ADC32J44 [TI]

双通道、14 位、125MSPS 模数转换器 (ADC);
ADC32J44
型号: ADC32J44
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

双通道、14 位、125MSPS 模数转换器 (ADC)

转换器 模数转换器
文件: 总86页 (文件大小:5262K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
ADC32J4x 具有 JESD204B 接口的双通道、14 位、50MSPS 至  
160MSPS 模数转换器  
1 特性  
3 说明  
1
双通道  
ADC32J4x 属于高线性度、超低功耗、双通道、14  
位、50MSPS 160MSPS 模数转换器 (ADC) 系列。  
此类器件专门设计用于支持具有宽动态范围需求且要求  
苛刻的高输入频率信号。 时钟输入分频器可给予系统  
时钟架构设计更高的灵活性,SYSREF 输入可实现整  
个系统同步。 ADC32J4x 系列支持 JESD204B 接口,  
减少了接口线路数,从而实现高系统集成度。  
14 位分辨率  
单电源:1.8V  
支持 1 分频、2 分频和 4 分频的灵活输入时钟缓冲  
fIN = 70MHz 时,信噪比 (SNR) = 72.2dBFS,无杂  
散动态范围 (SFDR) = 87dBc  
JESD204B 接口是串行接口,仅通过一个差分对即可  
串行输出每个 ADC 的数据。 内部锁相环 (PLL) 会将  
传入的 ADC 采样时钟乘以 20,以获得串行化各通道  
14 位数据时所使用的位时钟。 该器件支持子类 1,  
接口速率高达 3.2Gbps。  
超低功耗:  
160MSPS 时为每通道 227mW  
通道隔离:105dB  
内部抖动  
JESD204B 串口:  
器件信息(1)  
兼容子类 012,速率最高达 3.2Gbps  
支持每个 ADC 一条通道(高达 160MSPS)  
器件型号  
ADC32J4x  
封装  
VQFN (48)  
封装尺寸(标称值)  
7.00mm x 7.00mm  
支持多芯片同步  
(1) 要了解所有可用封装,请见数据表末尾的封装选项附录。  
12 位版本器件 (ADC32J2X) 引脚到引脚兼容  
封装:超薄四方扁平无引线 (VQFN)-48 (7mm x  
7mm)  
fS = 160MSPS fIN = 10MHz 时的性能  
SNR = 72.5dBFSSFDR = 92dBc)  
2 应用  
0
-10  
多载波、多模式蜂窝基站  
-20  
雷达和智能天线阵列  
炮弹制导  
-30  
-40  
电机控制反馈  
-50  
网络和矢量分析器  
通信测试设备  
-60  
-70  
-80  
无损检测  
-90  
微波接收器  
-100  
-110  
-120  
软件定义无线电 (SDR)  
正交和分集无线电接收器  
0
16  
32  
48  
64  
80  
Frequency (MHz)  
D101  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBAS663  
 
 
 
 
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
www.ti.com.cn  
目录  
7.19 Typical Characteristics: Contour Plots.................. 43  
Parameter Measurement Information ................ 44  
8.1 Timing Diagrams..................................................... 44  
Detailed Description ............................................ 46  
9.1 Overview ................................................................. 46  
9.2 Functional Block Diagram ....................................... 46  
9.3 Feature Description................................................. 46  
9.4 Device Functional Modes........................................ 53  
9.5 Programming........................................................... 54  
9.6 Register Maps......................................................... 58  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 6  
7.5 Electrical Characteristics........................................... 6  
7.6 Electrical Characteristics: ADC32J44, ADC32J45.... 7  
7.7 Electrical Characteristics: ADC32J42, ADC32J43.... 7  
7.8 AC Performance: ADC32J45 .................................... 8  
7.9 AC Performance: ADC32J44 .................................. 10  
7.10 AC Performance: ADC32J43 ................................ 12  
7.11 AC Performance: ADC32J42 ................................ 14  
7.12 Digital Characteristics ........................................... 16  
7.13 Timing Requirements............................................ 17  
7.14 Typical Characteristics: ADC32J45 ...................... 18  
7.15 Typical Characteristics: ADC32J44 ...................... 24  
7.16 Typical Characteristics: ADC32J43 ...................... 30  
7.17 Typical Characteristics: ADC32J42 ...................... 36  
7.18 Typical Characteristics: Common Plots ................ 42  
8
9
10 Application and Implementation........................ 72  
10.1 Application Information.......................................... 72  
10.2 Typical Applications .............................................. 73  
11 Power-Supply Recommendations ..................... 75  
12 Layout................................................................... 76  
12.1 Layout Guidelines ................................................. 76  
12.2 Layout Example .................................................... 76  
13 器件和文档支持 ..................................................... 77  
13.1 相关链接................................................................ 77  
13.2 社区资源................................................................ 77  
13.3 ....................................................................... 77  
13.4 静电放电警告......................................................... 77  
13.5 Glossary................................................................ 77  
14 机械、封装和可订购信息....................................... 77  
4 修订历史记录  
Changes from Original (May 2014) to Revision A  
Page  
已从产品预览更改为量产数据 ................................................................................................................................................. 1  
2
Copyright © 2014–2015, Texas Instruments Incorporated  
 
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
www.ti.com.cn  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
5 Device Comparison Table  
RESOLUTION  
INTERFACE  
(Bits)  
25 MSPS  
ADC3221  
ADC3241  
50 MSPS  
ADC3222  
ADC3242  
ADC32J22  
ADC32J42  
80 MSPS  
ADC3223  
ADC3243  
ADC32J23  
ADC32J43  
125 MSPS  
ADC3224  
ADC3244  
ADC32J24  
ADC32J44  
160 MSPS  
12  
Serial LVDS  
14  
12  
ADC32J25  
ADC32J45  
JESD204B  
14  
6 Pin Configuration and Functions  
RGZ Package  
48-Pin VQFN  
Top View  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
1
2
OVRA  
NC  
OVRB  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
NC  
3
DVDD  
AVDD  
AVDD  
NC  
DVDD  
PDN  
AVDD  
NC  
4
5
6
GND Pad  
(Back Side)  
7
NC  
NC  
8
AVDD  
AVDD  
INAP  
INAM  
AVDD  
AVDD  
AVDD  
INBP  
INBM  
AVDD  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Copyright © 2014–2015, Texas Instruments Incorporated  
3
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
www.ti.com.cn  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
AVDD  
NO.  
4, 5, 8, 9, 12, 17, 20,  
25, 28, 29, 32, 39, 46  
I
Analog 1.8-V power supply  
CLKM  
CLKP  
DAM  
DAP  
18  
I
I
Negative differential clock input for the ADC  
Positive differential clock input for the ADC  
Negative serial JESD204B output for channel A  
Positive serial JESD204B output for channel A  
Negative serial JESD204B output for channel B  
Positive serial JESD204B output for channel B  
Digital 1.8-V power supply  
19  
48  
O
O
O
O
I
47  
DBM  
DBP  
45  
44  
DVDD  
GND  
INAM  
INAP  
INBM  
INBP  
3,34  
PowerPAD™  
I
Ground, 0 V  
11  
10  
26  
27  
I
Negative differential analog input for channel A  
Positive differential analog input for channel A  
Negative differential analog input for channel B  
Positive differential analog input for channel B  
I
I
I
2, 6, 7, 30, 31, 35,  
37, 38, 40, 41  
NC  
Do not connect  
OVRA  
1
O
O
I
Overrange indicator for channel A  
OVRB  
36  
33  
21  
13  
14  
16  
15  
42  
43  
23  
22  
24  
Overrange indicator for channel B  
PDN  
Power-down control. This pin has an internal 150-kΩ pulldown resistor.  
Hardware reset; active high. This pin has an internal 150-kΩ pulldown resistor.  
Serial interface clock input. This pin has an internal 150-kΩ pulldown resistor.  
Serial Interface data input. This pin has an internal 150-kΩ pulldown resistor.  
Serial interface data output  
RESET  
SCLK  
I
I
SDATA  
SDOUT  
SEN  
I
O
I
Serial interface enable. This pin has an internal 150-kΩ pullup resistor to AVDD.  
Positive JESD204B SYNC~ input  
SYNCM~  
SYNCP~  
SYSREFM  
SYSREFP  
VCM  
I
I
Negative JESD204B SYNC~ input  
I
Negative external SYSREF input  
I
Positive external SYSREF input  
O
Common-mode voltage output for analog inputs  
4
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
www.ti.com.cn  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
MAX  
2.1  
UNIT  
V
Supply voltage range, AVDD  
Supply voltage range, DVDD  
2.1  
V
Minimum  
(AVDD + 0.3, 2.1)  
INAP, INBP, INCP, INDP, INAM, INBM, INCM, INDM  
–0.3  
–0.3  
–0.3  
V
V
V
Minimum  
(AVDD + 0.3, 2.1)  
CLKP, CLKM(2)  
Voltage applied to  
input pins:  
Minimum  
(AVDD + 0.3, 2.1)  
SYSREFP, SYSREFM, SYNCP~, SYNCM~  
SCLK, SEN, SDATA, RESET, PDN  
Operating free-air, TA  
–0.3  
–40  
3.6  
85  
V
°C  
°C  
°C  
Temperature  
Operating junction, TJ  
Storage, Tstg  
125  
150  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) When AVDD is turned off, TI recommends switching off the input clock (or ensuring the voltage on CLKP, CLKM is less than |0.3 V|).  
This configuration prevents the ESD protection diodes at the clock input pins from turning on.  
7.2 ESD Ratings  
VALUE  
UNIT  
V(ESD)  
Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
±2000  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
SUPPLIES  
AVDD  
Analog supply voltage range  
Digital supply voltage range  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
V
V
DVDD  
ANALOG INPUT  
For input frequencies < 450 MHz  
For input frequencies < 600 MHz  
2
1
VPP  
VPP  
V
VID  
VIC  
Differential input voltage  
Input common-mode voltage  
VCM ± 0.025  
CLOCK INPUT  
Input clock frequency  
Sampling clock frequency  
Sine wave, ac-coupled  
LVPECL, ac-coupled  
LVDS, ac-coupled  
15  
160(2)  
MSPS  
0.2  
1.5  
1.6  
V
V
V
Input clock amplitude (differential)  
0.7  
Input clock duty cycle  
35%  
50%  
0.95  
65%  
Input clock common-mode voltage  
V
DIGITAL OUTPUTS  
CLOAD  
RLOAD  
Maximum external load capacitance from each output pin to GND  
Single-ended load resistance  
3.3  
50  
pF  
Ω
(1) After power-up, to reset the device for the first time, only use the RESET pin; see the Register Initialization section.  
(2) With the clock divider enabled by default for divide-by-1. Maximum sampling clock frequency for the divide-by-4 option is 640 MSPS.  
Copyright © 2014–2015, Texas Instruments Incorporated  
5
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
www.ti.com.cn  
7.4 Thermal Information  
ADC32J4x  
THERMAL METRIC(1)  
RGZ (VQFN)  
UNIT  
48 PINS  
25.7  
18.9  
3.0  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
3
RθJC(bot)  
0.5  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
7.5 Electrical Characteristics  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = –40°C to  
TMAX = 85°C, maximum sampling rate, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless  
otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ANALOG INPUT  
Differential input full-scale  
Input resistance  
2.0  
6.5  
5.2  
0.95  
10  
VPP  
kΩ  
ri  
Differential at dc  
ci  
Input capacitance  
Differential at dc  
pF  
VOC(VCM)  
VCM common-mode voltage output  
VCM output current capability  
Input common-mode current  
V
mA  
Per analog input pin  
1.5  
µA/MSPS  
50-Ω differential source driving a  
50-Ω termination across INP, INM  
Analog input bandwidth (3 dB)  
450  
MHz  
DC ACCURACY  
EO  
Offset error  
–20  
–3  
20  
3
mV  
Gain error as a result of internal  
reference inaccuracy alone  
EG(REF)  
%FS  
EG(CHAN)  
Gain error of channel alone  
±1  
%FS  
α(EGCHAN) Temperature coefficient of EG(CHAN)  
–0.017  
Δ%FS/Ch  
CHANNEL-TO-CHANNEL ISOLATION  
fIN = 10 MHz  
fIN = 100 MHz  
fIN = 200 MHz  
fIN = 230 MHz  
fIN = 300 MHz  
105  
105  
105  
105  
105  
dB  
dB  
dB  
dB  
dB  
Crosstalk(1)  
(1) Crosstalk is measured with a –1-dBFS input signal on aggressor channel and no input on victim channel.  
6
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
www.ti.com.cn  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
7.6 Electrical Characteristics: ADC32J44, ADC32J45  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = –40°C to  
TMAX = 85°C, maximum sampling rate, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless  
otherwise noted.  
ADC32J44  
TYP  
ADC32J45  
TYP  
PARAMETER  
MIN  
MAX  
MIN  
MAX  
UNIT  
MSPS  
Bits  
mA  
ADC clock frequency  
125  
160  
Resolution  
14  
14  
1.8-V analog supply current  
1.8-V digital supply current  
Total power dissipation  
177  
46  
292  
65  
192  
56  
302  
80  
mA  
401  
5
535  
454  
5
560  
mW  
mW  
us  
Global power-down dissipation  
Wake-up time from global power-down  
Standby power-down dissipation  
Wake-up time from standby power-down  
85  
85  
112  
35  
118  
35  
mW  
µs  
7.7 Electrical Characteristics: ADC32J42, ADC32J43  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = –40°C to  
TMAX = 85°C, maximum sampling rate, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless  
otherwise noted.  
ADC32J42  
TYP  
ADC32J43  
TYP  
PARAMETER  
MIN  
MAX  
MIN  
MAX  
UNIT  
MSPS  
Bits  
mA  
ADC clock frequency  
50  
80  
Resolution  
14  
14  
1.8-V analog supply current  
1.8-V digital supply current  
Total power dissipation  
134  
22  
281  
5
267  
45  
152  
31  
272  
46  
mA  
435  
329  
5
450  
mW  
mW  
us  
Global power-down dissipation  
Wake-up time from global power-down  
Standby power-down dissipation  
Wake-up time from standby power-down  
85  
99  
35  
85  
105  
35  
mW  
µs  
Copyright © 2014–2015, Texas Instruments Incorporated  
7
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
www.ti.com.cn  
7.8 AC Performance: ADC32J45  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = –40°C to TMAX  
= 85°C, ADC sampling rate = 160 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input,  
unless otherwise noted.  
ADC32J45 (fS = 160 MSPS)  
DITHER ON  
DITHER OFF  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNIT  
DYNAMIC AC CHARACTERISTICS  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
72.5  
71.7  
71.3  
70.1  
68.9  
151.5  
72.8  
72.0  
71.6  
70.7  
69.5  
151.8  
151.0  
150.6  
149.7  
148.5  
72.6  
71.8  
71.2  
70.1  
68.4  
11.8  
11.6  
11.5  
11.3  
11.1  
88  
70.2  
SNR  
Signal-to-noise ratio  
dBFS  
–149.5 150.7  
150.3  
Noise spectral density  
(averaged across Nyquist zone)  
NSD  
dBFS/Hz  
dBFS  
Bits  
149.1  
147.9  
72.3  
68.3  
11.1  
81  
71.5  
71.0  
69.6  
68.3  
11.7  
11.6  
11.5  
11.3  
11.0  
90  
SINAD  
ENOB  
SFDR  
HD2  
Signal-to-noise and distortion ratio fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
Effective number of bits  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
85  
85  
Spurious-free dynamic range  
85  
84  
dBc  
84  
83  
81  
80  
90  
91  
81  
91  
92  
Second-order harmonic distortion fIN = 100 MHz  
88  
86  
dBc  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
84  
83  
81  
80  
91  
88  
81  
85  
84  
HD3  
Non  
Third-order harmonic distortion  
Spurious-free dynamic range  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
85  
84  
dBc  
91  
86  
86  
87  
98  
95  
87  
99  
95  
97  
94  
dBc  
HD2, HD3 (excluding HD2, HD3)  
92  
91  
91  
89  
8
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
www.ti.com.cn  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
AC Performance: ADC32J45 (continued)  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = –40°C to TMAX  
= 85°C, ADC sampling rate = 160 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input,  
unless otherwise noted.  
ADC32J45 (fS = 160 MSPS)  
DITHER ON  
DITHER OFF  
PARAMETER  
TEST CONDITIONS  
fIN = 10 MHz  
MIN  
TYP  
87  
MAX  
MIN  
TYP  
84  
MAX  
UNIT  
fIN = 70 MHz  
78  
84  
83  
THD  
Total harmonic distortion  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
83  
82  
dBc  
82  
80  
79  
77  
fIN1 = 45 MHz,  
fIN2 = 50 MHz  
90  
90  
Two-tone, third-order  
intermodulation distortion  
IMD3  
dBFS  
fIN1 = 185 MHz,  
fIN2 = 190 MHz  
86  
86  
DNL  
INL  
Differential nonlinearity  
Integrated nonlinearity  
fIN = 70 MHz  
fIN = 70 MHz  
±0.3  
±1.5  
±0.3  
±1.5  
LSBs  
LSBs  
Copyright © 2014–2015, Texas Instruments Incorporated  
9
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
www.ti.com.cn  
7.9 AC Performance: ADC32J44  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = –40°C to TMAX  
= 85°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input,  
unless otherwise noted.  
ADC32J44 (fS = 125 MSPS)  
DITHER ON  
DITHER OFF  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNIT  
DYNAMIC AC CHARACTERISTICS  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
72.6  
72.3  
72.1  
70.1  
70.0  
150.6  
72.8  
72.5  
72.3  
71.7  
70.8  
150.8  
150.5  
150.3  
149.7  
148.8  
72.7  
72.4  
72.2  
71.4  
70.2  
11.8  
11.7  
11.7  
11.6  
11.4  
92  
70.8  
SNR  
Signal-to-noise ratio  
dBFS  
–148.8 150.3  
150.1  
Noise spectral density  
(averaged across Nyquist zone)  
NSD  
dBFS/Hz  
dBFS  
Bits  
148.1  
148.0  
72.5  
68.6  
11.1  
81  
72.2  
72.0  
70.7  
69.5  
11.8  
11.7  
11.7  
11.4  
11.2  
94  
SINAD  
ENOB  
SFDR  
HD2  
Signal-to-noise and distortion ratio fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
Effective number of bits  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
93  
91  
Spurious-free dynamic range  
93  
90  
dBc  
85  
84  
82  
81  
95  
92  
81  
94  
94  
Second-order harmonic distortion fIN = 100 MHz  
93  
91  
dBc  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
85  
84  
82  
81  
96  
92  
82  
93  
90  
HD3  
Non  
Third-order harmonic distortion  
Spurious-free dynamic range  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
93  
90  
dBc  
88  
88  
91  
93  
99  
96  
87  
99  
96  
98  
96  
dBc  
HD2, HD3 (excluding HD2, HD3)  
98  
95  
96  
91  
10  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
www.ti.com.cn  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
AC Performance: ADC32J44 (continued)  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = –40°C to TMAX  
= 85°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input,  
unless otherwise noted.  
ADC32J44 (fS = 125 MSPS)  
DITHER ON  
DITHER OFF  
PARAMETER  
TEST CONDITIONS  
fIN = 10 MHz  
MIN  
TYP  
91  
MAX  
MIN  
TYP  
87  
MAX  
UNIT  
fIN = 70 MHz  
78  
90  
87  
THD  
Total harmonic distortion  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
90  
87  
dBc  
83  
82  
80  
79  
fIN1 = 45 MHz,  
fIN2 = 50 MHz  
91  
91  
Two-tone, third-order  
intermodulation distortion  
IMD3  
dBFS  
fIN1 = 185 MHz,  
fIN2 = 190 MHz  
86  
86  
DNL  
INL  
Differential nonlinearity  
Integrated nonlinearity  
fIN = 70 MHz  
fIN = 70 MHz  
±0.3  
±1.5  
±0.3  
±1.5  
LSBs  
LSBs  
Copyright © 2014–2015, Texas Instruments Incorporated  
11  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
www.ti.com.cn  
7.10 AC Performance: ADC32J43  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = –40°C to TMAX  
= 85°C, ADC sampling rate = 80 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless  
otherwise noted.  
ADC32J43 (fS = 80 MSPS)  
DITHER ON  
DITHER OFF  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNIT  
DYNAMIC AC CHARACTERISTICS  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
72.3  
72.2  
72.0  
71.4  
70.6  
148.4  
72.6  
72.4  
72.2  
71.8  
71.0  
148.7  
148.4  
148.2  
147.8  
147.0  
72.5  
72.2  
72.0  
71.4  
70.2  
11.8  
11.7  
11.7  
11.6  
11.4  
91  
70.8  
SNR  
Signal-to-noise ratio  
dBFS  
–146.8 148.2  
148.0  
Noise spectral density  
(averaged across Nyquist zone)  
NSD  
dBFS/Hz  
dBFS  
Bits  
147.4  
146.6  
72.3  
68.6  
11.1  
82  
72.2  
71.9  
71.0  
69.9  
11.7  
11.7  
11.6  
11.5  
11.3  
96  
SINAD  
ENOB  
SFDR  
HD2  
Signal-to-noise and distortion ratio fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
Effective number of bits  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN= 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
95  
90  
Spurious-free dynamic range  
91  
88  
dBc  
85  
84  
81  
80  
96  
95  
81  
98  
96  
Second-order harmonic distortion fIN = 100 MHz  
93  
91  
dBc  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
85  
84  
81  
80  
95  
93  
83  
92  
92  
HD3  
Non  
Third-order harmonic distortion  
Spurious-free dynamic range  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
91  
88  
dBc  
92  
91  
83  
83  
99  
93  
87  
99  
93  
97  
92  
dBc  
HD2, HD3 (excluding HD2, HD3)  
97  
93  
95  
92  
12  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
www.ti.com.cn  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
AC Performance: ADC32J43 (continued)  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = –40°C to TMAX  
= 85°C, ADC sampling rate = 80 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless  
otherwise noted.  
ADC32J43 (fS = 80 MSPS)  
DITHER ON  
DITHER OFF  
PARAMETER  
TEST CONDITIONS  
fIN = 10 MHz  
MIN  
TYP  
93  
MAX  
MIN  
TYP  
87  
MAX  
UNIT  
fIN = 70 MHz  
78  
93  
87  
THD  
Total harmonic distortion  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
87  
85  
dBc  
83  
82  
79  
77  
fIN1 = 45 MHz,  
fIN2 = 50 MHz  
90  
90  
Two-tone, third-order  
intermodulation distortion  
IMD3  
dBFS  
fIN1 = 185 MHz,  
fIN2 = 190 MHz  
89  
89  
DNL  
INL  
Differential nonlinearity  
Integrated nonlinearity  
fIN = 70 MHz  
fIN = 70 MHz  
±0.3  
±1.5  
±0.3  
±1.5  
LSBs  
LSBs  
Copyright © 2014–2015, Texas Instruments Incorporated  
13  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
www.ti.com.cn  
7.11 AC Performance: ADC32J42  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = –40°C to TMAX  
= 85°C, ADC sampling rate = 50 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless  
otherwise noted.  
ADC32J42 (fS = 50 MSPS)  
DITHER ON  
DITHER OFF  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNIT  
DYNAMIC AC CHARACTERISTICS  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
71.3  
72.2  
71.8  
71.8  
71.1  
69.1  
146.1  
145.8  
145.8  
145.1  
143.1  
72.1  
71.8  
71.7  
70.8  
68.4  
11.7  
11.6  
11.6  
11.5  
11.1  
95  
72.5  
72.1  
72.0  
71.5  
69.4  
146.5  
146.1  
146.0  
145.5  
143.4  
72.3  
71.9  
71.8  
71.1  
68.7  
11.7  
11.7  
11.6  
11.5  
11.1  
93  
SNR  
Signal-to-noise ratio  
dBFS  
Noise spectral density  
(averaged across Nyquist zone)  
NSD  
dBFS/Hz  
dBFS  
Bits  
69.1  
11.2  
84.5  
84.5  
84.5  
87  
SINAD  
ENOB  
SFDR  
HD2  
Signal-to-noise and distortion ratio fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
Effective number of bits  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
95  
90  
Spurious-free dynamic range  
91  
89  
dBc  
85  
84  
81  
80  
95  
94  
97  
96  
Second-order harmonic distortion fIN = 100 MHz  
92  
92  
dBc  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
85  
84  
81  
80  
102  
95  
93  
90  
HD3  
Non  
Third-order harmonic distortion  
Spurious-free dynamic range  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
91  
89  
dBc  
88  
88  
82  
83  
98  
91  
94  
92  
91  
91  
dBc  
HD2, HD3 (excluding HD2, HD3)  
96  
92  
93  
91  
14  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
www.ti.com.cn  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
AC Performance: ADC32J42 (continued)  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = –40°C to TMAX  
= 85°C, ADC sampling rate = 50 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless  
otherwise noted.  
ADC32J42 (fS = 50 MSPS)  
DITHER ON  
DITHER OFF  
PARAMETER  
TEST CONDITIONS  
fIN = 10 MHz  
MIN  
79.5  
TYP  
92  
MAX  
MIN  
TYP  
90  
MAX  
UNIT  
fIN = 70 MHz  
91  
87  
THD  
Total harmonic distortion  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
88  
85  
dBc  
83  
82  
78  
78  
fIN1 = 45 MHz,  
fIN2 = 50 MHz  
90  
90  
Two-tone, third-order  
intermodulation distortion  
IMD3  
dBFS  
fIN1 = 185 MHz,  
fIN2 = 190 MHz  
86  
86  
DNL  
INL  
Differential nonlinearity  
Integrated nonlinearity  
fIN = 70 MHz  
fIN = 70 MHz  
±0.3  
±1.5  
±0.3  
±1.5  
LSBs  
LSBs  
Copyright © 2014–2015, Texas Instruments Incorporated  
15  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
www.ti.com.cn  
7.12 Digital Characteristics  
The dc specifications refer to the condition where the digital outputs are not switching, but are permanently at a valid logic  
level 0 or 1. AVDD = DVDD = 1.8 V and –1-dBFS differential input, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DIGITAL INPUTS (RESET, SCLK, SEN, SDATA, PDN)(1)  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
All digital inputs support 1.8-V and 3.3-V logic levels  
1.2  
V
All digital inputs support 1.8-V and 3.3-V logic levels  
0.4  
V
SEN  
0
10  
10  
0
µA  
µA  
µA  
µA  
IIH  
High-level input current  
Low-level input current  
RESET, SCLK, SDATA, PDN  
SEN  
IIL  
RESET, SCLK, SDATA, PDN  
DIGITAL INPUTS (SYNCP~, SYNCM~, SYSREFP, SYSREFM)  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
1.3  
0.5  
V
V
Common-mode voltage for SYNC~  
and SYSREF  
V(CM_DIG)  
0.95  
V
DIGITAL OUTPUTS (SDOUT, OVRA, OVRB)  
DVDD –  
0.1  
VOH  
High-level output voltage  
DVDD  
V
V
VOL  
Low-level output voltage  
0.1  
DIGITAL OUTPUTS (JESD204B Interface: DxP, DxM)(2)  
VOH  
VOL  
VOD  
VOC  
High-level output voltage  
Low-level output voltage  
Output differential voltage  
Output common-mode voltage  
AVDD  
AVDD – 0.4  
0.4  
V
V
V
V
AVDD – 0.2  
Transmitter pins shorted to any voltage between  
–0.25 V and 1.45 V  
Transmitter short-circuit current  
Single-ended output impedance  
Output capacitance  
–100  
100  
mA  
Ω
zos  
50  
2
Output capacitance inside the device,  
from either output to ground  
pF  
(1) The RESET, SCLK, SDATA, and PDN pins have a 150-kΩ (typical) internal pulldown resistor to ground, and the SEN pin has a 150-kΩ  
(typical) pullup resistor to AVDD.  
(2) 50-Ω, single-ended external termination to 1.8 V.  
16  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
www.ti.com.cn  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
7.13 Timing Requirements  
Typical values are at 25°C, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless otherwise noted. Minimum and  
maximum values are across the full temperature range: TMIN = –40°C to TMAX = 85°C. See Figure 143.  
MIN  
TYP  
MAX  
UNITS  
SAMPLE TIMING REQUIREMENTS  
Aperture delay  
0.85  
1.25  
±70  
1.65  
ns  
ps  
Between four channels on the same device  
Aperture delay matching  
Between two devices at the same temperature and  
supply voltage  
±150  
ps  
Aperture jitter  
Wake-up time  
200  
35  
fS rms  
µs  
Time to valid data after coming out of STANDBY mode  
Time to valid data after coming out of global power-down  
100  
300  
85  
µs  
tSU_SYNC~  
tH_SYNC~  
tSU_SYSREF  
tH_SYSREF  
Setup time for SYNC~ referenced to input clock rising edge  
Hold time for SYNC~ referenced to input clock rising edge  
1
100  
1
ns  
ps  
Setup time for SYSREF referenced to input clock rising edge  
Hold time for SYSREF referenced to input clock rising edge  
ns  
100  
ps  
CML OUTPUT TIMING REQUIREMENTS  
Unit interval  
312.5  
1667  
3.2  
ps  
Serial output data rate  
Gbps  
P-PUI  
Total jitter: 3.125 Gbps (20X mode, fS = 156.25 MSPS)  
0.3  
Data rise time, data fall time: rise and fall times measured from 20% to 80%,  
differential output waveform, 600 Mbps bit rate 3.125 Gbps  
tR, tF  
105  
ps  
Table 1. Latency in Different Modes(1)(2)  
MODE  
PARAMETER  
LATENCY (N Cycles)  
TYPICAL DATA DELAY (tD, ns)  
0.29 × tS + 3  
0.5 × tS + 2  
ADC latency  
17  
9
Normal OVR latency  
20X  
Fast OVR latency  
7
0.5 × tS + 2  
From SYNC~ falling edge to CGS phase(3)  
From SYNC~ rising edge to ILA sequence(4)  
ADC latency  
15  
17  
16  
9
0.3 × tS + 4  
0.3 × tS + 4  
0.85 × tS + 3.9  
0.5 × tS + 2  
Normal OVR latency  
40X  
Fast OVR latency  
7
0.5 × tS + 2  
From SYNC~ falling edge to CGS phase(3)  
From SYNC~ rising edge to ILA sequence(4)  
14  
12  
0.9 × tS + 4  
0.9 × tS + 4  
(1) Overall latency = latency + tD.  
(2) tS is the time period of the ADC conversion clock.  
(3) Latency is specified for subclass 2. In subclass 0, the SYNC~ falling edge to CGS phase latency is 16 clock cycles in 10X mode and 15  
clock cycles in 20X mode.  
(4) Latency is specified for subclass 2. In subclass 0, the SYNC~ rising edge to ILA sequence latency is 11 clock cycles in 10X mode and  
11 clock cycles in 20X mode.  
Copyright © 2014–2015, Texas Instruments Incorporated  
17  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
www.ti.com.cn  
7.14 Typical Characteristics: ADC32J45  
Typical values are at TA= 25°C, ADC sampling rate = 160 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, 32k-point FFT, dither enabled, and special modes written, unless otherwise noted.  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
16  
32  
48  
64  
80  
0
16  
32  
48  
64  
80  
Frequency (MHz)  
Frequency (MHz)  
D101  
D102  
fS = 160 MSPS, SNR = 72.4 dBFS, fIN = 10 MHz,  
SFDR = 92.3 dBc  
fS = 160 MSPS, SNR = 72.7 dBFS, fIN = 10 MHz,  
SFDR = 92.7 dBc  
Figure 1. FFT for 10-MHz Input Signal (Dither On)  
Figure 2. FFT for 10-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
16  
32  
48  
64  
80  
0
16  
32  
48  
64  
80  
Frequency (MHz)  
Frequency (MHz)  
D103  
D104  
fS = 160 MSPS, SNR = 71.7 dBFS, fIN = 70 MHz,  
SFDR = 86 dBc  
fS = 160 MSPS, SNR = 72.1 dBFS, fIN = 70 MHz,  
SFDR = 85 dBc  
Figure 3. FFT for 70-MHz Input Signal (Dither On)  
Figure 4. FFT for 70-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
16  
32  
48  
64  
80  
0
16  
32  
48  
64  
80  
Frequency (MHz)  
Frequency (MHz)  
D105  
D106  
fS = 160 MSPS, SNR = 70.6 dBFS, fIN = 170 MHz,  
SFDR = 85 dBc  
fS = 160 MSPS, SNR = 71.4 dBFS, fIN = 170 MHz,  
SFDR = 84 dBc  
Figure 5. FFT for 170-MHz Input Signal (Dither On)  
Figure 6. FFT for 170-MHz Input Signal (Dither Off)  
18  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
www.ti.com.cn  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
Typical Characteristics: ADC32J45 (continued)  
Typical values are at TA= 25°C, ADC sampling rate = 160 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, 32k-point FFT, dither enabled, and special modes written, unless otherwise noted.  
0
0
-10  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
16  
32  
48  
64  
80  
0
16  
32  
48  
64  
80  
Frequency (MHz)  
Frequency (MHz)  
D107  
D108  
fS = 160 MSPS, SNR = 69.3 dBFS, fIN = 270 MHz,  
SFDR = 78.9 dBc  
fS = 160 MSPS, SNR = 69.9 dBFS, fIN = 270 MHz,  
SFDR = 79.3 dBc  
Figure 7. FFT for 270-MHz Input Signal (Dither On)  
Figure 8. FFT for 270-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
16  
32  
48  
64  
80  
0
16  
32  
48  
64  
80  
Frequency (MHz)  
Frequency (MHz)  
D109  
D110  
fS = 160 MSPS, SNR = 63.2 dBFS, fIN = 450 MHz,  
SFDR = 65.7 dBc  
fS = 160 MSPS, SNR = 63.8 dBFS, fIN = 450 MHz,  
SFDR = 67 dBc  
Figure 9. FFT for 450-MHz Input Signal (Dither On)  
Figure 10. FFT for 450-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
16  
32  
48  
64  
80  
0
16  
32  
48  
64  
80  
Frequency (MHz)  
Frequency (MHz)  
D111  
D112  
fS = 160 MSPS, IMD = 92 dBFS, fIN1 = 46 MHz, fIN2 = 50 MHz  
fS = 160 MSPS, IMD = 99 dBFS, fIN1 = 46 MHz, fIN2 = 50 MHz  
Figure 11. FFT for Two-Tone Input Signal  
(–7 dBFS at 46 MHz and 50 MHz)  
Figure 12. FFT for Two-Tone Input Signal  
(–36 dBFS at 46 MHz and 50 MHz)  
Copyright © 2014–2015, Texas Instruments Incorporated  
19  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
www.ti.com.cn  
Typical Characteristics: ADC32J45 (continued)  
Typical values are at TA= 25°C, ADC sampling rate = 160 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, 32k-point FFT, dither enabled, and special modes written, unless otherwise noted.  
0
0
-10  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
16  
32  
48  
64  
80  
0
16  
32  
48  
64  
80  
Frequency (MHz)  
Frequency (MHz)  
D113  
D114  
fS = 160 MSPS, IMD = 87 dBFS, fIN1 = 185 MHz, fIN2 = 190 MHz  
fS = 160 MSPS, IMD = 100 dBFS, fIN1 = 185 MHz, fIN2 = 190 MHz  
Figure 13. FFT for Two-Tone Input Signal  
(–7 dBFS at 185 MHz and 190 MHz)  
Figure 14. FFT for Two-Tone Input Signal  
(–36 dBFS at 185 MHz and 190 MHz)  
-80  
-85  
-80  
-85  
-90  
-90  
-95  
-95  
-100  
-105  
-110  
-100  
-105  
-110  
-35  
-31  
-27  
-23  
-19  
-15  
-11  
-7  
-35  
-31  
-27  
-23  
-19  
-15  
-11  
-7  
Each Tone Amplitude (dBFS)  
Each Tone Amplitude (dBFS)  
D115  
D116  
fS = 160 MSPS, fIN1 = 46 MHz, fIN2 = 50 MHz  
fS = 160 MSPS, fIN1 = 185 MHz, fIN2 = 190 MHz  
Figure 15. Intermodulation Distortion vs Input Amplitude  
(46 MHz and 50 MHz)  
Figure 16. Intermodulation Distortion vs Input Amplitude  
(185 MHz and 190 MHz)  
100  
73  
Dither_EN  
Dither_DIS  
Dither_EN  
Dither_DIS  
72  
92  
84  
76  
68  
60  
71  
70  
69  
68  
67  
66  
0
50  
100  
150  
200  
250  
300  
350  
400  
0
50  
100  
150  
200  
250  
300  
350  
400  
Frequency (MHz)  
Frequency (MHz)  
D117  
D118  
Figure 17. Signal-to-Noise Ratio vs Input Frequency  
Figure 18. Spurious-Free Dynamic Range vs  
Input Frequency  
20  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
www.ti.com.cn  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
Typical Characteristics: ADC32J45 (continued)  
Typical values are at TA= 25°C, ADC sampling rate = 160 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, 32k-point FFT, dither enabled, and special modes written, unless otherwise noted.  
120  
110  
100  
90  
74.5  
72.5  
70.5  
68.5  
66.5  
64.5  
62.5  
10 MHz  
70 MHz  
100 MHz  
170 MHz  
230 MHz  
270 MHz  
400 MHz  
10 MHz  
70 MHz  
100 MHz  
170 MHz  
230 MHz  
270 MHz  
400 MHz  
80  
70  
60  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Digital Gain (dB)  
Digital Gain (dB)  
D119  
D120  
Figure 19. Signal-to-Noise Ratio vs  
Digital Gain and Input Frequency  
Figure 20. Spurious-Free Dynamic Range vs  
Digital Gain and Input Frequency  
76  
180  
76  
180  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
74  
72  
70  
68  
66  
64  
150  
120  
90  
60  
30  
0
74.5  
73  
150  
120  
90  
60  
30  
0
71.5  
70  
68.5  
67  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
Amplitude (dBFS)  
Amplitude (dBFS)  
D121  
D122  
Figure 21. Performance vs Input Amplitude (30 MHz)  
Figure 22. Performance vs Input Amplitude (170 MHz)  
72.8  
72.6  
72.4  
72.2  
72  
94  
SNR  
SFDR  
71.1  
70.9  
70.7  
70.5  
70.3  
70.1  
69.9  
92  
SNR  
SFDR  
88  
92  
90  
88  
86  
84  
84  
80  
76  
72  
68  
71.8  
0.85  
0.9  
0.95  
1
1.05  
1.1  
0.85  
0.9  
0.95  
1
1.05  
1.1  
Input Common - Mode Voltage (V)  
Input Common - Mode Voltage (V)  
D123  
D124  
Figure 23. Performance vs Input Common-Mode Voltage  
(30 MHz)  
Figure 24. Performance vs Input Common-Mode Voltage  
(170 MHz)  
Copyright © 2014–2015, Texas Instruments Incorporated  
21  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
www.ti.com.cn  
Typical Characteristics: ADC32J45 (continued)  
Typical values are at TA= 25°C, ADC sampling rate = 160 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, 32k-point FFT, dither enabled, and special modes written, unless otherwise noted.  
94  
92  
90  
88  
86  
84  
71.5  
71.1  
70.7  
70.3  
69.9  
69.5  
AVDD = 1.7 V  
AVDD = 1.75 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.7 V  
AVDD = 1.75 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D125  
D126  
Figure 25. Spurious-Free Dynamic Range vs  
AVDD Supply and Temperature  
Figure 26. Signal-to-Noise Ratio vs  
AVDD Supply and Temperature  
71.6  
71.2  
70.8  
70.4  
70  
91  
90  
89  
88  
87  
86  
85  
DVDD = 1.7 V  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
DVDD = 1.7 V  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
69.6  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D127  
D128  
Figure 27. Spurious-Free Dynamic Range vs  
DVDD Supply and Temperature  
Figure 28. Signal-to-Noise Ratio vs  
DVDD Supply and Temperature  
84  
80  
76  
72  
68  
64  
110  
100  
90  
90  
140  
120  
100  
80  
SNR  
SFDR  
SNR  
SFDR  
85  
80  
75  
70  
65  
60  
55  
60  
80  
40  
70  
20  
60  
0
0.2  
0.6  
1
1.4  
1.8  
2.2  
0.2  
0.6  
1
1.4  
1.8  
2.2  
Differential Clock Amplitude (Vpp)  
Differential Clock Amplitude (Vpp)  
D129  
D130  
Figure 29. Performance vs Clock Amplitude (40 MHz)  
Figure 30. Performance vs Clock Amplitude (150 MHz)  
22  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
www.ti.com.cn  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
Typical Characteristics: ADC32J45 (continued)  
Typical values are at TA= 25°C, ADC sampling rate = 160 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, 32k-point FFT, dither enabled, and special modes written, unless otherwise noted.  
71  
70.75  
70.5  
100  
95  
90  
85  
80  
75  
70  
72.9  
72.7  
72.5  
72.3  
72.1  
71.9  
100  
96  
92  
88  
84  
80  
SNR  
SFDR  
SNR  
SFDR  
70.25  
70  
69.75  
69.5  
30  
35  
40  
45  
50  
55  
60  
65  
70  
30  
35  
40  
45  
50  
55  
60  
65  
70  
Input Clock Duty Cycle (%)  
Input Clock Duty Cycle (%)  
D131  
D132  
Figure 31. Performance vs Clock Duty Cycle (40 MHz)  
Figure 32. Performance vs Clock Duty Cycle (150 MHz)  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
6
4
2
0
D133  
Output Code (LSB)  
RMS noise = 1.3 LSBs  
Figure 33. Idle Channel Histogram  
Copyright © 2014–2015, Texas Instruments Incorporated  
23  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
www.ti.com.cn  
7.15 Typical Characteristics: ADC32J44  
Typical values are at TA= 25°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
D301  
D302  
fS = 125 MSPS, SNR = 72.4 dBFS, fIN = 10 MHz,  
SFDR = 98.3 dBc  
fS = 125 MSPS, SNR = 72.7 dBFS, fIN = 10 MHz,  
SFDR = 94.7 dBc  
Figure 34. FFT for 10-MHz Input Signal (Dither On)  
Figure 35. FFT for 10-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
D303  
D304  
fS = 125 MSPS, SNR = 71.9 dBFS, fIN = 70 MHz,  
SFDR = 91 dBc  
fS = 125 MSPS, SNR = 72.3 dBFS, fIN = 70 MHz,  
SFDR = 90 dBc  
Figure 36. FFT for 70-MHz Input Signal (Dither On)  
Figure 37. FFT for 70-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
D305  
D306  
fS = 125 MSPS, SNR = 71 dBFS, fIN = 170 MHz,  
SFDR = 86 dBc  
fS = 125 MSPS, SNR = 71.9 dBFS, fIN = 70 MHz,  
SFDR = 85 dBc  
Figure 38. FFT for 170-MHz Input Signal (Dither On)  
Figure 39. FFT for 170-MHz Input Signal (Dither Off)  
24  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
www.ti.com.cn  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
Typical Characteristics: ADC32J44 (continued)  
Typical values are at TA= 25°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.  
0
0
-10  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
D307  
D308  
fS = 125 MSPS, SNR = 70.4 dBFS, fIN = 270 MHz,  
SFDR = 80.1 dBc  
fS = 125 MSPS, SNR = 70.5 dBFS, fIN = 270 MHz,  
SFDR = 79.4 dBc  
Figure 40. FFT for 270-MHz Input Signal (Dither On)  
Figure 41. FFT for 270-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
D309  
D310  
fS = 125 MSPS, SNR = 64.2 dBFS, fIN = 450 MHz,  
SFDR = 68.7 dBc  
fS = 125 MSPS, SNR = 64.6 dBFS, fIN = 450 MHz,  
SFDR = 68.9 dBc  
Figure 42. FFT for 450-MHz Input Signal (Dither On)  
Figure 43. FFT for 450-MHz Input Signal (Dither Off)  
0
0
-10  
-20  
-10  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
D311  
D312  
fS = 125 MSPS, IMD = 93 dBFS, fIN1 = 46 MHz, fIN2 = 50 MHz  
fS = 125 MSPS, IMD = 101 dBFS, fIN1 = 46 MHz, fIN2 = 50 MHz  
Figure 44. FFT for Two-Tone Input Signal  
(–7 dBFS at 46 MHz and 50 MHz)  
Figure 45. FFT for Two-Tone Input Signal  
(–36 dBFS at 46 MHz and 50 MHz)  
Copyright © 2014–2015, Texas Instruments Incorporated  
25  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
www.ti.com.cn  
Typical Characteristics: ADC32J44 (continued)  
Typical values are at TA= 25°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.  
0
0
-10  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
D313  
D314  
fS = 125 MSPS, IMD = 88 dBFS, fIN1 = 185 MHz, fIN2 = 190 MHz  
fS = 125 MSPS, IMD = 99 dBFS, fIN1 = 46 MHz, fIN2 = 50 MHz  
Figure 46. FFT for Two-Tone Input Signal  
(–7 dBFS at 185 MHz and 190 MHz)  
Figure 47. FFT for Two-Tone Input Signal  
(–36 dBFS at 185 MHz and 190 MHz)  
-80  
-85  
-80  
-85  
-90  
-90  
-95  
-95  
-100  
-105  
-110  
-100  
-105  
-110  
-35  
-31  
-27  
-23  
-19  
-15  
-11  
-7  
-35  
-31  
-27  
-23  
-19  
-15  
-11  
-7  
Each Tone Amplitude (dBFS)  
Each Tone Amplitude (dBFS)  
D315  
D7175  
Figure 48. Intermodulation Distortion vs Input Amplitude  
(46 MHz and 50 MHz)  
Figure 49. Intermodulation Distortion vs Input Amplitude  
(185 MHz and 190 MHz)  
100  
73.5  
Dither_EN  
Dither_DIS  
Dither_EN  
Dither_DIS  
95  
72.5  
71.5  
70.5  
69.5  
68.5  
90  
85  
80  
75  
70  
0
50  
100  
150  
200  
250  
300  
350  
400  
0
50  
100  
150  
200  
250  
300  
350  
400  
Frequency (MHz)  
Frequency (MHz)  
D717  
D318  
Figure 50. Signal-to-Noise Ratio vs Input Frequency  
Figure 51. Spurious-Free Dynamic Range vs  
Input Frequency  
26  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
www.ti.com.cn  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
Typical Characteristics: ADC32J44 (continued)  
Typical values are at TA= 25°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.  
120  
110  
100  
90  
74.5  
72.5  
70.5  
68.5  
66.5  
64.5  
62.5  
10 MHz  
70 MHz  
100 MHz  
170 MHz  
230 MHz  
270 MHz  
400 MHz  
10 MHz  
70 MHz  
100 MHz  
170 MHz  
230 MHz  
270 MHz  
400 MHz  
80  
70  
60  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Digital Gain (dB)  
Digital Gain (dB)  
D319  
D320  
Figure 52. Signal-to-Noise Ratio vs  
Digital Gain and Input Frequency  
Figure 53. Spurious-Free Dynamic Range vs  
Digital Gain and Input Frequency  
76  
180  
76  
210  
180  
150  
120  
90  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
74.5  
73  
150  
120  
90  
60  
30  
0
74.5  
73  
71.5  
70  
71.5  
70  
68.5  
68.5  
60  
67  
67  
30  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
Amplitude (dBFS)  
Amplitude (dBFS)  
D321  
D322  
Figure 54. Performance vs Input Amplitude (30 MHz)  
Figure 55. Performance vs Input Amplitude (170 MHz)  
73.2  
73  
98  
SNR  
SFDR  
71.7  
71.5  
71.3  
71.1  
70.9  
70.7  
70.5  
86  
SNR  
SFDR  
84  
96  
94  
92  
90  
88  
82  
80  
78  
76  
74  
72.8  
72.6  
72.4  
72.2  
0.85  
0.9  
0.95  
1
1.05  
1.1  
0.85  
0.9  
0.95  
1
1.05  
1.1  
Input Common - Mode Voltage (V)  
Input Common - Mode Voltage (V)  
D723  
D324  
Figure 56. Performance vs Input Common-Mode Voltage  
(30 MHz)  
Figure 57. Performance vs Input Common-Mode Voltage  
(170 MHz)  
Copyright © 2014–2015, Texas Instruments Incorporated  
27  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
www.ti.com.cn  
Typical Characteristics: ADC32J44 (continued)  
Typical values are at TA= 25°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.  
90  
88  
86  
84  
82  
80  
72  
71.6  
71.2  
70.8  
70.4  
70  
AVDD = 1.7 V  
AVDD = 1.75 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.7 V  
AVDD = 1.75 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D325  
D326  
Figure 58. Spurious-Free Dynamic Range vs  
AVDD Supply and Temperature  
Figure 59. Signal-to-Noise Ratio vs  
AVDD Supply and Temperature  
71.6  
71.4  
71.2  
71  
89  
88  
87  
86  
85  
84  
83  
DVDD = 1.7 V  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
DVDD = 1.7 V  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
70.8  
70.6  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D327  
D328  
Figure 60. Spurious-Free Dynamic Range vs  
DVDD Supply and Temperature  
Figure 61. Signal-to-Noise Ratio vs  
DVDD Supply and Temperature  
84  
80  
76  
72  
68  
64  
110  
100  
90  
90  
140  
120  
100  
80  
SNR  
SFDR  
SNR  
SFDR  
85  
80  
75  
70  
65  
60  
55  
60  
80  
40  
70  
20  
60  
0
0.2  
0.6  
1
1.4  
1.8  
2.2  
0.2  
0.6  
1
1.4  
1.8  
2.2  
Differential Clock Amplitude (Vpp)  
Differential Clock Amplitude (Vpp)  
D329  
D330  
Figure 62. Performance vs Clock Amplitude (40 MHz)  
Figure 63. Performance vs Clock Amplitude (150 MHz)  
28  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
www.ti.com.cn  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
Typical Characteristics: ADC32J44 (continued)  
Typical values are at TA= 25°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.  
71.5  
71.25  
71  
90  
72.9  
72.7  
72.5  
72.3  
72.1  
71.9  
100  
96  
92  
88  
84  
80  
SNR  
SFDR  
SNR  
SFDR  
87.5  
85  
70.75  
70.5  
70.25  
70  
82.5  
80  
77.5  
75  
30  
35  
40  
45  
50  
55  
60  
65  
70  
30  
35  
40  
45  
50  
55  
60  
65  
70  
Input Clock Duty Cycle (%)  
Input Clock Duty Cycle (%)  
D331  
D332  
Figure 64. Performance vs Clock Duty Cycle (40 MHz)  
Figure 65. Performance vs Clock Duty Cycle (150 MHz)  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
6
4
2
0
D333  
Output Code (LSB)  
RMS noise = 1.4 LSBs  
Figure 66. Idle Channel Histogram  
Copyright © 2014–2015, Texas Instruments Incorporated  
29  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
www.ti.com.cn  
7.16 Typical Characteristics: ADC32J43  
Typical values are at TA= 25°C, ADC sampling rate = 80 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
8
16  
24  
32  
40  
0
8
16  
24  
32  
40  
Frequency (MHz)  
Frequency (MHz)  
D501  
D502  
fS = 80 MSPS, SNR = 72.2 dBFS, fIN = 10 MHz, SFDR = 93.1 dBc  
fS = 80 MSPS, SNR = 72.6 dBFS, fIN = 10 MHz, SFDR = 91.4 dBc  
Figure 67. FFT for 10-MHz Input Signal (Dither On)  
Figure 68. FFT for 10-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
8
16  
24  
32  
40  
0
8
16  
24  
32  
40  
Frequency (MHz)  
Frequency (MHz)  
D503  
D504  
fS = 80 MSPS, SNR = 72.1 dBFS, fIN = 70 MHz, SFDR = 92 dBc  
fS = 80 MSPS, SNR = 72.5 dBFS, fIN = 70 MHz, SFDR = 91 dBc  
Figure 69. FFT for 70-MHz Input Signal (Dither On)  
Figure 70. FFT for 70-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
8
16  
24  
32  
40  
0
8
16  
24  
32  
40  
Frequency (MHz)  
Frequency (MHz)  
D505  
D506  
fS = 80 MSPS, SNR = 71 dBFS, fIN = 170 MHz, SFDR = 86 dBc  
fS = 80 MSPS, SNR = 69.7 dBFS, fIN = 10 MHz, SFDR = 85 dBc  
Figure 71. FFT for 170-MHz Input Signal (Dither On)  
Figure 72. FFT for 170-MHz Input Signal (Dither Off)  
30  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
www.ti.com.cn  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
Typical Characteristics: ADC32J43 (continued)  
Typical values are at TA= 25°C, ADC sampling rate = 80 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.  
0
0
-10  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
8
16  
24  
32  
40  
0
8
16  
24  
32  
40  
Frequency (MHz)  
Frequency (MHz)  
D507  
D508  
fS = 80 MSPS, SNR = 70.2 dBFS, fIN = 270 MHz,  
SFDR = 76.9 dBc  
fS = 80 MSPS, SNR = 70.5 dBFS, fIN = 270 MHz,  
SFDR = 76.7 dBc  
Figure 73. FFT for 270-MHz Input Signal (Dither On)  
Figure 74. FFT for 270-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
8
16  
24  
32  
40  
0
8
16  
24  
32  
40  
Frequency (MHz)  
Frequency (MHz)  
D509  
D510  
fS = 80 MSPS, SNR = 64.5 dBFS, fIN = 450 MHz,  
SFDR = 67.6 dBc  
fS = 80 MSPS, SNR = 63.8 dBFS, fIN = 450 MHz,  
SFDR = 67.4 dBc  
Figure 75. FFT for 450-MHz Input Signal (Dither On)  
Figure 76. FFT for 450-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
8
16  
24  
32  
40  
0
8
16  
24  
32  
40  
Frequency (MHz)  
Frequency (MHz)  
D511  
D512  
fS = 80 MSPS, IMD = 93 dBFS, fIN1 = 46 MHz, fIN2 = 50 MHz  
fS = 80 MSPS, IMD = 101 dBFS, fIN1 = 46 MHz, fIN2 = 50 MHz  
Figure 77. FFT for Two-Tone Input Signal  
(–7 dBFS at 46 MHz and 50 MHz)  
Figure 78. FFT for Two-Tone Input Signal  
(–36 dBFS at 46 MHz and 50 MHz)  
Copyright © 2014–2015, Texas Instruments Incorporated  
31  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
www.ti.com.cn  
Typical Characteristics: ADC32J43 (continued)  
Typical values are at TA= 25°C, ADC sampling rate = 80 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.  
0
0
-10  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
8
16  
24  
32  
40  
0
8
16  
24  
32  
40  
Frequency (MHz)  
Frequency (MHz)  
D513  
D514  
fS = 80 MSPS, IMD = 88 dBFS, fIN1 = 185 MHz, fIN2 = 190 MHz  
fS = 80 MSPS, IMD = 99 dBFS, fIN1 = 185 MHz, fIN2 = 190 MHz  
Figure 79. FFT for Two-Tone Input Signal  
(–7 dBFS at 185 MHz and 190 MHz)  
Figure 80. FFT for Two-Tone Input Signal  
(–36 dBFS at 185 MHz and 190 MHz)  
-80  
-85  
-80  
-85  
-90  
-90  
-95  
-95  
-100  
-105  
-110  
-100  
-105  
-110  
-35  
-31  
-27  
-23  
-19  
-15  
-11  
-7  
-35  
-31  
-27  
-23  
-19  
-15  
-11  
-7  
Each Tone Amplitude (dBFS)  
Each Tone Amplitude (dBFS)  
D715  
D7165  
Figure 81. Intermodulation Distortion vs Input Amplitude  
(46 MHz and 50 MHz)  
Figure 82. Intermodulation Distortion vs Input Amplitude  
(185 MHz and 190 MHz)  
100  
73.5  
Dither_EN  
Dither_DIS  
Dither_EN  
Dither_DIS  
95  
72.5  
71.5  
70.5  
69.5  
68.5  
90  
85  
80  
75  
70  
65  
0
50  
100  
150  
200  
250  
300  
350  
400  
0
50  
100  
150  
200  
250  
300  
350  
400  
Frequency (MHz)  
Frequency (MHz)  
D717  
D718  
Figure 83. Signal-to-Noise Ratio vs Input Frequency  
Figure 84. Spurious-Free Dynamic Range vs Input  
Frequency  
32  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
www.ti.com.cn  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
Typical Characteristics: ADC32J43 (continued)  
Typical values are at TA= 25°C, ADC sampling rate = 80 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.  
120  
110  
100  
90  
74.5  
72.5  
70.5  
68.5  
66.5  
64.5  
62.5  
10 MHz  
70 MHz  
100 MHz  
170 MHz  
230 MHz  
270 MHz  
400 MHz  
10 MHz  
70 MHz  
100 MHz  
170 MHz  
230 MHz  
270 MHz  
400 MHz  
80  
70  
60  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Digital Gain (dB)  
Digital Gain (dB)  
D719  
D720  
Figure 85. Signal-to-Noise Ratio vs  
Digital Gain and Input Frequency  
Figure 86. Spurious-Free Dynamic Range vs  
Digital Gain and Input Frequency  
76  
180  
76  
210  
180  
150  
120  
90  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
74.5  
73  
150  
120  
90  
60  
30  
0
74.5  
73  
71.5  
70  
71.5  
70  
68.5  
68.5  
60  
67  
67  
30  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
Amplitude (dBFS)  
Amplitude (dBFS)  
D721  
D722  
Figure 87. Performance vs Input Amplitude (30 MHz)  
Figure 88. Performance vs Input Amplitude (170 MHz)  
73  
72.8  
72.6  
72.4  
72.2  
72  
110  
SNR  
SFDR  
72.4  
72.1  
71.8  
71.5  
71.2  
70.9  
100  
SNR  
SFDR  
100  
90  
80  
70  
60  
90  
80  
70  
60  
50  
0.85  
0.9  
0.95  
1
1.05  
1.1  
0.85  
0.9  
0.95  
1
1.05  
1.1  
Input Common - Mode Voltage (V)  
Input Common - Mode Voltage (V)  
D723  
D724  
Figure 89. Performance vs Input Common-Mode Voltage  
(30 MHz)  
Figure 90. Performance vs Input Common-Mode Voltage  
(170 MHz)  
Copyright © 2014–2015, Texas Instruments Incorporated  
33  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
www.ti.com.cn  
Typical Characteristics: ADC32J43 (continued)  
Typical values are at TA= 25°C, ADC sampling rate = 80 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.  
90  
88  
86  
84  
82  
80  
72  
71.6  
71.2  
70.8  
70.4  
70  
AVDD = 1.7 V  
AVDD = 1.75 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.7 V  
AVDD = 1.75 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D725  
D726  
Figure 91. Spurious-Free Dynamic Range vs  
AVDD Supply and Temperature  
Figure 92. Signal-to-Noise Ratio vs  
AVDD Supply and Temperature  
71.8  
71.6  
71.4  
71.2  
71  
88  
87  
86  
85  
84  
83  
82  
DVDD = 1.7 V  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
DVDD = 1.7 V  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
70.8  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D727  
D728  
Figure 93. Spurious-Free Dynamic Range vs  
DVDD Supply and Temperature  
Figure 94. Signal-to-Noise Ratio vs  
DVDD Supply and Temperature  
80  
76  
72  
68  
64  
60  
110  
100  
90  
85  
140  
120  
100  
80  
SNR  
SFDR  
SNR  
SFDR  
80  
75  
70  
65  
60  
55  
50  
60  
80  
40  
70  
20  
60  
0
0.2  
0.6  
1
1.4  
1.8  
2.2  
0.2  
0.6  
1
1.4  
1.8  
2.2  
Differential Clock Amplitude (Vpp)  
Differential Clock Amplitude (Vpp)  
D729  
D730  
Figure 95. Performance vs Clock Amplitude (40 MHz)  
Figure 96. Performance vs Clock Amplitude (150 MHz)  
34  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
www.ti.com.cn  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
Typical Characteristics: ADC32J43 (continued)  
Typical values are at TA= 25°C, ADC sampling rate = 80 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.  
73  
72.75  
72.5  
104  
100  
96  
71.8  
71.3  
70.8  
70.3  
69.8  
69.3  
68.8  
90  
88  
86  
84  
82  
80  
78  
SNR  
SFDR  
SNR  
SFDR  
72.25  
72  
92  
88  
71.75  
84  
30  
35  
40  
45  
50  
55  
60  
65  
70  
30  
35  
40  
45  
50  
55  
60  
65  
70  
Input Clock Duty Cycle (%)  
Input Clock Duty Cycle (%)  
D731  
D732  
Figure 97. Performance vs Clock Duty Cycle (40 MHz)  
Figure 98. Performance vs Clock Duty Cycle (150 MHz)  
32.5  
30  
27.5  
25  
22.5  
20  
17.5  
15  
12.5  
10  
7.5  
5
2.5  
0
D733  
Output Code (LSB)  
RMS noise = 1.4 LSBs  
Figure 99. Idle Channel Histogram  
Copyright © 2014–2015, Texas Instruments Incorporated  
35  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
www.ti.com.cn  
7.17 Typical Characteristics: ADC32J42  
Typical values are at TA= 25°C, ADC sampling rate = 50 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Frequency (MHz)  
Frequency (MHz)  
D701  
D702  
fS = 50 MSPS, SNR = 72.1 dBFS, fIN = 10 MHz, SFDR = 96.2 dBc  
fS = 50 MSPS, SNR = 72.6 dBFS, fIN = 10 MHz, SFDR = 92.1 dBc  
Figure 100. FFT for 10-MHz Input Signal (Dither On)  
Figure 101. FFT for 10-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Frequency (MHz)  
Frequency (MHz)  
D703  
D704  
fS = 50 MSPS, SNR = 71.7 dBFS, fIN = 70 MHz, SFDR = 93.2 dBc  
fS = 50 MSPS, SNR = 72 dBFS, fIN = 70 MHz, SFDR = 92 dBc  
Figure 102. FFT for 70-MHz Input Signal (Dither On)  
Figure 103. FFT for 70-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Frequency (MHz)  
Frequency (MHz)  
D705  
D706  
fS = 50 MSPS, SNR = 70.4 dBFS, fIN = 170 MHz,  
SFDR = 86 dBc  
fS = 50 MSPS, SNR = 70.9 dBFS, fIN = 170 MHz,  
SFDR = 85 dBc  
Figure 104. FFT for 170-MHz Input Signal (Dither On)  
Figure 105. FFT for 170-MHz Input Signal (Dither Off)  
36  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
www.ti.com.cn  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
Typical Characteristics: ADC32J42 (continued)  
Typical values are at TA= 25°C, ADC sampling rate = 50 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.  
0
0
-10  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Frequency (MHz)  
Frequency (MHz)  
D707  
D708  
fS = 50 MSPS, SNR = 69.5 dBFS, fIN = 270 MHz,  
SFDR = 75.7 dBc  
fS = 50 MSPS, SNR = 69.5 dBFS, fIN = 270 MHz,  
SFDR = 75.7 dBc  
Figure 106. FFT for 270-MHz Input Signal (Dither On)  
Figure 107. FFT for 270-MHz Input Signal (Dither Off)  
0
0
-10  
-20  
-10  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Frequency (MHz)  
Frequency (MHz)  
D709  
D710  
fS = 50 MSPS, SNR = 65.9 dBFS, fIN = 450 MHz,  
SFDR = 67.4 dBc  
fS = 50 MSPS, SNR = 66.4 dBFS, fIN = 450 MHz, SFDR = 67 dBc  
Figure 108. FFT for 450-MHz Input Signal (Dither On)  
Figure 109. FFT for 450-MHz Input Signal (Dither Off)  
0
0
-10  
-10  
-20  
-30  
-20  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Frequency (MHz)  
Frequency (MHz)  
D711  
D712  
fS = 50 MSPS, IMD = 93 dBFS, fIN1 = 46 MHz, fIN2 = 50 MHz  
fS = 50 MSPS, IMD = 101 dBFS, fIN1 = 46 MHz, fIN2 = 50 MHz  
Figure 110. FFT for Two-Tone Input Signal  
(–7 dBFS at 46 MHz and 50 MHz)  
Figure 111. FFT for Two-Tone Input Signal  
(–36 dBFS at 46 MHz and 50 MHz)  
Copyright © 2014–2015, Texas Instruments Incorporated  
37  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
www.ti.com.cn  
Typical Characteristics: ADC32J42 (continued)  
Typical values are at TA= 25°C, ADC sampling rate = 50 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.  
0
0
-10  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Frequency (MHz)  
Frequency (MHz)  
D713  
D714  
fS = 50 MSPS, IMD = 86 dBFS, fIN1 = 185 MHz, fIN2 = 190 MHz  
fS = 50 MSPS, IMD = 99 dBFS, fIN1 = 185 MHz, fIN2 = 190 MHz  
Figure 112. FFT for Two-Tone Input Signal  
(–7 dBFS at 185 MHz and 190 MHz)  
Figure 113. FFT for Two-Tone Input Signal  
(–36 dBFS at 185 MHz and 190 MHz)  
-80  
-85  
-80  
-85  
-90  
-90  
-95  
-95  
-100  
-105  
-110  
-100  
-105  
-110  
-35  
-31  
-27  
-23  
-19  
-15  
-11  
-7  
-35  
-31  
-27  
-23  
-19  
-15  
-11  
-7  
Each Tone Amplitude (dBFS)  
Each Tone Amplitude (dBFS)  
D715  
D7165  
Figure 114. Intermodulation Distortion vs Input Amplitude  
(46 MHz and 50 MHz)  
Figure 115. Intermodulation Distortion vs Input Amplitude  
(185 MHz and 190 MHz)  
100  
73  
Dither_EN  
Dither_DIS  
Dither_EN  
Dither_DIS  
95  
72  
90  
85  
80  
75  
70  
65  
71  
70  
69  
68  
67  
66  
0
50  
100  
150  
200  
250  
300  
350  
400  
0
50  
100  
150  
200  
250  
300  
350  
400  
Frequency (MHz)  
Frequency (MHz)  
D717  
D718  
Figure 116. Signal-to-Noise Ratio vs Input Frequency  
Figure 117. Spurious-Free Dynamic Range vs  
Input Frequency  
38  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
www.ti.com.cn  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
Typical Characteristics: ADC32J42 (continued)  
Typical values are at TA= 25°C, ADC sampling rate = 50 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.  
120  
110  
100  
90  
74  
72  
70  
68  
66  
64  
62  
10 MHz  
70 MHz  
100 MHz  
170 MHz  
230 MHz  
270 MHz  
400 MHz  
10 MHz  
70 MHz  
100 MHz  
170 MHz  
230 MHz  
270 MHz  
400 MHz  
80  
70  
60  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Digital Gain (dB)  
Digital Gain (dB)  
D719  
D720  
Figure 118. Signal-to-Noise Ratio vs  
Digital Gain and Input Frequency  
Figure 119. Spurious-Free Dynamic Range vs  
Digital Gain and Input Frequency  
77  
75  
73  
71  
69  
67  
65  
175  
76  
175  
150  
125  
100  
75  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
150  
125  
100  
75  
74.5  
73  
71.5  
70  
50  
68.5  
50  
25  
67  
25  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
Amplitude (dBFS)  
Amplitude (dBFS)  
D721  
D722  
Figure 120. Performance vs Input Amplitude (30 MHz)  
Figure 121. Performance vs Input Amplitude (170 MHz)  
71.5  
71.3  
71.1  
70.9  
70.7  
70.5  
90  
SNR  
SFDR  
72.8  
72.6  
72.4  
72.2  
72  
100  
SNR  
SFDR  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
71.8  
0.85  
0.9  
0.95  
1
1.05  
1.1  
0.85  
0.9  
0.95  
1
1.05  
1.1  
Input Common - Mode Voltage (V)  
Input Common - Mode Voltage (V)  
D723  
D724  
Figure 122. Performance vs Input Common-Mode Voltage  
(30 MHz)  
Figure 123. Performance vs Input Common-Mode Voltage  
(170 MHz)  
Copyright © 2014–2015, Texas Instruments Incorporated  
39  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
www.ti.com.cn  
Typical Characteristics: ADC32J42 (continued)  
Typical values are at TA= 25°C, ADC sampling rate = 50 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.  
100  
98  
96  
94  
92  
90  
73.4  
AVDD = 1.7 V  
AVDD = 1.75 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.7 V  
AVDD = 1.75 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
73  
72.6  
72.2  
71.8  
71.4  
71  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D725  
D726  
Figure 124. Spurious-Free Dynamic Range vs  
AVDD Supply and Temperature  
Figure 125. Signal-to-Noise Ratio vs  
AVDD Supply and Temperature  
100  
98  
96  
94  
92  
90  
73.4  
73  
DVDD = 1.7 V  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
DVDD = 1.7 V  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
72.6  
72.2  
71.8  
71.4  
71  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D727  
D728  
Figure 126. Spurious-Free Dynamic Range vs  
DVDD Supply and Temperature  
Figure 127. Signal-to-Noise Ratio vs  
DVDD Supply and Temperature  
80  
110  
100  
90  
85  
140  
120  
100  
80  
SNR  
SFDR  
SNR  
SFDR  
80  
75  
70  
65  
60  
55  
50  
76  
72  
68  
64  
60  
60  
80  
40  
70  
20  
60  
0
0.2  
0.6  
1
1.4  
1.8  
2.2  
0.2  
0.6  
1
1.4  
1.8  
2.2  
Differential Clock Amplitude (Vpp)  
Differential Clock Amplitude (Vpp)  
D729  
D730  
Figure 128. Performance vs Clock Amplitude (40 MHz)  
Figure 129. Performance vs Clock Amplitude (150 MHz)  
40  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
www.ti.com.cn  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
Typical Characteristics: ADC32J42 (continued)  
Typical values are at TA= 25°C, ADC sampling rate = 50 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.  
71.7  
71.3  
70.9  
70.5  
70.1  
69.7  
69.3  
92  
90  
88  
86  
84  
82  
80  
72.5  
72.3  
72.1  
71.9  
71.7  
71.5  
71.3  
100  
98  
96  
94  
92  
90  
88  
SNR  
SFDR  
SNR  
SFDR  
30  
35  
40  
45  
50  
55  
60  
65  
70  
30  
35  
40  
45  
50  
55  
60  
65  
70  
Input Clock Duty Cycle (%)  
Input Clock Duty Cycle (%)  
D731  
D732  
Figure 130. Performance vs Clock Duty Cycle (40 MHz)  
Figure 131. Performance vs Clock Duty Cycle (150 MHz)  
33  
30  
27  
24  
21  
18  
15  
12  
9
6
3
0
D733  
Output Code (LSB)  
RMS noise = 1.3 LSBs  
Figure 132. Idle Channel Histogram  
Copyright © 2014–2015, Texas Instruments Incorporated  
41  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
www.ti.com.cn  
7.18 Typical Characteristics: Common Plots  
Typical values are at TA= 25°C, ADC sampling rate = 160 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS  
differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.  
0
±20  
±35  
±40  
±45  
±50  
±55  
±60  
±65  
Input Frequency = 30MHz  
50-mVPP Signal Superimposed on VCM  
±40  
±60  
±80  
±100  
±120  
0
30  
60  
90  
120 150 180 210 240 270 300  
0
16  
32  
48  
64  
80  
Common-Mode Test Signal Frequency (MHz))  
C041  
Frequency (MHz)  
C040  
fS = 160 MSPS, fCM = 10 MHz, 50 mVPP, fIN = 30 MHz, Amplitude  
(fIN + fCM ) = –98 dBFS, Amplitude (fIN – fCM ) = –91 dBFS  
Figure 134. CMRR vs Test Signal Frequency  
Figure 133. CMRR FFT  
0
±25  
±30  
±35  
±40  
±45  
±50  
±55  
±60  
Input Frequency = 30MHz  
50-mVPP Signal Superimposed on AVDD  
±20  
±40  
±60  
±80  
±100  
±120  
0
30  
60  
90  
120 150 180 210 240 270 300  
0
16  
32  
48  
64  
80  
Test Signal Frequency On Supply (MHz)  
C043  
Frequency (MHz)  
C042  
fS = 160 MSPS, fPSRR = 5 MHz, 50 mVPP, fIN = 30 MHz, Amplitude  
(fIN + fPSRR ) = –65 dBFS, Amplitude (fIN – fPSRR ) = –67 dBFS  
Figure 136. PSRR vs Test Signal Frequency  
Figure 135. PSRR FFT for AVDD Supply  
500  
400  
350  
300  
250  
200  
150  
100  
50  
Analog Power  
Digital Power  
Analog Power  
Digital Power  
Total Power  
450  
Total Power  
400  
350  
300  
250  
200  
150  
100  
50  
0
0
0
20  
40  
60  
80  
100  
120  
140  
160  
10  
20  
30  
40  
50  
60  
70  
80  
Sampling Speed (MSPS)  
Sampling Speed (MSPS)  
D005  
D010  
Figure 137. Power vs Sampling Frequency 20X Mode  
Figure 138. Power vs Sampling Frequency 40X Mode  
42  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
www.ti.com.cn  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
7.19 Typical Characteristics: Contour Plots  
Typical values are at TA= 25°C, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS differential input, 2-VPP full-scale, and  
32k-point FFT, unless otherwise noted.  
160  
140  
120  
100  
80  
160  
140  
120  
100  
80  
85  
76  
84  
80  
85  
80  
75  
90  
88  
92  
72  
65  
70  
95  
92  
92  
88  
90  
92  
75  
70  
84 80  
76  
80  
85  
72  
95  
65  
65  
92  
88  
60  
60  
90  
65  
92  
80  
84  
72  
75  
80  
76  
85  
70  
95  
50  
100  
150  
200  
250  
300  
350  
400  
450  
95  
50  
100  
150  
200  
250  
300  
350  
400  
450  
Input Frequency, MHz  
Input Frequency, MHz  
60  
65  
70  
75  
80  
85  
90  
70  
75  
80  
85  
90  
Figure 139. Spurious-Free Dynamic Range (SFDR) for  
0-dB Gain  
Figure 140. Spurious-Free Dynamic Range (SFDR) for  
6-dB Gain  
160  
140  
120  
100  
80  
160  
140  
120  
100  
80  
64.2  
64  
71.5  
72  
67  
65.8  
71  
63.4  
65  
70.5  
66.6  
68  
66.2  
65  
70  
69  
67  
66  
72.5  
64.2  
68  
67  
65  
71.5  
71  
70.5  
65.8  
70  
66.2  
65.8  
66.6  
67  
69  
72  
66  
60  
60  
72  
71.5  
70.5  
70  
66.6  
66.2  
67  
68  
71  
69  
65  
50  
100  
150  
200  
250  
300  
350  
400  
450  
50  
100  
150  
200  
250  
300  
350  
400  
450  
Input Frequency, MHz  
Input Frequency, MHz  
64  
65  
66  
67  
68  
69  
70  
71  
72  
62.5  
63  
63.5  
64  
64.5  
65  
65.5  
66  
66.5  
67  
Figure 141. Signal-to-Noise Ratio (SNR) for  
0-dB Gain  
Figure 142. Signal-to-Noise Ratio (SNR) for  
6-dB Gain  
Copyright © 2014–2015, Texas Instruments Incorporated  
43  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
www.ti.com.cn  
8 Parameter Measurement Information  
8.1 Timing Diagrams  
N + Latency + 2  
N + 4  
N + 3  
N + Latency + 1  
N + Latency  
N + 2  
Sample  
N
N + 1  
tA  
CLKP  
CLKM  
Input  
Clock  
ADC Latency(1)  
tD  
DxP, DxM(2)  
N - Latency-1  
N + Latency  
N - Latency+1 N - Latency+2 N - Latency+3  
N - 1  
N
N + 1  
N + 1  
(1) Overall latency = ADC latency + tD.  
(2) x = A for channel A and B for channel B.  
Figure 143. ADC Latency  
CLKINP  
CLKINM  
Input  
Clock  
tSU_SYNC~  
tH_SYNC~  
SYNC~  
tD  
SYNC~ Asserted Latency  
CGS Phase  
DxP, DxM(1)  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
K28.5  
(1) x = A for channel A and B for channel B.  
Figure 144. SYNC~ Latency in CGS Phase  
44  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
www.ti.com.cn  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
Timing Diagrams (continued)  
CLKINP  
Input  
Clock  
CLKINM  
tSU_SYNC~  
tH_SYNC~  
SYNC~  
tD  
SYNC~ Deasserted Latency  
ILA Sequence  
DxP, DxM(1)  
K28.5  
K28.5  
K28.5  
K28.5  
K28.5  
K28.5  
K28.5  
K28.5  
K28.0  
K28.0  
(1) x = A for channel A and B for channel B.  
Figure 145. SYNC~ Latency in ILAS Phase  
Sample N  
Sample N  
tSU_SYSREF  
tSU_SYNC~  
tH_SYSREF  
tH_SYNC~  
CLKIN  
CLKIN  
SYSREF  
SYNC~  
Figure 146. SYSREF Timing (Subclass 1)  
Figure 147. SYNC~ Timing (Subclass 2)  
Copyright © 2014–2015, Texas Instruments Incorporated  
45  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The ADC32J4x are a high-linearity, ultra-low power, dual-channel, 14-bit, 50-MSPS to 160-MSPS, analog-to-  
digital converter (ADC) family. The devices are designed specifically to support demanding, high input frequency  
signals with large dynamic range requirements. A clock input divider allows more flexibility for system clock  
architecture design ans the SYSREF input enables complete system synchronization. The ADC32J4x family  
supports JESD204B interface in order to reduce the number of interface lines, thus allowing for high system  
integration density. The JESD204B interface is a serial interface, where the data of each ADC are serialized and  
output over only one differential pair. An internal phase-locked loop (PLL) multiplies the incoming ADC sampling  
clock by 20 to derive the bit clock, which is used to serialize the 14-bit data from each channel. The ADC32J4x  
devices support subclass 0, 1, and 2 with interface data rates up to 3.2 Gbps.  
9.2 Functional Block Diagram  
DAP,  
DAM  
Digital Encoder  
INAP,  
INAM  
14-Bit  
ADC  
and  
JESD204B  
OVRA  
PLL  
CLKP,  
CLKM  
Divide by  
1,2,4  
SYNCP,  
SYNCM  
SYSREFP,  
SYSREFM  
DBP,  
DBM  
Digital Encoder  
and  
JESD204B  
INBP,  
INBM  
14-Bit  
ADC  
OVRD  
Common  
Mode  
VCM  
Configuration Registers  
9.3 Feature Description  
9.3.1 Analog Inputs  
The ADC32J4x analog signal inputs are designed to be driven differentially. Each input pin (INP, INM) must  
swing symmetrically between (VCM + 0.5 V) and (VCM – 0.5 V), resulting in a 2-VPP (default) differential input  
swing. The input sampling circuit has a 3-dB bandwidth that extends up to 450 MHz (50-Ω source driving a 50-Ω  
termination between INP and INM).  
46  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
www.ti.com.cn  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
Feature Description (continued)  
9.3.2 Clock Input  
The device clock inputs can be driven differentially (sine, LVPECL, or LVDS) or single-ended (LVCMOS), with  
little or no difference in performance between them. The common-mode voltage of the clock inputs is set to 1.4 V  
using internal 5-kΩ resistors. The self-bias clock inputs of the ADC32J4x can be driven by the transformer-  
coupled, sine-wave clock source or by the ac-coupled, LVPECL and LVDS clock sources, as shown in  
Figure 148, Figure 149, and Figure 150. See Figure 151 for details regarding the internal clock buffer.  
0.1 mF  
0.1 mF  
Zo  
CLKP  
CLKP  
Differential  
Sine-Wave  
Clock Input  
RT  
Typical LVDS  
Clock Input  
100 W  
0.1 mF  
CLKM  
Device  
0.1 mF  
Zo  
CLKM  
NOTE: RT = termination resistor, if necessary.  
Device  
Figure 148. Differential Sine-Wave Clock Driving  
Circuit  
Figure 149. LVDS Clock Driving Circuit  
0.1 mF  
Zo  
CLKP  
150 W  
Typical LVPECL  
Clock Input  
100 W  
0.1 mF  
Zo  
CLKM  
Device  
150 W  
Figure 150. LVPECL Clock Driving Circuit  
Clock Buffer  
LPKG  
2 nH  
20 W  
CLKP  
CBOND  
1 pF  
CEQ  
CEQ  
5 kW  
RESR  
100 W  
1.4 V  
LPKG  
2 nH  
5 kW  
20 W  
CLKM  
CBOND  
1 pF  
RESR  
100 W  
NOTE: CEQ is 1 pF to 3 pF and is the equivalent input capacitance of the clock buffer.  
Figure 151. Internal Clock Buffer  
Copyright © 2014–2015, Texas Instruments Incorporated  
47  
 
 
 
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
www.ti.com.cn  
A single-ended CMOS clock can be ac-coupled to the CLKP input, with CLKM connected to ground with a 0.1-μF  
capacitor, as shown in Figure 152. However, the clock inputs must be driven differentially for best performance,  
thereby reducing susceptibility to common-mode noise. For high input frequency sampling, TI recommends using  
a clock source with very low jitter. Band-pass filtering of the clock source can help reduce the effects of jitter.  
There is no change in performance with a non-50% duty cycle clock input.  
0.1 mF  
CMOS  
Clock Input  
CLKP  
0.1 mF  
CLKM  
Device  
Figure 152. Single-Ended Clock Driving Circuit  
9.3.2.1 SNR and Clock Jitter  
The signal-to-noise ratio of the ADC is limited by three different factors: quantization noise, thermal noise, and  
jitter noise, as shown in Equation 1. Quantization noise is typically not noticeable in pipeline converters and is  
86 dB for a 14-bit ADC. Thermal noise limits SNR at low input frequencies and the clock jitter sets SNR for  
higher input frequencies.  
2
2
2
SNRQuantizatoin  
SNR  
SNR  
Jitter  
Noise  
§
·
¸
Thermal Noise  
§
·
¸
§
·
¸
¨
20  
20  
20  
¨
¨
SNRADC[dBc]   20˜log 10  
 10  
 10  
¨
©
¸
¹
¨
©
¸
¨
©
¸
¹
¹
(1)  
(2)  
The SNR limitation resulting from sample clock jitter can be calculated with Equation 2:  
SNRJitter[dBc]   20˜log(2S ˜ fin ˜TJitter )  
The total clock jitter (TJitter) has two components: the internal aperture jitter (200 fs for the device), is set by the  
noise of the clock input buffer, and the external clock. TJitter can be calculated with Equation 3:  
2
TJitter   (TJitter,Ext.Clock _ Input )2 (TAperture_ ADC  
)
(3)  
External clock jitter can be minimized by using high-quality clock sources and jitter cleaners as well as band-pass  
filters at the clock input, although a faster clock slew rate improves ADC aperture jitter. The devices have a  
thermal noise of 73.5 dBFS and an internal aperture jitter of 200 fs. The SNR, depending on the amount of  
external jitter for different input frequencies, is shown in Figure 153.  
73  
72  
71  
70  
69  
68  
67  
66  
65  
Ext Clock Jitter  
35 fs  
50 fs  
100 fs  
150 fs  
200 fs  
10  
100  
1000  
Input Frequency (MHz)  
D036  
Figure 153. SNR vs Frequency and Jitter  
48  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
 
 
 
 
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
www.ti.com.cn  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
9.3.2.2 Input Clock Divider  
The devices are equipped with an internal divider on the clock input. The divider allows operation with a faster  
input clock, thus simplifying the system clock distribution design. The clock divider can be bypassed (divide-by-1)  
for operation with a 160-MHz clock; the divide-by-2 option supports a maximum input clock of 320 MHz and the  
divide-by-4 option supports a maximum input clock frequency of 640 MHz.  
9.3.3 Power-Down Control  
The power-down functions of the ADC32J4x can be controlled either through the parallel control pin (PDN) or  
through an SPI register setting (see register 15h). The PDN pin can also be configured via SPI to a global power-  
down or standby functionality, as shown in Table 2.  
Table 2. Power-Down Modes  
FUNCTION  
Global power-down  
Standby  
POWER CONSUMPTION (mW)  
WAKE-UP TIME (µs)  
5
85  
35  
118  
9.3.4 Internal Dither Algorithm  
The ADC32J4x uses an internal dither algorithm to achieve high SFDR and a clean spectrum. However, the  
dither algorithm marginally degrades SNR, creating a trade-off between SNR and SFDR. If desired, the dither  
algorithm can be turned off by using the DIS DITH CHx registers bits. Figure 154 and Figure 155 show the effect  
of using dither algorithms.  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
16  
32  
48  
64  
80  
0
16  
32  
48  
64  
80  
Frequency (MHz)  
Frequency (MHz)  
D103  
D104  
fS = 160 MSPS, SNR = 72 dBFS, fIN = 70 MHz, SFDR = 95 dBc  
fS = 160 MSPS, SNR = 72.5 dBFS, fIN = 70 MHz,  
SFDR = 85 dBc  
Figure 155. FFT with Dither Off  
Figure 154. FFT with Dither On  
Copyright © 2014–2015, Texas Instruments Incorporated  
49  
 
 
 
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
www.ti.com.cn  
9.3.5 JESD204B Interface  
The ADC32J4x support device subclass 0, 1, and 2 with a maximum output data rate of 3.2 Gbps for each serial  
transmitter, as shown in Figure 156. The data of each ADC are serialized by 20X using an internal PLL and then  
transmitted out on one differential pair each. An external SYSREF (subclass 1) or SYNC~ (subclass 2) signal is  
used to align all internal clock phases and the local multiframe clock to a specific sampling clock edge. This  
process allows synchronization of multiple devices in a system and minimizes timing and alignment uncertainty.  
SYSREF SYNC~  
JESD  
204B  
INA  
INB  
DA  
DB  
JESD  
204B  
Sample  
Clock  
Figure 156. JESD204B Interface  
The JESD204B transmitter block consists of the transport layer, the data scrambler, and the link layer, as shown  
in Figure 157. The transport layer maps the ADC output data into the selected JESD204B frame data format and  
determines if the ADC output data or test patterns are transmitted. The link layer performs the 8b or 10b data  
encoding and the synchronization and initial lane alignment using the SYNC~ input signal. Optionally, data from  
the transport layer can be scrambled.  
JESD204B Block  
Transport Layer  
Link Layer  
Frame Data  
Mapping  
8b, 10b  
Encoding  
ADC  
Scrambler  
1+x14+x15  
DA  
DB  
Comma Characters  
Initial Lane Alignment  
Test Patterns  
SYNC  
Figure 157. JESD204B Block  
50  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
 
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
www.ti.com.cn  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
9.3.5.1 JESD204B Initial Lane Alignment (ILA)  
The initial lane alignment process is started by the receiving device by asserting the SYNC~ signal. When a logic  
high is detected on the SYNC~ input pins, the ADC32J4x starts transmitting comma (K28.5) characters to  
establish code group synchronization. When synchronization is complete, the receiving device de-asserts the  
SYNC~ signal and the ADC32J4x starts the initial lane alignment sequence with the next local multiframe clock  
boundary. The ADC32J4x transmits four multiframes, each containing K frames (K is SPI programmable). Each  
multiframe contains the frame start and end symbols; the second multiframe also contains the JESD204 link  
configuration data.  
9.3.5.2 JESD204B Test Patterns  
There are three different test patterns available in the transport layer of the JESD204B interface. The ADC32J4x  
supports a clock output, an encoded, and a PRBS (215 – 1) pattern. These patterns can be enabled via SPI  
register writes and are located in address 26h (bits 7-6).  
9.3.5.3 JESD204B Frame Assembly  
The JESD204B standard defines the following parameters:  
L is the number of lanes per link,  
M is the number of converters per device,  
F is the number of octets per frame clock period, and  
S is the number of samples per frame.  
Table 3 lists the available JESD204B format and valid range for the ADC32J4x. The ranges are limited by the  
SERDES line rate and the maximum ADC sample frequency.  
Table 3. LMFS Values and Interface Rate  
MINIMUM ADC  
SAMPLING RATE  
(MSPS)  
MAXIMUM ADC  
SAMPLING RATE  
(Msps)  
MAXIMUM  
fSERDES (Mbps)  
MAXIMUM  
fSERDES (GSPS)  
L
2
1
M
2
F
2
4
S
1
1
MODE  
20X (default)  
40X  
15  
10  
300  
400  
160  
80  
3.2  
3.2  
2
The detailed frame assembly for quad-channel mode is shown in Figure 158. The frame assembly configuration  
can be changed from 20X (default) to 40X by setting the registers listed in Table 4.  
LMFS = 2221  
LMFS = 1241  
Lane DA  
Lane DB  
Figure 158. JESD Frame Assembly  
Table 4. Configuring 40X Mode  
ADDRESS  
2Bh  
DATA  
01h  
30h  
11h  
Copyright © 2014–2015, Texas Instruments Incorporated  
51  
 
 
 
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
www.ti.com.cn  
9.3.5.4 Digital Outputs  
The ADC32J4x JESD204B transmitter uses differential CML output drivers. The CML output current is  
programmable from 5 mA to 20 mA using SPI register settings. The output driver expects to drive a differential  
100-Ω load impedance and the termination resistors must be placed as close to the receiver inputs as possible to  
avoid unwanted reflections and signal distortion. Because the JESD204B employs 8b and 10b encoding, the  
output data stream is dc-balanced and ac-coupling can be used to avoid the need to match up common-mode  
voltages between the transmitter and receivers. Connect the termination resistors to the termination voltage, as  
shown in Figure 159.  
Vterm  
Rt = ZO  
Rt = ZO  
Transmission Line, Zo  
0.1 PF  
DAP, DBP  
DAM, DBM  
Receiver  
0.1 PF  
Figure 159. CML Output Connections  
Figure 160 shows the data eye measurements of the device JESD204B transmitter against the JESD204B  
transmitter mask at 3.125 Gbps (156.25 MSPS, 20X mode), respectively.  
300  
150  
0
-150  
-300  
-200  
-150  
-100  
-50  
0
50  
100  
150  
200  
Time (ps)  
Figure 160. Eye Diagram: 3.125 Gbps  
52  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
 
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
www.ti.com.cn  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
9.4 Device Functional Modes  
9.4.1 Digital Gain  
The input full-scale amplitude can be selected between 1 VPP to 2 VPP (default is 2 VPP) by choosing the  
appropriate digital gain setting via an SPI register write. Digital gain provides an option to trade-off SNR for  
SFDR performance. A larger input full-scale increases SNR performance (2 VPP is recommended for maximum  
SNR) and a reduced input swing typically results in better SFDR performance. Table 5 lists the available digital  
gain settings.  
Table 5. Digital Gain versus Full-Scale Amplitude  
DIGITAL GAIN (dB)  
MAX INPUT VOLTAGE (VPP)  
0
0.5  
1
2
1.89  
1.78  
1.68  
1.59  
1.50  
1.42  
1.34  
1.26  
1.19  
1.12  
1.06  
1.00  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
9.4.2 Overrange Indication  
The ADC32J4x provides two different overrange indications. The normal OVR (default) is triggered if the final 14-  
bit data output exceeds the maximum code value. The fast OVR is triggered if the input voltage exceeds the  
programmable overrange threshold and is presented after just nine clock cycles, thus enabling a quicker reaction  
to an overrange event. By default, the normal overrange indication is output on the OVRA, OVRB pins. The fast  
OVR indication can be presented on the overrange pins instead by using the SPI register map.  
Copyright © 2014–2015, Texas Instruments Incorporated  
53  
 
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
www.ti.com.cn  
9.5 Programming  
The ADC32J4x can be configured using a serial programming interface, as described in this section.  
9.5.1 Serial Interface  
The device has a set of internal registers that can be accessed by the serial interface formed by the SEN (serial  
interface enable), SCLK (serial interface clock), SDATA (serial interface data), and SDOUT (serial interface data  
output) pins. Serially shifting bits into the device is enabled when SEN is low. Serial data SDATA are latched at  
every SCLK rising edge when SEN is active (low). Serial data are loaded into the register at every 24th SCLK  
rising edge when SEN is low. When the word length exceeds a multiple of 24 bits, the excess bits are ignored.  
Data can be loaded in multiples of 24-bit words within a single active SEN pulse. The interface can function with  
SCLK frequencies from 20 MHz down to very low speeds (of a few hertz) and also with a non-50% SCLK duty  
cycle.  
9.5.1.1 Register Initialization  
After power-up, the internal registers must be initialized to their default values through a hardware reset by  
applying a high pulse on the RESET pin (of durations greater than 10 ns); see Figure 161. If required, the serial  
interface registers can be cleared during operation either:  
1. Through a hardware reset, or  
2. By applying a software reset. When using the serial interface, set the RESET bit (D0 in register address 06h)  
high. This setting initializes the internal registers to the default values and then self-resets the RESET bit low.  
In this case, the RESET pin is kept low.  
9.5.1.1.1 Serial Register Write  
The device internal register can be programmed with these steps:  
1. Drive the SEN pin low,  
2. Set the R/W bit to 0 (bit A15 of the 16-bit address),  
3. Set bit A14 in the address field to 1,  
4. Initiate a serial interface cycle by specifying the address of the register (A13 to A0) whose content must be  
written, and  
5. Write the 8-bit data that are latched in on the SCLK rising edge.  
54  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
www.ti.com.cn  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
Programming (continued)  
Figure 161 and Table 6 show the timing requirements for the serial register write operation.  
Register Address [13:0]  
A13 A12 A11 A1  
Register Data [7:0]  
SDATA  
R/W  
= 0  
1
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
tDH  
D0  
tSCLK  
tDSU  
SCLK  
SEN  
tSLOADS  
tSLOADH  
RESET  
Figure 161. Serial Register Write Timing Diagram  
Table 6. Serial Interface Timing(1)  
MIN  
> dc  
25  
TYP  
MAX  
UNIT  
MHz  
ns  
fSCLK  
tSLOADS  
tSLOADH  
tDSU  
SCLK frequency (equal to 1 / tSCLK  
SEN to SCLK setup time  
SCLK to SEN hold time  
SDIO setup time  
)
20  
25  
ns  
25  
ns  
tDH  
SDIO hold time  
25  
ns  
(1) Typical values are at 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, and AVDD = DVDD = 1.8 V, unless otherwise  
noted.  
Copyright © 2014–2015, Texas Instruments Incorporated  
55  
 
 
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
www.ti.com.cn  
9.5.1.1.2 Serial Register Readout  
The device includes a mode where the contents of the internal registers can be read back using the SDOUT pin.  
This readback mode can be useful as a diagnostic check to verify the serial interface communication between  
the external controller and the ADC. To read the contents of serial registers, follow this procedure:  
1. Drive the SEN pin low.  
2. Set the R/W bit (A15) to 1. This setting disables any further writes to the registers.  
3. Set bit A14 in the address field to 1.  
4. Initiate a serial interface cycle specifying the address of the register (A13 to A0) whose content must be read.  
5. The device outputs the contents (D7 to D0) of the selected register on the SDOUT pin.  
6. The external controller can latch the contents at the SCLK rising edge.  
7. To enable register writes, reset the R/W register bit to 0.  
When READOUT is disabled, the SDOUT pin is in a high-impedance mode. If serial readout is not used, the  
SDOUT pin must float. Figure 162 shows a timing diagram of the serial register read operation. Data appear on  
the SDOUT pin at the SCLK falling edge with an approximate delay (tSD_DELAY) of 20 ns, as shown in Figure 163.  
Register Address [13:0]  
A13 A12 A11 A1  
Register Data: 'RQ¶Wꢀ&DUH  
D5 D4 D3 D2  
SDATA  
R/W  
= 1  
A0  
D7  
D7  
D6  
D6  
D1  
D1  
D0  
D0  
1
Register Read Data [7:0]  
SDOUT  
SCLK  
D5  
D4  
D3  
D2  
SEN  
Figure 162. Serial Register Read Timing Diagram  
SCLK  
tSD_DELAY  
SDOUT  
Figure 163. SDOUT Timing Diagram  
56  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
 
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
www.ti.com.cn  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
9.5.2 Register Initialization  
After power-up, the internal registers must be initialized to their default values through a hardware reset by  
applying a high pulse on the RESET pin, as shown in Figure 164 and Table 7.  
Power  
Supplies  
t1  
RESET  
t2  
t3  
SEN  
Figure 164. Initialization of Serial Registers after Power-Up  
Table 7. Power-Up Timing  
MIN  
1
TYP  
MAX  
UNIT  
ms  
ns  
t1  
t2  
t3  
Power-on delay from power-up to an active high RESET pulse  
Reset pulse duration: active high RESET pulse duration  
Register write delay from RESET disable to SEN active  
10  
1000  
100  
ns  
If required, the serial interface registers can be cleared during operation either:  
1. Through hardware reset, or  
2. By applying a software reset. When using the serial interface, set the RESET bit (D0 in register address 06h)  
high. This setting initializes the internal registers to the default values and then self-resets the RESET bit low.  
In this case, the RESET pin is kept low.  
9.5.3 Start-Up Sequence  
After power-up, the sequence described in Table 8 can be used to set up the ADC32J4x for basic operation.  
Table 8. Start-Up Settings  
STEP  
DESCRIPTION  
REGISTER ADDRESS AND DATA  
Provide all supply voltages. There is no required power-supply sequence for  
AVDD and DVDD.  
1
2
3
4
Pulse a hardware reset (low to high to low) on pin 24  
Optionally, configure LMFS of the JESD204B interface to LMFS = 1241  
(default is LMFS = 2221)  
Address 2Bh, data 01h  
Address 30h, data 11h  
Pulse SYNC~ from high to low to transmit data from K28.5 SYNC~ mode  
Copyright © 2014–2015, Texas Instruments Incorporated  
57  
 
 
 
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
www.ti.com.cn  
9.6 Register Maps  
Table 9. Register Map Summary  
REGISTER  
ADDRESS  
REGISTER DATA  
A[13:0] (Hex)  
7
0
0
0
0
0
0
6
0
0
0
0
0
0
5
4
3
2
1
0
0
01  
03  
04  
06  
07  
08  
DIS DITHER CHA  
DIS DITHER CHB  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CHA GAINEN  
CHB GAINEN  
TEST PATTERN EN  
EN FOVR  
0
0
0
RESET  
SPECIAL MODE1 CHA  
SPECIAL MODE1 CHB  
0
0
ALIGN TEST  
PATTERN  
09  
0
0
0
0
0
0
0
0
0
0
DATA FORMAT  
0A  
0B  
0C  
0D  
0E  
0F  
13  
15  
27  
CHA TEST PATTERN  
CHB TEST PATTERN  
CHB DIGITAL GAIN  
0
0
0
0
0
0
0
0
0
0
0
0
CHA DIGITAL GAIN  
CUSTOM PATTERN[13:6]  
CUSTOM PATTERN[5:0]  
0
0
0
0
0
0
0
LOW SPEED MODE  
0
0
0
CHB PDN  
0
0
0
0
0
STANDBY  
0
0
CHA PDN  
GLOBAL PDN  
0
CONFIG PDN PIN  
0
CLK DIV  
SERDES TEST PATTERN  
TRP LAYER  
TESTMODE EN  
FLIP ADC  
DATA  
LANE  
ALIGN  
TXMIT LINKDATA  
DIS  
2A  
IDLE SYNC  
FRAME ALIGN  
2B  
2F  
30  
31  
34  
3A  
3B  
0
0
0
0
0
0
0
0
0
0
0
CTRL K  
0
CTRL F  
0
SCRAMBLE EN  
OCTETS PER FRAME  
0
0
0
0
FRAMES PER MULTIFRAME  
0
SUBCLASSV  
SYNC REQ EN  
0
0
0
0
0
SYNC REG  
0
OUTPUT CURRENT SEL  
PULSE DET MODES  
LINK LAYER TESTMODE SEL[2:0]  
LINK LAYER RPAT  
FORCE LMFC  
COUNT  
3C  
LMFC COUNT INIT  
RELEASE ILANE SEQ  
SPECIAL  
MODE2 CHA  
422  
434  
522  
534  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DIS DITH CHA  
0
DIS DITH CHA  
0
0
SPECIAL  
MODE2 CHB  
DIS DITH CHB  
DIS DITH CHB  
0
58  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
www.ti.com.cn  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
9.6.1 Summary of Special Mode Registers  
Table 10 lists the location, value, and functions of special mode registers in the device.  
Table 10. Special Modes Summary  
MODE  
LOCATION  
VALUE AND FUNCTION  
DIS DITH CHA  
01h (bits 5-4), 434h (bits 5, 3)  
Creates a noise floor cleaner and improves SFDR;  
see the Internal Dither Algorithm section.  
0000 = Dither disabled  
Dither mode  
DIS DITH CHB  
01h (bits 3-2), 534h (bits 5, 3)  
07h (bits 4-2)  
1111 = Dither enabled  
SPECIAL MODE 1 CHA  
SPECIAL MODE 1 CHB  
Use for improved HD3.  
000 = Default after reset  
010 = Use for frequency < 120 MHz  
111 = Use for frequency > 120 MHz  
Special mode 1  
Special mode 2  
08h (bits 4-2)  
SPECIAL MODE 2 CHA  
SPECIAL MODE 2 CHB  
422h (bits 1-0)  
522h (bits 1-0)  
Helps improve HD2.  
00 = Default after reset  
11 = Improves HD2  
9.6.2 Serial Register Descriptions  
9.6.2.1 Register 01h (address = 01h)  
Figure 165. Register 01h  
7
0
6
0
5
4
3
2
1
0
0
0
DIS DITHER CHA  
R/W-0h  
DIS DITHER CHB  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 11. Register 01h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
0
W
0h  
Must write 0.  
These bits enable or disable the on-chip dither. Control these  
bits with bits 5 and 3 of register 434h.  
00 = Dither enabled  
5-4  
DIS DITHER CHA  
R/W  
0h  
11 = Dither disabled. Improves SNR by 0.4 dB for input  
frequencies up to 170 MHz.  
These bits enable or disable the on-chip dither. Control these  
bits with bits 5 and 3 of register 534h.  
00 = Dither enabled  
11 = Dither disabled. Improves SNR by 0.4 dB for input  
frequencies up to 170 MHz.  
3-2  
1-0  
DIS DITHER CHB  
0
R/W  
W
0h  
0h  
Must write 0.  
Copyright © 2014–2015, Texas Instruments Incorporated  
59  
 
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
www.ti.com.cn  
9.6.2.2 Register 03h (address = 03h)  
Figure 166. Register 03h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
CHA GAINEN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 12. Register 03h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
0
W
0h  
Must write 0.  
Digital gain enable bit for channel A.  
0 = Digital gain disabled  
1 = Digital gain enabled  
1
0
CHA GAINEN  
0
R/W  
W
0h  
0h  
Must write 0.  
9.6.2.3 Register 04h (address = 04h)  
Figure 167. Register 04h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
CHB GAINEN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 13. Register 04h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
0
W
0h  
Must write 0.  
Digital gain enable bit for channel B.  
0 = Digital gain disabled  
1 = Digital gain enabled  
1
0
CHB GAINEN  
0
R/W  
W
0h  
0h  
Must write 0.  
9.6.2.4 Register 06h (address = 06h)  
Figure 168. Register 06h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
TEST  
PATTERN EN  
RESET  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 14. Register 06h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
0
W
0h  
Must write 0.  
This bit enables the test pattern selection for the digital outputs.  
0 = Normal operation  
1 = Test pattern output enabled  
1
0
TEST PATTERN EN  
RESET  
R/W  
R/W  
0h  
0h  
Software reset applied.  
This bit resets all internal registers to the default values and self-  
clears to 0.  
60  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
www.ti.com.cn  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
9.6.2.5 Register 07h (address = 07h)  
Figure 169. Register 07h  
7
0
6
0
5
0
4
3
2
1
0
0
SPECIAL MODE1 CHA  
R/W-0h  
EN FOVR  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after  
Table 15. Register 07h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
0
W
0h  
Must write 0.  
010 = For frequencies < 120 MHz  
111 = For frequencies > 120 MHz  
4-2  
SPECIAL MODE1 CHA  
R/W  
0h  
0 = Normal OVR on OVRx pins  
1 = Enable fast OVR on OVRx pins  
1
0
EN FOVR  
0
R/W  
W
0h  
0h  
Must write 0.  
9.6.2.6 Register 08h (address = 08h)  
Figure 170. Register 08h  
7
0
6
0
5
0
4
3
2
1
0
0
0
SPECIAL MODE1 CHB  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after  
Table 16. Register 08h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
0
W
0h  
Must write 0.  
010 = For frequencies < 120 MHz  
111 = For frequencies > 120 MHz  
4-2  
1-0  
SPECIAL MODE1 CHB  
0
R/W  
W
0h  
0h  
Must write 0.  
9.6.2.7 Register 09h (address = 09h)  
Figure 171. Register 09h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
ALIGN TEST  
PATTERN  
DATA  
FORMAT  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after  
Table 17. Register 09h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
0
W
0h  
Must write 0.  
This bit aligns test patterns across the outputs of the four  
channels.  
0 = Test patterns of four channels are free-running  
1 = Test patterns of all four channels are aligned  
1
0
ALIGN TEST PATTERN  
DATA FORMAT  
R/W  
R/W  
0h  
0h  
This bit sets the digital output data format.  
0 = Twos complement  
1 = Offset binary  
Copyright © 2014–2015, Texas Instruments Incorporated  
61  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
www.ti.com.cn  
9.6.2.8 Register 0Ah (address = 0Ah)  
Figure 172. Register 0Ah  
7
0
6
0
5
0
4
0
3
2
1
0
CHA TEST PATTERN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after  
Table 18. Register 0Ah Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
0
W
0h  
Must write 0.  
These bits control the test pattern for channel A after the TEST  
PATTERN EN bit is set.  
0000 = Normal operation  
0001 = All 0's  
0010 = All 1's  
0011 = Toggle pattern: data alternate between 10101010101010  
and 01010101010101.  
0100 = Digital ramp: data increment by 1 LSB every clock cycle  
from code 0 to 16383.  
3-0  
CHA TEST PATTERN  
R/W  
0h  
0101 = Custom pattern: output data are the same as  
programmed by the CUSTOM PATTERN register bits.  
0110 = Deskew pattern: data are 3AAAh.  
1000 = PRBS pattern: data are a sequence of pseudo random  
numbers.  
1001 = 8-point sine-wave: data are a repetitive sequence of the  
following eight numbers that form a sine-wave: 0, 2399, 8192,  
13984, 16383, 13984, 8192, and 2399.  
Others = Do not use  
9.6.2.9 Register 0Bh (address = 0Bh)  
Figure 173. Register 0Bh  
7
6
5
4
3
0
2
0
1
0
0
0
CHB TEST PATTERN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after  
Table 19. Register 0Bh Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
R/W  
W
Reset  
Description  
These bits control the test pattern for channel B after the TEST  
PATTERN EN bit is set.  
0000 = Normal operation  
0001 = All 0's  
0010 = All 1's  
0011 = Toggle pattern: data alternate between 10101010101010  
and 01010101010101.  
0100 = Digital ramp: data increment by 1 LSB every clock cycle  
from code 0 to 16383.  
0101 = Custom pattern: output data are the same as  
programmed by the CUSTOM PATTERN register bits.  
0110 = Deskew pattern: data are 3AAAh.  
1000 = PRBS pattern: data are a sequence of pseudo random  
numbers.  
1001 = 8-point sine-wave: data are a repetitive sequence of the  
following eight numbers that form a sine-wave: 0, 2399, 8192,  
13984, 16383, 13984, 8192, and 2399.  
Others = Do not use  
CHB TEST PATTERN  
0h  
0
0h  
Must write 0.  
62  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
www.ti.com.cn  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
9.6.2.10 Register 0Ch (address = 0Ch)  
Figure 174. Register 0Ch  
7
0
6
0
5
0
4
0
3
2
1
0
CHA DIGITAL GAIN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after  
Table 20. Register 0Ch Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
0
W
0h  
Must write 0.  
These bits set the digital gain for individual channels. Register  
settings are listed in Table 21.  
3-0  
CHA DIGITAL GAIN  
R/W  
0h  
Table 21. Channel Digital Gain  
REGISTER VALUE  
0000  
DIGITAL GAIN (dB)  
MAXIMUM INPUT VOLTAGE (VPP)  
0
0.5  
1
2.0  
0001  
1.89  
1.78  
1.68  
1.59  
1.50  
1.42  
1.34  
1.26  
1.19  
1.12  
1.06  
1.00  
0010  
0011  
1.5  
2
0100  
0101  
2.5  
3
0110  
0111  
3.5  
4
1000  
1001  
4.5  
5
1010  
1011  
5.5  
6
1100  
9.6.2.11 Register 0Dh (address = 0Dh)  
Figure 175. Register 0Dh  
7
6
5
4
3
0
2
0
1
0
0
0
CHB DIGITAL GAIN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after  
Table 22. Register 0Dh Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
R/W  
W
Reset  
Description  
These bits set the digital gain for the individual channels.  
Register settings are listed in Table 21.  
CHB DIGITAL GAIN  
0
0h  
0h  
Must write 0.  
Copyright © 2014–2015, Texas Instruments Incorporated  
63  
 
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
www.ti.com.cn  
9.6.2.12 Register 0Eh (address = 0Eh)  
Figure 176. Register 0Eh  
7
6
5
4
3
2
1
0
CUSTOM PATTERN[13:6]  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after  
Table 23. Register 0Eh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
These bits set the custom pattern[13:6] for all channels.  
7-0  
CUSTOM PATTERN[13:6]  
R/W  
0h  
9.6.2.13 Register 0Fh (address = 0Fh)  
Figure 177. Register 0Fh  
7
6
5
4
3
2
1
0
0
0
CUSTOM PATTERN[5:0]  
R/W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after  
Table 24. Register 0Fh Field Descriptions  
Bit  
7-2  
1-0  
Field  
Type  
R/W  
W
Reset  
0h  
Description  
CUSTOM PATTERN[5:0]  
0
These bits set the custom pattern[5:0] for all channels.  
Must write 0.  
0h  
9.6.2.14 Register 13h (address = 13h)  
Figure 178. Register 13h  
7
6
0
5
0
4
0
3
0
2
0
1
0
0
0
LOW SPEED MODE  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after  
Table 25. Register 13h Field Descriptions  
Bit  
7
Field  
Type  
R/W  
W
Reset  
Description  
Use this bit for sampling frequencies < 25 MSPS.  
0 = Normal operation  
1 = Low-speed mode is enabled  
LOW SPEED MODE  
0
0h  
6-0  
0h  
Must write 0.  
64  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
www.ti.com.cn  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
9.6.2.15 Register 15h (address = 15h)  
Figure 179. Register 15h  
7
0
6
5
4
0
3
2
1
0
0
GLOBAL  
PDN  
PDN PIN  
DISABLE  
CHA PDN  
R/W-0h  
CHB PDN  
R/W-0h  
STANDBY  
R/W-0h  
W-0h  
W-0h  
R/W-0h  
W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after  
Table 26. Register 15h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
0
W
0h  
Must write 0.  
Power-down channel A.  
0 = Normal operation  
1 = Power-down channel A if the PDN PIN DISABLE register bit  
is set  
6
5
CHA PDN  
CHB PDN  
R/W  
R/W  
0h  
0h  
Power-down channel B.  
0 = Normal operation  
1 = Power-down channel B if the PDN PIN DISABLE register bit  
is set  
4
3
0
W
0h  
0h  
Must write 0.  
ADCs of both channels enter standby.  
0 = Normal operation  
STANDBY  
R/W  
1 = Standby  
Global power-down.  
0 = Normal operation  
1 = Global power-down  
2
1
GLOBAL PDN  
0
R/W  
W
0h  
0h  
Must write 0.  
This bit disables the power-down control from the pin.  
0 = Normal operation  
1 = Power-down pin is disabled; use register settings for power-  
down operations  
0
PDN PINDISABLE  
R/W  
0h  
9.6.2.16 Register 27h (address = 27h)  
Figure 180. Register 27h  
7
6
5
0
4
0
3
0
2
0
1
0
0
0
CLK DIV  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after  
Table 27. Register 27h Field Descriptions  
Bit  
7-6  
5-0  
Field  
CLK DIV  
0
Type  
R/W  
W
Reset  
Description  
Internal clock divider for the input sample clock.  
00 = Clock divider bypassed  
01 = Divide-by-1  
10 = Divide-by-2  
11 = Divide-by-4  
0h  
0h  
Must write 0.  
Copyright © 2014–2015, Texas Instruments Incorporated  
65  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
www.ti.com.cn  
9.6.2.17 Register 2Ah (address = 2Ah)  
Figure 181. Register 2Ah  
7
6
5
4
3
2
1
0
TRP LAYER  
TESTMODE  
EN  
TX LINK  
FRAME ALIGN CONFIG DATA  
DIS  
FLIP ADC  
DATA  
SERDES TEST PATTERN  
R/W-0h  
IDLE SYNC  
R/W-0h  
LANE ALIGN  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after  
Table 28. Register 2Ah Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
00 = Normal operation  
01 = Outputs clock pattern: output is 10101010  
10 = Encoded pattern: output is 1111111100000000  
11 = PRBS sequence: output is 215 – 1  
7-6  
SERDES TEST PATTERN  
R/W  
0h  
This bit sets the output pattern when SYNC~ is high.  
0 = Sync code is K28.5 (BCBCh)  
5
IDLE SYNC  
R/W  
0h  
1 = Sync code is BC50h  
This bit generates the long transport layer test pattern mode  
according to section 5.1.6.3 of the JESD204B specification.  
0 = Test mode disabled  
4
3
TRP LAYER TESTMODE EN  
FLIP ADC DATA  
R/W  
R/W  
0h  
0h  
1 = Test mode enabled  
0 = Normal operation  
1 = Output data order is reversed: MSB – LSB  
This bit inserts a lane alignment character (K28.3) for the  
receiver to align to the lane boundary per section 5.3.3.5 of the  
JESD204B specification.  
2
LANE ALIGN  
R/W  
0h  
0 = Normal operation  
1 = Inserts lane alignment characters  
This bit inserts a frame alignment character (K28.7) for the  
receiver to align to the lane boundary per section 5.3.3.4 of the  
JESD204B specification.  
0 = Normal operation  
1 = Inserts frame alignment characters  
1
0
FRAME ALIGN  
R/W  
R/W  
0h  
0h  
This bit disables sending the initial link alignment (ILA) sequence  
when SYNC~ is de-asserted.  
0 = Normal operation  
TX LINK CONFIG DATA DIS  
1 = ILA disabled  
9.6.2.18 Register 2Bh (address = 2Bh)  
Figure 182. Register 2Bh  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
CTRL K  
R/W-0h  
CTRL F  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after  
Table 29. Register 2Bh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
0
W
0h  
Must write 0.  
Enable bit for the number of frames per multiframe.  
0 = Default is 9 (20X mode) frames per multiframe  
1 = Frames per multiframe can be set in register 31h  
1
0
CTRL K  
CTRL F  
R/W  
R/W  
0h  
0h  
Enable bit for the number of octets per frame.  
0 = 20X mode using one lane per ADC (default is F = 2)  
1 = Octets per frame can be specified in register 30h  
66  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
www.ti.com.cn  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
9.6.2.19 Register 2Fh (address = 2Fh)  
Figure 183. Register 2Fh  
7
6
0
5
0
4
0
3
0
2
0
1
0
0
0
SCRAMBLE EN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after  
Table 30. Register 2Fh Field Descriptions  
Bit  
7
Field  
Type  
R/W  
W
Reset  
Description  
Scramble enable bit in the JESD204B interface.  
0 = Scrambling disabled  
1 = Scrambling enabled  
SCRAMBLE EN  
0
0h  
6-0  
0h  
Must write 0.  
9.6.2.20 Register 30h (address = 30h)  
Figure 184. Register 30h  
7
6
5
4
3
2
1
0
OCTETS PER FRAME  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after  
Table 31. Register 30h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
These bits set the number of octets per frame (F).  
01 = 20X serialization: two octets per frame  
11 = 40X serialization: four octets per frame  
7-0  
OCTETS PER FRAME  
R/W  
0h  
9.6.2.21 Register 31h (address = 31h)  
Figure 185. Register 31h  
7
0
6
0
5
0
4
3
2
1
0
FRAMES PER MULTI FRAME  
R/W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after  
Table 32. Register 31h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
0
W
0h  
Must write 0.  
These bits set the number of frames per multiframe.  
After reset, the default settings for frames per multiframe are:  
20X mode: K = 8  
4-0  
FRAMES PER MULTI FRAME  
R/W  
0h  
For each mode, K must not be set to a lower value.  
Copyright © 2014–2015, Texas Instruments Incorporated  
67  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
www.ti.com.cn  
9.6.2.22 Register 34h (address = 34h)  
Figure 186. Register 34h  
7
6
5
4
0
3
0
2
0
1
0
0
0
SUBCLASSV  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after  
Table 33. Register 34h Field Descriptions  
Bit  
7-5  
4-0  
Field  
Type  
R/W  
W
Reset  
Description  
JESD204B subclass setting.  
000 = Subclass 0 backward compatibility with JESD204A  
001 = Subclass 1 deterministic latency using the SYSREF signal  
010 = Subclass 2 deterministic latency using SYNC~ detection  
SUBCLASSV  
0
0h  
0h  
Must write 0.  
9.6.2.23 Register 3Ah (address = 3Ah)  
Figure 187. Register 3Ah  
7
6
5
0
4
0
3
2
1
0
SYNC REQ  
R/W-0h  
SYNC REQ EN  
R/W-0h  
OUTPUT CURRENT SEL  
R/W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after  
Table 34. Register 3Ah Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
This bit generates a synchronization request only when the  
SYNC REQ EN register bit is set.  
0 = Normal operation  
7
SYNC REQ  
R/W  
0h  
1 = Generates sync request  
0 = Sync request is made with the SYNCP~, SYNCM~ pins  
1 = Sync request is made with the SYNC REQ register bit  
6
SYNC REQ EN  
0
R/W  
W
0h  
0h  
5-4  
Must write 0.  
JESD output buffer current selection.  
0000 = 16 mA  
0001 = 15 mA  
0010 = 14 mA  
0011 = 13 mA  
0100 = 20 mA  
0101 = 19 mA  
0110 = 18 mA  
0111 = 17 mA  
1000 = 8 mA  
3-0  
OUTPUT CURRENT SEL  
R/W  
0h  
1001 = 7 mA  
1010 = 6 mA  
1011 = 5 mA  
1100 = 12 mA  
1101 = 11 mA  
1110 = 10 mA  
1111 = 9 mA  
68  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
www.ti.com.cn  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
9.6.2.24 Register 3Bh (address = 3Bh)  
Figure 188. Register 3Bh  
7
6
5
4
3
0
2
1
0
LINK LAYER  
RPAT  
LINK LAYER TESTMODE  
R/W-0h  
PULSE DET MODES  
R/W-0h  
R/W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after  
Table 35. Register 3Bh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
These bits generate a pattern according to section 5.3.3.8.2 of  
the JESD204B specification.  
000 = Normal ADC data  
001 = D21.5 (high-frequency jitter pattern)  
010 = K28.5 (mixed-frequency jitter pattern)  
011 = Repeat initial lane alignment (generates a K28.5 character  
and continuously repeats lane alignment sequences)  
100 = 12 octet RPAT jitter pattern  
7-5  
LINK LAYER TESTMODE  
R/W  
0h  
This bit changes the running disparity in the modified RPAT  
pattern test mode (only when link layer test mode = 100).  
0 = Normal operation  
4
LINK LAYER RPAT  
R/W  
0h  
1 = Changes disparity  
3
0
W
0h  
0h  
Must write 0.  
These bits select different detection modes for SYSREF  
(subclass 1) and SYNC~ (subclass2). Register settings are  
listed in Table 36.  
2-0  
PULSE DET MODES  
R/W  
Table 36. PULSE DET MODES Register Settings  
D2  
0
D1  
D0  
0
FUNCTIONALITY  
Don’t care  
Don’t care  
Allow all pulses to reset input clock dividers  
1
0
Do not allow reset of analog clock dividers  
Don’t care  
0 to 1 transition  
1
Allow one pulse immediately after the 0 to 1 transition to reset the divider  
Copyright © 2014–2015, Texas Instruments Incorporated  
69  
 
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
www.ti.com.cn  
9.6.2.25 Register 3Ch (address = 3Ch)  
Figure 189. Register 3Ch  
7
6
5
4
3
2
1
0
FORCE LMFC  
COUNT  
LMFC COUNT INIT  
R/W-0h  
RELEASE ILAN SEQ  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after  
Table 37. Register 3Ch Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
0 = Normal operation  
7
FORCE LMFC COUNT  
R/W  
0h  
1 = Enables using a different starting value for the LMFC  
counter  
If SYSREF is transmitted to the digital block, the LMFC count  
resets to 0 and K28.5 stops transmitting when the LMFC count  
reaches 31. The initial value that the LMFC count resets to can  
be set using LMFC COUNT INIT. In this manner, the Rx can be  
synchronized early because the Rx receives the LANE  
ALIGNMENT SEQUENCE early. The FORCE LMFC COUNT  
register bit must be enabled.  
6-2  
1-0  
LMFC COUNT INIT  
RELEASE ILAN SEQ  
R/W  
R/W  
0h  
0h  
These bits delay the lane alignment sequence generation by 0,  
1, 2, or 3 multiframes after the code group synchronization.  
00 = 0  
01 = 1  
10 = 2  
11 = 3  
9.6.2.26 Register 422h (address = 422h)  
Figure 190. Register 422h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
SPECIAL MODE2 CHA  
W-1h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: W = Write only; -n = value after  
Table 38. Register 422h Field Descriptions  
Bit  
7-2  
1
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
SPECIAL MODE2 CHA  
0
W
1h  
Always write 1 for improved HD2 performance.  
Must write 0.  
0
W
0h  
70  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
www.ti.com.cn  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
9.6.2.27 Register 434h (address = 434h)  
Figure 191. Register 434h  
7
0
6
0
5
4
0
3
2
0
1
0
0
0
DIS DITH CHA  
R/W-0h  
DIS DITH CHA  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after  
Table 39. Register 434h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
0
W
0h  
Must write 0.  
Set this bit along with bits 5 and 4 of register 01h.  
00 = Default  
11 = Dither is disabled for channel A. In this mode, SNR typically  
improves by 0.5 dB at 70 MHz.  
5
4
DIS DITH CHA  
R/W  
W
0h  
0h  
0h  
0h  
0
Must write 0.  
Set this bit along with bits 5 and 4 of register 01h.  
00 = Default  
11 = Dither is disabled for channel A. In this mode, SNR typically  
improves by 0.5 dB at 70 MHz.  
3
DIS DITH CHA  
0
R/W  
W
2-0  
Must write 0.  
9.6.2.28 Register 522h (address = 522h)  
Figure 192. Register 522h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
SPECIAL MODE2 CHB  
W-1h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: W = Write only; -n = value after  
Table 40. Register 522h Field Descriptions  
Bit  
7-2  
1
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
SPECIAL MODE2 CHB  
0
W
1h  
Always write 1 for better HD2 performance.  
Must write 0.  
0
W
0h  
Copyright © 2014–2015, Texas Instruments Incorporated  
71  
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
www.ti.com.cn  
9.6.2.29 Register 534h (address = 534h)  
Figure 193. Register 534  
7
0
6
0
5
4
0
3
2
0
1
0
0
0
DIS DITH CHB  
R/W-0h  
DIS DITH CHB  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after  
Table 41. Register 534 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
0
W
0h  
Must write 0.  
Set this bit along with bits 3 and 2 of register 01h.  
00 = Default  
11 = Dither is disabled for channel B. In this mode, SNR typically  
improves by 0.5 dB at 70 MHz.  
5
4
DIS DITH CHB  
R/W  
W
0h  
0h  
0h  
0h  
0
Must write 0.  
Set this bit along with bits 3 and 2 of register 01h.  
00 = Default  
11 = Dither is disabled for channel B. In this mode, SNR typically  
improves by 0.5 dB at 70 MHz.  
3
DIS DITH CHB  
0
R/W  
W
2-0  
Must write 0.  
10 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
Typical applications involving transformer-coupled circuits are discussed in this section. Transformers (such as  
ADT1-1WT or WBC1-1) can be used up to 250 MHz to achieve good phase and amplitude balances at ADC  
inputs. When designing the dc driving circuits, the ADC input impedance must be considered. Figure 194 and  
Figure 195 show the impedance (Zin = Rin || Cin) across the ADC input pins.  
10  
6
5
4
3
2
1
1
0.1  
0.01  
0
100 200 300 400 500 600 700 800 900 1000  
Frequency (MHz)  
0
100 200 300 400 500 600 700 800 900 1000  
Frequency (MHz)  
D024  
D025  
Figure 194. Differential Input Resistance, Rin  
Figure 195. Differential Input Capacitance, Cin  
72  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
www.ti.com.cn  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
10.2 Typical Applications  
10.2.1 Driving Circuit Design: Low Input Frequencies  
39 nH  
0.1 PF  
INP  
0.1 PF  
50 Ÿ  
50 Ÿ  
25 Ÿ  
25 Ÿ  
0.1 PF  
22 pF  
50 Ÿ  
50 Ÿ  
INM  
1:1  
1:1  
0.1 PF  
39 nH  
VCM  
Device  
Figure 196. Driving Circuit for Low Input Frequencies  
10.2.1.1 Design Requirements  
For optimum performance, the analog inputs must be driven differentially. An optional 5-to 15-resistor in  
series with each input pin can be kept to damp out ringing caused by package parasitics. The drive circuit may  
have to be designed to minimize the affect of kick-back noise generated by sampling switches opening and  
closing inside the ADC, as well as ensuring low insertion loss over the desired frequency range and matched  
impedance to the source.  
10.2.1.2 Detailed Design Procedure  
A typical application using two back-to-back coupled transformers is illustrated in Figure 196. The circuit is  
optimized for low input frequencies. An external R-C-R filter using 50-Ω resistors and a 22-pF capacitor is used.  
With the series inductor (39 nH), this combination helps absorb the sampling glitches.  
10.2.1.3 Application Curves  
Figure 197 shows the performance obtained by using the circuit illustrated in Figure 196.  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
0
16  
32  
48  
64  
80  
Frequency (MHz)  
D101  
fS = 160 MSPS, SNR = 72.4 dBFS, fIN = 10 MHz,  
SFDR = 92.3 dBc  
Figure 197. FFT for 10-MHz Input Signal (Dither On)  
Copyright © 2014–2015, Texas Instruments Incorporated  
73  
 
 
 
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
www.ti.com.cn  
Typical Applications (continued)  
10.2.2 Driving Circuit Design: Input Frequencies Between 100 MHz to 230 MHz  
0.1 PF  
10 Ÿꢀ  
INP  
0.1 PF  
15 Ÿꢀ  
25 Ÿꢀ  
0.1 PF  
56 nH  
10 pF  
25 Ÿꢀ  
15 Ÿꢀ  
10 Ÿꢀ  
INM  
1:1  
1:1  
0.1 PF  
VCM  
Device  
Figure 198. Driving Circuit for Mid-Range Input Frequencies (100 MHz < fIN < 230 MHz)  
10.2.2.1 Design Requirements  
See the Design Requirements section for further details.  
10.2.2.2 Detailed Design Procedure  
When input frequencies are between 100 MHz to 230 MHz, an R-LC-R circuit can be used to optimize  
performance, as shown in Figure 198.  
10.2.2.3 Application Curve  
Figure 199 shows the performance obtained by using the circuit shown in Figure 198.  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
0
16  
32  
48  
64  
80  
Frequency (MHz)  
D105  
fS = 160 MSPS, SNR = 70.6 dBFS, fIN = 170 MHz,  
SFDR = 94.4 dBc  
Figure 199. FFT for 170-MHz Input Signal (Dither On)  
74  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
 
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
www.ti.com.cn  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
Typical Applications (continued)  
10.2.3 Driving Circuit Design: Input Frequencies Greater than 230 MHz  
0.1 PF  
0.1 PF  
10 Ÿ  
INP  
25 Ÿ  
0.1 PF  
25 Ÿ  
INM  
1:1  
1:1  
10 Ÿ  
0.1 PF  
VCM  
Device  
Figure 200. Driving Circuit for High Input Frequencies (fIN > 230 MHz)  
10.2.3.1 Design Requirements  
See the Design Requirements section for further details.  
10.2.3.2 Detailed Design Procedure  
For high input frequencies (> 230 MHz), using the R-C-R or R-LC-R circuit does not show significant  
improvement in performance. However, a series resistance of 10 Ω can be used, as shown in Figure 200.  
10.2.3.3 Application Curve  
Figure 201 shows the performance obtained by using the circuit shown in Figure 200.  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
0
16  
32  
48  
64  
80  
Frequency (MHz)  
D109  
fS = 160 MSPS, SNR = 63.2 dBFS, fIN = 450 MHz,  
SFDR = 65.7 dBc  
Figure 201. FFT for 450-MHz Input Signal (Dither On)  
11 Power-Supply Recommendations  
The device requires a 1.8-V nominal supply for AVDD and DVDD. There are no specific sequence power-supply  
requirements during device power-up. AVDD and DVDD can power up in any order.  
Copyright © 2014–2015, Texas Instruments Incorporated  
75  
 
 
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
www.ti.com.cn  
12 Layout  
12.1 Layout Guidelines  
The ADC32J4x EVM layout can be used as a reference layout to obtain the best performance. A layout diagram  
of the EVM top layer is provided in Figure 202. Some important points to remember when laying out the board  
are:  
1. Analog inputs are located on opposite sides of the device pin out to ensure minimum crosstalk on the  
package level. To minimize crosstalk onboard, the analog inputs must exit the pin out in opposite directions  
as much as possible, as shown in the reference layout of Figure 202.  
2. In the device pin out, the sampling clock is located on a side perpendicular to the analog inputs in order to  
minimize coupling between them. This configuration is also maintained on the reference layout of Figure 202  
as much as possible.  
3. Keep digital outputs away from the analog inputs. When these digital outputs exit the pin out, the digital  
output traces must not be kept parallel to the analog input traces because this configuration may result in  
coupling from digital outputs to analog inputs and degrade performance. All digital output traces to the  
receiver [such as a field-programmable gate array (FPGA) or an application-specific integrated circuit (ASIC)]  
must be matched in length to avoid skew among outputs.  
4. At each power-supply pin (AVDD and DVDD), a 0.1-µF decoupling capacitor must be kept close to the  
device. A separate decoupling capacitor group consisting of a parallel combination of 10-µF, 1-µF, and 0.1-  
µF capacitors can be kept close to the supply source.  
12.2 Layout Example  
ADC3xJxx  
Analog  
Input  
Routing  
Sampling  
Clock  
Routing  
Digital  
Output  
Routing  
Clock  
Distribution IC  
Analog input  
for CHB  
Analog input  
for CHA  
Figure 202. Typical Layout of the ADC32J4x Board  
76  
版权 © 2014–2015, Texas Instruments Incorporated  
 
ADC32J42, ADC32J43, ADC32J44, ADC32J45  
www.ti.com.cn  
ZHCSDU1A MAY 2014REVISED JUNE 2015  
13 器件和文档支持  
13.1 相关链接  
42 列出了快速访问链接。 范围包括技术文档、支持与社区资源、工具和软件,并且可以快速访问样片或购买链  
接。  
42. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
ADC32J45  
ADC32J44  
ADC32J43  
ADC32J42  
13.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
13.3 商标  
E2E is a trademark of Texas Instruments.  
PowerPAD is a trademark of Texas Instruments, Inc.  
All other trademarks are the property of their respective owners.  
13.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
13.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2014–2015, Texas Instruments Incorporated  
77  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Apr-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADC32J42IRGZR  
ADC32J42IRGZT  
ADC32J43IRGZR  
ADC32J43IRGZT  
ADC32J44IRGZR  
ADC32J44IRGZT  
ADC32J45IRGZR  
ADC32J45IRGZT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
RGZ  
48  
48  
48  
48  
48  
48  
48  
48  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
NIPDAUAG  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
AZ32J42  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
AZ32J42  
AZ32J43  
AZ32J43  
AZ32J44  
AZ32J44  
AZ32J45  
AZ32J45  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Apr-2022  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Sep-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADC32J42IRGZR  
ADC32J43IRGZR  
ADC32J44IRGZR  
ADC32J45IRGZR  
VQFN  
VQFN  
VQFN  
VQFN  
RGZ  
RGZ  
RGZ  
RGZ  
48  
48  
48  
48  
2500  
2500  
2500  
2500  
330.0  
330.0  
330.0  
330.0  
16.4  
16.4  
16.4  
16.4  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
1.5  
1.5  
1.5  
1.5  
12.0  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
Q2  
Q2  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Sep-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ADC32J42IRGZR  
ADC32J43IRGZR  
ADC32J44IRGZR  
ADC32J45IRGZR  
VQFN  
VQFN  
VQFN  
VQFN  
RGZ  
RGZ  
RGZ  
RGZ  
48  
48  
48  
48  
2500  
2500  
2500  
2500  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
43.0  
43.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RGZ 48  
7 x 7, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUADFLAT PACK- NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224671/A  
www.ti.com  
PACKAGE OUTLINE  
RGZ0048D  
VQFN - 1 mm max height  
S
C
A
L
E
1
.
9
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
7.1  
6.9  
A
B
0.5  
0.3  
PIN 1 INDEX AREA  
7.1  
6.9  
0.30  
0.18  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
5.6 0.1  
2X 5.5  
(0.2) TYP  
13  
24  
44X 0.5  
12  
25  
EXPOSED  
THERMAL PAD  
2X  
49  
SYMM  
5.5  
SEE TERMINAL  
DETAIL  
1
36  
0.30  
48X  
0.18  
37  
48  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.1  
C A B  
0.5  
0.3  
48X  
0.05  
4219046/B 11/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGZ0048D  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
5.6)  
SYMM  
48  
37  
48X (0.6)  
1
36  
48X (0.24)  
6X  
(1.22)  
44X (0.5)  
SYMM  
10X  
(1.33)  
49  
(6.8)  
(R0.05)  
TYP  
(
0.2) TYP  
VIA  
25  
12  
13  
24  
10X (1.33)  
6X (1.22)  
(6.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:12X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219046/B 11/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGZ0048D  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.665 TYP)  
(1.33) TYP  
16X ( 1.13)  
37  
48  
48X (0.6)  
49  
36  
1
48X (0.24)  
44X (0.5)  
(1.33)  
TYP  
(0.665)  
TYP  
SYMM  
(6.8)  
(R0.05) TYP  
25  
12  
METAL  
TYP  
13  
24  
SYMM  
(6.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 49  
66% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:15X  
4219046/B 11/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY