ADC3241IRGZT [TI]

双通道、14 位、25MSPS 模数转换器 (ADC) | RGZ | 48 | -40 to 85;
ADC3241IRGZT
型号: ADC3241IRGZT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

双通道、14 位、25MSPS 模数转换器 (ADC) | RGZ | 48 | -40 to 85

转换器 模数转换器
文件: 总83页 (文件大小:4470K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
ADC3241, ADC3242, ADC3243, ADC3244  
ZHCSD67C JULY 2014REVISED MARCH 2016  
ADC324x 双通道、14 位、25MSPS 125MSPS 模数转换器  
1 特性  
3 说明  
1
双通道  
ADC324x 属于高线性度、超低功耗、双通道、14 位、  
25MSPS 125MSPS 模数转换器 (ADC) 系列。此类  
器件专门设计用于支持具有宽动态范围需求且要求苛刻  
的高输入频率信号。当 SYSREF 输入实现整个系统同  
步时,时钟输入分频器将给予系统时钟架构设计更高的  
灵活性。ADC324x 系列支持串行低压差分信令  
14 位分辨率  
单电源:1.8V  
串行 LVDS 接口 (SLVDS)  
支持 1 分频,2 分频和 4 分频的灵活输入时钟缓冲  
fIN = 70MHz 时,信噪比 (SNR) = 72.4dBFS,无杂  
散动态范围 (SFDR) = 87dBc  
(LVDS),从而减少接口线路的数量,实现高系统集成  
度。串行 LVDS 接口为双线制,通过两个 LVDS 对串  
行输出每个 ADC 数据。内部锁相环 (PLL) 会将传入的  
ADC 采样时钟加倍,以获得串行输出各通道的 14 位  
输出数据时所使用的位时钟。除了串行数据流之外,数  
据帧和位时钟也作为 LVDS 输出进行传送。  
超低功耗:  
125MSPS 时为每通道 116mW  
通道隔离:105dB  
内部抖动和斩波  
支持多芯片同步  
器件信息(1)  
12 位版本器件引脚到引脚兼容  
器件型号  
ADC324x  
封装  
VQFN (48)  
封装尺寸(标称值)  
封装:超薄四方扁平无引线 (VQFN)-48 (7mm x  
7mm)  
7.00mm x 7.00mm  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
2 应用  
空白  
空白  
空白  
空白  
空白  
空白  
多载波、多模式蜂窝基站  
雷达和智能天线阵列  
炮弹制导  
电机控制反馈  
网络和矢量分析器  
通信测试设备  
无损检测  
微波接收器  
软件定义无线电 (SDR)  
正交和分集无线电接收器  
手持式无线电和仪表  
fS = 125MSPSfIN = 10MHz 时的性能  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
D101  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBAS671  
 
 
 
 
 
ADC3241, ADC3242, ADC3243, ADC3244  
ZHCSD67C JULY 2014REVISED MARCH 2016  
www.ti.com.cn  
目录  
7.19 Typical Characteristics: Common ......................... 43  
7.20 Typical Characteristics: Contour ........................... 44  
Parameter Measurement Information ................ 45  
8.1 Timing Diagrams..................................................... 45  
Detailed Description ............................................ 47  
9.1 Overview ................................................................. 47  
9.2 Functional Block Diagram ....................................... 47  
9.3 Feature Description................................................. 48  
9.4 Device Functional Modes........................................ 52  
9.5 Programming........................................................... 53  
9.6 Register Maps......................................................... 57  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 4  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 6  
7.1 Absolute Maximum Ratings ...................................... 6  
7.2 ESD Ratings.............................................................. 6  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 7  
7.5 Electrical Characteristics: ADC3241, ADC3242 ....... 7  
7.6 Electrical Characteristics: ADC3243, ADC3244 ....... 7  
7.7 Electrical Characteristics: General............................ 8  
7.8 AC Performance: ADC3241...................................... 9  
7.9 AC Performance: ADC3242.................................... 11  
7.10 AC Performance: ADC3243.................................. 13  
7.11 AC Performance: ADC3244.................................. 15  
7.12 Digital Characteristics ........................................... 17  
7.13 Timing Requirements: General ............................. 17  
7.14 Timing Requirements: LVDS Output..................... 18  
7.15 Typical Characteristics: ADC3241 ........................ 19  
7.16 Typical Characteristics: ADC3242 ........................ 25  
7.17 Typical Characteristics: ADC3243 ........................ 31  
7.18 Typical Characteristics: ADC3244 ........................ 37  
8
9
10 Applications and Implementation...................... 69  
10.1 Application Information.......................................... 69  
10.2 Typical Applications .............................................. 70  
11 Power-Supply Recommendations ..................... 72  
12 Layout................................................................... 73  
12.1 Layout Guidelines ................................................. 73  
12.2 Layout Example .................................................... 73  
13 器件和文档支持 ..................................................... 74  
13.1 相关链接................................................................ 74  
13.2 社区资源................................................................ 74  
13.3 ....................................................................... 74  
13.4 静电放电警告......................................................... 74  
13.5 Glossary................................................................ 74  
14 机械、封装和可订购信息....................................... 74  
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (March 2015) to Revision C  
Page  
Added Digital Inputs section to Digital Characteristics table ................................................................................................ 17  
Changed Wake-up time parameter maximum specifications in Timing Requirements: General table ................................ 17  
Updated Figure 19, Figure 20, Figure 23, Figure 24 , Figure 25, and Figure 26................................................................. 22  
Updated Figure 50 , Figure 51, Figure 54, Figure 55, Figure 56, and Figure 57................................................................. 28  
Updated Figure 81, Figure 82, Figure 85, Figure 86, Figure 87, and Figure 88 . ............................................................... 34  
Updated Figure 112, Figure 113, Figure 116, Figure 117, Figure 118, and Figure 119...................................................... 40  
Changed Figure 133. ........................................................................................................................................................... 45  
Changed SNR and Clock Jitter section: changed typical thermal noise value and changed Figure 141 to reflect  
updated thermal noise value ................................................................................................................................................ 49  
Changed Table 3 .................................................................................................................................................................. 50  
Changed Changed Figure 142 ............................................................................................................................................. 51  
Added Improving Wake-Up Time From Global Power-Down section .................................................................................. 53  
Changed Table 8: changed FLIP BITS to FLIP WIRE in register 4h, changed bit D7 in row 70A, and added register  
13 row................................................................................................................................................................................... 57  
Changed Summary of Special Mode Registers section: changed title, moved section to correct location ......................... 58  
Changed register 04h description......................................................................................................................................... 59  
Changed register 0Ah and 0Bh descriptions........................................................................................................................ 61  
Added register 13h ............................................................................................................................................................... 63  
Changed register 70Ah to include DIS CLK FILT bit ........................................................................................................... 68  
2
版权 © 2014–2016, Texas Instruments Incorporated  
 
ADC3241, ADC3242, ADC3243, ADC3244  
www.ti.com.cn  
ZHCSD67C JULY 2014REVISED MARCH 2016  
Changes from Revision A (December 2014) to Revision B  
Page  
已将文档状态由混合状态更改为量产数据:将 ADC3241 ADC3242 发布为量产数据;已对产品预览器件进行了更改 1  
Changes from Original (July 2014) to Revision A  
Page  
已将文档状态更改为混合状态”............................................................................................................................................... 1  
更改了产品预览数据表............................................................................................................................................................ 1  
Copyright © 2014–2016, Texas Instruments Incorporated  
3
ADC3241, ADC3242, ADC3243, ADC3244  
ZHCSD67C JULY 2014REVISED MARCH 2016  
www.ti.com.cn  
5 Device Comparison Table  
RESOLUTION  
INTERFACE  
(Bits)  
25 MSPS  
ADC3221  
ADC3241  
50 MSPS  
ADC3222  
ADC3242  
ADC32J22  
ADC32J42  
80 MSPS  
ADC3223  
ADC3243  
ADC32J23  
ADC32J43  
125 MSPS  
ADC3224  
ADC3244  
ADC32J24  
ADC32J44  
160 MSPS  
12  
Serial LVDS  
14  
12  
ADC32J25  
ADC32J45  
JESD204B  
14  
6 Pin Configuration and Functions  
RGZ Package  
48-Pin VQFN  
Top View  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
GND  
DVDD  
GND  
GND  
DVDD  
GND  
3
4
DVDD  
GND  
DVDD  
GND  
5
GND Pad  
6
AVDD  
AVDD  
AVDD  
AVDD  
INAP  
PDN  
(Back Side)  
7
AVDD  
AVDD  
AVDD  
INBP  
INBM  
AVDD  
8
9
10  
11  
12  
INAM  
AVDD  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
4
Copyright © 2014–2016, Texas Instruments Incorporated  
ADC3241, ADC3242, ADC3243, ADC3244  
www.ti.com.cn  
ZHCSD67C JULY 2014REVISED MARCH 2016  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
6-9, 12, 17, 20, 25,  
28-30  
AVDD  
I
Analog 1.8-V power supply  
CLKM  
CLKP  
18  
I
Negative differential clock input for the ADC  
Positive differential clock input for the ADC  
Negative serial LVDS output for channel A0  
Positive serial LVDS output for channel A0  
Negative serial LVDS output for channel A1  
Positive serial LVDS output for channel A1  
Negative serial LVDS output for channel B0  
Positive serial LVDS output for channel B0  
Negative serial LVDS output for channel B1  
Positive serial LVDS output for channel B1  
Negative bit clock output  
19  
I
DA0M  
DA0P  
48  
O
O
O
O
O
O
O
O
O
O
I
47  
DA1M  
DA1P  
46  
45  
DB0M  
DB0P  
40  
39  
DB1M  
DB1P  
38  
37  
DCLKM  
DCLKP  
DVDD  
FCLKM  
FCLKP  
44  
43  
2, 4, 33, 35  
42  
Positive bit clock output  
Digital 1.8-V power supply  
O
O
Negative frame clock output  
41  
Positive frame clock output  
1, 3, 5, 32, 34, 36,  
PowerPAD™  
GND  
I
Ground, 0 V  
INAM  
INAP  
INBM  
INBP  
11  
10  
26  
27  
I
I
I
I
Negative differential analog input for channel A  
Positive differential analog input for channel A  
Negative differential analog input for channel B  
Positive differential analog input for channel B  
Power-down control. This pin can be configured via the SPI.  
This pin has an internal 150-kΩ pull-down resistor.  
PDN  
31  
I
RESET  
SCLK  
21  
13  
14  
16  
I
I
Hardware reset; active high. This pin has an internal 150-kΩ pull-down resistor.  
Serial interface clock input. This pin has an internal 150-kΩ pull-down resistor.  
Serial interface data input. This pin has an internal 150-kΩ pull-down resistor.  
Serial interface data output  
SDATA  
SDOUT  
I
O
Serial interface enable; active low.  
This pin has an internal 150-kΩ pull-up resistor to AVDD.  
SEN  
15  
I
SYSREFM  
SYSREFP  
VCM  
23  
22  
24  
I
I
Negative external SYSREF input  
Positive external SYSREF input  
O
Common-mode voltage for analog inputs  
Copyright © 2014–2016, Texas Instruments Incorporated  
5
ADC3241, ADC3242, ADC3243, ADC3244  
ZHCSD67C JULY 2014REVISED MARCH 2016  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–40  
MAX  
UNIT  
V
Analog supply voltage range, AVDD  
Digital supply voltage range, DVDD  
INAP, INBP, INAM, INBM  
2.1  
2.1  
V
min (1.9, AVDD + 0.3)  
CLKP, CLKM  
Voltage applied to input pins  
AVDD + 0.3  
V
SYSREFP, SYSREFM  
AVDD + 0.3  
SCLK, SEN, SDATA, RESET, PDN  
Operating free-air, TA  
3.9  
85  
Temperature  
Operating junction, TJ  
Storage, Tstg  
125  
150  
ºC  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
V(ESD)  
Electrostatic discharge  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
SUPPLIES  
AVDD  
Analog supply voltage range  
Digital supply voltage range  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
V
V
DVDD  
ANALOG INPUT  
For input frequencies < 450 MHz  
For input frequencies < 600 MHz  
2
1
VID  
Differential input voltage  
VPP  
V
VIC  
Input common-mode voltage  
VCM ± 0.025  
CLOCK INPUT  
Input clock frequency  
Sampling clock frequency  
Sine wave, ac-coupled  
LVPECL, ac-coupled  
LVDS, ac-coupled  
10  
125(2)  
MSPS  
VPP  
0.2  
1.5  
1.6  
Input clock amplitude (differential)  
0.7  
Input clock duty cycle  
35%  
50%  
0.95  
65%  
Input clock common-mode voltage  
V
DIGITAL OUTPUTS  
Maximum external load capacitance  
from each output pin to GND  
CLOAD  
RLOAD  
3.3  
pF  
Differential load resistance placed  
externally  
100  
Ω
(1) After power-up, to reset the device for the first time, only use the RESET pin; see the Register Initialization section.  
(2) With the clock divider enabled by default for divide-by-1. Maximum sampling clock frequency for the divide-by-4 option is 500 MSPS.  
6
Copyright © 2014–2016, Texas Instruments Incorporated  
ADC3241, ADC3242, ADC3243, ADC3244  
www.ti.com.cn  
ZHCSD67C JULY 2014REVISED MARCH 2016  
7.4 Thermal Information  
ADC324x  
THERMAL METRIC(1)  
RGZ (VQFN)  
UNIT  
48 PINS  
25.7  
18.9  
3.0  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
3
RθJC(bot)  
0.5  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
7.5 Electrical Characteristics: ADC3241, ADC3242  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = –40°C to TMAX  
= 85°C, maximum sampling rate, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless  
otherwise noted.  
ADC3241  
TYP  
ADC3242  
TYP  
PARAMETER  
ADC clock frequency  
MIN  
MAX  
125  
71  
MIN  
MAX  
125  
81  
UNIT  
MSPS  
mA  
1.8-V analog supply current  
1.8-V digital supply current  
Total power dissipation  
31  
35  
118  
5
39  
43  
147  
5
65  
75  
mA  
205  
17  
245  
17  
mW  
Global power-down dissipation  
Standby power-down dissipation  
mW  
78  
103  
78  
103  
mW  
7.6 Electrical Characteristics: ADC3243, ADC3244  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = –40°C to TMAX  
= 85°C, maximum sampling rate, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless  
otherwise noted.  
ADC3243  
TYP  
ADC3244  
TYP  
PARAMETER  
ADC clock frequency  
MIN  
MAX  
80  
MIN  
MAX  
125  
106  
95  
UNIT  
MSPS  
mA  
1.8-V analog supply current  
1.8-V digital supply current  
Total power dissipation  
50  
52  
183  
5
91  
65  
64  
233  
5
85  
mA  
285  
17  
325  
17  
mW  
Global power-down dissipation  
Standby power-down dissipation  
mW  
72  
103  
78  
103  
mW  
Copyright © 2014–2016, Texas Instruments Incorporated  
7
ADC3241, ADC3242, ADC3243, ADC3244  
ZHCSD67C JULY 2014REVISED MARCH 2016  
www.ti.com.cn  
7.7 Electrical Characteristics: General  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = –40°C to TMAX  
= 85°C, maximum sampling rate, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless  
otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
RESOLUTION  
Resolution  
ANALOG INPUT  
14  
Bits  
Differential input full-scale  
Input resistance  
2.0  
6.6  
3.7  
0.95  
10  
VPP  
kΩ  
RIN  
Differential at dc  
CIN  
Input capacitance  
Differential at dc  
pF  
VOC(VCM)  
VCM common-mode voltage output  
VCM output current capability  
Input common-mode current  
V
mA  
Per analog input pin  
1.5  
µA/MSPS  
50-Ω differential source driving 50-Ω  
termination across INP and INM  
Analog input bandwidth (3 dB)  
540  
MHz  
DC ACCURACY  
EO  
Offset error  
–25  
–2  
25  
2
mV  
°C  
Temperature coefficient of offset  
error  
αEO  
±0.024  
Gain error as a result of internal  
reference inaccuracy alone  
EG(REF)  
%FS  
EG(CHAN)  
Gain error of channel alone  
–2  
%FS  
α(EGCHAN) Temperature coefficient of EG(CHAN)  
±0.008  
Δ%FS/°C  
CHANNEL-TO-CHANNEL ISOLATION  
fIN = 10 MHz  
fIN = 100 MHz  
fIN = 200 MHz  
fIN = 230 MHz  
fIN = 300 MHz  
105  
105  
105  
105  
105  
Crosstalk(1)  
dB  
(1) Crosstalk is measured with a –1-dBFS input signal on one channel and no input on the other channel.  
8
Copyright © 2014–2016, Texas Instruments Incorporated  
ADC3241, ADC3242, ADC3243, ADC3244  
www.ti.com.cn  
ZHCSD67C JULY 2014REVISED MARCH 2016  
7.8 AC Performance: ADC3241  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = –40°C to TMAX  
= 85°C, ADC sampling rate = 25 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless  
otherwise noted.  
ADC3241 (fS = 25 MSPS)  
DITHER ON  
DITHER OFF  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNIT  
DYNAMIC AC CHARACTERISTICS  
fIN = 10 MHz  
73.3  
73.4  
72.8  
72.4  
71.3  
70.1  
72.2  
72.3  
71.8  
71.5  
70.5  
69.3  
–143.9  
73.7  
73.7  
73.2  
72.8  
71.6  
70.4  
72.6  
72.6  
72.2  
71.9  
70.8  
69.6  
–144.3  
–144.3  
–143.8  
–143.4  
–142.2  
–141.0  
73.5  
73.5  
72.9  
72.4  
71.2  
69.7  
11.9  
11.9  
11.8  
11.7  
11.5  
11.3  
87  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
69.7  
Signal-to-noise ratio  
(from 1-MHz offset)  
dBFS  
SNR  
Signal-to-noise ratio  
(full Nyquist band)  
dBFS  
dBFS/Hz  
dBFS  
Bits  
–144.0 –140.7  
–143.4  
–143.0  
–141.9  
–140.7  
73.3  
73.1  
72.8  
72.2  
71.2  
69.7  
11.9  
11.8  
11.8  
11.7  
11.5  
11.3  
95  
Noise spectral density  
NSD(1)  
(averaged across Nyquist zone)  
69.1  
11.2  
84  
Signal-to-noise and distortion  
ratio  
SINAD(1)  
ENOB(1)  
SFDR  
Effective number of bits  
94  
89  
92  
86  
Spurious-free dynamic range  
dBc  
85  
81  
86  
83  
81  
79  
(1) Reported from a 1-MHz offset.  
Copyright © 2014–2016, Texas Instruments Incorporated  
9
ADC3241, ADC3242, ADC3243, ADC3244  
ZHCSD67C JULY 2014REVISED MARCH 2016  
www.ti.com.cn  
AC Performance: ADC3241 (continued)  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = –40°C to TMAX  
= 85°C, ADC sampling rate = 25 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless  
otherwise noted.  
ADC3241 (fS = 25 MSPS)  
DITHER ON  
DITHER OFF  
MIN  
PARAMETER  
TEST CONDITIONS  
fIN = 10 MHz  
MIN  
TYP  
104  
100  
100  
95  
MAX  
TYP  
96  
95  
95  
93  
87  
81  
88  
92  
86  
82  
83  
80  
92  
92  
92  
92  
92  
92  
85  
85  
84  
82  
81  
76  
MAX  
UNIT  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
84  
Second-order harmonic  
distortion  
HD2  
dBc  
87  
81  
95  
84  
94  
92  
HD3  
Non  
Third-order harmonic distortion  
dBc  
dBc  
85  
87  
82  
100  
101  
100  
98  
87  
Spurious-free dynamic range  
HD2, HD3 (excluding HD2, HD3)  
100  
96  
94  
80.5  
92  
91  
THD  
Total harmonic distortion  
dBc  
86  
84  
78  
fIN1 = 45 MHz,  
fIN2 = 50 MHz  
–94  
–92  
–93  
–90  
Two-tone, third-order  
intermodulation distortion  
IMD3  
dBFS  
fIN1 = 185 MHz,  
fIN2 = 190 MHz  
10  
Copyright © 2014–2016, Texas Instruments Incorporated  
ADC3241, ADC3242, ADC3243, ADC3244  
www.ti.com.cn  
ZHCSD67C JULY 2014REVISED MARCH 2016  
7.9 AC Performance: ADC3242  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = –40°C to TMAX  
= 85°C, ADC sampling rate = 50 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless  
otherwise noted.  
ADC3242 (fS = 50 MSPS)  
DITHER ON  
DITHER OFF  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNIT  
DYNAMIC AC CHARACTERISTICS  
fIN = 10 MHz  
73.3  
73.3  
73  
73.7  
73.8  
73.3  
73.1  
72.1  
71.2  
72.9  
73.1  
72.6  
72.4  
71.5  
70.6  
–147.5  
–147.6  
–147.1  
–146.9  
–145.9  
–145  
73.6  
73.6  
73.2  
72.9  
71.7  
70.6  
11.9  
11.9  
11.9  
11.8  
11.6  
11.4  
95  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
70.5  
Signal-to-noise ratio  
(from 1-MHz offset)  
72.6  
71.7  
70.9  
72.5  
72.6  
72.3  
71.9  
71.1  
70.3  
–147.1  
SNR  
dBFS  
Signal-to-noise ratio  
(full Nyquist band)  
–147.1 –144.5  
–146.8  
–146.4  
–145.5  
–144.7  
73.2  
73.4  
72.9  
72.5  
71.5  
70.5  
11.9  
11.9  
11.8  
11.7  
11.6  
11.4  
89  
Noise spectral density  
NSD(1)  
dBFS/Hz  
dBFS  
Bits  
(averaged across Nyquist zone)  
69.6  
11.3  
83  
Signal-to-noise and distortion  
ratio  
SINAD(1)  
ENOB(1)  
SFDR  
Effective number of bits  
93  
91  
94  
93  
Spurious-free dynamic range  
dBc  
88  
86  
85  
82  
82  
80  
(1) Reported from a 1-MHz offset.  
Copyright © 2014–2016, Texas Instruments Incorporated  
11  
ADC3241, ADC3242, ADC3243, ADC3244  
ZHCSD67C JULY 2014REVISED MARCH 2016  
www.ti.com.cn  
AC Performance: ADC3242 (continued)  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = –40°C to TMAX  
= 85°C, ADC sampling rate = 50 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless  
otherwise noted.  
ADC3242 (fS = 50 MSPS)  
DITHER ON  
MIN  
DITHER OFF  
MIN  
PARAMETER  
TEST CONDITIONS  
fIN = 10 MHz  
TYP  
103  
99  
96  
94  
88  
82  
89  
93  
94  
88  
85  
82  
99  
101  
100  
99  
99  
97  
88  
92  
92  
89  
83  
79  
MAX  
TYP  
97  
95  
94  
92  
89  
83  
97  
95  
93  
86  
82  
80  
96  
93  
94  
94  
93  
93  
90  
87  
88  
86  
81  
78  
MAX  
UNIT  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
83  
83  
87  
79  
Second-order harmonic  
distortion  
HD2  
dBc  
HD3  
Non  
Third-order harmonic distortion  
dBc  
dBc  
Spurious-free dynamic range  
HD2, HD3 (excluding HD2, HD3)  
THD  
Total harmonic distortion  
dBc  
fIN1 = 45 MHz,  
fIN2 = 50 MHz  
–95  
–92  
–95  
–89  
Two-tone, third-order  
intermodulation distortion  
IMD3  
dBFS  
fIN1 = 185 MHz,  
fIN2 = 190 MHz  
12  
Copyright © 2014–2016, Texas Instruments Incorporated  
ADC3241, ADC3242, ADC3243, ADC3244  
www.ti.com.cn  
ZHCSD67C JULY 2014REVISED MARCH 2016  
7.10 AC Performance: ADC3243  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = –40°C to TMAX  
= 85°C, ADC sampling rate = 80 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless  
otherwise noted.  
ADC3243 (fS = 80 MSPS)  
DITHER ON  
DITHER OFF  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNIT  
DYNAMIC AC CHARACTERISTICS  
fIN = 10 MHz  
73.1  
72.9  
72.7  
72  
73.5  
73.3  
73  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
70.7  
Signal-to-noise ratio  
(from 1-MHz offset)  
72.4  
71.7  
72.8  
72.6  
72.3  
71.7  
71.2  
–149.4  
–149.2  
–148.9  
–148.3  
–147.6  
73.4  
73.2  
72.9  
72.2  
71.3  
11.9  
11.9  
11.8  
11.7  
11.6  
94  
71.4  
72.4  
72.3  
72.1  
71.4  
70.9  
–149.0  
SNR  
dBFS  
Signal-to-noise ratio  
(full Nyquist band)  
–148.8 –146.7  
–148.6  
–147.9  
–147.3  
73.1  
Noise spectral density  
NSD(1)  
dBFS/Hz  
dBFS  
Bits  
(averaged across Nyquist zone)  
69.6  
11.3  
82  
72.9  
Signal-to-noise and distortion  
ratio  
SINAD(1)  
ENOB(1)  
SFDR  
72.7  
71.9  
71.2  
11.8  
11.8  
Effective number of bits  
11.8  
11.6  
11.5  
89  
93  
93  
Spurious-free dynamic range  
93  
91  
dBc  
87  
87  
85  
83  
(1) Reported from a 1-MHz offset.  
Copyright © 2014–2016, Texas Instruments Incorporated  
13  
ADC3241, ADC3242, ADC3243, ADC3244  
ZHCSD67C JULY 2014REVISED MARCH 2016  
www.ti.com.cn  
AC Performance: ADC3243 (continued)  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = –40°C to TMAX  
= 85°C, ADC sampling rate = 80 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless  
otherwise noted.  
ADC3243 (fS = 80 MSPS)  
DITHER ON  
DITHER OFF  
MIN  
PARAMETER  
TEST CONDITIONS  
fIN = 10 MHz  
MIN  
TYP  
102  
95  
MAX  
TYP  
98  
93  
93  
87  
85  
95  
94  
96  
90  
84  
95  
95  
95  
95  
94  
91  
89  
88  
84  
81  
MAX  
UNIT  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
82  
83  
86  
76  
Second-order harmonic  
distortion  
HD2  
95  
dBc  
87  
85  
89  
94  
HD3  
Non  
Third-order harmonic distortion  
Spurious-free dynamic range  
95  
dBc  
dBc  
92  
89  
93  
100  
100  
99  
HD2, HD3 (excluding HD2, HD3)  
98  
88  
91  
THD  
Total harmonic distortion  
91  
dBc  
85  
83  
fIN1 = 45 MHz,  
fIN2 = 50 MHz  
–93  
–91  
–92  
–89  
Two-tone, third-order  
intermodulation distortion  
IMD3  
dBFS  
fIN1 = 185 MHz,  
fIN2 = 190 MHz  
14  
Copyright © 2014–2016, Texas Instruments Incorporated  
ADC3241, ADC3242, ADC3243, ADC3244  
www.ti.com.cn  
ZHCSD67C JULY 2014REVISED MARCH 2016  
7.11 AC Performance: ADC3244  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = –40°C to TMAX  
= 85°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input,  
unless otherwise noted.  
ADC3244 (fS = 125 MSPS)  
DITHER ON  
DITHER OFF  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNIT  
DYNAMIC AC CHARACTERISTICS  
fIN = 10 MHz  
72.9  
72.6  
72.4  
71.7  
71  
73.3  
73  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
71  
Signal-to-noise ratio  
(from 1-MHz offset)  
72.8  
72.2  
71.6  
72.9  
72.6  
72.5  
71.9  
71.3  
–151.1  
–150.9  
–150.7  
–150.1  
–149.5  
73  
SNR  
dBFS  
72.5  
72.2  
72.1  
71.4  
70.7  
–150.8  
Signal-to-noise ratio  
(full Nyquist band)  
–150.5 –148.9  
–150.3  
–149.6  
–148.9  
72.8  
Noise spectral density  
NSD(1)  
dBFS/Hz  
dBFS  
Bits  
(averaged across Nyquist zone)  
69.6  
11.3  
82  
72.6  
72.9  
72.5  
71.9  
71.1  
11.8  
11.8  
11.8  
11.6  
11.5  
86  
Signal-to-noise and distortion  
ratio  
SINAD(1)  
ENOB(1)  
SFDR  
72.3  
71.5  
70.7  
11.8  
11.8  
Effective number of bits  
11.7  
11.6  
11.5  
93  
94  
89  
Spurious-free dynamic range  
89  
85  
dBc  
85  
85  
83  
82  
(1) Reported from a 1-MHz offset.  
Copyright © 2014–2016, Texas Instruments Incorporated  
15  
ADC3241, ADC3242, ADC3243, ADC3244  
ZHCSD67C JULY 2014REVISED MARCH 2016  
www.ti.com.cn  
AC Performance: ADC3244 (continued)  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = –40°C to TMAX  
= 85°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input,  
unless otherwise noted.  
ADC3244 (fS = 125 MSPS)  
DITHER ON  
MIN  
DITHER OFF  
MIN  
PARAMETER  
TEST CONDITIONS  
fIN = 10 MHz  
TYP  
95  
96  
91  
85  
83  
94  
94  
91  
97  
87  
100  
99  
99  
100  
96  
91  
91  
87  
84  
81  
MAX  
TYP  
96  
95  
90  
85  
83  
86  
89  
85  
89  
85  
95  
95  
95  
91  
92  
85  
86  
83  
82  
80  
MAX  
UNIT  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
82  
83  
86  
76  
Second-order harmonic  
distortion  
HD2  
dBc  
HD3  
Non  
Third-order harmonic distortion  
Spurious-free dynamic range  
dBc  
dBc  
HD2, HD3 (excluding HD2, HD3)  
THD  
Total harmonic distortion  
dBc  
fIN1 = 45 MHz,  
fIN2 = 50 MHz  
–97  
–91  
–95  
–90  
Two-tone, third-order  
intermodulation distortion  
IMD3  
dBFS  
fIN1 = 185 MHz,  
fIN2 = 190 MHz  
16  
Copyright © 2014–2016, Texas Instruments Incorporated  
ADC3241, ADC3242, ADC3243, ADC3244  
www.ti.com.cn  
ZHCSD67C JULY 2014REVISED MARCH 2016  
7.12 Digital Characteristics  
The dc specifications refer to the condition where the digital outputs are not switching, but are permanently at a valid logic  
level 0 or 1. AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DIGITAL INPUTS (RESET, SCLK, SDATA, SEN, PDN)  
All digital inputs support 1.8-V and  
3.3-V CMOS logic levels  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
1.3  
V
V
All digital inputs support 1.8-V and  
3.3-V CMOS logic levels  
0.4  
RESET, SDATA, SCLK,  
PDN  
SEN(1)  
VHIGH = 1.8 V  
VHIGH = 1.8 V  
VLOW = 0 V  
10  
0
High-level input  
current  
IIH  
µA  
µA  
RESET, SDATA, SCLK,  
PDN  
0
Low-level input  
current  
IIL  
SEN  
VLOW = 0 V  
10  
DIGITAL INPUTS (SYSREFP, SYSREFM)  
VIH  
VIL  
High-level input voltage  
1.3  
0.5  
0.9  
V
V
V
Low-level input voltage  
Common-mode voltage for SYSREF  
DIGITAL OUTPUTS, CMOS INTERFACE (SDOUT)  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
DVDD – 0.1  
DVDD  
0
V
V
0.1  
DIGITAL OUTPUTS, LVDS INTERFACE  
VODH  
VODL  
VOCM  
High-level output differential voltage  
Low-level output differential voltage  
Output common-mode voltage  
With an external 100-Ω termination  
With an external 100-Ω termination  
280  
410  
–410  
1.05  
460  
mV  
mV  
V
–460  
–280  
(1) SEN has an internal 150-kΩ pull-up resistor to AVDD. Because the pull-up resistor is weak, SEN can also be driven by 1.8-V or 3.3-V  
CMOS buffers.  
7.13 Timing Requirements: General  
Typical values are at TA = 25°C, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless otherwise noted. Minimum  
and maximum values are across the full temperature range: TMIN = –40°C to TMAX = 85°C.  
MIN  
TYP  
1.44  
±70  
±150  
130  
35  
MAX  
UNIT  
tA  
Aperture delay  
1.24  
1.64  
ns  
Aperture delay matching between two channels of the same device  
Variation of aperture delay between two devices at the same temperature and supply voltage  
Aperture jitter  
ps  
ps  
tJ  
fS rms  
Time to valid data after exiting standby power-down mode  
65  
Wake-up time  
µs  
Time to valid data after exiting global power-down mode  
(in this mode, both channels power down)  
85  
140  
2-wire mode (default)  
9
8
Clock  
cycles  
ADC latency(1)  
1-wire mode  
tSU_SYSREF  
tH_SYSREF  
Setup time for SYSREF referenced to input clock rising edge  
SYSREF reference time  
1000  
100  
ps  
Hold time for SYSREF referenced to input clock rising edge  
(1) Overall latency = ADC latency + tPDI  
.
Copyright © 2014–2016, Texas Instruments Incorporated  
17  
ADC3241, ADC3242, ADC3243, ADC3244  
ZHCSD67C JULY 2014REVISED MARCH 2016  
www.ti.com.cn  
7.14 Timing Requirements: LVDS Output  
Typical values are at 25°C, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, 7x serialization, CLOAD = 3.3 pF(1), and  
RLOAD = 100 Ω(2), unless otherwise noted. Minimum and maximum values are across the full temperature range: TMIN = –40°C  
to TMAX = 85°C.(3)(4)  
MIN  
TYP  
MAX  
UNIT  
Data setup time: data valid to zero-crossing of differential output clock  
(CLKOUTP – CLKOUTM)(5)  
tSU  
tHO  
0.36  
0.42  
ns  
Data hold time: zero-crossing of differential output clock (CLKOUTP – CLKOUTM) to data  
becoming invalid(5)  
0.36  
0.47  
ns  
LVDS bit clock duty cycle: duty cycle of differential clock (CLKOUTP – CLKOUTM)  
49%  
4.5  
Clock propagation delay: input clock falling edge cross-over to frame 1-wire mode  
clock rising edge cross-over 10 MSPS < sampling frequency <  
2.7  
6.5  
tPDI  
ns  
2-wire mode  
125 MSPS  
0.44 × tS + tDELAY  
tDELAY  
Delay time  
3
4.5  
5.9  
ns  
ns  
tFALL  
tRISE  
,
Data fall time, data rise time: rise time measured from –100 mV to 100 mV,  
10 MSPS Sampling frequency 125 MSPS  
0.11  
tCLKRISE  
tCLKFALL  
,
Output clock rise time, output clock fall time: rise time measured from –100 mV to 100 mV,  
10 MSPS Sampling frequency 125 MSPS  
0.11  
ns  
(1) CLOAD is the effective external single-ended load capacitance between each output pin and ground  
(2) RLOAD is the differential load resistance between the LVDS output pair.  
(3) Measurements are done with a transmission line of a 100-Ω characteristic impedance between the device and load. Setup and hold time  
specifications take into account the effect of jitter on the output data and clock.  
(4) Timing parameters are ensured by design and characterization and are not tested in production.  
(5) Data valid refers to a logic high of +100 mV and a logic low of –100 mV.  
Table 1. LVDS Timings at Lower Sampling Frequencies: 7x Serialization (2-Wire Mode)  
SETUP TIME  
(tSU, ns)  
HOLD TIME  
(tHO, ns)  
SAMPLING FREQUENCY  
(MSPS)  
MIN  
2.27  
1.44  
1.2  
TYP  
MAX  
MIN  
2.41  
1.51  
1.24  
0.97  
0.72  
0.53  
TYP  
MAX  
25  
40  
2.6  
1.6  
2.6  
1.7  
50  
1.32  
1.04  
0.75  
0.57  
1.4  
60  
0.95  
0.68  
0.5  
1.09  
0.81  
0.62  
80  
100  
Table 2. LVDS Timings at Lower Sampling Frequencies: 14x Serialization (1-Wire Mode)  
SETUP TIME  
(tSU, ns)  
HOLD TIME  
(tHO, ns)  
SAMPLING FREQUENCY  
(MSPS)  
MIN  
1.1  
TYP  
MAX  
MIN  
1.19  
0.74  
0.54  
0.42  
0.3  
TYP  
MAX  
25  
40  
50  
60  
80  
1.24  
0.72  
0.55  
0.41  
0.24  
1.34  
0.82  
0.64  
0.51  
0.38  
0.66  
0.48  
0.35  
0.17  
18  
Copyright © 2014–2016, Texas Instruments Incorporated  
ADC3241, ADC3242, ADC3243, ADC3244  
www.ti.com.cn  
ZHCSD67C JULY 2014REVISED MARCH 2016  
7.15 Typical Characteristics: ADC3241  
Typical values are at TA = 25°C, ADC sampling rate = 25 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled, unless otherwise noted.  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
2.5  
5
7.5  
10  
12.5  
0
2.5  
5
7.5  
10  
12.5  
Frequency (MHz)  
Frequency (MHz)  
D701  
D702  
SFDR = 97.9 dBc, SNR = 73.8 dBFS, SINAD = 73.8 dBFS,  
THD = 96.8 dBc, HD2 = –110.0 dBc, HD3 = –97.9 dBc  
SFDR = 89.8 dBc, SNR = 74.5 dBFS, SINAD = 74.3 dBFS,  
THD = 88.3 dBc, HD2 = –89.8 dBc, HD3 = –100.3 dBc  
Figure 1. FFT for 10-MHz Input Signal (Dither On)  
Figure 2. FFT for 10-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
2.5  
5
7.5  
10  
12.5  
0
2.5  
5
7.5  
10  
12.5  
Frequency (MHz)  
Frequency (MHz)  
D703  
D704  
SFDR = 91.8 dBc, SNR = 73.4 dBFS, SINAD = 73.4 dBFS,  
THD = 91.4 dBc, HD2 = –108.2 dBc, HD3 = –91.8 dBc  
SFDR = 90.2 dBc, SNR = 74.1 dBFS, SINAD = 73.9 dBFS,  
THD = 88.7 dBc, HD2 = –90.2 dBc, HD3 = –100.5 dBc  
Figure 3. FFT for 70-MHz Input Signal (Dither On)  
Figure 4. FFT for 70-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
2.5  
5
7.5  
10  
12.5  
0
2.5  
5
7.5  
10  
12.5  
Frequency (MHz)  
Frequency (MHz)  
D705  
D706  
SFDR = 86.6 dBc, SNR = 72.1 dBFS, SINAD = 71.9 dBFS,  
THD = 84.7 dBc, HD2 = –89.8 dBc, HD3 = –86.6 dBc  
SFDR = 87.7 dBc, SNR = 72.5 dBFS, SINAD = 72.3 dBFS,  
THD = 85 dBc, HD2 = –87.7 dBc, HD3 = –91.2 dBc  
Figure 5. FFT for 170-MHz Input Signal (Dither On)  
Figure 6. FFT for 170-MHz Input Signal (Dither Off)  
Copyright © 2014–2016, Texas Instruments Incorporated  
19  
ADC3241, ADC3242, ADC3243, ADC3244  
ZHCSD67C JULY 2014REVISED MARCH 2016  
www.ti.com.cn  
Typical Characteristics: ADC3241 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 25 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled, unless otherwise noted.  
0
0
-10  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
2.5  
5
7.5  
10  
12.5  
0
2.5  
5
7.5  
10  
12.5  
Frequency (MHz)  
Frequency (MHz)  
D707  
D708  
SFDR = 75.6 dBc, SNR = 69.8 dBFS, SINAD = 68.8 dBFS,  
THD = 74.8 dBc, HD2 = –75.6 dBc, HD3 = –82.5 dBc  
SFDR = 75.3 dBc, SNR = 70.0 dBFS, SINAD = 68.8 dBFS,  
THD = 73.8 dBc, HD2 = –75.3 dBc, HD3 = –79.6 dBc  
Figure 7. FFT for 270-MHz Input Signal (Dither On)  
Figure 8. FFT for 270-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
2.5  
5
7.5  
10  
12.5  
0
2.5  
5
7.5  
10  
12.5  
Frequency (MHz)  
Frequency (MHz)  
D709  
D710  
SFDR = 68.4 dBc, SNR = 67.2 dBFS, SINAD = 67.2 dBFS,  
THD = 92.6 dBc, HD2 = –68.4 dBc, HD3 = –89.5 dBc  
SFDR = 67.9 dBc, SNR = 67.2 dBFS, SINAD = 67.2 dBFS,  
THD = 87.6 dBc, HD2 = –67.9 dBc, HD3 = –96.9 dBc  
Figure 9. FFT for 450-MHz Input Signal (Dither On)  
Figure 10. FFT for 450-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
2.5  
5
7.5  
10  
12.5  
0
2.5  
5
7.5  
10  
12.5  
Frequency (MHz)  
Frequency (MHz)  
D711  
D712  
fIN1 = 46 MHz, fIN2 = 50 MHz, IMD3 = 82.4 dBFS,  
each tone at –7 dBFS  
fIN1 = 46 MHz, fIN2 = 50 MHz, IMD3 = 90 dBFS,  
each tone at –36 dBFS  
Figure 11. FFT for Two-Tone Input Signal  
(–7 dBFS at 46 MHz and 50 MHz)  
Figure 12. FFT for Two-Tone Input Signal  
(–36 dBFS at 46 MHz and 50 MHz)  
20  
Copyright © 2014–2016, Texas Instruments Incorporated  
ADC3241, ADC3242, ADC3243, ADC3244  
www.ti.com.cn  
ZHCSD67C JULY 2014REVISED MARCH 2016  
Typical Characteristics: ADC3241 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 25 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled, unless otherwise noted.  
0
0
-10  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
2.5  
5
7.5  
10  
12.5  
0
2.5  
5
7.5  
10  
12.5  
Frequency (MHz)  
Frequency (MHz)  
D713  
D714  
fIN1 = 185 MHz, fIN2 = 190 MHz, IMD3 = 78 dBFS,  
each tone at –7 dBFS  
fIN1 = 185 MHz, fIN2 = 190 MHz, IMD3 = 89 dBFS,  
each tone at –36 dBFS  
Figure 13. FFT for Two-Tone Input Signal  
Figure 14. FFT for Two-Tone Input Signal  
(–7 dBFS at 185 MHz and 190 MHz)  
(–36 dBFS at 185 MHz and 190 MHz)  
-90  
-80  
-85  
-90  
-95  
-95  
-100  
-105  
-110  
-115  
-100  
-105  
-110  
-35  
-31  
-27  
-23  
-19  
-15  
-11  
-7  
-35  
-31  
-27  
-23  
-19  
-15  
-11  
-7  
Each Tone Amplitude (dBFS)  
Each Tone Amplitude (dBFS)  
D715  
D716  
Figure 15. Intermodulation Distortion vs Input Amplitude  
(46 MHz and 50 MHz)  
Figure 16. Intermodulation Distortion vs Input Amplitude  
(185 MHz and 190 MHz)  
75  
104  
Dither_EN  
Dither_EN  
Dither_DIS  
Dither_DIS  
74  
73  
72  
71  
70  
69  
68  
67  
96  
88  
80  
72  
64  
56  
0
50  
100  
150  
200  
250  
300  
350  
400  
0
50  
100  
150  
200  
250  
300  
350  
400  
Frequency (MHz)  
Frequency (MHz)  
D717  
D718  
Figure 17. Signal-to-Noise Ratio vs Input Frequency  
Figure 18. Spurious-Free Dynamic Range vs  
Input Frequency  
Copyright © 2014–2016, Texas Instruments Incorporated  
21  
ADC3241, ADC3242, ADC3243, ADC3244  
ZHCSD67C JULY 2014REVISED MARCH 2016  
www.ti.com.cn  
Typical Characteristics: ADC3241 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 25 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled, unless otherwise noted.  
75  
74.5  
74  
180  
160  
140  
120  
100  
80  
75.5  
74.5  
73.5  
72.5  
71.5  
70.5  
69.5  
68.5  
280  
240  
200  
160  
120  
80  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
73.5  
73  
72.5  
72  
60  
40  
71.5  
71  
40  
20  
0
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
Amplitude (dBFS)  
Amplitude (dBFS)  
D719  
D720  
.
Figure 19. Performance vs Input Amplitude (30 MHz)  
Figure 20. Performance vs Input Amplitude (170 MHz)  
80  
78  
76  
74  
72  
70  
97.5  
SNR  
SFDR  
78  
76  
74  
72  
70  
68  
87.5  
SNR  
SFDR  
95  
85  
92.5  
90  
82.5  
80  
87.5  
77.5  
85  
75  
0.85  
0.9  
0.95  
1
1.05  
1.1  
0.85  
0.9  
0.95  
1
1.05  
1.1  
Input Common-Mode Voltage (V)  
Input Common-Mode Voltage (V)  
D721  
D722  
Figure 21. Performance vs Input Common-Mode Voltage  
(30 MHz)  
Figure 22. Performance vs Input Common-Mode Voltage  
(170 MHz)  
106  
74  
AVDD = 1.7 V  
AVDD = 1.75 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.7 V  
AVDD = 1.75 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
104  
102  
100  
98  
73.7  
73.4  
73.1  
72.8  
72.5  
96  
94  
92  
90  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D723  
D724  
Figure 23. Spurious-Free Dynamic Range vs  
AVDD Supply and Temperature (30 MHz)  
Figure 24. Signal-to-Noise Ratio vs  
AVDD Supply and Temperature (30 MHz)  
22  
Copyright © 2014–2016, Texas Instruments Incorporated  
ADC3241, ADC3242, ADC3243, ADC3244  
www.ti.com.cn  
ZHCSD67C JULY 2014REVISED MARCH 2016  
Typical Characteristics: ADC3241 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 25 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled, unless otherwise noted.  
98  
97  
96  
95  
94  
93  
74.5  
74.1  
73.7  
73.3  
72.9  
72.5  
DVDD = 1.7 V  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
DVDD = 1.7 V  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D725  
D726  
Figure 25. Spurious-Free Dynamic Range vs  
DVDD Supply and Temperature (30 MHz)  
Figure 26. Signal-to-Noise Ratio vs  
DVDD Supply and Temperature (30 MHz)  
78  
92.5  
75.4  
112  
SNR  
SFDR  
SNR  
SFDR  
76  
74  
72  
70  
68  
66  
64  
62  
60  
90  
74.6  
73.8  
73  
104  
96  
88  
80  
72  
64  
56  
48  
87.5  
85  
82.5  
80  
72.2  
71.4  
70.6  
69.8  
69  
77.5  
75  
72.5  
70  
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2  
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2  
Differential Clock Amplitude (Vpp)  
Differential Clock Amplitude (Vpp)  
D727  
D728  
Figure 27. Performance vs Clock Amplitude (40 MHz)  
Figure 28. Performance vs Clock Amplitude (150 MHz)  
74  
99  
74  
73.2  
72.4  
71.6  
70.8  
70  
90  
88  
86  
84  
82  
80  
SNR  
SFDR  
SNR  
SFDR  
73.8  
73.6  
73.4  
73.2  
73  
97.5  
96  
94.5  
93  
91.5  
72.8  
90  
30  
35  
40  
45  
50  
55  
60  
65  
70  
30  
35  
40  
45  
50  
55  
60  
65  
70  
Input Clock Duty Cycle (%)  
Input Clock Duty Cycle (%)  
D729  
D730  
Figure 29. Performance vs Clock Duty Cycle (30 MHz)  
Figure 30. Performance vs Clock Duty Cycle (150 MHz)  
Copyright © 2014–2016, Texas Instruments Incorporated  
23  
ADC3241, ADC3242, ADC3243, ADC3244  
ZHCSD67C JULY 2014REVISED MARCH 2016  
www.ti.com.cn  
Typical Characteristics: ADC3241 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 25 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled, unless otherwise noted.  
15  
12.5  
10  
7.5  
5
2.5  
0
D731  
Output Code (LSB)  
RMS Noise = 1.33 LSBs  
Figure 31. Idle Channel Histogram  
24  
Copyright © 2014–2016, Texas Instruments Incorporated  
ADC3241, ADC3242, ADC3243, ADC3244  
www.ti.com.cn  
ZHCSD67C JULY 2014REVISED MARCH 2016  
7.16 Typical Characteristics: ADC3242  
Typical values are at TA = 25°C, ADC sampling rate = 50 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled, unless otherwise noted.  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Frequency (MHz)  
Frequency (MHz)  
D501  
D502  
SFDR = 88.9 dBc, SFDR = 99.8 dBc (non 23), SNR = 73.6 dBFS,  
SINAD = 73.5 dBFS, THD = 88.8 dBc, HD2 = –111.4 dBc,  
HD3 = –88.9 dBc  
SFDR = 84.7 dBc, SFDR = 96.1 dBc (non 23), SNR = 74.1 dBFS,  
SINAD = 73.8 dBFS, THD = 83.5 dBc, HD2 = –92.2 dBc,  
HD3 = –84.7 dBc  
Figure 32. FFT for 10-MHz Input Signal (Dither On)  
Figure 33. FFT for 10-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Frequency (MHz)  
Frequency (MHz)  
D503  
D504  
SFDR = 85.8 dBc, SFDR = 100.3 dBc (non 23),  
SNR = 72.4 dBFS, SINAD = 72.2 dBFS, THD = 84.8 dBc,  
HD2 = –92.3 dBc, HD3 = –85.8 dBc  
SFDR = 90.4 dBc, SFDR = 94.7 dBc (non 23), SNR = 73.9 dBFS,  
SINAD = 73.7 dBFS, THD = 87.5 dBc, HD2 = –91.9 dBc,  
HD3 = –90.4 dBc  
Figure 35. FFT for 70-MHz Input Signal (Dither Off)  
Figure 34. FFT for 70-MHz Input Signal (Dither On)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Frequency (MHz)  
Frequency (MHz)  
D505  
D506  
SFDR = 85.8 dBc, SFDR = 99.1 dBc (non 23), SNR = 72.4 dBFS,  
SINAD = 72.2 dBFS, THD = 84.8 dBc, HD2 = –92.3 dBc,  
HD3 = –85.8 dBc  
SFDR = 89.7 dBc, SFDR = 93 dBc (non 23), SNR = 72.9 dBFS,  
SINAD = 72.8 dBFS, THD = 86.6 dBc, HD2 = –89.7 dBc,  
HD3 = –107.7 dBc  
Figure 36. FFT for 170-MHz Input Signal (Dither On)  
Figure 37. FFT for 170-MHz Input Signal (Dither Off)  
Copyright © 2014–2016, Texas Instruments Incorporated  
25  
ADC3241, ADC3242, ADC3243, ADC3244  
ZHCSD67C JULY 2014REVISED MARCH 2016  
www.ti.com.cn  
Typical Characteristics: ADC3242 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 50 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled, unless otherwise noted.  
0
0
-10  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Frequency (MHz)  
Frequency (MHz)  
D507  
D508  
SFDR = 74.7 dBc, SFDR = 95.2 dBc (non 23), SNR = 70.7 dBFS,  
SINAD = 69.3 dBFS, THD = 73.8 dBc, HD2 = –74.7 dBc,  
HD3 = –81.1 dBc  
SFDR = 74.6 dBc, SFDR = 91.1 dBc (non 23), SNR = 70.9 dBFS,  
SINAD = 69.2 dBFS, THD = 72.9 dBc, HD2 = –74.6 dBc,  
HD3 = –78.0 dBc  
Figure 38. FFT for 270-MHz Input Signal (Dither On)  
Figure 39. FFT for 270-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Frequency (MHz)  
Frequency (MHz)  
D509  
D510  
SFDR = 68.2 dBc, SNR = 69.0 dBFS, SINAD = 69.0 dBFS,  
THD = –85.7 dBc, HD2 = –68.2 dBc, HD3 = –86.5 dBc  
SFDR = 68.2 dBc, SNR = 69.2 dBFS, SINAD = 69.2 dBFS,  
THD = –86.4 dBc, HD2 = 68.2 dBc, HD3 = –90.3 dBc  
Figure 40. FFT for 450-MHz Input Signal (Dither On)  
Figure 41. FFT for 450-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Frequency (MHz)  
Frequency (MHz)  
D511  
D5112  
fIN1 = 46 MHz, fIN2 = 50 MHz, IMD3 = 87 dBFS,  
each tone at –7 dBFS  
fIN1 = 46 MHz, fIN2 = 50 MHz, IMD3 = 88 dBFS,  
each tone at –36 dBFS  
Figure 42. FFT for Two-Tone Input Signal  
(–7 dBFS at 46 MHz and 50 MHz)  
Figure 43. FFT for Two-Tone Input Signal  
(–36 dBFS at 46 MHz and 50 MHz)  
26  
Copyright © 2014–2016, Texas Instruments Incorporated  
ADC3241, ADC3242, ADC3243, ADC3244  
www.ti.com.cn  
ZHCSD67C JULY 2014REVISED MARCH 2016  
Typical Characteristics: ADC3242 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 50 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled, unless otherwise noted.  
0
0
-10  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Frequency (MHz)  
Frequency (MHz)  
D513  
D514  
fIN1 = 185 MHz, fIN2 = 190 MHz, IMD3 = 83 dBFS,  
each tone at –7 dBFS  
fIN1 = 185 MHz, fIN2 = 190 MHz, IMD3 = 85 dBFS,  
each tone at –36 dBFS  
Figure 44. FFT for Two-Tone Input Signal  
Figure 45. FFT for Two-Tone Input Signal  
(–7 dBFS at 185 MHz and 190 MHz)  
(–36 dBFS at 185 MHz and 190 MHz)  
-85  
-80  
-85  
-90  
-95  
-90  
-95  
-100  
-100  
-105  
-105  
-110  
-110  
-35  
-31  
-27  
-23  
-19  
-15  
-11  
-7  
-35  
-31  
-27  
-23  
-19  
-15  
-11  
-7  
Each Tone Amplitude (dBFS)  
Each Tone Amplitude (dBFS)  
D515  
D516  
Figure 46. Intermodulation Distortion vs Input Amplitude  
(46 MHz and 50 MHz)  
Figure 47. Intermodulation Distortion vs Input Amplitude  
(185 MHz and 190 MHz)  
74.5  
104  
Dither_EN  
Dither_EN  
Dither_DIS  
Dither_DIS  
73.5  
96  
72.5  
71.5  
70.5  
69.5  
68.5  
88  
80  
72  
64  
56  
0
50  
100  
150  
200  
250  
300  
350  
400  
0
50  
100  
150  
200  
250  
300  
350  
400  
Frequency (MHz)  
Frequency (MHz)  
D517  
D518  
Figure 48. Signal-to-Noise Ratio vs Input Frequency  
Figure 49. Spurious-Free Dynamic Range vs  
Input Frequency  
Copyright © 2014–2016, Texas Instruments Incorporated  
27  
ADC3241, ADC3242, ADC3243, ADC3244  
ZHCSD67C JULY 2014REVISED MARCH 2016  
www.ti.com.cn  
Typical Characteristics: ADC3242 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 50 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled, unless otherwise noted.  
74.5  
180  
160  
140  
120  
100  
80  
75.5  
74.5  
73.5  
72.5  
71.5  
70.5  
69.5  
68.5  
280  
240  
200  
160  
120  
80  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
74  
73.5  
73  
72.5  
72  
71.5  
71  
60  
40  
40  
70.5  
20  
0
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
Amplitude (dBFS)  
Amplitude (dBFS)  
D519  
D520  
Figure 50. Performance vs Input Amplitude (30 MHz)  
Figure 51. Performance vs Input Amplitude (170 MHz)  
80  
78  
76  
74  
72  
70  
95  
SNR  
SFDR  
78  
76  
74  
72  
70  
68  
90  
SNR  
SFDR  
92.5  
90  
87.5  
85  
87.5  
85  
82.5  
80  
82.5  
77.5  
0.85  
0.9  
0.95  
1
1.05  
1.1  
0.85  
0.9  
0.95  
1
1.05  
1.1  
Input Common-Mode Voltage (V)  
Input Common-Mode Voltage (V)  
D521  
D522  
Figure 52. Performance vs Input Common-Mode Voltage  
(30 MHz)  
Figure 53. Performance vs Input Common-Mode Voltage  
(170 MHz)  
96  
74  
AVDD = 1.7 V  
AVDD = 1.75 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.7 V  
AVDD = 1.75 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
94  
92  
90  
88  
86  
84  
82  
80  
73.7  
73.4  
73.1  
72.8  
72.5  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D523  
D524  
Figure 54. Spurious-Free Dynamic Range vs  
AVDD Supply and Temperature (30 MHz)  
Figure 55. Signal-to-Noise Ratio vs  
AVDD Supply and Temperature (30 MHz)  
28  
Copyright © 2014–2016, Texas Instruments Incorporated  
ADC3241, ADC3242, ADC3243, ADC3244  
www.ti.com.cn  
ZHCSD67C JULY 2014REVISED MARCH 2016  
Typical Characteristics: ADC3242 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 50 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled, unless otherwise noted.  
92  
91  
90  
89  
88  
87  
86  
85  
74.5  
74.1  
73.7  
73.3  
72.9  
72.5  
DVDD = 1.7 V  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
DVDD = 1.7 V  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D525  
D526  
Figure 56. Spurious-Free Dynamic Range vs  
DVDD Supply and Temperature (30 MHz)  
Figure 57. Signal-to-Noise Ratio vs  
DVDD Supply and Temperature (30 MHz)  
78  
90  
76  
96  
SNR  
SNR  
SFDR  
SFDR  
75  
74  
73  
72  
71  
70  
69  
94  
75  
72  
69  
66  
63  
60  
87  
84  
81  
78  
75  
72  
92  
90  
88  
86  
84  
82  
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2  
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2  
Differential Clock Amplitude (Vpp)  
Differential Clock Amplitude (Vpp)  
D528  
Figure 58. Performance vs Clock Amplitude (40 MHz)  
Figure 59. Performance vs Clock Amplitude (150 MHz)  
74.2  
94.5  
72.4  
90  
88  
86  
84  
82  
80  
SNR  
SFDR  
SNR  
SFDR  
73.8  
73.4  
73  
93  
72.2  
72  
91.5  
90  
71.8  
71.6  
71.4  
72.6  
88.5  
72.2  
87  
30  
35  
40  
45  
50  
55  
60  
65  
70  
30  
35  
40  
45  
50  
55  
60  
65  
70  
Input Clock Duty Cycle (%)  
Input Clock Duty Cycle (%)  
D529  
D530  
Figure 60. Performance vs Clock Duty Cycle (30 MHz)  
Figure 61. Performance vs Clock Duty Cycle (150 MHz)  
Copyright © 2014–2016, Texas Instruments Incorporated  
29  
ADC3241, ADC3242, ADC3243, ADC3244  
ZHCSD67C JULY 2014REVISED MARCH 2016  
www.ti.com.cn  
Typical Characteristics: ADC3242 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 50 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled, unless otherwise noted.  
20  
16  
12  
8
4
0
D531  
Output Code (LSB)  
RMS Noise = 1.3 LSBs  
Figure 62. Idle Channel Histogram  
30  
Copyright © 2014–2016, Texas Instruments Incorporated  
ADC3241, ADC3242, ADC3243, ADC3244  
www.ti.com.cn  
ZHCSD67C JULY 2014REVISED MARCH 2016  
7.17 Typical Characteristics: ADC3243  
Typical values are at TA = 25°C, ADC sampling rate = 80 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled, unless otherwise noted.  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
8
16  
24  
32  
40  
0
8
16  
24  
32  
40  
Frequency (MHz)  
Frequency (MHz)  
D301  
D302  
SFDR = 88.9 dBc, SNR = 73.4 dBFS, SINAD = 73.3 dBFS,  
THD = 88.8 dBc, HD2 = –109.9 dBc, HD3 = –88.9 dBc  
SFDR = 84.2 dBc, SNR = 73.8 dBFS, SINAD = 73.4 dBFS,  
THD = 83.2 dBc, HD2 = –93.6 dBc, HD3 = –84.2 dBc  
Figure 63. FFT for 10-MHz Input Signal (Dither On)  
Figure 64. FFT for 10-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
8
16  
24  
32  
40  
0
8
16  
24  
32  
40  
Frequency (MHz)  
Frequency (MHz)  
D303  
D304  
SFDR = 91.3 dBc, SNR = 73.2 dBFS, SINAD = 73.1 dBFS,  
THD = 91 dBc, HD2 = –109.5 dBc, HD3 = –91.3 dBc  
SFDR = 85.4 dBc, SNR = 73.6 dBFS, SINAD = 73.3 dBFS,  
THD = 83.7 dBc, HD2 = –91.2 dBc, HD3 = –85.4 dBc  
Figure 65. FFT for 70-MHz Input Signal (Dither On)  
Figure 66. FFT for 70-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
8
16  
24  
32  
40  
0
8
16  
24  
32  
40  
Frequency (MHz)  
Frequency (MHz)  
D305  
D306  
SFDR = 94.9 dBc, SNR = 72.4 dBFS, SINAD = 72.4 dBFS,  
THD = 93.2 dBc, HD2 = –106.1 dBc, HD3 = –94.9 dBc  
SFDR = 92.3 dBc, SNR = 72.9 dBFS, SINAD = 72.8 dBFS,  
THD = 88 dBc, HD2 = –92.3 dBc, HD3 = –95.4 dBc  
Figure 67. FFT for 170-MHz Input Signal (Dither On)  
Figure 68. FFT for 170-MHz Input Signal (Dither Off)  
Copyright © 2014–2016, Texas Instruments Incorporated  
31  
ADC3241, ADC3242, ADC3243, ADC3244  
ZHCSD67C JULY 2014REVISED MARCH 2016  
www.ti.com.cn  
Typical Characteristics: ADC3243 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 80 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled, unless otherwise noted.  
0
0
-10  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
8
16  
24  
32  
40  
0
8
16  
24  
32  
40  
Frequency (MHz)  
Frequency (MHz)  
D307  
D308  
SFDR = 75.4 dBc, SNR = 70.9 dBFS, SINAD = 69.6 dBFS,  
THD = 74.3 dBc, HD2 = –75.4 dBc, HD3 = –81.0 dBc  
SFDR = 75.4 dBc, SNR = 71.2 dBFS, SINAD = 69.8 dBFS,  
THD = 74.2 dBc, HD2 =–75.4 dBc, HD3 = –81.2 dBc  
Figure 69. FFT for 270-MHz Input Signal (Dither On)  
Figure 70. FFT for 270-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
8
16  
24  
32  
40  
0
8
16  
24  
32  
40  
Frequency (MHz)  
Frequency (MHz)  
D309  
D310  
SFDR = 77.8 dBc, SNR = 68.8 dBFS, SINAD = 68.3 dBFS,  
THD = 77.5 dBc, HD2 = –77.8 dBc, HD3 = –91.8 dBc  
SFDR = 77.8 dBc, SNR = 68.8 dBFS, SINAD = 68.3 dBFS,  
THD = 77.5 dBc, HD2 = –77.8 dBc, HD3 = –91.8 dBc  
Figure 71. FFT for 450-MHz Input Signal (Dither On)  
Figure 72. FFT for 450-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
8
16  
24  
32  
40  
0
8
16  
24  
32  
40  
Frequency (MHz)  
Frequency (MHz)  
D311  
D312  
fIN1 = 46 MHz, fIN2 = 50 MHz, IMD3 = 87 dBFS,  
each tone at –7 dBFS  
fIN1 = 46 MHz, fIN2 = 50 MHz, IMD3 = 92.8 dBFS,  
each tone at –36 dBFS  
Figure 73. FFT for Two-Tone Input Signal  
(–7 dBFS at 46 MHz and 50 MHz)  
Figure 74. FFT for Two-Tone Input Signal  
(–36 dBFS at 46 MHz and 50 MHz)  
32  
Copyright © 2014–2016, Texas Instruments Incorporated  
ADC3241, ADC3242, ADC3243, ADC3244  
www.ti.com.cn  
ZHCSD67C JULY 2014REVISED MARCH 2016  
Typical Characteristics: ADC3243 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 80 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled, unless otherwise noted.  
0
0
-10  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
8
16  
24  
32  
40  
0
8
16  
24  
32  
40  
Frequency (MHz)  
Frequency (MHz)  
D313  
D314  
fIN1 = 185 MHz, fIN2 = 190 MHz, IMD3 = 78.8 dBFS,  
each tone at –7 dBFS  
fIN1 = 185 MHz, fIN2 = 190 MHz, IMD3 = 91 dBFS,  
each tone at –36 dBFS  
Figure 75. FFT FOR Two-Tone Input Signal  
Figure 76. FFT FOR Two-Tone Input Signal  
(–36 dBFS at 185 MHz and 190 MHz)  
(–7 dBFS at 185 MHz and 190 MHz)  
-85  
-80  
-85  
-90  
-95  
-90  
-95  
-100  
-105  
-110  
-100  
-105  
-110  
-35  
-31  
-27  
-23  
-19  
-15  
-11  
-7  
-35  
-31  
-27  
-23  
-19  
-15  
-11  
-7  
Each Tone Amplitude (dBFS)  
Each Tone Amplitude (dBFS)  
D315  
D316  
Figure 77. Intermodulation Distortion vs Input Amplitude  
(46 MHz and 50 MHz)  
Figure 78. Intermodulation Distortion vs Input Amplitude  
(185 MHz and 190 MHz)  
74.5  
100  
Dither_EN  
Dither_EN  
Dither_DIS  
Dither_DIS  
73.5  
95  
72.5  
71.5  
70.5  
69.5  
68.5  
90  
85  
80  
75  
70  
0
50  
100  
150  
200  
250  
300  
350  
400  
0
50  
100  
150  
200  
250  
300  
350  
400  
Frequency (MHz)  
Frequency (MHz)  
D317  
D318  
Figure 79. Signal-to-Noise Ratio vs Input Frequency  
Figure 80. Spurious-Free Dynamic Range vs  
Input Frequency  
Copyright © 2014–2016, Texas Instruments Incorporated  
33  
ADC3241, ADC3242, ADC3243, ADC3244  
ZHCSD67C JULY 2014REVISED MARCH 2016  
www.ti.com.cn  
Typical Characteristics: ADC3243 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 80 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled, unless otherwise noted.  
74.5  
180  
160  
140  
120  
100  
80  
74.5  
180  
160  
140  
120  
100  
80  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
74  
74  
73.5  
73  
73.5  
73  
72.5  
72  
72.5  
72  
71.5  
71  
60  
71.5  
71  
60  
40  
40  
70.5  
20  
70.5  
20  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
Amplitude (dBFS)  
Amplitude (dBFS)  
D319  
D320  
Figure 81. Performance vs Input Amplitude (30 MHz)  
Figure 82. Performance vs Input Amplitude (170 MHz)  
78  
92  
90  
88  
86  
84  
82  
78  
92  
90  
88  
86  
84  
82  
SNR  
SFDR  
SNR  
SFDR  
76  
74  
72  
70  
68  
76  
74  
72  
70  
68  
0.85  
0.9  
0.95  
1
1.05  
1.1  
0.85  
0.9  
0.95  
1
1.05  
1.1  
Input Common-Mode Voltage (V)  
Input Common-Mode Voltage (V)  
D321  
D322  
Figure 83. Performance vs Input Common-Mode Voltage  
(30 MHz)  
Figure 84. Performance vs Input Common-Mode Voltage  
(170 MHz)  
95  
74  
AVDD = 1.7 V  
AVDD = 1.75 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.7 V  
AVDD = 1.75 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
73.5  
73  
93  
91  
89  
87  
85  
72.5  
72  
71.5  
71  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D323  
D324  
Figure 85. Spurious-Free Dynamic Range vs  
AVDD Supply and Temperature (170 MHz)  
Figure 86. Signal-to-Noise Ratio vs  
AVDD Supply and Temperature (170 MHz)  
34  
Copyright © 2014–2016, Texas Instruments Incorporated  
ADC3241, ADC3242, ADC3243, ADC3244  
www.ti.com.cn  
ZHCSD67C JULY 2014REVISED MARCH 2016  
Typical Characteristics: ADC3243 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 80 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled, unless otherwise noted.  
95  
93  
91  
89  
87  
85  
74  
73.5  
73  
DVDD = 1.7 V  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
DVDD = 1.7 V  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
72.5  
72  
71.5  
71  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D325  
D326  
Figure 87. Spurious-Free Dynamic Range vs  
DVDD Supply and Temperature (170 MHz)  
Figure 88. Signal-to-Noise Ratio vs  
DVDD Supply and Temperature (170 MHz)  
74.5  
104  
80  
94  
SNR  
SNR  
SFDR  
SFDR  
78  
76  
74  
72  
70  
68  
66  
64  
92  
74  
73.5  
73  
102  
100  
98  
90  
88  
86  
84  
82  
80  
78  
72.5  
72  
96  
94  
71.5  
92  
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2  
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2  
Differential Clock Amplitude (Vpp)  
Differential Clock Amplitude (Vpp)  
D327  
D328  
Figure 89. Performance vs Clock Amplitude (40 MHz)  
Figure 90. Performance vs Clock Amplitude (150 MHz)  
74.2  
90  
89  
88  
87  
86  
85  
72.8  
92  
90  
88  
86  
84  
82  
SNR  
SFDR  
SNR  
SFDR  
73.8  
73.4  
73  
72.6  
72.4  
72.2  
72  
72.6  
72.2  
71.8  
30  
35  
40  
45  
50  
55  
60  
65  
70  
30  
35  
40  
45  
50  
55  
60  
65  
70  
Input Clock Duty Cycle (%)  
Input Clock Duty Cycle (%)  
D329  
D330  
Figure 91. Performance vs Clock Duty cycle (30 MHz)  
Figure 92. Performance vs Clock Duty Cycle (150 MHz)  
Copyright © 2014–2016, Texas Instruments Incorporated  
35  
ADC3241, ADC3242, ADC3243, ADC3244  
ZHCSD67C JULY 2014REVISED MARCH 2016  
www.ti.com.cn  
Typical Characteristics: ADC3243 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 80 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled, unless otherwise noted.  
24  
22  
20  
18  
16  
14  
12  
10  
8
6
4
2
0
D331  
Output Code (LSB)  
RMS Noise = 1.28 LSBs  
Figure 93. Idle Channel Histogram  
36  
Copyright © 2014–2016, Texas Instruments Incorporated  
ADC3241, ADC3242, ADC3243, ADC3244  
www.ti.com.cn  
ZHCSD67C JULY 2014REVISED MARCH 2016  
7.18 Typical Characteristics: ADC3244  
Typical values are at TA = 25°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled, unless otherwise noted.  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
D101  
D102  
SFDR = 102.6 dBc, SNR = 72.9 dBFS, SINAD = 72.8 dBFS,  
THD = 99.8 dBc, HD2 = –108.6 dBc, HD3 = –104.0 dBc  
SFDR = 91.8 dBc, SNR = 73.5 dBFS, SINAD = 73.4 dBFS,  
THD = 87.3 dBc, HD2 = –93.8 dBc, HD3 = –91.8 dBc  
Figure 94. FFT for 10-MHz Input Signal  
(Chopper On, Dither On)  
Figure 95. FFT for 10-MHz Input Signal  
(Chopper On, Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
D103  
D104  
SFDR = 95.9 dBc, SNR = 72.7 dBFS, SINAD = 72.7 dBFS,  
THD = 93.6 dBc, HD2 = –100.6 dBc, HD3 = –95.9 dBc  
SFDR = 90.9 dBc, SNR = 73.3 dBFS, SINAD = 73.1 dBFS,  
THD = 87 dBc, HD2 = –90.9 dBc, HD3 = –94.9 dBc  
Figure 96. FFT for 70-MHz Input Signal (Dither On)  
Figure 97. FFT for 70-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
D105  
D106  
SFDR = 96.4 dBc, SNR = 72.1 dBFS, SINAD = 72.0 dBFS,  
THD = 92.6 dBc, HD2 = –96.4 dBc, HD3 = –98.8 dBc  
SFDR = 89.9 dBc, SNR = 72.8 dBFS, SINAD = 72.6 dBFS,  
THD = 87.1 dBc, HD2 = –97.2 dBc, HD3 = –89.9 dBc  
Figure 98. FFT for 170-MHz Input Signal (Dither On)  
Figure 99. FFT for 170-MHz Input Signal (Dither Off)  
Copyright © 2014–2016, Texas Instruments Incorporated  
37  
ADC3241, ADC3242, ADC3243, ADC3244  
ZHCSD67C JULY 2014REVISED MARCH 2016  
www.ti.com.cn  
Typical Characteristics: ADC3244 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled, unless otherwise noted.  
0
0
-10  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
D107  
D108  
SFDR = 76.1 dBc, SNR = 70.8 dBFS, SINAD = 69.8 dBFS,  
THD = 74.8 dBc, HD2 = –76.1 dBc, HD3 = –80.9 dBc  
SFDR = 76.1 dBc, SNR = 71.2 dBFS, SINAD = 70.2 dBFS,  
THD = 74.9 dBc, HD2 = –76.1 dBc, HD3 = –81.6 dBc  
Figure 100. FFT for 270-MHz Input Signal (Dither On)  
Figure 101. FFT for 270-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
D109  
D110  
SFDR = 76.2 dBc, SNR = 68.3 dBFS, SINAD = 67.5 dBFS,  
THD = 74.3 dBc, HD2 = –76.2 dBc, HD3 = –79.2 dBc  
SFDR = 75.3 dBc, SNR = 69.1 dBFS, SINAD = 67.8 dBFS,  
THD = 72.7 dBc, HD2 = –76.7 dBc, HD3 = –75.3 dBc  
Figure 102. FFT for 450-MHz Input Signal (Dither On)  
Figure 103. FFT for 450-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
D111  
D112  
fIN1 = 46 MHz, fIN2 = 50 MHz, IMD3 = 88.3 dBFS,  
each tone at –7 dBFS  
fIN1 = 46 MHz, fIN2 = 50 MHz, IMD3 = 90.8 dBFS,  
each tone at –36 dBFS  
Figure 104. FFT for Two-Tone Input Signal  
(–7 dBFS at 46 MHz and 50 MHz)  
Figure 105. FFT for Two-Tone Input Signal  
(–36 dBFS at 46 MHz and 50 MHz)  
38  
Copyright © 2014–2016, Texas Instruments Incorporated  
ADC3241, ADC3242, ADC3243, ADC3244  
www.ti.com.cn  
ZHCSD67C JULY 2014REVISED MARCH 2016  
Typical Characteristics: ADC3244 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled, unless otherwise noted.  
0
0
-10  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
D113  
D114  
fIN1 = 185 MHz, fIN2 = 190 MHz, IMD3 = 86.4 dBFS,  
each tone at –7 dBFS  
fIN1 = 185 MHz, fIN2 = 190 MHz, IMD3 = 87.28 dBFS,  
each tone at –36 dBFS  
Figure 106. FFT for Two-Tone Input Signal  
Figure 107. FFT for Two-Tone Input Signal  
(–7 dBFS at 185 MHz and 190 MHz)  
(–36 dBFS at 185 MHz and 190 MHz)  
-85  
-80  
-85  
-90  
-90  
-95  
-95  
-100  
-105  
-110  
-100  
-105  
-110  
-35  
-31  
-27  
-23  
-19  
-15  
-11  
-7  
-35  
-31  
-27  
-23  
-19  
-15  
-11  
-7  
Each Tone Amplitude (dBFS)  
Each Tone Amplitude (dBFS)  
D115  
D116  
Figure 108. Intermodulation Distortion vs Input Amplitude  
(46 MHz and 50 MHz)  
Figure 109. Intermodulation Distortion vs Input Amplitude  
(185 MHz and 190 MHz)  
74  
100  
Dither_EN  
Dither_EN  
Dither_DIS  
Dither_DIS  
73  
95  
72  
71  
70  
69  
68  
90  
85  
80  
75  
70  
0
50  
100  
150  
200  
250  
300  
350  
400  
0
50  
100  
150  
200  
250  
300  
350  
400  
Frequency (MHz)  
Frequency (MHz)  
D117  
D118  
Figure 110. Signal-to-Noise Ratio vs Input Frequency  
Figure 111. Spurious-Free Dynamic Range vs  
Input Frequency  
Copyright © 2014–2016, Texas Instruments Incorporated  
39  
ADC3241, ADC3242, ADC3243, ADC3244  
ZHCSD67C JULY 2014REVISED MARCH 2016  
www.ti.com.cn  
Typical Characteristics: ADC3244 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled, unless otherwise noted.  
74.5  
180  
160  
140  
120  
100  
80  
74  
73.5  
73  
180  
160  
140  
120  
100  
80  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
74  
73.5  
73  
72.5  
72  
72.5  
72  
71.5  
71  
71.5  
71  
60  
60  
40  
70.5  
70  
40  
70.5  
20  
20  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
Amplitude (dBFS)  
Amplitude (dBFS)  
D119  
D120  
Figure 112. Performance vs Input Amplitude (30 MHz)  
Figure 113. Performance vs Input Amplitude (170 MHz)  
78  
96  
94  
92  
90  
88  
86  
78  
76  
74  
72  
70  
68  
92  
90  
88  
86  
84  
82  
SNR  
SFDR  
SNR  
SFDR  
76  
74  
72  
70  
68  
0.85  
0.9  
0.95  
1
1.05  
1.1  
0.85  
0.9  
0.95  
1
1.05  
1.1  
Input Common-Mode Voltage (V)  
Input Common-Mode Voltage (V)  
D121  
Figure 115. Performance vs Input Common-Mode Voltage  
(170 MHz)  
Figure 114. Performance vs Input Common-Mode Voltage  
(30 MHz)  
92  
73  
AVDD = 1.7 V  
AVDD = 1.75 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.7 V  
AVDD = 1.75 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
72.5  
72  
90  
88  
86  
84  
82  
71.5  
71  
70.5  
70  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D123  
D124  
Figure 116. Spurious-Free Dynamic Range vs  
AVDD Supply and Temperature (170 MHz)  
Figure 117. Signal-to-Noise Ratio vs  
AVDD Supply and Temperature (170 MHz)  
40  
Copyright © 2014–2016, Texas Instruments Incorporated  
ADC3241, ADC3242, ADC3243, ADC3244  
www.ti.com.cn  
ZHCSD67C JULY 2014REVISED MARCH 2016  
Typical Characteristics: ADC3244 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled, unless otherwise noted.  
92  
90  
88  
86  
84  
82  
73  
72.6  
72.2  
71.8  
71.4  
71  
DVDD = 1.7 V  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
DVDD = 1.7 V  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D125  
D126  
Figure 118. Spurious-Free Dynamic Range vs  
DVDD Supply and Temperature (170 MHz)  
Figure 119. Signal-to-Noise Ratio vs  
DVDD Supply and Temperature (170 MHz)  
74.5  
94  
77  
95  
SNR  
SNR  
SFDR  
SFDR  
74  
73.5  
73  
93  
92  
91  
90  
89  
75  
73  
71  
69  
67  
65  
90  
85  
80  
75  
70  
72.5  
72  
71.5  
88  
65  
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2  
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2  
Differential Clock Amplitude (Vpp)  
Differential Clock Amplitude (Vpp)  
D127  
D128  
Figure 120. Performance vs Clock Amplitude (40 MHz)  
Figure 121. Performance vs Clock Amplitude (150 MHz)  
74.2  
95  
94  
93  
92  
91  
90  
72.4  
90  
SNR  
SFDR  
SNR  
SFDR  
73.8  
73.4  
73  
72.2  
72  
87.5  
85  
71.8  
71.6  
71.4  
82.5  
80  
72.6  
72.2  
77.5  
30  
35  
40  
45  
50  
55  
60  
65  
70  
30  
35  
40  
45  
50  
55  
60  
65  
70  
Input Clock Duty Cycle (%)  
Input Clock Duty Cycle (%)  
D129  
D130  
Figure 122. Performance vs Clock Duty Cycle (30 MHz)  
Figure 123. Performance vs Clock Duty Cycle (150 MHz)  
Copyright © 2014–2016, Texas Instruments Incorporated  
41  
ADC3241, ADC3242, ADC3243, ADC3244  
ZHCSD67C JULY 2014REVISED MARCH 2016  
www.ti.com.cn  
Typical Characteristics: ADC3244 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled, unless otherwise noted.  
20  
16  
12  
8
4
0
D131  
Output Code (LSB)  
RMS Noise = 1.4 LSBs  
Figure 124. Idle Channel Histogram  
42  
Copyright © 2014–2016, Texas Instruments Incorporated  
ADC3241, ADC3242, ADC3243, ADC3244  
www.ti.com.cn  
ZHCSD67C JULY 2014REVISED MARCH 2016  
7.19 Typical Characteristics: Common  
Typical values are at TA = 25°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled, unless otherwise noted.  
0
-10  
0
-5  
-20  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
0
12ꢀ5  
25  
37ꢀ5  
50  
62ꢀ5  
0
50  
100  
150  
200  
250  
300  
Crequency (aIz)  
Frequency of Signal on Supply (MHz)  
D001  
D0012  
fIN = 30 MHz, AIN = –1 dBFS,  
test signal amplitude = 50 mVPP  
fIN = 30.1 MHz, fPSRR = 3 MHz, APSRR = 50 mVPP  
SNR = 58.51 dBFS, SINAD = 58.51 dBFS, SFDR = 60.53 dBc,  
THD = –90.71 dBc, SFDR = 60.53 dBc (non 23)  
,
Figure 126. Power-Supply Rejection Ratio Spectrum  
Figure 125. Power-Supply Rejection Ratio vs  
Test Signal Frequency  
0
-10  
0
-5  
-20  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
0
12ꢀ5  
25  
37ꢀ5  
50  
62ꢀ5  
0
50  
100  
150  
200  
250  
300  
Crequency (aIz)  
Frequency of Input Common-Mode Signal (MHz)  
D003  
D004  
fIN = 30 MHz, AIN = –1 dBFS,  
test signal amplitude = 50 mVPP  
fIN = 170.1 MHz, fCMRR = 5 MHz, ACMRR = 50 mVPP  
SNR = 69.72 dBFS, SINAD = 69.66 dBFS, SFDR = 75.66 dBc,  
THD = –86.98 dBc, SFDR = 75.66 dBc (non 23)  
,
Figure 128. Common-Mode Rejection Ratio Spectrum  
Figure 127. Common-Mode Rejection Ratio vs  
Test Signal Frequency  
240  
Analog Power  
Digital Power  
Total Power  
200  
160  
120  
80  
40  
5
15 25 35 45 55 65 75 85 95 105 115 125  
Sampling Speed (MSPS)  
Figure 129. Power vs Sampling Frequency  
(One-Wire Mode)  
Copyright © 2014–2016, Texas Instruments Incorporated  
43  
ADC3241, ADC3242, ADC3243, ADC3244  
ZHCSD67C JULY 2014REVISED MARCH 2016  
www.ti.com.cn  
7.20 Typical Characteristics: Contour  
Typical values are at TA = 25°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when is chopper enabled, unless otherwise noted.  
80  
85  
120  
110  
100  
90  
90  
80  
90  
75  
90  
85  
80  
75  
80  
70  
70  
60  
90  
50  
85  
40  
70  
75  
90  
80  
30  
50  
100  
150  
200  
250  
300  
350  
400  
450  
90  
Input Frequency, MHz  
70  
75  
80  
85  
Figure 130. Spurious-Free Dynamic Range (SFDR)  
120  
110  
100  
90  
72.5  
73  
72  
71.5  
71  
70.5  
69.5  
69  
70  
80  
72.5  
73  
71.5  
70  
72  
71  
70.5  
69.5  
69  
70  
60  
50  
40  
68.5  
72.5  
70.5  
71.5  
70  
71  
73  
72  
69.5  
69  
30  
68  
67.5  
50  
100  
150  
200  
250  
300  
350  
400  
450  
73  
Input Frequency, MHz  
70  
67  
68  
69  
71  
72  
Figure 131. Signal-to-Noise Ratio (SNR)  
44  
Copyright © 2014–2016, Texas Instruments Incorporated  
ADC3241, ADC3242, ADC3243, ADC3244  
www.ti.com.cn  
ZHCSD67C JULY 2014REVISED MARCH 2016  
8 Parameter Measurement Information  
8.1 Timing Diagrams  
DAn_P  
DBn_P  
Logic 0  
ODL = -410 mV(1)  
Logic 1  
VODH = +410 mV(1)  
V
DAn_M  
DBn_M  
VOCM  
GND  
(1) With an external 100-Ω termination.  
Figure 132. Serial LVDS Output Voltage Levels  
CLKIN  
FCLK  
DCLK  
1-Wire (14x Serialization)  
Dx0P  
Dx0M  
D
1
D
2
D
3
D
4
D
5
D
6
D
7
D
8
D
9
D
D
D
D
D
0
D
13  
D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
7
D
8
D
9
D
D
D
D
D
0
10 11 12 13  
10 11 12 13  
CLKIN  
FCLK  
DCLK  
Dx0P  
D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
0
2-Wire (7x Serialization)  
Dx0M  
Dx1P  
Dx1M  
D
7
D
8
D
9
D
10  
D
11  
D
12  
D
13  
D
7
D
8
D
9
D
10  
D
11  
D
12  
D
13  
D
7
SAMPLE N-1  
SAMPLE N  
SAMPLE N+1  
Figure 133. Output Timing Diagram  
Copyright © 2014–2016, Texas Instruments Incorporated  
45  
ADC3241, ADC3242, ADC3243, ADC3244  
ZHCSD67C JULY 2014REVISED MARCH 2016  
www.ti.com.cn  
Timing Diagrams (continued)  
DCLK  
t HO  
Dx0P  
Dx0M  
t SU  
Figure 134. Setup and Hold Time  
N+10  
N+1  
N+9  
Sample N  
TA  
Input Signal  
on INxP, INxM pins  
Data Latency(1) = 9 Input Clock Cycles  
Sample N  
CLKINP,  
CLKINM  
tPDI  
FCLKP,  
FCLKM  
DCLKP,  
DCLKM  
DCLK edges are centered within the data valid  
window.  
DA0P, DA0M,  
DB0P, DB0M  
5
6
0
7
1
8
2
9
3
4
5
6
0
7
1
8
2
9
3
4
12 13  
10 11 12 13  
Sample N  
10 11  
DA1P, DA1M,  
DB1P, DB1M  
Sample N+1  
th  
tsu  
(1) Overall latency = data latency + tPDI  
.
Figure 135. Latency Diagram  
46  
Copyright © 2014–2016, Texas Instruments Incorporated  
ADC3241, ADC3242, ADC3243, ADC3244  
www.ti.com.cn  
ZHCSD67C JULY 2014REVISED MARCH 2016  
9 Detailed Description  
9.1 Overview  
The ADC324x are a high-linearity, ultra-low power, quad-channel, 14-bit, 25-MSPS to 125-MSPS, analog-to-  
digital converter (ADC) family. The devices are designed specifically to support demanding, high input frequency  
signals with large dynamic range requirements. An input clock divider allows more flexibility for system clock  
architecture design while the SYSREF input enables complete system synchronization. The ADC324x family  
supports serial LVDS interface in order to reduce the number of interface lines, thus allowing for high system  
integration density. The serial LVDS interface is two-wire, where each ADC data are serialized and output over  
two LVDS pairs. An internal phase-locked loop (PLL) multiplies the incoming ADC sampling clock to derive the  
bit clock that is used to serialize the 14-bit output data from each channel. In addition to the serial data streams,  
the frame and bit clocks are also transmitted as LVDS outputs.  
9.2 Functional Block Diagram  
DA0P  
DA0M  
Digital Encoder  
and Serializer  
INAP  
INAM  
14-Bit  
ADC  
DA1P  
DA1M  
CLKP  
CLKM  
Divide by  
1,2,4  
DCLKP  
DCLKM  
Bit Clock  
PLL  
Frame Clock  
FCLKP  
FCLKM  
SYSREFP  
SYSREFM  
DB0P  
DB0M  
INBP  
INBM  
14-Bit  
ADC  
Digital Encoder  
and Serializer  
DB1P  
DB1M  
Common  
Mode  
VCM  
Configuration Registers  
Copyright © 2014–2016, Texas Instruments Incorporated  
47  
ADC3241, ADC3242, ADC3243, ADC3244  
ZHCSD67C JULY 2014REVISED MARCH 2016  
www.ti.com.cn  
9.3 Feature Description  
9.3.1 Analog Inputs  
The ADC324x analog signal inputs are designed to be driven differentially. Each input pin (INP, INM) must swing  
symmetrically between (VCM + 0.5 V) and (VCM – 0.5 V), resulting in a 2-VPP (default) differential input swing.  
The input sampling circuit has a 3-dB bandwidth that extends up to 540 MHz (50-Ω source driving 50-Ω  
termination between INP and INM).  
9.3.2 Clock Input  
The device clock inputs can be driven differentially (sine, LVPECL, or LVDS) or single-ended (LVCMOS), with  
little or no difference in performance between them. The common-mode voltage of the clock inputs is set to  
0.95 V using internal 5-kΩ resistors. The self-bias clock inputs of the ADC324x can be driven by the transformer-  
coupled, sine-wave clock source or by the ac-coupled, LVPECL and LVDS clock sources, as shown in  
Figure 136, Figure 137, and Figure 138. See Figure 139 for details regarding the internal clock buffer.  
0.1 mF  
0.1 mF  
Zo  
CLKP  
CLKP  
Differential  
Sine-Wave  
Clock Input  
RT  
Typical LVDS  
Clock Input  
100 W  
0.1 mF  
CLKM  
Device  
0.1 mF  
Zo  
CLKM  
NOTE: RT = termination resistor, if necessary.  
Device  
Figure 136. Differential Sine-Wave Clock Driving  
Circuit  
Figure 137. LVDS Clock Driving Circuit  
0.1 mF  
Zo  
CLKP  
150 W  
Typical LVPECL  
Clock Input  
100 W  
0.1 mF  
Zo  
CLKM  
Device  
150 W  
Figure 138. LVPECL Clock Driving Circuit  
48  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
 
ADC3241, ADC3242, ADC3243, ADC3244  
www.ti.com.cn  
ZHCSD67C JULY 2014REVISED MARCH 2016  
Clock Buffer  
LPKG  
2 nH  
20 W  
CLKP  
CBOND  
1 pF  
CEQ  
CEQ  
5 kW  
RESR  
100 W  
1.4 V  
LPKG  
2 nH  
5 kW  
20 W  
CLKM  
CBOND  
1 pF  
RESR  
100 W  
NOTE: CEQ is 1 pF to 3 pF and is the equivalent input capacitance of the clock buffer.  
Figure 139. Internal Clock Buffer  
A single-ended CMOS clock can be ac-coupled to the CLKP input, with CLKM connected to ground with a 0.1-μF  
capacitor, as shown in Figure 140. However, for best performance the clock inputs must be driven differentially,  
thereby reducing susceptibility to common-mode noise. For high input frequency sampling, TI recommends using  
a clock source with very low jitter. Band-pass filtering of the clock source can help reduce the effects of jitter.  
There is no change in performance with a non-50% duty cycle clock input.  
0.1 mF  
CMOS  
Clock Input  
CLKP  
0.1 mF  
CLKM  
Device  
Figure 140. Single-Ended Clock Driving Circuit  
9.3.2.1 SNR and Clock Jitter  
The signal-to-noise ratio of the ADC is limited by three different factors, as shown in Equation 1. Quantization  
noise (typically 86 dB for a 14-bit ADC) and thermal noise limit SNR at low input frequencies while the clock jitter  
sets SNR for higher input frequencies.  
2
2
2
SNRQuantizatoin  
SNR  
SNR  
Jitter  
Noise  
÷
Thermal Noise  
÷
÷
-
-
-
20  
20  
20  
SNRADC[dBc] = -20log 10  
+ 10  
+ 10  
«
÷
«
÷
«
÷
(1)  
(2)  
The SNR limitation resulting from sample clock jitter can be calculated with Equation 2.  
SNRJitter[dBc] = -20log(2p fin TJitter )  
The total clock jitter (TJitter) has two components: the internal aperture jitter (130 fs for the device) which is set by  
the noise of the clock input buffer and the external clock. TJitter can be calculated with Equation 3.  
2
TJitter = (TJitter,Ext.Clock _ Input )2 +(TAperture_ ADC  
)
(3)  
Copyright © 2014–2016, Texas Instruments Incorporated  
49  
 
 
 
 
ADC3241, ADC3242, ADC3243, ADC3244  
ZHCSD67C JULY 2014REVISED MARCH 2016  
www.ti.com.cn  
External clock jitter can be minimized by using high-quality clock sources and jitter cleaners as well as band pass  
filters at the clock input while a faster clock slew rate improves the ADC aperture jitter. The ADC324x has a  
typical thermal noise of 73.5 dBFS and internal aperture jitter of 130 fs. Figure 141 shows SNR (from 1 MHz  
offset leaving the 1/f flicker noise) for different jitter of clock driver.  
73.0  
Ext Clock Jitter  
72.5  
35 fs  
72.0  
71.5  
71.0  
70.5  
70.0  
69.5  
69.0  
68.5  
68.0  
67.5  
67.0  
50 fs  
100 fs  
150 fs  
200 fs  
10  
100  
1000  
Input Frequency (MHz)  
D03061  
Figure 141. SNR vs Frequency for Different Clock Jitter  
9.3.3 Digital Output Interface  
The devices offer two different output format options, thus making interfacing to a field-programmable gate array  
(FPGA) or an application-specific integrated circuit (ASIC) easy. Each option can be easily programmed using  
the serial interface, as shown in Table 3. The output interface options are:  
One-wire, 1x frame clock, 14x serialization with the DDR bit clock and  
Two-wire, 0.5x frame clock, 7x serialization with the DDR bit clock.  
Table 3. Interface Rates  
RECOMMENDED SAMPLING  
FREQUENCY (MSPS)  
BIT CLOCK  
FREQUENCY  
(MHz)  
FRAME CLOCK  
FREQUENCY  
(MHz)  
INTERFACE  
OPTIONS  
SERIAL DATA  
RATE (Mbps)  
SERIALIZATION  
MINIMUM  
15(1)  
MAXIMUM  
80  
105  
560  
15  
80  
210  
1120  
140  
1-wire  
14x  
7x  
20(1)  
70  
10  
2-wire (default  
after reset)  
125  
437.5  
62.5  
875  
(1) Use the LOW SPEED ENABLE register bits for low speed operation; see Table 22.  
9.3.3.1 One-Wire Interface: 14x Serialization  
In this interface option, the device outputs the data of each ADC serially on a single LVDS pair (one-wire). The  
data are available at the rising and falling edges of the bit clock (DDR bit clock). The ADC outputs a new word at  
the rising edge of every frame clock, starting with the MSB. The data rate is 14x sample frequency (14x  
serialization).  
50  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
 
ADC3241, ADC3242, ADC3243, ADC3244  
www.ti.com.cn  
ZHCSD67C JULY 2014REVISED MARCH 2016  
9.3.3.2 Two-Wire Interface: 7x Serialization  
The two-wire interface is recommended for sampling frequencies above 65 MSPS. The output data rate is 7x  
sample frequency because seven data bits are output every clock cycle on each differential pair. Each ADC  
sample is sent over the two wires with the seven MSBs on Dx1P, Dx1M and the seven LSBs on Dx0P, Dx0M, as  
shown in Figure 142. Note that in two-wire mode, the frame clock (FCLK) frequency is half of sampling clock  
(CLKIN) frequency.  
CLKIN  
FCLK  
DCLK  
1-Wire (14x Serialization)  
Dx0P  
D
1
D
2
D
3
D
4
D
5
D
6
D
7
D
8
D
9
D
D
D
D
D
0
D
13  
D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
7
D
8
D
9
D
D
D
D
D
0
10 11 12 13  
10 11 12 13  
Dx0M  
CLKIN  
FCLK  
DCLK  
Dx0P  
D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
0
2-Wire (7x Serialization)  
Dx0M  
Dx1P  
Dx1M  
D
7
D
8
D
9
D
10  
D
11  
D
12  
D
13  
D
7
D
8
D
9
D
10  
D
11  
D
12  
D
13  
D
7
SAMPLE N-1  
SAMPLE N  
SAMPLE N+1  
Figure 142. Output Timing Diagram  
Copyright © 2014–2016, Texas Instruments Incorporated  
51  
 
ADC3241, ADC3242, ADC3243, ADC3244  
ZHCSD67C JULY 2014REVISED MARCH 2016  
www.ti.com.cn  
9.4 Device Functional Modes  
9.4.1 Input Clock Divider  
The devices are equipped with an internal divider on the clock input. The clock divider allows operation with a  
faster input clock, thus simplifying the system clock distribution design. The clock divider can be bypassed for  
operation with a 125-MHz clock while the divide-by-2 option supports a maximum input clock of 250 MHz and the  
divide-by-4 option provides a maximum input clock frequency of 500 MHz.  
9.4.2 Chopper Functionality  
The devices are equipped with an internal chopper front-end. Enabling the chopper function swaps the ADC  
noise spectrum by shifting the 1/f noise from dc to fS / 2. Figure 143 shows the noise spectrum with the chopper  
off and Figure 144 shows the noise spectrum with the chopper on. This function is especially useful in  
applications requiring good ac performance at low input frequencies or in dc-coupled applications. The chopper  
can be enabled via SPI register writes and is recommended for input frequencies below 30 MHz. The chopper  
function creates a spur at fS / 2 that must be filtered out digitally.  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
D052  
D051  
fIN = 10 MHz, fS = 125 MHz  
fIN = 10 MHz, fS = 125 MHz  
Figure 143. Chopper Off  
Figure 144. Chopper On  
9.4.3 Power-Down Control  
The power-down functions of the ADC324x can be controlled either through the parallel control pin (PDN) or  
through an SPI register setting (see register 15h). The PDN pin can also be configured via SPI to a global power-  
down or standby functionality, as shown in Table 4.  
Table 4. Power-Down Modes  
FUNCTION  
Global power-down  
Standby  
POWER CONSUMPTION (mW)  
WAKE-UP TIME (µs)  
5
85  
35  
81  
52  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
 
ADC3241, ADC3242, ADC3243, ADC3244  
www.ti.com.cn  
ZHCSD67C JULY 2014REVISED MARCH 2016  
9.4.3.1 Improving Wake-Up Time From Global Power-Down  
The device has an internal low-pass filter in the sampling clock path. This low-pass filter helps improve the  
aperture jitter of the device. However, in applications where input frequencies are < 200 MHz, noise from the  
aperture jitter does not dominate the overall SNR of the device. In such applications, the wake-up time from a  
global power-down can be reduced by bypassing the low-pass filter using the DIS CLK FILT register bit (write  
80h to register address 70Ah). As shown in Table 5, setting the DIS CLK FILT bit improves the wake-up time  
from a global power-down from 85 µs to 55 µs.  
Table 5. Wake-Up Time From Global Power-Down  
WAKE-UP TIME  
DIS CLK FILT  
REGISTER BIT  
GLOBAL PDN  
REGISTER BIT  
TYP  
85  
MAX  
140  
81  
UNIT  
µs  
0
1
010  
010  
55  
µs  
9.4.4 Internal Dither Algorithm  
The ADC324x use an internal dither algorithm to achieve high SFDR and a clean spectrum. However, the dither  
algorithm marginally degrades SNR, creating a trade-off between SNR and SFDR. If desired, the dither algorithm  
can be turned off by using the DIS DITH CHx registers bits. Figure 145 and Figure 146 show the effect of using  
dither algorithms.  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
D103  
D104  
SFDR = 95.9 dBc, SNR = 72.7 dBFS, SINAD = 72.7 dBFS,  
THD = 93.6 dBc, HD2 = –100.6 dBc, HD3 = –95.9 dBc  
SFDR = 90.9 dBc, SNR = 73.3 dBFS, SINAD = 73.1 dBFS,  
THD = 87 dBc, HD2 = –90.9 dBc, HD3 = –94.9 dBc  
Figure 145. FFT with Dither On  
Figure 146. FFT with Dither Off  
9.5 Programming  
The ADC324x can be configured using a serial programming interface, as described in this section.  
9.5.1 Serial Interface  
The device has a set of internal registers that can be accessed by the serial interface formed by the SEN (serial  
interface enable), SCLK (serial interface clock), SDATA (serial interface data), and SDOUT (serial interface data  
output) pins. Serially shifting bits into the device is enabled when SEN is low. Serial data SDATA are latched at  
every SCLK rising edge when SEN is active (low). The serial data are loaded into the register at every 24th  
SCLK rising edge when SEN is low. When the word length exceeds a multiple of 24 bits, the excess bits are  
ignored. Data can be loaded in multiples of 24-bit words within a single active SEN pulse. The interface can  
function with SCLK frequencies from 20 MHz down to very low speeds (of a few hertz) and also with a non-50%  
SCLK duty cycle.  
Copyright © 2014–2016, Texas Instruments Incorporated  
53  
 
 
 
ADC3241, ADC3242, ADC3243, ADC3244  
ZHCSD67C JULY 2014REVISED MARCH 2016  
www.ti.com.cn  
Programming (continued)  
9.5.1.1 Register Initialization  
After power-up, the internal registers must be initialized to their default values through a hardware reset by  
applying a high pulse on the RESET pin (of durations greater than 10 ns), as shown in Figure 147. If required,  
the serial interface registers can be cleared during operation either:  
1. Through a hardware reset, or  
2. By applying a software reset. When using the serial interface, set the RESET bit (D0 in register address 06h)  
high. This setting initializes the internal registers to the default values and then self-resets the RESET bit low.  
In this case, the RESET pin is kept low.  
9.5.1.1.1 Serial Register Write  
The device internal register can be programmed with these steps:  
1. Drive the SEN pin low,  
2. Set the R/W bit to 0 (bit A15 of the 16-bit address),  
3. Set bit A14 in the address field to 1,  
4. Initiate a serial interface cycle by specifying the address of the register (A13 to A0) whose content must be  
written, and  
5. Write the 8-bit data that are latched in on the SCLK rising edge.  
Figure 147 and Table 6 show the timing requirements for the serial register write operation.  
Register Address [13:0]  
A13 A12 A11 A1  
Register Data [7:0]  
SDATA  
R/W  
= 0  
1
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
tDH  
D0  
tSCLK  
tDSU  
SCLK  
SEN  
tSLOADS  
tSLOADH  
RESET  
Figure 147. Serial Register Write Timing Diagram  
Table 6. Serial Interface Timing(1)  
MIN  
> dc  
25  
TYP  
MAX  
UNIT  
MHz  
ns  
fSCLK  
tSLOADS  
tSLOADH  
tDSU  
SCLK frequency (equal to 1 / tSCLK  
SEN to SCLK setup time  
SCLK to SEN hold time  
SDIO setup time  
)
20  
25  
ns  
25  
ns  
tDH  
SDIO hold time  
25  
ns  
(1) Typical values are at 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, and AVDD = DVDD = 1.8 V, unless otherwise  
noted.  
54  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
 
ADC3241, ADC3242, ADC3243, ADC3244  
www.ti.com.cn  
ZHCSD67C JULY 2014REVISED MARCH 2016  
9.5.1.1.2 Serial Register Readout  
The device includes a mode where the contents of the internal registers can be read back using the SDOUT pin.  
This readback mode can be useful as a diagnostic check to verify the serial interface communication between  
the external controller and the ADC. Given below is the procedure to read contents of serial registers:  
1. Drive the SEN pin low.  
2. Set the R/W bit (A15) to 1. This setting disables any further writes to the registers.  
3. Set bit A14 in the address field to 1.  
4. Initiate a serial interface cycle specifying the address of the register (A13 to A0) whose content must be read.  
5. The device outputs the contents (D7 to D0) of the selected register on the SDOUT pin.  
6. The external controller can latch the contents at the SCLK rising edge.  
7. To enable register writes, reset the R/W register bit to 0.  
When READOUT is disabled, the SDOUT pin is in a high-impedance mode. If serial readout is not used, the  
SDOUT pin must float. Figure 148 shows a timing diagram of the serial register read operation. Data appear on  
the SDOUT pin at the SCLK falling edge with an approximate delay (tSD_DELAY) of 20 ns, as shown in Figure 149.  
Register Address [13:0]  
A13 A12 A11 A1  
Register Data: Don‘t Care  
D5 D4 D3 D2  
SDATA  
R/W  
= 1  
A0  
D7  
D7  
D6  
D6  
D1  
D1  
D0  
D0  
1
Register Read Data [7:0]  
SDOUT  
SCLK  
D5  
D4  
D3  
D2  
SEN  
Figure 148. Serial Register Read Timing Diagram  
SCLK  
tSD_DELAY  
SDOUT  
Figure 149. SDOUT Timing Diagram  
Copyright © 2014–2016, Texas Instruments Incorporated  
55  
 
 
ADC3241, ADC3242, ADC3243, ADC3244  
ZHCSD67C JULY 2014REVISED MARCH 2016  
www.ti.com.cn  
9.5.2 Register Initialization  
After power-up, the internal registers must be initialized to their default values through a hardware reset by  
applying a high pulse on the RESET pin, as shown in Figure 150 and Table 7.  
Power  
Supplies  
t1  
RESET  
t2  
t3  
SEN  
Figure 150. Initialization of Serial Registers after Power-Up  
Table 7. Power-Up Timing  
MIN  
1
TYP  
MAX  
UNIT  
ms  
ns  
t1  
t2  
t3  
Power-on delay: delay from power up to active high RESET pulse  
Reset pulse duration: active high RESET pulse duration  
Register write delay: delay from RESET disable to SEN active  
10  
1000  
100  
ns  
If required, the serial interface registers can be cleared during operation either:  
1. Through hardware reset, or  
2. By applying a software reset. When using the serial interface, set the RESET bit (D0 in register address 06h)  
high. This setting initializes the internal registers to the default values and then self-resets the RESET bit low.  
In this case, the RESET pin is kept low.  
56  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
 
ADC3241, ADC3242, ADC3243, ADC3244  
www.ti.com.cn  
ZHCSD67C JULY 2014REVISED MARCH 2016  
9.6 Register Maps  
Table 8. Register Map Summary  
REGISTER  
ADDRESS  
REGISTER DATA  
A[13:0] (Hex)  
D7  
0
D6  
0
D5  
D4  
D3  
D2  
D1  
0
D0  
0
01  
03  
04  
05  
DIS DITH CHA  
DIS DITH CHB  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
ODD EVEN  
FLIP WIRE  
1W-2W  
0
0
0
0
0
0
TEST PATTERN  
EN  
06  
07  
09  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
0
OVR ON LSB  
DATA FORMAT  
ALIGN TEST  
PATTERN  
0A  
0B  
0
0
0
CHA TEST PATTERN  
CHB TEST PATTERN  
0
0
0
0
0E  
CUSTOM PATTERN[13:6]  
CUSTOM PATTERN[5:0]  
0F  
0
0
13  
0
0
0
0
0
0
0
0
LOW SPEED ENABLE  
15  
CHA PDN  
CHB PDN  
STANDBY  
GLOBAL PDN  
0
CONFIG PDN PIN  
25  
LVDS SWING  
27  
CLK DIV  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
41D  
422  
434  
439  
51D  
522  
534  
539  
608  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
HIGH IF MODE0  
0
0
0
DIS CHOP CHA  
0
DIS DITH CHA  
DIS DITH CHA  
0
0
0
SP1 CHA  
0
0
0
0
HIGH IF MODE1  
0
0
0
DIS CHOP CHB  
0
DIS DITH CHB  
DIS DITH CHB  
0
0
0
0
0
0
0
0
SP1 CHB  
0
HIGH IF MODE[3:2]  
DIS CLK FILT  
0
0
0
70A  
0
PDN SYSREF  
Copyright © 2014–2016, Texas Instruments Incorporated  
57  
ADC3241, ADC3242, ADC3243, ADC3244  
ZHCSD67C JULY 2014REVISED MARCH 2016  
www.ti.com.cn  
9.6.1 Summary of Special Mode Registers  
Table 9 lists the location, value, and functions of special mode registers in the device.  
Table 9. Special Modes Summary  
MODE  
REGISTER SETTINGS  
DESCRIPTION  
Special modes  
Registers 439h (bit 3) and 539h (bit 3)  
Always set these bits high for best performance  
Registers 1h (bits 5-2), 434h (bits 5 and 3), and  
534h (bits 5 and 3)  
Disable dither  
Disable chopper  
High IF modes  
Disable dither to improve SNR  
Registers 422h (bit 1) and 522h (bit 1)  
Disable chopper to shift 1/f noise floor at dc  
Improves HD3 for IF > 100 MHz  
Registers 41Dh (bit 1), 51Dh (bit 1), and  
608h (bits 7-6)  
9.6.2 Serial Register Description  
9.6.2.1 Register 01h  
Figure 151. Register 01h  
7
0
6
0
5
4
3
2
1
0
0
0
DIS DITH CHA  
R/W-0h  
DIS DITH CHB  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
Table 10. Register 01h Description  
Bit  
Field  
Type  
Reset  
Description  
7-6  
0
W
0h  
Must write 0  
These bits enable or disable the on-chip dither. Control this bit  
with bits 5 and 3 of register 434h.  
5-4  
DIS DITH CHA  
R/W  
0h  
00 = Default  
11 = Dither is disabled for channel A. In this mode, SNR typically  
improves by 0.5 dB at 70 MHz.  
These bits enable or disable the on-chip dither. Control this bit  
with bits 5 and 3 of register 434h.  
3-2  
1-0  
DIS DITH CHB  
0
R/W  
W
0h  
0h  
00 = Default  
11 = Dither is disabled for channel B. In this mode, SNR typically  
improves by 0.5 dB at 70 MHz.  
Must write 0  
9.6.2.2 Register 03h  
Figure 152. Register 03h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
ODD EVEN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
Table 11. Register 03h Description  
Bit  
Field  
Type  
Reset  
Description  
7-1  
0
W
0h  
Must write 0  
This bit selects the bit sequence on the output lanes  
(in 2-wire mode only).  
0 = Bits 0, 1, and 2 appear on lane 0; bits 7, 8, and 9 appear on lane 1  
1 = Bits 0, 2, and 4 appear on lane 0; bits 1, 3, and 5 appear on lane 1  
0
ODD EVEN  
R/W  
0h  
58  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
ADC3241, ADC3242, ADC3243, ADC3244  
www.ti.com.cn  
ZHCSD67C JULY 2014REVISED MARCH 2016  
9.6.2.3 Register 04h  
Figure 153. Register 04h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
FLIP WIRE  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
Table 12. Register 04h Description  
Bit  
Field  
Type  
Reset  
Description  
7-1  
0
W
0h  
Must write 0  
This bit flips the data on the output wires. Valid only in two wire  
configuration.  
0
FLIP WIRE  
R/W  
0h  
0 = Default  
1 = Data on output wires is flipped. Pin D0x becomes D1x, and  
vice versa.  
9.6.2.4 Register 05h  
Figure 154. Register 05h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
1W-2W  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
Table 13. Register 05h Description  
Bit  
Field  
Type  
Reset  
Description  
7-1  
0
W
0h  
Must write 0  
This bit transmits output data on either one or two wires.  
0 = Output data are transmitted on two wires (Dx0P, Dx0M and  
Dx1P, Dx1M)  
0
1W-2W  
R/W  
0h  
1 = Output data are transmitted on one wire (Dx0P, Dx0M). In this  
mode, the recommended fS is less than 62.5 MSPS.  
9.6.2.5 Register 06h  
Figure 155. Register 06h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
TEST PATTERN EN  
R/W-0h  
RESET  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
Table 14. Register 06h Description  
Bit  
Field  
Type  
Reset  
Description  
7-2  
0
W
0h  
Must write 0  
This bit enables test pattern selection for the digital outputs.  
0 = Normal output  
1 = Test pattern output enabled  
1
0
TEST PATTERN EN  
RESET  
R/W  
W
0h  
0h  
This bit applies a software reset.  
This bit resets all internal registers to the default values and self-  
clears to 0.  
Copyright © 2014–2016, Texas Instruments Incorporated  
59  
ADC3241, ADC3242, ADC3243, ADC3244  
ZHCSD67C JULY 2014REVISED MARCH 2016  
www.ti.com.cn  
9.6.2.6 Register 07h  
Figure 156. Register 07h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
OVR ON LSB  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
Table 15. Register 07h Description  
Bit  
Field  
Type  
Reset  
Description  
7-1  
0
W
0h  
Must write 0  
This bit provides the overrange (OVR) information on the LSB bits.  
0 = Output data bit 0 functions as the LSB of the 14-bit data  
1 = Output data bit 0 carries the OVR information.  
0
OVR ON LSB  
R/W  
0h  
9.6.2.7 Register 09h  
Figure 157. Register 09h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
ALIGN TEST  
PATTERN  
DATA FORMAT  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
Table 16. Register 09h Description  
Bit  
Field  
Type  
Reset  
Description  
7-2  
0
W
0h  
Must write 0  
This bit aligns the test patterns across the outputs of both channels.  
0 = Test patterns of both channels are free running  
1 = Test patterns of both channels are aligned  
1
0
ALIGN TEST PATTERN  
DATA FORMAT  
R/W  
R/W  
0h  
0h  
This bit programs the digital output data format.  
0 = Twos complement  
1 = Offset binary  
60  
Copyright © 2014–2016, Texas Instruments Incorporated  
ADC3241, ADC3242, ADC3243, ADC3244  
www.ti.com.cn  
ZHCSD67C JULY 2014REVISED MARCH 2016  
9.6.2.8 Register 0Ah  
Figure 158. Register 0Ah  
7
0
6
0
5
0
4
0
3
2
1
0
CHA TEST PATTERN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
Table 17. Register 0Ah Description  
Bit  
Field  
Type  
Reset  
Description  
7-4  
0
W
0h  
Must write 0  
These bits control the test pattern for channel A after the TEST  
PATTERN EN bit is set.  
0000 = Normal operation  
0001 = All 0's  
0010 = All 1's  
0011 = Toggle pattern: data alternate between 10101010101010 and  
01010101010101  
0100 = Digital ramp: data increment by 1 LSB every clock cycle from  
code 0 to 16383  
3-0  
CHA TEST PATTERN  
R/W  
0h  
0101 = Custom pattern: output data are the same as programmed by  
the CUSTOM PATTERN register bits  
0110 = Deskew pattern: data are 2AAAh  
1000 = PRBS pattern: data are a sequence of pseudo random  
numbers  
1001 = 8-point sine-wave: data are a repetitive sequence of the  
following eight numbers that form a sine-wave: 0, 2399, 8192, 13984,  
16383, 13984, 8192, 2399.  
Others = Do not use  
9.6.2.9 Register 0Bh  
Figure 159. Register 0Bh  
7
6
5
4
3
0
2
0
1
0
0
0
CHB TEST PATTERN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
Table 18. Register 0Bh Description  
Bit  
7-4  
3-0  
Field  
Type  
R/W  
W
Reset  
Description  
These bits control the test pattern for channel B after the TEST  
PATTERN EN bit is set.  
0000 = Normal operation  
0001 = All 0's  
0010 = All 1's  
0011 = Toggle pattern: data alternate between 10101010101010 and  
01010101010101  
0100 = Digital ramp: data increment by 1 LSB every clock cycle from  
code 0 to 16383  
0101 = Custom pattern: output data are the same as programmed by  
the CUSTOM PATTERN register bits  
0110 = Deskew pattern: data are 2AAAh  
1000 = PRBS pattern: data are a sequence of pseudo random  
numbers  
1001 = 8-point sine-wave: data are a repetitive sequence of the  
following eight numbers that form a sine-wave: 0, 2399, 8192, 13984,  
16383, 13984, 8192, 2399.  
CHB TEST PATTERN  
0h  
Others = Do not use  
0
0h  
Must write 0  
Copyright © 2014–2016, Texas Instruments Incorporated  
61  
ADC3241, ADC3242, ADC3243, ADC3244  
ZHCSD67C JULY 2014REVISED MARCH 2016  
www.ti.com.cn  
9.6.2.10 Register 0Eh  
Figure 160. Register 0Eh  
7
6
5
4
3
2
1
0
CUSTOM PATTERN[13:6]  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 19. Register 0Eh Description  
Bit  
Field  
Type  
Reset  
Description  
These bits set the 14-bit custom pattern (bits 13-6) for all channels.  
7-0  
CUSTOM PATTERN[13:6]  
R/W  
0h  
9.6.2.11 Register 0Fh  
Figure 161. Register 0Fh  
7
6
5
4
3
2
1
0
0
0
CUSTOM PATTERN[5:0]  
R/W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
Table 20. Register 0Fh Description  
Bit  
7-2  
1-0  
Field  
Type  
R/W  
W
Reset  
0h  
Description  
CUSTOM PATTERN[5:0]  
0
These bits set the 14-bit custom pattern (bits 5-0) for all channels.  
Must write 0  
0h  
62  
Copyright © 2014–2016, Texas Instruments Incorporated  
ADC3241, ADC3242, ADC3243, ADC3244  
www.ti.com.cn  
ZHCSD67C JULY 2014REVISED MARCH 2016  
9.6.2.12 Register 13h (address = 13h)  
Figure 162. Register 13h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
LOW SPEED ENABLE  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 21. Register 13h Field Descriptions  
Bit  
7-2  
1-0  
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
LOW SPEED ENABLE  
R/W  
0h  
Enables low speed operation in 1-wire and 2-wire mode.  
Depending upon sampling frequency, write this bit as per  
Table 22.  
Table 22. LOW SPEED ENABLE Register Bit Settings Across fS  
fS (MSPS)  
REGISTER BIT LOW SPEED ENABLE  
MIN  
25  
MAX  
125  
25  
1-WIRE MODE  
2-WIRE MODE  
00  
00  
10  
00  
10  
20  
15  
20  
Not supported  
9.6.2.13 Register 15h  
Figure 163. Register 15h  
7
0
6
5
4
0
3
2
1
0
0
CHA PDN  
R/W-0h  
CHB PDN  
R/W-0h  
STANDBY  
R/W-0h  
GLOBAL PDN  
R/W-0h  
CONFIG PDN PIN  
R/W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
Table 23. Register 15h Description  
Bit  
Field  
Type  
Reset  
Description  
7
0
W
0h  
Must write 0  
0 = Normal operation  
1 = Power-down channel A  
6
CHA PDN  
R/W  
0h  
0 = Normal operation  
1 = Power-down channel B  
5
4
CHB PDN  
0
R/W  
W
0h  
0h  
Must write 0  
The ADCs of both channels enter standby.  
0 = Normal operation  
3
STANDBY  
R/W  
0h  
1 = Standby  
0 = Normal operation  
1 = Global power-down  
2
1
GLOBAL PDN  
0
R/W  
W
0h  
0h  
Must write 0  
This bit configures the PDN pin as either a global power-down or  
standby pin.  
0
CONFIG PDN PIN  
R/W  
0h  
0 = Logic high voltage on the PDN pin sends the device into global  
power-down  
1 = Logic high voltage on the PDN pin sends the device into standby  
Copyright © 2014–2016, Texas Instruments Incorporated  
63  
 
ADC3241, ADC3242, ADC3243, ADC3244  
ZHCSD67C JULY 2014REVISED MARCH 2016  
www.ti.com.cn  
9.6.2.14 Register 25h  
Figure 164. Register 25h  
7
6
5
4
3
2
1
0
LVDS SWING  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 24. Register 25h Description  
Bit  
Field  
Type  
Reset  
Description  
These bits control the swing of the LVDS outputs (including the  
data output, bit clock, and frame clock). For details see  
Table 25.  
7-0  
LVDS SWING  
R/W  
0h  
Table 25. LVDS Output Swing  
BITS 7-4  
0h  
BITS 3-0  
0h  
LVDS OUTPUT SWING  
Default (±425 mV)  
Dh  
9h  
Swing reduces by 50 mV  
Swing reduces by 100 mV  
Swing reduces by 300 mV  
Swing increases by 100 mV  
Do not use  
Eh  
Ah  
Fh  
Dh  
Ch  
Eh  
Others  
Others  
9.6.2.15 Register 27h  
Figure 165. Register 27h  
7
6
5
0
4
0
3
0
2
0
1
0
0
0
CLK DIV  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
Table 26. Register 27h Description  
Bit  
7-6  
5-0  
Field  
CLK DIV  
0
Type  
R/W  
W
Reset  
Description  
These bits set the internal clock divider for the input sampling clock.  
00 = Divide-by-1  
01 = Divide-by-1  
10 = Divide-by-2  
11 = Divide-by-4  
0h  
0h  
Must write 0  
64  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
ADC3241, ADC3242, ADC3243, ADC3244  
www.ti.com.cn  
ZHCSD67C JULY 2014REVISED MARCH 2016  
9.6.2.16 Register 41Dh  
Figure 166. Register 41Dh  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
HIGH IF MODE0  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
Table 27. Register 41Dh Description  
Bit  
Field  
Type  
Reset  
Description  
7-2  
0
W
0h  
Must write 0  
This bit improves HD3 for IF > 100 MHz.  
0 = Normal operation  
For best HD3 at IF > 100 MHz, set HIGH IF MODE[3:0] to 1111.  
1
0
HIGH IF MODE0  
0
R/W  
W
0h  
0h  
Must write 0  
9.6.2.17 Register 422h  
Figure 167. Register 422h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
DIS CHOP CHA  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
Table 28. Register 422h Description  
Bit  
Field  
Type  
Reset  
Description  
7-2  
0
W
0h  
Must write 0  
Disable chopper.  
Set this bit to shift a 1/f noise floor at dc.  
1
DIS CHOP CHA  
R/W  
W
0h  
0h  
0 = 1/f noise floor is centered at fS / 2 (default)  
1 = Chopper mechanism is disabled; 1/f noise floor is centered at  
dc  
0
0
Must write 0  
9.6.2.18 Register 434h  
Figure 168. Register 434h  
7
0
6
0
5
4
0
3
2
0
1
0
0
0
DIS DITH CHA  
R/W-0h  
DIS DITH CHA  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
Table 29. Register 434h Description  
Bit  
Field  
Type  
Reset  
Description  
7-6  
0
W
0h  
Must write 0  
Set this bit with bits 5 and 4 of register 01h.  
00 = Default  
11 = Dither is disabled for channel A. In this mode, SNR typically  
improves by 0.5 dB at 70 MHz.  
5
4
DIS DITH CHA  
R/W  
W
0h  
0h  
0h  
0h  
0
Must write 0  
Set this bit with bits 5 and 4 of register 01h.  
00 = Default  
11 = Dither is disabled for channel A. In this mode, SNR typically  
improves by 0.5 dB at 70 MHz.  
3
DIS DITH CHA  
0
R/W  
W
2-0  
Must write 0  
Copyright © 2014–2016, Texas Instruments Incorporated  
65  
ADC3241, ADC3242, ADC3243, ADC3244  
ZHCSD67C JULY 2014REVISED MARCH 2016  
www.ti.com.cn  
9.6.2.19 Register 439h  
Figure 169. Register 439h  
7
0
6
0
5
0
4
0
3
2
0
1
0
0
0
SP1 CHA  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
Table 30. Register 439h Description  
Bit  
Field  
Type  
Reset  
Description  
7-4  
0
W
0h  
Must write 0  
Special mode for best performance on channel A.  
Always write 1 after reset.  
3
SP1 CHA  
0
R/W  
W
0h  
0h  
2-0  
Must write 0  
9.6.2.20 Register 51Dh  
Figure 170. Register 51Dh  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
HIGH IF MODE1  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
Table 31. Register 51Dh Description  
Bit  
Field  
Type  
Reset  
Description  
7-2  
0
W
0h  
Must write 0  
This bit improves HD3 for IF > 100 MHz.  
0 = Normal operation  
For best HD3 at IF > 100 MHz, set HIGH IF MODE[3:0] to 1111.  
1
0
HIGH IF MODE1  
0
R/W  
W
0h  
0h  
Must write 0  
9.6.2.21 Register 522h  
Figure 171. Register 522h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
DIS CHOP CHB  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
Table 32. Register 522h Description  
Bit  
Field  
Type  
Reset  
Description  
7-2  
0
W
0h  
Must write 0  
Disable chopper.  
Set this bit to shift a 1/f noise floor at dc.  
1
0
DIS CHOP CHB  
0
R/W  
W
0h  
0h  
0 = 1/f noise floor is centered at fS / 2 (default)  
1 = Chopper mechanism is disabled; 1/f noise floor is centered  
at dc  
Must write 0  
66  
Copyright © 2014–2016, Texas Instruments Incorporated  
ADC3241, ADC3242, ADC3243, ADC3244  
www.ti.com.cn  
ZHCSD67C JULY 2014REVISED MARCH 2016  
9.6.2.22 Register 534h  
Figure 172. Register 534h  
7
0
6
0
5
4
0
3
2
0
1
0
0
0
DIS DITH CHA  
R/W-0h  
DIS DITH CHA  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
Table 33. Register 534h Description  
Bit  
Field  
Type  
Reset  
Description  
7-6  
0
W
0h  
Must write 0  
Set this bit with bits 3 and 2 of register 01h.  
00 = Default  
11 = Dither is disabled for channel B. In this mode, SNR typically  
improves by 0.5 dB at 70 MHz.  
5
4
DIS DITH CHA  
R/W  
W
0h  
0h  
0h  
0h  
0
Must write 0  
Set this bit with bits 3 and 2 of register 01h.  
00 = Default  
11 = Dither is disabled for channel B. In this mode, SNR typically  
improves by 0.5 dB at 70 MHz.  
3
DIS DITH CHA  
0
R/W  
W
2-0  
Must write 0  
9.6.2.23 Register 539h  
Figure 173. Register 539h  
7
0
6
0
5
0
4
0
3
2
0
1
0
0
0
SP1 CHB  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
Table 34. Register 539h Description  
Bit  
Field  
Type  
Reset  
Description  
7-4  
0
W
0h  
Must write 0  
Special mode for best performance on channel B.  
Always write 1 after reset.  
3
0
SP1 CHB  
0
R/W  
W
0h  
0h  
Must write 0  
9.6.2.24 Register 608h  
Figure 174. Register 608h  
7
6
5
0
4
0
3
0
2
0
1
0
0
0
HIGH IF MODE[3:2]  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
Table 35. Register 608h Description  
Bit  
7-6  
5-0  
Field  
Type  
R/W  
W
Reset  
Description  
This bit improves HD3 for IF > 100 MHz.  
0 = Normal operation  
For best HD3 at IF > 100 MHz, set HIGH IF MODE[3:0] to 1111.  
HIGH IF MODE[3:2]  
0
0h  
0h  
Must write 0  
Copyright © 2014–2016, Texas Instruments Incorporated  
67  
ADC3241, ADC3242, ADC3243, ADC3244  
ZHCSD67C JULY 2014REVISED MARCH 2016  
www.ti.com.cn  
9.6.2.25 Register 70Ah  
Figure 175. Register 70Ah  
7
6
0
5
0
4
0
3
0
2
0
1
0
0
DIS CLK FILT  
R/W-0h  
PDN SYSREF  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
Table 36. Register 70Ah Description  
Bit  
7
Field  
Type  
R/W  
W
Reset  
Description  
Set this bit to improve wake-up time from global power-down  
mode; see the Improving Wake-Up Time From Global Power-  
Down section for details.  
DIS CLK FILT  
0
0h  
6-1  
0h  
Must write 0  
If the SYSREF pins are not used in the system, the SYSREF  
buffer must be powered down by setting this bit.  
0 = Normal operation  
0
PDN SYSREF  
R/W  
0h  
1 = Powers down the SYSREF buffer  
68  
Copyright © 2014–2016, Texas Instruments Incorporated  
ADC3241, ADC3242, ADC3243, ADC3244  
www.ti.com.cn  
ZHCSD67C JULY 2014REVISED MARCH 2016  
10 Applications and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
Typical applications involving transformer coupled circuits are discussed in this section. Transformers (such as  
ADT1-1WT or WBC1-1) can be used up to 250 MHz to achieve good phase and amplitude balances at ADC  
inputs. While designing the dc driving circuits, the ADC input impedance must be considered. Figure 176 and  
Figure 177 show the impedance (Zin = Rin || Cin) across the ADC input pins.  
10  
6
5
4
3
2
1
1
0.1  
0.01  
0
100 200 300 400 500 600 700 800 900 1000  
Frequency (MHz)  
0
100 200 300 400 500 600 700 800 900 1000  
Frequency (MHz)  
D024  
D00215  
Figure 176. Differential Input Resistance (RIN  
)
Figure 177. Differential Input Capacitance (CIN)  
Copyright © 2014–2016, Texas Instruments Incorporated  
69  
 
ADC3241, ADC3242, ADC3243, ADC3244  
ZHCSD67C JULY 2014REVISED MARCH 2016  
www.ti.com.cn  
10.2 Typical Applications  
10.2.1 Driving Circuit Design: Low Input Frequencies  
39 nH  
0.1 mF  
INP  
0.1 mF  
50  
50 Ω  
25 Ω  
25 Ω  
0.1 mF  
22 pF  
50 Ω  
50 Ω  
INM  
1:1  
1:1  
0.1 mF  
39 nH  
VCM  
Device  
Figure 178. Driving Circuit for Low Input Frequencies  
10.2.1.1 Design Requirements  
For optimum performance, the analog inputs must be driven differentially. An optional 5-to 15-resistor in  
series with each input pin can be kept to damp out ringing caused by package parasitic. The drive circuit may  
have to be designed to minimize the impact of kick-back noise generated by sampling switches opening and  
closing inside the ADC, as well as ensuring low insertion loss over the desired frequency range and matched  
impedance to the source.  
10.2.1.2 Detailed Design Procedure  
A typical application involving using two back-to-back coupled transformers is shown in Figure 178. The circuit is  
optimized for low input frequencies. An external R-C-R filter using 50-Ω resistors and a 22-pF capacitor is used  
with the series inductor (39 nH), this combination helps absorb the sampling glitches.  
10.2.1.3 Application Curve  
Figure 179 shows the performance obtained by using circuit shown in Figure 178.  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
D101  
SFDR = 102.6 dBc, SNR = 72.9 dBFS, SINAD = 72.8 dBFS,  
THD = 99.8 dBc, HD2 = –108.6 dBc, HD3 = –104.0 dBc  
Figure 179. Performance FFT at 10 MHz (Low Input Frequency)  
70  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
 
 
ADC3241, ADC3242, ADC3243, ADC3244  
www.ti.com.cn  
ZHCSD67C JULY 2014REVISED MARCH 2016  
Typical Applications (continued)  
10.2.2 Driving Circuit Design: Input Frequencies Between 100 MHz to 230 MHz  
0.1 mF  
10 Ω  
INP  
0.1 mF  
15 Ω  
25 Ω  
0.1 mF  
56 nH  
10 pF  
25 Ω  
15 Ω  
INM  
10 Ω  
1:1  
1:1  
0.1 mF  
VCM  
Device  
Figure 180. Driving Circuit for Mid-Range Input Frequencies (100 MHz < fIN < 230 MHz)  
10.2.2.1 Design Requirements  
See the Design Requirements section for further details.  
10.2.2.2 Detailed Design Procedure  
When input frequencies are between 100 MHz to 230 MHz, an R-LC-R circuit can be used to optimize  
performance, as shown in Figure 180.  
10.2.2.3 Application Curve  
Figure 181 shows the performance obtained by using circuit shown in Figure 180.  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
D105  
SFDR = 96.4 dBc, SNR = 72.1 dBFS, SINAD = 72.0 dBFS,  
THD = 92.6 dBc, HD2 = –96.4 dBc, HD3 = –98.8 dBc  
Figure 181. Performance FFT at 170 MHz (Mid Input Frequency)  
Copyright © 2014–2016, Texas Instruments Incorporated  
71  
 
 
ADC3241, ADC3242, ADC3243, ADC3244  
ZHCSD67C JULY 2014REVISED MARCH 2016  
www.ti.com.cn  
Typical Applications (continued)  
10.2.3 Driving Circuit Design: Input Frequencies Greater than 230 MHz  
0.1 mF  
0.1 mF  
10  
INP  
25 Ω  
0.1 mF  
25 Ω  
INM  
1:1  
1:1  
10 Ω  
0.1 mF  
VCM  
Device  
Figure 182. Driving Circuit for High input Frequencies ( fIN > 230 MHz)  
10.2.3.1 Design Requirements  
See the Design Requirements section for further details.  
10.2.3.2 Detailed Design Procedure  
For high input frequencies (> 230 MHz), using the R-C-R or R-LC-R circuit does not show significant  
improvement in performance. However, a series resistance of 10 Ω can be used as shown in Figure 182.  
10.2.3.3 Application Curve  
Figure 183 shows the performance obtained by using circuit shown in Figure 182.  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
D109  
SFDR = 76.2 dBc, SNR = 68.3 dBFS, SINAD = 67.5 dBFS,  
THD = 74.3 dBc, HD2 = –76.2 dBc, HD3 = –79.2 dBc  
Figure 183. Performance FFT at 450 MHz (High Input Frequency)  
11 Power-Supply Recommendations  
The device requires a 1.8-V nominal supply for AVDD and DVDD. There are no specific sequence power-supply  
requirements during device power-up. AVDD and DVDD can power up in any order.  
72  
Copyright © 2014–2016, Texas Instruments Incorporated  
 
 
ADC3241, ADC3242, ADC3243, ADC3244  
www.ti.com.cn  
ZHCSD67C JULY 2014REVISED MARCH 2016  
12 Layout  
12.1 Layout Guidelines  
The ADC324x EVM layout can be used as a reference layout to obtain the best performance. A layout diagram  
of the EVM top layer is provided in Figure 184. Some important points to remember during laying out the board  
are:  
1. Analog inputs are located on opposite sides of the device pin out to ensure minimum crosstalk on the  
package level. To minimize crosstalk onboard, the analog inputs must exit the pin out in opposite directions,  
as shown in the reference layout of Figure 184 as much as possible.  
2. In the device pin out, the sampling clock is located on a side perpendicular to the analog inputs in order to  
minimize coupling between them. This configuration is also maintained on the reference layout of Figure 184  
as much as possible.  
3. Keep digital outputs away from the analog inputs. When these digital outputs exit the pin out, do not keep the  
digital output traces parallel to the analog input traces because this configuration can result in coupling from  
digital outputs to analog inputs and degrade performance. All digital output traces to the receiver [such as a  
field-programmable gate array (FPGA) or an application-specific integrated circuit (ASIC)] must be matched  
in length to avoid skew among outputs.  
4. At each power-supply pin (AVDD and DVDD), keep a 0.1-µF decoupling capacitor close to the device. A  
separate decoupling capacitor group consisting of a parallel combination of 10-µF, 1-µF, and 0.1-µF  
capacitors can be kept close to the supply source.  
12.2 Layout Example  
{ampling  
/lock  
!nalog  
Lnput  
wouting  
wouting  
!5/32xx  
5igital  
hutput  
wouting  
Figure 184. Typical Layout of the ADC324x Board  
版权 © 2014–2016, Texas Instruments Incorporated  
73  
 
ADC3241, ADC3242, ADC3243, ADC3244  
ZHCSD67C JULY 2014REVISED MARCH 2016  
www.ti.com.cn  
13 器件和文档支持  
13.1 相关链接  
下面的表格列出了快速访问链接。范围包括技术文档、支持和社区资源、工具和软件,以及样片或购买的快速访  
问。  
37. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
ADC3241  
ADC3242  
ADC3243  
ADC3244  
13.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
13.3 商标  
E2E is a trademark of Texas Instruments.  
PowerPAD is a trademark of Texas Instruments, Inc.  
All other trademarks are the property of their respective owners.  
13.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
13.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
74  
版权 © 2014–2016, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Apr-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADC3241IRGZR  
ADC3241IRGZT  
ADC3242IRGZR  
ADC3242IRGZT  
ADC3243IRGZR  
ADC3243IRGZT  
ADC3244IRGZR  
ADC3244IRGZT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
48  
48  
48  
48  
48  
48  
48  
48  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
NIPDAUAG  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
AZ3241  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
AZ3241  
AZ3242  
AZ3242  
AZ3243  
AZ3243  
AZ3244  
AZ3244  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Apr-2022  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Sep-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADC3241IRGZR  
ADC3242IRGZR  
ADC3243IRGZR  
ADC3244IRGZR  
VQFN  
VQFN  
VQFN  
VQFN  
RGZ  
RGZ  
RGZ  
RGZ  
48  
48  
48  
48  
2500  
2500  
2500  
2500  
330.0  
330.0  
330.0  
330.0  
16.4  
16.4  
16.4  
16.4  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
1.5  
1.5  
1.5  
1.5  
12.0  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
Q2  
Q2  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Sep-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ADC3241IRGZR  
ADC3242IRGZR  
ADC3243IRGZR  
ADC3244IRGZR  
VQFN  
VQFN  
VQFN  
VQFN  
RGZ  
RGZ  
RGZ  
RGZ  
48  
48  
48  
48  
2500  
2500  
2500  
2500  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
43.0  
43.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RGZ 48  
7 x 7, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUADFLAT PACK- NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224671/A  
www.ti.com  
PACKAGE OUTLINE  
RGZ0048D  
VQFN - 1 mm max height  
S
C
A
L
E
1
.
9
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
7.1  
6.9  
A
B
0.5  
0.3  
PIN 1 INDEX AREA  
7.1  
6.9  
0.30  
0.18  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
5.6 0.1  
2X 5.5  
(0.2) TYP  
13  
24  
44X 0.5  
12  
25  
EXPOSED  
THERMAL PAD  
2X  
49  
SYMM  
5.5  
SEE TERMINAL  
DETAIL  
1
36  
0.30  
48X  
0.18  
37  
48  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.1  
C A B  
0.5  
0.3  
48X  
0.05  
4219046/B 11/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGZ0048D  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
5.6)  
SYMM  
48  
37  
48X (0.6)  
1
36  
48X (0.24)  
6X  
(1.22)  
44X (0.5)  
SYMM  
10X  
(1.33)  
49  
(6.8)  
(R0.05)  
TYP  
(
0.2) TYP  
VIA  
25  
12  
13  
24  
10X (1.33)  
6X (1.22)  
(6.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:12X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219046/B 11/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGZ0048D  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.665 TYP)  
(1.33) TYP  
16X ( 1.13)  
37  
48  
48X (0.6)  
49  
36  
1
48X (0.24)  
44X (0.5)  
(1.33)  
TYP  
(0.665)  
TYP  
SYMM  
(6.8)  
(R0.05) TYP  
25  
12  
METAL  
TYP  
13  
24  
SYMM  
(6.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 49  
66% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:15X  
4219046/B 11/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY