ADC32RF55IRTDT [TI]

具有低噪声频谱密度 (NSD) 的双通道 14 位 3GSPS 射频采样 ADC | RTD | 64 | -40 to 85;
ADC32RF55IRTDT
型号: ADC32RF55IRTDT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有低噪声频谱密度 (NSD) 的双通道 14 位 3GSPS 射频采样 ADC | RTD | 64 | -40 to 85

射频
文件: 总124页 (文件大小:6241K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
ADC32RF5x 双通14 2.6 3GSPS 射频采样数据转换器  
1 特性  
3 说明  
14 位双通2.6/3.0GSPS ADC  
• 噪声频谱密度  
NSD = -155.6dBFS/HzAVG)  
NSD = -158.1dBFS/Hz2x AVG)  
NSD = -160.4dBFS/Hz4x AVG)  
• 单核非交错ADC 架构  
ADC32RF5x 一款单核 14 2.6 GSPS 3  
GSPS、双通道模数转换器 (ADC)支持输入频率高达  
3 GHz 的射频采样。该设计更大限度地提高了信噪比  
(SNR) 并提供 -155dBFS/Hz 的噪声频谱密度。使用额  
外的内部 ADC 以及片上信号平均噪声密度提高到  
-161dBFS/Hz。  
• 孔径抖动50fs  
• 低近端残留相位噪声:  
10kHz 偏移时-127dBc/Hz  
• 频谱性能fIN = 1GHz-4dBFS):  
每个 ADC 通道都可以使用支持相位同调的 48 NCO  
连接到四频带数字下变频器 (DDC)。使用 GPIO 引脚  
NCO 频率控制可以在不1µs 的时间内实现跳  
频。  
2x 内部平均  
SNR62.3dBFS  
SFDR HD2,363dBc  
ADC32RF54 ADC32RF55 支持具有子类 1 确定性  
延迟的 JESD204B 串行数据接口使用高达 13Gbps  
的数据速率。  
SFDR 最严重毛刺85dBFS  
• 频谱性能fIN = 1.8GHz-4dBFS):  
2x 内部平均  
高能ADC 架构3Gsps 时的功耗2.1W/通道并  
以较低的采样率提供功率调节。  
SNR63.0dBFS  
SFDR HD2,368dBc  
封装信息  
封装(1)  
封装尺寸标称值)  
器件型号  
SFDR 最严重毛刺86dBFS  
• 满量程输入1.1/1.35Vpp (2/3.5dBm)  
• 误码(CER)10-15  
ADC32RF5x  
VQFN (64)  
9.00mm x 9.00mm  
(1) 要了解所有可用封装请参阅数据表末尾的封装选项附录。  
• 全功率输入带(-3dB)2.75 GHz  
JESD204B 串行数据接口  
3-1. 器件比较  
器件型号  
采样率  
– 最大通道速率13 Gbps  
– 支持子1 确定性延迟  
• 数字下变频器  
ADC32RF55  
ADC32RF54(1)  
3.0GSPS  
2.6GSPS  
(1) 产品预发布。  
– 每ADC 通道最多四DDC  
– 复杂输出4x 128x 抽取  
48 NCO 相位同调跳频  
– 快速跳频< 1us  
100  
100ꢀ  
ADC  
DDC  
NCO  
DDC  
DDC  
INA2P/M  
INA1P/M  
DDC  
DOUT0P/M  
DOUT3P/M  
N
ADC  
• 功耗2.6W/(2x AVG)  
• 电源1.8 V/1.2 V  
CLKP/M  
2 应用  
SYSREFP/M  
• 相控阵雷达  
• 频谱分析仪  
• 软件定义无线(SDR)  
电子战  
• 高速数字转换器  
• 电缆基础设施  
• 通信基础设施  
DOUT4P/M  
DOUT7P/M  
100ꢀ  
100ꢀ  
ADC  
DDC  
NCO  
DDC  
DDC  
INB1P/M  
INB2P/M  
DDC  
N
ADC  
RESETb  
SEN  
SPI Registers and  
Device Control  
SCLK  
SDIO  
GPIO2 SPISEL  
GPIO1  
方框图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBAS500  
 
 
 
 
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
Table of Contents  
6.13 Typical Characteristics - ADC32RF55.................... 30  
7 Detailed Description......................................................40  
7.1 Overview...................................................................40  
7.2 Functional Block Diagram.........................................40  
7.3 Feature Description...................................................41  
7.4 Device Functional Modes..........................................76  
7.5 Programming............................................................ 77  
7.6 Register Maps...........................................................79  
8 Application and Implementation................................104  
8.1 Application Information........................................... 104  
8.2 Typical Applications................................................ 104  
8.3 Initialization Set Up................................................. 107  
8.4 Power Supply Recommendations...........................117  
8.5 Layout..................................................................... 119  
9 Device and Documentation Support..........................121  
9.1 接收文档更新通知................................................... 121  
9.2 支持资源..................................................................121  
9.3 商标.........................................................................121  
9.4 Electrostatic Discharge Caution..............................121  
9.5 术语表..................................................................... 121  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 6  
6.1 Absolute Maximum Ratings........................................ 6  
6.2 ESD Ratings............................................................... 6  
6.3 Recommended Operating Conditions.........................6  
6.4 Thermal Information....................................................7  
6.5 Electrical Characteristics - Power Consumption.........8  
6.6 Electrical Characteristics - DC Specifications.............9  
6.7 Electrical Characteristics - ADC32RF54 AC  
Specifications (Dither DISABLED)...............................11  
6.8 Electrical Characteristics - ADC32RF54 AC  
Specifications (Dither ENABLED)............................... 13  
6.9 Electrical Characteristics - ADC32RF55 AC  
Specifications (Dither DISABLED).............................. 15  
6.10 Electrical Characteristics - ADC32RF55 AC  
Specifications (Dither ENABLED)............................... 17  
6.11 Timing Requirements.............................................. 19  
6.12 Typical Characteristics - ADC32RF54.................... 21  
Information.................................................................. 121  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (June 2022) to Revision A (December 2022)  
Page  
• 向文档添加ADC32RF55 数据................................................................................................................ 1  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
DOUT1P  
DOUT1M  
DVDD  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
DOUT5P  
DOUT5M  
DVDD  
2
3
DOUT0P  
DOUT0M  
DGND  
4
DOUT4P  
DOUT4M  
DGND  
5
6
DVDD  
7
DVDD  
DGND  
8
DGND  
Thermal  
Pad  
DVDD  
9
DVDD  
SPISEL  
RESET  
AGND  
10  
11  
12  
13  
14  
15  
16  
GPIO1  
GPIO2  
AGND  
AVDD12  
INA1P  
AVDD12  
INB1P  
INA1M  
INB1M  
AVDD12  
AVDD12  
Not to scale  
5-1. RTD Package, 64 Pin VQFNP  
(Top View)  
5-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
ANALOG INPUTS  
INA1P  
14  
15  
I
Differential analog input for channel A. 100 Ω(default) or 50 Ωdifferential internal termination.  
INA1M  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: ADC32RF54 ADC32RF55  
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
INA2P  
18  
Differential analog input for alternate channel A input. This input is used for additional ADC  
averaging for channel A. 100 Ω(default) or 50 Ωdifferential internal termination. Should be  
connected to GND if unused.  
I
I
INA2M  
19  
INB1P  
INB1M  
INB2P  
35  
34  
31  
Differential analog input for channel B. 100 Ω(default) or 50 Ωdifferential internal termination.  
Differential analog input for alternate channel B input. This input is used for additional ADC  
averaging for channel B. 100 Ω(default) or 50 Ωdifferential internal termination. Should be  
connected to GND if unused.  
I
INB2M  
VCM  
30  
26  
O
Common-mode voltage output for the analog inputs.  
CLOCK, SYNCHRONIZATION  
CLKP  
23  
I
I
Differential sampling clock input. 100 Ωdifferential internal termination.  
CLKM  
24  
27  
28  
SYSREFP  
SYSREFM  
CONTROL  
RESET  
SEN  
Differential external synchronization input.  
11  
57  
55  
56  
I
I
Hardware reset. Active low. This pin has an internal 21 kΩpullup resistor to AVDD18.  
Serial interface enable. Active low. This pin has an internal 21 kΩpull-up resistor to AVDD18.  
Serial interface clock input. This pin has an internal 21 kΩpull-down resistor.  
SCLK  
I
SDIO  
I/O  
Serial interface data input and output. This pin has an internal 21 kΩpull-down resistor.  
GPIO control pin. This pin is configured through SPI interface for power down or NCO control  
function.  
GPIO1  
GPIO2  
SPISEL  
39  
38  
10  
I
I
I
GPIO control pin. This pin is configured through SPI interface for power down or NCO control  
function.  
Determines SPI control: either normal SPI for register writes or fast access to NCO selection only  
for fast frequency hopping.  
DIGITAL DATA INTERFACE  
DOUT0P  
4
DOUT0M  
5
DOUT1P  
1
DOUT1M  
2
O
JESD204B high-speed serial data output interface pins for channel A.  
DOUT2P  
63  
64  
60  
61  
45  
44  
48  
47  
50  
49  
53  
52  
DOUT2M  
DOUT3P  
DOUT3M  
DOUT4P  
DOUT4M  
DOUT5P  
DOUT5M  
O
JESD204B high-speed serial data output interface pins for channel B.  
DOUT6P  
DOUT6M  
DOUT7P  
DOUT7M  
POWER SUPPLY  
AVDD18  
AVDD12  
17,20,29,32, 58  
13,16,21,33, 36  
I
I
Analog 1.8-V power supply  
Analog 1.2-V power supply  
Clock 1.2-V power supply. Very sensitive to power supply noise. Directly impacts close in aperture  
phase noise.  
CLKVDD  
25  
I
DVDD  
3,7,9,40,42, 46,54,59  
I
I
I
Digital 1.2-V power supply  
Analog ground, shorted to thermal pad.  
Clock ground.  
AGND  
12,37  
22  
CLKGND  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
6,8,41,43,51,62  
DGND  
I
Digital ground.  
(1) I = Input, O = Output, I/O = Input or Output.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: ADC32RF54 ADC32RF55  
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
0.3  
0.3  
0.6  
0.3  
0.3  
0.3  
MAX  
UNIT  
V
Supply voltage range, AVDD18  
2.1  
Supply voltage range, AVDD12/CLKVDD/DVDD  
1.4  
1.2  
V
INA1P/M, INB1P/M, INA2P/M, INB2P/M  
CLKP/M  
VDDCLK + 0.3  
AVDD12 + 0.6  
AVDD18 + 0.2  
12  
Voltage applied to input pins  
V
SYSREFP/M  
GPIO1/2, PDN, RESET, SCLK, SEN, SDIO, SPISEL  
Differential 100 termination.  
Peak RF input power (INx1P/M, INx2P/M)  
Junction temperature, TJ  
dBm  
°C  
115  
Storage temperature, Tstg  
150  
°C  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
± 1000  
± 500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.75  
NOM  
1.8  
MAX  
1.85  
UNIT  
AVDD18  
AVDD12  
CLKVDD  
DVDD  
TA  
1.8 V analog supply  
1.2 V analog supply  
1.175  
1.175  
1.175  
40  
1.2  
1.225  
1.225  
1.225  
85  
V
1.2 V clock supply  
1.2  
1.2 V digital supply  
1.2  
Operating free-air temperature  
Operating junction temperature  
°C  
°C  
TJ  
105(1)  
(1) Prolonged use above this junction temperature may increase the device failure-in-time (FIT) rate.  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
 
 
 
 
 
 
 
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.4 Thermal Information  
ADC32RF5x  
THERMAL METRIC(1)  
RTD (QFN)  
64 Pins  
20.1  
UNIT  
RΘJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RΘJC(top)  
RΘJB  
6.8  
5.2  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.1  
ΨJT  
5.1  
ΨJB  
RΘJC(bot)  
0.5  
(1) For more information about thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: ADC32RF54 ADC32RF55  
 
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.5 Electrical Characteristics - Power Consumption  
Maximum and minimum values are specified over the operating free-air temperature range and nominal supply voltages.  
Typical values are specified at TA = 25°C, ADC sampling rate = 3.0 GSPS, Bypass mode, 50% clock duty cycle, AVDD18 =  
1.8 V, AVDD12, AVDDCLK, DVDD = 1.2 V and 1-dBFS differential input, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
FS = 3.0 GSPS  
IAVDD18  
IAVDD12  
ICLKVDD  
IDVDD  
Supply current, 1.8 V analog supply  
Supply current, 1.2 V analog supply  
Supply current, 1.2 V clock supply  
Supply current, 1.2 V digital supply  
Power dissipation  
275  
930  
mA  
W
Bypass mode, 12-bit output,  
LMFS = 82820  
125  
2050  
4.2  
PDIS  
IAVDD18  
IAVDD12  
ICLKVDD  
IDVDD  
Supply current, 1.8 V analog supply  
Supply current, 1.2 V analog supply  
Supply current, 1.2 V clock supply  
Supply current, 1.2 V digital supply  
Power dissipation  
370  
1270  
130  
mA  
W
2x averaging, LMFS =  
82820  
2440  
5.25  
560  
PDIS  
IAVDD18  
IAVDD12  
ICLKVDD  
IDVDD  
Supply current, 1.8 V analog supply  
Supply current, 1.2 V analog supply  
Supply current, 1.2 V clock supply  
Supply current, 1.2 V digital supply  
Power dissipation  
620  
2120  
175  
1920  
150  
mA  
W
4x averaging, LMFS =  
82820  
3020  
7.1  
3600  
PDIS  
FS = 2.6 GSPS  
IAVDD18  
IAVDD12  
ICLKVDD  
IDVDD  
Supply current, 1.8 V analog supply  
Supply current, 1.2 V analog supply  
Supply current, 1.2 V clock supply  
Supply current, 1.2 V digital supply  
Power dissipation  
230  
770  
120  
1550  
3.4  
TBD  
TBD  
TBD  
TBD  
TBD  
mA  
W
Bypass mode, LMFS = 8224  
2x averaging, LMFS = 8224  
4x averaging, LMFS = 8224  
PDIS  
IAVDD18  
IAVDD12  
ICLKVDD  
IDVDD  
Supply current, 1.8 V analog supply  
Supply current, 1.2 V analog supply  
Supply current, 1.2 V clock supply  
Supply current, 1.2 V digital supply  
Power dissipation  
320  
1050  
130  
1700  
4.1  
mA  
W
PDIS  
IAVDD18  
IAVDD12  
ICLKVDD  
IDVDD  
Supply current, 1.8 V analog supply  
Supply current, 1.2 V analog supply  
Supply current, 1.2 V clock supply  
Supply current, 1.2 V digital supply  
Power dissipation  
490  
1600  
150  
2100  
5.5  
mA  
PDIS  
W
POWER DOWN MODES  
PDIS Power down mode power consumption  
190  
mW  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.6 Electrical Characteristics - DC Specifications  
Maximum and minimum values are specified over the operating free-air temperature range and nominal supply voltages.  
Typical values are specified at TA = 25°C, ADC sampling rate = 3.0 GSPS, Bypass mode, 50% clock duty cycle, AVDD18 =  
1.8 V, AVDD12, AVDDCLK, DVDD = 1.2 V and 1-dBFS differential input, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DC ACCURACY: ADC32RF55  
DNL  
Differential nonlinearity  
Integral nonlinearity  
Offset error  
FIN = 10 MHz  
±0.85  
±4  
LSB  
LSB  
INL  
FIN = 10 MHz  
VOS_ERR  
GAINERR  
GAINMatch  
±0.2  
±0.2  
±0.2  
%FSR  
%FSR  
dB  
Gain error  
Gain matching across channels  
DC ACCURACY: ADC32RF54  
DNL  
Differential nonlinearity  
FIN = 10 MHz  
FIN = 10 MHz  
±0.85  
±4  
LSB  
LSB  
INL  
Integral nonlinearity  
Offset error  
VOS_ERR  
GAINERR  
GAINMatch  
±0.2  
±0.2  
±0.2  
%FSR  
%FSR  
dB  
Gain error  
Gain matching across channels  
ADC ANALOG INPUTS (INA1P/M, INB1P/M, INA2P/M, INB2P/M)  
Input full scale  
Differential, non-average mode  
1.1  
1.35  
350  
100  
350  
2.75  
2.1  
FS  
Vpp  
mV  
Input full scale  
Differential, 2x or 4x average mode  
Differential at 100 MHz  
VICM  
ZIN  
Input common model voltage  
Differential input impedance  
Output common mode voltage  
250  
450  
Ω
VOCM  
mV  
1x, 2x AVG, RSW=1  
4x AVG, RSW=1  
BW  
Analog Input Bandwidth (-3 dB)  
GHz  
Phase imbalance, analog input  
±2  
deg  
dB  
Amplitude imablance, analog input  
±0.5  
25  
CMRR  
Common mode rejection ratio  
FIN = 100 MHz  
dB  
CLOCK INPUT (CLKP/M)  
ADC32RF54  
ADC32RF55  
500  
500  
2600  
3000  
2.4  
MHz  
MHz  
Vpp  
V
Input clock frequency  
VID  
Differential input voltage  
1
0.75  
100  
50  
VICM  
ZIN  
Input common mode voltage  
Differential input impedance  
0.65  
45  
0.85  
Differential at 2.6 GHz  
Ω
Clock duty cycle  
55  
%
SYSREF INPUT (SYSREFP/M)  
VID  
Differential input voltage  
600  
800  
1.2  
1000  
1.4  
mVpp  
V
VICM  
ZIN  
Input common mode voltage  
Differential input impedance  
Input common mode voltage  
1.05  
100  
Ω
DIGITAL INPUTS (RESET, PDN, SCLK, SEN, SDIO, GPIO1/2, SPISEL)  
VIH  
VIL  
CI  
High-level input voltage  
Low-level input voltage  
Input capacitance  
0.8  
V
V
0.4  
0.6  
pF  
DIGITAL OUTPUT (SDIO)  
AVDD18  
0.1  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
ILOAD = -400 uA  
ILOAD = 400 uA  
AVDD18  
V
V
0.1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: ADC32RF54 ADC32RF55  
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.6 Electrical Characteristics - DC Specifications (continued)  
Maximum and minimum values are specified over the operating free-air temperature range and nominal supply voltages.  
Typical values are specified at TA = 25°C, ADC sampling rate = 3.0 GSPS, Bypass mode, 50% clock duty cycle, AVDD18 =  
1.8 V, AVDD12, AVDDCLK, DVDD = 1.2 V and 1-dBFS differential input, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CML SERDES OUTPUTS: DOUT[0:7]P/M  
VOD  
Serdes transmitter output amplitude  
differential peak-peak  
700  
425  
mVpp  
mV  
Serdes transmitter output common  
mode  
VOCM  
Serdes transmitter single ended  
termination impedance  
ZTX  
50  
Ω
Transmitter pins shorted to any voltage  
between 0.25 V and 1.45 V  
Transmitter short-circuit current  
100  
mA  
100  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.7 Electrical Characteristics - ADC32RF54 AC Specifications (Dither DISABLED)  
Maximum and minimum values are specified over the operating free-air temperature range and nominal supply voltages.  
Typical values are specified at TA = 25°C, ADC sampling rate = 2.6 GSPS, Bypass mode, 50% clock duty cycle, AVDD18 =  
1.8 V, AVDD12, AVDDCLK, DVDD = 1.2 V, 1-dBFS differential input and dither DISABLED, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fIN = 900 MHz, AIN = -20 dBFS  
no averaging  
-155.5  
fIN = 900 MHz, AIN = -20 dBFS  
2x averaging  
NSD  
Noise Spectral Density  
-158.2  
161.2  
20.3  
dBFS/Hz  
fIN = 900 MHz, AIN = -20 dBFS  
4x averaging  
fIN = 900 MHz, AIN = -20 dBFS  
no averaging  
fIN = 900 MHz, AIN = -20 dBFS  
2x averaging  
NF  
Noise Figure  
19.3  
dB  
fIN = 900 MHz, AIN = -20 dBFS  
4x averaging  
19.7  
fIN = 100 MHz  
61.9  
61.9  
61.7  
64.4  
60.6  
60.0  
62.8  
63.2  
62.8  
67.1  
62.5  
61.8  
65.5  
65.9  
65.6  
69.8  
65.4  
64.9  
61.4  
60.2  
59.4  
57.6  
55.3  
9.9  
fIN = 500 MHz  
fIN = 900 MHz  
Signal-to-noise ratio  
no averaging  
fIN = 900 MHz, Ain = -20 dBFS  
fIN = 1.8 GHz  
fIN = 2.4 GHz  
fIN = 100 MHz  
fIN = 500 MHz  
fIN = 900 MHz  
Signal-to-noise ratio  
2x averaging  
SNR  
dBFS  
fIN = 900 MHz, Ain = -20 dBFS  
fIN = 1.8 GHz  
fIN = 2.4 GHz  
fIN = 100 MHz  
fIN = 500 MHz  
fIN = 900 MHz  
Signal-to-noise ratio  
4x averaging  
fIN = 900 MHz, Ain = -20 dBFS  
fIN = 1.8 GHz  
fIN = 2.4 GHz  
fIN = 100 MHz  
fIN = 500 MHz  
Signal to noise and distortion  
ratio  
SINAD  
ENOB  
fIN = 900 MHz  
TBD  
TBD  
dBFS  
fIN = 1.8 GHz  
fIN = 2.4 GHz  
fIN = 100 MHz  
fIN = 500 MHz  
9.7  
Effective number of bits  
fIN = 900 MHz  
9.6  
Bits  
fIN = 1.8 GHz  
9.3  
fIN = 2.4 GHz  
8.9  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: ADC32RF54 ADC32RF55  
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.7 Electrical Characteristics - ADC32RF54 AC Specifications (Dither DISABLED) (continued)  
Maximum and minimum values are specified over the operating free-air temperature range and nominal supply voltages.  
Typical values are specified at TA = 25°C, ADC sampling rate = 2.6 GSPS, Bypass mode, 50% clock duty cycle, AVDD18 =  
1.8 V, AVDD12, AVDDCLK, DVDD = 1.2 V, 1-dBFS differential input and dither DISABLED, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
67  
63  
64  
60  
57  
72  
73  
71  
62  
59  
75  
65  
67  
66  
64  
76  
74  
77  
77  
74  
71  
68  
MAX  
UNIT  
fIN = 100 MHz  
fIN = 500 MHz  
fIN = 900 MHz  
fIN = 1.8 GHz  
fIN = 2.4 GHz  
fIN = 100 MHz  
fIN = 500 MHz  
fIN = 900 MHz  
fIN = 1.8 GHz  
fIN = 2.4 GHz  
fIN = 100 MHz  
fIN = 500 MHz  
fIN = 900 MHz  
fIN = 1.8 GHz  
fIN = 2.4 GHz  
fIN = 100 MHz  
fIN = 500 MHz  
fIN = 900 MHz  
fIN = 1.8 GHz  
fIN = 2.4 GHz  
Total Harmonic Distortion (First  
five harmonics)  
THD  
HD2  
HD3  
TBD  
dBc  
Second Harmonic Distortion  
Third Harmonic Distortion  
TBD  
TBD  
TBD  
dBc  
dBc  
Non  
HD2,3  
Spur free dynamic range  
(excluding HD2 and HD3)  
dBFS  
dBc  
f1 = 700 MHz, f2 = 800 MHz, AIN = -7 dBFS/tone  
f1 = 1.5 GHz, f2 = 1.6 GHz, AIN = -7 dBFS/tone  
Two tone inter-modulation  
distortion  
IMD3  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.8 Electrical Characteristics - ADC32RF54 AC Specifications (Dither ENABLED)  
Maximum and minimum values are specified over the operating free-air temperature range and nominal supply voltages.  
Typical values are specified at TA = 25°C, ADC sampling rate = 2.6 GSPS, Bypass mode, 50% clock duty cycle, AVDD18 =  
1.8 V, AVDD12, AVDDCLK, DVDD = 1.2 V, 4-dBFS differential input and dither ENABLED, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fIN = 900 MHz, AIN = -20 dBFS  
no averaging  
-155.6  
fIN = 900 MHz, AIN = -20 dBFS  
2x averaging  
NSD(1)  
Noise Spectral Density  
-158.0  
160.7  
20.2  
dBFS/Hz  
fIN = 900 MHz, AIN = -20 dBFS  
4x averaging  
fIN = 900 MHz, AIN = -20 dBFS  
no averaging  
fIN = 900 MHz, AIN = -20 dBFS  
2x averaging  
NF(1)  
Noise Figure  
19.5  
dB  
fIN = 900 MHz, AIN = -20 dBFS  
4x averaging  
19.9  
fIN = 100 MHz  
62.4  
62.2  
62.7  
64.5  
62.0  
61.5  
64.1  
64.3  
64.2  
66.9  
63.9  
63.3  
67.2  
67.7  
67.3  
69.6  
67.0  
66.8  
62.1  
61.9  
62.2  
60.5  
59.3  
10.0  
10.0  
10.0  
9.8  
fIN = 500 MHz  
fIN = 900 MHz  
Signal-to-noise ratio  
no averaging  
fIN = 900 MHz, Ain = -20 dBFS  
fIN = 1.8 GHz  
TBD  
fIN = 2.4 GHz  
fIN = 100 MHz  
fIN = 500 MHz  
fIN = 900 MHz  
Signal-to-noise ratio  
2x averaging  
SNR(1)  
dBFS  
fIN = 900 MHz, Ain = -20 dBFS  
fIN = 1.8 GHz  
fIN = 2.4 GHz  
fIN = 100 MHz  
fIN = 500 MHz  
fIN = 900 MHz  
Signal-to-noise ratio  
4x averaging  
fIN = 900 MHz, Ain = -20 dBFS  
fIN = 1.8 GHz  
fIN = 2.4 GHz  
fIN = 100 MHz  
fIN = 500 MHz  
Signal to noise and distortion  
ratio  
SINAD(1)  
fIN = 900 MHz  
dBFS  
fIN = 1.8 GHz  
TBD  
TBD  
fIN = 2.4 GHz  
fIN = 100 MHz  
fIN = 500 MHz  
ENOB(1) Effective number of bits  
fIN = 900 MHz  
Bits  
fIN = 1.8 GHz  
fIN = 2.4 GHz  
9.6  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: ADC32RF54 ADC32RF55  
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
Maximum and minimum values are specified over the operating free-air temperature range and nominal supply voltages.  
Typical values are specified at TA = 25°C, ADC sampling rate = 2.6 GSPS, Bypass mode, 50% clock duty cycle, AVDD18 =  
1.8 V, AVDD12, AVDDCLK, DVDD = 1.2 V, 4-dBFS differential input and dither ENABLED, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
71  
70  
68  
63  
61  
74  
76  
74  
65  
62  
76  
72  
76  
72  
72  
88  
89  
78  
79  
87  
71  
75  
MAX  
UNIT  
fIN = 100 MHz  
fIN = 500 MHz  
fIN = 900 MHz  
fIN = 1.8 GHz  
fIN = 2.4 GHz  
fIN = 100 MHz  
fIN = 500 MHz  
fIN = 900 MHz  
fIN = 1.8 GHz  
fIN = 2.4 GHz  
fIN = 100 MHz  
fIN = 500 MHz  
fIN = 900 MHz  
fIN = 1.8 GHz  
fIN = 2.4 GHz  
fIN = 100 MHz  
fIN = 500 MHz  
fIN = 900 MHz  
fIN = 1.8 GHz  
fIN = 2.4 GHz  
Total Harmonic Distortion (First  
five harmonics)  
THD  
HD2  
HD3  
dBc  
TBD  
Second Harmonic Distortion  
Third Harmonic Distortion  
dBc  
dBc  
TBD  
TBD  
TBD  
Non  
HD2,3  
Spur free dynamic range  
(excluding HD2 and HD3)  
dBFS  
dBc  
f1 = 700 MHz, f2 = 800 MHz, AIN = -10 dBFS/tone  
f1 = 1.5 GHz, f2 = 1.6 GHz, AIN = -10 dBFS/tone  
Two tone inter-modulation  
distortion  
IMD3  
(1) Measured from 100 MHz to Nyquist (FS/2) excluding dither  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.9 Electrical Characteristics - ADC32RF55 AC Specifications (Dither DISABLED)  
Maximum and minimum values are specified over the operating free-air temperature range and nominal supply voltages.  
Typical values are specified at TA = 25°C, ADC sampling rate = 3.0 GSPS, Bypass mode, 50% clock duty cycle, AVDD18 =  
1.8 V, AVDD12, AVDDCLK, DVDD = 1.2 V, 1-dBFS differential input and dither DISABLED, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fIN = 900 MHz, AIN = -20 dBFS  
no averaging  
-155.6  
fIN = 900 MHz, AIN = -20 dBFS  
2x averaging  
NSD  
Noise Spectral Density  
-158.1  
-160.4  
20.2  
dBFS/Hz  
fIN = 900 MHz, AIN = -20 dBFS  
4x averaging  
fIN = 900 MHz, AIN = -20 dBFS  
no averaging  
fIN = 900 MHz, AIN = -20 dBFS  
2x averaging  
NF  
Noise Figure  
19.8  
dB  
fIN = 900 MHz, AIN = -20 dBFS  
4x averaging  
17.5  
fIN = 100 MHz  
62.1  
61.8  
61.7  
63.8  
61.1  
60.2  
63.6  
63.3  
63.5  
66.3  
62.7  
62.4  
66.7  
65.0  
65.7  
68.6  
64.7  
64.5  
58.2  
57.9  
55.8  
58.2  
54.8  
10.0  
10.0  
10.0  
9.9  
fIN = 500 MHz  
fIN = 900 MHz  
Signal-to-noise ratio  
no averaging  
fIN = 900 MHz, Ain = -20 dBFS  
fIN = 1.8 GHz  
fIN = 2.4 GHz  
fIN = 100 MHz  
fIN = 500 MHz  
fIN = 900 MHz  
Signal-to-noise ratio  
2x averaging  
SNR  
dBFS  
fIN = 900 MHz, Ain = -20 dBFS  
fIN = 1.8 GHz  
fIN = 2.4 GHz  
fIN = 100 MHz  
fIN = 500 MHz  
fIN = 900 MHz  
Signal-to-noise ratio  
4x averaging  
fIN = 900 MHz, Ain = -20 dBFS  
fIN = 1.8 GHz  
fIN = 2.4 GHz  
fIN = 100 MHz  
fIN = 500 MHz  
Signal to noise and distortion  
ratio  
SINAD  
ENOB  
fIN = 900 MHz  
dBFS  
fIN = 1.8 GHz  
fIN = 2.4 GHz  
fIN = 100 MHz  
fIN = 500 MHz  
Effective number of bits  
fIN = 900 MHz  
Bits  
fIN = 1.8 GHz  
fIN = 2.4 GHz  
9.7  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: ADC32RF54 ADC32RF55  
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
Maximum and minimum values are specified over the operating free-air temperature range and nominal supply voltages.  
Typical values are specified at TA = 25°C, ADC sampling rate = 3.0 GSPS, Bypass mode, 50% clock duty cycle, AVDD18 =  
1.8 V, AVDD12, AVDDCLK, DVDD = 1.2 V, 1-dBFS differential input and dither DISABLED, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
61  
60  
57  
63  
57  
61  
66  
68  
66  
57  
66  
62  
57  
65  
64  
78  
75  
78  
76  
75  
72  
66  
MAX  
UNIT  
fIN = 100 MHz  
fIN = 500 MHz  
fIN = 900 MHz  
fIN = 1.8 GHz  
fIN = 2.4 GHz  
fIN = 100 MHz  
fIN = 500 MHz  
fIN = 900 MHz  
fIN = 1.8 GHz  
fIN = 2.4 GHz  
fIN = 100 MHz  
fIN = 500 MHz  
fIN = 900 MHz  
fIN = 1.8 GHz  
fIN = 2.4 GHz  
fIN = 100 MHz  
fIN = 500 MHz  
fIN = 900 MHz  
fIN = 1.8 GHz  
fIN = 2.4 GHz  
Total Harmonic Distortion (First  
five harmonics)  
THD  
HD2  
HD3  
dBc  
Second Harmonic Distortion  
Third Harmonic Distortion  
dBc  
dBc  
Non  
HD2,3  
Spur free dynamic range  
(excluding HD2 and HD3)  
dBFS  
dBFS  
f1 = 700 MHz, f2 = 800 MHz, AIN = -7 dBFS/tone  
f1 = 1.5 GHz, f2 = 1.6 GHz, AIN = -7 dBFS/tone  
Two tone inter-modulation  
distortion  
IMD3  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.10 Electrical Characteristics - ADC32RF55 AC Specifications (Dither ENABLED)  
Maximum and minimum values are specified over the operating free-air temperature range and nominal supply voltages.  
Typical values are specified at TA = 25°C, ADC sampling rate = 3.0 GSPS, Bypass mode, 50% clock duty cycle, AVDD18 =  
1.8 V, AVDD12, AVDDCLK, DVDD = 1.2 V, 4-dBFS differential input and dither ENABLED, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN(2)  
TYP  
MAX  
UNIT  
fIN = 900 MHz, AIN = -20 dBFS  
no averaging  
-155.1  
fIN = 900 MHz, AIN = -20 dBFS  
2x averaging  
NSD(1)  
Noise Spectral Density  
-157.3  
-159.8  
20.7  
dBFS/Hz  
fIN = 900 MHz, AIN = -20 dBFS  
4x averaging  
fIN = 900 MHz, AIN = -20 dBFS  
no averaging  
fIN = 900 MHz, AIN = -20 dBFS  
2x averaging  
NF(1)  
Noise Figure  
20.6  
dB  
fIN = 900 MHz, AIN = -20 dBFS  
4x averaging  
18.1  
fIN = 100 MHz  
61.7  
61.8  
60.9  
63.3  
61.4  
61.2  
63.1  
63.4  
62.3  
65.5  
63.0  
63.1  
66.7  
66.2  
66.1  
68.0  
65.5  
65.4  
60.5  
60.8  
59.5  
60.3  
58.6  
10.0  
10.0  
9.8  
fIN = 500 MHz  
fIN = 900 MHz  
58.9  
62.0  
Signal-to-noise ratio  
no averaging  
fIN = 900 MHz, Ain = -20 dBFS  
fIN = 1.8 GHz  
fIN = 2.4 GHz  
fIN = 100 MHz  
fIN = 500 MHz  
fIN = 900 MHz  
Signal-to-noise ratio  
2x averaging  
SNR(1)  
dBFS  
fIN = 900 MHz, Ain = -20 dBFS  
fIN = 1.8 GHz  
fIN = 2.4 GHz  
fIN = 100 MHz  
fIN = 500 MHz  
fIN = 900 MHz  
64.9  
67.1  
Signal-to-noise ratio  
4x averaging  
fIN = 900 MHz, Ain = -20 dBFS  
fIN = 1.8 GHz  
fIN = 2.4 GHz  
fIN = 100 MHz  
fIN = 500 MHz  
Signal to noise and distortion  
ratio  
SINAD(1)  
fIN = 900 MHz  
dBFS  
fIN = 1.8 GHz  
fIN = 2.4 GHz  
fIN = 100 MHz  
fIN = 500 MHz  
ENOB(1) Effective number of bits  
fIN = 900 MHz  
Bits  
fIN = 1.8 GHz  
9.9  
fIN = 2.4 GHz  
9.7  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: ADC32RF54 ADC32RF55  
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
Maximum and minimum values are specified over the operating free-air temperature range and nominal supply voltages.  
Typical values are specified at TA = 25°C, ADC sampling rate = 3.0 GSPS, Bypass mode, 50% clock duty cycle, AVDD18 =  
1.8 V, AVDD12, AVDDCLK, DVDD = 1.2 V, 4-dBFS differential input and dither ENABLED, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN(2)  
TYP  
67  
68  
65  
69  
64  
64  
69  
68  
68  
60  
71  
67  
63  
68  
72  
91  
89  
85  
86  
86  
80  
75  
MAX  
UNIT  
fIN = 100 MHz  
fIN = 500 MHz  
fIN = 900 MHz  
fIN = 1.8 GHz  
fIN = 2.4 GHz  
fIN = 100 MHz  
fIN = 500 MHz  
fIN = 900 MHz  
fIN = 1.8 GHz  
fIN = 2.4 GHz  
fIN = 100 MHz  
fIN = 500 MHz  
fIN = 900 MHz  
fIN = 1.8 GHz  
fIN = 2.4 GHz  
fIN = 100 MHz  
fIN = 500 MHz  
fIN = 900 MHz  
fIN = 1.8 GHz  
fIN = 2.4 GHz  
Total Harmonic Distortion (First  
five harmonics)  
THD(1)  
dBc  
HD2(1)  
Second Harmonic Distortion  
61  
60  
dBc  
dBc  
HD3(1)  
Third Harmonic Distortion  
Spur free dynamic range  
Non  
78  
73  
dBFS  
dBFS  
HD2,3(1) (excluding HD2 and HD3)  
f1 = 700 MHz, f2 = 800 MHz, AIN = -10 dBFS/tone  
f1 = 1.5 GHz, f2 = 1.6 GHz, AIN = -10 dBFS/tone  
Two tone inter-modulation  
distortion  
IMD3  
(1) Measured from 100 MHz to Nyquist (FS/2) excluding dither  
(2) SNR, IMD3 minimum values are specified by ATE, HD2, HD3 and Non HD23 are specified by bench characterization.  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
 
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.11 Timing Requirements  
Maximum and minimum values are specified over the operating free-air temperature range and nominal supply voltages.  
Typical values are specified at TA = 25°C, ADC sampling rate = 3.0 GSPS, Bypass mode, 50% clock duty cycle, AVDD18 =  
1.8V, AVDD12, AVDDCLK, DVDD = 1.2V and 1-dBFS differential input, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
ADC TIMING SPECIFICATIONS  
Aperture Delay  
TAD  
0.17  
0.07  
50  
ns  
ns  
fs  
Aperure Delay variation  
TA  
Overload recovery time  
ADC latency from sampling instant to internal  
Aperture Jitter  
3-dB overload condition  
10  
clock  
cycles  
6-dB overload condition  
50  
clock  
cycles  
68  
5
hand-off to digital  
Internal propagation delay  
ns  
clock  
cycles  
Latency adder for 2x or 4x averaging  
4
LMFS = 8-2-8-20  
260  
280  
LMFS = 8-2-2-4  
4x complex decimation, LMFS = 8-4-2-2  
4x real decimation, LMFS = 4-2-2-2  
4x decimation, F (number of octets) = 2  
4x decimation, F = 4  
456  
456  
394  
374  
4x decimation, F = 8  
367  
8x decimation, F = 2  
560  
8x decimation, F = 4  
520  
8x decimation, F = 8  
506  
8x decimation, F = 16  
16x decimation, F = 2  
16x decimation, F = 4  
16x decimation, F = 8  
16x decimation, F = 16  
16x decimation, F = 32  
32x decimation, F = 2  
32x decimation, F = 4  
32x decimation, F = 8  
32x decimation, F = 16  
32x decimation, F = 32  
64x decimation, F = 2  
64x decimation, F = 4  
64x decimation, F = 8  
64x decimation, F = 16  
64x decimation, F = 32  
128x decimation, F = 2  
128x decimation, F = 4  
128x decimation, F = 8  
128x decimation, F = 16  
128x decimation, F = 32  
491  
900  
820  
tADC  
792  
762  
Deterministic delay from digital block (DDC (if  
used) and JESD interface)  
clock  
cycles  
748  
1596  
1436  
1380  
1320  
1292  
2940  
2620  
2508  
2388  
2332  
5668  
5028  
4804  
4564  
4452  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: ADC32RF54 ADC32RF55  
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
Maximum and minimum values are specified over the operating free-air temperature range and nominal supply voltages.  
Typical values are specified at TA = 25°C, ADC sampling rate = 3.0 GSPS, Bypass mode, 50% clock duty cycle, AVDD18 =  
1.8V, AVDD12, AVDDCLK, DVDD = 1.2V and 1-dBFS differential input, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
SERIAL PROGRAMMING INTERFACE (SCLK, SEN, SDIO) - Input  
fCLK(SCLK) Serial clock frequency  
1
10  
10  
10  
10  
20  
MHz  
ns  
tSU(SEN)  
tH(SEN)  
tSU(SDIO)  
tH(SDIO)  
SEN to rising edge of SCLK  
SEN from rising edge of SCLK  
SDIO to rising edge of SCLK  
SDIO from rising edge of SCLK  
ns  
ns  
ns  
SERIAL PROGRAMMING INTERFACE (SDIO) - Output  
t(OZD)  
t(ODZ)  
t(OD)  
SDIO tri-state to driven  
10  
14  
10  
ns  
ns  
ns  
SDIO data to tri-state  
SDIO valid from falling edge of SCLK  
TIMING: SYSREFP/M  
Setup time, SYSREFP/M valid to rising edge  
ts(SYSREF)  
50  
50  
ps  
ps  
of CLKP/M  
Hold time, SYSREFP/M valid to rising edge  
of CLKP/M  
th(SYSREF)  
CML SERDES OUTPUTS: DA[0:3]P/M, DB[0:3]P/M  
fSerdes  
Serdes bit rate  
0.5  
12.8 13.0  
Gbps  
ps  
RPAT, 6.4 Gbps  
0.7  
0.6  
RJ  
Random jitter, RMS  
RPAT, 12.8 Gbps  
RPAT, 6.4 Gbps  
RPAT, 12.8 Gbps  
RPAT, 6.4 Gbps  
RPAT, 12.8 Gbps  
8.9  
DJ  
TJ  
Deterministic jitter, peak to peak  
Total jitter, peak to peak  
ps  
ps  
14.7  
19.5  
24  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.12 Typical Characteristics - ADC32RF54  
Typical values are at TA = 25°C, ADC sampling rate = 2.6 GSPS, LMFS = 8224, 50% clock duty cycle, AVDD18 = 1.8 V,  
AVDD12, CLKVDD, DVDD = 1.2 V and 1-dBFS differential input, unless otherwise noted  
0
Dither region (DC to 100 MHz)  
Usable Band (100 MHz to FS/2)  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
200  
400  
600  
800  
1000  
1200  
Input Frequency (MHz)  
SNR = 63.2 dBFS1, SFDR = 77 dBc, Non HD23 = 87 dBFS  
AIN = -4 dBFS, 1x AVG, Dither = EN  
SNR = 62.1 dBFS, SFDR = 71 dBc, Non HD23 = 76 dBFS  
AIN = -1 dBFS, 1x AVG, Dither = DIS  
6-1. Single Tone FFT at FIN = 100 MHz  
6-2. Single Tone FFT at FIN = 100 MHz  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
200  
400  
600  
800  
1000  
1200  
Input Frequency (MHz)  
SNR = 62.1 dBFS, SFDR = 64 dBc, Non HD23 = 78 dBFS  
AIN = -1 dBFS, 1x AVG, Dither = DIS  
SNR = 62.4 dBFS1, SFDR = 73 dBc, Non HD23 = 90 dBFS  
AIN = -4 dBFS, 1x AVG, Dither = EN  
6-3. Single Tone FFT at FIN = 500 MHz  
6-4. Single Tone FFT at FIN = 500 MHz  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
200  
400  
600  
800  
1000  
1200  
Input Frequency (MHz)  
SNR = 61.8 dBFS, SFDR = 64 dBc, Non HD23 = 81 dBFS  
AIN = -1 dBFS, 1x AVG, Dither = DIS  
SNR = 63.1 dBFS1, SFDR = 76 dBc, Non HD23 = 85 dBFS  
AIN = -4 dBFS, 1x AVG, Dither = EN  
6-5. Single Tone FFT at FIN = 900 MHz  
6-6. Single Tone FFT at FIN = 900 MHz  
1
Measured from 100 MHz to FS/2  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: ADC32RF54 ADC32RF55  
 
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.12 Typical Characteristics - ADC32RF54 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 2.6 GSPS, LMFS = 8224, 50% clock duty cycle, AVDD18 = 1.8 V,  
AVDD12, CLKVDD, DVDD = 1.2 V and 1-dBFS differential input, unless otherwise noted  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
200  
400  
600  
800  
1000  
1200  
Input Frequency (MHz)  
SNR = 61.0 dBFS, SFDR = 62 dBc, Non HD23 = 80 dBFS  
AIN = -1 dBFS, 1x AVG, Dither = DIS  
SNR = 62.5 dBFS1, SFDR = 79 dBc, Non HD23 = 88 dBFS  
AIN = -4 dBFS, 1x AVG, Dither = EN  
6-7. Single Tone FFT at FIN = 1400 MHz  
6-8. Single Tone FFT at FIN = 1400 MHz  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
200  
400  
600  
800  
1000  
1200  
Input Frequency (MHz)  
SNR = 60.9 dBFS, SFDR = 60 dBc, Non HD23 = 77 dBFS  
AIN = -1 dBFS, 1x AVG, Dither = DIS  
SNR = 62.3 dBFS1, SFDR = 61 dBc, Non HD23 = 79 dBFS  
AIN = -4 dBFS, 1x AVG, Dither = EN  
6-9. Single Tone FFT at FIN = 1900 MHz  
6-10. Single Tone FFT at FIN = 1900 MHz  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
200  
400  
600  
800  
1000  
1200  
Input Frequency (MHz)  
SNR = 60.2 dBFS, SFDR = 58 dBc, Non HD23 = 76 dBFS  
AIN = -1 dBFS, 1x AVG, Dither = DIS  
SNR = 62.6 dBFS1, SFDR = 61 dBc, Non HD23 = 79 dBFS  
AIN = -4 dBFS, 1x AVG, Dither = EN  
6-11. Single Tone FFT at FIN = 2200 MHz  
6-12. Single Tone FFT at FIN = 2200 MHz  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.12 Typical Characteristics - ADC32RF54 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 2.6 GSPS, LMFS = 8224, 50% clock duty cycle, AVDD18 = 1.8 V,  
AVDD12, CLKVDD, DVDD = 1.2 V and 1-dBFS differential input, unless otherwise noted  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
200  
400  
600  
800  
1000  
1200  
Input Frequency (MHz)  
SNR = 62.8 dBFS, SFDR = 70 dBc, Non HD23 = 80 dBFS  
AIN = -1 dBFS, 2x AVG, Dither = DIS  
SNR = 65.4 dBFS1, SFDR = 73 dBc, Non HD23 = 78 dBFS  
AIN = -4 dBFS, 2x AVG, Dither = EN  
6-13. Single Tone FFT at FIN = 900 MHz  
6-14. Single Tone FFT at FIN = 900 MHz  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
200  
400  
600  
800  
1000  
1200  
Input Frequency (MHz)  
SNR = 65.6 dBFS, SFDR = 67 dBc, Non HD23 = 73 dBFS  
AIN = -1 dBFS, 4x AVG, Dither = DIS  
SNR = 67.8 dBFS1, SFDR = 71 dBc, Non HD23 = 76 dBFS  
AIN = -4 dBFS, 4x AVG, Dither = EN  
6-15. Single Tone FFT at FIN = 900 MHz  
6-16. Single Tone FFT at FIN = 900 MHz  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
200  
400  
600  
800  
1000  
1200  
Input Frequency (MHz)  
SNR = 64.4 dBFS, SFDR = 60 dBc, Non HD23 = 81 dBFS  
AIN = -20 dBFS, 1x AVG, Dither = DIS  
SNR = 64.6 dBFS1, SFDR = 73 dBc, Non HD23 = 92 dBFS  
AIN = -20 dBFS, 1x AVG, Dither = EN  
6-17. Single Tone FFT at FIN = 900 MHz  
6-18. Single Tone FFT at FIN = 900 MHz  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.12 Typical Characteristics - ADC32RF54 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 2.6 GSPS, LMFS = 8224, 50% clock duty cycle, AVDD18 = 1.8 V,  
AVDD12, CLKVDD, DVDD = 1.2 V and 1-dBFS differential input, unless otherwise noted  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
200  
400  
600  
800  
1000  
1200  
Input Frequency (MHz)  
SNR = 67.1 dBFS, SFDR = 56 dBc, Non HD23 = 80 dBFS  
AIN = -20 dBFS, 2x AVG, Dither = DIS  
SNR = 66.8 dBFS1, SFDR = 65 dBc, Non HD23 = 93 dBFS  
AIN = -20 dBFS, 2x AVG, Dither = EN  
6-19. Single Tone FFT at FIN = 900 MHz  
6-20. Single Tone FFT at FIN = 900 MHz  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
200  
400  
600  
800  
1000  
1200  
Input Frequency (MHz)  
SNR = 70.0 dBFS, SFDR = 58 dBc, Non HD23 = 85 dBFS  
AIN = -20 dBFS, 4x AVG, Dither = DIS  
SNR = 69.5 dBFS1, SFDR = 67 dBc, Non HD23 = 88 dBFS  
AIN = -20 dBFS, 4x AVG, Dither = EN  
6-21. Single Tone FFT at FIN = 900 MHz  
6-22. Single Tone FFT at FIN = 900 MHz  
IMD3 = 72 dBc  
IMD3 = 74 dBc  
AIN = -7 dBFS/tone, 1x AVG, Dither = DIS  
AIN = -10 dBFS/tone, 1x AVG, Dither = EN  
6-23. Two Tone FFT at FIN = 900/1000 MHz  
6-24. Two Tone FFT at FIN = 900/1000 MHz  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.12 Typical Characteristics - ADC32RF54 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 2.6 GSPS, LMFS = 8224, 50% clock duty cycle, AVDD18 = 1.8 V,  
AVDD12, CLKVDD, DVDD = 1.2 V and 1-dBFS differential input, unless otherwise noted  
IMD3 = 60 dBc  
IMD3 = 72 dBc  
AIN = -26 dBFS/tone, 1x AVG, Dither = DIS  
AIN = -26 dBFS/tone, 1x AVG, Dither = EN  
6-25. Two Tone FFT at FIN = 900/1000 MHz  
6-26. Two Tone FFT at FIN = 900/1000 MHz  
AIN = -1 dBFS, Dither = DIS  
AIN = -4 dBFS, Dither = EN  
6-27. AC Performance vs FIN  
6-28. AC Performance vs FIN  
AIN = -1 dBFS (Dither = DIS)  
AIN = -4 dBFS (Dither = EN)  
FIN = 900 MHz, Dither = DIS  
6-30. AC Performance vs AIN  
6-29. ENOB Performance vs FIN  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.12 Typical Characteristics - ADC32RF54 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 2.6 GSPS, LMFS = 8224, 50% clock duty cycle, AVDD18 = 1.8 V,  
AVDD12, CLKVDD, DVDD = 1.2 V and 1-dBFS differential input, unless otherwise noted  
130  
1x (FIN = 1700/1800 MHz)  
2x (FIN = 1700/1800 MHz)  
4x (FIN = 1700/1800 MHz)  
1x (FIN = 700/800 MHz)  
2x (FIN = 700/800 MHz)  
4x (FIN = 700/800 MHz)  
120  
110  
100  
90  
80  
70  
-80  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
Input Amplitude/Tone (dBFS)  
FIN = 900 MHz, Dither = EN  
Dither = DIS  
6-31. AC Performance vs AIN  
6-32. IMD3 Performance vs AIN  
130  
120  
110  
100  
90  
1x (FIN = 1700/1800 MHz)  
2x (FIN = 1700/1800 MHz)  
4x (FIN = 1700/1800 MHz)  
1x (FIN = 700/800 MHz)  
2x (FIN = 700/800 MHz)  
4x (FIN = 700/800 MHz)  
80  
70  
-80  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
Input Amplitude/Tone (dBFS)  
FIN = 900 MHz, AIN = -1 dBFS, Dither = DIS  
Dither = EN  
6-34. AC Performance vs FS  
6-33. IMD3 Performance vs AIN  
FIN = 900 MHz, AIN = -1 dBFS, Dither = DIS, Other supplies  
nominal  
FIN = 900 MHz, AIN = -1 dBFS, Dither = DIS, Other supplies  
nominal  
6-35. AC Performance vs AVDD18  
6-36. AC Performance vs AVDD12  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.12 Typical Characteristics - ADC32RF54 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 2.6 GSPS, LMFS = 8224, 50% clock duty cycle, AVDD18 = 1.8 V,  
AVDD12, CLKVDD, DVDD = 1.2 V and 1-dBFS differential input, unless otherwise noted  
70  
69  
68  
67  
66  
65  
64  
63  
62  
105  
100  
95  
70  
69  
68  
67  
66  
65  
64  
63  
62  
105  
100  
95  
SNR (1x)  
SNR (2x)  
SNR (4x)  
HD23 (1x)  
HD23 (2x)  
HD23 (4x)  
Non HD23 (1x)  
Non HD23 (2x)  
Non HD23 (4x)  
SNR (1x)  
SNR (2x)  
SNR (4x)  
HD23 (1x)  
HD23 (2x)  
HD23 (4x)  
Non HD23 (1x)  
Non HD23 (2x)  
Non HD23 (4x)  
90  
90  
85  
85  
80  
80  
75  
75  
70  
70  
65  
65  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIN = 900 MHz, AIN = -1 dBFS, Dither = DIS  
FIN = 900 MHz, AIN = -4 dBFS, Dither = EN  
6-37. AC Performance vs Temperature  
6-38. AC Performance vs Temperature  
6-40. Isolation vs Input Frequency  
FIN = 900 MHz, AIN = -1 dBFS, Dither = DIS  
6-39. AC Performance vs Clock Duty Cycle  
FIN = 900 MHz, Dither = DIS  
FIN = 900 MHz, Dither = DIS  
6-41. INL vs Code  
6-42. DNL vs Code  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.12 Typical Characteristics - ADC32RF54 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 2.6 GSPS, LMFS = 8224, 50% clock duty cycle, AVDD18 = 1.8 V,  
AVDD12, CLKVDD, DVDD = 1.2 V and 1-dBFS differential input, unless otherwise noted  
Dither = DIS  
AIN = -1 dBFS, 1x AVG, Dither = DIS  
6-43. DC Offset Histogram  
6-44. CMRR  
2.25  
2
/4 (4-4-2-1)  
/8 (4-4-2-1)  
/16 (4-4-2-1)  
/32 (4-4-2-1)  
/64 (4-4-2-1)  
/8 (2-4-4-1)  
/16 (2-4-4-1)  
/32 (2-4-4-1)  
/64 (2-4-4-1)  
1.75  
1.5  
1.25  
1
0.75  
0.5  
0.25  
600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600  
Sampling Rate (MSPS)  
AIN = -1 dBFS, Dither = DIS, DDC Bypass  
AIN = -1 dBFS, 1x AVG, Dither = DIS  
Single Band Decimation  
6-45. Current vs Sampling Rate vs Averaging  
6-46. Current vs Sampling Rate vs Decimation  
2.25  
2.5  
/8 (2-4-4-1)  
/16 (1-4-8-1)  
/32 (1-4-8-1)  
/64 (1-4-8-1)  
/128 (1-4-8-1)  
/8 (8-8-2-1)  
/16 (8-8-2-1)  
/32 (8-8-2-1)  
/64 (8-8-2-1)  
/8 (4-8-4-1)  
/16 (4-8-4-1)  
/32 (4-8-4-1)  
/64 (4-8-4-1)  
/128 (4-8-4-1)  
/16 (2-4-4-1)  
/32 (2-4-4-1)  
/64 (2-4-4-1)  
/128 (2-4-4-1)  
2
1.75  
1.5  
2.25  
2
1.75  
1.5  
1.25  
1
1.25  
1
0.75  
0.5  
0.75  
0.5  
0.25  
600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600  
600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600  
Sampling Rate (MSPS)  
Sampling Rate (MSPS)  
AIN = -1 dBFS, 1x AVG, Dither = DIS  
Single Band Decimation  
AIN = -1 dBFS, 1x AVG, Dither = DIS  
Dual Band Decimation  
6-47. Current vs Sampling Rate vs Decimation  
6-48. Current vs Sampling Rate vs Decimation  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.12 Typical Characteristics - ADC32RF54 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 2.6 GSPS, LMFS = 8224, 50% clock duty cycle, AVDD18 = 1.8 V,  
AVDD12, CLKVDD, DVDD = 1.2 V and 1-dBFS differential input, unless otherwise noted  
2.25  
2
2.5  
2.25  
2
/16 (2-8-8-1)  
/32 (2-8-8-1)  
/64 (2-8-8-1)  
/128 (2-8-8-1)  
/32 (1-8-16-1)  
/64 (1-8-16-1)  
/128 (1-8-16-1)  
/16 (8-16-4-1)  
/32 (8-16-4-1)  
/64 (8-16-4-1)  
/128 (8-16-4-1)  
/16 (4-16-8-1)  
/32 (4-16-8-1)  
/64 (4-16-8-1)  
/128 (4-16-8-1)  
1.75  
1.5  
1.25  
1
1.75  
1.5  
1.25  
1
0.75  
0.5  
0.25  
0.75  
0.5  
600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600  
600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600  
Sampling Rate (MSPS)  
Sampling Rate (MSPS)  
AIN = -1 dBFS, 1x AVG, Dither = DIS  
Dual Band Decimation  
AIN = -1 dBFS, 1x AVG, Dither = DIS  
Quad Band Decimation  
6-49. Current vs Sampling Rate vs Decimation  
6-50. Current vs Sampling Rate vs Decimation  
2.5  
/32 (2-16-16-1)  
/64 (2-16-16-1)  
/128 (2-16-16-1)  
/64 (1-16-32-1)  
/128 (1-16-32-1)  
2.25  
2
1.75  
1.5  
1.25  
1
0.75  
0.5  
600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600  
Sampling Rate (MSPS)  
AIN = -1 dBFS, 1x AVG, Dither = DIS  
Quad Band Decimation  
6-51. Current vs Sampling Rate vs Decimation  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.13 Typical Characteristics - ADC32RF55  
Typical values are at TA = 25°C, ADC sampling rate = 3 GSPS, LMFS = 82820, 50% clock duty cycle, AVDD18 = 1.8 V,  
AVDD12, CLKVDD, DVDD = 1.2 V and 1-dBFS differential input, unless otherwise noted  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
250  
500  
750  
1000  
1250  
1500  
0
250  
500  
750  
1000  
1250  
1500  
Input Frequency (MHz)  
Input Frequency (MHz)  
SNR = 62.1 dBFS, SFDR = 57 dBc, Non HD23 = 75 dBFS  
AIN = -1 dBFS, 1x AVG, Dither = DIS  
SNR = 61.7 dBFS2, SFDR = 58 dBc, Non HD23 = 83 dBFS  
AIN = -4 dBFS, 1x AVG, Dither = EN  
6-52. Single Tone FFT at FIN = 100 MHz  
6-53. Single Tone FFT at FIN = 100 MHz  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
250  
500  
750  
1000  
1250  
1500  
0
250  
500  
750  
1000  
1250  
1500  
Input Frequency (MHz)  
Input Frequency (MHz)  
SNR = 61.9 dBFS, SFDR = 63 dBc, Non HD23 = 77 dBFS  
AIN = -1 dBFS, 1x AVG, Dither = DIS  
SNR = 61.8 dBFS1, SFDR = 68 dBc, Non HD23 = 84 dBFS  
AIN = -4 dBFS, 1x AVG, Dither = EN  
6-54. Single Tone FFT at FIN = 500 MHz  
6-55. Single Tone FFT at FIN = 500 MHz  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
250  
500  
750  
1000  
1250  
1500  
0
250  
500  
750  
1000  
1250  
1500  
Input Frequency (MHz)  
Input Frequency (MHz)  
SNR = 61.8 dBFS, SFDR = 60 dBc, Non HD23 = 76 dBFS  
AIN = -1 dBFS, 1x AVG, Dither = DIS  
SNR = 60.9 dBFS1, SFDR = 64 dBc, Non HD23 = 82 dBFS  
AIN = -4 dBFS, 1x AVG, Dither = EN  
6-56. Single Tone FFT at FIN = 900 MHz  
6-57. Single Tone FFT at FIN = 900 MHz  
2
Measured from 100 MHz to FS/2  
Copyright © 2023 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
 
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.13 Typical Characteristics - ADC32RF55 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 3 GSPS, LMFS = 82820, 50% clock duty cycle, AVDD18 = 1.8 V,  
AVDD12, CLKVDD, DVDD = 1.2 V and 1-dBFS differential input, unless otherwise noted  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
250  
500  
750  
1000  
1250  
1500  
0
250  
500  
750  
1000  
1250  
1500  
Input Frequency (MHz)  
Input Frequency (MHz)  
SNR = 62.1 dBFS, SFDR = 57 dBc, Non HD23 = 76 dBFS  
AIN = -1 dBFS, 1x AVG, Dither = DIS  
SNR = 62.2 dBFS1, SFDR = 63 dBc, Non HD23 = 83 dBFS  
AIN = -4 dBFS, 1x AVG, Dither = EN  
6-58. Single Tone FFT at FIN = 1400 MHz  
6-59. Single Tone FFT at FIN = 1400 MHz  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
250  
500  
750  
1000  
1250  
1500  
0
250  
500  
750  
1000  
1250  
1500  
Input Frequency (MHz)  
Input Frequency (MHz)  
SNR = 60.9 dBFS, SFDR = 62 dBc, Non HD23 = 74 dBFS  
AIN = -1 dBFS, 1x AVG, Dither = DIS  
SNR = 61.2 dBFS1, SFDR = 67 dBc, Non HD23 = 80 dBFS  
AIN = -4 dBFS, 1x AVG, Dither = EN  
6-60. Single Tone FFT at FIN = 1900 MHz  
6-61. Single Tone FFT at FIN = 1900 MHz  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
250  
500  
750  
1000  
1250  
1500  
0
250  
500  
750  
1000  
1250  
1500  
Input Frequency (MHz)  
Input Frequency (MHz)  
SNR = 60.4 dBFS, SFDR = 58 dBc, Non HD23 = 73 dBFS  
AIN = -1 dBFS, 1x AVG, Dither = DIS  
SNR = 61.1 dBFS1, SFDR = 60 dBc, Non HD23 = 82 dBFS  
AIN = -4 dBFS, 1x AVG, Dither = EN  
6-62. Single Tone FFT at FIN = 2200 MHz  
6-63. Single Tone FFT at FIN = 2200 MHz  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.13 Typical Characteristics - ADC32RF55 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 3 GSPS, LMFS = 82820, 50% clock duty cycle, AVDD18 = 1.8 V,  
AVDD12, CLKVDD, DVDD = 1.2 V and 1-dBFS differential input, unless otherwise noted  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
250  
500  
750  
1000  
1250  
1500  
0
250  
500  
750  
1000  
1250  
1500  
Input Frequency (MHz)  
Input Frequency (MHz)  
SNR = 63.5 dBFS, SFDR = 59 dBc, Non HD23 = 80 dBFS  
AIN = -1 dBFS, 2x AVG, Dither = DIS  
SNR = 62.3 dBFS1, SFDR = 66 dBc, Non HD23 = 82 dBFS  
AIN = -4 dBFS, 2x AVG, Dither = EN  
6-64. Single Tone FFT at FIN = 900 MHz  
6-65. Single Tone FFT at FIN = 900 MHz  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
250  
500  
750  
1000  
1250  
1500  
0
250  
500  
750  
1000  
1250  
1500  
Input Frequency (MHz)  
Input Frequency (MHz)  
SNR = 65.6 dBFS, SFDR = 60 dBc, Non HD23 = 80 dBFS  
AIN = -1 dBFS, 4x AVG, Dither = DIS  
SNR = 66.2 dBFS1, SFDR = 66 dBc, Non HD23 = 83 dBFS  
AIN = -4 dBFS, 4x AVG, Dither = EN  
6-66. Single Tone FFT at FIN = 900 MHz  
6-67. Single Tone FFT at FIN = 900 MHz  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
250  
500  
750  
1000  
1250  
1500  
0
250  
500  
750  
1000  
1250  
1500  
Input Frequency (MHz)  
Input Frequency (MHz)  
SNR = 63.9 dBFS, SFDR = 60 dBc, Non HD23 = 87 dBFS  
AIN = -20 dBFS, 1x AVG, Dither = DIS  
SNR = 63.4 dBFS1, SFDR = 73 dBc, Non HD23 = 92 dBFS  
AIN = -20 dBFS, 1x AVG, Dither = EN  
6-68. Single Tone FFT at FIN = 900 MHz  
6-69. Single Tone FFT at FIN = 900 MHz  
Copyright © 2023 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.13 Typical Characteristics - ADC32RF55 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 3 GSPS, LMFS = 82820, 50% clock duty cycle, AVDD18 = 1.8 V,  
AVDD12, CLKVDD, DVDD = 1.2 V and 1-dBFS differential input, unless otherwise noted  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
250  
500  
750  
1000  
1250  
1500  
0
250  
500  
750  
1000  
1250  
1500  
Input Frequency (MHz)  
Input Frequency (MHz)  
SNR = 66.4 dBFS, SFDR = 63 dBc, Non HD23 = 86 dBFS  
AIN = -20 dBFS, 2x AVG, Dither = DIS  
SNR = 65.5 dBFS1, SFDR = 73 dBc, Non HD23 = 95 dBFS  
AIN = -20 dBFS, 2x AVG, Dither = EN  
6-70. Single Tone FFT at FIN = 900 MHz  
6-71. Single Tone FFT at FIN = 900 MHz  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
250  
500  
750  
1000  
1250  
1500  
0
250  
500  
750  
1000  
1250  
1500  
Input Frequency (MHz)  
Input Frequency (MHz)  
SNR = 68.7 dBFS, SFDR = 62 dBc, Non HD23 = 87 dBFS  
AIN = -20 dBFS, 4x AVG, Dither = DIS  
SNR = 68.1 dBFS1, SFDR = 71 dBc, Non HD23 = 78 dBFS  
AIN = -20 dBFS, 4x AVG, Dither = EN  
6-72. Single Tone FFT at FIN = 900 MHz  
6-73. Single Tone FFT at FIN = 900 MHz  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
250  
500  
750  
1000  
1250  
1500  
0
250  
500  
750  
1000  
1250  
1500  
Input Frequency (MHz)  
Input Frequency (MHz)  
IMD3 = 68 dBc  
IMD3 = 70 dBc  
AIN = -7 dBFS/tone, 1x AVG, Dither = DIS  
AIN = -10 dBFS/tone, 1x AVG, Dither = EN  
6-74. Two Tone FFT at FIN = 900/1000 MHz  
6-75. Two Tone FFT at FIN = 900/1000 MHz  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.13 Typical Characteristics - ADC32RF55 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 3 GSPS, LMFS = 82820, 50% clock duty cycle, AVDD18 = 1.8 V,  
AVDD12, CLKVDD, DVDD = 1.2 V and 1-dBFS differential input, unless otherwise noted  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
250  
500  
750  
1000  
1250  
1500  
0
250  
500  
750  
1000  
1250  
1500  
Input Frequency (MHz)  
Input Frequency (MHz)  
IMD3 = 54 dBc  
IMD3 = 71 dBc  
AIN = -26 dBFS/tone, 1x AVG, Dither = DIS  
AIN = -26 dBFS/tone, 1x AVG, Dither = EN  
6-76. Two Tone FFT at FIN = 900/1000 MHz  
6-77. Two Tone FFT at FIN = 900/1000 MHz  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
100  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
105  
SNR (1x)  
SNR (2x)  
SNR (4x)  
HD23 (1x)  
HD23 (2x)  
HD23 (4x)  
Non HD23 (1x)  
SNR (1x)  
SNR (2x)  
SNR (4x)  
HD23 (1x)  
HD23 (2x)  
HD23 (4x)  
Non HD23 (1x)  
Non HD23 (2x) 95  
Non HD23 (4x)  
90  
Non HD23 (2x) 100  
Non HD23 (4x)  
95  
85  
80  
75  
70  
65  
60  
55  
50  
90  
85  
80  
75  
70  
65  
60  
55  
0
250 500 750 1000 1250 1500 1750 2000 2250 2500  
0
400  
800  
1200  
1600  
2000  
2400  
Input Frequency (MHz)  
Input Frequency (MHz)  
AIN = -1 dBFS, Dither = DIS  
AIN = -4 dBFS, Dither = EN  
6-78. AC Performance vs FIN  
6-79. AC Performance vs FIN  
120  
115  
110  
105  
100  
95  
-153  
-154  
-155  
-156  
-157  
-158  
-159  
-160  
-161  
-162  
Dither DIS (1x)  
Dither DIS (2x)  
Dither DIS (4x)  
Dither EN (1x)  
Dither EN (2x)  
Dither EN (4x)  
90  
85  
0
500  
1000  
1500  
2000  
2500  
3000  
-80  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
FIN (MHz)  
Input Amplitude (dBFS)  
FIN = 900 MHz,  
AIN = -20 dBFS  
6-81. NSD Performance vs FIN  
6-80. Dither Spur vs AIN  
Copyright © 2023 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.13 Typical Characteristics - ADC32RF55 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 3 GSPS, LMFS = 82820, 50% clock duty cycle, AVDD18 = 1.8 V,  
AVDD12, CLKVDD, DVDD = 1.2 V and 1-dBFS differential input, unless otherwise noted  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
195  
180  
165  
150  
135  
120  
105  
90  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
145  
140  
135  
130  
125  
120  
115  
110  
105  
100  
95  
SNR (1x)  
SNR (2x)  
SNR (4x)  
HD23 (1x)  
HD23 (2x)  
HD23 (4x)  
Non HD23 (1x)  
Non HD23 (2x)  
Non HD23 (4x)  
SNR (1x)  
SNR (2x)  
SNR (4x)  
HD23 (1x)  
HD23 (2x)  
HD23 (4x)  
Non HD23 (1x)  
Non HD23 (2x)  
Non HD23 (4x)  
90  
75  
85  
60  
80  
45  
75  
-79  
-69  
-59  
-49  
-39  
-29  
-19  
-9  
-1  
-79  
-69  
-59  
-49  
-39  
-29  
-19  
-9  
-1  
Input Amplitude (dBFS)  
Input Amplitude (dBFS)  
FIN = 900 MHz, Dither = DIS  
FIN = 900 MHz, Dither = EN  
6-82. AC Performance vs AIN  
6-83. AC Performance vs AIN  
160  
150  
140  
130  
120  
110  
100  
90  
160  
150  
140  
130  
120  
110  
100  
90  
1x (FIN = 1700/1800 MHz)  
2x (FIN = 1700/1800 MHz)  
4x (FIN = 1700/1800 MHz)  
1x (FIN = 700/800 MHz)  
2x (FIN = 700/800 MHz)  
4x (FIN = 700/800 MHz)  
1x (FIN = 1700/1800 MHz)  
2x (FIN = 1700/1800 MHz)  
4x (FIN = 1700/1800 MHz)  
1x (FIN = 700/800 MHz)  
2x (FIN = 700/800 MHz)  
4x (FIN = 700/800 MHz)  
80  
80  
70  
60  
70  
-80  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
-80  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
Input Amplitude/Tone (dBFS)  
Input Amplitude/Tone (dBFS)  
Dither = DIS  
Dither = EN  
6-84. IMD3 Performance vs AIN  
6-85. IMD3 Performance vs AIN  
95  
95  
90  
85  
80  
75  
70  
65  
60  
67  
90  
85  
80  
75  
70  
65  
60  
SNR (1x)  
HD2/3 (1x)  
Non HD23 (1x)  
SNR (2x)  
HD2/3 (2x)  
Non HD23 (2x)  
SNR (4x)  
HD2/3 (4x)  
Non HD23 (4x)  
SNR (1x)  
SNR (2x)  
SNR (4x)  
HD23 (1x)  
HD23 (2x)  
HD23 (4x)  
Non HD23 (1x)  
Non HD23 (2x)  
Non HD23 (4x)  
90  
85  
80  
75  
70  
65  
60  
66  
65  
64  
63  
62  
61  
0.5 0.75  
1
1.25 1.5 1.75  
2
2.25 2.5 2.75  
3
1.75  
1.775  
1.8  
AVDD18 (V)  
1.825  
1.85  
Sampling Rate (GSPS)  
FIN = 900 MHz, AIN = -1 dBFS, Dither = DIS  
FIN = 900 MHz, AIN = -1 dBFS, Dither = DIS, Other supplies  
nominal  
6-86. AC Performance vs FS  
6-87. AC Performance vs AVDD18  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.13 Typical Characteristics - ADC32RF55 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 3 GSPS, LMFS = 82820, 50% clock duty cycle, AVDD18 = 1.8 V,  
AVDD12, CLKVDD, DVDD = 1.2 V and 1-dBFS differential input, unless otherwise noted  
67  
66  
65  
64  
63  
62  
61  
60  
95  
90  
85  
80  
75  
70  
65  
60  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
110  
105  
100  
95  
SNR (1x)  
SNR (2x)  
SNR (4x)  
HD23 (1x)  
HD23 (2x)  
HD23 (4x)  
Non HD23 (1x)  
Non HD23 (2x)  
Non HD23 (4x)  
SNR (1x)  
SNR (2x)  
SNR (4x)  
HD23 (1x)  
HD23 (2x)  
HD23 (4x)  
Non HD23 (1x)  
Non HD23 (2x)  
Non HD23 (4x)  
90  
85  
80  
75  
70  
65  
1.175  
1.2  
AVDD12 (V)  
1.225  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80  
Ambient Temperature (degC)  
FIN = 900 MHz, AIN = -1 dBFS, Dither = DIS, Other supplies  
nominal  
FIN = 900 MHz, AIN = -1 dBFS, Dither = DIS  
6-89. AC Performance vs Temperature  
6-88. AC Performance vs AVDD12  
68  
67  
66  
65  
64  
63  
62  
61  
60  
95  
90  
85  
80  
75  
70  
65  
60  
55  
66  
65  
64  
63  
62  
61  
60  
90  
85  
80  
75  
70  
65  
60  
SNR (1x)  
SNR (2x)  
SNR (4x)  
HD23 (1x)  
HD23 (2x)  
HD23 (4x)  
Non HD23 (1x)  
Non HD23 (2x)  
Non HD23 (4x)  
SNR, 1x AVG  
HD23, 1x AVG  
Non HD23, 1x AVG  
SNR, 2x AVG  
HD23, 2x AVG  
Non HD23, 2x AVG  
40  
45  
50  
Clock Duty Cycle (%)  
55  
60  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80  
Ambient Temperature (degC)  
FIN = 900 MHz, AIN = -1 dBFS, Dither = DIS  
FIN = 900 MHz, AIN = -4 dBFS, Dither = EN  
6-91. AC Performance vs Clock Duty Cycle  
6-90. AC Performance vs Temperature  
130  
120  
110  
100  
90  
5
4
1x AVG  
2x AVG  
4x AVG  
1x AVG  
2x AVG  
4x AVG  
3
2
1
0
-1  
-2  
-3  
-4  
-5  
80  
70  
0
250 500 750 1000 1250 1500 1750 2000 2250 2500  
Input Frequency (MHz)  
0
1024  
2048  
Code  
3072  
4096  
FIN = 900 MHz, Dither = DIS  
6-92. Isolation vs Input Frequency  
6-93. INL vs Code  
Copyright © 2023 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.13 Typical Characteristics - ADC32RF55 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 3 GSPS, LMFS = 82820, 50% clock duty cycle, AVDD18 = 1.8 V,  
AVDD12, CLKVDD, DVDD = 1.2 V and 1-dBFS differential input, unless otherwise noted  
1.5  
1.25  
1
45%  
40%  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
1x AVG  
2x AVG  
4x AVG  
1x AVG  
2x AVG  
4x AVG  
0.75  
0.5  
0.25  
0
-0.25  
-0.5  
-0.75  
-1  
-1.25  
-1.5  
0
0
1024  
2048  
Code  
3072  
4096  
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056  
Output Code  
FIN = 900 MHz, Dither = DIS  
Dither = DIS  
6-94. DNL vs Code  
6-95. DC Offset Histogram  
4
3.5  
3
70  
60  
50  
40  
30  
20  
10  
AVDD18 (1x)  
AVDD12 (1x)  
DVDD (1x)  
AVDD18 (2x)  
AVDD12 (2x)  
DVDD (2x)  
AVDD18 (4x)  
AVDD12 (4x)  
DVDD (4x)  
FIN = 900 MHz  
FIN = 1800 MHz  
CLKVDD (1x)  
CLKVDD (2x)  
CLKVDD (4x)  
2.5  
2
1.5  
1
0.5  
0
0.5  
1
1.5  
2
2.5  
3
0.01  
0.1  
1
10  
100  
500  
Sampling Rate (GSPS)  
Frequency (MHz)  
AIN = -1 dBFS, Dither = DIS, DDC Bypass  
AIN = -1 dBFS, 1x AVG, Dither = DIS  
6-97. Current vs Sampling Rate vs Averaging  
6-96. CMRR  
1.75  
1.75  
/4 (4-2-2-1)  
/8 (4-2-2-1)  
/16 (4-2-2-1)  
/4 (2-2-2-1)  
/8 (2-2-2-1)  
/16 (2-2-2-1)  
/32 (2-2-2-1)  
/64 (2-2-2-1)  
/4 (1-2-4-1)  
/8 (1-2-4-1)  
/16 (1-2-4-1)  
/32 (1-2-4-1)  
/64 (1-2-4-1)  
1.5  
1.25  
1
1.5  
1.25  
1
0.75  
0.5  
0.75  
0.5  
0.25  
0.25  
0.5 0.75  
1
1.25 1.5 1.75  
2
2.25 2.5 2.75  
3
0.5 0.75  
1
1.25 1.5 1.75  
2
2.25 2.5 2.75  
3
Sampling Rate (MSPS)  
Sampling Rate (MSPS)  
AIN = -1 dBFS, 1x AVG  
AIN = -1 dBFS, 1x AVG  
6-98. Current vs Sampling Rate vs Real Decimation  
6-99. Current vs Sampling Rate vs Real Decimation  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.13 Typical Characteristics - ADC32RF55 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 3 GSPS, LMFS = 82820, 50% clock duty cycle, AVDD18 = 1.8 V,  
AVDD12, CLKVDD, DVDD = 1.2 V and 1-dBFS differential input, unless otherwise noted  
2.25  
2
2.25  
2
/4 (8-4-2-2)  
/8 (8-4-2-2)  
/16 (8-4-2-2)  
/32 (8-4-2-2)  
/4 (4-4-2-1)  
/8 (4-4-2-1)  
/16 (4-4-2-1)  
/32 (4-4-2-1)  
/64 (4-4-2-1)  
/8 (2-4-4-1)  
/16 (2-4-4-1)  
/32 (2-4-4-1)  
/64 (2-4-4-1)  
/16 (1-4-8-1)  
/32 (1-4-8-1)  
/64 (1-4-8-1)  
/128 (1-4-8-1)  
1.75  
1.5  
1.25  
1
1.75  
1.5  
1.25  
1
0.75  
0.5  
0.25  
0.75  
0.5  
0.25  
0.5 0.75  
1
1.25 1.5 1.75  
2
2.25 2.5 2.75  
3
0.5 0.75  
1
1.25 1.5 1.75  
2
2.25 2.5 2.75  
3
Sampling Rate (MSPS)  
Sampling Rate (GSPS)  
AIN = -1 dBFS, 1x AVG  
Single Band Decimation  
AIN = -1 dBFS, 1x AVG  
Single Band Decimation  
6-100. Current vs Sampling Rate vs Complex Decimation  
6-101. Current vs Sampling Rate vs Complex Decimation  
2.25  
2.25  
/8 (8-8-2-1)  
/16 (8-8-2-1)  
/32 (8-8-2-1)  
/64 (8-8-2-1)  
/8 (4-8-4-1)  
/16 (4-8-4-1)  
/32 (4-8-4-1)  
/64 (4-8-4-1)  
/128 (4-8-4-1)  
/16 (2-8-8-1)  
/32 (2-8-8-1)  
/64 (2-8-8-1)  
/128 (2-8-8-1)  
/32 (1-8-16-1)  
/64 (1-8-16-1)  
/128 (1-8-16-1)  
2
1.75  
1.5  
2
1.75  
1.5  
1.25  
1
1.25  
1
0.75  
0.5  
0.75  
0.5  
0.25  
0.25  
0.5 0.75  
1
1.25 1.5 1.75  
2
2.25 2.5 2.75  
3
0.5 0.75  
1
1.25 1.5 1.75  
2
2.25 2.5 2.75  
3
Sampling Rate (MSPS)  
Sampling Rate (MSPS)  
AIN = -1 dBFS, 1x AVG  
Dual Band Decimation  
AIN = -1 dBFS, 1x AVG  
Dual Band Decimation  
6-102. Current vs Sampling Rate vs Complex Decimation  
6-103. Current vs Sampling Rate vs Complex Decimation  
2.25  
2.25  
/16 (8-16-4-1)  
/32 (8-16-4-1)  
/64 (8-16-4-1)  
/128 (8-16-4-1)  
/16 (4-16-8-1)  
/32 (4-16-8-1)  
/64 (4-16-8-1)  
/128 (4-16-8-1)  
/32 (2-16-16-1)  
/64 (2-16-16-1)  
/128 (2-16-16-1)  
/64 (1-16-32-1)  
/128 (1-16-32-1)  
2
1.75  
1.5  
2
1.75  
1.5  
1.25  
1
1.25  
1
0.75  
0.5  
0.75  
0.5  
0.25  
0.25  
0.5 0.75  
1
1.25 1.5 1.75  
2
2.25 2.5 2.75  
3
0.5 0.75  
1
1.25 1.5 1.75  
2
2.25 2.5 2.75  
3
Sampling Rate (MSPS)  
Sampling Rate (MSPS)  
AIN = -1 dBFS, 1x AVG  
Quad Band Decimation  
AIN = -1 dBFS, 1x AVG  
Quad Band Decimation  
6-104. Current vs Sampling Rate vs Complex Decimation  
6-105. Current vs Sampling Rate vs Complex Decimation  
Copyright © 2023 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.13 Typical Characteristics - ADC32RF55 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 3 GSPS, LMFS = 82820, 50% clock duty cycle, AVDD18 = 1.8 V,  
AVDD12, CLKVDD, DVDD = 1.2 V and 1-dBFS differential input, unless otherwise noted  
7
6
5
4
3
2
1
7
6
5
4
3
2
1
AVDD12 (1x)  
AVDD12 (2x)  
AVDD12 (4x)  
AVDD18 (1x)  
AVDD18 (2x)  
AVDD18 (4x)  
DVDD (1x)  
DVDD (2x)  
DVDD (4x)  
AVDD12 (1x)  
AVDD12 (2x)  
AVDD12 (4x)  
AVDD18 (1x)  
AVDD18 (2x)  
AVDD18 (4x)  
DVDD (1x)  
DVDD (2x)  
DVDD (4x)  
0
0
1.725  
1.75  
1.775  
1.8  
1.825  
1.85  
1.875  
1.15  
1.175  
1.2  
1.225  
1.25  
AVDD18 (V)  
AVDD12 (V)  
AIN = -1 dBFS, DDC Bypass  
AIN = -1 dBFS, DDC Bypass  
6-106. IAVDD18 vs Supply  
6-107. IAVDD12 vs Supply  
7
6
5
4
3
2
1
4
3.5  
3
AVDD12 (1x)  
AVDD12 (2x)  
AVDD12 (4x)  
AVDD18 (1x)  
AVDD18 (2x)  
AVDD18 (4x)  
DVDD (1x)  
DVDD (2x)  
DVDD (4x)  
AVDD18 (1x)  
AVDD12 (2x)  
AVDD12 (4x)  
DVDD (1x)  
DVDD (4x)  
AVDD18 (2x)  
AVDD18 (4x)  
AVDD12 (1x)  
CLKVDD (1x)  
CLKVDD (2x)  
CLKVDD (4x)  
DVDD (2x)  
2.5  
2
1.5  
1
0.5  
0
1.15  
0
1.175  
1.2  
1.225  
1.25  
-60 -50 -40 -30 -20 -10  
0
10  
20  
30  
40  
50  
60  
70  
80  
DVDD (V)  
Ambient Temperature (degC)  
AIN = -1 dBFS, DDC Bypass  
AIN = -1 dBFS, DDC Bypass  
6-108. IDVDD vs Supply  
6-109. Current vs Temperature  
14%  
12%  
10%  
8%  
6%  
4%  
2%  
0
17.5%  
15%  
12.5%  
10%  
7.5%  
5%  
2.5%  
0
1.86 1.87 1.88 1.89 1.90 1.91 1.92 1.93 1.94 1.95 1.96  
AVDD12 (A)  
2.77 2.81 2.85 2.89 2.93 2.97 3.01 3.05 3.09  
DVDD (A)  
AIN = -1 dBFS, DDC Bypass  
AIN = -1 dBFS, DDC Bypass  
6-110. AVDD12 Distribution  
6-111. DVDD Distribution  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The ADC32RF5x is a single core (non-interleaved) 14-bit, 2.6 GSPS to 3 GSPS, dual channel analog to digital  
converter (ADC). The design maximizes signal-to-noise ratio (SNR) and delivers a noise spectral density of -155  
dBFS/Hz. Additional internal ADCs can be used for on-chip averaging (2x and 4x) to further improve the noise  
density to as low as -161 dBFS/Hz.  
The analog signal input is non-buffered to save power consumption with a nominal differential input impedance  
of 100 Ω. The full power input bandwidth is 2.75 GHz (-3 dB) and the device supports direct RF sampling with  
input frequencies in the through the L-band. The device is designed for low residual phase noise to support high  
performance radar applications. The sampling clock input has a dedicated power supply input which requires a  
very clean power supply.  
Each ADC channel can be connected to a quad-band digital down-converter (DDC) using a 48-bit NCO which  
supports phase coherent frequency hopping. Using the GPIO pins for NCO frequency control, frequency  
hopping can be achieved in less than 1 µs. The digital down converters support a wide range of instantaneous  
bandwidth (IBW) coverage - from single wide band mode with 4x complex decimation to up to four narrow  
bandwidth channels with as high as 128x complex decimation.  
The ADC32RF5x supports the JESD204B serial data interface with subclass 1 deterministic latency using data  
rates up to 13.0 Gbps. In bypass mode, 14-bit output is supported up to a sampling rate of 2.6 Gsps. From 2.6 to  
3 Gsps a 12-bit interface with more efficient data packing can be used at expense of quantization noise. When  
using decimation the output is 16-bit.  
7.2 Functional Block Diagram  
100  
ADC  
DDC  
NCO  
DDC  
DDC  
INA2P/M  
INA1P/M  
DDC  
DOUT0P/M  
DOUT3P/M  
N
100ꢀ  
ADC  
CLKP/M  
SYSREFP/M  
DOUT4P/M  
DOUT7P/M  
100ꢀ  
100ꢀ  
ADC  
DDC  
NCO  
DDC  
DDC  
INB1P/M  
INB2P/M  
DDC  
N
ADC  
RESETb  
SEN  
SPI Registers and  
Device Control  
SCLK  
SDIO  
GPIO2 SPISEL  
GPIO1  
Copyright © 2023 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
 
 
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Analog Inputs  
The ADC32RF5x provides up to four internal ADCs per channel for purpose of averaging in order to improve the  
noise performance. Two ADCs internally are connected to the same differential input pins as shown in the  
equivalent input schematic (see 7-1). The analog inputs have a differential 100 Ω split termination with  
internal biasing. This can be changed to differential 50 Ω termination via SPI register write. When only a single  
ADC is used, there is a minor parasitic capacitance remaining from the unused ADC.  
Sampling Switch  
7  
11 ꢀ  
AVDD12  
ADCx  
0.4 pF  
1.4 pF  
0.7 pF  
0.6 nH  
2 ꢀ  
1 nH  
xINP/  
xINM  
GND  
GND  
GND  
7 ꢀ  
11 ꢀ  
50 ꢀ  
0.2 pF  
GND  
ADCy  
VCM  
0.4 pF  
1.4 pF  
0.7 pF  
GND  
GND  
GND  
GND  
7-1. Equivalent Input Schematic  
7.3.1.1 Input Bandwidth and Full-Scale  
The input bandwidth (-3 dB) and input fullscale are dependent on what input termination and averaging mode  
are chosen as shown in the summary in 7-1. With 4x averaging enabled, the -3 dB bandwidth reduces to ~  
2.1 GHz and 100 Ω differential termination - the bandwidth can be increased by changing the input termination  
to 50 Ωdifferential.  
7-1. Digital averaging vs Full Power Input Bandwidth (3 dB)  
# of ADCs  
averaged  
ADC inputs used for Input Bandwidth (-3  
Selected differential  
input termination  
Effective differential  
input termination  
Input Full-scale  
averaging  
dB)  
Default  
INx1  
2.75 GHz  
2.75 GHz  
2.1 GHz  
+ 2 dBm  
+ 3.5 dBm  
+ 6.6 dBm  
100 Ω  
100 Ω  
100 Ω  
100 Ω  
100 Ω  
50 Ω  
2
4
INx1  
INx1, INx2  
The full power input bandwidth plots with input RESET switch disabled (RSW0) and enabled (RSW1) are shown  
in 7-2.  
2
1
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
RSW1, 1x AVG  
-8  
-9  
RSW1, 2x AVG  
RSW0, 1x AVG  
RSW0, 2x AVG  
-10  
100  
1000  
Input Frequency (MHz)  
4000  
7-2. Input Bandwidth - Reset switch DIS  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: ADC32RF54 ADC32RF55  
 
 
 
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
The RESET switch is enabled by default and can be disabled with the following register writes:  
7-2. Register Write Example for Configuring the Internal Dither  
ADDR  
0x05  
DATA  
0x40  
0xC0  
0x03  
DESCRIPTION  
Select ANALOG page  
0x6D  
0x6E  
Disable RESET Switch (to enable: 0x00)  
Disable RESET Switch (to enable: 0x00)  
7.3.1.2 Input Imbalance  
The AC performance is sensitive to amplitude and phase imbalance of the analog inputs, as shown in 7-3 and  
7-4 for 1x and 2x internal averaging (FS = 2.6 GSPS, FIN = 0.9 GHz, AIN = -1 dBFS, dither = DIS) and 7-5  
and 7-6 (FS = 3.0 GSPS, FIN = 0.9 GHz, AIN = -1 dBFS, dither = DIS).  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
SNR (1x)  
SNR (2x)  
HD2 (1x)  
HD2 (2x)  
Non HD23 (1x)  
Non HD23 (2x)  
SNR (1x)  
SNR (2x)  
HD2 (1x)  
HD2 (2x)  
Non HD23 (1x)  
Non HD23 (2x)  
-1  
-0.5  
0
0.5  
1
-10  
-5  
0
5
10  
Amplitude Imbalance (dB)  
Phase Imbalance (°)  
7-3. Amplitude Imbalance - 2.6 GSPS  
7-4. Phase Imbalance - 2.6 GSPS  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
SNR (1x)  
SNR (2x)  
HD2 (1x)  
HD2 (2x)  
Non HD23 (1x)  
Non HD23 (2x)  
SNR (1x)  
SNR (2x)  
HD2 (1x)  
HD2 (2x)  
Non HD23 (1x)  
Non HD23 (2x)  
-1.5  
-1  
-0.5  
0
0.5  
1
1.5  
-10  
-5  
0
5
10  
Amplitude Imbalance (dB)  
Phase Imbalance (°)  
7-5. Amplitude Imbalance - 3.0 GSPS  
7-6. Phase Imbalance - 3.0 GSPS  
Copyright © 2023 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
 
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7.3.1.3 Overrange Indication  
The ADC provides two options (configured using SPI) to indicate if input fullscale overrange occurred:  
Fast Overrange on GPIO1/2 pins: indication is available after ~ 6 clock cycles and the overrange indication  
flag stays high (sticky) until it is cleared via SPI register writes. Note: OVRA and OVRB or OR-ed together  
and given on GPIO1 and 2.  
Overrange embedded in JESD stream: in this configuration the overrange indicator replaces the LSB of the  
output data of the corresponding channel. The indicator is output ahead of the data and is updated every  
clock cycle.  
7-3. JESD OVR Latency  
OVR Latency (incl JESD, in sampling  
Decimation  
# of Bands  
clock cycles)  
DDC Bypass  
-
140-144  
44  
Single (real and complex), dual  
8
16  
32  
64  
128  
Quad  
33  
Single (real and complex), dual  
80  
Quad  
Single (real and complex), dual  
Quad  
58  
152  
108  
296  
208  
584  
408  
Single (real and complex), dual  
Quad  
Single (real and complex), dual  
Quad  
The overrange output flag (GPIO or JESD) is the output of individual overrange flags of all ADCs per channel  
being used. For example, in non-averaged mode the overrange indication per channel is for a single ADC while  
in 4x average mode the overrange flag of all 4 ADCs are OR-ed together. 7-4shows how to configure the  
OVR using SPI registers.  
7-4. Programming example to configure the OVR to GPIO or JESD  
ADDR  
DATA  
OVR on GPIO1 and GPIO2, OVR sticky  
0x40 Select ANALOG page  
0x00/01 0x00 chA, 0x01 chB  
DESCRIPTION  
ADDR  
DATA  
DESCRIPTION  
OVR on JESD  
0x05  
0xB7  
0x05  
0x05  
0x2E  
0x05  
0x02  
D0  
Select DIGITAL page  
Set D0 = 1 to enable OVR on JESD  
0x02  
0x05  
0xF0  
Select DIGITAL page  
0x00  
0x237  
0x238  
Configures GPIO pins as outputs  
These extra writes are only needed using decimation  
0x05  
0x20  
0x18  
0x06  
Select DDCA/B page  
Enable OVR on JESD  
Clear OVR  
0x05  
0x74  
0x74  
0x84  
0x84  
0x40  
0x04  
0x00  
0x04  
0x00  
Select ANALOG page  
Clear OVR flag chA  
Clear OVR flag chB  
Change OVR from sticky to non sticky (self clear)  
0x05  
0x31  
0x40  
0x26  
Select ANALOG page  
Set OVR to non-sticky  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: ADC32RF54 ADC32RF55  
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7.3.1.4 Analog out-of-band dither  
The ADC32RF5x provides optional (enabled via SPI writes) analog out-of-band, large amplitude dither. It has a  
bandwidth of ~ 20 MHz located at DC and an adjustable amplitude with a maximum dither power of ~ -20 dBFS  
(PAR ~ 9 dB). The dither is completely rolled-off into the noise floor within ~ 100 MHz as illustrated in 7-7.  
Since the dither is large amplitude, it is recommended for the signal input not to exceed -2.5 dBFS to avoid input  
saturation. The dither signal also couples to the input signal and, depending on input frequency, can degrade the  
close in phase noise.  
~ 20 MHz  
~ 100 MHz  
FS/2  
7-7. Analog out-of-band dither  
In the frequency domain the dither signal shows up like individual tones as shown in 7-8. The dither update  
frequency can be adjusted with the dither divider setting. The dither update frequency is: FS / 4 / 2047 / 'Dither  
Divider'. In the frequency spectrum there will be 2 larger dither spurs at FIN +/- FS / 4 / 'Dither Divider'.  
By default, the divider is set to 50, which translates to a dither spur spacing of ~ 7 kHz. A divider setting of 32  
translates to a dither spacing of ~ 11 kHz as shown in 7-9. The lower the divider setting, the higher the dither  
tone frequency. 7-9 also shows that the dither energy reduces as the offset frequency increases - less dither  
energy reduces the higher harmonic spur improvement.  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
Dither by 32  
Dither by 16  
Dither by 8  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
Frequency Offset (MHz)  
Frequency Offset (MHz)  
7-8. Dither Close-Up  
7-9. Dither vs Dither Divider Setting  
Copyright © 2023 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
 
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
The analog dither needs to be enabled in multiple locations. Different dither amplitudes should be used  
depending on internal averaging used as shown in 7-5.  
7-5. Recommended Dither Amplitude Settings  
Mode  
Amplitude  
Dither Amp1  
Dither Amp2  
1x AVG  
+/-1024 codes  
0
0
0
1x AVG  
+/-768 codes  
+/-1024 codes  
+/-768 codes  
-4  
0
2x/4x AVG  
2x/4x AVG  
3
0
0
The internal analog dither can be enabled via the following register writes. The dither divider is set in register  
0xB1 as actual -1 (e.g. a divider of 48 would be programmed as 47, default is 0x00 which is divider = 50). See 表  
7-6.  
7-6. Register Write Example for Configuring the Internal Dither  
ADDR  
DATA  
DESCRIPTION  
ADDR  
DATA  
DESCRIPTION  
0x05  
0x40  
Select ANALOG page  
0xB1  
0x00  
Sets dither divider. 0x00 = /50  
0xA8  
0xCD  
0x04  
0x00  
0x00  
0x01  
DITHER AMP1: 3 = 0x80, 0 = 0x00  
DITHER AMP2: -4 = 0x40, 0 = 0x00  
0xB2  
0xAF  
0xAF  
0x00  
0x18  
0x10  
0x10 = dither ENABLED, 0x90 = dither  
DISABLED  
0x20  
0x91  
0xAF  
0x04  
0x40  
0x10  
0x04  
0x20  
0x04  
0x01  
0x00  
0x00  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: ADC32RF54 ADC32RF55  
 
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7.3.2 Sampling Clock Input  
The internal sampling clock path was designed for lowest residual phase noise contribution. The sampling clock  
circuitry requires a dedicated low noise power supply for best performance. The internal residual clock phase  
noise is also sensitive to clock amplitude. For best performance, the clock amplitude should be larger than 1  
Vpp. The phase noise ideally improves by 3 dB per 2x averaging, however at higher input frequenices the clock  
path contribution reduces the improvement.  
7-7. Internal Aperture Clock Phase Noise  
(FS = 3 Gsps, VIN = 1 Vpp)  
Frequency Offset (MHz)  
Amplitude (dBc/Hz)  
0.001  
0.01  
0.1  
1
-117  
-127  
-137  
-147  
-154  
-160  
10  
250  
The clock input and ADC sampling circuitry also have an amplitude noise component which modulates on to the  
sampled input signal. Unlike phase noise, the amplitude noise doesn't scale with input frequency, it is only  
affected by the sampling reset switch as shown in 7-10 and 7-11. This noise component can dominate the  
close in noise performance at lower input frequencies.  
-115  
-120  
-125  
-130  
-135  
-140  
-145  
-150  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
Phase Noise RS_SW DIS  
Phase Noise RS_SW EN  
Amplitude Noise RS_SW DIS  
Amplitude Noise RS_SW EN  
FIN = 110 MHz, RS_SW DIS  
FIN = 710 MHz, RS_SW DIS  
FIN = 910 MHz, RS_SW DIS  
FIN = 110 MHz, RS_SW EN  
FIN = 710 MHz, RS_SW EN  
FIN = 910 MHz, RS_SW EN  
100  
1000  
Input Frequency (MHz)  
3000  
0.0001  
0.001  
0.01  
0.1  
1
10  
Frequency (MHz)  
7-10. Amplitude Noise vs Input Frequency  
7-11. Amplitude and Phase noise at 10 kHz  
offset vs Input Frequency  
Copyright © 2023 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
The internal aperture jitter is also dependent on the amplitude of the external clock input signal. 7-12 and 图  
7-13 show the expected SNR performance with dither on/off across clock amplitude (FS = 2.6 GSPS).  
7-12. SNR vs Clock Amplitude (Dither OFF)  
7-13. SNR vs Clock Amplitude (Dither ON)  
The sampling clock input is internally terminated to 100 Ωdifferentially and provides a return loss better than 10  
dB at 3 GHz (see 7-14). The clock input consists of a single clock input buffer followed by a dedicated clock  
buffer for ADCA1/2 as well as ADCB1/2. When averaging multiple ADCs, there are some close in clock buffer  
noise which is correlated; and thus, does not improve with averaging.  
VCM  
To ADCA1/2  
5 k  
CLKP  
Buffer  
100 ꢀ  
CLKM  
5 kꢀ  
To ADCB1/2  
VCM  
7-14. Internal Clock Input Routing  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: ADC32RF54 ADC32RF55  
 
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7.3.3 SYSREF  
The SYSREF input signal is used to reset internal digital blocks and align them to the internal multi-frame clock  
in order to achieve deterministic latency subclass 1. The SYSREF input signal can be AC or DC coupled  
(selected via SPI register option) as shown in 7-15. The ADC32RF5x has internal 100-Ω termination for DC  
coupling and internal biasing when using AC coupling.  
A register mask can be used to only give SYSREF to the NCO (see NCO section) in the decimation filter block,  
and leave all other blocks such as JESD interface unaffected.  
When giving a periodic SYSREF signal, its frequency is required to be a sub-harmonic of the internal local multi-  
frame clock (LMFC). The LMFC frequency is determined by the selected decimation, frames per multi-frame  
setting (K), samples per freame (S) and the device sampling frequency (FS).  
7-8. LMFC and SYSREF settings for different operating modes  
Operating Mode  
LMFS Mode  
LMFC Clock Frequency  
SYSREF Frequency  
DDC Bypass Mode  
82820  
8224  
FS / (20 * K)  
FS / (N * 20 x K)  
FS / (4 * K)  
FS / (N * 4 * K)  
Decimation  
Various  
FS / (D * S * K)  
FS / (N * D * S * K)  
where N is an integer value (1, 2, 3...)  
After enabling SYSREF input, the internal SYSREF input ignores any incoming SYSREF pulse after the first 16  
pulses.  
0.7V  
5 k  
SYSREFP  
SYSREFM  
SYSREFP  
SYSREFM  
Buffer  
Buffer  
100 ꢀ  
5 kꢀ  
0.7V  
7-15. SYSREF Input Circuitry and Edge Alignment  
The internal synchronization using the external SYSREF signal can be enabled with the following register writes  
(see 7-9)  
7-9. Register Write Example for Enabling SYSREF Synchronization  
ADDR  
0x05  
DATA  
0x02  
0x02  
0x03  
DESCRIPTION  
Select DIGITAL page  
0x236  
0x236  
Enable internal SYSREF input and clear SYSREF pulse counter  
Starts internal SYSREF counter  
AC coupling with internal biasing of the SYSREF input can be enabled with the following SPI register writes (see  
7-10)  
7-10. Register Write Example for Enabling SYSREF AC Coupling  
ADDR  
0x05  
DATA  
0x40  
0x01  
DESCRIPTION  
Select ANALOG page  
Enable external AC coupling with internal biasing on SYSREF  
0xB4  
Copyright © 2023 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
 
 
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7.3.3.1 SYSREF Capture Detection  
The SYSREF input signal rising edge should be edge aligned with the rising edge of the sampling clock in order  
to maximize the setup and hold times. The ADC32RF5x includes an internal SYSREF monitoring circuitry to  
detect possible metastability resulting in a clock cycle slip; and thus, misalignment across devices.  
The sampling clock gets delayed by ~160 ps and then captures the SYSREF signal. The SYSREF monitoring  
circuitry captures the SYSREF signal ±50 ps (-50, -25, +16, +32, +48 ps) around the main SYSREF capture. In  
ideal conditions no SYSREF transition happens within the 100 ps SYSREF capture window and all XOR flags  
show "0". If a SYSREF/clock misalignment happens and the SYSREF transition falls within the SYSREF  
monitoring window, then one of the XOR flags (which monitor adjacent SYSREF captures within the window)  
shows a "1" and the SYSREF can be adjusted externally.  
The SYSREF monitor registers are not sticky registers, which are updated at every rising edge of SYSREF.  
110 ps  
delay  
25 ps  
delay  
25 ps  
delay  
16 ps  
delay  
16 ps  
delay  
16 ps  
delay  
CLK  
SYSREF  
A
B
C
D
E
F
XOR  
5
XOR  
1
XOR  
3
XOR  
4
XOR  
2
SYSREF captured to ADC  
7-16. SYSREF Detection Circuitry  
7-17 shows a misaligned SYSREF signal where the SYSREF signal arrives much later than the sampling  
clock rising edge. The SYSREF window feature checks if the SYSREF transition is within ±50 ps of the instant  
when the SYSREF signal gets captured by the sampling clock.  
In this example, the delayed SYSREF signal transitions between the "B" and "C" flip flop which raises the XOR2  
flag. The XOR flags get reported in register 0x22F in the digital page. In this exampe, Register 0x22F reads back  
0x8B, as shown in 7-11.  
+/- 50ps  
SYSREF and  
sampling clock are  
edge aligned  
XOR XOR XOR XORXOR  
4
1
2
3
5
SYSREF  
CLK  
CLK + 160ps  
7-17. Detection of SYSREF Transition Within Capture Window  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: ADC32RF54 ADC32RF55  
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7-11. SYSREF Window Register Example (0x22F)  
ADDR  
D7  
1
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1
SYSREF X5 SYSREF X4 SYSREF X3 SYSREF X2 SYSREF X1 SYSREF OR  
0x22F  
1
0
0
0
1
0
1
1
Copyright © 2023 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7.3.4 ADC Foreground Calibration  
The internal ADC architecture is sensitive to temperature changes. The devices contains two additional internal  
ADC cores. One for channel A1/2, and one for channel B1/2 which are used when one of the ADCs is in  
calibration. The ADCs are calibrated as pairs where one ADC at a time is connected to the internal calibration  
DAC. The calibration is configured via SPI register writes and can be executed using SPI register writes or using  
the GPIO1 pin. When executed, the calibration takes ~ 27 ms/ADC pair (~13.5 ms/ADC). The example in 图  
7-18 shows 2x internal averaging where 4 ADC cores (#1, #2 for chA1 and #6, #7 for chB1) are used in  
operation and ADCs #5 and #10 for calibration.  
#1  
ChA1  
#2  
#3  
ChA2  
#4  
#5  
CAL  
DAC  
#10  
#9  
ChB2  
#8  
#7  
ChB1  
#6  
7-18. Internal ADC setup for 2x averaging mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: ADC32RF54 ADC32RF55  
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7.3.4.1 Calibration Control  
7-19 shows a timing diagram of the calibration control using GPIO1 pin.  
When GPIO1 transitions to LOW logic state:  
an ADC pair gets swapped out within ~ 120 ns  
a new calibration gets triggered immediately  
If GPIO1 is being held low when the calibration of an ADC pair is completed, the next ADC pair is switched and a  
new calibration is triggered. The order in which ADC pair gets calibrated can be configured via SPI to serial or  
random.  
When using 2x averaging for example, the calibration should be executed for 3 ADC pairs to ensure all ADCs in  
use have been calibrated recently.  
1
2
3
4
6
7
8
9
5
2
3
4
10  
7
5
2
3
4
10  
7
1
5
3
4
6
10  
8
1
5
3
4
6
10  
8
1
2
5
4
6
7
1
2
3
5
6
7
1
2
3
5
6
7
ADCs  
In use  
8
8
10  
9
8
8
9
9
9
9
10  
10  
ADCs  
O -line  
5
10  
1
6
2
7
4
9
ADCs  
in cal  
1
6
2
7
3
8
4
9
GPIO1  
Time  
27ms  
27ms  
27ms  
27ms  
7-19. Timing Diagram - Calibration (4x AVG Example)  
7-20 shows the ADC switch happens approximate 120 ns after the logic level change on GPIO1 is detected.  
Input  
GPIO  
120ns  
7-20. Timing diagram shows the ADC switch  
Copyright © 2023 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
 
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7.3.4.2 ADC Switch  
During the ADC transition, the amplitude may drop less 1% for 1-2 samples as shown in 7-21. The gain  
variation from one ADC to the next is ~ < 0.05 dB while the phase change is less 0.01 deg as shown in 7-22.  
-2.94  
-2.95  
-2.96  
-2.97  
-2.98  
-2.99  
-3  
39.52  
39.5  
Amplitude  
Phase  
39.48  
39.46  
39.44  
39.42  
39.4  
-3.01  
-3.02  
-3.03  
-3.04  
-3.05  
-3.06  
39.38  
39.36  
39.34  
39.32  
39.3  
39.28  
-100  
-50  
0
50  
100  
Time (us)  
7-22. Amplitude and Phase vs Time  
7-21. Output Code vs ADC Sample  
7.3.4.3 Calibration Configuration  
The ADC32RF5x provides 3 different options to configure the internal foreground calibration:  
Continous calibration - see 7-12  
Calibrate all ADCs one time using SPI trigger - see 7-13  
Calibrate 2 ADC pairs at a time using GPIO trigger - see 7-14  
The status of the calibration can be read back from register 0x298 (CALIBRATION page). Successful calibration  
reads back 0x0E.  
7-12. Register Writes to Trigger CONTINOUS Calibration of all ADCs Using SPI  
ADDR  
0x05  
DATA  
0x20  
0x03  
DESCRIPTION  
Select CALIBRATION page  
0x46  
7-13. Register Writes to Trigger SINGLE Calibration of all ADCs Using SPI  
ADDR  
0x05  
0x48  
0x45  
0x45  
DATA  
0x20  
0x15  
0x8A  
0x0A  
DESCRIPTION  
Select CALIBRATION page  
Toggle calibration start  
wait 2 s  
7-14. Register Writes to Trigger ADC Pair Calibration Using the GPIO Pin  
ADDR  
0x05  
0x46  
0x45  
0x05  
0x234  
DATA  
0x20  
0x02  
0x4A  
0x02  
0x04  
DESCRIPTION  
Select CALIBRATION page  
Select DIGITAL page  
Use GPIO1 pin to freeze calibration switch  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: ADC32RF54 ADC32RF55  
 
 
 
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7.3.5 Decimation Filter  
The ADC32RF5x provides up to four digital down converters per ADC channel, see 7-23. The decimation  
filters provide a flexible option to cover a wide range of instantaneous bandwidths (IBW) as shown in 7-15.  
Single band decimation supports a wide bandwidth up to complex decimation by 4x while up to four narrow band  
channels with up to 128x complex decimation are supported in quad band decimation mode.  
DDC  
NCO  
DDC  
DDC  
DDC  
2x, 4x  
Averaging  
ADC  
N
JESD204B  
7-23. Digital Decimation Filter Options  
7-15. Summary of Different Decimation Filter Band Options  
# of DDCs  
Minimum Complex Decimation  
Maximum Complex Decimation  
1
2
4
4
8
128  
128  
128  
16  
The decimation filter can be configured to two different operating modes:  
Complex Decimation: This mode provides complex output with ~ 80% passband bandwidth using a 48-bit  
phase coherent NCO.  
During the complex mixing operation the digital output is reduced by 6-dB. This reduces the fullscale from 0-  
dBFS to -6-dBFS. This 6-dB change applies to signals and noise and thus no dynamic range is lost.  
Real Decimation: In real decimation mode, the complex mixer is bypassed (NCO is set to 0 for lowest power  
consumption), and the digital filter acts as a low pass filter. There is no frequency shifting and the output  
passband bandwidth is ~ 40%.  
Since the JESD204B interface is common across ADC channel A and B, the decimation ratio as well as the # of  
DDCs/ADC has to be the same across channels A and B.  
By default, the output of values of the decimation filter are rounded to 16-bit resolution. In order to avoid  
quantization noise limitation when using high order of decimation (that is /64 or /128), a special 20-bit output  
mode can be enabled (see 20-bit Output Mode).  
7-16 provides an overview of the available complex decimation settings and resulting complex and real output  
bandwidths.  
7-16. Complex Decimation Setting vs Output Bandwidth  
FS = 3 Gsps  
FS = 3 Gsps  
Decimation Complex Output  
Real Output  
Bandwidth per  
DDC  
Complex Output  
Real Output  
Factor N  
Bandwidth per  
DDC  
Complex Output  
Rate per DDC  
Real Output Rate  
per DDC  
Bandwidth per  
DDC  
Bandwidth per  
DDC  
(complex)  
4
8
0.8 x FS / 4  
0.8 x FS / 8  
750 Msps  
375 Msps  
600 MHz  
300 MHz  
150 MHz  
75 MHz  
0.4 x FS / 4  
0.4 x FS / 8  
750 Msps  
375 Msps  
300 MHz  
150 MHz  
75 MHz  
16  
32  
64  
128  
0.8 x FS / 16  
0.8 x FS / 32  
0.8 x FS / 64  
0.8 x FS / 128  
187.5 Msps  
93.75 Msps  
46.875 Msps  
23.4375 Msps  
0.4 x FS / 16  
0.4 x FS / 32  
0.4 x FS / 64  
0.4 x FS / 128  
187.5 Msps  
93.75 Msps  
46.875 Msps  
23.4375 Msps  
37.5 MHz  
18.75 MHz  
9.375 MHz  
37.5 MHz  
18.75 MHz  
Copyright © 2023 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
 
 
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7.3.5.1 Decimation Filter Response  
This section provides the different decimation filter responses with a normalized ADC sampling rate. The  
complex filter pass band is ~ 80% (-1 dB) with a minimum of 85 dB stop band rejection.  
7-24. Complex Decimation by 4 Filter Response  
7-25. Decimation by 4 Passband Ripple  
Response  
0
0
Passband  
Transition Band  
Alias Band  
Passband  
Transition Band  
Alias Band  
Attn Spec  
-0.1  
-0.2  
-20  
-40  
Attn Spec  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
-0.9  
-1  
-60  
-80  
-100  
-120  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
0
0.01  
0.02  
0.03  
0.04  
0.05  
0.06  
0.07  
0.08  
0.09  
0.1  
Normalized Frequency (Fs)  
Normalized Frequency (Fs)  
adc3  
adc3  
7-26. Complex Decimation by 8 Filter Response  
7-27. Decimation by 8 Passband Ripple  
Response  
0
0
Passband  
Transition Band  
Alias Band  
Passband  
Transition Band  
Alias Band  
Attn Spec  
-0.1  
-0.2  
-20  
-40  
Attn Spec  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
-0.9  
-1  
-60  
-80  
-100  
-120  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
0
0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05  
Normalized Frequency (Fs)  
Normalized Frequency (Fs)  
adc3  
adc3  
7-28. Complex Decimation by 16 Filter  
7-29. Decimation by 16 Passband Ripple  
Response  
Response  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
0
-20  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
-0.9  
-1  
Passband  
Passband  
Transition Band  
Alias Band  
Attn Spec  
Transition Band  
Alias Band  
Attn Spec  
-40  
-60  
-80  
-100  
-120  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
0
0.0025 0.005 0.0075 0.01 0.0125 0.015 0.0175 0.02 0.0225 0.025  
Normalized Frequency (Fs)  
Normalized Frequency (Fs)  
adc3  
adc3  
7-30. Complex Decimation by 32 Filter  
7-31. Decimation by 32 Passband Ripple  
Response  
Response  
0
0
Passband  
Transition Band  
Alias Band  
Passband  
Transition Band  
Alias Band  
-20  
-40  
-20  
-40  
Attn Spec  
Attn Spec  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
0
0.025  
0.05  
0.075  
0.1  
0.125  
0.15  
Normalized Frequency (Fs)  
Normalized Frequency (Fs)  
adc3  
adc3  
7-32. Complex Decimation by 64 Filter  
7-33. Complex Decimation by 64 Filter  
Response  
Response  
0
0
Passband  
Transition Band  
Alias Band  
Attn Spec  
Passband  
Transition Band  
Alias Band  
-0.1  
-0.2  
-20  
-40  
Attn Spec  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
-0.9  
-1  
-60  
-80  
-100  
-120  
0
0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
Normalized Frequency (Fs)  
Normalized Frequency (Fs)  
adc3  
adc3  
7-34. Decimation by 64 Passband Ripple  
7-35. Complex Decimation by 128 Filter  
Response  
Response  
Copyright © 2023 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
-0.9  
-1  
Passband  
Passband  
Transition Band  
Alias Band  
Attn Spec  
Transition Band  
Alias Band  
Attn Spec  
-120  
0
0.008 0.016 0.024 0.032  
0.04  
0.048 0.056 0.064 0.072  
0
0.00075  
0.0015  
0.00225  
0.003  
0.00375  
0.0045  
Normalized Frequency (Fs)  
Normalized Frequency (Fs)  
adc3  
adc3  
7-36. Complex Decimation by 128 Filter  
7-37. Decimation by 128 Passband Ripple  
Response  
Response  
7.3.5.2 Decimation Filter Configuration  
The decimation filter is configured with these register writes.  
7-17. Register Writes to Enable the Internal Decimation Filter  
ADDR  
0x05  
0x2C  
0x2D  
0x05  
0x22  
0x24  
0x25  
0x9F  
0xA0  
0xA1  
0xA2  
DATA  
DESCRIPTION  
0x02  
Select DIGITAL page  
Select single/dual/quad band  
Select decimation  
0x04  
Select JESD page  
Select LMFS mode  
Select DDC CLK setting  
Select JESD TX CLK DIV setting  
Select JESD PLL1/2 settings  
Select JESD PLL INPUT1 setting  
Select JESD PLL INPUT2 settings  
Select JESD PLL INPUT3 settings  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7.3.5.3 20-bit Output Mode  
The device includes a 20-bit output resolution mode which can be used for high order decimation (that is. 64x,  
128x) in order to avoid SNR degradation due to quantization noise limitation. In this mode the output data is  
transmitted at 2x the output rate. The 20-bit sample from the DDC gets expanded to 32-bit by adding 12x 0s,  
and occupies 2 consecutive 16-bit samples. This doubles the number of octets 'F' and the proper LMFS mode  
and JESD PLL settings have to be selected.  
For example, a single band complex decimation would go from LMFS = 2441 (16-bit output mode) to LMFS =  
2481 (20-bit output mode) as illustrated in 7-18.  
7-18. JESD Frame Assembly Comparison between 16-bit and 20-bit Output Mode  
LMFS = 2441  
LMFS = 2481  
xI0[7:0] xQ0[31:24] xQ0[23:16] xQ0[15:8]  
0000 0000000 20-bit sample Q 0000 0000000  
xI0[15:8]  
xI0[7:0] xQ0[15:8]  
xQ0[7:0]  
xI0[31:24]  
xI0[23:16]  
xI0[15:8]  
xQ0[7:0]  
20-bit sample I  
The 20-bit output mode is enabled by setting D7 in 0x2C (DIGITAL page) and selecting viable decimation and  
LMFS mode.  
7.3.5.4 Dynamic Switching  
The ADC32RF5x supports a dynamic switch mode between two decimation filter configurations without the need  
to resynchronize the JESD204B interface. This enables support for single, wideband DDC and 4 narrow band  
DDCs that can be switched in between with minimum impact on latency.  
Two different configurations are supported in the dynamic switching mode. Each configuration maintains the # of  
serdes lanes and serdes output rate during the switch. 7-19 shows the specific supported configurations for  
LMFS and decimation settings for a 2 lane and a 1 lane setup. Since the amount of output data in quad band  
mode is four times larger compared to single band, the decimation factor in quad band mode needs to be  
reduced by a factor of four compared to the single band case.  
7-19. Dynamic switch configuration modes  
Single Band DDC  
Quad Band DDC  
LMFS  
Complex Decimation  
LMFS  
Complex Decimation  
2 lanes  
1 lane  
2-4-16-4  
/16  
/32  
2-16-16-1  
/64  
1-4-32-4  
1-16-32-1  
/128  
There is no information in the JESD204B output data stream indicating if the output data is quad band or single  
band. The JESD204B receiving device controls the switching and thus needs to decode the incoming data for  
quad band or single band mode. The LMFS value transmitted ILA when the JESD204B link is established is  
always from the quad band mode in order to avoid ILA errors at the start of the link.  
The dynamic switch is configured with these register writes:  
7-20. Dynamic switch configuration writes  
2 Lanes: 2-4-16-4 to 2-16-16-1  
1 Lane: 1-4-32-4 to 1-16-32-1  
Configure ADC 2-16-16-1, Decimation by 64  
Configure ADC to 1-16-32-1, Decimation by 128  
0x05, 0x02  
0x373, 0x04  
0x388, 0x12  
0x388, 0x32  
Select DIGITAL page  
0x05, 0x02  
0x373, 0x05  
0x388, 0x16  
0x388, 0x36  
Select DIGITAL page  
Configures internal clockings  
Configures internal clockings  
Bit D5 enables dynamic switch:  
0x32: LMFS = 2-4-16-4, /16  
0x12: LMFS = 2-16-16-1, /64  
Bit D5 enables dynamic switch:  
0x36: LMFS = 1-4-32-4, /32  
0x16: LMFS = 1-16-32-1, /128  
Copyright © 2023 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
 
 
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7.3.5.4.1 2 Lane Mode  
JESD transmit (TX) will operate in LMFS = 2-16-16-1 in both the quad and single band modes. The JESD  
receiver should be configured to and switched between 2-4-16-4 and 2-16-16-1.  
7-21. 2 Lane Dynamic Switch Frame Assembly  
LMFS  
FRAME ASSEMBLY  
A1I0  
A1I0 A1Q0 A1Q0 A2I0  
A2I0 A2Q0 A2Q0 A3I0  
A3I0 A3Q0 A3Q0 A4I0  
A4I0 A4Q0 A4Q0  
[15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0]  
B1I0 B1I0 B1Q0 B1Q0 B2I0 B2I0 B2Q0 B2Q0 B3I0 B3I0 B3Q0 B3Q0 B4I0 B4I0 B4Q0 B4Q0  
[15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0]  
AI0 AI0 AI1 AI1 AI2 AI2 AI3 AI3 AQ0 AQ0 AQ1 AQ1 AQ2 AQ2 AQ3 AQ3  
[15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0]  
BI0 BI0 BI1 BI1 BI2 BI2 BI3 BI3 BQ0 BQ0 BQ1 BQ1 BQ2 BQ2 BQ3 BQ3  
[15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0]  
2-16-  
16-1  
2-4-  
16-4  
7.3.5.4.2 1 Lane Mode  
JESD transmit (TX) will operate in LMFS = 1-16-32-1 in both the quad and single band modes. The JESD  
receiver should be configured, and switched between 1-4-32-4 and 1-16-32-1.  
7-22. 2 Lane Dynamic Switch Frame Assembly  
LMFS  
FRAME ASSEMBLY  
A2I0 A2Q0 A2Q0 A3I0 A3I0 A3Q0 A3Q0 A4I0  
[15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0]  
A1I0  
A1I0 A1Q0 A1Q0 A2I0  
A4I0 A4Q0 A4Q0  
...  
1-16-  
32-1  
B1I0  
B1I0 B1Q0 B1Q0 B2I0  
B2I0 B2Q0 B2Q0 B3I0  
B3I0 B3Q0 B3Q0 B4I0  
B4I0 B4Q0 B4Q0  
...  
[15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0]  
AI0  
AI0  
AI1  
AI1  
AI2  
AI2  
AI3  
AI3  
AQ0  
AQ0  
AQ1  
AQ1  
AQ2  
AQ2  
AQ3  
AQ3  
...  
[15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0]  
1-4-  
32-4  
BI0 BI0 BI1 BI1 BI2 BI2 BI3 BI3 BQ0 BQ0 BQ1 BQ1 BQ2 BQ2 BQ3  
BQ3  
...  
[15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0]  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7.3.5.5 Numerically Controlled Oscillator (NCO)  
Each digital down-converter (DDC) uses a 48-bit numerically controlled oscillator (NCO) to fine tune the  
frequency placement prior to the digital filtering. Different NCO frequencies for each DDC are programmed using  
SPI register writes and the desired NCO frequency can be selected using SPI or the GPIO pins. When using the  
GPIO pins for NCO frequency control, frequency hopping can be achieved in less than 1 µs. The digital NCO is  
designed to have a SFDR of at least 100 dB. The number of available, programmable NCO frequencies  
depends on # of DDC bands used as illustrated in 7-23.  
GPIO  
or SPI  
DDC  
Freq f1  
NCO  
Freq fX  
I
ADC  
N
Q
7-38. NCO Block Diagram  
7-23. Available # of Frequencies per NCO  
Depending on # of DDCs Used  
# of DDCs used  
# of Frequencies per NCO  
1
2
4
8
4
4
There are two NCO operating modes (0x180 in DDC page): phase continuous and infinite phase coherent.  
Phase Continuous NCO: During a NCO frequency change, the NCO phase gradually adjusts to the new  
frequency as shown in 7-39. The dashed line shows the phase of original f1 frequency.  
Infinite Phase Coherent NCO: With a phase coherent NCO, all frequencies are synchronized to a single event  
using SYSREF. This enables an infinite amount of frequency hops without the need to reset the NCO as phase  
coherency is maintained between frequency hops. This is illustrated in 7-39 (right). When returning to the  
original frequency f1, the NCO phase appears as if the NCO had never changed frequencies.  
Copyright © 2023 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
f1  
f2  
f1  
f1  
f2  
f1  
7-39. Phase Continuous (left) and Infinite Phase Coherent (right) NCO Frequency Switching  
The oscillator generates a complex exponential sequence of:  
ejωn (default) or ejωn  
(1)  
where: frequency (ω) is specified as a signed number by the 48-bit register setting  
The complex exponential sequence is multiplied with the real input from the ADC to mix the desired carrier to a  
frequency equal to fIN + fNCO. The NCO frequency can be tuned from FS/2 to +FS/2 and is processed as a  
signed, 2s complement number.  
The NCO frequency setting is set by the 48-bit register value given and calculated as:  
NCO frequency (0 to + FS/2): NCO = fNCO × 248 / FS  
(2)  
(3)  
NCO frequency (-FS/2 to 0): NCO = (fNCO + FS) × 248 / FS  
where:  
NCO = NCO register setting (decimal value)  
fNCO = Desired NCO frequency (MHz)  
FS = ADC sampling rate (MSPS)  
The NCO programming is illustrated with this example:  
ADC sampling rate FS = 3000 MSPS  
Desired NCO frequency = 920 MHz  
NCO frequency setting = fNCO × 248 / FS = 920 MHz x 248 / 3000 MSPS = 86,318,992,857,935  
(4)  
7-24 shows the register writes to set frequency 1 of NCO1 of DDCA to that frequency:  
7-24. Example Register Writes to Change NCO Frequency  
ADDR  
DATA  
0x08  
0x4E  
0x81  
0xB4  
0xE8  
0x1B  
0x4E  
DESCRIPTION  
0x05  
Select DDCA page  
0x105  
0x104  
0x103  
0x102  
0x101  
0x100  
Set frequency to 920 MHz (86,318,992,857,935)  
which is 0x4E81B4E81B4E starting MSB in 0x105.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: ADC32RF54 ADC32RF55  
 
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7-24. Example Register Writes to Change NCO Frequency (continued)  
ADDR  
0x180  
0x181  
DATA  
0x01  
0x00  
DESCRIPTION  
Enable phase coherent NCO mode  
Load and update NCO1 with the new frequency.  
0x30 updates the NCO values, 0x00 clears the register for the next update.  
0x181  
0x30  
Copyright © 2023 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7.3.5.6 NCO Frequency Programming  
There are 4 separate NCOs per channel - one for each band (such as, NCO1 = band 1) and 4 different  
frequencies can be programmed per NCO as shown in 7-40. The NCO frequencies are located in the  
DDCA/B pages (0x05 0x08 for channel A and 0x05 0x10 for channel B) in registers 0x100 to 0x17D. Depending  
on # of bands used, the frequencies for each NCO are selected in registers 0x3B and 0x41 (DIGITAL page) as  
shown in 7-25. If the NCO frequencies are the same for channel A and channel B, they can be written to both  
DDCA and DDCB pages simultaneously by selecting both pages (0x05 0x18).  
Channel A  
Channel B  
NCO1  
NCO3  
NCO1  
NCO3  
1: 0x100..0x105  
1: 0x140..0x145  
1: 0x100..0x105  
1: 0x140..0x145  
2: 0x108..0x10D 2: 0x148..0x14D 2: 0x108..0x10D 2: 0x148..0x14D  
3: 0x110..0x115 3: 0x150..0x155 3: 0x110..0x115 3: 0x150..0x155  
4: 0x118..0x11D 4: 0x158..0x15D 4: 0x118..0x11D 4: 0x158..0x15D  
NCO2  
NCO4  
NCO2  
NCO4  
1: 0x120..0x125  
1: 0x160..0x165  
1: 0x120..0x125  
1: 0x160..0x165  
2: 0x128..0x12D 2: 0x168..0x16D 2: 0x128..0x12D 2: 0x168..0x16D  
3: 0x130..0x135 3: 0x170..0x175 3: 0x130..0x135 3: 0x170..0x175  
4: 0x138..0x13D 4: 0x178..0x17D 4: 0x138..0x13D 4: 0x178..0x17D  
7-40. Multi-Band NCO  
Single band DDC uses the frequencies of both NCO1 and NCO2 for a combined 8 different frequencies for  
NCO1 using 3 bit control (NCO2 CHx [1] and NCO1 CHx [1:0]). The NCO2 selection bit (D3) decides if  
frequencies from NCO1 or NCO2 are being used. In dual and quad band DDC operating mode, there are 4  
frequencies per NCO available and selected using 2 register bits (NCOx CHx [1:0]). The NCO frequency  
selection registers are shown in 7-25.  
7-25. NCO Frequency Selection SPI Interface Registers  
# OF BANDS  
ADDR  
0x3B  
0x41  
0x3B  
0x41  
0x3B  
0x41  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
0
0
NCO2 CHA [1]  
NCO2 CHB [1]  
0
NCO1 CHA [1:0]  
NCO1 CHB [1:0]  
NCO1 CHA [1:0]  
NCO1 CHB [1:0]  
NCO1 CHA [1:0]  
NCO1 CHB [1:0]  
SINGLE  
0
0
0
0
0
0
0
0
0
NCO2 CHA [1:0]  
DUAL  
QUAD  
0
0
0
0
NCO2 CHB [1:0]  
NCO2 CHA [1:0]  
NCO2 CHB [1:0]  
NCO4 CHA [1:0]  
NCO4 CHB [1:0]  
NCO3 CHA [1:0]  
NCO3 CHB [1:0]  
To select a different frequency for the NCO, two registers (0x3B and 0x41) in the DIGITAL page have to be  
updated. Assuming a SPI clock frequency of 10 MHz (100 ns period), programming two registers (2x (16 bit  
address and 8 bit data) = 48 bit) means that the NCO frequency would be updated in ~ 5 us.  
When updating the currently being used NCO frequency to a new frequency, the following command has to be  
written in order to load the new frequency into the NCO - 0x181 0x00/0x30 in each of the DDCA/B pages.  
7-26. Example Register Writes  
ADDR  
0x05  
DATA  
0x02  
0x01  
0xFF  
0x08  
0x..  
DESCRIPTION  
Select DIGITAL page  
0x3B  
Select frequency 2 for NCO1 of channel A.  
Select NCO using SPI  
0x235  
0x05  
Select DDCA page  
0x10D...0x108  
Write new frequency in frequency 2 of NCO1 of channel A  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: ADC32RF54 ADC32RF55  
 
 
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7-26. Example Register Writes (continued)  
ADDR  
0x181  
0x181  
DATA  
0x00  
0x30  
DESCRIPTION  
Update NCO with current frequencies from the register map.  
The NCO phase accumulators can be reset using the external SYSREF signal. A SYSREF mask can be setup  
such the SYSREF signal only goes to the NCO and the remaining device remains unaffected. The following  
register writes configure the SYSREF mask to only affect the NCO. After completion, the SYSREF mask should  
be set back to default.  
7-27. Example Register Writes to configure the SYSREF MASK  
ADDR  
0x05  
DATA  
0x02  
0xA2  
0x02  
DESCRIPTION  
Select DIGITAL page  
0x357  
0x358  
SYSREF mask settings (0x00 is mask default)  
SYSREF mask settings (0x00 is mask default)  
7.3.5.7 Fast Frequency Hopping  
The ADC32RF5x supports several different options to update the NCO frequencies. Fast frequency hopping can  
be achieved in one of the following ways:  
Using the GPIO1/2 pins to select the NCO frequency  
Using the GPIO1/2, SPISEL and SCLK/SDIO pins to select the NCO frequency  
Using the GPIO1/2 pins to program the NCO frequency selection (Fast SPI)  
NCO SEL  
MODE  
NCO CONTROL  
SCLK  
SDIO  
SPISEL  
GPIO1  
GPIO2  
Regular SPI (default)  
GPIO1/2  
SPI Interface  
0
0
1
1
used for other purpose  
used for NCO control  
used for NCO control  
00  
SPI Interface  
NCO CONTROL  
SPI Interface  
00  
GPIO1/2, SPISEL, SCLK/SDIO  
FAST SPI  
00  
SDIO  
SCLK  
10  
The internal NCO is switched quickly; however, the switching time depends primarily on the time it takes to flush  
out the decimation filter as shown in 7-28.  
7-28. NCO Switching Time (FS = 2.6 GSPS) vs Decimation Setting  
Decimation Setting  
NCO Switching Time  
~ 250 ns  
~ 350 ns  
~ 600 ns  
~ 1 us  
/4  
/8  
/16  
/32  
/64  
/128  
~ 2 us  
~ 4 us  
Copyright © 2023 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7.3.5.7.1 Fast frequency hopping Using the GPIO1/2 pins  
The NCO frequency is selected as shown in 7-29. This mode is enabled with the following register write:  
1. Set 0x234 to 0x03 (NCO SEL MODE = 0, GPIO MODE = 3)  
7-29. NCO Frequency Selection Using GPIO1/2 Pins  
# OF BANDS  
GPIO2  
GPIO1  
GPIO2  
GPIO1  
GPIO2  
GPIO1  
GPIO2  
GPIO1  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
NCO1 CHA [1:0]  
SINGLE  
NCO1 CHB [1:0]  
NCO1 CHA [1:0]  
NCO1 CHB [1:0]  
NCO1 CHA [1:0]  
NCO1 CHB [1:0]  
NCO2 CHA [1:0]  
DUAL  
QUAD  
NCO2 CHB [1:0]  
NCO2 CHA [1:0]  
NCO2 CHB [1:0]  
NCO4 CHA [1:0]  
NCO4 CHB [1:0]  
NCO3 CHA [1:0]  
NCO3 CHB [1:0]  
7.3.5.7.2 Fast frequency hopping using GPIO1/2, SEN and SDIO pins  
This mode is enabled by setting the SPISEL to logic high and using the following register write:  
1. Set 0x234 to 0x63 (NCO SEL MODE = 3, GPIO MODE = 3)  
7-30. NCO Frequency Selection SPI Interface Registers  
# OF BANDS  
SDIO  
SEN  
GPIO2  
GPIO1  
SDIO  
SEN  
GPIO2  
GPIO1  
NCO2 CHA  
[1]  
0
0
0
0
0
NCO1 CHA [1:0]  
NCO1 CHB [1:0]  
SINGLE  
NCO2 CHB  
[1]  
0
0
0
0
0
0
0
0
0
0
0
0
0
NCO2 CHA [1:0]  
NCO1 CHA [1:0]  
NCO1 CHB [1:0]  
NCO1 CHA [1:0]  
NCO1 CHB [1:0]  
DUAL  
QUAD  
NCO2 CHB [1:0]  
NCO2 CHA [1:0]  
NCO2 CHB [1:0]  
NCO4 CHA [1:0]  
NCO4 CHB [1:0]  
NCO3 CHA [1:0]  
NCO3 CHB [1:0]  
7.3.5.7.3 Fast Frequency Hopping Using the Fast SPI  
In this mode, the GPIO1/2 pins are used as a "fast SPI" input which only updates the NCO selection registers.  
No register address information needs to be sent. GPIO1 pin is SDIO and GPIO2 pin is SCLK.  
This mode is enabled by setting the SPISEL to logic high and using the following register write:  
1. Set 0x234 to 0x43 (NCO SEL MODE = 2, GPIO MODE = 3)  
The NCO frequencies are selected as shown in 7-31.  
7-31. NCO Frequency Programming Using FAST SPI  
# OF  
BANDS  
D15  
0
D14  
0
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
NCO1  
CHB  
[2]  
NCO1  
CHA  
[2]  
NCO1 CHB  
[1:0]  
NCO1 CHA  
[1:0]  
SINGLE  
0
0
0
0
0
0
0
0
NCO2 CHB  
[1:0]  
NCO1 CHB  
[1:0]  
NCO2 CHA  
[1:0]  
NCO1 CHA  
[1:0]  
DUAL  
QUAD  
0
0
0
0
0
0
0
0
NCO4 CHB  
[1:0]  
NCO3 CHB  
[1:0]  
NCO2 CHB  
[1:0]  
NCO1 CHB  
[1:0]  
NCO4 CHA  
[1:0]  
NCO3 CHA  
[1:0]  
NCO2 CHA  
[1:0]  
NCO1 CHA  
[1:0]  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: ADC32RF54 ADC32RF55  
 
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7.3.6 JESD204B Interface  
The ADC32RF5x uses the JESD204B high-speed serial interface to transfer data from the ADC to the receiving  
logic device. ADC32RF5x serialized lanes are capable of operating up to 13 Gbps, slightly above the JESD204B  
max lane rate. A maximum of 8 lanes can be used to allow lower lane rates for interfacing with speed limited  
logic devices. 7-41 shows a simplified block diagram of the JESD204B interface.  
ADC  
JESD204B BLOCK  
JESD204B  
TRANSPORT  
LAYER  
SCRAMBLER  
(Optional)  
JESD204B  
LINK LAYER  
8B/10B  
ENCODER  
JESD204B  
TX  
ADC  
7-41. JESD204B Block Diagram  
7.3.6.1 JESD204B Initial Lane Alignment (ILA)  
The receiving device starts the initial lane alignment process by deasserting the SYNC signal. When a logic low  
state is detected on the SYNC input, the ADC starts transmitting comma characters (K28.5) in order to establish  
the code group synchronization, as shown in 7-42. When synchronization is completed, the receiving device  
reasserts the SYNC signal and the ADC starts the initial lane alignment sequence with the next local multi-frame  
clock (LMFC) boundary. The ADC transmits four multi-frames, each containing K frame (K is SPI  
programmable). Each of the multi-frames contains the frame start and frame end symbols. The second multi-  
frame also contains the JESD204B link configuration data.  
SYSREF  
LMFC Clock  
LMFC Boundary  
Multi-  
Frame  
SYNC  
Transmit Data  
xxx  
K28.5  
K28.5  
ILA  
ILA  
DATA  
DATA  
Code Group Synchronization  
Initial Lane Alignment  
Data Transmission  
7-42. JESD204B Internal Timing Diagram  
7.3.6.1.1 SYNC Signal  
The SYNC signal can be issued using one of two different methods:  
One of the GPIO1/2 pins can be configured via SPI to become the SYNC input pin (address 0x234 in the  
digital page)  
The synchronization command can be issued via SPI register write (address 0x21 in the JESD page)  
When using the GPIO1/2 pins for the SYNC signal input, the device also supports the option to invert the signal  
polarity (address 0x236 in the digital page).  
Copyright © 2023 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
 
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7.3.6.2 JESD204B Frame Assembly  
The JESD204B standard defines the following parameters:  
L: number of lanes per link  
M: number of converters per device  
F: number of octets per frame clock period  
S: number of samples per frame  
7.3.6.3 JESD204B Frame Assembly in Bypass Mode  
7-32 lists the available JESD204B formats and corresponding valid sampling rate ranges for the ADC32RF5x.  
The sampling rates are limited by the minimum and maximum SERDES line rate as well as ADC sampling clock  
frequencies. The JESD204B frame assembly for the different lanes is shown in 7-33.  
When internal digital averaging is used, the output resolution is automatically adjusted from 14-bit to 16-bit to  
avoid quantization noise limitation.  
7-32. JESD Mode Options: Bypass Mode  
DECIMATION  
SETTING D  
(complex)  
OUTPUT  
RESOLUTION  
(Bits)  
MIN FS  
(Gsps)  
MAX FS  
(Gsps)  
RATIO  
[fSERDES/FS]  
L
M
F
S
12(1)  
8
8
4
2
2
2
8
2
2
20  
4
0.5  
0.5  
0.5  
3.0  
2.6  
1.3  
4
5
Bypass  
14/16(2)  
2
10  
(1) In full rate output, two LSBs are truncated to a 12-bit output.  
(2) When using digital averaging the output resolution changes to 16-bit.  
7-33. JESD Sample Frame Assembly: Bypass Mode  
OUTPUT  
LANE  
LMFS = 82820  
LMFS = 8224  
LMFS = 4222  
A0[3:0],  
A1[11:8]  
A2[3:0],  
A3[11:8]  
A4[3:0],  
0000  
A0[5:0],  
00  
A0[5:0],  
00  
DOUT0 A0[11:4]  
DOUT1 A5[11:4]  
DOUT2 A10[11:4]  
DOUT3 A15[11:4]  
DOUT4 B0[11:4]  
DOUT5 B5[11:4]  
DOUT6 B10[11:4]  
DOUT7 B15[11:4]  
A1[7:0] A2[11:4]  
A6[7:0] A7[11:4]  
A11[7:0] A12[11:4]  
A16[7:0] A17[11:4]  
B1[7:0] B2[11:4]  
B6[7:0] B7[11:4]  
B11[7:0] B12[11:4]  
B16[7:0] B17[11:4]  
A3[7:0] A4[11:4]  
A8[7:0] A9[11:4]  
A13[7:0] A14[11:4]  
A18[7:0] A19[11:4]  
B3[7:0] B4[11:4]  
B8[7:0] B9[11:4]  
B13[7:0] B14[11:4]  
B18[7:0] B19[11:4]  
A0[13:6]  
A0[13:6]  
A5[3:0],  
A6[11:8]  
A7[3:0],  
A8[11:8]  
A9[3:0],  
0000  
A1[5:0],  
00  
A1[5:0],  
00  
A1[13:6]  
A2[13:6]  
A3[13:6]  
B0[13:6]  
B1[13:6]  
B2[13:6]  
B3[13:6]  
A1[13:6]  
B0[13:6]  
B1[13:6]  
A10[3:0],  
A11[11:8]  
A12[3:0],  
A13[11:8]  
A14[3:0],  
0000  
A2[5:0],  
00  
B0[5:0],  
00  
A15[3:0],  
A16[11:8]  
A17[3:0],  
A18[11:8]  
A19[3:0],  
0000  
A3[5:0],  
00  
B1[5:0],  
00  
B0[3:0],  
B1[11:8]  
B2[3:0],  
B3[11:8]  
B4[3:0],  
0000  
B0[5:0],  
00  
B5[3:0],  
B6[11:8]  
B7[3:0],  
B8[11:8]  
B9[3:0],  
0000  
B1[5:0],  
00  
B10[3:0],  
B11[11:8]  
B12[3:0],  
B13[11:8]  
B14[3:0],  
0000  
B2[5:0],  
00  
B15[3:0],  
B16[11:8]  
B17[3:0],  
B18[11:8]  
B19[3:0],  
0000  
B3[5:0],  
00  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: ADC32RF54 ADC32RF55  
 
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7.3.6.4 JESD204B Frame Assembly with Complex Decimation - Single Band  
7-34 lists the available JESD204B interface formats and corresponding valid sampling rate ranges for the  
ADC32RF5x with complex decimation (single band). The sampling rates are limited by the minimum and  
maximum SERDES line rate as well as ADC sampling clock frequencies. The JESD204B frame assembly for the  
different lanes is shown in 7-33.  
7-34. JESD Mode Options: Complex Decimation - Single Band  
DECIMATION  
SETTING D  
(complex)  
MIN FS  
(Gsps)  
MAX FS  
(Gsps)  
RATIO  
[fSERDES/(FS/D)]  
L
M
F
S
/4  
/8  
0.5  
8
4
2
2
3.0  
2.6  
3.0  
2.6  
3.0  
10  
20  
/16  
/32  
/4  
0.8  
1.6  
/8  
0.5  
/16  
/32  
/64  
/8  
4
2
1
4
4
4
2
4
8
1
1
1
0.8  
1.6  
/16  
/32  
/64  
/128  
/8  
0.5  
40  
80  
0.8  
1.6  
1.3  
2.6  
/16  
/32  
/64  
/128  
0.5  
3.0  
0.8  
7-35. JESD Sample Frame Assembly: Complex Decimation - Single Band  
OUTPUT  
LANE  
LMFS = 8422 LMFS = 4421  
LMFS = 2441  
LMFS = 1481  
AI0  
AI0  
AI0  
AI0  
AI0  
AI0  
AQ0  
AQ0  
AI0  
AI0  
AQ0  
AQ0  
BI0  
BI0  
BQ0  
BQ0  
DOUT0  
[15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0]  
AI1 AI1 AQ0 AQ0 BI0 BI0 BQ0 BQ0  
[15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0]  
AQ0 AQ0 BI0 BI0  
[15:8] [7:0] [15:8] [7:0]  
AQ1 AQ1 BQ0 BQ0  
[15:8] [7:0] [15:8] [7:0]  
BI0 BI0  
[15:8] [7:0]  
BI1 BI1  
[15:8] [7:0]  
BQ0 BQ0  
[15:8] [7:0]  
BQ1 BQ1  
[15:8] [7:0]  
DOUT1  
DOUT2  
DOUT3  
DOUT4  
DOUT5  
DOUT6  
DOUT7  
Copyright © 2023 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7.3.6.5 JESD204B Frame Assembly with Complex Decimation - Dual Band  
7-36 lists the available JESD204B interface formats and corresponding valid sampling rate ranges for the  
ADC32RF5x with complex decimation (dual band). The sampling rates are limited by the minimum and  
maximum SERDES line rate as well as ADC sampling clock frequencies. The JESD204B frame assembly for the  
different lanes are shown in 7-37 and 7-38.  
7-36. JESD Mode Options: Complex Decimation - Dual Band  
DECIMATION  
SETTING D  
(complex)  
MIN FS  
(Gsps)  
MAX FS  
(Gsps)  
RATIO  
[fSERDES/(FS/D)]  
L
M
F
S
/8  
/16  
/32  
/64  
/8  
0.5  
8
8
2
1
3.0  
2.6  
3.0  
20  
40  
0.8  
1.6  
/16  
/32  
/64  
/128  
/8  
0.5  
4
8
4
1
0.8  
1.6  
1.3  
2.6  
/16  
/32  
/64  
/128  
/16  
/32  
/64  
/128  
0.5  
0.8  
0.5  
2
1
8
8
8
1
1
80  
3.0  
1.3  
2.6  
16  
160  
3.0  
7-37. JESD Sample Frame Assembly: Complex Decimation - Dual Band  
OUTPU  
T
LMFS = 8821  
LMFS = 4841  
LMFS = 2881  
LANE  
A1I0  
[15:8]  
A1I0  
[7:0]  
A1I0  
[15:8]  
A1I0  
[7:0]  
A1Q0  
[15:8]  
A1Q0  
[7:0]  
A1I0  
[15:8]  
A1I0  
[7:0]  
A1Q0  
[15:8]  
A1Q0  
[7:0]  
A2I0  
[15:8]  
A2I0  
[7:0]  
A2Q0  
[15:8]  
A2Q0  
[7:0]  
DOUT0  
DOUT1  
DOUT2  
DOUT3  
DOUT4  
DOUT5  
DOUT6  
DOUT7  
A1Q0  
[15:8]  
A1Q0  
[7:0]  
A2I0  
[15:8]  
A2I0  
[7:0]  
A2Q0  
[15:8]  
A2Q0  
[7:0]  
B1I0  
[15:8]  
B1I0  
[7:0]  
B1Q0  
[15:8]  
B1Q0  
[7:0]  
B2I0  
[15:8]  
B2I0  
[7:0]  
B2Q0  
[15:8]  
B2Q0  
[7:0]  
A2I0  
[15:8]  
A2I0  
[7:0]  
B1I0  
[15:8]  
B1I0  
[7:0]  
B1Q0  
[15:8]  
B1Q0  
[7:0]  
A2Q0  
[15:8]  
A2Q0  
[7:0]  
B2I0  
[15:8]  
B2I0  
[7:0]  
B2Q0  
[15:8]  
B2Q0  
[7:0]  
B1I0  
[15:8]  
B1I0  
[7:0]  
B1Q0  
[15:8]  
B1Q0  
[7:0]  
B2I0  
[15:8]  
B2I0  
[7:0]  
B2Q0  
[15:8]  
B2Q0  
[7:0]  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: ADC32RF54 ADC32RF55  
 
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7-38. JESD Sample Frame Assembly: Complex Decimation - Dual Band  
OUTP  
UT  
LMFS = 1-8-16-1  
LANE  
DOUT A1I0  
A1I0 A1Q0 A1Q0 A2I0  
A2I0  
A2Q0  
[15:8]  
A2Q0  
[7:0]  
B1I0  
B1I0 B1Q0 B1Q0 B2I0  
B2I0 B2Q0 B2Q0  
0
[15:8] [7:0] [15:8] [7:0] [15:8] [7:0]  
[15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0]  
DOUT  
1
DOUT  
2
DOUT  
3
DOUT  
4
DOUT  
5
DOUT  
6
DOUT  
7
Copyright © 2023 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7.3.6.6 JESD204B Frame Assembly with Complex Decimation - Quad Band  
7-39 lists the available JESD204B interface formats and corresponding valid sampling rate ranges for the  
ADC32RF5x with complex decimation (quad band). The sampling rates are limited by the minimum and  
maximum SERDES line rate as well as ADC sampling clock frequencies. The JESD204B frame assembly for the  
different lanes are shown in 7-40, 7-41 and 7-42.  
7-39. JESD Mode Options: Complex Decimation - Quad Band  
DECIMATION  
SETTING D  
(complex)  
MIN FS  
(Gsps)  
MAX FS  
(Gsps)  
RATIO  
[fSERDES/(FS/D)]  
L
M
F
S
/16  
/32  
0.5  
8
16  
4
1
3.0  
40  
80  
/64  
0.8  
1.6  
/128  
/16  
2.6  
3.0  
/32  
0.5  
0.8  
4
2
1
16  
16  
16  
8
1
1
1
/64  
/128  
/16  
1.3  
2.6  
/32  
16  
32  
0.5  
0.5  
160  
320  
/64  
3.0  
/128  
/16  
0.65  
1.3  
2.6  
3.0  
/32  
/64  
/128  
7-40. JESD Sample Frame Assembly: Complex Decimation - Quad Band  
OUTPUT  
LANE  
LMFS = 8-16-4-1  
LMFS = 4-16-8-1  
A1I0  
[15:8]  
A1I0  
[7:0]  
A1Q0  
[15:8]  
A1Q0  
[7:0]  
A1I0  
[15:8]  
A1I0  
[7:0]  
A1Q0  
[15:8]  
A1Q0  
[7:0]  
A2I0  
[15:8]  
A2I0  
[7:0]  
A2Q0  
[15:8]  
A2Q0  
[7:0]  
DOUT0  
A2I0  
[15:8]  
A2I0  
[7:0]  
A2Q0  
[15:8]  
A2Q0  
[7:0]  
A3I0  
[15:8]  
A3I0  
[7:0]  
A3Q0  
[15:8]  
A3Q0  
[7:0]  
A4I0  
[15:8]  
A4I0  
[7:0]  
A4Q0  
[15:8]  
A4Q0  
[7:0]  
DOUT1  
DOUT2  
DOUT3  
DOUT4  
DOUT5  
DOUT6  
DOUT7  
A3I0  
[15:8]  
A3I0  
[7:0]  
A3Q0  
[15:8]  
A3Q0  
[7:0]  
B1I0  
[15:8]  
B1I0  
[7:0]  
B1Q0  
[15:8]  
B1Q0  
[7:0]  
B2I0  
[15:8]  
B2I0  
[7:0]  
B2Q0  
[15:8]  
B2Q0  
[7:0]  
A4I0  
[15:8]  
A4I0  
[7:0]  
A4Q0  
[15:8]  
A4Q0  
[7:0]  
B3I0  
[15:8]  
B3I0  
[7:0]  
B3Q0  
[15:8]  
B3Q0  
[7:0]  
B4I0  
[15:8]  
B4I0  
[7:0]  
B4Q0  
[15:8]  
B4Q0  
[7:0]  
B1I0  
[15:8]  
B1I0  
[7:0]  
B1Q0  
[15:8]  
B1Q0  
[7:0]  
B2I0  
[15:8]  
B2I0  
[7:0]  
B2Q0  
[15:8]  
B2Q0  
[7:0]  
B3I0  
[15:8]  
B3I0  
[7:0]  
B3Q0  
[15:8]  
B3Q0  
[7:0]  
B4I0  
[15:8]  
B4I0  
[7:0]  
B4Q0  
[15:8]  
B4Q0  
[7:0]  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: ADC32RF54 ADC32RF55  
 
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7-41. JESD Sample Frame Assembly: Complex Decimation - Quad Band  
OUTP  
UT  
LMFS = 2-16-16-1  
LANE  
DOUT A1I0  
A1I0 A1Q0 A1Q0 A2I0  
A2I0 A2Q0 A2Q0 A3I0  
A3I0 A3Q0 A3Q0 A4I0  
A4I0 A4Q0 A4Q0  
0
[15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0]  
DOUT B1I0 B1I0 B1Q0 B1Q0 B2I0 B2I0 B2Q0 B2Q0 B3I0 B3I0 B3Q0 B3Q0 B4I0 B4I0 B4Q0 B4Q0  
1
[15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0]  
DOUT  
2
DOUT  
3
DOUT  
4
DOUT  
5
DOUT  
6
DOUT  
7
7-42. JESD Sample Frame Assembly: Complex Decimation - Quad Band  
OUTP  
UT  
LMFS = 1-16-32-1  
LANE  
A1I0  
A1I0 A1Q0 A1Q0 A2I0  
A2I0 A2Q0 A2Q0 A3I0  
A3I0 A3Q0 A3Q0 A4I0  
A4I0 A4Q0 A4Q0  
...  
[15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0]  
DOUT  
0
B1I0  
B1I0 B1Q0 B1Q0 B2I0  
B2I0 B2Q0 B2Q0 B3I0  
B3I0 B3Q0 B3Q0 B4I0  
B4I0 B4Q0 B4Q0  
...  
[15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0] [15:8] [7:0]  
DOUT  
1
DOUT  
2
DOUT  
3
DOUT  
4
DOUT  
5
DOUT  
6
DOUT  
7
Copyright © 2023 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
 
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7.3.7 SERDES Output MUX  
The SERDES output block contains one digital mux per SERDES output lane with a 3-bit register. This allows  
routing any of the 8 digital streams to any output serdes transmitter as shown in the example in 7-43. The  
MUX can be used to reorder lanes as well as duplicate lane outputs (for example in LMFS = 1-4-8-1 mode the  
same output stream could be duplicated on all 8 lanes).  
Stream 0  
Stream 1  
UX  
MUX  
DOUT0...7P/M  
Stream 6  
Stream 7  
SPI:  
Lane x mux  
select  
7-43. SERDES output mux for DOUT0  
By default after power, the active SERDES lanes start on lane DOUT0 as shown for the complex decimation  
dual band example in 7-43. After power up, the output is transmitted on lanes DOUT0..3. Using the digital  
output muxes, the output data for channel B is shifted from lanes DOUT2,3 to DOUT4,5. All SERDES  
transmitters are powered up and enabled by default. After configuring the output mux unused lanes can be  
powered down to save power consumption.  
7-43. JESD Sample Frame Assembly: Complex Decimation - Dual Band with LMFS = 4841  
OUTPUT  
Default  
A1I0 [7:0]  
Using MUX  
LANE  
DOUT0  
DOUT1  
DOUT2  
DOUT3  
DOUT4  
DOUT5  
DOUT6  
DOUT7  
A1I0 [15:8]  
A2I0 [15:8]  
B1I0 [15:8]  
B2I0 [15:8]  
A1Q0 [15:8]  
A2Q0 [15:8]  
B1Q0 [15:8]  
B2Q0 [15:8]  
A1Q0 [7:0]  
A2Q0 [7:0]  
B1Q0 [7:0]  
B2Q0 [7:0]  
A1I0 [15:8]  
A2I0 [15:8]  
A1I0 [7:0]  
A1Q0 [15:8]  
A2Q0 [15:8]  
A1Q0 [7:0]  
A2Q0 [7:0]  
A2I0 [7:0]  
B1I0 [7:0]  
B2I0 [7:0]  
A2I0 [7:0]  
B1I0 [15:8]  
B2I0 [15:8]  
B1I0 [7:0]  
B2I0 [7:0]  
B1Q0 [15:8]  
B2Q0 [15:8]  
B1Q0 [7:0]  
B2Q0 [7:0]  
7-44 shows the register writes to shift the output lanes from default as illustrated in 7-43.  
7-44. Example register writes to shift the output serdes lanes using the SERDES Output MUX  
ADDR  
0x05  
0x81  
0x82  
DATA  
0x04  
0x54  
0x32  
DESCRIPTION  
Select JESD page  
Select internal JESD streams 4 and 5 to lanes DOUT2 and DOUT3  
Select internal JESD streams 2 and 3 to lanes DOUT4 and DOUT5  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: ADC32RF54 ADC32RF55  
 
 
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7.3.8 Test Pattern  
The ADC32RF5x provides two different options to output test patterns instead of the actual output data of the  
ADC in order to simplify the serial interface and system debug of the JESD204B digital interface link. The output  
data path is shown in \.  
ADC Section  
Digital Block  
Transport Layer  
Link Layer  
PHY Layer  
Data Mapping  
Frame Construction  
8b/10b  
encoding  
Decimation  
Filter Block  
ADC  
Scrambler  
1+x14+x15  
Serializer  
Transport Layer Test  
Pattern  
Link Layer Test Pattern  
7-44. Test Pattern Options  
The available test patterns in each block are described in 7-45. Both test pattern blocks replace output data  
from the digital block, and not from the ADC; therefore, it is available in decimation or decimation bypass mode.  
The test patterns are synchronized with the SYSREF signal.  
7-45. Test Pattern Overview  
TEST PATTERN LOCATION  
TYPE  
8b/10b encoded  
REGISTER PAGE  
REGISTER  
0x2E, D0  
CUSTOM PATTERN  
TOGGLE 1010 PATTERN  
RAMP PATTERN  
Yes  
Yes  
TRANSPORT LAYER  
0x2E, D1  
JESD  
0x05 0x04  
Yes  
0x2E, D2  
JESD204B TEST PATTERNS  
Depends  
No  
0x2D, D2-D0  
0x2F, D6-D4  
LINK LAYER  
PRBS PATTERN (27.. 231  
)
The RAMP pattern provides two different output options. Internally each ADC data bus consists of parallel data  
streams (1 stream per serdes lane). The RAMP pattern is generated for each stream and a different starting  
value can be set for each stream. By default, the starting values are 0. For example, a LMFS mode using 4  
lanes/ADC would show a slow ramp which increments once every 4 clock cycles with starting values set to 0 and  
ramp increment = 1. Also, a RAMP pattern which increments every clock cycle can be set using different starting  
values (such as 0, 1, 2, 3) for the 4 streams/lanes and setting the RAMP increment to 4. The follow table shows  
how to enable the RAMP test pattern.  
7-46. RAMP Test Pattern  
ADDR  
0x05  
0x32  
0x34  
0x36  
0x42  
0x44  
0x46  
0x2E  
DATA  
0x04  
0x01  
0x02  
0x03  
0x01  
0x02  
0x03  
0x34  
DESCRIPTION  
Select JESD page  
Set lane DOUT1 starting value = 1  
Set lane DOUT2 starting value = 2  
Set lane DOUT3 starting value = 3  
Set lane DOUT5 starting value = 1  
Set lane DOUT6 starting value = 2  
Set lane DOUT7 starting value = 3  
Enable RAMP pattern, RAMP increment = 4  
7.3.8.1 Transport Layer  
The transport layer maps the ADC output data into 8-bit octets and constructs the JESD204B frames using the  
LMFS parameters. Tail bits or 0's are added when needed. Alternatively, test patterns can be substituted instead  
of the ADC data with the JESD frame, as shown in 7-45.  
Copyright © 2023 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
 
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7.3.8.2 Link Layer  
The link layer contains the scrambler and the 8b/10b encoding of any data passed on from the transport layer.  
Additionally, the link layer controls the initial lane alignment sequence that can be manually restarted. The link  
layer test patterns are intended for testing the quality of the link (jitter testing and so forth). The test patterns do  
not pass through the 8b/10b encoder and contain the options listed in 7-45.  
7.3.8.3 Internal Capture Memory Buffer  
The ADC includes a small internal capture memory buffer which can store up to 64 samples. Once a strobe is  
given to the memory using SPI register write, the memory will store the next continuous 64 samples of one ADC  
channel (selected via SPI register write) and stop. The samples are captured from the ADC cores (prior to  
averaging or decimation). These samples can be read back using the SPI interface without involving the  
JESD204B interface at all.  
This mode allows debug of the analog front end during the initial bring-up phase even if the JESD204B interface  
is not operational yet.  
7-47. Register writes to enable the internal sample capture buffer  
ADDR  
0x05  
DATA  
DESCRIPTION  
0x02  
Select DIGITAL page  
0x34  
Select ADC channel (D5/D4) and give strobe (D6).  
The 64 samples are stored in 0x800 to 0x87F in the digital page  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7.4 Device Functional Modes  
The device offers two different operating modes: bypass mode (1x AVG) and digital averaging (2x/4x AVG). Both  
operating modes use the same digital back end and JESD204B output configurations.  
7.4.1 Digital Averaging  
The ADC32RF5x provides a total of eight internal single core 3.0 Gsps ADCs. Normal bypass mode uses only  
two ADC cores (one ADC per channel). However, the additional six ADCs can be used to trade off further noise  
density improvement against additional power consumption. 7-45 shows the internal block diagrams for the  
digital averaging modes. In averaging mode the output resolution is increased to 16-bit to avoid quantization  
noise limitation.  
In 2x averaging mode (left), one external input is connected to the INx1 input where two ADC cores internally  
average the input signal. In 4x averaging (right), the signal has to be split externally and connected to both the  
INx1 and INx2 inputs where four ADC cores internally average the signal.  
External  
50,  
100ꢀ  
ADC  
ADC  
INx2P/M  
ADC  
ADC  
50,  
100ꢀ  
50,  
100ꢀ  
ADC  
ADC  
INx1P/M  
INx1P/M  
7-45. Internal digital averaging (left: 2x, right: 4x)  
7-48 provides a trade-off comparison of the 3 different averaging mode options vs the default, non-averaged  
mode.  
7-48. Digital Averaging vs Full Power Input Bandwidth (3 dB)  
# of ADCs  
averaged  
ADC inputs used for  
averaging  
Input Bandwidth  
(-3 dB)  
Selected differential  
input termination  
Noise density  
Power/ch (W)  
Default  
INx1  
INx1  
2.75 GHz  
2.75 GHz  
2.1 GHz  
-156 dBFS/Hz  
-158 dBFS/Hz  
-160 dBFS/Hz  
~2.1  
~2.6  
~3.5  
100 Ω  
100 Ω  
100 Ω  
2
4
INx1, INx2  
Digital averaging improves decorrelated noise contributions by 3 dB per 2x AVG (ideal) while correlated noise  
does not improve with averaging. Some of the dominant noise sources are correlated, that is, clock jitter  
(external or first clock input buffer), or power supply noise. While others (such as, ADC thermal noise, clock  
distribution buffers) are decorrelated. 7-49 illustrates a performance example comparison across averaging  
options.  
SNR: When operating close to ADC fullscale, some of the SNR limitation is due to jitter and hence the SNR  
improvement will not reach 3 dB (2x AVG) or 6 dB (4x AVG). As the input fullscale is reduced, the clock jitter  
contribution to SNR becomes less and the SNR improvement is approaching the ideal 3 dB per 2x AVG. The  
same phenomenon can be observed when using digital decimation. As the decimation factor increases, the  
close-in (correlated noise) becomes the more dominating noise unless the input signal amplitude is reduced.  
SFDR: The amplitude of low order harmonics (HD2-HD5) and IMD3 typically is similar across ADCs; thus, the  
improvement with averaging is small.  
Copyright © 2023 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
 
 
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7-49. Performance Comparison Example with 1x/2x/4x Averaging with FS = 2.6 GSPS, FIN = 1 GHz and  
Dither EN  
Parameter  
Input Amplitude (dBFS)  
1x AVG  
62.8  
63.9  
64.0  
66  
2x AVG  
64.9  
66.3  
66.4  
62  
4x AVG  
67.2  
68.2  
69.4  
71  
-4  
SNR (dBFS)  
-10  
-20  
-4  
HD2 (dBc)  
HD3 (dBc)  
-10  
74  
74  
75  
-20  
70  
70  
80  
-4  
73  
76  
78  
-10  
80  
78  
80  
-20  
74  
71  
72  
-4  
-10  
86  
84  
83  
Non HD23 (dBFS)  
90  
91  
92  
-20  
96  
100  
73  
97  
-10 dBFS/tone  
77  
71  
72  
IMD3 (dBc)  
-20 dBFS/tone  
78  
79  
7.5 Programming  
The device is primarily configured and controlled using the serial programming interface (SPI); however, it can  
operate in a default configuration without requiring the SPI interface. Furthermore, the power down function as  
well as NCO frequency hopping or JESD synchronization are possible via pin control (GPIO1/2 pins).  
7.5.1 GPIO Pin Control  
There are several commands which can be executed using SPI programming or GPIO pins. 7-50 provides an  
overview of the commands available using GPIO pins.  
7-50. GPIO Pin Command Options  
FEATURE  
DESCRIPTION  
JESD SYNC  
NCO Control  
Fast Overrange  
Support for single ended CMOS or differential LVDS  
Fast frequency hopping with 3 different control options  
GPIO1 indicates overrange for channel B and GPIO2 for channel B. In this mode the  
overrange indication is 'sticky' - the flag stays high until it is cleared using SPI commands.  
Calibration Freeze  
Freezes swapping of calibration ADC  
7.5.2 Configuration Using the SPI Interface  
The device has a set of internal registers that can be accessed by the serial interface formed by the SEN (serial  
interface enable), SCLK (serial interface clock) and SDIO (serial interface data input/output) pins. Serially shifting  
bits into the device is enabled when SEN is low. Serial data input are latched at every SCLK rising edge when  
SEN is active (low). The serial data are loaded into the register at every 24th SCLK rising edge when SEN is low.  
When the word length exceeds a multiple of 24 bits, the excess bits are ignored. Data can be loaded in multiples  
of 24-bit words within a single active SEN pulse. The interface can function with SCLK frequencies from 20 MHz  
down to ~ 1 MHz and also with a non-50% SCLK duty cycle.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: ADC32RF54 ADC32RF55  
 
 
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7.5.2.1 Register Write  
The internal registers can be programmed following these steps:  
1. Drive the SEN pin low  
2. Set the R/W bit to 0 (bit A15 of the 16-bit address) and bits A[14:12] in address field to 0.  
3. Initiate a serial interface cycle by specifying the address of the register (A[11:0]) whose content is written and  
4. Write the 8-bit data that are latched in on the SCLK rising edges  
7-46 shows the timing requirements for the serial register write operation.  
Register Address <11:0>  
Register Data <7:0>  
D5 D4 D3  
R/W  
0
SDIO  
0
0
0
A11 A10  
A9  
A8  
A7 A6 A5 A4  
A3  
A2  
A1  
A0  
D7  
D6  
D2  
D1  
D0  
tH(SDIO)  
tSCLK  
tSU(SDIO)  
SCLK  
SEN  
tS(SEN)  
tH(SEN)  
RESET  
7-46. Serial Register Write Timing Diagram  
7.5.2.2 Register Read  
The device includes a mode where the contents of the internal registers can be read back using the SDIO pin.  
This readback mode can be useful as a diagnostic check to verify the serial interface communication between  
the external controller and the ADC. The procedure to read the contents of the serial registers is as follows:  
1. Drive the SEN pin low  
2. Set the R/W bit (A15) to 1. This setting disables any further writes to the registers. Set A[14:12] in address  
field to 0.  
3. Initiate a serial interface cycle specifying the address of the register (A[11:0]) whose content must be read  
4. The device outputs the contents (D[7:0]) of the selected register on the SDIO pin  
5. The external controller can latch the contents at the SCLK falling edge  
Register Address <11:0>  
Register Data <7:0>  
R/W  
1
tOZD  
A0  
tOD  
SDIO  
0
0
0
A11 A10  
A9  
A8  
A7 A6 A5 A4  
A3  
A2  
A1  
D7  
D6  
D5 D4 D3  
D2  
D1  
D0  
SCLK  
SEN  
tODZ  
7-47. Serial Register Read Timing Diagram  
Copyright © 2023 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7.6 Register Maps  
7-51. Register Map Summary  
REGISTER  
REGISTER DATA  
ADDRESS  
A[11:0]  
0x00  
PAGE  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
0
0
0
0
0
RESET  
GLOBAL  
ANALOG  
PAGE  
CALIB  
PAGE  
DDCB  
PAGE  
DDCA  
PAGE  
DIGITAL  
PAGE  
0x05  
MEM PAGE  
JESD PAGE  
0
0x2C  
0x2D  
0x2E  
0x33  
0x34  
20-BIT OUT  
DDC BAND SEL  
0
0
0
0
DDC REAL  
0
BYP EN  
0
0
0
0
DECIMATION  
0
0
0
0
0
0
0
0
0
0
1
AVG EN  
FORMAT  
0
AVG SEL(1)  
0
0
GBL PDN  
0
MEM  
MEM CH SEL  
STROBE  
0x3B  
0x41  
NCO4 CHA [1:0]  
NCO4 CHB [1:0]  
NCO3 CHA [1:0]  
NCO3 CHB [1:0]  
NCO2 CHA [1:0]  
NCO2 CHB [1:0]  
NCO1 CHA [1:0]  
NCO1 CHB [1:0]  
DIGITAL  
0x22F  
0x234  
0x235  
0x236  
1
0
SYSREF X5 SYSREF X4 SYSREF X3 SYSREF X2 SYSREF X1 SYSREF OR  
NCO SEL MODE GPIO MODE  
1
0
0
NCO SEL SOURCE  
0
0
GPIO2 INV GPIO1 INV GPIO SWAP  
0
0
SYSREF SYSREF EN  
RESET  
0x237  
0x238  
0x20  
0
0
0
0
0
0
GPIO2 CFG  
0
0
0
GPIO1 CFG  
0
OVR OUTPUT CFG  
K
SYNC SPI  
SYNC SPI  
EN  
0x21  
0
0
SYSREF MODE  
0x22  
0x24  
0x25  
0x27  
0x28  
0x2B  
0x2D  
0x2E  
0x2F  
LMFS MODE  
DDC CLK DIV  
JESD TX CLK DIV  
JESD  
0
0
DROP LSB  
0
0
0
0
CLK BAL EN  
0
JESD TX LANE EN  
0
0
0
0
0
0
0
0
0
0
0
0
0
TEST SEQ SEL  
ALT PAT  
0
SYNC INV  
RAMP INCR  
PRBS PAT  
RAMP EN  
0
0
0
0
PRBS EN  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: ADC32RF54 ADC32RF55  
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7-51. Register Map Summary (continued)  
REGISTER  
ADDRESS  
REGISTER DATA  
D4 D3  
PAGE  
A[11:0]  
0x30  
0x32  
0x34  
0x36  
0x40  
0x42  
0x44  
0x46  
0x53  
0x7A  
0x80  
0x81  
0x82  
0x83  
0x84  
0x89  
D7  
D6  
D5  
D2  
D1  
D0  
START VALUE JESD RAMP DOUT0  
START VALUE JESD RAMP DOUT1  
START VALUE JESD RAMP DOUT2  
START VALUE JESD RAMP DOUT3  
START VALUE JESD RAMP DOUT4  
START VALUE JESD RAMP DOUT5  
START VALUE JESD RAMP DOUT6  
START VALUE JESD RAMP DOUT7  
SCR EN  
0
0
0
0
0
0
0
JESD LANE POL INV  
0
0
0
0
0
LANE DOUT1 SEL  
LANE DOUT3 SEL  
LANE DOUT5 SEL  
LANE DOUT7 SEL  
0
0
0
0
0
LANE DOUT0 SEL  
LANE DOUT2 SEL  
LANE DOUT4 SEL  
LANE DOUT6 SEL  
0
0
0
0
0
0
0
0
JESD PLL FACTOR  
TX EMPH  
DOUT1 [0]  
TX EMPH DOUT0 [5:0]  
0
0
0
0
JESD  
0x8A  
0x8B  
0
0
0
0
0
TX EMPH DOUT1 [5:1]  
TX EMPH DOUT2 [5:0]  
TX EMPH  
DOUT3 [0]  
0x8C  
0x8D  
0
TX EMPH DOUT3 [5:1]  
TX EMPH DOUT4 [5:0]  
TX EMPH  
DOUT5 [0]  
0x8E  
0x8F  
0
TX EMPH DOUT5 [5:1]  
TX EMPH DOUT6 [5:0]  
TX EMPH  
DOUT7 [0]  
0x90  
0x9D  
0
TX EMPH DOUT7 [5:1]  
PD DOUT7 PD DOUT6 PD DOUT5 PD DOUT4 PD DOUT3 PD DOUT2 PD DOUT1 PD DOUT0  
[0] [0] [0] [0] [0] [0] [0] [0]  
0x9E  
PD DOUT7 PD DOUT6 PD DOUT5 PD DOUT4 PD DOUT3 PD DOUT2 PD DOUT1 PD DOUT0  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
0x9F  
0xA0  
0xA1  
0xA2  
0
JESD PLL1  
JESD PLL INPUT1  
JESD PLL INPUT2  
0
0
JESD PLL2  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
JESD PLL INPUT3  
Copyright © 2023 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7-51. Register Map Summary (continued)  
REGISTER  
ADDRESS  
REGISTER DATA  
D4 D3  
PAGE  
A[11:0]  
D7  
D6  
D5  
D2  
D1  
D0  
0x100..0x105  
0x108..0x10D  
0x110..0x115  
0x118..0x11D  
0x120..0x125  
0x128..0x12D  
0x130..0x135  
0x138..0x13D  
0x140..0x145  
0x148..0x14D  
0x150..0x155  
0x158..0x15D  
0x160..0x165  
0x168..0x16D  
0x170..0x175  
0x178..0x17D  
0x180  
NCO1 FREQUENCY1 [7:0],[15:8],[23:16],[31:24],[39:32],[47:40]  
NCO1 FREQUENCY2 [7:0],[15:8],[23:16],[31:24],[39:32],[47:40]  
NCO1 FREQUENCY3 [7:0],[15:8],[23:16],[31:24],[39:32],[47:40]  
NCO1 FREQUENCY4 [7:0],[15:8],[23:16],[31:24],[39:32],[47:40]  
NCO2 FREQUENCY1 [7:0],[15:8],[23:16],[31:24],[39:32],[47:40]  
NCO2 FREQUENCY2 [7:0],[15:8],[23:16],[31:24],[39:32],[47:40]  
NCO2 FREQUENCY3 [7:0],[15:8],[23:16],[31:24],[39:32],[47:40]  
NCO2 FREQUENCY4 [7:0],[15:8],[23:16],[31:24],[39:32],[47:40]  
NCO3 FREQUENCY1 [7:0],[15:8],[23:16],[31:24],[39:32],[47:40]  
NCO3 FREQUENCY2 [7:0],[15:8],[23:16],[31:24],[39:32],[47:40]  
NCO3 FREQUENCY3 [7:0],[15:8],[23:16],[31:24],[39:32],[47:40]  
NCO3 FREQUENCY4 [7:0],[15:8],[23:16],[31:24],[39:32],[47:40]  
NCO4 FREQUENCY1 [7:0],[15:8],[23:16],[31:24],[39:32],[47:40]  
NCO4 FREQUENCY2 [7:0],[15:8],[23:16],[31:24],[39:32],[47:40]  
NCO4 FREQUENCY3 [7:0],[15:8],[23:16],[31:24],[39:32],[47:40]  
NCO4 FREQUENCY4 [7:0],[15:8],[23:16],[31:24],[39:32],[47:40]  
DDCA/B  
0
0
DDC PDN  
DDC DITH REAL DDC DB/QB DDC  
PDN  
0
0
NCO MODE  
0x181  
0x34  
0x45  
0x298  
0x6D  
0x6E  
0x7B  
0x8B  
0xA8  
0xAF  
0xB1  
0xB4  
0
0
LOAD NCO  
0
0
1
0
0
1
0
0
CAL SPI  
0
0
CAL GPIO  
0
0
0
0
0
0
0
0
0
AVG SEL(2)  
CALIBR  
ATION  
0
0
1
0
0
CAL STATUS  
RESET SW [1:0]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET SW [3:2]  
0
TERM A  
TERM B  
0
0
0
0
TERM A  
0
TERM B  
0
DITHER AMP1  
0
0
DITHER DIS  
0
0
0
0
1
0
ANALOG  
DITHER DIVIDER  
0
0
0
0
0
0
SYSREF AC  
EN  
0xCD  
0xE6  
DITH AMP2  
0
0
0
0
0
0
0
0
0
TX SWING  
[0]  
0
0
0
0
0xE7  
0
0
0
0
TX SWING [2:1]  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7.6.1 Detailed Register Description  
7-48. Register 0x00  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
0
RESET  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7-52. Register 0x00 Field Descriptions  
Bit  
Field  
0
Type  
R/W  
R/W  
Reset  
Description  
7-1  
0
0
0
Must write 0  
RESET  
This bit resets all internal registers to the default values. Does  
not self clear to 0.  
7-49. Register 0x05  
7
6
5
4
3
2
1
0
0
MEM PAGE  
R/W-0  
ANALOG PAGE CALIB PAGE  
R/W-0 R/W-0  
DDCB PAGE  
R/W-0  
DDCA PAGE  
R/W-0  
JESD PAGE  
R/W-0  
DIGITAL PAGE  
R/W-0  
R/W-0  
7-53. Register 0x05 Field Descriptions  
Bit  
Field  
MEM PAGE  
Type  
Reset  
Description  
7
R/W  
0
This bit enables access to the MEMORY page  
0: MEMORY page access disabled  
1: MEMORY page access enabled  
6
5
4
ANALOG PAGE  
CALIB PAGE  
DDCB PAGE  
R/W  
R/W  
R/W  
0
0
0
This bit enables access to the ANALOG page  
0: ANALOG page access disabled  
1: ANALOG page access enabled  
This bit enables access to the CALIBRATION page  
0: CALIBRATION page access disabled  
1: CALIBRATION page access enabled  
This bit enables access to the DDCB page. Contents can be  
written to DDCA and DDCB page simultaneously if it is identical.  
0: DDCB page access disabled  
1: DDCB page access enabled.  
3
DDCA PAGE  
R/W  
0
This bit enables access to the DDCA page. Contents can be  
written to DDCA and DDCB page simultaneously if it is identical.  
0: DDCA page access disabled  
1: DDCA page access enabled  
2
1
0
JESD PAGE  
DIGITAL PAGE  
0
R/W  
R/W  
R/W  
0
0
0
This bit enables access to the JESD page  
0: JESD page access disabled  
1: JESD page access enabled  
This bit enables access to the DIGITAL page  
0: DIGITAL page access disabled  
1: DIGITAL page access enabled  
Must write 0  
Copyright © 2023 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7-50. Register 0x2C (DIGITAL page)  
7
6
5
4
3
2
0
1
0
20-BIT OUT  
R/W-0  
DDC BAND SEL  
0
0
DDC REAL  
R/W-0  
BYP EN  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7-54. Register 0x2C Field Descriptions  
Bit  
Field  
20-BIT OUT  
Type  
Reset  
Description  
7
R/W  
0
This bit enables the 20-bit output mode. It carries the output  
sample with 20-bit output resolution from the DDC and the  
sample is filled to 32-bit with 12 trailing 0s.  
0: Normal operation  
1: 20-bit output mode  
6-5  
DDC BAND SEL  
R/W  
00  
Selects 1, 2 or 4 DDC per ADC when complex decimation is  
enabled  
0: Single band  
1: Dual band  
2: Quad band  
3: not used  
4-2  
1
0
R
0
0
Must write 0  
DDC REAL  
R/W  
This bit enables real decimation filter (NCO = 0). BYP EN (D0)  
must be set to 0.  
0: Complex decimation  
1: Real decimation  
0
BYP EN  
R/W  
0
This bit enables DDC bypass mode  
0: Decimation filter enabled. Complex decimation by default  
unless D1 is set  
1: Decimation filter bypass  
7-51. Register 0x2D (DIGITAL page)  
7
0
6
5
4
3
2
0
1
0
0
0
DECIMATION  
R/W-0  
0
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7-55. Register 0x2D Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7
0
0
0
Must write 0  
6-4  
DECIMATION  
Selects decimation.  
0,1: not used  
2: Decimation by 4  
3: Decimation by 8  
4: Decimation by 16  
5: Decimation by 32  
6: Decimation by 64  
7: Decimation by 128  
3-0  
0
R/W  
0
Must write 0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7-52. Register 0x2E (DIGITAL page)  
7
0
6
0
5
0
4
3
2
1
0
0
0
AVG EN  
R/W-0  
AVG SEL (1)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7-56. Register 0x2E Field Descriptions  
Bit  
Field  
0
Type  
R/W  
R/W  
Reset  
Description  
7-4  
3
0
0
Must write 0  
AVG EN  
This bit enables averaging  
0: no average  
1: ADC averaging enabled  
2-1  
0
AVG SEL (1)  
R/W  
00  
Selects ADC averaging. Also AVG SEL (2) in CALIBRATION  
page needs to be set.  
0: no average  
1: 2 ADC average  
2: 4 ADC average  
0
R/W  
0
Must write 0  
7-53. Register 0x33 (DIGITAL page)  
7
0
6
5
0
4
3
2
0
1
0
0
0
1
FORMAT  
R/W-0  
GBL PDN  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7-57. Register 0x33 Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
R/W  
Reset  
Description  
Must write 0  
Must write 1  
7-5  
4
0
0
0
0
1
3
FORMAT  
This register bit determines the output data format in DDC  
bypass mode only.  
0: Offset Binary  
1: 2s Complement  
DDC mode only supports 2s complement output format.  
2
1
0
R/W  
R/W  
0
0
Must write 0  
GBL PDN  
This register bit enables global power down mode  
0: normal operation  
1: global power down mode enabled  
0
0
R/W  
0
Must write 0  
7-54. Register 0x34 (DIGITAL page)  
7
0
6
5
4
3
2
0
1
0
0
0
MEM STROBE  
R/W-0  
MEM CH SEL  
0
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7-58. Register 0x34 Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7
6
0
0
0
Must write 0  
MEM STROBE  
This register enables fast power down mode  
0: normal operation  
1: fast power down mode enabled  
Copyright © 2023 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7-58. Register 0x34 Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
5-4  
MEM CH SEL  
R/W  
0
This register selects which ADC channel is used to fill up the  
capture sample buffer. Only 1 channel can be selected at a time  
and the samples are captured from the ADC core without  
averaging or decimation.  
00: capture memory is filled from chA1 input  
01: capture memory is filled from chA2 input  
10: capture memory is filled from chB1 input  
11: capture memory is filled from chB2 input  
0
0
R/W  
0
Must write 0  
7-55. Register 0x3B (DIGITAL page)  
7
6
NCO4 CHA [1:0]  
R/W-0 R/W-0  
5
4
3
2
1
0
NCO3 CHA [1:0]  
NCO2 CHA [1:0]  
NCO1 CHA [1:0]  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7-59. Register 0x3B Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
NCO4 CHA [1:0]  
R/W  
00  
This register is used when selecting the NCO frequency for  
channel A, band 4 with the SPI interface in quad DDC mode.  
5-4  
3-2  
NCO3 CHA [1:0]  
NCO2 CHA [1:0]  
R/W  
R/W  
00  
00  
This register is used when selecting the NCO frequency for  
channel A, band 3 with the SPI interface in quad DDC mode.  
In single band DDC mode this register is used to select between  
NCO bank 1 or 2.  
00: NCO bank 1  
01: NCO bank 2  
In dual band DDC mode this register is used to select the NCO  
frequency for channel A, band 2 with the SPI interface.  
1-0  
NCO1 CHA [1:0]  
R/W  
00  
This register is used when selecting the NCO1 of channel A with  
the SPI interface.  
7-56. Register 0x41 (DIGITAL page)  
7
6
NCO4 CHB [1:0]  
R/W-0 R/W-0  
5
4
3
2
1
0
NCO3 CHB [1:0]  
NCO2 CHB [1:0]  
NCO1 CHB [1:0]  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7-60. Register 0x41 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
NCO4 CHB [1:0]  
R/W  
00  
This register is used when selecting the NCO frequency for  
channel B, band 4 with the SPI interface in quad DDC mode.  
5-4  
3-2  
NCO3 CHB [1:0]  
NCO2 CHB [1:0]  
R/W  
R/W  
00  
00  
This register is used when selecting the NCO frequency for  
channel B, band 3 with the SPI interface in quad DDC mode.  
In single band DDC mode this register is used to select between  
NCO bank 1 or 2 of channel B.  
00: NCO bank 1  
01: NCO bank 2  
In dual band DDC mode this register is used to select the NCO  
frequency for channel B, band 2 with the SPI interface.  
1-0  
NCO1 CHB [1:0]  
R/W  
00  
This register is used when selecting the NCO1 of channel B with  
the SPI interface.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7-57. Register 0x22F (DIGITAL page)  
7
1
6
5
4
3
2
1
0
1
SYSREF X5  
R/W-0  
SYSREF X4  
R/W-0  
SYSREF X3  
R/W-0  
SYSREF X2  
R/W-0  
SYSREF X1  
R/W-0  
SYSREF OR  
R/W-0  
R/W-0  
R/W-0  
7-61. Register 0x22F Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7
1
1
0
Must write 1  
6-2  
SYSREF X1..5  
These bits are the XOR flags from the SYSREF window  
monitoring circuitry. The sampling clock gets delayed internally  
by ~ 160 ps and used to capture the SYSREF signal. If a  
SYSREF signal transition happens within +/- 50 ps of the  
SYSREF capture the appropriate XOR flag gets raised. These  
bits are not sticky - they get overwritten with the next SYSREF  
rising edge.  
X1: Window from 110 ps to 135 ps after the rising sampling  
clock edge  
X2: Window from 135 ps to 160 ps after the rising sampling  
clock edge  
X3: Window from 160 ps to 176 ps after the rising sampling  
clock edge  
X4: Window from 176 ps to 192 ps after the rising sampling  
clock edge  
X5: Window from 192 ps to 208 ps after the rising sampling  
clock edge  
0: No SYSREF transition detected  
1: SYSREF transition detected within given window  
1
0
SYSREF OR  
R/W  
R/W  
0
1
This bit is the output of the five SYSREF XOR flags logically  
OR'ed together.  
0: no SYSREF flag raised  
1: one of the five SYSREF XOR flags is raised.  
1
Must write 1  
7-58. Register 0x234 (DIGITAL page)  
7
0
6
5
4
3
2
1
0
NCO SEL MODE  
0
0
GPIO MODE  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7-62. Register 0x234 Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7
0
0
Must write 0  
6-5  
NCO SEL MODE  
00  
These bits select control of the NCO selection in complex  
decimation.  
0: NCO selection using GPIO pins (GPIO MODE (D2-D0) needs  
to be set accordingly)  
2: GPIO1/2 pins are used as a fast serial interface only for the  
NCO selection for each digital mixer  
3: GPIO1/2, SCLK, SDIO pins are used for NCO selection.  
others: not used  
Register 0x235 may need to be set as well.  
4-3  
0
R/W  
0
Must write 0  
Copyright © 2023 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7-62. Register 0x234 Field Descriptions (continued)  
Bit  
Field  
GPIO MODE  
Type  
Reset  
Description  
2-0  
R/W  
000  
This register sets the functionality of the two GPIO pins  
0: GPIO pins are used as SYNC input (LVDS), GPIO1 = SYNCP,  
GPIO2 = SYNCM  
1: GPIO1 is used as SYNC input (CMOS)  
3: Both GPIO pins are used to select NCOs for the decimation  
filters  
4: GPIO1 is used to disable the calibration  
5: GPIO1 is used as start of SYSREF counter  
others: not used  
7-59. Register 0x235 (DIGITAL page)  
7
6
5
4
3
2
1
0
NCO SEL SOURCE  
R/W-0 R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7-63. Register 0x235 Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
NCO SEL SOURCE  
R/W  
0
This register works in conjuction with NCO SEL MODE (0x234).  
0x00: NCO selection other than regular SPI (GPIO, Fast SPI  
etc)  
0xFF: NCO selection using regular SPI with addresses 0x3B/41.  
7-60. Register 0x236 (DIGITAL page)  
7
0
6
5
4
3
2
1
0
GPIO2 INV  
GPIO1 INV  
GPIO SWAP  
0
0
SYSREF  
RESET  
SYSREF EN  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7-64. Register 0x236 Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7
6
0
0
0
Must write 0  
GPIO2 INV  
This bit inverts polarity of the GPIO2 pin  
0: Polarity as is  
1: Polarity inverted  
5
4
GPIO1 INV  
R/W  
R/W  
0
0
This bit inverts polarity of the GPIO1 pin  
0: Polarity as is  
1: Polarity inverted  
GPIO SWAP  
This bit swaps GPIO1 and GPIO2 pins internally.  
0: Normal operation  
1: GPIO1 and GPIO2 are swapped  
3-2  
1
0
R/W  
R/W  
0
0
Must write 0  
SYSREF RESET  
This bit enables and clears the internal SYSREF counter:  
0: Normal operation  
1: Enables SYSREF and clears the internal counter  
0
SYSREF EN  
R/W  
0
This bit starts the internal SYSREF counter:  
0: Normal operation  
1: Starts SYSREF counter  
7-61. Register 0x237 (DIGITAL page)  
7
0
6
0
5
4
3
2
1
0
0
0
0
0
GPIO2 CFG  
R/W-0  
GPIO1 CFG  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7-65. Register 0x237 Field Descriptions  
Bit  
7-3  
2
Field  
Type  
R/W  
R/W  
Reset  
Description  
0
0
0
Must write 0  
GPIO2 CFG  
This bit configures GPIO2 pin either as input or output.  
0: GPIO2 pin is input  
1: GPIO2 pin is output  
1
0
0
R/W  
R/W  
0
0
Must write 0  
GPIO1 CFG  
This bit configures GPIO1 pin either as input or output.  
0: GPIO1 pin is input  
1: GPIO1 pin is output  
Copyright © 2023 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7-62. Register 0x238 (DIGITAL page)  
7
6
5
4
3
2
1
0
0
0
OVR OUTPUT CFG  
0
0
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7-66. Register 0x238 Field Descriptions  
Bit  
Field  
OVR OUTPUT CFG  
Type  
Reset  
Description  
7-4  
R/W  
0000  
This bit configures if the overrange indication (OVR) is output on  
JESD output stream or on GPIO pins  
0000: OVR on JESD  
1111: OVR on GPIO  
3-0  
0
R/W  
0
Must write 0  
7-63. Register 0x20 (JESD page)  
7
6
5
4
3
2
1
0
K
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7-67. Register 0x20 Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
K
R/W  
00000000 This is JESD204B parameter K which sets number of frames in  
a multi-frame. Bit value is set as K minus 1.  
7-64. Register 0x21 (JESD page)  
7
0
6
5
4
3
2
1
0
SYNC SPI EN  
R/W-0  
SYNC SPI  
R/W-0  
0
0
SYSREF MODE  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7-68. Register 0x21 Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7
6
0
0
0
Must write 0  
SYNC SPI EN  
This bit enables JESD SYNC control using SPI (ignoring SYNC  
using GPIO1/2 pins) using bit D5 (SYNC SPI).  
0: SPI SYNC disabled  
1: SPI SYNC (using register bit D5) enabled  
5
SYNC SPI  
R/W  
0
This bit enables JESD SYNC. SYNC control via SPI must be  
enabled also (D6).  
0: ADC outputs data (SYNC disabled)  
1: SYNC enabled (ADC outputs K28.5 characters for JESD  
interface synchronization)  
4-3  
2-0  
0
R/W  
R/W  
0
Must write 0  
SYSREF MODE  
000  
This register controls how the ADC processes incoming  
SYSREF pulses.  
0: Ignore all SYSREF pulses  
1: Use all SYSREF pulses  
2: Don't use SYSREF pulses  
3: Skip one SYSREF pulse then use only the next one  
4: Skip one SYSREF pulse then use all pulses  
5: Skip two SYSREF pulses and then use one  
6: Skip two SYSREF pulses and then use all  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7-65. Register 0x22 (JESD page)  
7
6
5
4
3
2
1
0
JESD MODE  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7-69. Register 0x22 Field Descriptions  
Bit  
7:0  
Field  
JESD MODE  
Type  
Reset  
Description  
R/W  
00000000 This register sets the LMFS configuration  
0: LMFS = 8-2-8-20 (also bit DROP LSB in 0x27 needs to be  
set)  
1: LMFS = 8-2-2-4  
3: LMFS = 8-4-2-2  
4: LMFS = 8-16-4-1  
5: LMFS = 4-16-8-1  
6: LMFS = 2-16-16-1  
7: LMFS = 1-16-32-1  
8: LMFS = 8-8-2-1  
9: LMFS = 4-8-4-1  
10: LMFS = 2-8-8-1  
11: LMFS = 1-8-16-1  
12: LMFS = 4-4-2-1  
13: LMFS = 2-4-4-1  
14: LMFS = 1-4-8-1  
15: LMFS = 2-2-2-1  
16: LMFS = 1-2-4-1  
others: not used  
7-66. Register 0x24 (JESD page)  
7
6
5
4
3
2
1
0
DDC CLK DIV  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7-70. Register 0x24 Field Descriptions  
Bit  
7-0  
Field  
DDC CLK DIV  
Type  
Reset  
Description  
R/W  
00000000 This register sets the internal clock divider when using the  
decimation filter. See 7-72.  
7-67. Register 0x25 (JESD page)  
7
6
5
4
3
2
1
0
JESD TX CLK DIV  
R/W-0 R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7-71. Register 0x25 Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
JESD TX CLK DIV  
R/W  
0000000  
This register sets the internal clock divider for the selected  
LMFS output mode. See 7-72 for 16-bit and 7-73 for 20-bit  
output.  
Copyright © 2023 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7-72. Register Settings for 0x24/0x25 Based on Bypass/Decimation and LMFS Mode (16-bit Output)  
0x24 (DDC CLK DIV)  
0x25 (JESD TX CLK DIV)  
LMFS  
8-2-2-4  
8-2-8-20  
8-4-8-10  
8-4-2-2  
8-8-2-1  
8-16-4-1  
4-2-2-2  
4-4-2-1  
4-8-4-1  
4-16-8-1  
2-2-2-1  
2-4-4-1  
2-8-8-1  
2-16-16-1  
1-2-4-1  
1-4-8-1  
1-8-16-1  
1-16-32-1  
BYP  
/4  
/8  
/16  
/32  
/64  
/128  
BYP  
/4  
/8  
/16  
/32  
/64  
/128  
0
0
1
1
0
4
4
0
0
0
1
0
0
1
3
0
1
3
0
0
1
0
0
1
3
0
1
3
7
1
3
7
0
0
1
0
0
1
3
0
1
3
7
1
3
7
15  
0
0
1
0
0
1
3
0
1
3
7
1
3
7
15  
1
0
0
1
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
3
3
0
0
1
1
3
3
7
7
1
3
1
1
0
0
3
3
7
7
15  
15  
7-73. Register Settings for 0x24/0x25 Based on Decimation and LMFS Mode (20-bit Output).  
0x24 (DDC CLK DIV)  
0x25 (JESD TX CLK DIV)  
LMFS  
8-8-4-1  
BYP  
/4  
1
3
1
3
/8  
1
3
1
3
7
1
3
7
/16  
1
/32  
1
/64  
1
/128  
1
BYP  
/4  
0
0
0
0
/8  
0
0
0
0
0
0
0
0
/16  
0
/32  
0
/64  
0
/128  
0
8-16-8-1  
4-4-4-1  
3
3
3
3
0
0
0
0
1
1
1
1
0
0
0
0
4-8-8-1  
3
3
3
3
0
0
0
0
4-16-16-1  
2-2-4-1  
7
7
7
7
0
0
0
0
1
3
1
1
1
1
0
0
0
0
0
0
2-4-8-1  
3
3
3
3
0
0
0
0
2-8-16-1  
2-16-32-1  
1-2-8-1  
7
7
7
7
0
0
0
0
15  
3
15  
3
15  
3
15  
3
0
0
0
0
3
3
7
0
0
0
0
0
0
0
1-4-16-1  
1-8-32-1  
1-16-64-1  
7
7
7
7
0
0
0
0
15  
15  
31  
15  
31  
15  
31  
0
0
0
0
0
0
0
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: ADC32RF54 ADC32RF55  
 
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7-68. Register 0x27 (JESD page)  
7
0
6
0
5
4
3
2
0
1
0
0
DROP LSB  
R/W-0  
0
0
CLK BAL EN  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7-74. Register 0x27 Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-6  
5
0
0
0
Must write 0  
DROP LSB  
This register needs to be set when using the 12-bit output LMFS  
mode.  
0: Drop LSB disabled  
1: Drop LSB enabled when using LMFS = 8-2-8-2-20  
4-2  
1
0
R/W  
R/W  
0
0
Must write 0  
CLK BAL EN  
This register bit needs to be enabled in bypass mode LMFS =  
8-2-2-4 only in order to improve some internal clock balancing.  
0: CLK BAL disabled  
1: CLK BAL EN. Set for LMFS = 8-2-2-4  
0
0
R/W  
0
Must write 0  
7-69. Register 0x28 (JESD page)  
7
6
5
4
3
2
1
0
JESD LANE EN  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7-75. Register 0x28 Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
JESD LANE EN  
R/W  
11111111  
This register turns on individual output lanes  
0: Lane powered down  
1: Serdes lane enabled  
D0: Lane DOUT0  
D1: Lane DOUT1  
...  
D7: Lane DOUT7  
7-70. Register 0x2B  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
0
SYNC INV  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7-76. Register 0x2B Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-1  
0
0
0
0
Must write 0  
SYNC INV  
This register inverts the polarity from external SYNC pin  
0: Polarity as is  
1: Polarity inverted  
Copyright © 2023 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7-71. Register 0x2D (JESD page)  
7
0
6
0
5
0
4
3
2
1
0
0
0
JESD SEQ SEL  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7-77. Register 0x2D Field Descriptions  
Bit  
7-3  
2-0  
Field  
Type  
R/W  
R/W  
Reset  
Description  
0
0
Must write 0  
JESD SEQ SEL  
000  
This register selects the JESD test pattern sequence  
0: Test sequence disabled  
1: Repeat D21.5 high frequency pattern for random jitter (RJ)  
2: Repeat K28.5 mixed frequency pattern for deterministic jitter  
(DJ)  
3: Repeat initial lane alignment (ILA) sequence  
4: Modified random pattern  
5: Scrambled jitter pattern  
6: Repeat K28.7 low frequency pattern  
7: Short test pattern  
7-72. Register 0x2E (JESD page)  
7
6
5
4
3
2
1
0
0
RAMP INCR  
0
RAMP EN  
R/W-0  
ALT PAT  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7-78. Register 0x2E Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
RAMP INCR  
R/W  
0000  
This register value sets the increment step size for the ramp  
pattern on 16-bit output. The step size is RAMP INCR plus 1.  
3
2
1
0
R/W  
R/W  
R/W  
0
0
0
Must write 0  
RAMP EN  
ALT PAT  
Enables RAMP output pattern in the TRANSPORT LAYER.  
Enables a toggle pattern switching between 0x0000 and 0xFFFF  
in the TRANSPORT LAYER  
0
0
R/W  
0
Must write 0  
7-73. Register 0x2F (JESD page)  
7
0
6
5
4
3
2
0
1
0
0
0
SERDES PRBS  
SERDES PRBS  
EN  
0
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7-79. Register 0x2F Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7
0
0
0
Must write 0  
6-5  
SERDES PRBS  
This register selects the PRBS pattern in the LINK LAYER (no  
8b/10b encoding). PRBS pattern must be enabled (D4).  
0: PRBS 27-1  
1: PRBS 215-1  
2: PRBS 223-1  
3: PRBS 231-1  
4
SERDES PRBS EN  
0
R/W  
R/W  
0
0
This register enables PRBS test pattern in the LINK LAYER  
0: Test pattern mode disabled  
1: PRBS test pattern mode enabled  
3-0  
Must write 0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7-74. Register 0x30/32/34/36/40/42/44/46 (JESD page)  
7
6
5
4
3
2
1
0
START VALUE JESD RAMP DOUT0/1/2/3/4/5/6/7  
R/W-0 R/W-0 R/W-0 R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7-80. Register 0x30/32/34/36/40/42/44/46 Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
START VALUE JESD RAMP  
DOUT0/1/2/3/4/5/6/7  
R/W  
00000000 The JESD RAMP test pattern is designed to act as an individual  
RAMP pattern on each output lane. If the starting value on each  
lane is set to 0 (default), each output lane shows the same  
RAMP code at any given time.  
The RAMP pattern can be configured such that the RAMP  
pattern is constructed across JESD output lanes using the start  
value registers.  
DOUT1=1, DOUT2=2, DOUT3=3, DOUT4=0, DOUT5=1,  
DOUT6=2 and DOUT7=3 as well as the RAMP increment to 4  
(RAMP INCR (0x2E) = 0x30) results in a RAMP pattern across  
lanes for each channel in bypass mode.  
7-75. Register 0x53 (JESD page)  
7
6
0
5
0
4
3
2
0
1
0
0
0
SCR EN  
R/W-0  
0
0
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7-81. Register 0x53 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
SCR EN  
R/W  
0
Enables scrambling of the JESD output data  
0: Output scrambling disabled  
1: Output scrambling enabled  
6-0  
0
R/W  
0
Must write 0  
7-76. Register 0x7A (JESD page)  
7
6
5
4
3
2
1
0
JESD LANE POL INV  
R/W-0 R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7-82. Register 0x7A Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
JESD LANE POL INV  
R/W  
00000000 This register inverts the polarity of the individual SERDES output  
lanes. Register bit D0 corresponds to SERDES lane DOUT0, D1  
to DOUT1 etc  
0: Output polarity as is  
1: Output polarity inverted  
Copyright © 2023 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7-77. Register 0x80/81/82/83 (JESD page)  
ADDR  
0x80  
0x81  
0x82  
0x83  
7
6
5
4
3
2
1
0
0
LANE DOUT1 SEL  
LANE DOUT3 SEL  
LANE DOUT5 SEL  
LANE DOUT7 SEL  
R/W-0  
0
LANE DOUT0 SEL  
LANE DOUT2 SEL  
LANE DOUT4 SEL  
LANE DOUT6 SEL  
R/W-0  
0
0
0
0
0
0
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7-83. Register 0x80/81/82/83 Field Descriptions  
Bit  
7,3  
6-4  
2-0  
Field  
Type  
R/W  
R/W  
R/W  
Reset  
Description  
0
0
Must write 0  
LANE DOUT1/3/5/7 SEL  
LANE DOUT0/2/4/6 SEL  
000  
000  
These register bits control the output mux. Any physical serdes  
output lane (DOUTx) can be connected to any JESD digital  
stream. By default lane DOUT0 is connected to JESD stream 0,  
lane DOUT1 to JESD stream 1 etc.  
0: JESD stream 0  
1: JESD stream 1  
...  
7: JESD stream 7  
7-78. Register 0x84 (JESD page)  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
JESD PLL FACTOR  
R/W-0 R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7-84. Register 0x84 Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-2  
1-0  
0
0
Must write 0  
JESD PLL FACTOR  
00  
This register bit must be set for 12-bit output LMFS = 8-2-8-20  
only.  
0: all other JESD LMFS modes  
1: Set for LMFS = 8-2-8-20  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7-79. Register 0x89/8A/8B/8C/8D/8E/8F/90 (JESD page)  
ADDR  
0x89  
0x8A  
0x8B  
0x8C  
0x8D  
0x8E  
0x8F  
0x90  
7
6
0
0
0
5
0
0
0
4
3
2
1
0
0
TX EMPH  
DOUT1 [0]  
TX EMPH DOUT0 [5:0]  
TX EMPH DOUT2 [5:0]  
TX EMPH DOUT4 [5:0]  
TX EMPH DOUT6 [5:0]  
0
TX EMPH DOUT1 [5:1]  
TX EMPH DOUT3 [5:1]  
TX EMPH DOUT5 [5:1]  
TX EMPH  
DOUT3 [0]  
0
0
TX EMPH  
DOUT5 [0]  
0
0
0
TX EMPH  
DOUT7 [0]  
0
0
0
TX EMPH DOUT7 [5:1]  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7-85. Register 0x89/8A/8B/8C/8D/8E/8F/90 Field Descriptions  
Bit  
7-5,0  
6-1  
Field  
Type  
R/W  
R/W  
R/W  
Reset  
Description  
0
0
Must write 0  
TX EMPH DOUT0/2/4/6 [5:0]  
TX EMPH DOUT1/3/5/7 [5:0]  
000000  
000000  
These bits select the amount of de-emphasis for the JESD  
output transmitter. The de-emphasis value in dB is measured as  
the ratio between the peak value after the signal transition to the  
4-0,7  
settled value of the voltage in one bit period.  
0: 0 dB  
1: 1 dB  
3: 2 dB  
7: 4.1 dB  
15: 6.2 dB  
31: 8.2 dB  
63: 11.5 dB  
7-80. Register 0x9D/9E (JESD page)  
7
6
5
4
3
2
1
0
PD DOUT7  
[0,1]  
PD DOUT6  
[0,1]  
PD DOUT5  
[0,1]  
PD DOUT4  
[0,1]  
PD DOUT3  
[0,1]  
PD DOUT2  
[0,1]  
PD DOUT1  
[0,1]  
PD DOUT0  
[0,1]  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7-86. Register 0x9D/9E Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
PD DOUTx [0,1]  
R/W  
0
Register 0x9D and 0x9E allow power down of individual serdes  
output lanes. Register 0x9D (PD DOUTx [0]) covers the output  
driver, 0x9E (PD DOUTx [1]) covers the associated internal  
high-speed data clock.  
0: Output lane enabled  
1: Output lane powered down  
Copyright © 2023 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7-81. Register 0x9F (JESD page)  
7
0
6
5
4
3
2
1
0
JESD PLL1  
R/W-0  
0
JESD PLL2  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7-87. Register 0x9F Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
0
0
Must write 0  
6-4  
JESD PLL1  
000  
Internal JESD PLL input divider setting. See 7-89 how to  
configure it for the different decimation and LMFS settings.  
3
0
R/W  
R/W  
0
Must write 0  
2-0  
JESD PLL2  
000  
Internal JESD PLL input divider setting. See 7-89 how to  
configure it for the different decimation and LMFS settings.  
7-82. Register 0xA0/A1/A2 (JESD page)  
ADDR  
0xA0  
0xA1  
0xA2  
7
0
0
0
6
5
4
3
0
0
2
1
0
0
0
JESD PLL INPUT1  
JESD PLL INPUT2  
0
0
0
0
0
0
0
0
JESD PLL INPUT3  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7-88. Register 0xA0/A1/A2 Field Descriptions  
Bit  
7-0  
6-4  
Field  
Type  
R/W  
R/W  
Reset  
Description  
0
0
Must write 0  
JESD PLL INPUT1/2  
000  
Internal JESD PLL input divider setting. See 7-89 (16-bit  
output) and 7-89 (20-bit output) how to configure it for the  
different decimation and LMFS settings.  
3-1  
JESD PLL INPUT3  
R/W  
000  
Internal JESD PLL input divider setting. See 7-89 (16-bit  
output) and 7-89 (20-bit output)how to configure it for the  
different decimation and LMFS settings.  
7-89. Register settings for 0x9F/A0/A1/A2 based on bypass/decimation and LMFS mode (16-bit output)  
0x9F[6:4], 0x9F[2:0], 0xA1[6:4]  
0xA0[6:4]  
0xA2[3:1]  
LMFS  
8-2-2-4  
8-2-8-20  
8-4-8-10  
8-4-2-2  
8-8-2-1  
8-16-4-1  
4-2-2-2  
4-4-2-1  
4-8-4-1  
4-16-8-1  
2-2-2-1  
2-4-4-1  
2-8-8-1  
2-16-16-1  
1-2-4-1  
1-4-8-1  
BYP /4  
/8  
/16 /32 /64 /128 BYP /4  
/8  
/16 /32 /64 /128 BYP /4  
/8  
/16 /32 /64 /128  
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
0
0
0
0
0
0
2
1
0
2
1
0
0
1
0
0
0
0
0
3
2
1
3
2
1
0
2
1
0
0
1
0
3
3
2
0
0
0
0
0
0
0
0
0
0
1
1
0
1
1
0
0
1
0
0
0
0
0
2
2
1
2
2
1
0
2
1
0
0
1
0
2
3
2
0
0
1
0
0
1
3
0
0
3
0
0
0
0
0
0
2
0
0
4
3
4
4
4
3
4
4
0
0
2
0
3
2
1
3
2
1
0
2
1
4
3
2
4
3
2
1
3
2
4
4
3
4
4
3
2
4
3
3
2
1
3
2
1
0
2
1
4
3
2
4
3
2
1
3
2
4
4
3
4
4
3
2
4
3
0
0
1
0
0
1
3
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
0
0
2
0
0
0
0
0
0
0
0
0
1
3
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: ADC32RF54 ADC32RF55  
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7-89. Register settings for 0x9F/A0/A1/A2 based on bypass/decimation and LMFS mode (16-bit output)  
(continued)  
0x9F[6:4], 0x9F[2:0], 0xA1[6:4]  
0xA0[6:4]  
0xA2[3:1]  
1-8-16-1  
0
0
0
0
0
1
0
2
1
0
0
0
0
0
1
0
2
1
3
1
3
0
1
0
0
0
0
1-16-32-1  
7-90. Register settings for 0x9F/A0/A1/A2 based on decimation and LMFS mode (20-bit output)  
0x9F[6:4], 0x9F[2:0], 0xA1[6:4]  
0xA0[6:4]  
0xA2[3:1]  
LMFS  
8-8-4-1  
/4  
0
0
0
0
/8  
0
0
0
0
0
0
0
0
/16  
1
/32  
2
/64 /128  
/4  
0
0
0
0
/8  
0
0
0
0
0
0
0
0
/16  
1
/32  
2
/64 /128  
/4  
1
3
1
3
/8  
0
1
0
1
3
0
1
3
/16  
0
/32  
0
/64 /128  
3
2
3
2
1
3
2
1
0
2
1
0
0
4
3
4
3
2
4
3
2
1
3
2
1
0
3
2
3
2
1
3
2
1
0
2
1
0
0
4
3
4
3
2
4
3
2
1
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
8-16-8-1  
4-4-4-1  
0
1
0
1
0
0
1
2
1
2
0
0
4-8-8-1  
0
1
0
1
0
0
4-16-16-1  
2-2-4-1  
0
0
0
0
1
0
0
0
1
2
0
0
1
2
1
3
0
0
2-4-8-1  
0
1
0
1
0
0
2-8-16-1  
2-16-32-1  
1-2-8-1  
0
0
0
0
1
0
0
0
0
0
3
1
0
0
0
0
1
0
0
0
0
1
3
1
3
0
0
1-4-16-1  
1-8-32-1  
1-16-64-1  
0
0
0
0
1
0
0
0
0
0
3
1
0
0
3
7-83. Register 0x100..0x17D (DDCA/B page)  
7
6
5
4
3
2
1
0
NCOx FREQUENCYx [7:0],[15:8],[23:16],[31:24],[39:32],[47:40]  
R/W-0 R/W-0 R/W-0 R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7-91. Register 0x100..0x17D Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
47:0  
NCOx FREQUENCYx  
R/W  
0
The frequencies for NCOs are located in addresses 0x100 to  
0x17D. Each frequency is 48-bit and the MSB starts on the  
highest address as illustrated in 7.3.5.6.  
Copyright © 2023 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7-84. Register 0x180 (DDCA/B page)  
7
0
6
0
5
4
3
2
1
0
0
DDC PDN  
R/W-0  
DDC DITH PDN  
R/W-0  
REAL DDC  
R/W-0  
DB/QB DDC  
R/W-0  
NCO MODE  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7-92. Register 0x180 Field Descriptions  
Bit  
7-6  
5
Field  
Type  
R/W  
R/W  
Reset  
Description  
0
0
0
Must write 0  
DDC PDN  
This bit powers down the DDC mixer and NCO  
0: DDC block enabled  
1: DDC block powered down  
4
3
2
DDC DITH PDN  
REAL DDC  
R/W  
R/W  
R/W  
0
0
0
This bit powers down the dither in the DDC digital block  
0: DDC dither enabled  
1: DDC dither powered down  
Set this bit to 1 in real decimation mode to disable the NCO.  
0: Complex Decimation  
1: Real Decimation  
DB/QB DDC  
This register splits the NCOs for dual or quad band operation.  
0: Dual Band  
1: Quad Band  
1
0
0
R/W  
R/W  
0
0
Must write 0  
NCO MODE  
This register selects phase coherent or phase continuous  
operation of the NCO.  
0: Phase continuous  
1: Phase coherent  
7-85. Register 0x181 (DDCA/B page)  
7
0
6
0
5
4
3
2
1
0
0
0
LOAD NCO  
0
0
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7-93. Register 0x181 Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-6  
5-4  
0
0
Must write 0  
LOAD NCO  
00  
This register loads all the NCO frequencies from the memory to  
the NCOs. To update the NCO this register has to be set to 3  
and back to 0 as shown in 7-94.  
3-0  
0
R/W  
0
Must write 0  
7-94. NCO frequency programming example  
ADDR  
DATA  
DESCRIPTION  
0x105  
0x4E  
0x81  
0xB4  
0xE8  
0x1B  
0x4E  
0x00  
0x30  
0x104  
0x103  
0x102  
0x101  
0x100  
0x181  
0x181  
Frequency = 920 MHz with FS = 3 GSPS  
86,318,992,857,935 = 0x4E81B4E81BE4 where the MSB goes to address 0x105 and the  
LSB to 0x100.  
Load and update all NCO frequencies  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: ADC32RF54 ADC32RF55  
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7-86. Register 0x34 (CALIBRATION page)  
7
0
6
0
5
4
3
2
1
0
1
0
0
0
AVG SEL (2)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7-95. Register 0x34 Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-3  
2-1  
0
0
Must write 0  
AVG SEL (2)  
00  
Selects ADC averaging. Also AVG SEL (1) in DIGITAL page  
needs to be set.  
0: no average  
01: 2 ADC average  
10: not used  
11: 4 ADC average  
0
1
R/W  
1
Must write 1  
7-87. Register 0x45 (CALIBRATION page)  
7
6
5
4
3
2
1
1
0
0
CAL SPI  
R/W-0  
CAL GPIO  
R/W-0  
0
0
1
0
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7-96. Register 0x45 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CAL SPI  
R/W  
0
This register triggers the calibration using SPI write. It needs to  
be toggled (0=>1=>0).  
6
5-4  
3
CAL GPIO  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
1
0
1
0
This register triggers the calibration using the GPIO1 pin.  
0
1
0
1
0
Must write 0  
Must write 1  
Must write 0  
Must write 1  
Must write 0  
2
1
0
7-88. Register 0x298 (CALIBRATION page)  
7
0
6
0
5
4
3
2
1
0
0
0
CAL STATUS  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7-97. Register 0x298 Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
R/W  
R/W  
Reset  
Description  
0
0
Must write 0  
CAL STATUS  
0000  
This register can be used to check if calibration state machine  
has finished without any errors. A value of 0xE indicates  
successful calibration.  
Copyright © 2023 Texas Instruments Incorporated  
100 Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7-89. Register 0x6D/6E (ANALOG page)  
7
6
5
4
3
2
1
0
0
0
RESET SW [1:0]  
0
0
0
0
0
0
0
0
0
0
RESET SW [3:2]  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7-98. Register 0x6D/6E Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
RESET SW [1:0]  
R/W  
00  
This register disables the sampling reset switch.  
00: Sampling reset switch enabled  
1: Sampling reset switch disabled  
5-0  
1-0  
0
R/W  
R/W  
0
Must write 0  
RESET SW [3:2]  
00  
This register disables the sampling reset switch.  
00: Sampling reset switch enabled  
1: Sampling reset switch disabled  
7-2  
0
R/W  
0
Must write 0  
7-90. Register 0x7B (ANALOG page)  
7
0
6
0
5
4
3
2
1
0
0
TERM A  
R/W-0  
0
0
0
TERM A  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7-99. Register 0x7B Field Descriptions  
Bit  
Field  
0
Type  
R/W  
R/W  
Reset  
Description  
7-6  
5,0  
0
Must write 0  
TERM A  
00  
These registers set the internal termination resistor at the analog  
inputs for channel A1 and A2. Both registers need to be set to  
the same value.  
0: 100 ohm differential termination  
1: 50 ohm differential termination  
4-1  
0
R/W  
0
Must write 0  
7-91. Register 0x8B (ANALOG page)  
7
0
6
0
5
4
3
2
1
0
0
TERM B  
R/W-0  
0
0
0
TERM B  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7-100. Register 0x8B Field Descriptions  
Bit  
Field  
0
Type  
R/W  
R/W  
Reset  
Description  
7-6  
5,0  
0
Must write 0  
TERM B  
00  
These registers set the internal termination resistor at the analog  
inputs for channel B1 and B2. Both registers need to be set to  
the same value.  
0: 100 ohm differential termination  
1: 50 ohm differential termination  
4-1  
0
R/W  
0
Must write 0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 101  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7-92. Register 0xA8 (ANALOG page)  
7
0
6
5
4
3
2
1
0
0
0
DITH AMP1  
0
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7-101. Register 0xA8 Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7
0
0
Must write 0  
6-3  
DITH AMP1  
0000  
This register sets dither amplitude coarse gain. There are two  
recommended settings:  
0000: Amplitude = 0  
0011: Amplitude = 3  
Here is a list of all the settings:  
0000: Amplitude = 0 (smallest)  
0001: Amplitude = 1  
...  
1110: Amplitude = 14  
1111: Amplitude = 15 (largest)  
2-0  
0
R/W  
0
Must write 0  
7-93. Register 0xAF (ANALOG page)  
7
6
0
5
4
3
2
1
0
0
0
DITHER DIS  
R/W-0  
0
1
0
0
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7-102. Register 0xAF Field Descriptions  
Bit  
Field  
DITHER DIS  
Type  
Reset  
Description  
7
R/W  
0
This register disables internal dither.  
0: Dither enabled  
1: Dither disabled  
6-5  
4
0
1
0
R/W  
R/W  
R/W  
0
0
0
Must write 0  
Must write 1  
Must write 0  
3-0  
7-94. Register 0xB1 (ANALOG page)  
7
6
5
4
3
2
1
0
DITHER DIVIDER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7-103. Register 0xB1 Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
DITHER DIVIDER  
R/W  
0
This register sets the dither divider frequency. SPI write is actual  
-1. For example a divider of 48 is 47 (0x2F).  
0x00 (default) is a divide /50  
Copyright © 2023 Texas Instruments Incorporated  
102 Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7-95. Register 0xB4 (ANALOG page)  
7
0
6
0
5
4
3
2
1
0
0
0
0
0
0
SYSREF AC  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7-104. Register 0xB4 Field Descriptions  
Bit  
7-1  
0
Field  
Type  
R/W  
R/W  
Reset  
Description  
0
0
0
Must write 0  
SYSREF AC  
This register enables external AC coupling of the SYSREF input  
with internal biasing.  
0: External DC coupling with internal 100 Ωtermination  
1: External AC coupling with internal biasing  
7-96. Register 0xCD (ANALOG page)  
7
0
6
5
4
3
2
1
0
0
0
DITH AMP2  
R/W-0  
0
0
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7-105. Register 0xCD Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7
0
0
0
Must write 0  
6-4  
DITH AMP2  
This register sets dither amplitude fine gain. There are two  
recommended settings:  
000: Amplitude = 0  
100: Amplitude = -4  
Here is a list of all the settings:  
000: Amplitude = 0  
001: Amplitude = 1  
010: Amplitude = 2  
011: Amplitude = 3 (largest)  
100: Amplitude = -4 (smallest)  
101: Amplitude = -3  
110: Amplitude = -2  
111: Amplitude = -1  
3-0  
0
R/W  
0
Must write 0  
7-97. Register 0xE6/E7 (ANALOG page)  
ADDR  
0xE6  
0xE7  
7
TX SWING [0]  
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
TX SWING [2:1]  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7-106. Register 0xE6/E7 Field Descriptions  
Bit  
7-0  
Field  
Type  
R/W  
R/W  
Reset  
Description  
0
0
Must write 0  
1,0,7  
TX SWING [2:0]  
000  
This register adjusts the output amplitude on all 8 serdes lanes.  
0: 850 mVpp  
1: 825 mVpp  
2: 800 mVpp  
3: 775 mVpp  
4: 950 mVpp  
5: 925 mVpp  
6: 900 mVpp  
7: 875 mVpp  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The ADC32RF5x can be used in a wide range of applications including radar, frequency domain digitizer and  
spectrum analyzer, test and communications equipment and software-defined radios (SDRs). The Typical  
Applications section describe one configuration that meets the needs of a number of these applications.  
8.2 Typical Applications  
8.2.1 Wideband RF Sampling Receiver  
100 pF  
BPF  
Balun  
INA2  
INA1  
ADC  
DDC  
NCO  
RF Input  
100 pF  
100 pF  
N
ADC  
100 pF  
Device Clock  
Up to 8 lanes  
JESD204B  
LMK04832  
SYSREF  
100 pF  
FPGA  
BPF  
Balun  
ADC  
INB1  
INB2  
DDC  
NCO  
RF Input  
N
100 pF  
100 pF  
ADC  
SPI  
100 pF  
SPI Registers and  
Device Control  
GPIO1/2  
VCM  
CVCM  
8-1. Typical Configuration for Wideband RF Sampling  
8.2.1.1 Design Requirements  
8.2.1.1.1 Input Signal Path  
Appropriate band limiting filters should be used to reject unwanted frequencies in the receive signal path.  
A 1:2 (for 100 ohm effective termination impedance) or a 1:1 (for 50 ohm effective termination impedance) balun  
transformer is needed to convert the single ended RF input to differential for input to the ADC. The balun outputs  
should be AC coupled with 100 pF capacitors. The balun should have good amplitude (< 0.5 dB) and phase  
balance (less than 2 deg) within the frequency range of interest. A back-to-back balun configuration often times  
gives better SFDR performance. 8-1 lists a number of recommended baluns for different impedance ratios  
and frequency ranges.  
The S-parameters of the ADC input can be used in order to design the front end matching network.  
8-1. Recommended Baluns  
PART NUMBER  
MANURACTURER  
IMPEDANCE  
RATIO  
AMPLITUDE  
BALANCE (dB)  
PHASE  
BALANCE (°)  
FREQUENCY RANGE  
BAL-0009SMG  
Marki Microwave  
1:2  
0.6  
5
0.5 MHz to 9 GHz  
Copyright © 2023 Texas Instruments Incorporated  
104 Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
 
 
 
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
PART NUMBER  
8-1. Recommended Baluns (continued)  
MANURACTURER  
IMPEDANCE  
RATIO  
AMPLITUDE  
PHASE  
FREQUENCY RANGE  
BALANCE (dB)  
BALANCE (°)  
TCM2-43X+  
TCM2-33WX+  
TC1-1-13M+  
Minicircuits  
Minicircuits  
Minicircuits  
1:2  
1:2  
1:1  
0.5  
0.7  
0.5  
7
4
10 MHz to 4 GHz  
10 MHz to 3 GHz  
10 MHz to 3 GHz  
2-3  
8.2.1.1.2 Clocking  
The device clock inputs must be AC-coupled to the device to provide the rated performance. The clock source  
must have low jitter (integrated phase noise) for the ADC to meet the stated SNR performance, especially when  
operating at higher input frequencies. The clock signal may need to be filtered with a band pass filter in order to  
remove some of the broad band clock noise.  
The JESD204B data converter system (ADC and FPGA) requires additional SYSREF and device clocks. The  
LMK04828 or LMK04832 devices are suitable to generate these clocks. Depending on the ADC clock frequency  
and jitter requirements. The device may also be used as a system clock synthesizer or as a device clock and  
SYSREF distribution device when using multiple ADC32RF5x devices in a system.  
8.2.1.2 Detailed Design Procedure  
8.2.1.2.1 Sampling Clock  
In order to maximize the SNR performance of the ADC a very low jitter (< 50 fs) sampling clock is required. 图  
8-2 shows the estimated SNR performance vs input frequency vs external clock jitter. The internal ADC aperture  
jitter also has some depenceny to the clock amplitude (gets more sensitive with higher input frequency) as  
shown in 8-3.  
When using averaging and/or decimation, the SNR for a single ADC core should be estimated first before adding  
the SNR improvement from internal averaging and/or decimation.  
8-2. SNR vs TJitter vs FIN (1x AVG)  
8-3. SNR vs Clock Amplitude (dither off)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 105  
Product Folder Links: ADC32RF54 ADC32RF55  
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.2.1.3 Application Curves  
The following application curves demonstrate performance and results only of the ADC using a balun front end  
and configured to 4x internal averaging. The input frequency is 900 MHz (FS = 2.6 GSPS) and input amplitudes  
of -6 and -20 dBFS are shown with dither enabled/disabled.  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
200  
400  
600  
800  
1000  
1200  
0
200  
400  
600  
800  
1000  
1200  
Input Frequency (MHz)  
Input Frequency (MHz)  
AIN = -6 dBFS, Dither DIS  
AIN = -6 dBFS, Dither EN  
SNR = 67.8 dBFS, HD23 = 81 dBFS, Non HD23 = 76 dBFS  
SNR = 67.7 dBFS, HD23 = 80 dBFS, Non HD23 = 76 dBFS  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
200  
400  
600  
800  
1000  
1200  
Input Frequency (MHz)  
AIN = -20 dBFS, Dither = DIS  
AIN = -20 dBFS, Dither = EN  
SNR = 70.2 dBFS, SFDR = 58 dBc, Non HD23 = 85 dBFS  
SNR = 69.5 dBFS, HD23 = 67 dBc, Non HD23 = 88 dBFS  
Copyright © 2023 Texas Instruments Incorporated  
106 Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.3 Initialization Set Up  
After power-up, the internal registers must be initialized to their default values through a hardware reset by  
applying a low pulse on the RESET pin, as shown in 8-4.  
1. Apply 1.2 V DVDD digital power supply  
2. Apply remaining 1.2 V power supplies (AVDD12, CLKVDD), in no specific order  
3. Apply 1.8 V AVDD18 power supply  
4. Apply hardware reset. After hardware reset is released, the default registers are loaded from internal fuses.  
5. Begin programming the internal registers using the SPI interface.  
DVDD  
AVDD12  
CLKVDD  
AVDD18  
t1  
RESET  
t2  
t3  
SEN  
8-4. Initialization of Serial Registers After Power-Up  
8-2. Power-Up Timing  
MIN  
TYP  
MAX  
UNIT  
ms  
t1  
t2  
t3  
Power-on delay: delay from power up to active high RESET pulse  
Reset pulse width: active low RESET pulse width  
1
100  
45k  
ns  
Register write delay: delay from RESET disable to SEN active  
Clock cycles  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 107  
Product Folder Links: ADC32RF54 ADC32RF55  
 
 
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.3.1 Initial Device Configuration After Power-Up  
The following section outlines the sequence of register writes for the device configuration after initial power-up.  
8-3. Summary of Programming Steps After Initial Power-Up  
Step  
Section  
Description  
1
RESET  
Hardware and software RESET in order to reset all registers to known state  
Configures the digital operating modes like averaging, test pattern output, input termination, internal  
dither and decimation.  
2
DEVICE CONFIG  
3
4
JESD  
SYSREF  
JESD  
Configures the JESD204B interface  
Enables SYSREF input and resets internal circuits based on external SYSREF signal.  
Clears and configures some of the JESD registers  
Set trim settings for best analog performance  
Configure the calibration settings  
5
6
TRIM  
7
CALIB CONFIG  
SYSREF  
RUN CALIB  
JESD  
8
Issue SYSREF for trim settings to go into effect  
Run power up calibration  
9
10  
Synchronize the JESD interface with the receiver  
The following sections outlines the detailed register writes for the device configuration after initial power up. This  
includes all the register writes (fields in grey) which are not documented in the register summary table. The  
register examples are given for 2x internal averaging, DDC bypass mode (LMFS = 8224).  
8.3.1.1 STEP 1: RESET  
After the initial power up, both hardware and software reset are required.  
8-4. Register Programming Sequence for Software RESET  
ADDRESS  
0x00  
DATA  
0x01  
0x00  
0x00  
0x20  
0x80  
0x00  
0x01  
0x00  
0x40  
0x80  
0x00  
DESCRIPTION  
Software set and reset  
0x00  
0x01  
0x09  
These two resets are staggered in order to minimize strain on external power  
supply.  
0x09  
0x09  
0x08  
Internal memory reset (set and reset)  
Select ANALOG page  
0x08  
0x05  
0x47  
Analog reset (set and reset)  
0x47  
Copyright © 2023 Texas Instruments Incorporated  
108 Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.3.1.2 STEP 2: Device Configuration  
In this step, the operating mode and digital features (DDC, test pattern) are configured.  
8-5. Register Programming Sequence for Device Configuration  
ADDRESS  
0x05  
DATA  
0x20  
0x03  
0x02  
0x01  
0x00  
0x0B  
0x07  
0x10  
0x11  
0x11  
0x40  
0x00  
0x00  
0x00  
0x01  
0x04  
0x40  
0x10  
0x00  
DESCRIPTION  
Select CALIBRATION page  
0x34  
Select 2x averaging (1x AVG: 0x01, 4x AVG: 0x07)  
Select DIGITAL page  
0x05  
0x2C  
0x2D  
0x2E  
0x23C  
0x33  
Select DDC Bypass mode  
No decimation, step can be skipped  
Select 2x averaging (1x: 0x09, 4x: 0x0D)  
Set register to 0x07  
Set register to 0x10  
0x2F  
Set register to 0x11 (1x: 0x11, 4x: 0xE1)  
Set register to 0x11 (1x: 0x11, 4x: 0xE1)  
Select ANALOG page  
0x30  
0x05  
0x7B/8B  
0xA8  
0xCD  
0x04  
Select internal input termination (0x00 = 100 ohm)  
DITHER AMP1: 3 = 0x80, 0 = 0x00  
DITHER AMP2: -4 = 0x40, 0 = 0x00  
0x20  
0x91  
0xAF  
0xB1  
Sets dither divider. 0x00 = /50  
0xB2  
0xAF  
0x00  
0x18  
0x10  
0x01  
0x00  
0x00  
0x02  
0x01  
0x08  
0x00  
0x00  
0x00  
0x01  
0x03  
0xFF  
0x3C  
0x3E  
0x00  
0x01  
0x00  
0x00  
0x00  
0x01  
0xAF  
0x10 = dither ENABLED, 0x90 = dither DISABLED  
0x04  
0x20  
0x04  
0x05  
0x363  
0x05  
Select DDCA page, load non linearity correction (NLC) trims  
0x224  
0x223  
0x21D  
0x21E  
0x205  
0x204  
0x21A  
0x31C  
0x325  
0x325  
0x325  
0x21C  
0x225  
0x225  
if FS > 2.85 GSPS 0x00, else 0x14  
if FS > 2.85 GSPS 0x00, else 0x11  
Nyquist zone 1: 0x00, other Nyquist zone 0x02  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 109  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8-5. Register Programming Sequence for Device Configuration (continued)  
ADDRESS  
0x225  
0x05  
DATA  
0x00  
0x10  
0x00  
0x00  
0x00  
0x01  
0x03  
0xFF  
0x3C  
0x00  
0x3E  
0x00  
0x01  
0x00  
0x00  
0x01  
0x00  
0x08  
0x02  
0x30  
0x30  
0x30  
DESCRIPTION  
Select DDCB page, load non linearity correction (NLC) trims  
0x224  
0x223  
0x21D  
0x21E  
0x205  
0x204  
0x21A  
0x21C  
0x31C  
0x325  
0x325  
0x325  
0x225  
0x225  
0x225  
0x05  
if FS > 2.85 GSPS 0x00, else 0x14  
if FS > 2.85 GSPS 0x00, else 0x11  
Nyquist zone 1: 0x00, other Nyquist zone 0x02  
0x20  
OVR MUX EN  
0x203  
0x303  
0x180  
Copyright © 2023 Texas Instruments Incorporated  
110  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.3.1.3 STEP 3: JESD Interface Configuration (1)  
In this step, the JESD204B digital interface and the parameters are configured.  
8-6. Register Programming Sequence for JESD204B Interface Configuration  
ADDRESS  
0x05  
0x81  
0x80  
0x7F  
0x7E  
0x7D  
0x7C  
0x7B  
0x7A  
0x79  
0x78  
0x05  
0x23  
0x29  
0x20  
0x21  
0x22  
0x24  
0x25  
0x26  
0x27  
0x53  
0x5C  
0x5D  
0x6E  
0xA0  
0xA1  
0xA2  
0x9F  
0x2A  
0x23  
0x23  
DATA  
0x02  
0x00  
0xF0  
0xFF  
0xFF  
0xFF  
0xFF  
0x3B  
0x28  
0x51  
0x40  
0x04  
0x03  
0xFF  
0x0F  
0x01  
0x01  
0x00  
0x00  
0x00  
0x02  
0x80  
0x01  
0x0F  
0x11  
0x00  
0x00  
0x00  
0x00  
0x0C  
0x02  
0x00  
DESCRIPTION  
Select DIGITAL page  
Set register to 0x00  
Set register to 0xF0  
Set register to 0xFF  
Set register to 0xFF  
Set register to 0xFF  
Set register to 0xFF  
Set register to 0x3B  
Set register to 0x28  
Set register to 0x51  
Set register to 0x40  
Select JESD page  
Set register to 0x03  
Set register to 0xFF  
Select K (0x0F: K=15)  
SYSREF mode  
Select LMFS configuration (LMFS = 8-2-2-4)  
Select DDC CLK DIV  
Select JESD TX CLK DIV  
Select CLK BAL EN for LMFS = 8-2-2-4  
Output scrambler EN/DIS (SCR EN)  
M-1 in ILA (M=2)  
K-1 in ILA (K=15)  
Select JESD PLL INPUT divider 1/2/3  
Select JESD PLL setting  
JESD INIT toggle  
8.3.1.4 STEP 4: SYSREF Synchronization  
After device and JESD204B interface configuration a synchronization using external SYSREF is necessary.  
8-7. Device Synchronization Using External SYSREF  
ADDRESS  
0x05  
DATA  
0x02  
0x02  
0x03  
DESCRIPTION  
Select DIGITAL page  
0x236  
Enable internal SYSREF input and clear SYSREF pulse counter  
Starts SYSREF counter  
0x236  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
111  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.3.1.5 STEP 5: JESD Interface Configuration (2)  
Some registers of the JESD204B interface need to be set after the first SYSREF.  
8-8. Register Programming Sequence for JESD204B Interface Configuration  
ADDRESS  
0x05  
DATA  
0x04  
0x00  
0x00  
DESCRIPTION  
Select JESD page  
0x29  
0x84  
JESD PLL factor  
8.3.1.6 STEP 6: Analog Trim Settings  
The following registers need to be set for best analog performance. The register write order is all writes in first 2  
columns before moving to the next set of address/data in middle columns, and so on.  
8-9. Analog Trim Setting Registers  
ADDR  
0x05  
DATA  
0x40  
0xF0  
ADDR  
0x3D  
0x104  
0x3B  
DATA  
0x06  
0x60  
0x0C  
COMMENT  
ADDR  
0x56  
0x56  
0x56  
DATA  
0x03  
0x07  
0x0F  
COMMENT  
Only for FS> 2.9  
GSPS  
0xE8  
Only for FS < 2.9  
GSPS  
0xE9  
0x4B  
0x5B  
0x01  
0x1F  
0x01  
0xA8  
0xA8  
0x18  
0x00  
Only for 1x AVG  
0x6E  
0x08  
0x02  
Only for 2x/4x AVG,  
FS<1.1 GSPS  
0x102  
0xA8  
0xA8  
0xA8  
0x08  
0x60  
0x70  
Only for 2x/4x AVG,  
FS=1.1-1.8 GSPS  
0x103  
0xA7  
0xA6  
0xD9  
0x00  
0x08  
0xEA  
0xEB  
0x95  
0x00  
0x03  
0x00  
Only for 2x/4x AVG,  
FS=1.85-2.6 GSPS  
Only for 2x/4x AVG,  
FS=2.6-3.0 GSPS  
0xFC  
0xE0  
0xE1  
0x4C  
0x4E  
0x4E  
0xA1  
0xF8  
0x31  
0xFD  
0xAA  
0x4D  
0xB3  
0x64  
0x62  
0xFE  
0xFC  
0xFF  
0x106  
0x107  
0x28  
0x8E  
0x03  
0x40  
0x01  
0x00  
0x01  
0x00  
0x20  
0x1C  
0x02  
0x80  
0x30  
0x10  
0x12  
0x80  
0x28  
0x14  
0x00  
0x00  
0xCD  
0xCE  
0x100  
0x101  
0x104  
0x105  
0x107  
0x05  
0x00  
0x00  
0x05  
0xC9  
0x102  
0x103  
0x104  
0x105  
0x106  
0x107  
0x108  
0x109  
0x101  
0x159  
0x05  
0x20  
0x09  
0xFE  
0x03  
0xD4  
0x03  
0xFE  
0x03  
0xBC  
0x1A  
0x01  
0x63  
0x40  
0x00  
0x00  
0x10  
0x0E  
0x0C  
0x08  
0x00  
0x00  
0x06  
See 8-10 for sample rate  
dependent trim registers  
0x10  
0x20  
0xE8  
0xFF  
0x08  
0x80  
0x03  
0x02  
0x02  
0x20  
0x04  
0x01  
0x0A  
0x20  
0x0C  
0x40  
0x30  
0x31  
0x30  
0x31  
0x32  
0x05  
0x31  
0x243  
0x05  
0x4D  
0x62  
0x36  
0x56  
0x1F8  
0x1FC  
0x1F0  
0x1F1  
0x05  
0x56  
0x56  
0x56  
0x6E  
0xF8  
Copyright © 2023 Texas Instruments Incorporated  
112  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
ADDR  
8-9. Analog Trim Setting Registers (continued)  
DATA  
ADDR  
DATA  
COMMENT  
ADDR  
DATA  
COMMENT  
0x39  
0x40  
0x102  
0x42  
Only for FS> 2.9  
GSPS  
0x56  
0x01  
8-10. Sample rate dependent trim registers  
FS (GSPS)  
0x100  
0x101  
0x104  
0x105  
0.6-0.7  
0x48  
0xC8  
0x48  
0xC8  
0x48  
0xC8  
0x48  
0xC8  
0x48  
0xC8  
0x48  
0xC8  
0x48  
0x00  
0x01  
0x01  
0x00  
0x00  
0x01  
0x01  
0x00  
0x00  
0x01  
0x01  
0x00  
0x00  
0x01  
0x81  
0x81  
0x81  
0x81  
0x01  
0x01  
0x01  
0x01  
0x81  
0x81  
0x81  
0xE1  
0x01  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x03  
0x03  
0x0  
0.7-0.9  
0.9-1.1  
1.1-1.3  
1.3-1.5  
1.5-1.7  
1.7-1.9  
1.9-2.1  
2.1-2.3  
2.3-2.5  
2.5-2.7  
2.7-2.9  
2.9-3.0  
0x03  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
113  
Product Folder Links: ADC32RF54 ADC32RF55  
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.3.1.7 STEP 7: Calibration Configuration  
The following registers configure the internal foreground calibration. The register write order is all writes in first 2  
columns before moving to the next set of address/data in middle columns, and so on.  
8-11. Calibration Register Settings  
ADDRESS  
0x05  
DATA  
0x40  
0xC0  
0xFF  
0x20  
0x03  
0xC2  
0x13  
0x00  
0x1C  
0x00  
0x1C  
0x08  
0xA8  
0x02  
0x06  
0x04  
0x00  
0xA0  
0x28  
0x0C  
0x2A  
0x2E  
0x2C  
0x28  
0x08  
0x18  
0x38  
0x0C  
0x3A  
0x3E  
0x3C  
0x38  
0x18  
0x10  
0x00  
0x1C  
0x00  
0x1C  
0xC0  
0x03  
0xC2  
0x13  
ADDRESS  
0xFC  
0xFD  
0x36  
DATA  
0x13  
0x08  
0x04  
0x05  
0x04  
0x13  
0x0A  
0x04  
0x05  
0x04  
0x13  
0x0C  
0x04  
0x05  
0x04  
0x13  
0x0E  
0x04  
0x05  
0x04  
0x03  
0x04  
0x03  
0xC0  
0x13  
0x03  
0xC7  
0x13  
0x00  
0x1C  
0x00  
0x1C  
0xA8  
0x02  
0x06  
0x04  
0x00  
0xA0  
0x18  
0x08  
0x28  
0x0C  
ADDRESS  
0x47  
0x46  
0xFC  
0xFD  
0x36  
0x36  
0x36  
0xFC  
0xFD  
0x36  
0x36  
0x36  
0xFC  
0xFD  
0x36  
0x36  
0x36  
0xFC  
0xFD  
0x36  
0x36  
0x36  
0xFC  
0xFD  
0x36  
0x36  
0x36  
0xFC  
0xFD  
0x36  
0x36  
0x36  
0xFC  
0xFD  
0x36  
0x36  
0x36  
0xFC  
0xFD  
0x36  
0x36  
0x36  
DATA  
0xC7  
0x13  
0x13  
0x00  
0x04  
0x05  
0x04  
0x13  
0x02  
0x04  
0x05  
0x04  
0x13  
0x04  
0x04  
0x05  
0x04  
0x13  
0x06  
0x04  
0x05  
0x04  
0x13  
0x08  
0x04  
0x05  
0x04  
0x13  
0x0A  
0x04  
0x05  
0x04  
0x13  
0x0C  
0x04  
0x05  
0x04  
0x13  
0x0E  
0x04  
0x05  
0x04  
0x68  
0x69  
0x05  
0x36  
0x46  
0x36  
0x47  
0xFC  
0xFD  
0x36  
0x46  
0x1AE  
0x1E6  
0x1AE  
0x1E6  
0x1E9  
0x1E9  
0x1E8  
0x1E8  
0x1E8  
0x1E8  
0x1E9  
0x1F0  
0x1F1  
0x1F0  
0x1F0  
0x1F0  
0x1F0  
0x1F0  
0x1F0  
0x1F0  
0x1F1  
0x1F0  
0x1F0  
0x1F0  
0x1F0  
0x1F0  
0x1F0  
0x1AE  
0x1E6  
0x1AE  
0x1E6  
0x47  
0x36  
0x36  
0xFC  
0xFD  
0x36  
0x36  
0x36  
0xFC  
0xFD  
0x36  
0x36  
0x36  
0xFC  
0x36  
0x46  
0x47  
0x46  
0x46  
0x47  
0x46  
0x1AE  
0x1E6  
0x1AE  
0x1E6  
0x1E9  
0x1E8  
0x1E8  
0x1E8  
0x1E8  
0x1E9  
0x1F0  
0x1F0  
0x1F0  
0x1F1  
0x46  
0x47  
0x46  
Copyright © 2023 Texas Instruments Incorporated  
114  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8-11. Calibration Register Settings (continued)  
ADDRESS  
0xFC  
0xFD  
0x36  
0x36  
0x36  
0xFC  
0xFD  
0x36  
0x36  
0x36  
0xFC  
0xFD  
0x36  
0x36  
0x36  
0xFC  
0xFD  
0x36  
0x36  
0x36  
DATA  
0x13  
0x00  
0x04  
0x05  
0x04  
0x13  
0x02  
0x04  
0x05  
0x04  
0x13  
0x04  
0x04  
0x05  
0x04  
0x13  
0x06  
0x04  
0x05  
0x04  
ADDRESS  
0x1F0  
0x1F0  
0x1F0  
0x1F0  
0x1F0  
0x1F0  
0x1F0  
0x1F1  
0x1F0  
0x1F0  
0x1F0  
0x1F0  
0x1F0  
0x1F0  
0x1AE  
0x1E6  
0x1AE  
0x1E6  
0x47  
DATA  
0x2A  
0x2E  
0x2C  
0x28  
0x08  
0x18  
0x38  
0x0C  
0x3A  
0x3E  
0x3C  
0x38  
0x18  
0x10  
0x00  
0x1C  
0x00  
0x1C  
0xC0  
0x03  
ADDRESS  
0xFC  
0x36  
0x46  
0x47  
0x46  
0x05  
0x68  
0x69  
0x69  
0x69  
0x69  
0x68  
0x69  
0x69  
0x69  
0x69  
0x93  
0x94  
0x94  
DATA  
0x03  
0x04  
0x03  
0xC0  
0x13  
0x40  
0x40  
0xFD  
0xF5  
0xD5  
0x55  
0x00  
0x54  
0x50  
0x40  
0x00  
0x0E  
0x70  
0x77  
0x46  
8.3.1.8 STEP 8: SYSREF Synchronization  
After setting the analog trim registers, a synchronization using external SYSREF is necessary.  
8-12. Device Synchronization Using External SYSREF  
ADDRESS  
0x05  
DATA  
0x02  
0x02  
0x03  
DESCRIPTION  
Select DIGITAL page  
0x236  
Enable internal SYSREF input and clear SYSREF pulse counter  
Starts SYSREF counter  
0x236  
8.3.1.9 STEP 9: Run Power up Calibration  
The following registers start the power up foreground calibration. The register write order is all writes in first 2  
columns before moving to the next set of address and/or data in middle columns, and so on.  
8-13. Calibration Register Settings  
ADDRESS  
0x05  
DATA  
0x20  
0x01  
0x02  
0x00  
0x22  
0x00  
0x03  
0x00  
0x1C  
0x03  
0x03  
ADDRESS  
DATA  
0x20  
0x00  
0x00  
0x01  
0x1F  
0x20  
0x01  
0x00  
0x00  
0x20  
0x7C  
ADDRESS  
0x58  
DATA  
0x30  
0x20  
0x00  
x020  
0x00  
0x00  
0x10  
0x00  
0x1E  
0x02  
0x8A  
0x93  
0xE7  
0x20  
0x58  
0x174  
0x178  
0x17C  
0x3C  
0x05  
0x58  
0x04  
0x89  
0x20  
0x95  
0x93  
0x96  
0xFC  
0x04  
0x97  
0xFD  
0x20  
0x9C  
0x57  
0x154  
0x155  
0xFC  
0x04  
0x05  
0x46  
0xC0  
0x45  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
115  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8-13. Calibration Register Settings (continued)  
ADDRESS  
0xEE  
0xEF  
DATA  
0x26  
0x02  
0x88  
0xC8  
0x00  
0x4C  
0x3F  
0x46  
0x2C  
0x05  
0x7C  
0x7C  
0x6F  
0x7C  
0x3F  
0x7C  
0x3F  
0x7C  
0x4F  
0x7C  
0x1C  
0x5F  
0x1C  
0xAF  
0x1F  
0x7F  
0xFF  
0x01  
0x30  
0x7F  
0x00  
0x63  
0x00  
0x02  
0x80  
0x1F  
ADDRESS  
0xBC  
0xC9  
0xC9  
0xC9  
0x38  
DATA  
0x3C  
0x01  
0x00  
0x06  
0x01  
0x10  
0x42  
0xA6  
0xD6  
0xBB  
0xDB  
0xF4  
0x64  
0x0E  
0xFE  
0x0D  
0xDD  
0x0D  
0xDD  
0x03  
0x00  
0x0A  
0x02  
0x4A  
0x05  
0x28  
0x5E  
03D  
ADDRESS  
DATA  
0x45  
0x0A  
Delay 3 seconds  
0x18C  
0xAE  
0xAF  
0x89  
0x95  
0x96  
0x97  
0x9C  
0x57  
0x57  
0x57  
0x57  
0x58  
0x58  
0x58  
0x58  
0x58  
0x58  
0x45  
0x45  
0x00  
0x00  
0x00  
0x00  
0x00  
0x1A  
0x3A  
0x7A  
0xFA  
0x01  
0x03  
0x07  
0x0F  
0x1F  
0x3F  
0x8A  
0x0A  
0xB0  
0x110  
0x111  
0x112  
0x112  
0x113  
0x113  
0x114  
0x114  
0x115  
0x115  
0x116  
0x116  
0x117  
0x117  
0x46  
0xB1  
0x4F  
0x50  
0x51  
0x154  
0x158  
0x159  
0x15C  
0x15D  
0x160  
0x161  
0x164  
0x165  
0x16C  
0x1B0  
0x1B1  
0x1D8  
0x1D9  
0xB2  
Delay 3 seconds  
0x3D  
0x45  
0x47  
0x46  
0x47  
0x05  
0x20  
0x9D  
0x9E  
0x8B  
0x20  
0x05  
0x04  
0x20  
0x9D  
0x9E  
0x8B  
0xC0  
0x03  
0xC0  
0x80  
0x1F  
0x05  
0x08  
0x40  
0x00  
0x00  
0x01  
0x1F  
0x05  
0x08  
0x40  
0x46  
0x64  
0x65  
0xB5  
0x68  
0x165  
0x38  
0x69  
0x6A  
0x6B  
0x6C  
0x57  
0xA4  
0x8F  
0x44  
0xDA  
0x9A  
0x1A  
0x3E  
0x3C  
0x38  
0xC5  
0xA8  
0xA2  
0x57  
0xA3  
0x57  
0xAD  
0x05  
0x58  
0x58  
0x20  
0x58  
8.3.1.10 STEP 10: JESD Interface Synchronization  
The JESD interface can be synchronized using SPI writes or the GPIO1 pin.  
8-14. JESD Interface Synchronization Using SPI Writes  
ADDRESS  
DATA  
0x04  
0x41  
0x61  
DESCRIPTION  
0x05  
Select JESD page  
0x21  
Configure ADC to control SYNC using SPI writes  
0x21  
Configure JESD interface to send K28.5 characters for receiver synchronization  
Copyright © 2023 Texas Instruments Incorporated  
116  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8-14. JESD Interface Synchronization Using SPI Writes (continued)  
ADDRESS  
0x21  
DATA  
DESCRIPTION  
0x41  
Configure JESD interface to send normal ADC data  
8.4 Power Supply Recommendations  
The ADC32RF5x requires four different power-supplies. The AVDD18, AVDD12 and CLKVDD rail provides  
power for the internal analog and clocking circuits of the ADC. The DVDD rail powers the digital logic (including  
averaging and decimation filter) and the JESD204B digital interface.  
Power sequencing is required as shown in Initialization Set Up. The AVDD18, AVDD12 and especially the  
CLKVDD power supply must be low noise in order to achieve data sheet performance. For applications  
operating near DC, the 1/f noise contribution of the power supply needs to be considered as well.  
Power supply decoupling capacitors (0.1 µF) as close to the pins as possible on the top layer are recommended.  
70  
AVDD12  
AVDD18  
60  
50  
40  
30  
20  
10  
0
CLKVDD  
0.01  
0.1  
1
10  
100  
500  
Frequency of Signal (MHz)  
8-5. Power Supply Rejection Ratio (PSRR) vs Frequency  
The recommended power supply architecture for a low noise design is to first use a high-efficiency step down  
switching regular, followed by a second stage of regulation using a low noise LDO for each power rail as shown  
in 8-6. This provides additional switching noise reduction and improved voltage accuracy.  
TI WEBENCH® Power Designer can be used to select and design the individual power-supply elements.  
Recommended switching regulators for the first stage include the LMS3635, and similar devices. Recommended  
low dropout (LDO) linear regulators include the TPS7A8400, and similar devices.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
117  
Product Folder Links: ADC32RF54 ADC32RF55  
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
FB  
FB  
2.3V  
1.8V  
DC/DC  
5V-12V  
LDO  
AVDD18  
Regulator  
10uF 10uF 0.1uF  
47uF  
47uF  
GND  
GND  
GND  
FB  
FB  
1.7V  
1.2V  
DC/DC  
Regulator  
LDO  
AVDD12  
10uF 10uF 0.1uF  
47uF  
47uF  
GND  
GND  
GND  
FB  
1.2V  
LDO  
CLKVDD  
10uF 10uF 0.1uF  
47uF  
GND  
GND  
FB  
1.2V  
LDO  
DVDD  
10uF 10uF 0.1uF  
47uF  
GND  
FB = Ferrite bead filter  
GND  
8-6. Power Supply Design Example  
AVDD12 or CLKVDD should not be shared with the DVDD in order to prevent digital switching noise from  
coupling into the analog domain.  
Copyright © 2023 Texas Instruments Incorporated  
118  
Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.5 Layout  
8.5.1 Layout Guidelines  
There are several critical signals which require specific care during board design:  
1. Analog input and clock signals  
Traces should be as short as possible and vias should be avoided where possible to minimize impedance  
discontinuities.  
Traces should be routed using loosely coupled 100-Ωdifferential traces.  
Differential trace lengths should be matched as close as possible to minimize phase imbalance and HD2  
degradation.  
2. Digital JESD204B output interface  
Traces should be routed using tightly coupled 100-Ωdifferential traces.  
3. Power and ground connections  
Provide low resistance connection paths to all power and ground pins.  
Use power and ground planes instead of traces.  
Avoid narrow, isolated paths which increase the connection resistance.  
Use a signal/ground/power circuit board stackup to maximize coupling between the ground and power  
plane.  
8.5.2 Layout Example  
The following screen shot shows the top layer of the ADC32RF5x EVM.  
The input signal traces are routed as differential signals on the top layer avoiding vias. Care is taken to  
maintain symmetry between positive and negative input with matched trace length in order to minimize phase  
imbalance.  
8-7 shows the layout example for 1x and 2x averaging configuration  
8-8 shows the layout example for 4x averaging configuration  
JESD204B output interface lanes are routed differential and length matched  
Bypass caps are close to the power pins on the top layer avoiding vias.  
Analog Inputs on top layer –  
symmetric dierenal  
roung  
JESD204B Lanes  
Tightly coupled traces  
8-7. Layout example: top layer of ADC32RF5x EVM  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
119  
Product Folder Links: ADC32RF54 ADC32RF55  
 
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
Analog Inputs on top layer –  
Symmetric, di eren al rou ng to  
2 ADC inputs  
8-8. Layout example for 4x AVG: ADC32RF5x EVM  
Copyright © 2023 Texas Instruments Incorporated  
120 Submit Document Feedback  
Product Folder Links: ADC32RF54 ADC32RF55  
 
ADC32RF54, ADC32RF55  
ZHCSQQ1A JUNE 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.3 商标  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
9.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 121  
Product Folder Links: ADC32RF54 ADC32RF55  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Jul-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADC32RF55IRTD  
ADC32RF55IRTDT  
PADC32RF54RTD  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
VQFN  
RTD  
RTD  
RTD  
64  
64  
64  
168  
250  
250  
RoHS & Green  
RoHS & Green  
TBD  
Call TI | NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Call TI  
-40 to 85  
-40 to 85  
-40 to 85  
AZ32RF55  
AZ32RF55  
Samples  
Samples  
Samples  
Call TI | NIPDAU  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Jul-2023  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

ADC32RF80

双通道 14 位 3GSPS 双 DDC/通道射频采样宽带接收器和反馈 IC
TI

ADC32RF80IRMPR

双通道 14 位 3GSPS 双 DDC/通道射频采样宽带接收器和反馈 IC | RMP | 72 | -40 to 85
TI

ADC32RF80IRMPT

双通道 14 位 3GSPS 双 DDC/通道射频采样宽带接收器和反馈 IC | RMP | 72 | -40 to 85
TI

ADC32RF80IRRHR

ADC32RF8x Dual-Channel, 3-GSPS Telecom Receiver and Feedback Devices
TI

ADC32RF80IRRHT

ADC32RF8x Dual-Channel, 3-GSPS Telecom Receiver and Feedback Devices
TI

ADC32RF80_V01

ADC32RF8x Dual-Channel, 3-GSPS Telecom Receiver and Feedback Devices
TI

ADC32RF82

双通道 14 位 2.45GSPS 射频采样电信接收器和反馈 IC
TI

ADC32RF82IRMPR

双通道 14 位 2.45GSPS 射频采样电信接收器和反馈 IC | RMP | 72 | -40 to 85
TI

ADC32RF82IRMPT

双通道 14 位 2.45GSPS 射频采样电信接收器和反馈 IC | RMP | 72 | -40 to 85
TI

ADC32RF83

双通道 14 位 3GSPS 单 DDC/通道射频采样宽带接收器和反馈 IC
TI

ADC32RF83IRMPR

双通道 14 位 3GSPS 单 DDC/通道射频采样宽带接收器和反馈 IC | RMP | 72 | -40 to 85
TI

ADC32RF83IRMPT

双通道 14 位 3GSPS 单 DDC/通道射频采样宽带接收器和反馈 IC | RMP | 72 | -40 to 85
TI