tCLK cycles) to be selected. The TAD_RAMP_EN  
parameter enables the ramp feature and any subsequent writes to TAD_COARSE to initiate a new ramp.  
7.3.4.3 SYSREF Capture for Multi-Device Synchronization and Deterministic Latency  
The clocking subsystem is largely responsible for achieving multi-device synchronization and deterministic  
latency. The SYSREF signal must be captured by a deterministic device clock (CLK±) edge at each system  
power-on and at each device in the system. This requirement imposes setup and hold constraints on SYSREF  
relative to CLK±, which can be difficult to meet at giga-sample clock rates over all system operating conditions.  
The ADC12DL3200 includes a number of features to simplify this synchronization process and to relax system  
timing constraints:  
The ADC12DL3200 uses dual-edge sampling (DES) in single-channel mode to reduce the CLK± input  
frequency by half and double the timing window for SYSREF (see 7-3)  
A SYSREF position detector (relative to CLK±) and selectable SYSREF sampling position aid in meeting  
setup and hold times over all conditions; see the 7.3.4.3.1 section  
Easy-to-use automatic SYSREF calibration uses the aperture timing adjust block (tAD adjust) to shift the ADC  
sampling instance based on the phase of SYSREF (rather than adjusting SYSREF based on the phase of the  
ADC sampling instance); see the 7.3.4.3.2 section  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR3  
58  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.3.4.3.1 SYSREF Position Detector and Sampling Position Selection (SYSREF Windowing)  
The SYSREF windowing block is used to first detect the position of SYSREF relative to the CLK± rising edge  
and then to select a desired SYSREF sampling instance, which is a delay version of CLK±, to maximize setup  
and hold timing margins. In many cases a single SYSREF sampling position (SYSREF_SEL) is sufficient to meet  
timing for all systems (device-to-device variation) and conditions (temperature and voltage variations). However,  
this feature can also be used by the system to expand the timing window by tracking the movement of SYSREF  
as operating conditions change or to remove system-to-system variation at production test by finding a unique  
optimal value at nominal conditions for each system.  
This section describes proper usage of the SYSREF windowing block. First, apply the device clock and SYSREF  
to the device. The location of SYSREF relative to the device clock cycle is determined and stored in the  
SYSREF_POS bits of the SYSREF capture position register. Each bit of SYSREF_POS represents a potential  
SYSREF sampling position. If a bit in SYSREF_POS is set to 1, then the corresponding SYSREF sampling  
position has a potential setup or hold violation. Upon determining the valid SYSREF sampling positions (the  
positions of SYSREF_POS that are set to 0) the desired sampling position can be chosen by setting  
SYSREF_SEL in clock control register 0 to the value corresponding to that SYSREF_POS position. In general,  
the middle sampling position between two setup and hold instances is chosen. Ideally, SYSREF_POS and  
SYSREF_SEL are performed at the nominal operating conditions of the system (temperature and supply  
voltage) to provide maximum margin for operating condition variations. This process can be performed at final  
test and the optimal SYSREF_SEL setting can be stored for use at every system power up. Further,  
SYSREF_POS can be used to characterize the skew between CLK± and SYSREF± over operating conditions  
for a system by sweeping the system temperature and supply voltages. For systems that have large variations in  
CLK± to SYSREF± skew, this characterization can be used to track the optimal SYSREF sampling position as  
system operating conditions change. In general, a single value can be found that meets timing over all  
conditions for well-matched systems, such as those where CLK± and SYSREF± come from a single clocking  
device.  
备注  
SYSREF_SEL must be set to 0 when using automatic SYSREF calibration; see the 7.3.4.3.2  
section.  
The step size between each SYSREF_POS sampling position can be adjusted using SYSREF_ZOOM. When  
SYSREF_ZOOM is set to 0, the delay steps are coarser. When SYSREF_ZOOM is set to 1, the delay steps are  
finer. See the 6.10 table for delay step sizes when SYSREF_ZOOM is enabled and disabled. In general,  
SYSREF_ZOOM is recommended to always be used (SYSREF_ZOOM = 1) unless a transition region (defined  
by 1's in SYSREF_POS) is not observed, which can be the case for low clock rates. Bits 0 and 23 of  
SYSREF_POS are always be set to 1 because there is insufficient information to determine if these settings are  
close to a timing violation, although the actual valid window can extend beyond these sampling positions. The  
value programmed into SYSREF_SEL is the decimal number representing the desired bit location in  
SYSREF_POS. 7-5 lists some example SYSREF_POS readings and the optimal SYSREF_SEL settings.  
Although 24 sampling positions are provided by the SYSREF_POS status register, SYSREF_SEL only allows  
selection of the first 16 sampling positions, corresponding to SYSREF_POS bits 0 to 15. The additional  
SYSREF_POS status bits are intended only to provide additional knowledge of the SYSREF valid window. In  
general, lower values of SYSREF_SEL are selected because of delay variation over supply voltage; however, in  
the fourth example a value of 15 provides additional margin and can be selected instead.  
7-5. Examples of SYSREF_POS Readings and SYSREF_SEL Selections  
SYSREF_POS[23:0]  
OPTIMAL SYSREF_SEL  
0x02E[7:0]  
(Largest Delay)  
0x02C[7:0](1)  
(Smallest Delay)  
0x02D[7:0](1)  
SETTING  
b10000000  
b10011000  
b10000000  
b0110000 0  
b00000000  
b01100000  
b00011001  
b00110001  
b0 0000001  
8 or 9  
12  
6 or 7  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7-5. Examples of SYSREF_POS Readings and SYSREF_SEL Selections (continued)  
SYSREF_POS[23:0]  
OPTIMAL SYSREF_SEL  
SETTING  
0x02E[7:0]  
(Largest Delay)  
0x02C[7:0](1)  
(Smallest Delay)  
0x02D[7:0](1)  
b10000000  
b10001100  
b00000011  
b01100011  
b00000001  
b00011001  
4 or 15  
6
(1) Red coloration indicates the bits that are selected, as given in the last column of this table.  
7.3.4.3.2 Automatic SYSREF Calibration  
The ADC12DL3200 has an automatic SYSREF calibration feature to alleviate the often challenging setup and  
hold times associated with capturing SYSREF for giga-sample data converters. Automatic SYSREF calibration  
uses the tAD adjust feature to shift the device clock to maximize the SYSREF setup and hold times or to align the  
sampling instance based on the SYSREF rising edge.  
The ADC12DL3200 must have a proper device clock applied and be programmed for normal operation before  
starting the automatic SYSREF calibration. When ready to initiate automatic SYSREF calibration, a continuous  
SYSREF signal must be applied. SYSREF must be a continuous (periodic) signal when using the automatic  
SYSREF calibration. Start the calibration process by setting SRC_EN high in the SYSREF calibration enable  
register after configuring the automatic SYSREF calibration using the SRC_CFG register. Upon setting SRC_EN  
high, the ADC12DL3200 searches for the optimal tAD adjust setting until the device clock falling edge is internally  
aligned to the SYSREF rising edge. SRC_DONE in the SYSREF calibration status register can be monitored to  
ensure that the SYSREF calibration has finished. By aligning the device clock falling edge with the SYSREF  
rising edge, automatic SYSREF calibration maximizes the internal SYSREF setup and hold times relative to the  
device clock and also sets the sampling instant based on the SYSREF rising edge. After the automatic SYSREF  
calibration finishes, the rest of the startup procedure can be performed to finish bringing up the system.  
For multi-device synchronization, the SYSREF rising edge timing must be matched at all devices and therefore  
trace lengths must be matched from a common SYSREF source to each ADC12DL3200. Any skew between the  
SYSREF rising edge at each device results in additional error in the sampling instance between devices,  
however repeatable deterministic latency from system startup to startup through each device must still be  
achieved.  
7-3 provides a timing diagram of the SYSREF calibration procedure. The optimized setup and hold times are  
shown as tSU(OPT) and tH(OPT), respectively. The device clock and SYSREF are referred to as internal in this  
diagram because the phase of the internal signals are aligned within the device and not to the external (applied)  
phase of the device clock or SYSREF.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR3  
60  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
Sampled Input Signal  
Internal Unadjusted  
Device Clock  
Internal Calibrated  
Device Clock  
tTAD(SRC)  
Internal SYSREF  
tCAL(SRC)  
tH(OPT)  
tSU(OPT)  
Before calibration, device clock falling edge does  
not align with SYSREF rising edge  
SRC_EN  
(SPI register bit)  
Calibration  
enabled  
After calibration, device clock falling edge  
aligns with SYSREF rising edge  
TAD_DONE  
(SPI register bit)  
Calibration  
finished  
7-3. SYSREF Calibration Timing Diagram  
When finished, the tAD adjust setting found by the automatic SYSREF calibration can be read from SRC_TAD in  
the SYSREF calibration status register. After calibration, the system continues to use the calibrated tAD adjust  
setting for operation until the system is powered down. However, if desired, the SYSREF calibration can then be  
disabled and the tAD adjust setting can be fine-tuned according to the systems needs. Alternatively, the use of  
the automatic SYSREF calibration can be done at product test (or periodic recalibration) of the optimal tAD adjust  
setting for each system. This value can be stored and written to the TAD register (TAD_INV, TAD_COARSE, and  
TAD_FINE) upon system startup.  
Do not run the SYSREF calibration when the ADC calibration (foreground or background) is running. If  
background calibration is the desired use case, disable the background calibration when the SYSREF calibration  
is used, then reenable the background calibration after TAD_DONE goes high. SYSREF_SEL in the clock  
control register 0 must be set to 0 when using SYSREF calibration.  
SYSREF calibration searches the TAD_COARSE delays using both noninverted (TAD_INV = 0) and inverted  
clock polarity (TAD_INV = 1) to minimize the required TAD_COARSE setting in order to minimize loss on the  
clock path to reduce aperture jitter (tAJ).  
7.3.5 LVDS Digital Interface  
The ADC12DL3200 uses a low-voltage differential signaling (LVDS) interface to output the digital samples. This  
interface offers simplicity in its implementation compared to serialized interfaces and provides low latency for  
latency-sensitive applications. The interface uses up to 48 data pairs, four DDR clocks, and four strobe signals  
arranged in four 12-bit data buses. Strobe signals simplify synchronization across buses and synchronization  
between multiple devices. The strobe can be generated internally or mirrored from the TMSTP± or SYSREF±  
inputs. Flexible strobe configurations allow tradeoffs in reliability or number of LVDS pairs and the on-the-fly use  
of strobe is SPI or pin selectable.  
Digital interface scrambling is available to avoid spurious noise generated by the digital interface from leaking  
into the ADC samples. The receiver must undo the scrambling operation to extract the proper digital samples  
(see the 7.4.5.5 section) when used. Scrambling is optional.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.3.5.1 Multi-Device Synchronization and Deterministic Latency Using Strobes  
The ADC12DL3200 is able to achieve multi-device synchronization through deterministic latency across the  
LVDS interface. First, SYSREF is issued to all devices as a known timing reference for synchronization.  
SYSREF resets internal clock dividers and the strobe generation block within the ADC12DL3200. The  
ADC12DL3200 issues strobe signals across each bus of the interface to provide timing information to the  
receiver. The receiver uses this timing information to achieve fixed latency and for alignment among multiple  
ADC12DL3200 devices. The strobe generator block provides internal generation of a repeating strobe signal to  
reflect the end of a data frame. The generated strobe can be sent across the interface using a dedicated LVDS  
pair (DxSTR±) or as a replacement of the sample LSB with the strobe. Strobe generation can be controlled by  
the SYNC signal through the SPI or by using the SYNCSE or TMSTP± inputs (see SYNC_SEL in the LCTRL  
register). In all modes, the strobe output can be treated as a data pair with the same timing as the data outputs  
(Dx[11:0]±) that is source-synchronous with the associated data clock (DxCLK±).  
The strobe generator sets the last unit interval (UI) of a frame high to signal the end of a frame. Frame length is  
programmable through the LFRAME register. The SYSREF input marks the start of a frame and, if run  
periodically, then the SYSREF period must be an integer number of frames long.  
7.3.5.1.1 Dedicated Strobe Pins  
Dedicated strobe pins are recommended for applications with robust requirements. Each LVDS bus has a  
dedicated strobe (DxSTR±), up to four total, which is source synchronous to its associated data clock (DxCLK±).  
The strobe can run continuously or can be enabled and disabled as needed. When enabled, this mode allows  
the data bus to still send all 12 bits of the digital samples for highest performance. The tradeoff is that more pins  
are needed, two per LVDS bus, for up to eight total pins when operating in DMUX-by-2 mode. 7-6 describes  
the strobe output. The SYNC signal is not required to output the dedicated strobe signal.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR3  
62  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7-6. Strobe Output for Dedicated Strobe Pins  
1 FRAME (LFRAME = 0x08)  
FRAME SAMPLE  
NUMBER (UI)  
0
S0[11:0]  
0
1
S1[11:0]  
0
2
S2[11:0]  
0
3
S3[11:0]  
0
4
S4[11:0]  
0
5
S5[11:0]  
0
6
S6[11:0]  
0
7
S7[11:0]  
1
Dx[11:0]  
DxSTR  
7.3.5.1.2 Reduced Width Interface With Dedicated Strobe Pins  
In four LVDS output modes (see 7-11), the data clock (DxCLK±) and strobe (DxSTR±) for LVDS buses C and  
D can be disabled to reduce the total number of LVDS pins by eight. In this mode, the LVDS bus A data clock  
(DACLK±) and strobe (DASTR±) can be used with the data from bus C and the same signals for bus B can be  
used for LVDS bus D. The tradeoff is that digital interface timing may become more difficult. See the 7.4.5.3  
and 7.4.5.4 sections.  
7.3.5.1.3 LSB Replacement With a Strobe  
The strobe signals can also be output over the LSB of the digital sample for each LVDS bus. During transmission  
of the strobe the LSB of the sample is replaced by the strobe signal and, therefore, the digital sample is only 11  
bits wide resulting in a small loss in ENOB. When the strobe is disabled, all 12 bits of the digital sample are sent  
across the interface for full performance. The strobe can be enabled periodically, allowing a tradeoff in ENOB  
and robustness and reducing the interface width. Enable this mode by setting SYNC_PAT in the PAT_SEL  
register to 0x2. Transmission of the strobe is controlled by the source selected by SYNC_SEL in the LCTRL  
register. The SYNCSE pin controls transmission of the strobe by default. 7-7 describes the strobe output  
when the LSB is replaced with the strobe signal data when SYNC is asserted. 7-8 describes the strobe output  
when the active pattern is used ( SYNC de-asserted).  
7-7. Sync Pattern Output for LSB Replacement With Strobe ( SYNC Asserted)  
1 FRAME (LFRAME = 0x08)  
FRAME SAMPLE  
NUMBER (UI)  
0
S0[11:1]  
0
1
S1[11:1]  
0
2
S2[11:1]  
0
3
S3[11:1]  
0
4
S4[11:1]  
0
5
S5[11:1]  
0
6
S6[11:1]  
0
7
S7[11:1]  
1
Dx[11:1]  
Dx0 (LSB)  
7-8. Active Pattern Output for LSB Replacement With Strobe ( SYNC De-Asserted)  
1 FRAME (LFRAME = 0x08)  
FRAME SAMPLE  
NUMBER (UI)  
0
1
2
3
4
5
6
7
Dx[11:1]  
S0[11:1]  
S0[0]  
S1[11:1]  
S1[0]  
S2[11:1]  
S2[0]  
S3[11:1]  
S3[0]  
S4[11:1]  
S4[0]  
S5[11:1]  
S5[0]  
S6[11:1]  
S6[0]  
S7[11:1]  
S7[0]  
Dx0 (LSB)  
7.3.5.1.4 Strobe Over All Data Pairs  
The strobe signal can also be output over all LVDS lanes. During transmission of the strobe, the entire sample is  
replaced by the strobe signal and therefore the sampled data are lost. When the strobe is disabled, all 12 bits of  
the digital sample are sent across the interface for full performance. The strobe can be enabled periodically to  
ensure synchronization is maintained only if loss of digital samples is allowed by the application. Enable this  
mode by setting SYNC_PAT in the PAT_SEL register to 0x3. Transmission of the strobe pattern is controlled by  
the source selected by SYNC_SEL in the LCTRL register. The SYNCSE pin controls transmission of the strobe  
pattern by default. 7-9 describes the strobe output when the strobe signal is output over all data pairs when  
SYNC is asserted. 7-10 describes the strobe output when the active pattern is used ( SYNC de-asserted).  
7-9. Sync Pattern Output for Strobe Over All Data Pairs ( SYNC Asserted)  
1 FRAME (LFRAME = 0x08)  
FRAME SAMPLE  
NUMBER (UI)  
0
0x000  
0
1
0x000  
0
2
0x000  
0
3
0x000  
0
4
0x000  
0
5
0x000  
0
6
0x000  
0
7
0xFFF  
1
Dx[11:0]  
DxSTR (if enabled)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7-10. Active Pattern Output for Strobe Over All Data Pairs ( SYNC De-Asserted)  
1 FRAME (LFRAME = 0x08)  
FRAME SAMPLE  
NUMBER (UI)  
0
S0[11:0]  
0
1
S1[11:0]  
0
2
S2[11:0]  
0
3
S3[11:0]  
0
4
S4[11:0]  
0
5
S5[11:0]  
0
6
S6[11:0]  
0
7
S7[11:0]  
1
Dx[11:0]  
DxSTR (if enabled)  
7.3.6 Alarm Monitoring  
Built-in alarms are available to monitor internal events. Two types of alarms and upsets are detected by this  
feature:  
1. SYSREF caused internal clocks to be realigned  
2. An upset that affects the internal clocks  
When an alarm occurs, a bit for each specific alarm is set in ALM_STATUS. Each alarm bit remains set until the  
host system writes a 1 to clear it. If the alarm type is not masked (see the ALM_MASK register), then the alarm  
is also indicated by the ALARM register. The CALSTAT output pin can be configured as an alarm output that  
goes high when an alarm occurs. See CAL_STATUS_SEL in the CAL_PIN_CFG register.  
7.3.6.1 Clock Upset Detection  
The CLK_ALM register bit indicates if the internal clocks may have been upset. The clocks in channel A are  
continuously compared to channel B. If these clocks differ for even one DEVCLK / 2 cycle, the CLK_ALM  
register bit is set and remains set until cleared by the host system by writing a 1. For the CLK_ALM register bit to  
function properly, follow this usage model:  
1. Program LVDS_EN = 0  
2. Ensure the device is configured to use both channels (PD_ACH = 0, PD_BCH = 0)  
3. Program LVDS_EN = 1  
4. Write CLK_ALM = 1 to clear CLK_ALM  
5. Monitor the CLK_ALM status bit or the CALSTAT output pin if CAL_STATUS_SEL is properly configured  
6. When exiting global power-down (via MODE in the DEVICE_CONFIG register or via the PD pin), the  
CLK_ALM status bit can be set and must be cleared by writing a 1 to CLK_ALM  
7.3.7 Temperature Monitoring Diode  
A built-in thermal monitoring diode is available on the TDIODE+ and TDIODEpins. This diode facilitates  
temperature monitoring and characterization of the device in higher ambient temperature environments.  
Although the on-chip diode is not highly characterized, the diode can be used effectively by performing a  
baseline measurement (offset) at a known ambient or board temperature and creating a linear equation with the  
diode voltage slope provided in the 6.5 table. Perform offset measurement with the device unpowered or with  
the PD pin asserted to minimize device self-heating. Recommended monitoring devices include the LM95233  
device and similar remote-diode temperature monitoring products from Texas Instruments.  
7.3.8 Analog Reference Voltage  
The reference voltage for the ADC12DL3200 is derived from an internal band-gap reference. A buffered version  
of the reference voltage is available at the BG pin for convenience. This output has an output-current capability  
of ±100 µA. The BG output must be buffered if more current is required. No provision exists for the use of an  
external reference voltage, but the full-scale input voltage can be adjusted through the full-scale-range register  
settings. In unique cases, the VA11 supply voltage can act as the reference voltage by setting BG_BYPASS (see  
the internal reference bypass register).  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR3  
64  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.4 Device Functional Modes  
The ADC12DL3200 can be configured to operate in a number of functional modes. These modes are described  
in this section.  
7.4.1 Dual-Channel Mode (Non-DES Mode)  
The ADC12DL3200 can be used as a dual-channel ADC where the sampling rate is equal to the clock frequency  
(fS = fCLK) provided at the CLK+ and CLKpins. The two inputs, AIN± and BIN±, serve as the respective inputs  
for each channel in this mode. This mode is chosen simply by setting DES_EN to 0. The analog inputs can be  
swapped by setting DUAL_INPUT (see the input mux control register).  
7.4.2 Internal Dither Modes  
Dither can be disabled by setting ADC_DITH_EN to 0 in the ADC_DITH register, which can result in a slight  
improvement in SNR. The amount of dither can be increased by setting ADC_DITH_AMP to 1. The increased  
dither can result in further spurious improvements, but can also result in a reduction in SNR. Certain dither  
values, caused by device-to-device variations, can result in rounding errors that can either reduce SNR or  
reduce fixed spur performance (DC, fS / 4, and fS / 2 spurs). The choice of tradeoff can be made by setting  
ADC_DITH_ERR to 0 to degrade SNR and 1 to degrade the DC, fS / 4 (single-channel mode only), and fS / 2  
spurs.  
7.4.3 Single-Channel Mode (DES Mode)  
The ADC12DL3200 can also be used as a single-channel ADC where the sampling rate is equal to two times the  
clock frequency (fS = 2 × fCLK) provided at the CLK+ and CLKpins. This mode effectively interleaves the two  
ADC channels together to form a single-channel ADC at twice the sampling rate. This mode is chosen simply by  
setting DES_EN to 1. Either analog input, INA± or INB±, can serve as the input to the ADC. ADC trim settings  
are automatically adjusted based on the chosen input. The analog input can be selected using SINGLE_INPUT  
(see the input mux control register).  
7.4.4 LVDS Output Driver Modes  
The LVDS output drivers can be configured for various swings, terminations and output common-mode levels to  
meet the needs of different receivers. The swing can be adjusted between high swing (default) and low swing  
mode to save power by setting LVDS_SWING to 0x1. Further power savings can be gained by choosing the  
high-Z termination mode by setting LVDS_SWING to 0x3. Only use high-Z termination mode with short  
transmission lines and for receivers with high-Z termination. The common-mode voltage is adjusted by adjusting  
the VLVDS supply voltage. The output common-mode voltage roughly tracks the VLVDS supply voltage by VOCM  
= VLVDS 0.6 V.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.4.5 LVDS Output Modes  
The LVDS output buses can be configured to demux the output data from each ADC channel by one or two by  
setting the LDEMUX parameter. When a demux-by-2 option is selected (LDEMUX = 1), the number of output  
strobes and data clocks can be reduced by using LCS_EN. The two channels of the ADC12DL3200 can be  
interleaved together to achieve double the sample rate (that is, single-channel mode) by setting DES_EN to 1. 表  
7-11 lists the available interface and configuration modes. When the LSB replacement with strobe option is used  
(SYNC_PAT = 0x2), the strobe column of 7-11 can be ignored and replaced with 0 because all dedicated  
strobe outputs can be disabled.  
7-11. LVDS Output Modes  
USER-PROGRAMMED VALUES  
ALLOWED fS  
RANGE  
(MSPS)  
DATA  
PAIRS CLOCKS  
DATA  
ALLOWED fCLK  
RANGE (MHz)  
TIMING  
DIAGRAM  
LVDS OUTPUT MODE  
STROBES  
DES_EN  
LDEMUX  
LALIGNED  
Single channel, 2 LVDS  
buses, staggered data  
1
0
0
24  
24  
48  
2
2
4
2
2
4
16003200  
16003200  
16006400  
8001600  
8001600  
8003200  
6-4  
6-5  
6-6  
Single channel, 2 LVDS  
buses, aligned data  
1
1
0
1
1
0
Single channel, 4 LVDS  
buses, staggered data  
Single channel, 4 LVDS  
buses, aligned data  
1
0
0
1
0
1
1
0 or 1  
0
48  
24  
48  
4
2
4
4
2
4
16006400  
8001600  
8003200  
8003200  
8001600  
8003200  
6-7  
6-1  
6-2  
Dual channel, 2 LVDS buses  
Dual channel, 4 LVDS buses,  
staggered data  
Dual channel, 4 LVDS buses,  
aligned data  
0
1
1
48  
4
4
8003200  
8003200  
6-3  
7.4.5.1 Staggered Output Mode  
Setting LALIGNED to 0 results in the LVDS output buses being staggered in time. Staggering the output buses  
causes an LVDS output switching event to occur at each sampling instance and may result in better spurious  
performance than what is described in the 7.4.5.2 section. 7-11 provides links to the timing diagrams for  
staggered output mode.  
7.4.5.2 Aligned Output Mode  
Setting LALIGNED to 1 results in the LVDS outputs buses being aligned in time, meaning that all buses switch at  
the same time. The switching instance is a sub-harmonic of the sampling clock and may result in additional  
spurs in the output spectrum as compared to the 7.4.5.1 section. 7-11 provides links to the timing diagrams  
for aligned output mode.  
7.4.5.3 Reducing the Number of Strobes  
One strobe is provided for each LVDS bus; however, the number of output strobes can either be reduced or the  
strobes can be disabled altogether. Typical use cases for reduced strobes include sharing a single strobe among  
multiple buses or implementing a receiver that does not have a FIFO that needs to be synchronized by the  
strobes. STBx_EN in the LCS_EN register can be used to disable any unused strobe outputs.  
7.4.5.4 Reducing the Number of Data Clocks  
One data clock is provided for each LVDS bus; however, the number of data clocks used in the system can be  
reduced. The number of data clocks can be reduced if a data clock is shared among multiple buses, which can  
be applicable at lower data rates. DCLKx_EN in the LCS_EN register can be used to disable any unused data  
clock outputs.  
7.4.5.5 Scrambling  
The LVDS outputs can be scrambled in order to reduce spectral peaks in the output data, especially for  
repeating patterns. Spectral peaks can couple back to the ADC analog input and result in degraded noise or  
spurious performance in the ADC output data. Enable scrambling by setting SCR in the LCTRL register. The  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR3  
66  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
 
 
 
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
scrambler does not require any memory (only uses the current sample) and uses simple XOR operations in  
order to minimize latency. Scrambling does require the two LSBs of each sample to be random (as is the case  
for ADC input thermal noise), but also works when the LSB is used as a strobe or timestamp. The scrambler is  
enabled by setting SCR in the LCTRL register to 1. The scrambling operation changes slightly depending on the  
LWIDTH parameter, as 7-12 to 7-15 describes. Each table also describes the descrambling operation that  
the receiving device must implement in order to recover the original samples. In 7-12 to 7-15, d[x]  
corresponds to bit x of the unscrambled digitized ADC sample at LVDS bus q (q = A, B, C, or D) before  
scrambling and y[k] corresponds to the scrambled bit k output from the interface over data pair Dqk±. Likewise,  
strobe is the unscrambled strobe signal at the LVDS bus q (q = A, B, C, or D) and strobe_y is the scrambled  
strobe output on data pair DqSTR±. The symbol denotes the bitwise XOR operation.  
7-12. Scrambling and Descrambling Operations (12-Bit Mode, LWIDTH = 0x0)  
SCRAMBLER  
y[11] = d[11] d[1] d[0]  
y[10] = d[10] d[1] d[0]  
y[9] = d[9] d[1] d[0]  
y[8] = d[8] d[1] d[0]  
y[7] = d[7] d[1] d[0]  
y[6] = d[6] d[1] d[0]  
y[5] = d[5] d[1] d[0]  
y[4] = d[4] d[1] d[0]  
y[3] = d[3] d[1] d[0]  
y[2] = d[2] d[1] d[0]  
y[1] = d[1]  
DESCRAMBLER  
d[11] = y[11] y[0]  
d[10] = y[10] y[0]  
d[9] = y[9] y[0]  
d[8] = y[8] y[0]  
d[7] = y[7] y[0]  
d[6] = y[6] y[0]  
d[5] = y[5] y[0]  
d[4] = y[4] y[0]  
d[3] = y[3] y[0]  
d[2] = y[2] y[0]  
d[1] = y[1]  
y[0] = d[0] d[1]  
d[0] = y[0] y[1]  
strobe = strobe_y y[0]  
strobe_y = strobe d[1] d[0]  
7-13. Scrambling and Descrambling Operations (11-Bit Mode, LWIDTH = 0x1)  
SCRAMBLER  
y[11] = d[11] d[2] d[1]  
y[10] = d[10] d[2] d[1]  
y[9] = d[9] d[2] d[1]  
y[8] = d[8] d[2] d[1]  
y[7] = d[7] d[2] d[1]  
y[6] = d[6] d[2] d[1]  
y[5] = d[5] d[2] d[1]  
y[4] = d[4] d[2] d[1]  
y[3] = d[3] d[2] d[1]  
y[2] = d[2]  
DESCRAMBLER  
d[11] = y[11] y[1]  
d[10] = y[10] y[1]  
d[9] = y[9] y[1]  
d[8] = y[8] y[1]  
d[7] = y[7] y[1]  
d[6] = y[6] y[1]  
d[5] = y[5] y[1]  
d[4] = y[4] y[1]  
d[3] = y[3] y[1]  
d[2] = y[2]  
y[1] = d[2] d[1]  
d[1] = y[2] y[1]  
d[0] = y[1] y[0](1)  
strobe = strobe_y y[1]  
y[0] = d[2] d[1] d[0](1)  
strobe_y = strobe d[1] d[0]  
(1) Only used if LSB_SEL in the LSB_SEL register is set to 0 and TIME_STAMP_EN is set to 1.  
7-14. Scrambling and Descrambling Operations (10-Bit Mode, LWIDTH = 0x2)  
SCRAMBLER  
DESCRAMBLER  
d[11] = y[11] y[2]  
d[10] = y[10] y[2]  
y[11] = d[11] d[3] d[2]  
y[10] = d[10] d[3] d[2]  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7-14. Scrambling and Descrambling Operations (10-Bit Mode, LWIDTH = 0x2) (continued)  
SCRAMBLER  
y[9] = d[9] d[3] d[2]  
y[8] = d[8] d[3] d[2]  
y[7] = d[7] d[3] d[2]  
y[6] = d[6] d[3] d[2]  
y[5] = d[5] d[3] d[2]  
y[4] = d[4] d[3] d[2]  
y[3] = d[3]  
DESCRAMBLER  
d[9] = y[9] y[2]  
d[8] = y[8] y[2]  
d[7] = y[7] y[2]  
d[6] = y[6] y[2]  
d[5] = y[5] y[2]  
d[4] = y[4] y[2]  
d[3] = y[3]  
y[2] = d[2] d[3]  
d[2] = y[2] y[3]  
d[1] = 0 (not used)  
d[0] = y[0] y[2](1)  
strobe = strobe_y y[2]  
y[1] = 0 (not used)  
y[0] = d[0] d[3] d[2](1)  
strobe_y = strobe d[3] d[2]  
(1) Only used if LSB_SEL in the LSB_SEL register is set to 0 and TIME_STAMP_EN is set to 1.  
7-15. Scrambling and Descrambling Operations (8-Bit Mode, LWIDTH = 0x3)  
SCRAMBLER  
y[11] = d[11] d[5] d[4]  
y[10] = d[10] d[5] d[4]  
y[9] = d[9] d[5] d[4]  
y[8] = d[8] d[5] d[4]  
y[7] = d[7] d[5] d[4]  
y[6] = d[6] d[5] d[4]  
y[5] = d[5]  
DESCRAMBLER  
d[11] = y[11] y[4]  
d[10] = y[10] y[4]  
d[9] = y[9] y[4]  
d[8] = y[8] y[4]  
d[7] = y[7] y[4]  
d[6] = y[6] y[4]  
d[5] = y[5]  
y[4] = d[4] d[5]  
d[4] = y[4] y[5]  
d[3] = 0 (not used)  
d[2] = 0 (not used)  
d[1] = 0 (not used)  
d[0] = y[0] y[4](1)  
strobe = strobe_y y[4]  
y[3] = 0 (not used)  
y[2] = 0 (not used)  
y[1] = 0 (not used)  
y[0] = d[0] d[5] d[4](1)  
strobe_y = strobe d[5] d[4]  
(1) Only used if LSB_SEL in the LSB_SEL register is set to 0 and TIME_STAMP_EN is set to 1.  
7.4.5.6 Digital Interface Test Patterns and LVSD SYNC Functionality  
A number of device test patterns are available. These modes insert known patterns into the device data path for  
assistance with system debug, development, or characterization. The test patterns can also be used during  
system power-up to synchronize the digital interface logic in the receiving device. Two patterns are available at  
any time, and are referred to as the active pattern and the sychronization pattern. Toggling between the two  
patterns is controlled by the source selected by SYNC_SEL in the LCTRL register. Selecting the active pattern or  
synchronization pattern is controlled by the SYNCSE pin by default. The pattern always changes state on a  
frame boundary (falling edge of the strobe).  
7.4.5.6.1 Active Pattern  
The active pattern is chosen by setting ACT_PAT in the PAT_SEL register. The available active patterns are  
given below:  
Digitized samples from the ADC (normal operation)  
All LVDS lanes output the user-defined pattern (see the 7.4.5.6.3 section)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR3  
68  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
 
 
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.4.5.6.2 Synchronization Pattern  
The synchronization pattern is chosen by setting SYNC_PAT in the PAT_SEL register. The available  
synchronization patterns are given below:  
All LVDS lanes transmit the user-defined pattern (see the 7.4.5.6.3 section)  
Frame strobe is transmitted on the LSB of the digital samples of each active LVDS bus. The digitized  
samples (ADC output data) are still output on the other LVDS lanes.  
Frame strobe is transmitted on all active LVDS data lanes  
7.4.5.6.3 User-Defined Test Pattern  
A user-defined test pattern mode allows the user to define a pattern to meet various system needs. Example  
patterns included strobe patterns to look for inter-symbol interference issues, single-bit patterns to verify TX to  
RX lane connections, and multi-bit patterns to verify time alignment. The pattern is up to eight samples long and  
is programmed using the UPAT0 through UPAT7 registers. The user pattern repeats at the beginning of each  
frame. If the frame length is less than eight samples than the user pattern is truncated. If the frame length is  
greater than eight samples then the user pattern repeats until the end of the frame.  
Additionally, there are controls to invert specific bits of the user-defined pattern for each of the LVDS buses in  
order to allow a unique pattern on each bus. UPAT_INV_x (x = A, B, C, or D) in the UPAT_CTRL register, as  
shown in 7-16, inverts the specified bit in each LVDS bus when set to 1. The inversion is independent of the  
other buses.  
7-16. UPAT_INV_x Control Definition  
REGISTER CONTROL  
UPAT_INV_A  
LVDS BUS AFFECTED  
LVDS BUS BIT INVERTED  
BUS INVERSION MASK  
0001 0000 0000  
A
B
C
D
8
9
UPAT_INV_B  
0010 0000 0000  
UPAT_INV_C  
10  
11  
0100 0000 0000  
UPAT_INV_D  
1000 0000 0000  
A predefined pattern can also be selected by setting LANE_PAT in the UPAT_CTRL register to 1. LANE_PAT  
automatically overrides the programmed user pattern. LANE_PAT is a fixed eight sample sequence output on  
each LVDS bus. The pattern is 0x000, 0xFFF, 0x000, 0x000, 0x000, 0xFFF, 0xFFF, and 0xFFF. The repetition  
rules regarding frame length defined for the user pattern apply to the lane pattern as well.  
7.4.6 Power-Down Modes  
The PD input pin allows ADC12DL3200 devices to be entirely powered down. Power-down can also be  
controlled by MODE (see the device configuration register). The LVDS data output drivers are disabled when PD  
is high. When the device returns to normal operation, the LVDS interface must be re-established, which results in  
the ADC data pipeline containing meaningless information so the system must wait a sufficient time for the data  
to be flushed.  
7.4.7 Calibration Modes and Trimming  
The ADC12DL3200 has two calibration modes available: foreground calibration and background calibration.  
When foreground calibration is initiated the ADCs are automatically taken offline and the output data become  
mid-code (0x000 in 2's complement) while a calibration is occurring. Background calibration allows the ADC to  
continue normal operation while the ADC cores are calibrated in the background by swapping in a different ADC  
core to take its place. Additional offset calibration features are available in both foreground and background  
calibration modes. Further, a number of ADC parameters can be trimmed to optimize performance in a user  
system.  
The ADC12DL3200 consists of a total of six sub-ADCs, each referred to as a bank, with two banks forming an  
ADC core. The banks sample out-of-phase so that each ADC core is two-way interleaved. The six banks form  
three ADC cores, referred to as ADC A, ADC B, and ADC C. In foreground calibration mode, ADC A samples  
INA± and ADC B samples INB± in dual-channel mode and both ADC A and ADC B sample INA± (or INB±) in  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
single-channel mode. In the background calibration modes, the third ADC core, ADC C, is swapped in  
periodically for ADC A and ADC B so that they can be calibrated without disrupting operation.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR3  
70  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7-4 shows a diagram of the calibration system including labeling of the banks that make up each ADC core.  
When calibration is performed the linearity, gain, and offset voltage for each bank are calibrated to an internally  
generated calibration signal. The analog inputs can be driven during calibration, both foreground and  
background, except that when offset calibration (see CAL_OS and CAL_BGOS in the CAL_CFG0 register) is  
used there must be no signals (or aliased signals) near DC for proper estimation of the offset (see the 7.4.8  
section).  
ADC A  
Bank 0  
MUX  
Calibration  
INA+  
Signal  
Bank 1  
ADC A  
Output  
INAœ  
MUX  
Calibration  
Engine  
ADC C  
Bank 2  
Bank 3  
Calibration  
Engine  
MUX  
Calibration  
Signal  
Calibration  
Engine  
ADC B  
Output  
ADC B  
MUX  
INB+  
Bank 4  
Bank 5  
INBœ  
MUX  
Calibration  
Engine  
Calibration  
Signal  
Calibration  
Engine  
7-4. ADC12DL3200 Calibration System Block Diagram  
In addition to calibration, a number of ADC parameters are user-controllable to provide trimming for optimal  
performance. These parameters include input offset voltage, ADC gain, interleaving timing, and input termination  
resistance. The default trim values are programmed at the factory to unique values for each device that are  
determined to be optimal at the test system operating conditions. The factory-programmed values can be read  
from the trim registers and adjusted as desired. The register fields that control the trimming are labeled  
according to the input that is being sampled (INA± or INB±), the bank that is being trimmed, or the ADC core that  
is being trimmed. Trim values are not expected to change as operating conditions change, however optimal  
performance can be obtained by doing so. Any custom trimming must be done on a per device basis because of  
process variations, meaning that there is no global optimal setting for all parts. See the 7.4.9 section for  
information about the available trim parameters and associated registers.  
7.4.7.1 Foreground Calibration Mode  
Foreground calibration requires the ADC to stop converting the analog input signals during the procedure.  
Foreground calibration always runs on power-up and a sufficient period of time must elapse before programming  
the device to ensure that the calibration is finished. Foreground calibration can be initiated by triggering the  
calibration engine. The trigger source can be either the CAL_TRIG pin or CAL_SOFT_TRIG (see the calibration  
software trigger register) and is chosen by setting CAL_TRIG_EN (see the calibration pin configuration register).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.4.7.2 Background Calibration Mode  
Background calibration mode allows the ADC to continuously operate, with no interruption of data. This  
continuous operation is accomplished by activating an extra ADC core that is calibrated and then takes over  
operation for one of the other previously active ADC cores. When that ADC core is taken off-line, that ADC is  
calibrated and can in turn take over to allow the next ADC to be calibrated. This process operates continuously,  
ensuring the ADC cores always provide the optimum performance regardless of system operating condition  
changes. Because of the additional active ADC core, background calibration mode has increased power  
consumption in comparison to foreground calibration mode. The low-power background calibration (LPBG) mode  
discussed in the 7.4.7.3 section provides reduced average power consumption in comparison with the  
standard background calibration mode. Background calibration can be enabled by setting CAL_BG (see the  
calibration configuration 0 register). CAL_TRIG_EN must be set to 0 and CAL_SOFT_TRIG must be set to 1.  
Great care has been taken to minimize effects on converted data while the core switching process occurs;  
however, small brief glitches can still occur on the converter data when the cores are swapped.  
7.4.7.3 Low-Power Background Calibration (LPBG) Mode  
Low-power background calibration (LPBG) mode reduces the power-overhead of enabling additional ADC cores.  
Off-line cores are powered down until ready to be calibrated and put on-line. Set LP_EN = 1 to enable the low-  
power background calibration feature. LP_SLEEP_DLY is used to adjust the amount of time an ADC sleeps  
before waking up for calibration (if LP_EN = 1 and LP_TRIG = 0). LP_WAKE_DLY sets how long the core is  
allowed to stabilize before calibration and being put on-line. LP_TRIG is used to select between an automatic  
switching process or one that is controlled by the user via CAL_SOFT_TRIG or CAL_TRIG. In this mode there is  
an increase in power consumption during the ADC core calibration. The power consumption roughly alternates  
between the power consumption in foreground calibration when the spare ADC core is sleeping to the power  
consumption in background calibration when the spare ADC is being calibrated. Design the power-supply  
network to handle the transient power requirements for this mode.  
7.4.8 Offset Calibration  
Foreground calibration and background calibration modes inherently calibrate the offsets of the ADC cores;  
however, the input buffers sit outside of the calibration loop and therefore their offsets are not calibrated by the  
standard calibration process. In both dual-channel mode and single-channel mode, uncalibrated input buffer  
offsets result in a shift in the mid-code output (DC offset) with no input. Further, in single-channel mode  
uncalibrated input buffer offsets can result in a fixed spur at fS / 2. A separate calibration is provided to correct  
the input buffer offsets.  
There must be no signals at or near DC or aliased signals that fall at or near DC in order to properly calibration  
the offsets, requiring the system to ensure this condition during normal operation or have the ability to mute the  
input signal during calibration. Foreground offset calibration is enabled via CAL_OS and only performs the  
calibration one time as part of the foreground calibration procedure. Background offset calibration is enabled via  
CAL_BGOS and continues to correct the offset as part of the background calibration routine to account for  
operating condition changes. When CAL_BGOS is set, the system must ensure that there are no DC or near DC  
signals or aliased signals that fall at or near DC during normal operation. Offset calibration can be performed as  
a foreground operation when using background calibration by setting CAL_OS to 1 before setting CAL_EN, but  
does not correct for variations as operating conditions change.  
The offset calibration correction uses the input offset voltage trim registers (see the 7.4.9 section) to correct  
the offset and therefore must not be written by the user when offset calibration is used. The calibrated values  
can be read by reading the OADJ_x_FG0_VINy and OADJ_x_FG90_VINy registers, where x is the ADC core (A  
or B) and y is the input (INA± or INB±), after calibration is completed. Only read the values when FG_DONE is  
read as 1 when using foreground offset calibration (CAL_OS = 1) and do not read the values when using  
background offset calibration (CAL_BGOS = 1).  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR3  
72  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.4.9 Trimming  
7-17 lists the parameters that can be trimmed and the associated registers. Manual trimming is only allowed  
in foreground calibration mode.  
7-17. Trim Register Descriptions  
TRIM PARAMETER  
Band-gap reference  
TRIM REGISTER  
NOTES  
BG_TRIM  
Measurement on the BG output pin.  
RTRIM_x,  
where x = A for INA± or B for INB±)  
The device must be powered on with a clock  
applied.  
Input termination resistance  
A different trim value is allowed for each ADC  
core (A or B) to allow trimming of the offsets  
as operating conditions change.  
OADJ_A_FG90_VINy is used to trim the  
offsets of ADC A in single-channel mode.  
OADJ_x_FG0_VINy and  
OADJ_A_FG90_VINy,  
where x = ADC core (A or B) and  
y = A for INA± or B for INB±  
Input offset voltage  
Set FS_RANGE_A and FS_RANGE_B to  
default values before trimming the input. Use  
FS_RANGE_A and FS_RANGE_B to adjust  
the full-scale input voltage.  
GAIN_TRIM_x,  
where x = A for INA± or B for INB±  
INA± and INB± gain  
Bank gain trim  
GAIN_Bx,  
where x = 0, 1, 2, or 3  
Trims the gain of the individual ADC banks to  
improve gain matching between ADC cores.  
Full-scale input voltage adjustment for each  
input. The default value is effected by  
GAIN_TRIM_x (x = A or B). Trim  
GAIN_TRIM_x with FS_RANGE_x set to the  
default value. FS_RANGE_x can then be  
used to trim the full-scale input voltage.  
FS_RANGE_x,  
where x = A for INA± or B for INB±  
INA± and INB± full-scale input voltage  
Trims the timing between the two banks of an  
ADC core (ADC A or B) for two clock phases,  
either 0° or 90°. The 90° clock phase is  
used by ADC A in single-channel mode only.  
Bx_TIME_y,  
where x = bank number (05) and  
y = 0° or 90° clock phase  
Intra-ADC core timing (bank timing)  
The suffix letter (A or B) indicates the ADC  
core that is being trimmed.  
Inter-ADC core timing (dual-channel mode)  
TADJ_A, TADJ_B  
The middle letter (A or B) indicates the ADC  
core that is being trimmed. The suffix of 0 or  
90 indicates the clock phase applied to the  
ADC core. 0 indicates a 0° clock and is  
sampling in-phase with the clock input  
(applies to ADC B). 90 indicates a 90°  
clock and therefore is sampling out-of-phase  
with the clock input (applies to ADC A).  
Inter-ADC core timing (single-channel mode)  
TADJ_A_FG90, TADJ_B_FG0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.5 Programming  
7.5.1 Using the Serial Interface  
The serial interface is accessed using the following four pins: serial clock (SCLK), serial data input (SDI), serial  
data output (SDO), and serial-interface chip-select ( SCS). Register access is enabled through the SCS pin.  
7.5.1.1 SCS  
This signal must be asserted low to access a register through the serial interface. Setup and hold times with  
respect to the SCLK must be followed.  
7.5.1.2 SCLK  
Serial data input is accepted at the rising edge of this signal. SCLK has no minimum frequency requirement.  
7.5.1.3 SDI  
Each register access requires a specific 24-bit pattern at this input. This pattern consists of a read-and-write  
(R/W) bit, register address, and register value. The data are shifted in MSB first and multi-byte registers are  
always in little-endian format (least significant byte stored at the lowest address). Setup and hold times with  
respect to the SCLK must be followed (see the 6.9 table).  
7.5.1.4 SDO  
The SDO signal provides the output data requested by a read command. This output is high impedance during  
write bus cycles and during the read bit and register address portion of read bus cycles.  
7.5.1.5  
7-5 shows that each register access consists of 24 bits. The first bit is high for a read and low for a write.  
The next 15 bits are the address of the register that is to be written to. During write operations, the last eight bits  
are the data written to the addressed register. During read operations, the last eight bits on SDI are ignored, and,  
during this time, the SDO outputs the data from the addressed register. 7-5 shows the serial protocol details.  
Single Register Access  
SCS  
1
8
16  
17  
24  
SCLK  
SDI  
Command Field  
Data Field  
R/W A14 A13 A12 A11 A10 A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1 A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1 D0  
Data Field  
High Z  
High Z  
SDO  
(read mode)  
D7  
D6  
D5  
D4  
D3 D2  
D1  
D0  
7-5. Serial Interface Protocol: Single Read/Write Operation  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR3  
74  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.5.1.6 Streaming Mode  
The serial interface supports streaming reads and writes. In this mode, the initial 24 bits of the transaction  
specifics the access type, register address, and data value as normal. Additional clock cycles of write or read  
data are immediately transferred, as long as the SCS input is maintained in the asserted (logic low) state. The  
register address auto increments (default) or decrements for each subsequent 8 bit transfer of the streaming  
transaction. The ADDR_ASC bit (register 000h, bits 5 and 2) controls whether the address value ascends  
(increments) or descends (decrements). Streaming mode can be disabled by setting the ADDR_HOLD bit in the  
USR0 register. 7-6 shows the streaming mode transaction details.  
Multiple Register Access  
S
1
8
16  
17  
24  
25  
32  
K
Command Field  
Data Field (write mode)  
D4 D3 D2 D1  
Data Field (write mode)  
D5 D4 D3 D2  
A1  
1
DI  
R/W A14 A13 A12  
A10 A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D0  
D7  
D6  
D1  
D0  
Data Field  
D4 D3 D2  
Data Field  
D3 D2  
High Z  
O
D7  
D6  
D5  
D4  
D1  
D0  
D7  
D6  
D5  
D1  
D0  
e)  
7-6. Serial Interface Protocol: Streaming Read/Write Operation  
7.5.1.7  
See the 7.6 section for detailed information regarding the registers.  
备注  
The serial interface must not be accessed during calibration of the ADC. Accessing the serial interface  
during this time impairs the performance of the device until the device is calibrated correctly. Writing or  
reading the serial registers also reduces dynamic performance of the ADC for the duration of the  
register access time.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6 Register Maps  
7.6.1 SPI_REGISTER_MAP Registers  
7-18 lists the memory-mapped registers for the SPI_REGISTER_MAP. All register offset addresses not listed  
in 7-18 are considered reserved locations and the register contents are not to be modified.  
7-18. SPI_REGISTER_MAP Registers  
Address  
0x000  
Acronym  
Register Name  
Section  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
CONFIG_A  
DEVICE_CONFIG  
CHIP_TYPE  
CHIP_ID  
Configuration A (Default: 0x30)  
0x002  
Device Configuration (Default: 0x00)  
0x003  
Chip Type (Default: 0x03)  
0x004-0x005  
0x00C-0x00D  
0x010  
Chip Identification  
VENDOR_ID  
USR0  
Vendor Identification (Default: 0x0451)  
User SPI Configuration (Default: 0x00)  
0x029  
CLK_CTRL0  
CLK_CTRL1  
SYSREF_POS  
FS_RANGE_A  
FS_RANGE_B  
BG_BYPASS  
SYNC_CTRL  
LVDS_SWING  
INPUT_MUX  
CAL_EN  
Clock Control 0 (Default: 0x00)  
0x02A  
Clock Control 1 (Default: 0x00)  
0x02C-0x02E  
0x030-0x031  
0x032-0x033  
0x038  
SYSREF Capture Position (Read-only status)  
Full-Scale Voltage for INA± (Default: 0xA000)  
Full-Scale Voltage for INB± (Default: 0xA000)  
Band-Gap Bypass (Default: 0x00)  
0x03B  
SYNC_SE/TIMESTAMP Control (Default: 0x00)  
LVDS Swing Mode (Default: 0x00)  
0x048  
0x060  
Input Mux Control (Default: 0x01)  
0x061  
Calibration Enable (Default: 0x01)  
0x062  
CAL_CFG0  
CAL_STATUS  
CAL_PIN_CFG  
CAL_SOFT_TRIG  
CAL_LP  
Calibration Configuration 0 (Default: 0x01)  
Calibration Status (Default: undefined; read-only)  
Calibration Pin Configuration (Default: 0x00)  
Calibration Software Trigger (Default: 0x01)  
Low-Power Background Calibration (Default: 0x88)  
Calibration Data Enable (Default: 0x00)  
0x06A  
0x06B  
0x06C  
0x06E  
0x070  
CAL_DATA_EN  
CAL_DATA  
GAIN_TRIM_A  
GAIN_TRIM_B  
BG_TRIM  
0x071  
Calibration Data (Default: undefined)  
0x07A  
Gain DAC Trim A (Default from fuse ROM)  
Gain DAC Trim B (Default from fuse ROM)  
Band-Gap Trim (Default from fuse ROM)  
Resistor TRIM for INA± (Default from fuse ROM)  
Resistor TRIM for INB± (Default from fuse ROM)  
ADC Dither register (Default: 0x01)  
0x07B  
0x07C  
0x07E  
RTRIM_A  
0x07F  
RTRIM_B  
0x09D  
ADC_DITH  
B0_TIME_0  
B0_TIME_90  
B1_TIME_0  
B1_TIME_90  
B4_TIME_0  
B5_TIME_0  
LSB_CTRL  
LSB_SEL  
0x102  
Time Adjustment for Bank 0 (0° clock) (Default from fuse ROM)  
Time Adjustment for Bank 0 (90° clock) (Default from fuse ROM)  
Time Adjustment for Bank 1 (0° clock) (Default from fuse ROM)  
Time Adjustment for Bank 1 (90° clock) (Default from fuse ROM)  
Time Adjustment for Bank 4 (0° clock) (Default from fuse ROM)  
Time Adjustment for Bank 5 (0° clock) (Default from fuse ROM)  
LSB Control Bit Output (Default: 0x00)  
0x103  
0x112  
0x113  
0x142  
0x152  
0x160  
0x161  
LSB Control Bit Position (Default: 0x00)  
0x180-0x181  
0x182-0x183  
0x184-0x185  
UPAT0  
User-Defined Pattern (Sample 0; default: 0x0000)  
User-Defined Pattern (Sample 1; default: 0x0FFF; same format as UPAT0)  
User-Defined Pattern (Sample 2; default: 0x0000; same format as UPAT0)  
UPAT1  
UPAT2  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR3  
76  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
 
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7-18. SPI_REGISTER_MAP Registers (continued)  
Address  
0x186-0x187  
0x188-0x189  
0x18A-0x18B  
0x18C-0x18D  
0x18E-0x18F  
0x190  
Acronym  
UPAT3  
Register Name  
Section  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
User-Defined Pattern (Sample 3; default: 0x0FFF; same format as UPAT0)  
User-Defined Pattern (Sample 4; default: 0x0000; same format as UPAT0)  
User-Defined Pattern (Sample 5; default: 0x0FFF; same format as UPAT0)  
User-Defined Pattern (Sample 6; default: 0x0000; same format as UPAT0)  
User-Defined Pattern (Sample 7; default: 0x0FFF; same format as UPAT0)  
User-Defined Pattern Control (Default: 0x1E)  
LVDS Subsystem Enable (Default: 0x01)  
UPAT4  
UPAT5  
UPAT6  
UPAT7  
UPAT_CTRL  
LVDS_EN  
LMODE  
0x200  
0x201  
LVDS Mode (Default: 0x01)  
0x202  
LFRAME  
LSYNC_N  
LCTRL  
LVDS Frame Length (Default: 0x80; 128 decimal)  
LVDS Manual Sync Request (Default: 0x01)  
LVDS Control (Default: 0x02)  
0x203  
0x204  
0x205  
PAT_SEL  
LCS_EN  
LVDS Pattern Control (Default: 0x02)  
0x206  
LVDS Clock and Strobe Enables (Default: 0xFF)  
System Status Register  
0x208  
LVDS_STATUS  
PD_CH  
0x209  
ADC Channel Power-Down (Default: 0x00)  
0x211  
OVR_T0  
Overrange Threshold 0 (Default: 0xF2)  
0x212  
OVR_T1  
Overrange Threshold 1 (Default: 0xAB)  
0x213  
OVR_CFG  
SPIN_ID  
Overrange Enable/Hold Off (Default: 0x07)  
0x297  
Chip Spin Identifier (Default from fuse ROM; read-only)  
SYSREF Calibration Enable (Default: 0x00)  
SYSREF Calibration Configuration (Default: 0x05)  
SYSREF Calibration Status (Default: undefined; read-only)  
CLK± Timing Adjust (Default: 0x00)  
0x2B0  
SRC_EN  
SRC_CFG  
SRC_STATUS  
TAD  
0x2B1  
0x2B2-0x2B4  
0x2B5-0x2B7  
0x2B8  
TAD_RAMP  
ALARM  
CLK± Timing Adjust Ramp Control (Default: 0x00)  
Alarm Interrupt (Read-only)  
0x2C0  
0x2C1  
ALM_STATUS  
ALM_MASK  
TADJ_A  
Alarm Status (Default: 0x05; write to clear)  
0x2C2  
Alarm Mask Register (Default: 0x05)  
0x310  
Timing Adjust for A-ADC, Dual Mode (Default from fuse ROM)  
Timing Adjust for B-ADC, Dual Mode (Default from fuse ROM)  
0x313  
TADJ_B  
0x314  
TADJ_A_FG90_VINA  
Timing Adjust for A-ADC, DES, Foreground Calibration, INA± (Default from  
fuse ROM)  
0x315  
TADJ_B_FG0_VINA  
TADJ_A_FG90_VINB  
TADJ_B_FG0_VINB  
OADJ_A_FG0_VINA  
OADJ_A_FG0_VINB  
OADJ_A_FG90_VINA  
OADJ_A_FG90_VINB  
OADJ_B_FG0_VINA  
Timing Adjust for B-ADC, DES, Foreground Calibration, INA± (Default from  
fuse ROM)  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
0x31A  
Timing Adjust for A-ADC, DES, Foreground Calibration, INB± (Default from  
fuse ROM)  
0x31B  
Timing Adjust for B-ADC, DES, Foreground Calibration, INB± (Default from  
fuse ROM)  
0x344-0x345  
0x346-0x347  
0x348-0x349  
0x34A-0x34B  
0x34C-0x34D  
Offset Adjustment for A-ADC, Foreground Calibration, 0° Clock, INA±  
(Default from fuse ROM)  
Offset Adjustment for A-ADC, Foreground Calibration, 0° Clock, INB±  
(Default from fuse ROM)  
Offset Adjustment for A-ADC, Foreground Calibration, 90° Clock, INA±  
(Default from fuse ROM)  
Offset Adjustment for A-ADC, Foreground Calibration, 90° Clock, INB±  
(Default from fuse ROM)  
Offset Adjustment for B-ADC, Foreground Calibration, INA± (Default from  
fuse ROM)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7-18. SPI_REGISTER_MAP Registers (continued)  
Address  
Acronym  
Register Name  
Section  
0x34E-0x34F  
OADJ_B_FG0_VINB  
Offset Adjustment for B-ADC, Foreground Calibration, INB± (Default from  
fuse ROM)  
Go  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR3  
78  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7-18. SPI_REGISTER_MAP Registers (continued)  
Address  
0x360  
0x361  
0x364  
0x365  
Acronym  
GAIN_B0  
GAIN_B1  
GAIN_B4  
GAIN_B5  
Register Name  
Section  
Go  
Fine Gain Adjust for Bank 0 (Default from fuse ROM)  
Fine Gain Adjust for Bank 1 (Default from fuse ROM)  
Fine Gain Adjust for Bank 4 (Default from fuse ROM)  
Fine Gain Adjust for Bank 5 (Default from fuse ROM)  
Go  
Go  
Go  
Complex bit access types are encoded to fit into small table cells. 7-19 shows the codes that are used for  
access types in this section.  
7-19. SPI_REGISTER_MAP Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6.1.1 CONFIG_A Register (Address = 0x000) [reset = 0x30]  
CONFIG_A is shown in 7-7 and described in 7-20.  
Return to Summary Table.  
Configuration A register (default: 0x30). This register controls device reset and SPI interface parameters.  
7-7. CONFIG_A Register  
7
6
5
4
3
2
1
0
SOFT_RESET  
R/W-0x0  
RESERVED  
R/W-0x0  
ASCEND  
R/W-0x1  
SDO_ACTIVE  
R-0x1  
RESERVED  
R/W-0x0  
7-20. CONFIG_A Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
SOFT_RESET  
R/W  
0x0  
Setting this bit causes a full reset of the device and all SPI registers  
(including CONFIG_A). This bit is self-clearing. After writing this bit,  
the device may take up to 750 ns to reset. During this time, do not  
perform any SPI transactions.  
6
5
RESERVED  
ASCEND  
R/W  
R/W  
0x0  
0x1  
Reserved  
0 : Address is decremented during streaming reads or writes  
1 : Address is incremented during streaming reads or writes (default)  
4
SDO_ACTIVE  
RESERVED  
R
0x1  
0x0  
Always returns 1. Always use SDO for SPI reads.  
No SDIO mode is supported.  
3-0  
R/W  
Reserved  
7.6.1.2 DEVICE_CONFIG Register (Address = 0x002) [reset = 0x00]  
DEVICE_CONFIG is shown in 7-8 and described in 7-21.  
Return to Summary Table.  
Device Configuration register (default: 0x00). This device controls the power-down of the device.  
7-8. DEVICE_CONFIG Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0x0  
MODE  
R/W-0x0  
7-21. DEVICE_CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
1-0  
RESERVED  
MODE  
R/W  
0x0  
Reserved  
R/W  
0x0  
0 : Normal operation (default)  
1 : Reserved  
2 : Reserved  
3 : Power-down  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR3  
80  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
 
 
 
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6.1.3 CHIP_TYPE Register (Address = 0x003) [reset = 0x03]  
CHIP_TYPE is shown in 7-9 and described in 7-22.  
Return to Summary Table.  
Chip Type register (default: 0x03). This register returns the chip type.  
7-9. CHIP_TYPE Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0x0  
CHIP_TYPE  
R-0x3  
7-22. CHIP_TYPE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
3-0  
RESERVED  
CHIP_TYPE  
R/W  
0x0  
Reserved  
R
0x3  
Always returns 0x3, indicating that the device is a high-speed ADC.  
7.6.1.4 CHIP_ID Register (Address = 0x004) [reset = 0x0022]  
CHIP_ID is shown in 7-10 and described in 7-23.  
Return to Summary Table.  
Chip Identification register (default: 0x0022). This register returns the chip identification number.  
7-10. CHIP_ID Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CHIP_ID  
R-0x0022  
7-23. CHIP_ID Register Field Descriptions  
Bit  
15-0  
Field  
CHIP_ID  
Type  
Reset  
Description  
R
0x0022  
Returns 0x0022, indicating the device is an ADC12DL3200.  
7.6.1.5 VENDOR_ID Register (Address = 0xC) [reset = 0x0451]  
VENDOR_ID is shown in 7-11 and described in 7-24.  
Return to Summary Table.  
Vendor Identification register (default = 0x0451). This register returns the vendor identification number.  
7-11. VENDOR_ID Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
VENDOR_ID  
R-0x0451  
7-24. VENDOR_ID Register Field Descriptions  
Bit  
15-0  
Field  
VENDOR_ID  
Type  
Reset  
Description  
R
0x0451  
Always returns 0x0451 (vendor ID for Texas Instruments).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
 
 
 
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6.1.6 USR0 Register (Address = 0x010) [reset = 0x00]  
USR0 is shown in 7-12 and described in 7-25.  
Return to Summary Table.  
User SPI Configuration register (default: 0x00). This register enables holding of the current address during  
streaming SPI transactions.  
7-12. USR0 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0x0  
ADDR_HOLD  
R/W-0x0  
7-25. USR0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
0
RESERVED  
R/W  
0x0  
Reserved  
ADDR_HOLD  
R/W  
0x0  
0 : Use the ASCEND register to select address ascend or descend  
mode (default)  
1 : Address stays constant throughout streaming operation; useful for  
reading and writing calibration vector information at the CAL_DATA  
register  
7.6.1.7 CLK_CTRL0 Register (Address = 0x029) [reset = 0x00]  
CLK_CTRL0 is shown in 7-13 and described in 7-26.  
Return to Summary Table.  
Clock Control 0 register (default: 0x00). This register is used to control the SYSREF receiver (SYSREF±),  
processing of the SYSREF signal and the SYSREF windowing zoom and delay settings.  
7-13. CLK_CTRL0 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0x0  
SYSREF_PROC_EN SYSREF_RECV_EN  
R/W-0x0 R/W-0x0  
SYSREF_ZOOM  
R/W-0x0  
SYSREF_SEL  
R/W-0x0  
7-26. CLK_CTRL0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RESERVED  
R/W  
0x0  
Reserved  
6
SYSREF_PROC_EN  
R/W  
0x0  
This bit enables the SYSREF processor, which allows the device to  
process SYSREF events (default: disabled). SYSREF_RECV_EN  
must be set before setting SYSREF_PROC_EN.  
5
4
SYSREF_RECV_EN  
SYSREF_ZOOM  
R/W  
R/W  
0x0  
0x0  
Set this bit to enable the SYSREF receiver circuit (default: disabled).  
Set this bit to zoom in the SYSREF windowing status and delays  
(impacts SYSERF_POS and SYSREF_SEL). When set, the delays  
used in the SYSREF windowing feature (reported in the  
SYSREF_POS register) become smaller. Use SYSREF_ZOOM for  
high clock rates, specifically when multiple SYSREF valid windows  
are encountered in the SYSREF_POS register; see the 7.3.4.3.1  
section.  
Copyright © 2023 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7-26. CLK_CTRL0 Register Field Descriptions (continued)  
Bit  
Field  
SYSREF_SEL  
Type  
Reset  
Description  
3-0  
R/W  
0x0  
Set this field to select which SYSREF delay to use. Set this field  
based on the results returned by SYSREF_POS; see the 7.3.4.3.1  
section. These bits must be set to 0 to use SYSREF calibration; see  
the 7.3.4.3.2 section.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6.1.8 CLK_CTRL1 Register (Address = 0x02A) [reset = 0x00]  
CLK_CTRL1 is shown in 7-14 and described in 7-27.  
Return to Summary Table.  
Clock Control 1 register (default: 0x00). This register allows SYSREF to be used as the timestamp input, allows  
inversion of the SYSREF signal, and enables the DC-coupled receiver mode for the CLK± and SYSREF± inputs.  
7-14. CLK_CTRL1 Register  
7
6
5
4
3
2
1
0
RESERVED  
SYSREF_TIME_STAMP_  
EN  
DEVCLK_LVPECL_EN  
SYSREF_LVPECL_EN  
SYSREF_INVERTED  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
7-27. CLK_CTRL1 Register Field Descriptions  
Bit  
Field  
RESERVED  
Type  
Reset  
Description  
7-4  
3
R/W  
0x0  
Reserved  
SYSREF_TIME_STAMP_ R/W  
EN  
0x0  
The SYSREF signal is output on the LSB of the LVDS output  
samples when SYSREF_TIMESTAMP_EN and TIME_STAMP_EN  
are both set. This bit allows SYSREF± to be used as the timestamp  
input.  
2
1
0
DEVCLK_LVPECL_EN  
SYSREF_LVPECL_EN  
SYSREF_INVERTED  
R/W  
R/W  
R/W  
0x0  
0x0  
0x0  
Activate DC-coupled, low-voltage PECL mode for CLK±; see the Pin  
Functions table.  
Activate DC-coupled, low-voltage PECL mode for SYSREF±; see the  
Pin Functions table.  
This bit inverts the SYSREF signal used for alignment.  
7.6.1.9 SYSREF_POS Register (Address = 0x02C-0x02E) [reset = Undefined]  
SYSREF_POS is shown in 7-15 and described in 7-28.  
Return to Summary Table.  
SYSREF Capture Position register (read-only status). This register is used by the SYSREF windowing feature to  
report back the valid SYSREF capture windows; see the 7.3.4.3.1 section.  
7-15. SYSREF_POS Register  
23  
15  
7
22  
14  
6
21  
13  
5
20  
19  
18  
10  
2
17  
9
16  
8
SYSREF_POS[23:16]  
R-Undefined  
12  
11  
SYSREF_POS[15:8]  
R-Undefined  
4
3
1
0
SYSREF_POS[7:0]  
R-Undefined  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR3  
84  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
 
 
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7-28. SYSREF_POS Register Field Descriptions  
Bit  
Field  
SYSREF_POS  
Type  
Reset  
Description  
23-0  
R/W  
Undefined  
Returns a 24-bit status value that indicates the position of the  
SYSREF edge with respect to CLK±. Use this field to program  
SYSREF_SEL.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6.1.10 INA Full-Scale Range Adjust Register (Address = 0x030-0x031) [reset = 0xA000]  
FS_RANGE_A is shown in 7-16 and described in 7-29.  
Return to Summary Table.  
INA± Full-Scale Range Adjust register (default: 0xA000). This register is used to change the full-scale input  
voltage of the INA± input. Calibration must be performed after changing this register; see the 7.3.1.2 section.  
7-16. FS_RANGE_A Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
FS_RANGE_A  
R/W-0xA000  
7-29. FS_RANGE_A Register Field Descriptions  
Bit  
15-0  
Field  
FS_RANGE_A  
Type  
Reset  
Description  
R/W  
0xA000  
These bits enable adjustment of the analog full-scale range for INA±.  
0x0000: Settings below 0x2000 result in degraded performance  
0x2000: 500 mVPP - Recommended minimum setting  
0xA000: 800 mVPP (default)  
0xFFFF: 1000 mVPP - Maximum setting  
7.6.1.11 INB Full-Scale Range Adjust Register (Address = 0x032-0x033) [reset = 0xA000]  
FS_RANGE_B is shown in 7-17 and described in 7-30.  
Return to Summary Table.  
INB± Full-Scale Range Adjust register (default: 0xA000). This register is used to change the full-scale input  
voltage of the INB± input. Calibration must be performed after changing this register; see the 7.3.1.2 section.  
7-17. FS_RANGE_B Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
FS_RANGE_B  
R/W-0xA000  
7-30. FS_RANGE_B Register Field Descriptions  
Bit  
15-0  
Field  
FS_RANGE_B  
Type  
Reset  
Description  
R/W  
0xA000  
These bits enable adjustment of the analog full-scale range for INB±.  
0x0000: Settings below 0x2000 result in degraded performance  
0x2000: 500 mVPP - Recommended minimum setting  
0xA000: 800 mVPP (default)  
0xFFFF: 1000 mVPP - Maximum setting  
Copyright © 2023 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6.1.12 BG_BYPASS Register (Address = 0x038) [reset = 0x00]  
BG_BYPASS is shown in 7-18 and described in 7-31.  
Return to Summary Table.  
Band-Gap Bypass register (default: 0x00). This register can be used to bypass the internal reference and use  
the VA11 supply voltage instead.  
7-18. BG_BYPASS Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0x0  
BG_BYPASS  
R/W-0x0  
7-31. BG_BYPASS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
0
RESERVED  
BG_BYPASS  
R/W  
0x0  
Reserved  
R/W  
0x0  
When set, VA11 is used as the voltage reference instead of the  
band-gap voltage.  
7.6.1.13 TMSTP_CTRL Register (Address = 0x03B) [reset = 0x00]  
TMSTP_CTRL is shown in 7-19 and described in 7-32.  
Return to Summary Table.  
TMSTP± and Differential SYNC Control register (default: 0x00). This register enables or disables the TMSTP±  
input and determines the termination scheme for this input.  
7-19. TMSTP_CTRL Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0x0  
TMSTP_LVPECL_EN  
R/W-0x0  
TMSTP_RECV_EN  
R/W-0x0  
7-32. SYNC_CTRL Register Field Descriptions  
Bit  
Field  
RESERVED  
Type  
Reset  
Description  
7-2  
R/W  
0x0  
Reserved  
1
TMSTP_LVPECL_EN  
R/W  
0x0  
When set, this bit activates the DC-coupled, low-voltage PECL mode  
for the differential TMSTP± receiver; see the Pin Functions table.  
0
TMSTP_RECV_EN  
R/W  
0x0  
This bit enables the differential TMSTP± receiver.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6.1.14 LVDS_SWING Register (Address = 0x048) [reset = 0x00]  
LVDS_SWING is shown in 7-20 and described in 7-33.  
Return to Summary Table.  
LVDS Swing Mode register (default: 0x00). This register determines the operating mode of the LVDS output  
drivers.  
7-20. LVDS_SWING Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0x0  
LVDS_SWING  
R/W-0x0  
7-33. LVDS_SWING Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
1-0  
RESERVED  
R/W  
0x0  
Reserved  
LVDS_SWING  
R/W  
0x0  
These bits set the swing mode of the LVDS output buffers:  
0 : High-swing mode (HSM) (default)  
1 : Low-swing mode (LSM)  
2 : Reserved (do not use)  
3 : Low-swing mode for use with receivers that have a high-Z load  
termination (HZM). Only use with short transmission lines to avoid  
reflections caused by a high-Z receiver.  
7.6.1.15 INPUT_MUX Register (Address = 0x060) [reset = 0x01]  
INPUT_MUX is shown in 7-21 and described in 7-34.  
Return to Summary Table.  
Input Mux Control register (default: 0x01). This register controls the input used in single-channel mode and the  
swapping of inputs in dual-channel mode; see the 7.3.1 section.  
7-21. INPUT_MUX Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0x0  
DUAL_INPUT  
R/W-0x0  
RESERVED  
R/W-0x0  
SINGLE_INPUT  
R/W-0x1  
7-34. INPUT_MUX Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4
RESERVED  
R/W  
0x0  
Reserved  
DUAL_INPUT  
R/W  
0x0  
This bit selects the input for dual-channel mode (non-DES mode).  
Only applies if DES_EN = 0.  
0 : Channel A samples INA±, channel B samples INB± (no swap)  
(default)  
1 : Channel A samples INB±, channel B samples INA± (swap)  
3-2  
RESERVED  
R/W  
0x0  
Reserved  
Copyright © 2023 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7-34. INPUT_MUX Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
1-0  
SINGLE_INPUT  
R/W  
0x1  
These bits define which chip input is sampled in single-channel  
mode (DES mode). Only applies if DES_EN = 1.  
0 : Reserved  
1 : INA± is sampled (DESA mode)  
2 : INB± is sampled (DESB mode)  
3 : Reserved  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6.1.16 CAL_EN Register (Address = 0x61) [reset = 0x01]  
CAL_EN is shown in 7-22 and described in 7-35.  
Return to Summary Table.  
Calibration Enable register (default: 0x01). This register is used to enable or disable ADC core calibration.  
7-22. CAL_EN Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0x0  
CAL_EN  
R/W-0x1  
7-35. CAL_EN Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
0
RESERVED  
CAL_EN  
R/W  
0x0  
Reserved  
R/W  
0x1  
This bit enables calibration. Set this bit high to run calibration. Set  
this bit low to hold calibration in reset to program new calibration  
settings. Clearing CAL_EN also resets the clock dividers that clock  
the encoders and LVDS interface.  
Note 1: Many calibration SPI registers are not synchronized to the  
internal clock that runs the calibration logic. Changing these registers  
may corrupt the calibration state machine. Always clear CAL_EN  
before making any changes to these registers. All registers with this  
requirement contain a note in their descriptions. After changing the  
registers, set CAL_EN to re-run calibration with the new settings.  
Note 2: Always set CAL_EN before setting LVDS_EN.  
Note 3: Always clear LVDS_EN before clearing CAL_EN.  
7.6.1.17 CAL_CFG0 Register (Address = 0x062) [reset = 0x01]  
CAL_CFG0 is shown in 7-23 and described in 7-36.  
Return to Summary Table.  
Calibration Configuration 0 register (default: 0x01). This register controls offset calibration and sets whether  
foreground or background calibration is used. Only change this register when CAL_EN is 0.  
7-23. CAL_CFG0 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0x0  
CAL_BGOS  
R/W-0x0  
CAL_OS  
R/W-0x0  
CAL_BG  
R/W-0x0  
CAL_FG  
R/W-0x1  
7-36. CAL_CFG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
3
RESERVED  
CAL_BGOS  
R/W  
0x0  
Reserved  
R/W  
0x0  
0 : Disable background offset calibration (default)  
1 : Enable background offset calibration (requires CAL_BG to be  
set).  
2
1
CAL_OS  
CAL_BG  
R/W  
R/W  
0x0  
0x0  
0 : Disable foreground offset calibration (default)  
1 : Enable foreground offset calibration (requires CAL_FG to be set)  
0 : Disable background calibration (default)  
1 : Enable background calibration  
Copyright © 2023 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7-36. CAL_CFG0 Register Field Descriptions (continued)  
Bit  
Field  
CAL_FG  
Type  
Reset  
Description  
0
R/W  
0x1  
0 : Reset calibration values, skip foreground calibration.  
1 : Reset calibration values, then run foreground calibration (default).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6.1.18 CAL_AVG Register (Address = 0x68) [reset = 0x61]  
CAL_AVG is shown in 7-24 and described in 7-37.  
Return to Summary Table.  
Calibration Averaging register (default: 0x61). This address determines the amount of averaging used for offset  
calibration.  
7-24. CAL_AVG Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0x0  
OS_AVG  
R/W-0x6  
RESERVED  
R-0x1  
7-37. CAL_AVG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RESERVED  
OS_AVG  
R/W  
0x0  
Reserved  
6-4  
R/W  
R
0x6  
0x1  
Select the amount of averaging used for each measurement of the  
offset correction search. A larger number corresponds to more  
averaging.  
3-0  
RESERVED  
Always write 0x1.  
7.6.1.19 CAL_STATUS Register (Address = 0x06A) [reset = Undefined]  
CAL_STATUS is shown in 7-25 and described in 7-38.  
Return to Summary Table.  
Calibration Status register (default: Undefined) (read-only). This register is used to read out the calibration status  
information.  
7-25. CAL_STATUS Register  
7
6
5
4
3
2
1
0
RESERVED  
R-Undefined  
CAL_STAT  
R-Undefined  
CAL_STOPPED  
R-Undefined  
FG_DONE  
R-Undefined  
7-38. CAL_STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
RESERVED  
R
Undefined  
Reserved  
4-2  
1
CAL_STAT  
R
R
Undefined  
Undefined  
Calibration status code  
CAL_STOPPED  
This bit returns a 1 when background calibration is successfully  
stopped at the requested phase. This bit returns a 0 when calibration  
starts operating again. If background calibration is disabled, this bit is  
set when foreground calibration is completed or skipped.  
0
FG_DONE  
R
Undefined  
This bit is high to indicate that foreground calibration has completed  
(or was skipped).  
Copyright © 2023 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6.1.20 CAL_PIN_CFG Register (Address = 0x06B) [reset = 0x00]  
CAL_PIN_CFG is shown in 7-26 and described in 7-39.  
Return to Summary Table.  
Calibration Pin Configuration register (default: 0x00). This register sets the function of the CALSTAT pin and  
selects whether hardware or software CALTRIG is used.  
7-26. CAL_PIN_CFG Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0x0  
CAL_STATUS_SEL  
R/W-0x0  
CAL_TRIG_EN  
R/W-0x0  
7-39. CAL_PIN_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-3  
2-1  
RESERVED  
R/W  
0x0  
Reserved  
CAL_STATUS_SEL  
R/W  
0x0  
0 : CALSTAT output pin matches FG_DONE  
1 : CALSTAT output pin matches CAL_STOPPED  
2 : CALSTAT output pin matches ALARM  
3 : CALSTAT output is always low  
0
CAL_TRIG_EN  
R/W  
0x0  
This bit selects the hardware or software trigger source.  
0 : Use the CAL_SOFT_TRIG register for the calibration trigger. The  
CALTRIG input is disabled (ignored).  
1 : Use the CALTRIG input for the calibration trigger. The  
CAL_SOFT_TRIG register is ignored.  
7.6.1.21 CAL_SOFT_TRIG Register (Address = 0x06C) [reset = 0x01]  
CAL_SOFT_TRIG is shown in 7-27 and described in 7-40.  
Return to Summary Table.  
Calibration Software Trigger register (default: 0x01). This register is used as the software CALTRIG.  
7-27. CAL_SOFT_TRIG Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0x0  
CAL_SOFT_TRIG  
R/W-0x1  
7-40. CAL_SOFT_TRIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
RESERVED  
R/W  
0x0  
Reserved  
0
CAL_SOFT_TRIG  
R/W  
0x1  
CAL_SOFT_TRIG is a software bit to provide the functionality of the  
CALTRIG input when there are no hardware resources to drive  
CALTRIG. Program CAL_TRIG_EN = 0 to use CAL_SOFT_TRIG for  
the calibration trigger.  
Note: If no calibration trigger is needed, leave CAL_TRIG_EN = 0  
and CAL_SOFT_TRIG = 1 (trigger set high).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6.1.22 Low-Power Background Calibration Register (Address = 0x6E) [reset = 0x88]  
CAL_LP is shown in 7-28 and described in 7-41.  
Return to Summary Table.  
Low-Power Background Calibration register (default: 0x88). This register enables low-power background  
calibration and sets the parameters for low-power background calibration.  
7-28. CAL_LP Register  
7
6
5
4
3
2
1
0
LP_SLEEP_DLY  
R/W-0x4  
LP_WAKE_DLY  
R/W-0x1  
RESERVED  
R/W-0x0  
LP_TRIG  
R/W-0x0  
LP_EN  
R/W-0x0  
7-41. CAL_LP Register Field Descriptions  
Bit  
7-5  
Field  
LP_SLEEP_DLY  
Type  
Reset  
Description  
R/W  
0x4  
These bits adjust how long an ADC sleeps before waking for  
calibration (only applies when LP_EN = 1 and LP_TRIG = 0). Values  
below 4 are not recommended because of limited overall power  
reduction benefits.  
0: Sleep delay = (23 + 1) × 256 × tCLK  
1: Sleep delay = (215 + 1) × 256 × tCLK  
2: Sleep delay = (218 + 1) × 256 × tCLK  
3: Sleep delay = (221 + 1) × 256 × tCLK  
4: Sleep delay = (224 + 1) × 256 × tCLK (default, approximately 1.338  
seconds with a 3.2-GHz clock)  
5: Sleep delay = (227 + 1) × 256 × tCLK  
6: Sleep delay = (230 + 1) × 256 × tCLK  
7: Sleep delay = (233 + 1) × 256 × tCLK  
4-3  
LP_WAKE_DLY  
R/W  
0x1  
These bits adjust how much time is provided for settling before  
calibrating an ADC after the ADC wakes up (only applies when  
LP_EN = 1). Values lower than 1 are not recommended because  
there is insufficient time for the core to stabilize before calibration  
begins.  
0: Wake delay = (23 + 1) × 256 × tCLK  
1: Wake delay = (218 + 1) × 256 × tCLK (default, approximately 21 ms  
with a 3.2-GHz clock)  
2: Wake delay = (221 + 1) × 256 × tCLK  
3: Wake delay = (224 + 1) × 256 × tCLK  
2
1
RESERVED  
LP_TRIG  
Must write 0x0.  
R/W  
R/W  
0x0  
0x0  
0: ADC sleep duration is set by LP_SLEEP_DLY (autonomous  
mode).  
1: ADCs sleep until woken by a trigger. An ADC is woken when the  
calibration trigger (the CAL_SOFT_TRIG bit or CAL_TRIG input) is  
low.  
0
LP_EN  
0: Disable low-power background calibration (default)  
1: Enable low-power background calibration (only applies when  
CAL_BG = 1).  
Copyright © 2023 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6.1.23 CAL_DATA_EN Register (Address = 0x70) [reset = 0x00]  
CAL_DATA_EN is shown in 7-29 and described in 7-42.  
Return to Summary Table.  
Calibration Data Enable register (default: 0x00). This register enables reading calibration data.  
7-29. CAL_DATA_EN Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0x0  
CAL_DATA_EN  
R/W-0x0  
7-42. CAL_DATA_EN Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
0
RESERVED  
R/W  
0x0  
Reserved  
CAL_DATA_EN  
R/W  
0x0  
Set this bit to enable the CAL_DATA register to enable reading and  
writing of calibration data; see the CAL_DATA register for more  
information.  
7.6.1.24 CAL_DATA Register (Address = 0x71) [reset = Undefined]  
CAL_DATA is shown in 7-30 and described in 7-43.  
Return to Summary Table.  
Calibration Data register (default: Undefined). This register is used to read out the calibration data.  
7-30. CAL_DATA Register  
7
6
5
4
3
2
1
0
CAL_DATA  
R/W-0x0  
7-43. CAL_DATA Register Field Descriptions  
Bit  
7-0  
Field  
CAL_DATA  
Type  
Reset  
Description  
R/W  
0x0  
After setting CAL_DATA_EN, repeated reads of this register return all  
calibration values for the ADCs. Repeated writes of this register input  
all calibration values for the ADCs. To read the calibration data, read  
the register 673 times. To write the vector, write the register 673  
times with previously stored calibration data. To speed up the read or  
write operation, set ADDR_HOLD = 1 and use streaming read or  
write process. IMPORTANT: Accessing the CAL_DATA register when  
CAL_STOPPED = 0 corrupts the calibration. Also, stopping the  
process before reading or writing 673 times leaves the calibration  
data in an invalid state.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6.1.25 GAIN_TRIM_A Register (Address = 0x07A) [reset = Undefined]  
GAIN_TRIM_A is shown in 7-31 and described in 7-44.  
Return to Summary Table.  
Gain DAC Trim A register (default from fuse ROM). This register is used for trimming the INA± gain.  
7-31. GAIN_TRIM_A Register  
7
6
5
4
3
2
1
0
GAIN_TRIM_A  
R/W-Undefined  
7-44. GAIN_TRIM_A Register Field Descriptions  
Bit  
7-0  
Field  
GAIN_TRIM_A  
Type  
Reset  
Description  
R/W  
Undefined  
This register enables gain trim of channel A. After reset, the factory  
trimmed value can be read and adjusted as required. Use  
FS_RANGE_A to adjust the analog full-scale voltage (Vfs) of INA±.  
7.6.1.26 GAIN_TRIM_B Register (Address = 0x07B) [reset = Undefined]  
GAIN_TRIM_B is shown in 7-32 and described in 7-45.  
Return to Summary Table.  
Gain DAC Trim B register (default from fuse ROM). This register is used for trimming the INB± gain.  
7-32. GAIN_TRIM_B Register  
7
6
5
4
3
2
1
0
GAIN_TRIM_B  
R/W-Undefined  
7-45. GAIN_TRIM_B Register Field Descriptions  
Bit  
7-0  
Field  
GAIN_TRIM_B  
Type  
Reset  
Description  
R/W  
Undefined  
This register enables gain trim of channel B. After reset, the factory  
trimmed value can be read and adjusted as required. Use  
FS_RANGE_B to adjust the analog full-scale voltage (Vfs) of INB±.  
Copyright © 2023 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6.1.27 BG_TRIM Register (Address = 0x07C) [reset = Undefined]  
BG_TRIM is shown in 7-33 and described in 7-46.  
Return to Summary Table.  
Band-Gap Trim register (default from fuse ROM). Use this register to trim the internal band-gap reference. The  
voltage can be measured on the BG pin.  
7-33. BG_TRIM Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0x0  
BG_TRIM  
R/W-Undefined  
7-46. BG_TRIM Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
3-0  
RESERVED  
BG_TRIM  
R/W  
0x0  
Reserved  
R/W  
Undefined  
This register enables trimming of the internal band-gap reference.  
After reset, the factory trimmed value can be read and adjusted as  
required.  
7.6.1.28 RTRIM_A Register (Address = 0x07E) [reset = Undefined]  
RTRIM_A is shown in 7-34 and described in 7-47.  
Return to Summary Table.  
Resistor TRIM for INA± register (default from fuse ROM). This register can be used to trim the input termination  
resistance of INA±.  
7-34. RTRIM_A Register  
7
6
5
4
3
2
1
0
RTRIM_A  
R/W-Undefined  
7-47. RTRIM_A Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
RTRIM_A  
R/W  
Undefined  
This register controls the INA± ADC input termination trim. After  
reset, the factory trimmed value can be read and adjusted as  
required.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6.1.29 RTRIM_B Register (Address = 0x7F) [reset = Undefined]  
RTRIM_B is shown in 7-35 and described in 7-48.  
Return to Summary Table.  
Resistor TRIM for INB± (default from fuse ROM). This register can be used to trim the input termination  
resistance of INB±.  
7-35. RTRIM_B Register  
7
6
5
4
3
2
1
0
RTRIM_B  
R/W-Undefined  
7-48. RTRIM_B Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
RTRIM_B  
R/W  
Undefined  
This register controls the INB± ADC input termination trim. After  
reset, the factory trimmed value can be read and adjusted as  
required.  
Copyright © 2023 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6.1.30 ADC_DITH Register (Address = 0x9D) [reset = 0x01]  
ADC_DITH is shown in 7-36 and described in 7-49.  
Return to Summary Table.  
ADC Dither register (default: 0x01). This register can be used enable or disable ADC dither and to adjust the  
amount of dither used.  
7-36. ADC_DITH Register  
7
6
5
4
3
2
ADC_DITH_ERR  
0x0  
1
ADC_DITH_AMP  
0x0  
0
ADC_DITH_EN  
0x1  
RESERVED  
R/W-0x00  
7-49. ADC_DITH Register Field Descriptions  
Bit  
7-3  
2
Field  
Type  
R/W  
R/W  
Reset  
0x00  
0x0  
Description  
RESERVED  
Reserved  
ADC_DITH_ERR  
Small rounding errors may occur when subtracting the dither signal.  
The error can be chosen to either slightly degrade SNR or to slightly  
increase the DC offset and FS/2 spur. In addition, the FS/4 spur will  
also be increased slightly while in single channel mode.  
0 : Rounding error degrades SNR  
1 : Rounding error degrades DC offset, FS/2 spur and FS/4 spur  
1
0
ADC_DITH_AMP  
ADC_DITH_EN  
R/W  
R/W  
0x0  
0x1  
0 : Small dither for better SNR (default)  
1 : Large dither for better spurious performance  
Set this bit to enable ADC dither. Dither can improve spurious  
performance at the expense of slightly degraded SNR. The dither  
amplitude (ADC_DITH_AMP) can be used to further tradeoff SNR  
and spurious performance.  
7.6.1.31 Timing Adjustment for Bank 0 (0° Clock) Register (Address = 0x102) [reset = Undefined]  
B0_TIME_0 is shown in 7-37 and described in 7-50.  
Return to Summary Table.  
Timing Adjustment for Bank 0 (0° clock) register (default from fuse ROM). This register is used to adjust the  
timing of the Bank 0 ADC when ADC A is configured for a 0° clock phase (dual channel mode).  
7-37. B0_TIME_0 Register  
7
6
5
4
3
2
1
0
B0_TIME_0  
R/W-Undefined  
7-50. B0_TIME_0 Register Field Descriptions  
Bit  
7-0  
Field  
B0_TIME_0  
Type  
Reset  
Description  
R/W  
Undefined  
Timing adjustment for bank 0 when ADC A is configured for 0° clock  
phase (dual channel mode).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6.1.32 Timing Adjustment for Bank 0 (90° Clock) Register (Address = 0x103) [reset = Undefined]  
B0_TIME_90 is shown in 7-38 and described in 7-51.  
Return to Summary Table.  
Timing Adjustment for Bank 0 (90° clock) register (default from fuse ROM). This register is used to adjust the  
timing of the Bank 0 ADC when ADC A is configured for a 90° clock phase (single channel mode).  
7-38. B0_TIME_90 Register  
7
6
5
4
3
2
1
0
B0_TIME_90  
R/W-Undefined  
7-51. B0_TIME_90 Register Field Descriptions  
Bit  
7-0  
Field  
B0_TIME_90  
Type  
Reset  
Description  
R/W  
Undefined  
Time adjustment for bank 0 applied when ADC is configured for –  
90° clock phase (single channel mode).  
7.6.1.33 Timing Adjustment for Bank 1 (0° Clock) Register (Address = 0x112) [reset = Undefined]  
B1_TIME_0 is shown in 7-39 and described in 7-52.  
Return to Summary Table.  
Timing Adjustment for Bank 1 (0° clock) register (default from fuse ROM). This register is used to adjust the  
timing of the Bank 1 ADC when ADC A is configured for a 0° clock phase (dual channel mode).  
7-39. B1_TIME_0 Register  
7
6
5
4
3
2
1
0
B1_TIME_0  
R/W-Undefined  
7-52. B1_TIME_0 Register Field Descriptions  
Bit  
7-0  
Field  
B1_TIME_0  
Type  
Reset  
Description  
R/W  
Undefined  
Timing adjustment for bank 1 applied when ADC is configured for 0°  
clock phase (dual channel mode).  
Copyright © 2023 Texas Instruments Incorporated  
100 Submit Document Feedback  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6.1.34 Timing Adjustment for Bank 1 (90° Clock) Register (Address = 0x113) [reset = Undefined]  
B1_TIME_90 is shown in 7-40 and described in 7-53.  
Return to Summary Table.  
Timing Adjustment for Bank 1 (90° clock) register (default from fuse ROM). This register is used to adjust the  
timing of the Bank 1 ADC when ADC A is configured for a 90° clock phase (single channel mode).  
7-40. B1_TIME_90 Register  
7
6
5
4
3
2
1
0
B1_TIME_90  
R/W-Undefined  
7-53. B1_TIME_90 Register Field Descriptions  
Bit  
7-0  
Field  
B1_TIME_90  
Type  
Reset  
Description  
R/W  
Undefined  
Time adjustment for bank 1 applied when ADC is configured for –  
90° clock phase (single channel mode).  
7.6.1.35 Timing Adjustment for Bank 4 (0° Clock) Register (Address = 0x142) [reset = Undefined]  
B4_TIME_0 is shown in 7-41 and described in 7-54.  
Return to Summary Table.  
Timing Adjustment for Bank 4 (0° clock) register (default from fuse ROM). This register is used to adjust the  
timing of the Bank 4 ADC when ADC B is configured for a 0° clock phase (dual channel mode and single  
channel mode).  
7-41. B4_TIME_0 Register  
7
6
5
4
3
2
1
0
B4_TIME_0  
R/W-Undefined  
7-54. B4_TIME_0 Register Field Descriptions  
Bit  
7-0  
Field  
B4_TIME_0  
Type  
Reset  
Description  
R/W  
Undefined  
Timing adjustment for bank 4 applied when ADC is configured for 0°  
clock phase (dual channel mode and single channel mode).  
7.6.1.36 Timing Adjustment for Bank 5 (0° Clock) Register (Address = 0x152) [reset = Undefined]  
B5_TIME_0 is shown in 7-42 and described in 7-55.  
Return to Summary Table.  
Timing Adjustment for Bank 5 (0° clock) register (default from fuse ROM). This register is used to adjust the  
timing of the Bank 5 ADC when ADC B is configured for a 0° clock phase (dual channel mode and single  
channel mode).  
7-42. B5_TIME_0 Register  
7
6
5
4
3
2
1
0
B5_TIME_0  
R/W-Undefined  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 101  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
 
 
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7-55. B5_TIME_0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
B5_TIME_0  
R/W  
Undefined  
Timing adjustment for bank 5 applied when ADC is configured for 0°  
clock phase (dual channel mode and single channel mode).  
7.6.1.37 LSB_CTRL Register (Address = 0x160) [reset = 0x00]  
LSB_CTRL is shown in 7-43 and described in 7-56.  
Return to Summary Table.  
LSB Control Bit Output register (default: 0x00). This register enables output of the timestamp signal on the LSB  
of the output samples.  
7-43. LSB_CTRL Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0x0  
TIME_STAMP_EN  
R/W-0x0  
7-56. LSB_CTRL Register Field Descriptions  
Bit  
7-1  
0
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
0x0  
Reserved  
TIME_STAMP_EN  
0x0  
When set, the timestamp signal is transmitted on the LSB of the  
output samples. The latency of the timestamp signal (through the  
entire chip) matches the latency of the analog ADC inputs.  
Also set TMSTP_RECV_EN when using TIME_STAMP_EN.  
Copyright © 2023 Texas Instruments Incorporated  
102 Submit Document Feedback  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6.1.38 LSB_SEL Register (Address = 0x161) [reset = 0x00]  
LSB_SEL is shown in 7-44 and described in 7-57.  
Return to Summary Table.  
LSB Control Bit Position register (default: 0x00). This register defines the position of the timestamp signal output  
on the LSB of the samples.  
7-44. LSB_SEL Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0x0  
LSB_SEL  
R/W-0x0  
7-57. LSB_SEL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
0
RESERVED  
LSB_SEL  
R/W  
0x0  
Reserved  
R/W  
0x0  
0 : Place timestamp on lane 0 (Dx0±) of each LVDS output bus,  
independent of the LWIDTH setting. Lane 0 of each bus is enabled  
regardless of LWIDTH.  
1 : Place timestamp on the LSB of the effective sample size as set by  
the LWIDTH parameter. The timestamp is placed on the LSB of the  
output sample. The lane that carries timestamp depends on the  
selected output sample width (LWIDTH).  
For 12-bit samples, lane 0 carries the control data.  
For 11-bit samples, lane 1 carries the control data.  
For 10-bit samples, lane 2 carries the control data.  
For 8-bit samples, lane 4 carries the control data.  
7.6.1.39 UPAT0 Register (Address = 0x180) [reset = 0x0000]  
UPAT0 is shown in 7-45 and described in 7-58.  
Return to Summary Table.  
User-Defined Pattern (sample 0) register (default: 0x0000). This register, and the UPATx registers that follow,  
define the user defined test pattern that can be used to test various aspects of the LVDS interface.  
7-45. UPAT0 Register  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
R/W-0x0  
UPAT0  
R/W-0x0  
7
6
5
4
3
2
1
0
UPAT0  
R/W-0x0  
7-58. UPAT0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-12  
11-0  
RESERVED  
UPAT0  
R/W  
0x0  
Reserved  
R/W  
0x0  
Defines the value for sample 0 of the user defined pattern. See the  
PAT_SEL register and the 7.4.5.6 section.  
Note: Only change this register when LVDS_EN = 0.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6.1.40 UPAT1 Register (Address = 0x182) [reset = 0x0FFF]  
UPAT1 is shown in 7-46 and described in 7-59.  
Return to Summary Table.  
User-Defined Pattern (sample 1) register (default: 0x0FFF).  
7-46. UPAT1 Register  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
8
0
RESERVED  
R/W-0x0  
UPAT1  
R/W-0xF  
UPAT1  
R/W-0xFF  
7-59. UPAT1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-12  
11-0  
RESERVED  
UPAT1  
R/W  
0x0  
Reserved  
R/W  
0xFFF  
Defines the value for sample 1 of the user defined pattern. See  
UPAT0 register.  
Note: Only change this register when LVDS_EN = 0.  
7.6.1.41 UPAT2 Register (Address = 0x184) [reset = 0x0000]  
UPAT2 is shown in 7-47 and described in 7-60.  
Return to Summary Table.  
User-Defined Pattern (sample 2) register (default: 0x0000).  
7-47. UPAT2 Register  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
8
0
RESERVED  
R/W-0x0  
UPAT2  
R/W-0x0  
UPAT2  
R/W-0x00  
7-60. UPAT2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-12  
11-0  
RESERVED  
UPAT2  
R/W  
0x0  
Reserved  
R/W  
0x000  
Defines the value for sample 2 of the user defined pattern. See  
UPAT0 register.  
Note: Only change this register when LVDS_EN = 0.  
Copyright © 2023 Texas Instruments Incorporated  
104 Submit Document Feedback  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6.1.42 UPAT3 Register (Address = 0x186) [reset = 0x0FFF]  
UPAT3 is shown in 7-48 and described in 7-61.  
Return to Summary Table.  
User-Defined Pattern (sample 3) register (default: 0x0FFF)  
7-48. UPAT3 Register  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
8
0
RESERVED  
R/W-0x0  
UPAT3  
R/W-0xF  
UPAT3  
R/W-0xFF  
7-61. UPAT3 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
15-12  
11-0  
RESERVED  
UPAT3  
0x0  
Reserved  
0xFFF  
Defines the value for sample 3 of the user defined pattern. See  
UPAT0 register.  
Note: Only change this register when LVDS_EN = 0.  
7.6.1.43 UPAT4 Register (Address = 0x188) [reset = 0x0000]  
UPAT4 is shown in 7-49 and described in 7-62.  
Return to Summary Table.  
User-Defined Pattern (sample 4) register (default: 0x0000).  
7-49. UPAT4 Register  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
8
0
RESERVED  
R/W-0x0  
UPAT4  
R/W-0x0  
UPAT4  
R/W-0x00  
7-62. UPAT4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-12  
11-0  
RESERVED  
UPAT4  
R/W  
0x0  
Reserved  
R/W  
0x000  
Defines the value for sample 4 of the user defined pattern. See  
UPAT0 register.  
Note: Only change this register when LVDS_EN = 0.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 105  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6.1.44 UPAT5 Register (Address = 0x18A) [reset = 0x0FFF]  
UPAT5 is shown in 7-50 and described in 7-63.  
Return to Summary Table.  
User-Defined Pattern (sample 5) register (default: 0x0FFF).  
7-50. UPAT5 Register  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
8
0
RESERVED  
R/W-0x0  
UPAT5  
R/W-0xF  
UPAT5  
R/W-0xFF  
7-63. UPAT5 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-12  
11-0  
RESERVED  
UPAT5  
R/W  
0x0  
Reserved  
R/W  
0xFFF  
Defines the value for sample 5 of the user defined pattern. See  
UPAT0 register.  
Note: Only change this register when LVDS_EN = 0.  
7.6.1.45 UPAT6 Register (Address = 0x18C) [reset = 0x0000]  
UPAT6 is shown in 7-51 and described in 7-64.  
Return to Summary Table.  
User-Defined Pattern (sample 6) register (default: 0x0000).  
7-51. UPAT6 Register  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
8
0
RESERVED  
R/W-0x0  
UPAT6  
R/W-0x0  
UPAT6  
R/W-0x00  
7-64. UPAT6 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-12  
11-0  
RESERVED  
UPAT6  
R/W  
0x0  
Reserved  
R/W  
0x000  
Defines the value for sample 6 of the user defined pattern. See  
UPAT0 register.  
Note: Only change this register when LVDS_EN = 0.  
Copyright © 2023 Texas Instruments Incorporated  
106 Submit Document Feedback  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6.1.46 UPAT7 Register (Address = 0x18E) [reset = 0x0FFF]  
UPAT7 is shown in 7-52 and described in 7-65.  
Return to Summary Table.  
User-Defined Pattern (sample 7) register (default: 0x0FFF).  
7-52. UPAT7 Register  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
8
0
RESERVED  
R/W-0x0  
UPAT7  
R/W-0xF  
UPAT7  
R/W-0xFF  
7-65. UPAT7 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-12  
11-0  
RESERVED  
UPAT7  
R/W  
0x0  
Reserved  
R/W  
0xFFF  
Defines the value for sample 7 of the user defined pattern. See  
UPAT0 register.  
Note: Only change this register when LVDS_EN = 0.  
7.6.1.47 UPAT_CTRL Register (Address = 0x190) [reset = 0x1E]  
UPAT_CTRL is shown in 7-53 and described in 7-66.  
Return to Summary Table.  
User-Defined Pattern Control register (default: 0x1E). This register allows selection of the predefined lane  
pattern instead of the user defined pattern and the inversion of specified bits for each lane during user defined  
pattern transmission.  
7-53. UPAT_CTRL Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0x0  
LANE_PAT  
R/W-0x1  
UPAT_INV_D  
R/W-0x1  
UPAT_INV_C  
R/W-0x1  
UPAT_INV_B  
R/W-0x1  
UPAT_INV_A  
R/W-0x0  
7-66. UPAT_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4
RESERVED  
LANE_PAT  
R/W  
0x0  
Reserved  
R/W  
0x1  
When set, the UPATn registers are ignored, and the user-defined  
pattern is set to: 0x000, 0xFFF, 0x000, 0x000, 0x000, 0xFFF, 0xFFF,  
0xFFF. This bit acts as a shortcut to avoid programming the UPATn  
registers. PAT_SEL register must still be programmed to configure  
the interface to select the user-defined pattern. The UPAT_INV_*  
registers still apply when using LANE_PAT.  
3
2
UPAT_INV_D  
UPAT_INV_C  
R/W  
R/W  
0x1  
0x1  
When set, bit [11] of the user-defined pattern is inverted on the bus D  
output.  
When set, bit [10] of the user-defined pattern is inverted on the bus C  
output.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 107  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7-66. UPAT_CTRL Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
1
UPAT_INV_B  
R/W  
0x1  
When set, bit [9] of the user-defined pattern is inverted on the bus B  
output.  
0
UPAT_INV_A  
R/W  
0x0  
When set, bit [8] of the user-defined pattern is inverted on the bus A  
output.  
Note: Only change this register when LVDS_EN = 0.  
Copyright © 2023 Texas Instruments Incorporated  
108 Submit Document Feedback  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6.1.48 LVDS_EN Register (Address = 0x200) [reset = 0x01]  
LVDS_EN is shown in 7-54 and described in 7-67.  
Return to Summary Table.  
LVDS Subsystem Enable register (default: 0x01). Use this register to enable or disable the LVDS interface.  
7-54. LVDS_EN Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0x0  
LVDS_EN  
R/W-0x1  
7-67. LVDS_EN Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
0
RESERVED  
LVDS_EN  
R/W  
0x0  
Reserved  
R/W  
0x1  
0 : Disable LVDS interface  
1 : Enable LVDS interface  
Note 1: Before altering other LVDS registers, you must clear  
LVDS_EN. When LVDS_EN is 0, the LVDS interface block is held in  
reset and the outputs are powered down. The clocks are gated off to  
save power. The frame counter is also held in reset, so SYSREF will  
not align the frame counter.  
Note 2: Always set CAL_EN before setting LVDS_EN.  
Note 3: Always clear LVDS_EN before clearing CAL_EN.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 109  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6.1.49 LMODE Register (Address = 0x201) [reset = 0x01]  
LMODE is shown in 7-55 and described in 7-68.  
Return to Summary Table.  
LVDS Mode register (default: 0x01). This register is used to define the configuration of the LVDS interface.  
LVDS_EN must be 0 before making any changes to this register. Additionally, CAL_EN must be 0 before  
changing DES_EN.  
7-55. LMODE Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0x0  
LWIDTH  
R/W-0x0  
RESERVED  
R/W-0x0  
DES_EN  
R/W-0x0  
LALIGNED  
R/W-0x0  
LDEMUX  
R/W-0x1  
7-68. LMODE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-4  
RESERVED  
LWIDTH  
R/W  
0x0  
Reserved  
R/W  
0x0  
Specifies the sample width for the LVDS output interface.  
0 : 12-bit sample width (default)  
1 : 11-bit sample width  
2 : 10-bit sample width  
3 : 8-bit sample width  
3
2
RESERVED  
DES_EN  
R/W  
R/W  
0x0  
0x0  
Reserved  
0 : Disable DES mode (enable dual channel mode)  
1 : Enable DES mode (enable single channel mode)  
CAL_EN must be 0 before changing DES_EN.  
1
0
LALIGNED  
LDEMUX  
R/W  
R/W  
0x0  
0x1  
0 : The LVDS buses are staggered for optimized switching noise and  
latency.  
1 : The LVDS buses are aligned for simplified timing.  
0 : Demux-by-1, uses 2 LVDS buses total  
1 : Demux-by-2, uses 4 LVDS buses total  
Copyright © 2023 Texas Instruments Incorporated  
110  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6.1.50 LFRAME Register (Address = 0x202) [reset = 0x80]  
LFRAME is shown in 7-56 and described in 7-69.  
Return to Summary Table.  
LVDS Frame Length register (default: 0x80) (128 decimal). This register sets the length of the frame and  
subsequently the period of the strobe signal. Only change this register when LVDS_EN = 0.  
7-56. LFRAME Register  
7
6
5
4
3
2
1
0
LFRAME  
R/W-0x80  
7-69. LFRAME Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
LFRAME  
R/W  
0x80  
Defines the number of UIs in each LVDS frame. Any multiple of 4  
from 4 to 128 is supported. All other values are unsupported.  
When LDEMUX=0, one UI is one CLK± cycle.  
When LDEMUX=1, one UI is two CLK± cycles.  
Note: Setting LFRAME to 4 is not recommended, as it may be  
difficult to achieve deterministic latency over all process, voltage, and  
temperature conditions. The propagation delay variation may be  
larger than the frame period.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
111  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6.1.51 LSYNC_N Register (Address = 0x203) [reset = 0x01]  
LSYNC_N is shown in 7-57 and described in 7-70.  
Return to Summary Table.  
LVDS Manual Sync Request register (default: 0x01). This register can be used as a software replacement for the  
LVDS SYNC signal.  
7-57. LSYNC_N Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0x0  
LSYNC_N  
R/W-0x1  
7-70. LSYNC_N Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
0
RESERVED  
LSYNC_N  
R/W  
0x0  
Reserved  
R/W  
0x1  
Set this bit to 0 to request LVDS synchronization (equivalent to the  
hardware SYNC signal being asserted, as selected by SYNC_SEL).  
For normal operation, leave this bit set to 1.  
Note: The LSYNC_N register can always generate a synchronization  
request, regardless of the SYNC_SEL setting in the LCTRL register.  
However, if the selected sync pin is stuck low, the synchronization  
request cannot be de-asserted unless SYNC_SEL=2.  
7.6.1.52 LCTRL Register (Address = 0x204) [reset = 0x02]  
LCTRL is shown in 7-58 and described in 7-71.  
Return to Summary Table.  
LVDS Control register (default: 0x02). This register is used to configure aspects of the LVDS interface including  
scrambling, hardware SYNC input and the output format. Only change this register when LVDS_EN = 0.  
7-58. LCTRL Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0x0  
SCR  
SYNC_SEL  
R/W-0x0  
SFORMAT  
R/W-0x1  
RESERVED  
R/W-0x0  
R/W-0x0  
7-71. LCTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4
RESERVED  
SCR  
R/W  
0x0  
Reserved  
R/W  
R/W  
0x0  
0x0  
When set, all LVDS data and strobes are scrambled. This also  
includes the part-time strobes or timestamp signals (since they are  
output on the data lanes). See the 7.4.5.5 section.  
3-2  
1
SYNC_SEL  
SFORMAT  
0 : Use the SYNC_SE input for SYNC function (default)  
1 : Use the TMSTP± input for SYNC function. also set  
TMSTP_RECV_EN to use the differential TMSTP± input.  
2 : Do not use any SYNC input pin, set if using LSYNC_N.  
R/W  
0x1  
Output sample format for LVDS output samples  
0 : Offset binary  
1 : Signed 2s complement (default)  
Copyright © 2023 Texas Instruments Incorporated  
112  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7-71. LCTRL Register Field Descriptions (continued)  
Bit  
Field  
RESERVED  
Type  
Reset  
Description  
0
R/W  
0x0  
Reserved  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
113  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6.1.53 PAT_SEL Register (Address = 0x205) [reset = 0x02]  
PAT_SEL is shown in 7-59 and described in 7-72.  
Return to Summary Table.  
LVDS Pattern Control register (default: 0x02). This register controls the output data or pattern used during active  
mode ( SYNC de-asserted) and sync mode ( SYNC asserted). During normal operation, the active pattern  
should be set to the ADC output data and the SYNC pattern can be set to the mode used by the receiver for  
synchronizing the interface. The input used for SYNC is chosen by SYNC_SEL.  
7-59. PAT_SEL Register  
7
6
5
4
3
2
1
0
ACT_PAT  
R/W-0x0  
SYNC_PAT  
R/W-0x2  
7-72. PAT_SEL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
ACT_PAT  
R/W  
0x0  
This selects the output pattern that is generated when the SYNC  
signal is de-asserted.  
0: ADC output data  
1: All LVDS lanes output the user-defined pattern (see UPAT  
registers)  
2-15: Reserved  
3-0  
SYNC_PAT  
R/W  
0x2  
This selects the output pattern that is generated when the SYNC  
signal is asserted.  
0: Reserved  
1: All LVDS lanes output the user-defined pattern (see UPAT  
registers)  
2: Frame strobe is transmitted on the LSB of the output samples  
only. The other bits transmit data based on ACT_PAT.  
3: The frame strobe is transmitted on all active LVDS data lanes and  
strobes.  
4-15: Reserved  
Copyright © 2023 Texas Instruments Incorporated  
114  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6.1.54 LCS_EN Register (Address = 0x206) [reset = 0xFF]  
LCS_EN is shown in 7-60 and described in 7-73.  
Return to Summary Table.  
LVDS Clock and Strobe Enables register (default: 0xFF). Use these registers to enable or disable specific LVDS  
output clocks (DxCLK±) and frame strobes (DxSTB±) if the receiver will not use them. If an entire LVDS bus is  
disabled (because of PD_CH or LDEMUX) then its associated clock and frame strobe are disabled automatically,  
regardless of this register. Note: Only change this register when LVDS_EN = 0.  
7-60. LCS_EN Register  
7
6
5
4
3
2
1
0
DDSTB_EN  
R/W-0x1  
DCSTB_EN  
R/W-0x1  
DBSTB_EN  
R/W-0x1  
DASTB_EN  
R/W-0x1  
DDCLK_EN  
R/W-0x1  
DCCLK_EN  
R/W-0x1  
DBCLK_EN  
R/W-0x1  
DACLK_EN  
R/W-0x1  
7-73. LCS_EN Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
DDSTB_EN  
DCSTB_EN  
DBSTB_EN  
DASTB_EN  
DDCLK_EN  
DCCLK_EN  
DBCLK_EN  
DACLK_EN  
R/W  
0x1  
Enable DDSTB± output  
Enable DCSTB± output  
Enable DBSTB± output  
Enable DASTB± output  
Enable DDCLK± output  
Enable DCCLK± output  
Enable DBCLK± output  
Enable DACLK± output  
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
115  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6.1.55 LVDS_STATUS Register (Address = 0x208) [reset = Undefined]  
LVDS_STATUS is shown in 7-61 and described in 7-74.  
Return to Summary Table.  
System Status register (default: undefined). This register returns status bits for the device including SYNC status  
for the LVDS interface and internal clock status.  
7-61. LVDS_STATUS Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0x0  
SYNC_STATUS  
R/W-Undefined  
REALIGNED  
R/W-Undefined  
ALIGNED  
RESERVED  
R/W-0x0  
R/W-Undefined  
7-74. LVDS_STATUS Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-6  
5
RESERVED  
SYNC_STATUS  
0x0  
Reserved  
Undefined  
Returns the instantaneous state of the LVDS interface SYNC signal  
( SYNC_SE or TMSTP±).  
0 : SYNC asserted  
1 : SYNC de-asserted  
4
3
REALIGNED  
ALIGNED  
R/W  
R/W  
Undefined  
Undefined  
When high, indicates that SYSREF realigned internal clocks.  
REALIGNED_ALM should be used for monitoring of realignment  
events instead of this bit. Writing a 1 to this bit will clear it, but will not  
affect the REALIGNED_ALM bit.  
When high, indicates that internal clock phases have been  
established by SYSREF. Any SYSREF rising edge that is processed  
after enabling the LVDS system will set this bit. This bit can be  
monitored during startup to verify that SYSREF has been processed  
before continuing system initialization. Writing a 1 to this bit will clear  
it and the next SYSREF event will set it again.  
2-0  
RESERVED  
R/W  
0x0  
Reserved  
7.6.1.56 PD_CH Register (Address = 0x209) [reset = 0x00]  
PD_CH is shown in 7-62 and described in 7-75.  
Return to Summary Table.  
ADC Channel Power Down (default: 0x00). This register allows individual channels to be powered down.  
LVDS_EN and CAL_EN must be set to 0 before changing PD_CH.  
7-62. PD_CH Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0x0  
PD_BCH  
R/W-0x0  
PD_ACH  
R/W-0x0  
7-75. PD_CH Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
1
RESERVED  
PD_BCH  
R/W  
0x0  
Reserved  
R/W  
0x0  
When set, the BADC channel is powered down.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR3  
116  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
 
 
 
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7-75. PD_CH Register Field Descriptions (continued)  
Bit  
Field  
PD_ACH  
Type  
Reset  
Description  
0
R/W  
0x0  
When set, the AADC channel is powered down.  
Important notes:  
LVDS_EN and CAL_EN must be set to 0 before changing PD_CH.  
PD_CH disables the LVDS lanes (Dx[11:0], DxSTB, DxCLK) for the  
powered down channel.  
To power down both ADC channels, use MODE or the PD pin.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
117  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6.1.57 OVR_T0 Register (Address = 0x211) [reset = 0xF2]  
OVR_T0 is shown in 7-63 and described in 7-76.  
Return to Summary Table.  
Overrange Threshold 0 register (default: 0xF2). This register sets threshold 0 for ADC overrange detection.  
7-63. OVR_T0 Register  
7
6
5
4
3
2
1
0
OVR_T0  
R/W-0xF2  
7-76. OVR_T0 Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
OVR_T0  
R/W  
0xF2  
This parameter defines the absolute sample level that causes OVA0  
or OVB0 to be set. The detection level in dBFS (peak) is  
20log10(OVR_T0/256) (default: 0xF2 = 242 > -0.5dBFS)  
7.6.1.58 OVR_T1 Register (Address = 0x212) [reset = 0xAB]  
OVR_T1 is shown in 7-64 and described in 7-77.  
Return to Summary Table.  
Overrange Threshold 1 register (default: 0xAB). This register sets threshold 1 for ADC overrange detection.  
7-64. OVR_T1 Register  
7
6
5
4
3
2
1
0
OVR_T1  
R/W-0xAB  
7-77. OVR_T1 Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
OVR_T1  
R/W  
0xAB  
This parameter defines the absolute sample level that causes OVA1  
or OVB1 to be set. The detection level in dBFS (peak) is  
20log10(OVR_T1/256) (default: 0xAB = 171 > -3.5dBFS)  
Copyright © 2023 Texas Instruments Incorporated  
118  
Submit Document Feedback  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6.1.59 OVR_CFG Register (Address = 0x213) [reset = 0x07]  
OVR_CFG is shown in 7-65 and described in 7-78.  
Return to Summary Table.  
Overrange Enable/Hold Off register (default: 0x07). This register enables overrange detection and sets the  
output pulse duration for an overrange event. The maximum overrange pulse duration is recommended to avoid  
excess switching noise.  
7-65. OVR_CFG Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0x0  
OVR_EN  
R/W-0x0  
OVR_N  
R/W-0x7  
7-78. OVR_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
3
RESERVED  
OVR_EN  
R/W  
0x0  
Reserved  
R/W  
R/W  
0x0  
0x7  
ORA0, ORA1, ORB0 and ORB1 outputs pins are enabled and output  
the overrange status when this bit is set high. The outputs are held  
low when this bit is set low.  
2-0  
OVR_N  
Program this register to adjust the pulse length for the ORA0, ORA1  
and ORB0, ORB1 outputs.  
The minimum pulse duration of the overrange outputs is 8 × 2OVR_N  
CLK± cycles.  
7.6.1.60 SPIN_ID Register (Address = 0x297) [reset = 0x00]  
SPIN_ID is shown in 7-66 and described in 7-79.  
Return to Summary Table.  
Chip Spin Identifier register (default from fuse ROM, read-only). This register returns the spin identification  
number of the device.  
7-66. SPIN_ID Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0x0  
SPIN_ID  
R/W-0x0  
7-79. SPIN_ID Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4-0  
RESERVED  
SPIN_ID  
R/W  
0x0  
Reserved  
R/W  
0x0  
Returns 0 to indicate that this device is ADC12DL3200.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
119  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6.1.61 SRC_EN Register (Address = 0x2B0) [reset = 0x00]  
SRC_EN is shown in 7-67 and described in 7-80.  
Return to Summary Table.  
SYSREF Calibration Enable register (default: 0x00). This register starts the SYSREF calibration process.  
7-67. SRC_EN Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0x0  
SRC_EN  
R/W-0x0  
7-80. SRC_EN Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
0
RESERVED  
SRC_EN  
R/W  
0x0  
Reserved  
R/W  
0x0  
0 : SYSREF calibration disabled (default). Use the TAD register to  
manually control the tAD Adjust setting and adjust the CLK± aperture  
delay.  
1: SYSREF calibration enabled. The CLK± delay is automatically  
calibrated. The TAD register is ignored. A 0-to-1 transition on  
SRC_EN starts the SYSREF calibration sequence. Program  
SRC_CFG before setting SRC_EN. Ensure that ADC calibration is  
not running before setting SRC_EN.  
Copyright © 2023 Texas Instruments Incorporated  
120 Submit Document Feedback  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6.1.62 SRC_CFG Register (Address = 0x2B1) [reset = 0x05]  
SRC_CFG is shown in 7-68 and described in 7-81.  
Return to Summary Table.  
SYSREF Calibration Configuration register (default: 0x05). This register determines the amount of averaging  
performed for automatic SYSREF calibration and sets the maximum supported SYSREF cycle. The total  
duration of SYSREF calibration will be no longer than: TSYSREFCAL (in CLK± cycles) = 256 * 19 * 4 *  
(SRC_AVG + SRC_HDUR + 2).  
7-68. SRC_CFG Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0x0  
SRC_AVG  
R/W-0x1  
SRC_HDUR  
R-0x1  
7-81. SRC_CFG Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-4  
3-2  
RESERVED  
SRC_AVG  
0x0  
Reserved  
0x1  
Specifies the amount of averaging used for SYSREF Calibration.  
Larger values will increase calibration time and reduce the variance  
of the calibrated value.  
0: 4 high-speed accumulations for each SYSREF measurement  
1: 16 high-speed accumulations for each SYSREF measurement  
2: 64 high-speed accumulations for each SYSREF measurement  
3: 256 high-speed accumulations for each SYSREF measurement  
1-0  
SRC_HDUR  
R/W  
0x1  
Specifies the duration of each high-speed accumulation for SYSREF  
Calibration. If the SYSREF period exceeds the supported value,  
calibration will fail. Larger values will increase calibration time and  
support longer SYSREF periods. For a given SYSREF period, larger  
values will also reduce the variance of the calibrated value.  
0: 4 cycles per accumulation, supporting SYSREF periods of up to  
85 CLK± cycles  
1: 16 cycles per accumulation, supporting SYSREF periods of up to  
1100 CLK± cycles  
2: 64 cycles per accumulation, supporting SYSREF periods of up to  
5200 CLK± cycles  
3: 256 cycles per accumulation, supporting SYSREF periods of up to  
21580 CLK± cycles  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 121  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6.1.63 SRC_STATUS Register (Address = 0x2B2) [reset = Undefined]  
SRC_STATUS is shown in 7-69 and described in 7-82.  
Return to Summary Table.  
SYSREF Calibration Status register (read-only, default: undefined). This register indicates that the SYSREF  
calibration process has completed and outputs the result of the SYSREF calibration process.  
7-69. SRC_STATUS Register  
23  
15  
7
22  
14  
6
21  
13  
5
20  
19  
18  
10  
2
17  
16  
SRC_TAD[16]  
R-Undefined  
8
RESERVED  
R-Undefined  
SRC_DONE  
R-Undefined  
9
12  
11  
SRC_TAD[15:8]  
R-Undefined  
4
3
1
0
SRC_TAD[7:0]  
R-Undefined  
7-82. SRC_STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23-18  
17  
RESERVED  
SRC_DONE  
R/W  
0x0  
Reserved  
R/W  
0x0  
This bit returns 1when SRC_EN=1 and SYSREF Calibration  
has been completed.  
16-0  
SRC_TAD  
R/W  
0x0  
This field returns the value for t AD Adjust computed by SYSREF  
Calibration. It is only valid if SRC_DONE=1. SRC_TAD[16] indicates  
if CLK± has been inverted. SRC_TAD[15:8] indicates the coarse  
delay adjustment.  
SRC_TAD[7:0] indicates the fine delay adjustment. SRC_TAD can be  
read out and manually written to the TAD register during subsequent  
boot cycles for repeatability.  
Copyright © 2023 Texas Instruments Incorporated  
122 Submit Document Feedback  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6.1.64 TAD Register (Address = 0x2B5-2B7) [reset = 0x000000]  
TAD is shown in 7-70 and described in 7-83.  
Return to Summary Table.  
CLK± Timing Adjust register (default: 0x00). This register sets the tAD Adjust delay when automatic SYRSEF  
calibration is not used.  
7-70. TAD Register  
23  
15  
7
22  
14  
6
21  
13  
5
20  
19  
11  
3
18  
10  
2
17  
9
16  
TAD[16]  
R-0x0  
8
RESERVED  
R-Undefined  
12  
TAD[15:8]  
R-0x00  
4
1
0
TAD[7:0]  
R-0x00  
7-83. TAD Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
23-17  
16-0  
RESERVED  
TAD  
0x0  
Reserved  
0x0  
This register controls tAD Adjust when SRC_EN=0. Use this register  
to manually control the CLK± inversion and delay when SYSREF  
Calibration is disabled.  
TAD[16] inverts CLK± when set. TAD[15:8] controls the coarse delay  
adjustment. TAD[7:0] controls the fine delay adjustment.  
If ADC calibration is enabled (CAL_EN=1), or the LVDS interface is  
enabled (LVDS_EN=1), the following rules must be obeyed to avoid  
clock glitches and unpredictable behavior:  
Do not change TAD[16]. CAL_EN and LVDS_EN must be set to 0  
before changing TAD[16].  
TAD[15:8] must be increased or decreased gradually (no more than  
4 codes at a time). This rule can be obeyed manually via SPI writes  
or by setting TAD_RAMP_EN.  
TAD[7:0] may be changed to any value at any time since its  
resolution is too fine to cause clock glitches.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 123  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6.1.65 TAD_RAMP Register (Address = 0x2B8) [reset = 0x00]  
TAD_RAMP is shown in 7-71 and described in 7-84.  
Return to Summary Table.  
CLK± Timing Adjust Ramp Control register (default: 0x00). This register enables the tAD adjust ramping feature  
and sets the ramp rate.  
7-71. TAD_RAMP Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0x0  
TAD_RAMP_RATE  
R/W-0x0  
TAD_RAMP_EN  
R/W-0x0  
7-84. TAD_RAMP Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
RESERVED  
R/W  
0x0  
Reserved  
1
TAD_RAMP_RATE  
R/W  
0x0  
Specify the ramp rate for tAD adjust when the TAD[15:8] register is  
written while TAD_RAMP_EN is 1.  
0 : tAD adjust ramps up or down one code per 256 CLK± cycles.  
1 : tAD adjust ramps up or down four codes per 256 CLK± cycles.  
0
TAD_RAMP_EN  
R/W  
0x0  
TAD ramp enable. Set this bit if ramping of the coarse tAD adjust is  
desired.  
0 : After writing the TAD[15:8] register, tAD adjust is updated fully  
within 1024 CLK± cycles (ramp feature disabled).  
1 : After writing the TAD[15:8] register, tAD adjust ramps up or down  
gradually until it matches the TAD[15:8] register.  
When TAD_RAMP_EN is 1, and the user writes the TAD[15:8]  
register, a digital counter will automatically ramp tAD adjust up or  
down until it matches the TAD[15:8] register value. This ensures that  
the coarse delay changes gradually and does not cause glitches in  
the delayed CLK± waveform.  
Copyright © 2023 Texas Instruments Incorporated  
124 Submit Document Feedback  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6.1.66 ALARM Register (Address = 0x2C0) [reset = Undefined]  
ALARM is shown in 7-72 and described in 7-85.  
Return to Summary Table.  
Alarm Interrupt register (read-only). This register indicates if any unmasked alarm in has been triggered in the  
ALM_STATUS register.  
7-72. ALARM Register  
7
6
5
4
3
2
1
0
RESERVED  
R-Undefined  
ALARM  
R-Undefined  
7-85. ALARM Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
0
RESERVED  
ALARM  
R
Undefined  
Reserved  
R
Undefined  
This bit returns a 1whenever any unmasked alarm is set in the  
ALM_STATUS register. Use ALM_MASK to mask (disable) individual  
alarms.  
CAL_STATUS_SEL can be used to drive the ALARM bit onto the  
CAL_STAT pin to provide a hardware alarm interrupt signal.  
7.6.1.67 ALM_STATUS Register (Address = 0x2C1) [reset = 0x05]  
ALM_STATUS is shown in 7-73 and described in 7-86.  
Return to Summary Table.  
Alarm Status register (default: 0x05, write to clear). This register indicates if the individual alarms have been  
triggered.  
7-73. ALM_STATUS Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0x0  
REALIGNED_ALM  
R/W-0x1  
RESERVED  
R/W-0x0  
CLK_ALM  
R/W-0x1  
7-86. ALM_STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-3  
RESERVED  
R/W  
0x0  
Reserved  
2
REALIGNED_ALM  
R/W  
0x1  
Realigned Alarm: This bit is set whenever SYSREF causes the  
internal clocks (including the frame counter) to be realigned to a new  
phase. Write a 1to clear this bit.  
1
0
RESERVED  
CLK_ALM  
R/W  
R/W  
0x0  
0x1  
Reserved  
Clock Alarm: This bit can be used to detect an upset to the internal  
clocks. This bit is set whenever the internal clock dividers for the A  
and B channels do not match. Write a 1to clear this bit. Refer to  
Alarm Monitoring for the proper usage of this register.  
Note: After power-on reset or soft-reset, all alarm bits are set to  
1.’  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 125  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6.1.68 ALM_MASK Register (Address = 0x2C2) [reset = 0x05]  
ALM_MASK is shown in 7-74 and described in 7-87.  
Return to Summary Table.  
Alarm Mask register (default: 0x05). This register is used to mask out alarms that should not trigger the ALARM  
interrupt.  
7-74. ALM_MASK Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0x0  
MASK_REALIGNED_ALM  
R/W-0x1  
RESERVED  
R/W-0x0  
MASK_CLK_ALM  
R/W-0x1  
7-87. ALM_MASK Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-3  
RESERVED  
R/W  
0x0  
Reserved  
2
MASK_REALIGNED_ALM R/W  
0x1  
When set, REALIGNED_ALM is masked and will not impact the  
ALARM register bit.  
1
0
RESERVED  
R/W  
R/W  
0x0  
0x1  
Reserved  
MASK_CLK_ALM  
When set, CLK_ALM is masked and will not impact the ALARM  
register bit.  
7.6.1.69 TADJ_A Register (Address = 0x310) [reset = Undefined]  
TADJ_A is shown in 7-75 and described in 7-88.  
Return to Summary Table.  
Timing Adjust for A-ADC, Dual Mode register (default from fuse ROM). This register is used for ADC timing trim.  
Refer to the Trimming section for more information.  
7-75. TADJ_A Register  
7
6
5
4
3
2
1
0
TADJ_A  
R/W-Undefined  
7-88. TADJ_A Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
TADJ_A  
R/W  
Undefined  
This register (and other TADJ* registers that follow it) are used to  
adjust the sampling instant of each ADC core. Different TADJ  
registers apply to different ADCs under different modes of operation.  
The default values for all TADJ* registers are loaded from the fuse  
ROM. The factory trimmed values can be read out and adjusted as  
required.  
Copyright © 2023 Texas Instruments Incorporated  
126 Submit Document Feedback  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6.1.70 TADJ_B Register (Address = 0x313) [reset = Undefined]  
TADJ_B is shown in 7-76 and described in 7-89.  
Return to Summary Table.  
Timing Adjust for B-ADC, Dual Mode register (default from fuse ROM). This register is used for ADC timing trim.  
Refer to the Trimming section for more information.  
7-76. TADJ_B Register  
7
6
5
4
3
2
1
0
TADJ_B  
R/W-Undefined  
7-89. TADJ_B Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
TADJ_B  
R/W  
Undefined  
See TADJ_A register for description.  
7.6.1.71 TADJ_A_FG90_VINA Register (Address = 0x314) [reset = Undefined]  
TADJ_A_FG90_VINA is shown in 7-77 and described in 7-90.  
Return to Summary Table.  
Timing Adjust for A-ADC, DES, Foreground Calibration, INA± register (default from fuse ROM). This register is  
used for ADC timing trim. Refer to the Trimming section for more information.  
7-77. TADJ_A_FG90_VINA Register  
7
6
5
4
3
2
1
0
TADJ_A_FG90_VINA  
R/W-Undefined  
7-90. TADJ_A_FG90_VINA Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
TADJ_A_FG90_VINA  
R/W  
Undefined  
See TADJ_A register for description.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 127  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6.1.72 TADJ_B_FG0_VINA Register (Address = 0x315) [reset = Undefined]  
TADJ_B_FG0_VINA is shown in 7-78 and described in 7-91.  
Return to Summary Table.  
Timing Adjust for B-ADC, DES, Foreground Calibration, INA± regsiter (default from fuse ROM). This register is  
used for ADC timing trim. Refer to the Trimming section for more information.  
7-78. TADJ_B_FG0_VINA Register  
7
6
5
4
3
2
1
0
TADJ_B_FG0_VINA  
R/W-Undefined  
7-91. TADJ_B_FG0_VINA Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
TADJ_B_FG0_VINA  
R/W  
Undefined  
See TADJ_A register for description.  
7.6.1.73 TADJ_A_FG90_VINB Register (Address = 0x31A) [reset = Undefined]  
TADJ_A_FG90_VINB is shown in 7-79 and described in 7-92.  
Return to Summary Table.  
Timing Adjust for A-ADC, DES, Foreground Calibration, INB± register (default from fuse ROM). This register is  
used for ADC timing trim. Refer to the Trimming section for more information.  
7-79. TADJ_A_FG90_VINB Register  
7
6
5
4
3
2
1
0
TADJ_A_FG90_VINB  
R/W-Undefined  
7-92. TADJ_A_FG90_VINB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
TADJ_A_FG90_VINB  
R/W  
Undefined  
See TADJ_A register for description.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR3  
128 Submit Document Feedback  
Product Folder Links: ADC12DL3200  
 
 
 
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6.1.74 TADJ_B_FG0_VINB Register (Address = 0x31B) [reset = 0x0]  
TADJ_B_FG0_VINB is shown in 7-80 and described in 7-93.  
Return to Summary Table.  
Timing Adjust for B-ADC, DES, Foreground Calibration, INB± register (default from fuse ROM). This register is  
used for ADC timing trim. Refer to the Trimming section for more information.  
7-80. TADJ_B_FG0_VINB Register  
7
6
5
4
3
2
1
0
TADJ_B_FG0_VINB  
R/W-Undefined  
7-93. TADJ_B_FG0_VINB Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
TADJ_B_FG0_VINB  
R/W  
Undefined  
See TADJ_A register for description.  
7.6.1.75 OADJ_A_FG0_VINA Register (Address = 0x344) [reset = Undefined]  
OADJ_A_FG0_VINA is shown in 7-81 and described in 7-94.  
Return to Summary Table.  
Offset Adjustment for A-ADC / Foreground Calibration / 0° Clock / INA± register (default from fuse ROM). This  
register is used for ADC core offset trimming. See the Trimming section for more details.  
7-81. OADJ_A_FG0_VINA Register  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
R/W-Undefined  
OADJ_A_FG0_VINA  
R/W-Undefined  
7
6
5
4
3
2
1
0
OADJ_A_FG0_VINA  
R/W-Undefined  
7-94. OADJ_A_FG0_VINA Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-12  
11-0  
RESERVED  
R/W  
Undefined  
Reserved  
OADJ_A_FG0_VINA  
R/W  
Undefined  
Offset adjustment value applied to A-ADC when it samples INA±  
using 0° clock phase and foreground calibration is enabled.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 129  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6.1.76 OADJ_A_FG0_VINB Register (Address = 0x346) [reset = Undefined]  
OADJ_A_FG0_VINB is shown in 7-82 and described in 7-95.  
Return to Summary Table.  
Offset Adjustment for A-ADC / Foreground Calibration / 0° Clock / INB± register (default from fuse ROM). This  
register is used for ADC core offset trimming. See the Trimming section for more details.  
7-82. OADJ_A_FG0_VINB Register  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
R/W-Undefined  
OADJ_A_FG_VINB  
R/W-Undefined  
7
6
5
4
3
2
1
0
OADJ_A_FG_VINB  
R/W-Undefined  
7-95. OADJ_A_FG0_VINB Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-12  
11-0  
RESERVED  
R/W  
Undefined  
Reserved  
OADJ_A_FG0_VINB  
R/W  
Undefined  
Offset adjustment value applied to A-ADC when it samples INB±  
using 0° clock phase and foreground calibration is enabled.  
7.6.1.77 OADJ_A_FG90_VINA Register (Address = 0x348) [reset = Undefined]  
OADJ_A_FG90_VINA is shown in 7-83 and described in 7-96.  
Return to Summary Table.  
Offset Adjustment for A-ADC / Foreground Calibration / 90° Clock / INA± register (default from fuse ROM). This  
register is used for ADC core offset trimming. See the Trimming section for more details.  
7-83. OADJ_A_FG90_VINA Register  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
R/W-Undefined  
OADJ_A_FG90_VINA  
R/W-Undefined  
7
6
5
4
3
2
1
0
OADJ_A_FG90_VINA  
R/W-Undefined  
7-96. OADJ_A_FG90_VINA Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-12  
11-0  
RESERVED  
R/W  
Undefined  
Reserved  
OADJ_A_FG90_VINA  
R/W  
Undefined  
Offset adjustment value applied to A-ADC when it samples INA±  
using 90° clock phase and foreground calibration is enabled.  
Copyright © 2023 Texas Instruments Incorporated  
130 Submit Document Feedback  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6.1.78 OADJ_A_FG90_VINB Register (Address = 0x34A) [reset = Undefined]  
OADJ_A_FG90_VINB is shown in 7-84 and described in 7-97.  
Return to Summary Table.  
Offset Adjustment for A-ADC / Foreground Calibration / 90° Clock / INB± register (default from fuse ROM). This  
register is used for ADC core offset trimming. See the Trimming section for more details.  
7-84. OADJ_A_FG90_VINB Register  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
R/W-Undefined  
OADJ_A_FG90_VINB  
R/W-Undefined  
7
6
5
4
3
2
1
0
OADJ_A_FG90_VINB  
R/W-Undefined  
7-97. OADJ_A_FG90_VINB Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-12  
11-0  
RESERVED  
R/W  
Undefined  
Reserved  
OADJ_A_FG90_VINB  
R/W  
Undefined  
Offset adjustment value applied to A-ADC when it samples INB±  
using 90° clock phase and foreground calibration is enabled.  
7.6.1.79 OADJ_B_FG0_VINA Register (Address = 0x34C) [reset = Undefined]  
OADJ_B_FG0_VINA is shown in 7-85 and described in 7-98.  
Return to Summary Table.  
Offset Adjustment for B-ADC / Foreground Calibration / INA± register (default from fuse ROM). This register is  
used for ADC core offset trimming. See the Trimming section for more details.  
7-85. OADJ_B_FG0_VINA Register  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
R/W-Undefined  
OADJ_B_FG0_VINA  
R/W-Undefined  
7
6
5
4
3
2
1
0
OADJ_B_FG0_VINA  
R/W-Undefined  
7-98. OADJ_B_FG0_VINA Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-12  
11-0  
RESERVED  
R/W  
Undefined  
Reserved  
OADJ_B_FG0_VINA  
R/W  
Undefined  
Offset adjustment value applied to B-ADC when it samples INA±  
using 0° clock phase and foreground calibration is enabled.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 131  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6.1.80 OADJ_B_FG0_VINB Register (Address = 0x34E) [reset = Undefined]  
OADJ_B_FG0_VINB is shown in 7-86 and described in 7-99.  
Return to Summary Table.  
Offset Adjustment for B-ADC / Foreground Calibration / INB± register (default from fuse ROM). This register is  
used for ADC core offset trimming. See the Trimming section for more details.  
7-86. OADJ_B_FG0_VINB Register  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
R/W-Undefined  
OADJ_B_FG0_VINB  
R/W-Undefined  
7
6
5
4
3
2
1
0
OADJ_B_FG0_VINB  
R/W-Undefined  
7-99. OADJ_B_FG0_VINB Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-12  
11-0  
RESERVED  
R/W  
Undefined  
Reserved  
OADJ_B_FG0_VINB  
R/W  
Undefined  
Offset adjustment value applied to B-ADC when it samples INB±  
using 0° clock phase and foreground calibration is enabled.  
7.6.1.81 GAIN_B0 Register (Address = 0x360) [reset = Undefined]  
GAIN_B0 is shown in 7-87 and described in 7-100.  
Return to Summary Table.  
Fine Gain Adjust for Bank 0 register (default from fuse ROM). This register adjusts the gain of the Bank 0 ADC.  
7-87. GAIN_B0 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-Undefined  
GAIN_B0  
R/W-Undefined  
7-100. GAIN_B0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4-0  
RESERVED  
GAIN_B0  
R/W  
Undefined  
Reserved  
R/W  
Undefined  
Fine gain adjustment for bank 0.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR3  
132 Submit Document Feedback  
Product Folder Links: ADC12DL3200  
 
 
 
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6.1.82 GAIN_B1 Register (Address = 0x361) [reset = Undefined]  
GAIN_B1 is shown in 7-88 and described in 7-101.  
Return to Summary Table.  
Fine Gain Adjust for Bank 1 register (default from fuse ROM). This register adjusts the gain of the Bank 1 ADC.  
7-88. GAIN_B1 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-Undefined  
GAIN_B1  
R/W-Undefined  
7-101. GAIN_B1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4-0  
RESERVED  
GAIN_B1  
R/W  
Undefined  
Reserved  
R/W  
Undefined  
Fine gain adjustment for bank 1.  
7.6.1.83 GAIN_B4 Register (Address = 0x364) [reset = Undefined]  
GAIN_B4 is shown in 7-89 and described in 7-102.  
Return to Summary Table.  
Fine Gain Adjust for Bank 4 register (default from fuse ROM). This register adjusts the gain of the Bank 4 ADC.  
7-89. GAIN_B4 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-Undefined  
GAIN_B4  
R/W-Undefined  
7-102. GAIN_B4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4-0  
RESERVED  
GAIN_B4  
R/W  
Undefined  
Reserved  
R/W  
Undefined  
Fine gain adjustment for bank 4.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 133  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
 
 
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7.6.1.84 GAIN_B5 Register (Address = 0x365) [reset = Undefined]  
GAIN_B5 is shown in 7-90 and described in 7-103.  
Return to Summary Table.  
Fine Gain Adjust for Bank 5 register (default from fuse ROM). This register adjusts the gain of the Bank 5 ADC.  
7-90. GAIN_B5 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-Undefined  
GAIN_B5  
R/W-Undefined  
7-103. GAIN_B5 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4-0  
RESERVED  
GAIN_B5  
R/W  
Undefined  
Reserved  
R/W  
Undefined  
Fine gain adjustment for bank 5.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR3  
134 Submit Document Feedback  
Product Folder Links: ADC12DL3200  
 
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
8.1 Application Information  
The ADC12DL3200 can be used in a wide range of applications including radar, electronic warfare, satellite  
communications, test equipment (communications testers and oscilloscopes) and software-defined radios  
(SDRs). The wide input bandwidth enables direct RF sampling to at least 10 GHz and the high sampling rate  
allows signal bandwidths of greater than 3 GHz. The ADC12DL3200 can also be DC-coupled to meet the needs  
of oscilloscopes or wideband digitizers. The 8.2 section describes two configurations that meet the needs of a  
number of these applications.  
8.2 Typical Applications  
8.2.1 Wideband RF Sampling Receiver  
This section demonstrates the use of the ADC12DL3200 as a wideband RF sampling receiver. The solution is  
flexible and can be used as either a 2-channel receiver (such as a diversity receiver) or as a single channel  
allowing double the signal bandwidth. The ADC is driven by single-ended RF amplifiers and the conversion to  
differential signaling is achieved by a transformer (balun). The ADC12DL3200 uses a low-latency LVDS interface  
in order to achieve quick event detection for latency-sensitive applications.  
Up to 56 LVDS  
pairs  
LNA  
LNA  
Anti-Alias BPF  
ADC A  
LVDS  
SYNC~  
LNA  
LNA  
Anti-Alias BPF  
ADC B  
LVDS  
FPGA or ASIC  
Clocking  
Subsystem  
User Control  
Logic  
SPI  
LMK04832  
Device Clock  
÷
÷
÷
÷
SYSREF  
10 MHz  
Reference  
N÷  
R÷  
Device Clock  
SYSREF  
8-1. Typical Configuration for Wideband RF Sampling  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 135  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
8.2.1.1 Design Requirements  
8.2.1.1.1 Input Signal Path  
Use appropriate band-limiting filters to reject unwanted frequencies in the input signal path.  
A 1:2 balun transformer is needed to convert the 50-Ω, single-ended signal to 100-Ω differential for input to the  
ADC. The balun outputs can be either AC-coupled, or directly connected to the ADC differential inputs, which are  
terminated internally to GND.  
Drivers must be selected to provide any needed signal gain and that have the necessary bandwidth capabilities.  
In general, baluns must be selected to cover the needed frequency range, have a 1:2 impedance ratio, and have  
acceptable gain and phase balance over the frequency range of interest. Mount baluns with poor differential  
output return loss as close to the ADC inputs as possible to avoid ripples in the frequency response at high input  
frequencies. Resistive attenuators (Pi- or T-type) can also help dampen ripples caused by poor return loss. 表  
8-1 lists a number of recommended baluns for different frequency ranges.  
8-1. Recommended Baluns  
PART NUMBER  
BAL-0009SMG  
BAL-0208SMG  
TCM2-43X+  
MANUFACTURER(1)  
Marki Microwave  
Marki Microwave  
Mini-Circuits  
MINIMUM FREQUENCY (MHz) MAXIMUM FREQUENCY (MHz)  
0.5  
2000  
10  
9000  
8000  
4000  
3000  
3000  
TCM2-33WX+  
B0430J50100AHF  
Mini-Circuits  
10  
Anaren  
400  
(1) See the 8 section.  
8.2.1.1.2 Clocking  
The ADC12DL3200 clock inputs must be AC-coupled to the device to ensure rated performance. The clock  
source must have extremely low jitter (integrated phase noise) to enable rated performance. Recommended  
clock synthesizers include the LMX2594, LMX2592, and LMX2582.  
For multi-device synchronization the data converter system (ADC plus FPGA) requires a SYSREF signal in  
addition to the device (sampling) clock, which is similar to that used for JESD204B converters. Therefore,  
JESD204B-compatible clock devices are a good choice for clocking the ADC12DL3200. The LMK04832,  
LMK04828, LMK04826, and LMK04821 devices are suitable to generate these clocks. Depending on the ADC  
clock frequency and jitter requirements, this device can also be used as the system clock synthesizer or as a  
device clock and SYSREF distribution device when multiple ADC12DL3200 devices are used in a system.  
8.2.1.2 Detailed Design Procedure  
Certain component values used in conjunction with the ADC12DL3200 must be calculated based on system  
parameters. Those items are covered in this section.  
8.2.1.2.1 Calculating Values of AC-Coupling Capacitors  
AC-coupling capacitors are used in the input CLK± pair. The capacitor values must be large enough to address  
the lowest frequency signals of interest, but not so large as to cause excessively long startup biasing times, or  
unwanted parasitic inductance.  
The minimum capacitor value can be calculated based on the lowest frequency signal that is transferred through  
the capacitor. Given a 50-Ω, single-ended clock or data path impedance, good practice is to set the capacitor  
impedance to be less than 1 Ωat the lowest frequency of interest. This setting ensures minimal impact on signal  
level at that frequency. For the CLK± path, the minimum-rated clock frequency is 800 MHz. Therefore, the  
minimum capacitor value can be calculated from:  
ZC = 1/ 2 ´ p ´ ¦  
(
´ C  
)
CLK  
(3)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR3  
136 Submit Document Feedback  
Product Folder Links: ADC12DL3200  
 
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
Setting Zc = 1 Ωand rearranging gives:  
C = 1/ 2 ´ p ´ 800 MHz ´ 1 W = 199 pF  
)
(
(4)  
Therefore, a capacitance value of at least 199 pF is needed to provide the low-frequency response for the CLK±  
path. If the minimum clock frequency is higher than 800 MHz, this calculation can be revisited for that frequency.  
Capacitors must also be selected for good response at high frequencies, usually identified by low inductance or  
high self-resonance frequency, and with dimensions that match the high-frequency signal traces they are  
connected to. Capacitors of the 0201 size are frequently well-suited to these applications.  
8.2.1.3 Application Curves  
The ADC12DL3200 can be used in either dual-channel mode or single-channel mode to suit different  
applications and system architectures. 8-2 and show operation with a 497.77-MHz input signal in the following  
configurations:  
6.4 GSPS, single-channel mode (DES_EN = 1), four LVDS buses (LDEMUX = 1), and staggered output data  
(LALIGNED = 0)  
3.2 GSPS, dual-channel mode (DES_EN = 0), four LVDS buses (LDEMUX = 1), and staggered output data  
(LALIGNED = 0)  
8-2. FFT for 497.77-MHz Input Signal in Single-  
8-3. FFT for 497.77-MHz Input Signal in Dual-  
Channel Mode at 6.4 GSPS  
Channel Mode at 3.2 GSPS  
8.2.2 Reconfigurable Dual-Channel, 2.5-GSPS or Single-Channel, 5.0-GSPS Oscilloscope  
This section demonstrates the use of the ADC12DL3200 in a reconfigurable oscilloscope. The oscilloscope can  
operate as a dual-channel oscilloscope running at 2.5 GSPS or can be reconfigured through SPI programming  
as a single-channel, 5-GSPS oscilloscope. This reconfigurable setup allows tradeoffs between the number of  
channels and the sampling rate of the oscilloscope as needed without changing the hardware. Set the input  
bandwidth to the desired maximum signal bandwidth through the use of an antialiasing, low-pass filter. Digital  
filtering can then be used to reconfigure the analog bandwidth as required. For instance, the maximum  
bandwidth can be set to 1 GHz for use during pulsed transient detection and then reconfigured to 100 MHz  
through digital filtering for low-noise, power-supply ripple observation. 8-4 shows the application block  
diagram for a reconfigurable oscilloscope.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 137  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
Up to 56 LVDS  
pairs  
LMH5401  
LMH6401  
Anti-Alias LPF  
Front Panel  
Channel A  
Programmable  
Termination  
ADC A  
LVDS  
DC Offset  
Adjustment  
DAC  
SYNC~  
LMH6559  
OPA703  
DAC8560  
LMH6401  
LMH5401  
Anti-Alias LPF  
Front Panel  
Channel B  
Programmable  
Termination  
ADC B  
LVDS  
FPGA or ASIC  
DC Offset  
Adjustment  
DAC  
Clocking  
Subsystem  
User Control  
Logic  
LMH6559  
OPA703  
DAC8560  
SPI  
LMK04832  
Device Clock  
÷
÷
÷
÷
SYSREF  
10 MHz  
Reference  
N÷  
R÷  
Device Clock  
SYSREF  
8-4. Typical Configuration for a Reconfigurable Oscilloscope  
8.2.2.1 Design Requirements  
8.2.2.1.1 Input Signal Path  
Most oscilloscopes are required to be DC-coupled in order to monitor DC or low-frequency signals. This  
requirement forces the design to use DC-coupled, fully differential amplifiers to convert from single-ended  
signaling at the front panel to differential signaling at the ADC. This design uses two differential amplifiers. The  
first amplifier shown in 8-4 is the LMH5401 that converts from single-ended to differential signaling. The  
LMH5401 interfaces with the front panel through a programmable termination network and has an offset  
adjustment input. The amplifier has an 8-GHz, gain-bandwidth product that is sufficient to support a 1-GHz  
bandwidth oscilloscope. A second amplifier, the LMH6401, comes after the LMH5401 to provide a digitally  
programmable gain control for the oscilloscope. The LMH6401 supports a gain range from 6 dB to 26 dB in 1-  
dB steps. If gain control is not necessary or is performed in a different location in the signal chain, then this  
amplifier can be replaced with a second LMH5401 for additional fixed gain or omitted altogether.  
The input of the oscilloscope contains a programmable termination block that is not covered in detail here. This  
block enables the front-panel input termination to be programmed. For instance, many oscilloscopes allow the  
termination to be programmed as either 50-Ω or 1-MΩ to meet the needs of various applications. A 75-Ω  
termination can also be desired to support cable infrastructure use cases. This block can also contain an option  
for DC blocking to remove the DC component of the external signal and therefore pass only AC signals.  
A precision digital-to-analog converter (DAC) is used to configure the offset of the oscilloscope front-end to  
prevent saturation of the analog signal chain for input signals containing large DC offsets. The DAC8560 is  
shown in 8-4 along with signal-conditioning amplifiers OPA703 and LMH6559. The first differential amplifier,  
LMH5401, is driven by the front panel input circuitry on one input, and the DC offset bias on the second input.  
The impedance of these driving signals must be matched at DC and over frequency to ensure good even-order  
harmonic performance in the single-ended to differential conversion operation. The high bandwidth of the  
LMH6559 allows the device to maintain low impedance over a wide frequency range.  
An antialiasing, low-pass filter is positioned at the input of the ADC to limit the bandwidth of the input signal into  
the ADC. This amplifier also band-limits the front-end noise to prevent aliased noise from degrading the signal-  
to-noise ratio of the overall system. Design this filter for the maximum input signal bandwidth specified by the  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR3  
138 Submit Document Feedback  
Product Folder Links: ADC12DL3200  
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
oscilloscope. The input bandwidth can then be reconfigured through the use of digital filters in the FPGA or ASIC  
to limit the oscilloscope input bandwidth to a bandwidth less than the maximum.  
8.2.2.1.2 Clocking  
The ADC12DL3200 clock inputs must be AC-coupled to the device to ensure rated performance. The clock  
source must have extremely low jitter (integrated phase noise) to enable rated performance. Recommended  
clock synthesizers include the LMX2594, LMX2592, and LMX2582.  
For multi-device synchronization or deterministic latency the data converter system (ADC plus FPGA) requires a  
SYSREF signal in addition to the device (sampling) clock, which is similar to that used for JESD204B converters.  
Therefore, JESD204B compatible clock devices are a good choice for clocking the ADC12DL3200. The  
LMK04832, LMK04828, LMK04826, and LMK04821 devices are suitable to generate these clocks. Depending  
on the ADC clock frequency and jitter requirements, this device can also be used as the system clock  
synthesizer or as a device clock and SYSREF distribution device when multiple ADC12DL3200 devices are used  
in a system.  
8.2.2.1.3 The ADC12DL3200  
The ADC12DL3200 is ideally suited for oscilloscope applications. The ability to tradeoff channel count and  
sampling speed allows designers to build flexible hardware to meet multiple needs. This flexibility saves  
development time and cost, allows hardware reuse for various projects, and enables software upgrade paths for  
additional functionality. The low code-error rate eliminates concerns about undesired time-domain glitches or  
sparkle codes. This rate makes the ADC12DL3200 a perfect fit for long-duration transient detection  
measurements and reduces the probability of false triggers. The input common-mode voltage of 0 V allows the  
driving amplifiers to use equal split power supplies that center the amplifier output common-mode voltage at 0 V  
and eliminates the need for common-mode voltage shifting before the ADC inputs. The high input bandwidth of  
the ADC12DL3200 simplifies the design of the driving amplifier circuit and antialiasing, low-pass filter. The use of  
dual-edge sampling (DES) in single-channel mode eliminates the need to change the clock frequency when  
switching between dual- and single-channel modes and simplifies synchronization by relaxing the setup and hold  
timing requirements of SYSREF. The tAD adjust circuit allows the user to time-align the sampling instances of  
multiple ADC12DL3200 devices.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 139  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
8.2.2.2 Application Curves  
The following application curves demonstrate performance and results only of the ADC. The amplifier front-end  
is not included in these measurements. 8-5 to 8-11 illustrate the following configurations and  
measurements:  
12-bit, 5-GSPS, single-channel oscilloscope  
Idle-channel noise (no input)  
40-MHz, square-wave time domain  
200-MHz, sine-wave time domain  
200-MHz, sine-wave frequency domain (FFT)  
12-bit, 2.5-GSPS, dual-channel oscilloscope  
Idle-channel noise (no input)  
40-MHz, square-wave (channel B) and 200-MHz, sine-wave (channel A) time domain  
40-MHz, square-wave (channel B) time domain and 200-MHz, sine-wave (channel A) frequency domain  
(FFT)  
8-5. Idle-Channel Noise (No Input) for 5-GSPS,  
8-6. 40-MHz, Square-Wave Time Domain for 5-  
Single-Channel Oscilloscope  
GSPS, Single-Channel Oscilloscope  
8-7. 200-MHz, Sine-Wave Time Domain for 5-  
8-8. 200-MHz, Sine-Wave Frequency Domain  
GSPS, Single-Channel Oscilloscope  
(FFT) for 5-GSPS, Single-Channel Oscilloscope  
Copyright © 2023 Texas Instruments Incorporated  
140 Submit Document Feedback  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
8-9. Idle-Channel Noise (No Input) for 2.5-GSPS, 8-10. 200-MHz, Sine-Wave (Channel A) and 40-  
Dual-Channel Oscilloscope  
MHz, Square-Wave (Channel B) Time Domain for 5-  
GSPS, Single-Channel Oscilloscope  
8-11. 200-MHz, Sine-Wave (Channel A) Frequency Domain (FFT) and 40-MHz, Square-Wave (Channel  
B) Time Domain for 5-GSPS, Single-Channel Oscilloscope  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 141  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
8.3 Initialization Set Up  
The device requires a specific startup and alignment sequence. The general order of that sequence is listed in  
the following steps.  
1. Power-up or reset the device.  
2. Apply a stable device CLK signal at the desired frequency.  
3. Program LVDS_EN = 0 to stop the LVDS state machine and allow setting changes.  
4. Program CAL_EN = 0 to stop the calibration state machine and allow setting changes.  
5. Program the LMODE register to the desired LVDS output mode.  
6. Program SYNC_SEL as needed. Choose SYNCSE or the TMSTP± differential inputs.  
7. Configure device calibration settings as desired. Select foreground or background calibration modes and  
offset calibration as needed.  
8. Program CAL_EN = 1 to enable the calibration state machine.  
9. Enable overrange via OVR_EN and adjust settings if desired.  
10. Program LVDS_EN = 1 to enable the LVDS interface and allow the receiver to initialize.  
11. Assert the SYNC signal (set by SYNC_SEL) if required to send the strobe signal or user-defined pattern.  
12. Program CAL_SOFT_TRIG = 0.  
13. Program CAL_SOFT_TRIG = 1 to initiate a calibration.  
8.4 Power Supply Recommendations  
The device requires two different power-supply voltages. 1.9 V DC is required for the VA19 power bus and 1.1 V  
DC is required for the VA11 and VD11 power buses. VLVDS can be set to any voltage between 1.9 V and 1.1 V.  
The LVDS output driver common-mode voltage tracks the VLVDS supply voltage. In general, a 1.9-V supply  
voltage for VLVDS can be used for standard LVDS receivers.  
The power-supply voltages must be low noise and provide the needed current to achieve rated device  
performance.  
There are two recommended power-supply architectures:  
1. Step down using high-efficiency switching converters, followed by a second stage of regulation to provide  
switching noise reduction and improved voltage accuracy.  
2. Directly step down the final ADC supply voltage using high-efficiency switching converters. This approach  
provides the best efficiency, but care must be taken to ensure switching noise is minimized to prevent  
degraded ADC performance.  
TI WEBENCH® Power Designer can be used to select and design the individual power-supply elements needed:  
see the WEBENCH® Power Designer  
Recommended switching regulators for the first stage include the TPS62085, TPS82130, TPS62130A, and  
similar devices.  
Recommended low dropout (LDO) linear regulators include the TPS7A7200, TPS74401, and similar devices.  
For the switcher only approach, the ripple filter must be designed with a notch frequency that aligns with the  
switching ripple frequency of the DC/DC converter. Make a note of the switching frequency reported from  
WEBENCH® and design the EMI filter and capacitor combination to have the notch frequency centered as  
needed. 8-12 and 8-13 illustrate the two approaches. Do not share VLVDS with the analog supply voltages  
in order to prevent digital switching noise from coupling into the analog signal chain. If VLVDS must be shared  
with either VA11 or VA19, apply careful power supply filtering to limit digital noise at the analog supply pins.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR3  
142 Submit Document Feedback  
Product Folder Links: ADC12DL3200  
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
5V-12V  
2.2V  
1.4V  
1.9V  
VA19  
Buck  
LDO  
47 F  
47 F  
10 F 0.1 F 0.1 F  
FB  
FB  
FB  
+
œ
Power  
Good  
GND  
GND  
GND  
GND  
1.1V  
VA11  
Buck  
LDO  
47 F  
47 F  
10 F 0.1 F 0.1 F  
FB  
GND  
GND  
GND  
VD11  
10 F 0.1 F 0.1 F  
FB  
GND  
VLVDS  
1.1V to 1.9V  
Buck  
47 F  
10 F 0.1 F 0.1 F  
FB  
FB  
GND  
GND  
FB = Ferrite Bead Filter  
FB = ferrite bead filter.  
8-12. LDO Linear Regulator Approach Example  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 143  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
1.9V  
Ripple Filter  
VA19  
5V-12V  
Buck  
10 F 10 F 10 F  
10 F 0.1 F 0.1 F  
FB  
FB  
FB  
+
œ
Power  
Good  
GND  
GND  
GND  
1.1V  
Ripple Filter  
VA11  
Buck  
10 F 10 F 10 F  
10 F 0.1 F 0.1 F  
FB  
FB  
GND  
GND  
VD11  
10 F 0.1 F 0.1 F  
GND  
1.1V to 1.9V  
FB  
VLVDS  
Buck  
47 F  
10 F 0.1 F 0.1 F  
FB  
GND  
GND  
Ripple Filter Notch Frequency to Match Fs of Buck Converter  
FB = Ferrite Bead Filter  
Ripple filter notch frequency to match the fs of the buck converter.  
FB = ferrite bead filter.  
8-13. Switcher-Only Approach Example  
8.4.1 Power Sequencing  
The voltage regulators must be sequenced using the power-good outputs and enable inputs to ensure that the  
Vx11 regulator is enabled after the VA19 supply is good. Similarly, as soon as the VA19 supply drops out of  
regulation on power-down, the Vx11 regulator is disabled.  
The general requirement for the ADC is that VA19 Vx11 during power-up, operation, and power-down.  
TI also recommends that VA11 and VD11 are derived from a common 1.1-V regulator. This recommendation  
ensures that all 1.1-V blocks are at the same voltage, and no sequencing problems exist between these  
supplies. Also use ferrite bead filters to isolate any noise on the VA11 and VD11 buses from affecting each other.  
If VA11 and VD11 are powered from separate regulators, then the device is sensitive to voltage drops that affect  
the VA11 input. In this case, if the VA11 voltage is brought down below 0.6 V, the device must be reset through  
the SOFT_RESET bit in the CONFIG_A register.  
VLVDS can be powered up independently of the other supplies.  
8.5 Layout  
8.5.1 Layout Guidelines  
There are many critical signals that require specific care during board design:  
1. Analog input signals  
2. CLK and SYSREF  
3. LVDS data outputs at up to 1.6 Gbps  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR3  
144 Submit Document Feedback  
Product Folder Links: ADC12DL3200  
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
a.  
4. Power connections  
5. Ground connections  
Items 1 and 2 must be routed for excellent signal quality at high frequencies. Use the following general practices  
for these signals:  
1. Route using loosely coupled 100-Ωdifferential traces. This routing minimizes impact of corners and length-  
matching serpentines on pair impedance.  
2. Provide adequate pair-to-pair spacing to minimize crosstalk.  
3. Provide adequate ground plane pour spacing to minimize coupling with the high-speed traces.  
4. Use smoothly radiused corners. Avoid 45- or 90-degree bends.  
5. Incorporate ground plane cutouts at component landing pads to avoid impedance discontinuities at these  
locations. Cutout below the landing pads on one or multiple ground planes to achieve a pad size or stackup  
height that achieves the needed 50-Ω, single-ended impedance.  
6. Avoid routing traces near irregularities in the reference ground planes. Irregularities include ground plane  
clearances associated with power and signal vias and through-hole component leads.  
7. Provide symmetrically located ground tie vias adjacent to any high-speed signal vias.  
8. When high-speed signals must transition to another layer using vias, transition as far through the board as  
possible (top to bottom is best case) to minimize via stubs on top or bottom of the vias. If layer selection is  
not flexible, use back-drilled or buried, blind vias to eliminate stubs.  
The LVDS data outputs must be routed with sufficient signal quality using the following general practices:  
1. Route using tightly coupled 100-Ωdifferential traces to minimize the routing area and decrease crosstalk  
between adjacent data pairs.  
2. Use smoothly radiused corners or 45-degree bends. Avoid 90-degree bends.  
3. Avoid routing traces near irregularities in the reference ground planes. Irregularities include ground plane  
clearances associated with power and signal vias and through-hole component leads.  
4. Provide symmetrically located ground tie vias adjacent to any high-speed signal vias.  
5. Data, clock, and strobe pairs must be sufficiently delay matched to provide adequate timing margin at the  
receiver. If routing on multiple layers, trace lengths must be compensated for the delay mismatch introduced  
by the effective dielectric constant of each layer.  
In addition, TI recommends performing signal quality simulations of the critical signal traces before committing to  
fabrication. Perform insertion loss, return loss, and time domain reflectometry (TDR) evaluations.  
The power and ground connections for the device are also very important. These rules must be followed:  
1. Provide low-resistance connection paths to all power and ground pins.  
2. Use multiple power layers if necessary to access all pins.  
3. Avoid narrow isolated paths that increase connection resistance.  
4. Use a signal, ground, or power circuit board stackup to maximum coupling between the ground and power  
planes.  
8.5.2 Layout Example  
8-14 to 8-16 provide examples of the critical traces routed on the device evaluation module (EVM). 8-17  
provides an example printed circuit board (PCB) layer stackup.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 145  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
8-14. Top Layer Routing: Analog Inputs, CLK and SYSREF, DA0-3, DB0-3  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR3  
146 Submit Document Feedback  
Product Folder Links: ADC12DL3200  
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
8-15. GND1 Cutouts to Optimize Impedance of Component Pads  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 147  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
8-16. Bottom Layer Routing: Additional CLK Routing, DA4-7, DB4-7  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR3  
148 Submit Document Feedback  
Product Folder Links: ADC12DL3200  
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
L1 - SIG  
0.0056"  
Panasonic R-5670K  
Panasonic R-5775K  
L2 - GND  
L3 - SIG  
0.0030"  
0.0042"  
0.0030"  
0.0040"  
0.0026"  
0.0039"  
0.0026"  
0.0040"  
0.0030"  
0.0042"  
0.0030"  
0.0056"  
Panasonic R-5670K  
Panasonic R-5775K  
L4 - GND  
L5 - SIG  
Panasonic R-5670K  
Panasonic R-5775K  
L6 - GND  
L7 - POW  
L8 - POW  
L9 - GND  
L10 - SIG  
L11 - GND  
L12 - SIG  
L13 - GND  
L14 - SIG  
0.0576"  
Panasonic R-5670K  
Panasonic R-5775K  
Panasonic R-5670K  
Panasonic R-5775K  
Panasonic R-5670K  
Panasonic R-5775K  
Panasonic R-5670K  
1/4 oz Copper on L1 and L14  
1/2 oz Copper on L2, L3, L4, L5, L10, L11, L12 and L13  
1 oz Copper on L6, L7, L8 and L9  
100-O differential signaling on SIG layers  
Finished thickness is 0.0620" including plating and solder mask  
8-17. Example PCB Stackup  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 149  
Product Folder Links: ADC12DL3200  
English Data Sheet: SLVSDR3  
 
ADC12DL3200  
ZHCSI83C MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
8 Device and Documentation Support  
8.1 Device Support  
8.1.1 Development Support  
WEBENCH® Power Designer  
8.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
8.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
8.4 商标  
TI E2Eis a trademark of Texas Instruments.  
WEBENCH® is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
8.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
8.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
9 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR3  
150 Submit Document Feedback  
Product Folder Links: ADC12DL3200  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-May-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADC12DL3200ACF  
ADC12DL3200ALJ  
ACTIVE  
ACTIVE  
FCBGA  
FCBGA  
ACF  
ALJ  
256  
256  
90  
1
RoHS & Green  
SNAGCU  
Level-3-260C-168 HR  
Level-3-220C-168 HR  
-40 to 85  
-40 to 85  
ADC12DL32  
ADC12DL32Z  
Samples  
Samples  
Non-RoHS  
& Green  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-May-2023  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-May-2023  
TRAY  
L - Outer tray length without tabs  
KO -  
Outer  
tray  
height  
W -  
Outer  
tray  
width  
Text  
P1 - Tray unit pocket pitch  
CW - Measurement for tray edge (Y direction) to corner pocket center  
CL - Measurement for tray edge (X direction) to corner pocket center  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
ADC12DL3200ACF  
ADC12DL3200ALJ  
ACF  
ALJ  
FCBGA  
FCBGA  
256  
256  
90  
1
6 x 15  
6 x 15  
150  
150  
315 135.9 7620 19.5  
315 135.9 7620 19.5  
21  
21  
19.2  
19.2  
Pack Materials-Page 1  
PACKAGE OUTLINE  
ALJ0256A  
FCBGA - 3.31 mm max height  
SCALE 0.900  
BALL GRID ARRAY  
17.2  
16.8  
A
B
BALL A1 CORNER  
PIN 1 ID  
(OPTIONAL)  
17.2  
16.8  
(
13)  
(
11)  
3.31  
2.85  
C
SEATING PLANE  
0.2 C  
0.7  
0.3  
BALL TYP  
TYP  
15 TYP  
SYMM  
1
TYP  
(1) TYP  
(1) TYP  
T
R
P
N
M
L
K
J
H
G
F
SYMM  
15  
TYP  
E
D
C
B
A
0.74  
0.54  
C A B  
256X  
0.25  
0.1  
C
1
2 3 4  
5
6 7 8 9 10 12 14 16  
11 13 15  
1
TYP  
4225401/B 05/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
ALJ0256A  
FCBGA - 3.31 mm max height  
BALL GRID ARRAY  
(1) TYP  
256X ( 0.5)  
3
5
6
7
10  
11  
12 13  
15  
14  
1
2
4
8
9
16  
A
(1) TYP  
B
C
D
E
F
G
H
J
SYMM  
K
L
M
N
P
R
T
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SNOWN  
SCALE:6X  
0.07 MAX  
0.07 MIN  
METAL UNDER  
SOLDER MASK  
(
0.5)  
METAL  
EXPOSED METAL  
(
0.5)  
SOLDER MASK  
OPENING  
EXPOSED METAL  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4225401/B 05/2022  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SPRU811 (www.ti.com/lit/spru811).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
ALJ0256A  
FCBGA - 3.31 mm max height  
BALL GRID ARRAY  
(1) TYP  
256X 0.5  
11  
3
5
6
7
10  
12 13  
15  
14  
1
2
4
8
9
16  
A
(1) TYP  
B
C
METAL  
TYP  
D
E
F
G
H
J
SYMM  
K
L
M
N
P
R
T
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.15 mm THICK STENCIL  
SCALE: 6X  
4225401/B 05/2022  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
PACKAGE OUTLINE  
ACF0256A  
FCBGA - 3.31 mm max height  
SCALE 0.900  
BALL GRID ARRAY  
17.2  
16.8  
A
B
BALL A1 CORNER  
PIN 1 ID  
(OPTIONAL)  
17.2  
16.8  
(
13)  
(
11)  
3.31  
2.85  
C
SEATING PLANE  
0.2 C  
0.7  
0.3  
BALL TYP  
TYP  
15 TYP  
SYMM  
1
TYP  
(1) TYP  
(1) TYP  
T
R
P
N
M
L
K
J
H
G
F
SYMM  
15  
TYP  
E
D
C
B
A
0.74  
0.54  
C A B  
C
256X  
0.25  
0.1  
1
2 3 4  
5
6 7 8 9 10 12 14 16  
11 13 15  
1
TYP  
4223888/C 05/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Pb-Free die bump and solder ball.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
ACF0256A  
FCBGA - 3.31 mm max height  
BALL GRID ARRAY  
(1) TYP  
256X ( 0.5)  
3
5
6
7
10  
11  
12 13  
15  
14  
1
2
4
8
9
16  
A
(1) TYP  
B
C
D
E
F
G
H
J
SYMM  
K
L
M
N
P
R
T
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SNOWN  
SCALE:6X  
0.07 MAX  
0.07 MIN  
METAL UNDER  
SOLDER MASK  
(
0.5)  
METAL  
EXPOSED METAL  
(
0.5)  
SOLDER MASK  
OPENING  
EXPOSED METAL  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4223888/C 05/2022  
NOTES: (continued)  
4. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SPRU811 (www.ti.com/lit/spru811).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
ACF0256A  
FCBGA - 3.31 mm max height  
BALL GRID ARRAY  
(1) TYP  
256X ( 0.5)  
11  
3
5
6
7
10  
12 13  
15  
14  
1
2
4
8
9
16  
A
(1) TYP  
B
C
METAL  
TYP  
D
E
F
G
H
J
SYMM  
K
L
M
N
P
R
T
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.15 mm THICK STENCIL  
SCALE: 6X  
4223888/C 05/2022  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

ADC12DS065

Dual 12-Bit, 65/80/95/105 MSPS A/D Converter with Serial LVDS outputs
NSC

ADC12DS065CISQ

Dual 12-Bit, 65/80/95/105 MSPS A/D Converter with Serial LVDS outputs
NSC

ADC12DS080

Dual 12-Bit, 65/80/95/105 MSPS A/D Converter with Serial LVDS outputs
NSC

ADC12DS080

双通道、12 位、80MSPS 模数转换器 (ADC)
TI

ADC12DS080CISQ

Dual 12-Bit, 65/80/95/105 MSPS A/D Converter with Serial LVDS outputs
NSC

ADC12DS080CISQE/NOPB

双通道、12 位、80MSPS 模数转换器 (ADC) | NKA | 60 | -40 to 85
TI

ADC12DS095

Dual 12-Bit, 65/80/95/105 MSPS A/D Converter with Serial LVDS outputs
NSC

ADC12DS095CISQ

Dual 12-Bit, 65/80/95/105 MSPS A/D Converter with Serial LVDS outputs
NSC

ADC12DS105

Dual 12-Bit, 65/80/95/105 MSPS A/D Converter with Serial LVDS outputs
NSC

ADC12DS105

双通道、12 位、105MSPS 模数转换器 (ADC)
TI

ADC12DS105CISQ

Dual 12-Bit, 65/80/95/105 MSPS A/D Converter with Serial LVDS outputs
NSC

ADC12DS105CISQ/NOPB

双通道、12 位、105MSPS 模数转换器 (ADC) | NKA | 60 | -40 to 85
TI