ADC32RF80IRRHT [TI]

ADC32RF8x Dual-Channel, 3-GSPS Telecom Receiver and Feedback Devices;
ADC32RF80IRRHT
型号: ADC32RF80IRRHT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

ADC32RF8x Dual-Channel, 3-GSPS Telecom Receiver and Feedback Devices

文件: 总138页 (文件大小:8994K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
ADC32RF8x Dual-Channel, 3-GSPS Telecom Receiver and Feedback Devices  
1 Features  
3 Description  
The ADC32RF8x (ADC32RF80 and ADC32RF83) is  
a 14-bit, 3-GSPS, dual-channel telecom receiver and  
feedback device family that supports RF sampling  
with input frequencies up to 4 GHz and beyond.  
Designed for high signal-to-noise ratio (SNR), the  
ADC32RF8x family delivers a noise spectral density  
of –155 dBFS/Hz as well as dynamic range and  
channel isolation over a large input frequency range.  
The buffered analog input with on-chip termination  
provides uniform input impedance across a wide  
frequency range and minimizes sample-and-hold  
glitch energy.  
1
14-Bit, Dual-Channel, 3-GSPS ADC  
Noise Floor: –155 dBFS/Hz  
RF Input Supports Up to 4.0 GHz  
Aperture Jitter: 90 fS  
Channel Isolation: 95 dB at fIN = 1.8 GHz  
Spectral Performance (fIN = 900 MHz, –2 dBFS):  
SNR: 60.1 dBFS  
SFDR: 66-dBc HD2, HD3  
SFDR: 76-dBc Worst Spur  
Spectral Performance (fIN = 1.85 GHz, –2 dBFS):  
Each channel can be connected to a dual-band,  
digital down-converter (DDC) with up to three  
independent, 16-bit numerically-controlled oscillators  
(NCOs) per DDC for phase-coherent frequency  
hopping. Additionally, the ADC is equipped with front-  
end peak and RMS power detectors and alarm  
functions to support external automatic gain control  
(AGC) algorithms.  
SNR: 58.9 dBFS  
SFDR: 67-dBc HD2, HD3  
SFDR: 76-dBc Worst Spur  
On-Chip Digital Down-Converters:  
Up to 4 DDCs (Dual-Band Mode)  
Up to 3 Independent NCOs per DDC  
On-Chip Input Clamp for Overvoltage Protection  
The ADC32RF8x supports the JESD204B serial  
interface with subclass 1-based deterministic latency  
using data rates up to 12.5 Gbps with up to four lanes  
per ADC. The device is offered in a 72-pin VQFN  
package (10 mm × 10 mm) and supports the  
industrial temperature range (–40°C to +85°C).  
Programmable On-Chip Power Detectors with  
Alarm Pins for AGC Support  
On-Chip Dither  
On-Chip Input Termination  
Input Full-Scale: 1.35 VPP  
Support for Multi-Chip Synchronization  
JESD204B Interface:  
Device Information(1)  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
ADC32RF8x  
VQFN (72)  
10.00 mm × 10.00 mm  
Subclass 1-Based Deterministic Latency  
4 Lanes Per Channel at 12.5 Gbps  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
Power Dissipation: 3.2 W/Ch at 3.0 GSPS  
72-Pin VQFN Package (10 mm × 10 mm)  
Simplified Block Diagram  
2 Applications  
Buffer  
DA[0,1]P/M  
DA[2,3]P/M  
Digital Block  
N
N
50  
ADC  
Interleave  
Correction  
INAP/M  
Multi-Carrier GSM Cellular Infrastructure Base  
Stations  
FAST  
DET.  
NCO  
NCO  
Telecommunications Receivers  
DPD Observation Receivers  
NCO  
CTRL  
GPIO1..4  
CLKINP/M  
SYSREFP/M  
SYNCBP/M  
PLL  
Backhaul Receivers  
NCO  
RF Repeaters and Distributed Antenna Systems  
FAST  
DET.  
0º/180º  
Clock  
NCO  
N
N
Buffer  
DB[0,1]P/M  
DB[2,3]P/M  
Digital Block  
Interleave  
Correction  
ADC  
INBP/M  
50 ꢀ  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
Table of Contents  
8.1 Overview ................................................................. 27  
8.2 Functional Block Diagram ....................................... 27  
8.3 Feature Description................................................. 28  
8.4 Device Functional Modes........................................ 55  
8.5 Register Maps......................................................... 68  
Application and Implementation ...................... 119  
9.1 Application Information.......................................... 119  
9.2 Typical Application ................................................ 126  
1
2
3
4
5
6
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 6  
9
10 Power Supply Recommendations ................... 128  
11 Layout................................................................. 128  
11.1 Layout Guidelines ............................................... 128  
11.2 Layout Example .................................................. 129  
12 Device and Documentation Support ............... 130  
12.1 Documentation Support ...................................... 130  
12.2 Related Links ...................................................... 130  
6.6 AC Performance Characteristics: fS = 2949.12  
MSPS......................................................................... 7  
6.7 AC Performance Characteristics: fS = 2457.6 MSPS  
(Performance Optimized for F + A + D Band) ........... 9  
6.8 AC Performance Characteristics: fS = 2457.6 MSPS  
(Performance Optimized for F + A Band) .................. 9  
12.3 Receiving Notification of Documentation  
Updates.................................................................. 130  
6.9 Digital Requirements............................................... 10  
6.10 Timing Requirements............................................ 11  
6.11 Typical Characteristics.......................................... 13  
Parameter Measurement Information ................ 26  
7.1 Input Clock Diagram ............................................... 26  
Detailed Description ............................................ 27  
12.4 Community Resources........................................ 130  
12.5 Trademarks......................................................... 130  
12.6 Electrostatic Discharge Caution.......................... 130  
12.7 Glossary.............................................................. 130  
7
8
13 Mechanical, Packaging, and Orderable  
Information ......................................................... 130  
4 Revision History  
Changes from Original (May 2016) to Revision A  
Page  
Released to production........................................................................................................................................................... 1  
2
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
 
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
5 Pin Configuration and Functions  
RMP Package  
72-Pin VQFN  
Top View  
DB3M  
DB3P  
GND  
1
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
DA3M  
DA3P  
GND  
2
3
DVDD  
SDIN  
4
DVDD  
PDN  
5
SCLK  
SEN  
6
GND  
7
RESET  
DVDD  
AVDD  
AVDD19  
AVDD  
AVDD  
INAP  
DVDD  
AVDD  
AVDD19  
SDOUT  
AVDD  
INBP  
8
9
Thermal  
Pad  
10  
11  
12  
13  
14  
15  
16  
17  
18  
INBM  
INAM  
AVDD  
AVDD19  
AVDD  
GND  
AVDD  
AVDD19  
AVDD  
GND  
Not to scale  
Pin Functions  
NAME  
NO.  
I/O  
DESCRIPTION  
INPUT, REFERENCE  
INAM  
INAP  
INBM  
INBP  
CM  
41  
42  
14  
13  
22  
I
Differential analog input for channel A  
I
Differential analog input for channel B  
O
Common-mode voltage for analog inputs, 1.2 V  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
Pin Functions (continued)  
NAME  
NO.  
I/O  
DESCRIPTION  
CLOCK, SYNC  
CLKINM  
28  
27  
34  
33  
19  
20  
21  
63  
Differential clock input for the analog-to-digital converter (ADC).  
This pin has an internal differential 100-Ω termination.  
I
I
CLKINP  
SYSREFM  
SYSREFP  
GPIO1  
External sync input. This pin has an internal, differential 100-Ω termination and  
requires external biasing.  
GPIO control pin; configured through the SPI. This pin can be configured to be  
either a fast overrange output for channel A and B, a fast detect alarm signal from  
the peak power detect, or a numerically-controlled oscillator (NCO) control.  
GPIO 4 (pin 63) can also be configured as a single-ended SYNCB input.  
GPIO2  
I/O  
GPIO3  
GPIO4  
CONTROL, SERIAL  
RESET  
48  
6
I
I
Hardware reset; active high. This pin has an internal 20-kΩ pulldown resistor.  
Serial interface clock input. This pin has an internal 20-kΩ pulldown resistor.  
SCLK  
Serial interface data input. This pin has an internal 20-kΩ pulldown resistor. SDIN  
can be data input in 4-wire mode, data input and output in 3 wire-mode.  
SDIN  
5
I/O  
SEN  
7
I
Serial interface enable. This pin has an internal 20-kΩ pullup resistor to DVDD.  
SDOUT  
11  
O
Serial interface data output in 4-wire mode  
Power down; active high. This pin can be configured through an SPI register setting  
and can be configured to a fast overrange output channel B through the SPI.  
This pin has an internal 20-kΩ pulldown resistor.  
PDN  
50  
I
DATA INTERFACE  
DA0M  
62  
61  
59  
58  
56  
55  
54  
53  
65  
66  
68  
69  
71  
72  
1
DA0P  
DA1M  
DA1P  
O
JESD204B serial data output for channel A  
DA2M  
DA2P  
DA3M  
DA3P  
DB0M  
DB0P  
DB1M  
DB1P  
O
JESD204B serial data output for channel B  
DB2M  
DB2P  
DB3M  
DB3P  
2
SYNCBM  
36  
Synchronization input for the JESD204B port. This pin has an LVDS or 1.8-V logic  
input, an optional on-chip 100-Ω termination, and is selectable through the SPI.  
This pin requires external biasing.  
I
SYNCBP  
35  
POWER SUPPLY  
AVDD19  
AVDD  
DVDD  
GND  
10, 16, 24, 31, 39, 45  
I
I
I
I
Analog 1.9-V power supply  
9, 12, 15, 17, 25, 30,  
38, 40, 43, 44, 46  
Analog 1.15-V power supply  
4, 8, 47, 51, 57, 64, 70  
Digital 1.15 V-power supply, including the JESD204B transmitter  
Ground; shorted to thermal pad inside device  
3, 18, 23, 26, 29, 32,  
37, 49, 52, 60, 67  
4
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
2.1  
UNIT  
AVDD19  
Supply voltage range  
AVDD  
1.4  
V
DVDD  
1.4  
INAP, INAM and INBP, INBM  
CLKINP, CLKINM  
AVDD19 + 0.3  
AVDD + 0.6  
AVDD + 0.6  
Voltage applied to input pins  
V
SYSREFP, SYSREFM, SYNCBP, SYNCBM  
SCLK, SEN, SDIN, RESET, PDN, GPIO1, GPIO2,  
GPIO3, GPIO4  
–0.2  
AVDD19 + 0.2  
Voltage applied to output pins  
Temperature  
–0.3  
–40  
–65  
2.2  
85  
V
Operating free-air, TA  
Storage, Tstg  
°C  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±1000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.8  
NOM  
1.9  
MAX  
2.0  
UNIT  
AVDD19  
Supply voltage(1)  
Temperature  
AVDD  
1.1  
1.15  
1.15  
1.25  
1.2  
V
DVDD  
1.1  
Operating free-air, TA  
Operating junction, TJ  
–40  
85  
°C  
105(2)  
125  
(1) Always power up the DVDD supply (1.15 V) before the AVDD19 (1.9 V) supply. The AVDD (1.15 V) supply can come up in any order.  
(2) Prolonged use above this junction temperature may increase the device failure-in-time (FIT) rate.  
6.4 Thermal Information  
ADC32RF80  
THERMAL METRIC(1)  
RMP (VQFN)  
UNIT  
72 PINS  
21.8  
4.4  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
2.0  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.1  
ψJB  
2.0  
RθJC(bot)  
0.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: ADC32RF80 ADC32RF83  
 
 
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
6.5 Electrical Characteristics  
typical values are specified at an ambient temperature of 25°C; minimum and maximum values are specified over an ambient  
temperature range of –40°C to +85°C; and chip sampling rate = 2949.12 MSPS, 50% clock duty cycle, DDC-bypassed  
performance, AVDD19 = 1.9 V, AVDD = 1.15 V, DVDD = 1.15 V, –2-dBFS differential input, and 0-dB digital gain (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER CONSUMPTION(1) (Dual-Channel Operation, Both Channels A and B are Active; Divide-by-4, Complex Output Mode(2)  
)
IAVDD19  
IAVDD  
IDVDD  
PD  
1.9-V analog supply current  
1.15-V analog supply current  
1.15-V digital supply current  
Power dissipation  
fS = 2949.12 MSPS  
fS = 2949.12 MSPS  
fS = 2949.12 MSPS  
fS = 2949.12 MSPS  
1777  
970  
1989  
1103  
1955  
7.07  
mA  
mA  
mA  
W
1785  
6.54  
Global power-down power  
dissipation  
360  
mW  
ANALOG INPUTS  
Resolution  
14  
1.35  
1.2(3)  
65  
Bits  
VPP  
V
Differential input full-scale  
Input common-mode voltage  
Input resistance  
VIC  
RIN  
CIN  
Differential resistance at dc  
Differential capacitance at dc  
Ω
Input capacitance  
2
pF  
V
VCM common-mode voltage output  
1.2  
Analog input bandwidth  
(–3-dB point)  
ADC driven with 50-Ω source  
3200  
MHz  
ISOLATION  
fIN = 100 MHz  
fIN = 900 MHz  
fIN = 1800 MHz  
fIN = 2700 MHz  
fIN = 3500 MHz  
100  
99  
95  
86  
85  
Crosstalk isolation between channel  
A and channel B(4)  
dBc  
CLOCK INPUT(5)  
Input clock frequency  
1.5  
0.5  
3
GSPS  
VPP  
Differential (peak-to-peak) input  
clock amplitude  
1.5  
2.5  
Input clock duty cycle  
Internal clock biasing  
45%  
50%  
1.0  
55%  
V
Internal clock termination  
(differential)  
100  
Ω
(1) See the Power Consumption in Different Modes section for more details.  
(2) Full-scale signal is applied to the analog inputs of all active channels.  
(3) When used in dc-coupling mode, the common-mode voltage at the analog inputs should be kept within VCM ±25 mV for best  
performance.  
(4) Crosstalk is measured with a –2-dBFS input signal on aggressor channel and no input on the victim channel.  
(5) See Figure 79.  
6
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
6.6 AC Performance Characteristics: fS = 2949.12 MSPS  
typical values specified at an ambient temperature of 25°C; minimum and maximum values are specified over an ambient  
temperature range of –40°C to +85°C; and chip sampling rate = 2949.12 MSPS, 50% clock duty cycle, DDC-bypassed  
performance(1), AVDD19 = 1.9 V, AVDD = 1.15 V, DVDD = 1.15 V, –2-dBFS differential input, and 0-dB digital gain (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
fIN = 100 MHz, AOUT = –2 dBFS  
MIN(2)  
NOM  
62.6  
61.1  
58.9  
58.2  
56.8  
54.1  
154.3  
152.8  
150.6  
149.9  
148.5  
145.8  
63.1  
24.7  
61.7  
60.2  
58.4  
57.6  
54.8  
53.6  
10.0  
9.7  
MAX  
UNIT  
fIN = 900 MHz, AOUT = –2 dBFS  
fIN = 1850 MHz, AOUT = –2 dBFS  
fIN = 2100 MHz, AOUT = –2 dBFS  
fIN = 2600 MHz, AOUT = –2 dBFS  
fIN = 3500 MHz, AOUT(3) = –3 dBFS with 2-dB gain  
fIN = 100 MHz, AOUT = –2 dBFS  
55.4  
SNR  
NSD  
Signal-to-noise ratio  
dBFS  
fIN = 900 MHz, AOUT = –2 dBFS  
Noise spectral density  
averaged across the  
Nyquist zone  
fIN = 1850 MHz, AOUT = –2 dBFS  
fIN = 2100 MHz, AOUT = –2 dBFS  
fIN = 2600 MHz, AOUT = –2 dBFS  
fIN = 3500 MHz, AOUT(3) = –3 dBFS with 2-dB gain  
fIN = 1850 MHz, AOUT = –40 dBFS  
fIN = 1850 MHz, AOUT = –40 dBFS  
fIN = 100 MHz, AOUT = –2 dBFS  
147.1  
dBFS/Hz  
Small-signal SNR  
Noise figure  
dBFS  
dB  
NF(4)  
fIN = 900 MHz, AOUT = –2 dBFS  
fIN = 1850 MHz, AOUT = –2 dBFS  
fIN = 2100 MHz, AOUT = –2 dBFS  
fIN = 2600 MHz, AOUT = –2 dBFS  
fIN = 3500 MHz, AOUT(3) = –3 dBFS with 2-dB gain  
fIN = 100 MHz, AOUT = –2 dBFS  
Signal-to-noise and  
distortion ratio  
SINAD  
dBFS  
fIN = 900 MHz, AOUT = –2 dBFS  
fIN = 1850 MHz, AOUT = –2 dBFS  
fIN = 2100 MHz, AOUT = –2 dBFS  
fIN = 2600 MHz, AOUT = –2 dBFS  
fIN = 3500 MHz, AOUT(3) = –3 dBFS with 2-dB gain  
fIN = 100 MHz, AOUT = –2 dBFS  
9.4  
ENOB  
SFDR  
HD2(5)  
Effective number of bits  
Bits  
9.3  
8.8  
8.6  
68.0  
66.0  
67.0  
64.0  
58.0  
62.0  
72.0  
73.0  
67.0  
64.0  
58.0  
62.0  
fIN = 900 MHz, AOUT = –2 dBFS  
fIN = 1850 MHz, AOUT = –2 dBFS  
fIN = 2100 MHz, AOUT = –2 dBFS  
fIN = 2600 MHz, AOUT = –2 dBFS  
fIN = 3500 MHz, AOUT(3) = –3 dBFS with 2-dB gain  
fIN = 100 MHz, AOUT = –2 dBFS  
58  
58  
Spurious-free dynamic  
range  
dBc  
fIN = 900 MHz, AOUT = –2 dBFS  
fIN = 1850 MHz, AOUT = –2 dBFS  
fIN = 2100 MHz, AOUT = –2 dBFS  
fIN = 2700 MHz, AOUT = –2 dBFS  
fIN = 3500 MHz, AOUT(3) = –3 dBFS with 2-dB gain  
Second-order harmonic  
distortion  
dBc  
(1) Performance is shown with DDC bypassed. When DDC is enabled, performance improves by the decimation filtering process.  
(2) Minimum values are specified at AOUT = –3 dBFS.  
(3) Output amplitude, AOUT, refers to the signal amplitude in the ADC digital output that is same as the analog input amplitude, AIN, except  
when the digital gain feature is used. If digital gain is G, then AOUT = G + AIN  
(4) The ADC internal resistance = 65 Ω, the driving source resistance = 50 Ω.  
(5) The minimum value of HD2 is specified by bench characterization.  
.
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
AC Performance Characteristics: fS = 2949.12 MSPS (continued)  
typical values specified at an ambient temperature of 25°C; minimum and maximum values are specified over an ambient  
temperature range of –40°C to +85°C; and chip sampling rate = 2949.12 MSPS, 50% clock duty cycle, DDC-bypassed  
performance(1), AVDD19 = 1.9 V, AVDD = 1.15 V, DVDD = 1.15 V, –2-dBFS differential input, and 0-dB digital gain (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
fIN = 100 MHz, AOUT = –2 dBFS  
MIN(2)  
NOM  
68.0  
66.0  
73.0  
80.0  
72.0  
65.0  
85.0  
81.0  
84.0  
84.0  
80.0  
87.0  
90.0  
77.0  
79.0  
76.0  
77.0  
77.0  
84.0  
82.0  
80.0  
76.0  
65.0  
77.0  
80.0  
76.0  
76.0  
75.0  
75.0  
71.0  
MAX  
UNIT  
fIN = 900 MHz, AOUT = –2 dBFS  
fIN = 1850 MHz, AOUT = –2 dBFS  
fIN = 2100 MHz, AOUT = –2 dBFS  
fIN = 2600 MHz, AOUT = –2 dBFS  
fIN = 3500 MHz, AOUT(3) = –3 dBFS with 2-dB gain  
fIN = 100 MHz, AOUT = –2 dBFS  
61  
Third-order harmonic  
distortion  
HD3  
dBc  
fIN = 900 MHz, AOUT = –2 dBFS  
fIN = 1850 MHz, AOUT = –2 dBFS  
fIN = 2100 MHz, AOUT = –2 dBFS  
fIN = 2600 MHz, AOUT = –2 dBFS  
fIN = 3500 MHz, AOUT(3) = –3 dBFS with 2-dB gain  
fIN = 100 MHz, AOUT = –2 dBFS  
61  
69  
62  
64  
HD4,  
HD5  
Fourth- and fifth-order  
harmonic distortion  
dBc  
dBc  
dBc  
fIN = 900 MHz, AOUT = –2 dBFS  
Interleaving spurs:  
fIN = 1850 MHz, AOUT = –2 dBFS  
fIN = 2100 MHz, AOUT = –2 dBFS  
fIN = 2600 MHz, AOUT = –2 dBFS  
fIN = 3500 MHz, AOUT(3) = –3 dBFS with 2-dB gain  
fIN = 100 MHz, AOUT = –2 dBFS  
IL spur  
fS / 2 – fIN  
,
fS / 4 ± fIN  
fIN = 900 MHz, AOUT = –2 dBFS  
fIN = 1850 MHz, AOUT = –2 dBFS  
fIN = 2100 MHz, AOUT = –2 dBFS  
fIN = 2600 MHz, AOUT = –2 dBFS  
fIN = 3500 MHz, AOUT(3) = –3 dBFS with 2-dB gain  
fIN = 100 MHz, AOUT = –2 dBFS  
Interleaving spur for HD2:  
fS / 2 – HD2  
HD2 IL  
fIN = 900 MHz, AOUT = –2 dBFS  
Spurious-free dynamic  
fIN = 1850 MHz, AOUT = –2 dBFS  
fIN = 2100 MHz, AOUT = –2 dBFS  
fIN = 2600 MHz, AOUT = –2 dBFS  
fIN = 3500 MHz, AOUT(3) = –3 dBFS with 2-dB gain  
Worst  
spur  
range (excluding HD2, HD3,  
HD4, HD5, and interleaving  
spurs IL and HD2 IL)  
dBc  
fIN1 = 1770 MHz, fIN2 = 1790 MHz,  
AOUT = –8 dBFS (each tone)  
70  
73  
67  
Two-tone, third-order  
intermodulation distortion  
fIN1 = 1800 MHz, fIN2 = 2600 MHz,  
AOUT = –8 dBFS (each tone)  
IMD3  
dBFS  
fIN1 = 3490 MHz, fIN2 = 3510 MHz,  
AOUT = –8 dBFS (each tone) with 2-dB gain  
8
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
 
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
6.7 AC Performance Characteristics: fS = 2457.6 MSPS  
(Performance Optimized for F + A + D Band(1))  
typical values specified at an ambient temperature of 25°C; minimum and maximum values are specified over an ambient  
temperature range of –40°C to +85°C; and chip sampling rate = 2949.12 MSPS, 50% clock duty cycle, DDC-bypassed  
performance, AVDD19 = 1.9 V, AVDD = 1.15 V, DVDD = 1.15 V, –2-dBFS differential input, and 0-dB digital gain (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
fIN = 1850 MHz, AOUT = –2 dBFS  
fIN = 2600 MHz, AOUT = –2 dBFS  
fIN = 1850 MHz, AOUT = –2 dBFS  
fIN = 2600 MHz, AOUT = –2 dBFS  
fIN = 1850 MHz, AOUT = –2 dBFS  
fIN = 2600 MHz, AOUT = –2 dBFS  
fIN = 1850 MHz, AOUT = –2 dBFS  
fIN = 2600 MHz, AOUT = –2 dBFS  
fIN = 1850 MHz, AOUT = –2 dBFS  
MIN  
NOM  
58.5  
55.8  
60.0  
57.0  
59.0  
57.0  
75.0  
65.0  
84.0  
MAX  
UNIT  
SNR  
SFDR  
HD2  
Signal-to-noise ratio  
dBFS  
Spurious-free dynamic  
range  
dBc  
dBc  
dBc  
Second-order harmonic  
distortion  
Third-order harmonic  
distortion  
HD3  
Interleaving spurs:  
IL spur  
fS / 2 – fIN  
fS / 4 ± fIN  
,
dBc  
fIN = 2600 MHz, AOUT = –2 dBFS  
76.0  
fIN = 1850 MHz, AOUT = –2 dBFS  
fIN = 2600 MHz, AOUT = –2 dBFS  
76.0  
67.0  
Interleaving spur for HD2:  
fS / 2 – HD2  
HD2 IL  
IMD3  
dBc  
Two-tone, third-order  
intermodulation distortion  
fIN1 = 1800 MHz, fIN2 = 2600 MHz,  
AOUT = –8 dBFS (each tone)  
67.0  
dBFS  
(1) F-band = 1880 MHz to 1920 MHz, A-band = 2010 MHz to 2025 MHz, and D-band = 2570 MHz to 2620 MHz.  
6.8 AC Performance Characteristics: fS = 2457.6 MSPS  
(Performance Optimized for F + A Band(1))  
typical values specified at an ambient temperature of 25°C; minimum and maximum values are specified over an ambient  
temperature range of –40°C to +85°C; and chip sampling rate = 2949.12 MSPS, 50% clock duty cycle, DDC-bypassed  
performance, AVDD19 = 1.9 V, AVDD = 1.15 V, DVDD = 1.15 V, –2-dBFS differential input, and 0-dB digital gain (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
fIN = 1850 MHz, AOUT = –2 dBFS  
fIN = 2100 MHz, AOUT = –2 dBFS  
fIN = 1850 MHz, AOUT = –2 dBFS  
fIN = 2100 MHz, AOUT = –2 dBFS  
fIN = 1850 MHz, AOUT = –2 dBFS  
fIN = 2100 MHz, AOUT = –2 dBFS  
fIN = 1850 MHz, AOUT = –2 dBFS  
fIN = 2100 MHz, AOUT = –2 dBFS  
fIN = 1850 MHz, AOUT = –2 dBFS  
MIN  
NOM  
58.7  
57.9  
71.0  
69.0  
71.0  
69.0  
75.0  
76.0  
82.0  
MAX  
UNIT  
SNR  
SFDR  
HD2  
Signal-to-noise ratio  
dBFS  
Spurious-free dynamic  
range  
dBc  
dBc  
dBc  
Second-order harmonic  
distortion  
Third-order harmonic  
distortion  
HD3  
Interleaving spurs:  
IL spur  
HD2 IL  
fS / 2 – fIN  
fS / 4 ± fIN  
,
dBc  
dBc  
fIN = 2100 MHz, AOUT = –2 dBFS  
84.0  
fIN = 1850 MHz, AOUT = –2 dBFS  
fIN = 2100 MHz, AOUT = –2 dBFS  
80.0  
80.0  
Interleaving spur for HD2:  
fS / 2 – HD2  
(1) F-band = 1880 MHz to 1920 MHz, A-band = 2010 MHz to 2025 MHz, and D-band = 2570 MHz to 2620 MHz.  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
6.9 Digital Requirements  
typical values are specified at an ambient temperature of 25°C; minimum and maximum values are specified over an ambient  
temperature range of –40°C to +85°C; and chip sampling rate = 2949.12 MSPS, DDC bypassed performance, 50% clock duty  
cycle, AVDD19 = 1.9 V, AVDD = 1.15 V, DVDD = 1.15 V, –2-dBFS differential input, and 0-dB digital gain (unless otherwise  
noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
DIGITAL INPUTS (RESET, SCLK, SEN, SDIN, PDN, GPIO1, GPIO2, GPIO3, GPIO4)  
VIH  
VIL  
IIH  
IIL  
High-level input voltage  
Low-level input voltage  
High-level input current  
Low-level input current  
Input capacitance  
0.8  
V
V
0.4  
50  
–50  
4
µA  
µA  
pF  
Ci  
DIGITAL OUTPUTS (SDOUT, GPIO1, GPIO2, GPIO3, GPIO4)  
AVDD19  
–0.1  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
AVDD19  
V
V
0.1  
DIGITAL INPUTS (SYSREFP and SYSREFM; SYNCBP and SYNCBM; Requires External Biasing)  
VID  
Differential input voltage  
350  
450  
1.2  
800  
mVPP  
V
VCM  
Input common-mode voltage  
1.05  
1.325  
DIGITAL OUTPUTS (JESD204B Interface: DA[3:0], DB[3:0], Meets JESD204B LV-0IF-11G-SR Standard)  
|VOD  
|
Output differential voltage  
700  
450  
mVPP  
mV  
|VOCM  
|
Output common-mode voltage  
Transmitter pins shorted to any voltage  
between –0.25 V and 1.45 V  
Transmitter short-circuit current  
Single-ended output impedance  
Output capacitance  
–100  
100  
mA  
Ω
zos  
Co  
50  
2
Output capacitance inside the device, from  
either output to ground  
pF  
10  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
6.10 Timing Requirements  
typical values are specified at an ambient temperature of 25°C; minimum and maximum values are specified over an ambient  
temperature range of –40°C to +85°C; and chip sampling rate = 2949.12 MSPS, 50% clock duty cycle, DDC-bypassed  
performance, AVDD19 = 1.9 V, AVDD = 1.15 V, DVDD = 1.15 V, –2-dBFS differential input, and 0-dB digital gain (unless  
otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
SAMPLE TIMING  
Aperture delay  
250  
750  
ps  
ps  
Aperture delay matching between two channels on the same device  
±15  
±150  
90  
Aperture delay matching between two devices at the same  
temperature and supply voltage  
ps  
Aperture jitter, clock amplitude = 2 VPP  
fS  
Input  
clock  
cycles  
Latency  
Data latency, ADC sample to  
DDC block bypassed(3), LMFS = 8224  
digital output  
424  
(1)(2)  
Fast overrange latency, ADC sample to FOVR indication on GPIO pins  
70  
6
Propagation delay time: logic gates and output buffer delay  
(does not change with fS)  
tPD  
ns  
SYSREF TIMING(4)  
tSU_SYSREF SYSREF setup time: referenced to clock rising edge, 2949.12 MSPS  
tH_SYSREF SYSREF hold time: referenced to clock rising edge, 2949.12 MSPS  
Valid transition window sampling period: tSU_SYSREF – tH_SYSREF, 2949.12 MSPS  
JESD OUTPUT INTERFACE TIMING  
140  
50  
70  
20  
ps  
ps  
ps  
143  
UI  
Unit interval: 12.5 Gbps  
80  
100  
10.0  
60  
400  
ps  
Gbps  
ps  
Serial output data rate  
2.5  
12.5  
Rise, fall times: 1-pF, single-ended load capacitance to ground  
Total jitter: BER of 1E-15 and lane rate = 12.5 Gbps  
Random jitter: BER of 1E-15 and lane rate = 12.5 Gbps  
25  
%UI  
0.99  
%UI, rms  
%UI, pk-  
pk  
Deterministic jitter: BER of 1E-15 and lane rate = 12.5 Gbps  
9.1  
(1) Overall latency = latency + tPD  
.
(2) Latency increases when the DDC modes are used; see Table 5.  
(3) For latency in different DDC options, see .  
(4) Common-mode voltage for the SYSREF input is kept at 1.2 V.  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: ADC32RF80 ADC32RF83  
 
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
SYSREFP, SYNCP, DxP  
VID / 4, VOD / 4  
(1)  
VICM, VOCM  
VID / 4, VOD / 4  
SYSREFM, SYNCM, DxM  
SYSREF = SYSREFP-SYNCP,  
SYNC = SYNCP-SYNCM,  
Dx = DxP-DxM  
(1)  
VID or VOD  
0 V  
GND  
VOCM is not the same as VICM. Similarly, VOD is not the same as VID  
.
Figure 1. Logic Levels for Digital Inputs and Outputs  
Sample N  
CLKP  
CLKM  
tSU_SYSREF  
tH_SYSREF  
SYSREFP  
SYSREFM  
Valid Transition Window  
Valid Transition Window  
Figure 2. SYSREF Timing Diagram  
12  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
6.11 Typical Characteristics  
typical values are specified at an ambient temperature of 25°C; minimum and maximum values are specified over an ambient  
temperature range of –40°C to +85°C; and ADC sampling rate = 2949.12 MSPS, DDC bypassed performance, 50% clock  
duty cycle, AVDD19 = 1.9 V, AVDD = DVDD = 1.15 V, –2-dBFS differential input, and 0-dB digital gain (unless otherwise  
noted)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
250  
500  
750  
1000  
1250  
D055  
0
300  
600  
900  
1200  
1500  
D001  
Input Frequency (MHz)  
Input Frequency (MHz)  
SNR = 62.4 dBFS; SFDR = 71 dBc;  
SNR = 62.2 dBFS; SFDR = 68 dBc;  
HD2 = –71 dBc; HD3 = –83 dBc; non HD2, HD3 = 82 dBc;  
IL spur = 80 dBc; fIN = 100 MHz  
HD2 = –68 dBc; HD3 = –73 dBc; non HD2, HD3 = 77 dBc;  
IL spur = 86 dBc; fIN = 100 MHz  
Figure 4. FFT for 100-MHz Input Signal (fS = 2457.6 MSPS)  
Figure 3. FFT for 100-MHz Input Frequency  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
250  
500  
750  
1000  
1250  
D056  
0
300  
600  
900  
1200  
1500  
D002  
Input Frequency (MHz)  
Input Frequency (MHz)  
SNR = 62.1 dBFS; SFDR = 76 dBc;  
SNR = 61.2 dBFS; SFDR = 66 dBc;  
HD2 = –76 dBc; HD3 = –83 dBc; non HD2, HD3 = 82 dBc;  
IL spur = 83 dBc; fIN = 900 MHz  
HD2 = –77 dBc; HD3 = –66 dBc; non HD2, HD3 = 80 dBc;  
IL spur = 83 dBc; fIN = 900 MHz  
Figure 6. FFT for 900-MHz Input Signal (fS = 2457.6 MSPS)  
Figure 5. FFT for 900-MHz Input Signal  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
250  
500  
750  
1000  
1250  
D057  
0
300  
600  
900  
1200  
1500  
D003  
Input Frequency (MHz)  
Input Frequency (MHz)  
SNR = 58 dBFS; SFDR = 69 dBc;  
SNR = 59.1 dBFS; SFDR = 65 dBc;  
HD2 = –69 dBc; HD3 = –75 dBc; non HD2, HD3 = 74 dBc;  
IL spur = 78 dBc; fIN = 1.85 GHz  
HD2 = –65 dBc; HD3 = –73 dBc; non HD2, HD3 = 73 dBc;  
IL spur = 76 dBc; fIN = 1.7 GHz  
Figure 8. FFT for 1850-MHz Input Signal (fS = 2457.6 MSPS)  
Figure 7. FFT for 1780-MHz Input Signal  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
Typical Characteristics (continued)  
typical values are specified at an ambient temperature of 25°C; minimum and maximum values are specified over an ambient  
temperature range of –40°C to +85°C; and ADC sampling rate = 2949.12 MSPS, DDC bypassed performance, 50% clock  
duty cycle, AVDD19 = 1.9 V, AVDD = DVDD = 1.15 V, –2-dBFS differential input, and 0-dB digital gain (unless otherwise  
noted)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
250  
500  
750  
1000  
1250  
D058  
0
300  
600  
900  
1200  
1500  
D004  
Input Frequency (MHz)  
Input Frequency (MHz)  
SNR = 57.5 dBFS; SFDR = 70 dBc;  
SNR = 58.2 dBFS; SFDR = 64 dBc;  
HD2 = –70 dBc; HD3 = –81 dBc; non HD2, HD3 = 75 dBc;  
IL spur = 77 dBc; fIN = 2.1 GHz  
HD2 = –64 dBc; HD3 = –85 dBc; non HD2, HD3 = 73 dBc;  
IL spur = 74 dBc; fIN = 2.1 GHz  
Figure 10. FFT for 2100-MHz Input Signal (fS = 2457.6 MSPS)  
Figure 9. FFT for 2100-MHz Input Signal  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
250  
500  
750  
1000  
1250  
D059  
0
300  
600  
900  
1200  
1500  
D005  
Input Frequency (MHz)  
Input Frequency (MHz)  
SNR = 55.4 dBFS; SFDR = 60 dBc;  
SNR = 56.9 dBFS; SFDR = 62 dBc;  
HD2 = –60 dBc; HD3 = –67 dBc; non HD2, HD3 = 72 dBc;  
IL spur = 75 dBc; fIN = 2.6 GHz  
HD2 = –62 dBc; HD3 = –72 dBc; non HD2, HD3 = 72 dBc;  
IL spur = 64 dBc; fIN = 2.6 GHz  
Figure 12. FFT for 2600-MHz Input Signal (fS = 2457.6 MSPS)  
Figure 11. FFT for 2600-MHz Input Signal  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
250  
500  
750  
1000  
1250  
D060  
0
300  
600  
900  
1200  
1500  
D006  
Input Frequency (MHz)  
Input Frequency (MHz)  
SNR = 53.6 dBFS; SFDR = 47 dBc;  
SNR = 54.2 dBFS; SFDR = 60 dBc;  
HD2 = –50 dBc; HD3 = –47 dBc; non HD2, HD3 = 70 dBc;  
IL spur = 67 dBc; fIN = 3.5 GHz, AIN = –3 dBFS with 2-dB gain  
HD2 = –60 dBc; HD3 = –64 dBc; non HD2, HD3 = 71 dBc;  
IL spur = 80 dBc; fIN = 3.5 GHz, AIN = –3 dBFS with 2-dB gain  
Figure 14. FFT for 3500-MHz Input Signal (fS = 2457.6 MSPS)  
Figure 13. FFT for 3500-MHz Input Signal  
14  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
Typical Characteristics (continued)  
typical values are specified at an ambient temperature of 25°C; minimum and maximum values are specified over an ambient  
temperature range of –40°C to +85°C; and ADC sampling rate = 2949.12 MSPS, DDC bypassed performance, 50% clock  
duty cycle, AVDD19 = 1.9 V, AVDD = DVDD = 1.15 V, –2-dBFS differential input, and 0-dB digital gain (unless otherwise  
noted)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
300  
600  
900  
1200  
1500  
0
300  
600  
900  
1200  
1500  
Input Frequency (MHz)  
Input Frequency (MHz)  
D001  
D074  
fIN1 = 900 MHz, fIN2 = 950 MHz, AIN = –8 dBFS, IMD = 79 dBFS  
fIN1 = 900 MHz, fIN2 = 950 MHz, AIN = –36 dBFS, IMD = 97 dBFS  
Figure 15. FFT for Two-Tone Input Signal (–8 dBFS)  
Figure 16. FFT for Two-Tone Input Signal (–36 dBFS)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
250  
500  
750  
1000  
1250  
0
250  
500  
750  
1000  
1250  
Input Frequency (MHz)  
Input Frequency (MHz)  
D075  
D076  
fIN1 = 900 MHz, fIN2 = 950 MHz, AIN = –8 dBFS, IMD = 75 dBFS  
fIN1 = 900 MHz, fIN2 = 950 MHz, AIN = –36 dBFS,  
IMD = 92 dBFS  
Figure 18. FFT for Two-Tone Input Signal  
(–36 dBFS, fS = 2457.6 MSPS)  
Figure 17. FFT for Two-Tone Input Signal  
(–8 dBFS, fS = 2457.6 MSPS)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
300  
600  
900  
1200  
1500  
0
300  
600  
900  
1200  
1500  
Input Frequency (MHz)  
Input Frequency (MHz)  
D007  
D008  
fIN1 = 1.77 GHz, fIN2 = 1.79 GHz, AIN = –8 dBFS, IMD = 70 dBFS  
fIN1 = 1.77 GHz, fIN2 = 1.790 GHz, AIN = –36 dBFS,  
IMD = 97 dBFS  
Figure 20. FFT for Two-Tone Input Signal (–36 dBFS)  
Figure 19. FFT for Two-Tone Input Signal (–8 dBFS)  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
Typical Characteristics (continued)  
typical values are specified at an ambient temperature of 25°C; minimum and maximum values are specified over an ambient  
temperature range of –40°C to +85°C; and ADC sampling rate = 2949.12 MSPS, DDC bypassed performance, 50% clock  
duty cycle, AVDD19 = 1.9 V, AVDD = DVDD = 1.15 V, –2-dBFS differential input, and 0-dB digital gain (unless otherwise  
noted)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
250  
500  
750  
1000  
1250  
0
250  
500  
750  
1000  
1250  
Input Frequency (MHz)  
Input Frequency (MHz)  
D061  
D062  
fIN1 = 1.77 GHz, fIN2 = 1.79 GHz, AIN = –8 dBFS,  
IMD = 76 dBFS  
fIN1 = 1.77 GHz, fIN2 = 1.790 GHz, AIN = –36 dBFS,  
IMD = 96 dBFS  
Figure 21. FFT for Two-Tone Input Signal  
(–8 dBFS, fS = 2457.6 MSPS)  
Figure 22. FFT for Two-Tone Input Signal  
(–36 dBFS, fS = 2457.6 MSPS)  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
300  
600  
900  
1200  
1500  
0
300  
600  
900  
1200  
1500  
Input Frequency (MHz)  
Input Frequency (MHz)  
D009  
D010  
fIN1 = 1.8 MHz, fIN2 = 2.6 GHz, AIN = –8 dBFS, IMD = 71 dBFS  
fIN1 = 1.8 GHz, fIN2 = 2.6 GHz, AIN = –36 dBFS, IMD = 94 dBFS  
Figure 23. FFT for Two-Tone Input Signal (–8 dBFS)  
Figure 24. FFT for Two-Tone Input Signal  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
250  
500  
750  
1000  
1250  
0
250  
500  
750  
1000  
1250  
Input Frequency (MHz)  
Input Frequency (MHz)  
D063  
D064  
fIN1 = 2.09 GHz, fIN2 = 2.1 GHz, AIN = –8 dBFS, IMD = 76 dBFS  
fIN1 = 2.09 MHz, fIN2 = 2.1 GHz, AIN = –36 dBFS,  
IMD = 94 dBFS  
Figure 26. FFT for Two-Tone Input Signal  
(–36 dBFS, fS = 2457.6 MSPS)  
Figure 25. FFT for Two-Tone Input Signal  
(–8 dBFS, fS = 2457.6 MSPS)  
16  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
Typical Characteristics (continued)  
typical values are specified at an ambient temperature of 25°C; minimum and maximum values are specified over an ambient  
temperature range of –40°C to +85°C; and ADC sampling rate = 2949.12 MSPS, DDC bypassed performance, 50% clock  
duty cycle, AVDD19 = 1.9 V, AVDD = DVDD = 1.15 V, –2-dBFS differential input, and 0-dB digital gain (unless otherwise  
noted)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
300  
600  
900  
1200  
1500  
0
300  
600  
900  
1200  
1500  
Input Frequency (MHz)  
Input Frequency (MHz)  
D011  
D012  
fIN1 = 3.49 MHz, fIN2 = 3.51 GHz, IMD = 66 dBFS,  
AIN = –3 dBFS with 2-dB gain  
fIN1 = 3.49 GHz, fIN2 = 3.51 GHz, IMD = 92 dBFS,  
AIN = –3 dBFS with 2-dB gain  
Figure 27. FFT for Two-Tone Input Signal (–8 dBFS)  
Figure 28. FFT for Two-Tone Input Signal (–36 dBFS)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-100  
-110  
0
250  
500  
750  
1000  
1250  
0
250  
500  
750  
1000  
1250  
Input Frequency (MHz)  
Input Frequency (MHz)  
D065  
D066  
fIN1 = 2.59 GHz, fIN2 = 2.6 GHz, AIN = –8 dBFS, IMD = 65 dBFS  
fIN1 = 2.59 GHz, fIN2 = 2.6 GHz, AIN = –36 dBFS,  
IMD = 92 dBFS  
Figure 30. FFT for Two-Tone Input Signal  
(–36 dBFS, fS = 2457.6 MSPS)  
Figure 29. FFT for Two-Tone Input Signal  
(–8 dBFS, fS = 2457.6 MSPS)  
-60  
-70  
-60  
-70  
-80  
-80  
-90  
-90  
-100  
-100  
-110  
-110  
-36  
-32  
-28  
-24  
-20  
-16  
-12  
-8  
-36  
-32  
-28  
-24  
-20  
-16  
-12  
-8  
Each Tone Amplitude (dBFS)  
Each Tone Amplitude (dBFS)  
D013  
D067  
fIN1 = 1.77 GHz, fIN2 = 1.79 GHz  
fIN1 = 1.77 GHz, fIN2 = 1.79 GHz  
Figure 31. Intermodulation Distortion vs Input Amplitude  
(1770 MHz and 1790 MHz)  
Figure 32. Intermodulation Distortion vs Input Amplitude  
(1770 MHz and 1790 MHz, fS = 2457.6 MSPS)  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
Typical Characteristics (continued)  
typical values are specified at an ambient temperature of 25°C; minimum and maximum values are specified over an ambient  
temperature range of –40°C to +85°C; and ADC sampling rate = 2949.12 MSPS, DDC bypassed performance, 50% clock  
duty cycle, AVDD19 = 1.9 V, AVDD = DVDD = 1.15 V, –2-dBFS differential input, and 0-dB digital gain (unless otherwise  
noted)  
-60  
-70  
-70  
-78  
-80  
-86  
-90  
-94  
-100  
-102  
-110  
-110  
-36  
-32  
-28  
-24  
-20  
-16  
-12  
-8  
-36  
-32  
-28  
-24  
-20  
-16  
-12  
-8  
Each Tone Amplitude (dBFS)  
Each Tone Amplitude (dBFS)  
D014  
D068  
fIN1 = 1.8 GHz, fIN2 = 2.6 GHz, AIN = –36 dBFS  
fIN1 = 2.09 GHz, fIN2 = 2.1 GHz  
Figure 33. Intermodulation Distortion vs Input Amplitude  
(1800 MHz and 2600 MHz)  
Figure 34. Intermodulation Distortion vs Input Amplitude  
(1800 MHz and 2600 MHz, fS = 2457.6 MSPS)  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-100  
-110  
-110  
-36  
-32  
-28  
-24  
-20  
-16  
-12  
-8  
-36  
-32  
-28  
-24  
-20  
-16  
-12  
-8  
Each Tone Amplitude (dBFS)  
Each Tone Amplitude (dBFS)  
D069  
D015  
fIN1 = 2.59GHz, fIN2 = 2.6 GHz  
fIN1 = 3.49 GHz, fIN2 = 3.51 GHz with 2-dB digital gain  
Figure 36. Intermodulation Distortion vs Input Amplitude  
(3490 MHz and 3510 MHz, fS = 2457.6 MSPS)  
Figure 35. Intermodulation Distortion vs Input Amplitude  
(3490 MHz and 3510 MHz)  
90  
78  
66  
54  
42  
30  
90  
78  
66  
54  
42  
30  
0
500 1000 1500 2000 2500 3000 3500 4000  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
InputFrequency (MHz)  
InputFrequency (MHz)  
D016  
D070  
AOUT = –2 dBFS with 0-dB gain for fIN less than 3 GHz,  
AOUT = –3 dBFS with 2-dB gain for fIN more than 3 GHz  
AOUT = –2 dBFS with 0-dB gain for fIN less than 3 GHz,  
AOUT = –3 dBFS with 2-dB gain for fIN more than 3 GHz  
Figure 37. Spurious-Free Dynamic Range vs  
Input Frequency  
Figure 38. Spurious-Free Dynamic Range vs  
Input Frequency (fS = 2457.6 MSPS)  
18  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
Typical Characteristics (continued)  
typical values are specified at an ambient temperature of 25°C; minimum and maximum values are specified over an ambient  
temperature range of –40°C to +85°C; and ADC sampling rate = 2949.12 MSPS, DDC bypassed performance, 50% clock  
duty cycle, AVDD19 = 1.9 V, AVDD = DVDD = 1.15 V, –2-dBFS differential input, and 0-dB digital gain (unless otherwise  
noted)  
100  
95  
90  
85  
80  
75  
70  
65  
60  
105  
100  
95  
fIN + fS/4 (dBc)  
fIN - fS/2 (dBc)  
fIN - fS/4 (dBc)  
2fIN + fS/4 (dBc)  
2fIN - fS/2 (dBc)  
2fIN - fS/4 (dBc)  
fIN + fS/4 (dBc)  
fIN - fS/2 (dBc)  
fIN - fS/4 (dBc)  
2fIN + fS/4 (dBc)  
2fIN - fS/2 (dBc)  
2fIN - fS/4 (dBc)  
90  
85  
80  
75  
70  
65  
0
500 1000 1500 2000 2500 3000 3500 4000  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
Input Frequency (MHz)  
Input Frequency (MHz)  
D017  
D071  
AOUT = –2 dBFS with 0-dB gain for fIN less than 3 GHz,  
AOUT = –3 dBFS with 2-dB gain for fIN more than 3 GHz  
AOUT = –2 dBFS with 0-dB gain for fIN less than 3 GHz,  
AOUT = –3 dBFS with 2-dB gain for fIN more than 3 GHz  
Figure 39. IL Spur vs Input Frequency  
Figure 40. IL Spur vs Input Frequency (fS = 2457.6 MSPS)  
63  
63  
61  
59  
57  
55  
53  
61  
59  
57  
55  
53  
0
500 1000 1500 2000 2500 3000 3500 4000  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
Input Frequency (MHz)  
Input Frequency (MHz)  
D018  
D072  
AOUT = –2 dBFS with 0-dB gain for fIN less than 3 GHz,  
AOUT = –3 dBFS with 2-dB gain for fIN more than 3 GHz  
AOUT = –2 dBFS with 0-dB gain for fIN less than 3 GHz,  
AOUT = –3 dBFS with 2-dB gain for fIN more than 3 GHz  
Figure 41. Signal-to-Noise Ratio vs Input Frequency  
Figure 42. Signal-to-Noise Ratio vs Input Frequency  
(fS = 2457.6 MSPS)  
61  
72  
AVDD = 1.1 V  
AVDD = 1.15 V  
AVDD = 1.2 V  
AVDD = 1.1 V  
AVDD = 1.15 V  
AVDD = 1.2 V  
AVDD = 1.25 V  
60  
70  
AVDD = 1.25 V  
59  
68  
66  
64  
62  
58  
57  
56  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D019  
D020  
fIN = 1.78 GHz, AIN = –2 dBFS  
fIN = 1.78 GHz, AIN = –2 dBFS  
Figure 43. Signal-to-Noise Ratio vs  
AVDD Supply and Temperature  
Figure 44. Spurious-Free Dynamic Range vs  
AVDD Supply and Temperature  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
Typical Characteristics (continued)  
typical values are specified at an ambient temperature of 25°C; minimum and maximum values are specified over an ambient  
temperature range of –40°C to +85°C; and ADC sampling rate = 2949.12 MSPS, DDC bypassed performance, 50% clock  
duty cycle, AVDD19 = 1.9 V, AVDD = DVDD = 1.15 V, –2-dBFS differential input, and 0-dB digital gain (unless otherwise  
noted)  
57  
56  
55  
54  
53  
52  
66  
64  
62  
60  
58  
56  
AVDD = 1.1 V  
AVDD = 1.15 V  
AVDD = 1.2 V  
AVDD = 1.25 V  
AVDD = 1.1 V  
AVDD = 1.15 V  
AVDD = 1.2 V  
AVDD = 1 .25 V  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D021  
D022  
fIN = 3.5 GHz, AIN = –3 dBFS with 2-dB digital gain  
fIN = 3.5GHz, AIN = –3 dBFS with 2-dB digital gain  
Figure 45. Signal-to-Noise Ratio vs  
AVDD Supply and Temperature  
Figure 46. Spurious-Free Dynamic Range vs  
AVDD Supply and Temperature  
61  
72  
70  
68  
66  
64  
62  
DVDD = 1.1 V  
DVDD = 1.15 V  
DVDD = 1.2 V  
DVDD = 1.1 V  
DVDD = 1.15 V  
DVDD = 1.2 V  
60  
59  
58  
57  
56  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D023  
D024  
fIN = 1.78 GHz, AIN = –2 dBFS  
fIN = 1.78 GHz, AIN = –2 dBFS  
Figure 47. Signal-to-Noise Ratio vs  
DVDD Supply and Temperature  
Figure 48. Spurious-Free Dynamic Range vs  
DVDD Supply and Temperature  
57  
68  
66  
64  
62  
60  
58  
DVDD = 1.1 V  
DVDD = 1.15 V  
DVDD = 1.2 V  
DVDD = 1.1 V  
DVDD = 1.15 V  
DVDD = 1.2 V  
56  
55  
54  
53  
52  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D025  
D026  
fIN = 3.5 GHz, AIN = –3 dBFS with 2-dB digital gain  
fIN = 3.5 GHz, AIN = –3 dBFS with 2-dB digital gain  
Figure 49. Signal-to-Noise Ratio vs  
DVDD Supply and Temperature  
Figure 50. Spurious-Free Dynamic Range vs  
DVDD Supply and Temperature  
20  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
Typical Characteristics (continued)  
typical values are specified at an ambient temperature of 25°C; minimum and maximum values are specified over an ambient  
temperature range of –40°C to +85°C; and ADC sampling rate = 2949.12 MSPS, DDC bypassed performance, 50% clock  
duty cycle, AVDD19 = 1.9 V, AVDD = DVDD = 1.15 V, –2-dBFS differential input, and 0-dB digital gain (unless otherwise  
noted)  
61  
60  
59  
58  
57  
56  
72  
70  
68  
66  
64  
62  
AVDD19 = 1.8 V  
AVDD19 = 1.85 V  
AVDD19 = 1.9 V  
AVDD19 = 1.95 V  
AVDD19 = 2 V  
AVDD19 = 1.8 V  
AVDD19 = 1.85 V  
AVDD19 = 1.9 V  
AVDD19 = 1.95 V  
AVDD19 = 2 V  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D027  
D028  
fIN = 1.78 GHz, AIN = –2 dBFS  
fIN = 1.78 GHz, AIN = –2 dBFS  
Figure 51. Signal-to-Noise Ratio vs  
AVDD19 Supply and Temperature  
Figure 52. Spurious-Free Dynamic Range vs  
AVDD19 Supply and Temperature  
57  
56  
55  
54  
53  
52  
66  
64  
62  
60  
58  
56  
AVDD19 = 1.8 V  
AVDD19 = 1.85 V  
AVDD19 = 1.9 V  
AVDD19 = 1.95 V  
AVDD19 = 2 V  
AVDD19 = 1.8 V  
AVDD19 = 1.85 V  
AVDD19 = 1.9 V  
AVDD19 = 1.95 V  
AVDD19 = 2 V  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D029  
D030  
fIN = 3.5 GHz, AIN = –3 dBFS with 2-dB digital gain  
fIN = 3.5 GHz, AIN = –3 dBFS with 2-dB digital gain  
Figure 53. Signal-to-Noise Ratio vs  
AVDD19 Supply and Temperature  
Figure 54. Spurious-Free Dynamic Range vs  
AVDD19 Supply and Temperature  
35  
24  
Temp = -40°C  
Temp = 25°C  
Temp = 85°C  
25  
Temp = -40°C  
Temp = 25°C  
Temp = 85°C  
30  
20  
16  
12  
8
20  
15  
10  
5
4
0
0
D031  
D032  
HD2 (dBFS)  
HD2 (dBFS)  
fIN = 1.78 GHz  
fIN = 1.78 GHz  
Figure 55. HD2 Histogram at AVDD19 = 1.8 V  
Figure 56. HD2 Histogram at AVDD19 = 1.9 V  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
Typical Characteristics (continued)  
typical values are specified at an ambient temperature of 25°C; minimum and maximum values are specified over an ambient  
temperature range of –40°C to +85°C; and ADC sampling rate = 2949.12 MSPS, DDC bypassed performance, 50% clock  
duty cycle, AVDD19 = 1.9 V, AVDD = DVDD = 1.15 V, –2-dBFS differential input, and 0-dB digital gain (unless otherwise  
noted)  
72  
70  
68  
66  
64  
62  
60  
58  
56  
54  
52  
50  
48  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
25  
20  
15  
10  
5
SNR (dBFS)  
SFDR (dBFS)  
SFDR (dBc)  
Temp = -40°C  
Temp = 25°C  
Temp = 85°C  
0
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
D033  
HD2 (dBFS)  
Amplitude (dBFS)  
D034  
fIN = 1.78 GHz  
fIN = 1.78 GHz, AIN = –2 dBFS  
Figure 57. HD2 Histogram at AVDD19 = 2.0 V  
Figure 58. Performance vs Amplitude  
72  
70  
68  
66  
64  
62  
60  
58  
56  
54  
52  
50  
48  
120  
62  
61  
60  
59  
58  
57  
56  
67  
66  
65  
64  
63  
62  
61  
SNR (dBFS)  
SFDR (dBFS)  
SFDR (dBc)  
SNR  
SFDR  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
0.5  
0.9  
1.3  
1.7  
2.1  
2.5  
Amplitude (dBFS)  
Differential Clock Amplitude (Vpp)  
D035  
D036  
fIN = 3.5 GHz, AIN = –3 dBFS with 2-dB digital gain  
fIN = 1.78 GHz, AIN = –2 dBFS  
Figure 59. Performance vs Amplitude  
Figure 60. Performance vs Clock Amplitude  
60  
59  
58  
57  
56  
55  
75  
SNR  
SFDR  
56  
64  
SNR  
SFDR  
72.5  
55  
62  
60  
58  
56  
54  
70  
54  
53  
52  
51  
67.5  
65  
62.5  
60  
40  
45  
50  
55  
0.5  
0.9  
1.3  
1.7  
2.1  
2.5  
Input Clock Duty Cycle (%)  
Differential Clock Amplitude (Vpp)  
D039  
D038  
D037  
fIN = 1.78 GHz, AIN = –2 dBFS  
fIN = 3.5 GHz, AIN = –3 dBFS  
Figure 62. Performance vs Clock Duty Cycle  
Figure 61. Performance vs Clock Amplitude  
22  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
Typical Characteristics (continued)  
typical values are specified at an ambient temperature of 25°C; minimum and maximum values are specified over an ambient  
temperature range of –40°C to +85°C; and ADC sampling rate = 2949.12 MSPS, DDC bypassed performance, 50% clock  
duty cycle, AVDD19 = 1.9 V, AVDD = DVDD = 1.15 V, –2-dBFS differential input, and 0-dB digital gain (unless otherwise  
noted)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
56  
55  
54  
53  
52  
51  
63  
62  
61  
60  
59  
58  
SNR  
SFDR  
40  
45  
50  
55  
60  
0
300  
600  
900  
1200  
1500  
Input Clock Duty Cycle (%)  
Input Frequency (MHz)  
D039  
D040  
fIN = 3.5 GHz, AIN = –3 dBFS with 2-dB digital gain  
fIN = 3.5 GHz, AIN = –3 dBFS, PSRR = 37 dB,  
fPSRR = 3 MHz, APSRR = 50 mVPP, AVDD = 1.9 V  
Figure 64. Power-Supply Rejection Ratio FFT for  
Test Signal on AVDD Supply  
Figure 63. Performance vs Clock Duty Cycle  
0
75  
PSRR with 50-mVpp Signal on AVDD  
PSRR with 50-mVpp Signal on AVDD19  
-10  
-20  
65  
-30  
55  
45  
35  
25  
15  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
300  
600  
900  
1200  
1500  
0.02 0.05  
0.2 0.5  
1
2 3 45 710 20 50 100 200 500  
Input Frequency (MHz)  
Frequency of Signal on Supply (MHz)  
D042  
D041  
CMRR = 32 dB, fCMRR = 32 dB, APSRR = 50 mVPP  
Figure 66. Common-Mode Rejection Ratio FFT  
Figure 65. Power-Supply Rejection Ratio vs  
Tone Frequency  
45  
40  
35  
30  
25  
20  
15  
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
0
50  
100  
150  
200  
250  
-375  
-225  
-75  
75  
225  
375  
Frequency of Input Common-Mode Signal (MHz)  
Input Frequency (MHz)  
D043  
D044  
fIN = 1.8 GHz, AOUT = –2 dBFS  
fIN = 1.78 GHz, AIN = –2 dBFS, fS = 2949.12 MSPS,  
SNR = 60.6 dBFS, SFDR (includes IL) = 75 dBc  
Figure 68. FFT in 4X Decimation (Complex Output)  
Figure 67. Common-Mode Rejection Ratio vs  
Tone Frequency  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
Typical Characteristics (continued)  
typical values are specified at an ambient temperature of 25°C; minimum and maximum values are specified over an ambient  
temperature range of –40°C to +85°C; and ADC sampling rate = 2949.12 MSPS, DDC bypassed performance, 50% clock  
duty cycle, AVDD19 = 1.9 V, AVDD = DVDD = 1.15 V, –2-dBFS differential input, and 0-dB digital gain (unless otherwise  
noted)  
0
0
-10  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
-250  
-150  
-50  
50  
150  
250  
-187.5  
-112.5  
-37.5  
37.5  
112.5  
187.5  
D046  
Input Frequency (MHz)  
Input Frequency (MHz)  
D045  
fIN = 1.78 GHz, AIN = –2 dBFS, fS = 2949.12 MSPS,  
SNR = 61.6 dBFS, SFDR (includes IL) = 82 dBc  
fIN = 1.78 GHz, AIN = –2 dBFS, fS = 2949.12 MSPS,  
SNR = 62.6 dBFS, SFDR (includes IL) = 86 dBc  
Figure 69. FFT in 6X Decimation (Complex Output)  
Figure 70. FFT in 8X Decimation (Complex Output)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
-150  
-90  
-30  
30  
90  
150  
-166  
-99.6  
-33.2  
33.2  
99.6  
166  
Input Frequency (MHz)  
Input Frequency (MHz)  
D047  
D048  
fIN = 1.78 GHz, AIN = –2 dBFS, fS = 2949.12 MSPS,  
SNR = 63 dBFS, SFDR (includes IL) = 82 dBc  
fIN = 1.78 GHz, AIN = –2 dBFS, fS = 2949.12 MSPS,  
SNR = 63.3 dBFS, SFDR (includes IL) = 81 dBc  
Figure 71. FFT in 9X Decimation (Complex Output)  
Figure 72. FFT in 10X Decimation (Complex Output)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
-125  
-75  
-25  
25  
75  
125  
-93.75  
-56.25  
-18.75  
Input Frequency (MHz)  
18.75  
56.25  
93.75  
D050  
Input Frequency (MHz)  
D049  
fIN = 1.78 GHz, AIN = –2 dBFS, fS = 2949.12 MSPS,  
SNR = 63.9 dBFS, SFDR (includes IL) = 83 dBc  
fIN = 1.78 GHz, AIN = –2 dBFS, fS = 2949.12 MSPS,  
SNR = 63.7 dBFS, SFDR (includes IL) = 83 dBc  
Figure 74. FFT in 16X Decimation (Complex Output)  
Figure 73. FFT in 12X Decimation (Complex Output)  
24  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
Typical Characteristics (continued)  
typical values are specified at an ambient temperature of 25°C; minimum and maximum values are specified over an ambient  
temperature range of –40°C to +85°C; and ADC sampling rate = 2949.12 MSPS, DDC bypassed performance, 50% clock  
duty cycle, AVDD19 = 1.9 V, AVDD = DVDD = 1.15 V, –2-dBFS differential input, and 0-dB digital gain (unless otherwise  
noted)  
0
0
-10  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
-83  
-49.8  
-16.6  
16.6  
49.8  
83  
-75  
-45  
-15  
15  
45  
75  
Input Frequency (MHz)  
Input Frequency (MHz)  
D051  
D052  
fIN = 1.78 GHz, AIN = –2 dBFS, fS = 2949.12 MSPS,  
SNR = 64 dBFS, SFDR (includes IL) = 83 dBc  
fIN = 1.78 GHz, AIN = –2 dBFS, fS = 2949.12 MSPS,  
SNR = 64.4 dBFS, SFDR (includes IL) = 84 dBc  
Figure 75. FFT in 18X Decimation (Complex Output)  
Figure 76. FFT in 20X Decimation (Complex Output)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
-62.5  
-37.5  
-12.5  
12.5  
37.5  
62.5  
-46.875  
-28.125  
-9.375  
Input Frequency (MHz)  
9.375  
28.125  
46.875  
D054  
Input Frequency (MHz)  
D054  
fIN = 1.78 GHz, AIN = –2 dBFS, fS = 2949.12 MSPS,  
SNR = 64.4 dBFS, SFDR (includes IL) = 82 dBc  
fIN = 1.78 GHz, AIN = –2 dBFS, fS = 2949.12 MSPS,  
SNR = 64.5 dBFS, SFDR (includes IL) = 79 dBc  
Figure 77. FFT in 24X Decimation (Complex Output)  
Figure 78. FFT in 32X Decimation (Complex Output)  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
7 Parameter Measurement Information  
7.1 Input Clock Diagram  
Figure 79 shows the input clock diagram.  
VCLKIN_DIFF  
=
VCLKIN+ - VCLKIN-  
VCLKIN+  
VCLKIN-  
Figure 79. Input Clock Diagram  
26  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
 
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
8 Detailed Description  
8.1 Overview  
The ADC32RF8x is a dual, 14-bit, 2949.12-MSPS, telecom receiver and feedback device family containing  
analog-to-digital converters (ADCs) followed by multi-band digital down-converters (DDCs), and a back-end  
JESD204B digital interface.  
The ADCs are preceded by input buffers and on-chip termination to provide a uniform input impedance over a  
large input frequency range. Furthermore, an internal differential clamping circuit provides first-level protection  
against overvoltage conditions. Each ADC channel is internally interleaved four times and equipped with  
background, analog and digital, and interleaving correction.  
The on-chip DDC enables single- or dual-band internal processing to pre-select and filter smaller bands of  
interest and also reduces the digital output data traffic. Each DDC is equipped with up to three independent,  
16-bit numerically-controlled oscillators (NCOs) for phase coherent frequency hopping; the NCOs can be  
controlled through the SPI or GPIO pins. The ADC32RF8x also provides three different power detectors on-chip  
with alarm outputs in order to support external automatic gain control (AGC) loops.  
The processed data are passed into the JESD204B interface where the data are framed, encoded, serialized,  
and output on one to four lanes per channel, depending on the ADC sampling rate and decimation. The CLKIN,  
SYSREF, and SYNCB inputs provide the device clock and the SYSREF and SYNCB signals to the JESD204B  
interface that are used to derive the internal local frame and local multiframe clocks and establish the serial link.  
All features of the ADC32RF8x are configurable through the SPI.  
8.2 Functional Block Diagram  
Buffer  
DA[0,1]P/M  
DA[2,3]P/M  
Digital Block  
N
N
ADC  
50  
Interleave  
Correction  
INAP/M  
FAST  
NCO  
DET.  
NCO  
NCO  
CTRL  
GPIO1..4  
CLKINP/M  
SYSREFP/M  
SYNCBP/M  
PLL  
NCO  
FAST  
DET.  
0º/180º  
Clock  
NCO  
N
N
Buffer  
DB[0,1]P/M  
DB[2,3]P/M  
Digital Block  
Interleave  
Correction  
ADC  
INBP/M  
50 ꢀ  
Copyright © 2016, Texas Instruments Incorporated  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
8.3 Feature Description  
8.3.1 Analog Inputs  
The ADC32RF8x analog signal inputs are designed to be driven differentially. The analog input pins have internal  
analog buffers that drive the sampling circuit. The ADC32RF8x provides on-chip, differential termination to  
minimize reflections. The buffer also helps isolate the external driving circuit from the internal switching currents  
of the sampling circuit, thus resulting in a more constant SFDR performance across input frequencies.  
The common-mode voltage of the signal inputs is internally biased to CM using the 32.5-termination resistors  
that allow for ac-coupling of the input drive network. Figure 80 and Figure 81 show SDD11 at the analog inputs  
from dc to 5 GHz with a 100-Ω reference impedance.  
TI Device  
INxP  
CIN  
RIN  
ZIN = RIN || CIN  
SDD11 = (ZIN œ 100) / (ZIN + 100)  
INxM  
Copyright © 2016, Texas Instruments Incorporated  
Figure 80. Equivalent Input Impedance  
Figure 81. SDD11 Over the Input Frequency Range  
28  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
 
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
Feature Description (continued)  
The input impedance of analog inputs can also be modelled as parallel combination of equivalent resistance and  
capacitance. Figure 82 and Figure 83 show how equivalent impedance (CIN and RIN) vary over frequency.  
3
2
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
1
0
-1  
-2  
-3  
0
500  
1000  
1500  
2000  
2500  
3000  
0
500  
1000  
1500  
2000  
2500  
3000  
Input Frequency (MHz)  
Input Frequency (MHz)  
D063  
D00614  
Figure 82. Differential Input Capacitance vs  
Input Frequency  
Figure 83. Differential Input Resistance vs Input Frquency  
Each input pin (INP, INM) must swing symmetrically between (CM + 0.3375 V) and (CM – 0.3375 V), resulting in  
a 1.35-VPP (default) differential input swing. The input sampling circuit has a 3-dB bandwidth that extends up to  
approximately 3.2 GHz, as shown in Figure 84.  
2
1
0
-1  
-2  
-3  
-4  
-5  
-6  
100 Ohm Source  
-7  
50 Ohm Source  
-8  
100  
200 300  
500 700 1000  
2000 3000 5000  
Input Frequency (MHz)  
D062  
Figure 84. Input Bandwidth with a 100-Ω Source Resistance  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: ADC32RF80 ADC32RF83  
 
 
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
Feature Description (continued)  
8.3.1.1 Input Clamp Circuit  
The ADC32RF8x analog inputs include an internal, differential clamp for overvoltage protection. The clamp  
triggers for any input signals at approximately 600 mV above the input common-mode voltage, effectively limiting  
the maximum input signal to approximately 2.4 VPP, as shown in Figure 85 and Figure 86.  
When the clamp circuit conducts, the maximum differential current flowing through the circuit (via input pins)  
must be limited to 20 mA.  
ADC32RF80  
+600 mV  
INxP  
To Analog Buffer  
+337.5 mV  
INP  
675 mVPP for INP and INM  
(1.35 VPP Differentially)  
RDC / 2  
Input Vcm  
INM  
Clamp  
Circuit  
IDIFF  
œ337.5 mV  
œ600 mV  
VCM  
RDC / 2  
To Analog Buffer  
INxM  
Copyright © 2016, Texas Instruments Incorporated  
Figure 85. Clamp Circuit in the ADC32RF8x  
Figure 86. Clamp Response Timing Diagram  
30  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
 
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
Feature Description (continued)  
8.3.2 Clock Input  
The ADC32RF8x sampling clock input includes internal 100-Ω differential termination along with on-chip biasing.  
The clock input is recommended to be ac-coupled externally. The input bandwidth of the clock input is  
approximately 3 GHz; the clock input impedance is shown with a 100-Ω reference impedance in the smith chart  
of Figure 87.  
Figure 87. SDD11 of the Clock Input  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: ADC32RF80 ADC32RF83  
 
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
Feature Description (continued)  
The analog-to-digital converter (ADC) aperture jitter is a function of the clock amplitude applied to the pins. The  
equivalent aperture jitter for input frequencies at a 1-GHz and a 2-GHz input is shown in Figure 88. Depending  
on the clock frequency, a matching circuit can be designed in order to maximize the clock amplitude.  
350  
fIN = 1 GHz  
fIN = 2 GHz  
300  
250  
200  
150  
100  
50  
0.2  
1
2
Clock Amplitude (vPP  
)
D061  
Figure 88. Equivalent Aperture Jitter vs Input Clock Amplitude  
8.3.3 SYSREF Input  
The SYSREF signal is a periodic signal that is sampled by the ADC32RF8x device clock and is used to align the  
boundary of the local multiframe clock inside the data converter. SYSREF is also used to reset critical blocks  
[such as the clock divider for the interleaved ADCs, numerically-controlled oscillators (NCOs), decimation filters  
and so forth].  
The SYSREF input requires external biasing. Furthermore, SYSREF must be established before the SPI  
registers are programmed. A programmable delay on the SYSREF input, as shown in Figure 89, is available to  
help with skew adjustment when the sampling clock and SYSREF are not provided from the same source.  
CLKINP  
50  
ë/a  
50 ꢀ  
CLKINM  
Delay  
SYSREFP  
SYSREF  
Capture  
100 ꢀ  
SYSREFM  
Figure 89. SYSREF Internal Circuit Diagram  
32  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
 
 
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
Feature Description (continued)  
8.3.3.1 Using SYSREF  
The ADC32RF8x uses SYSREF information to reset the clock divider, the NCO phase, and the LMFC counter of  
the JESD interface. The device provides flexibility to provide SYSREF information either from dedicated pins or  
through SPI register bits. SYSREF is asserted by a low-to-high transition on the SYSREF pins or a 0-to-1 change  
in the ASSERT SYSREF REG bit when using SPI registers, as shown in Figure 90.  
Input Clock  
Divider  
(Divide-by-4)  
NCO,  
JESD Interface  
(LMFC Counter)  
CLKIN  
(CLKP-CLKM)  
DLL  
PDN SYSREF  
(In Master Page)  
MASK CLKDIV SYSREF  
(In JESD Digital Page)  
0
1
SYSREF  
(SYSREFP-SYSREFM)  
ASSERT SYSREF REG  
(In Master Page)  
SEL SYSREF REG  
(In Master Page)  
MASK NCO SYSREF  
(In JESD Digital Page)  
Figure 90. Using SYSREF to Reset the Clock Divider, the NCO, and the LMFC Counter  
The ADC32RF8x samples the SYSREF signal on the input clock rising edge. Required setup and hold time are  
listed in the Timing Requirements table. The input clock divider gets reset each time that SYSREF is asserted,  
whereas the NCO phase and the LMFC counter of the JESD interface are reset on each SYSREF assertion after  
disregarding the first two assertions, as shown in Table 1.  
Table 1. Asserting SYSREF  
ACTION  
SYSREF ASSERTION INDEX  
INPUT CLOCK DIVIDER  
Gets reset  
NCO PHASE  
Does not get reset  
Does not get reset  
Gets reset  
LMFC COUNTER  
Does not get reset  
Does not get reset  
Gets reset  
1
2
Gets reset  
3
Gets reset  
4 and onwards  
Gets reset  
Gets reset  
Gets reset  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: ADC32RF80 ADC32RF83  
 
 
 
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
The SESREF use-cases can be classified broadly into two categories:  
1. SYSREF is applied as aperiodic multi-shot pulses.  
Figure 91 shows a case when only a counted number of pulses are applied as SYSREF to the ADC.  
CLKIN  
SYSREF  
tDLL  
(Must be Kept > 40 ms)  
1st SYSREF pulse.  
Only the input clock  
divider is reset.  
2nd SYSREF pulse. If  
the MASK CLKDIV bit is  
set, the clock divider  
ignores this pulse and  
any subsequent  
3rd SYSREF pulse.  
The NCO phase and  
LMFC counter are reset.  
4th SYSREF pulse (and  
subsequent pulses).  
Ignored by the input clock  
divider, NCO, and the JESD  
interface.  
SYSREF pulses.  
1 (The input clock divider ignores the SYSREF pulses.)  
MASK CLKDIV SYSREF Register Bit  
0
1 (The NCO and LMFC counter of the JESD interface  
ignore the SYSREF pulses.)  
MASK NCO SYSREF Register Bit(1)  
0
Alternatively, the SYSREF buffer can be powered down with the PDN SYSREF bit.  
Figure 91. SYSREF Used as a Periodic, Finite Number of Pulses  
After the first SYSREF pulse is applied, allow the DLL in the clock path to settle by waiting for the tDLL time (>  
40 µs) before applying the second pulse. During this time, mask the SYSREF going to the input clock divider  
by setting the MASK CLKDIV SYSREF bit so that the divider output phase remains stable. The NCO phase  
and LMFC counter are reset on the third SYSREF pulse. After the third SYSREF pulse, the SYSREF going  
to the NCO and JESD block can be disabled by setting the MASK NCO SYSREF bit to avoid any unwanted  
resets.  
34  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
 
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
2. SYSREF is applied as a periodic pulse.  
Figure 92 shows how SYSREF can be applied as a continuous periodic waveform.  
Mask SYSREF to the NCO after  
resetting the NCO phase.  
The NCO phase is reset here for  
the last time.  
Then, the NCO mask is set high to  
ignore further SYSREF pulses.  
CLKIN  
SYSREF(1)  
Time > tDLL + 2 x tSYSREF  
1st SYSREF pulse.  
The input clock divider  
is reset.  
1 (The NCO and LMFC counter of the JESD  
interface ignore the SYSREF pulses.)  
MASK NCO SYSREF Register Bit(2)  
0
tSYSREF is a period of the SYSREF waveform.  
Alternatively, the SYSREF buffer can be powered down using the PDN SYSREF bit.  
Figure 92. SYSREF Used as a Periodic Waveform  
After applying the SYSREF signal, DLL must be allowed to lock, and the NCO phase and LMFC counter  
must be allowed to reset by waiting for at least the tDLL (40 µs) + 2 × tSYSREF time. Then, the SYSREF going  
to the NCO and JESD can be masked by setting the MASK NCO SYSREF register bit.  
8.3.3.2 Frequency of the SYSREF Signal  
When SYSREF is a periodic signal, its frequency is required to be a sub-harmonic of the internal local multi-  
frame clock (LMFC) frequency, as described in Equation 1. The LMFC frequency is determined by the selected  
decimation, frames per multi-frame setting (K), samples per frame (S), and device input clock frequency.  
SYSREF = LMFC / N  
where  
N is an integer value (1, 2, 3, and so forth)  
(1)  
In order for the interleaving correction engine to synchronize properly, the SYSREF frequency must also be a  
multiple of fS / 64. Table 2 provides a summary of the valid LMFC clock settings.  
Table 2. . SYSREF and LMFC Clock Frequency  
OPERATING MODE  
LMFS SETTING  
LMFC CLOCK FREQUENCY  
fS(1) / (D × S(2) × K(3)  
SYSREF FRQUENCY  
fS / (N × LCM(4) (64, D(5) × S × K))  
Decimation  
Various  
)
(1) fS = sampling (device) clock frequency.  
(2) S = samples per frame.  
(3) K = number of frames per multi-frame.  
(4) LCM = least-common multiple.  
(5) D = decimation ratio.  
The SYSREF signal is recommended to be a low-frequency signal less than 5 MHz in order to reduce coupling to  
the signal path both on the printed circuit board (PCB) as well as internal to the device.  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Links: ADC32RF80 ADC32RF83  
 
 
 
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
Example: fS = 2949.12 MSPS, Divide-by-4 (LMFS = 8411), K = 16  
SYSREF = 2949.12 MSPS / LCM (4 ,64, 16) = 46.08 MHz / N  
Operate SYSREF at 2.88 MHz (effectively divide-by-1024, N = 16)  
For proper device operation, disable the SYSREF signal after the JESD synchronization is established.  
8.3.4 DDC Block  
The ADC32RF8x provides a sophisticated on-chip, digital down converter (DDC) block that can be controlled  
through SPI register settings and the general-purpose input/output (GPIO) pins. The DDC block supports two  
basic operating modes: receiver (RX) mode with single- or dual-band DDC and wide-bandwidth observation  
receiver mode.  
Note that the ADC32RF80 and ADC32RF83 are identical devices except the fact that the ADC32RF83 offers  
only single-band DDC option whereas the ADC32RF80 offers both single-band and dual-band DDC options, as  
shown in Table 3.  
Table 3. DDC Option Availability  
DDC OPTION  
Wide-band DDC  
Single-band DDC  
Dual-band DDC  
AVAILABILITY IN DEVICE  
ADC32RF80, ADC32RF83  
ADC32RF80, ADC32RF83  
ADC32RF80 only  
Each ADC channel is followed by two DDC chains consisting of the digital filter along with a complex digital mixer  
with a 16-bit numerically-controlled oscillator (NCO), as shown in Figure 93. The NCOs allow accurate frequency  
tuning within the Nyquist zone prior to the digital filtering. One DDC chain is intended for supporting a dual-band  
DDC configuration in receiver mode and the second DDC chain supports the wide-bandwidth output option for  
the observation configuration. At any given time, either the single-band DDC, the dual-band DDC, or the  
wideband DDC can be enabled. Furthermore, three different NCO frequencies can be selected on that path and  
are quickly switched using the SPI or the GPIO pins to enable wide-bandwidth observation in a multi-band  
application.  
fOUT / 4  
NCO 1,  
16 Bits  
NCO 2,  
16 Bits  
NCO 3,  
16 Bits  
Wideband Real Output  
Wideband IQ Output  
IQ data  
Real[ ]  
GPIO  
2,3  
2
2
LPF  
LPF  
LPF  
LPF  
3 GSPS  
IQ data, 3 GSPS  
RX1 IQ Output  
ADC  
N/2  
JESD204B  
RX1 Real Output  
Real[ ]  
IQ data  
fOUT / 4  
IQ 3 GSPS  
RX2 IQ Output  
2
LPF  
LPF  
N/2  
RX2 Real Output  
Real[ ]  
NCO 4,  
16 Bits  
IQ data  
SYSREF  
fOUT / 4  
NOTE: Red traces show SYSREF going to the NCO blocks.  
Figure 93. DDC Chains Overview (One ADC Channel Shown)  
36  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
 
 
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
Additionally, the decimation filter block provides the option to convert the complex output back to real format at  
twice the decimated, complex output rate. The filter response with a real output is identical to a complex output.  
The band is centered in the middle of the Nyquist zone (mixed with fOUT / 4) based on a final output data rate of  
fOUT  
.
8.3.4.1 Operating Mode: Receiver  
In receiver mode, the DDC block can be configured to single- or dual-band operation, as shown in Figure 94.  
Both DDC chains use the same decimation filter setting and the available options are discussed in the  
Decimation Filters section. The decimation filter setting also directly affects the interface rate and number of  
lanes of the JESD204B interface.  
fOUT / 4  
NCO 1,  
16 Bits  
NCO 2,  
16 Bits  
NCO 3,  
16 Bits  
Wideband Real Output  
Wideband IQ Output  
IQ data  
Real[ ]  
GPIO  
2,3  
2
2
LPF  
LPF  
LPF  
LPF  
3 GSPS  
IQ data, 3 GSPS  
RX1 IQ Output  
ADC  
N/2  
JESD204B  
RX1 Real Output  
Real[ ]  
IQ data  
fOUT / 4  
IQ 3 GSPS  
RX2 IQ Output  
2
LPF  
LPF  
N/2  
RX2 Real Output  
Real[ ]  
NCO 4,  
16 Bits  
IQ data  
SYSREF  
fOUT / 4  
NOTE: Red traces show SYSREF going to the NCO blocks.  
Figure 94. Decimation Filter Option for Single- or Dual-Band Operation  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Links: ADC32RF80 ADC32RF83  
 
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
8.3.4.2 Operating Mode: Wide-Bandwidth Observation Receiver  
This mode is intended for using a DDC with a wide bandwidth output, but for multiple bands. This mode uses a  
single DDC chain where up to three NCOs can be used to perform wide-bandwidth observation in a multi-band  
environment, as shown in Figure 95. The three NCOs can be switched dynamically using either the GPIO pins or  
an SPI command. All three NCOs operate continuously to ensure phase continuity; however, when the NCO is  
switched, the output data are invalid until the decimation filters are completely flushed with data from the new  
band.  
fOUT / 4  
NCO 1,  
16 Bits  
NCO 2,  
16 Bits  
NCO 3,  
16 Bits  
Wideband Real Output  
Wideband IQ Output  
IQ data  
Real[ ]  
GPIO  
2,3  
2
2
LPF  
LPF  
LPF  
LPF  
3 GSPS  
IQ data, 3 GSPS  
RX1 IQ Output  
ADC  
N/2  
JESD204B  
RX1 Real Output  
Real[ ]  
IQ data  
fOUT / 4  
IQ 3 GSPS  
RX2 IQ Output  
2
LPF  
LPF  
N/2  
RX2 Real Output  
Real[ ]  
NCO 4,  
16 Bits  
IQ data  
SYSREF  
fOUT / 4  
NOTE: Red traces show SYSREF going to the NCO blocks.  
Figure 95. Decimation Filter Implementation for Single-Band and Wide-Bandwidth Mode  
38  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
 
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
8.3.4.3 Decimation Filters  
The stop-band rejection of the decimation filters is approximately 90 dB with a pass-band bandwidth of  
approximately 80%. Table 4 gives an overview of the pass-band bandwidth depending on decimation filter setting  
and ADC sampling rate.  
Table 4. Decimation Filter Summary and Maximum Available Output Bandwidth  
BANDWIDTH ADC SAMPLE RATE = N MSPS ADC SAMPLE RATE = 3 GSPS  
NO. OF DDCS  
NOMINAL  
PASSBAND  
GAIN  
OUTPUT  
COMPLEX  
OUTPUT  
DECIMATION  
SETTING  
AVAILABLE  
PER  
CHANNEL  
OUTPUT RATE  
(MSPS) PER  
BAND  
3 dB 1 dB  
BANDWIDTH OUTPUT RATE BANDWIDTH  
(MHz) PER  
BAND  
(%)  
(%)  
(MSPS) PER  
BAND  
(MHz) PER  
BAND  
Divide-by-4  
complex  
1
1
2
2
2
2
2
2
2
2
2
–0.4 dB  
–0.65 dB  
–0.27 dB  
–0.45 dB  
–0.58 dB  
–0.55 dB  
–0.42 dB  
–0.83 dB  
–0.91 dB  
–0.95 db  
–0.78 dB  
90.9  
90.6  
91.0  
90.7  
90.7  
90.7  
90.8  
91.2  
91.2  
91.1  
91.1  
86.8  
86.1  
86.8  
86.3  
N / 4 complex  
N / 6 complex  
N / 8 complex  
N / 9 complex  
0.4 × N / 2  
0.4 × N / 3  
0.4 × N / 4  
0.4 × N / 4.5  
0.4 × N / 5  
0.4 × N / 6  
0.4 × N / 8  
0.4 × N / 9  
0.4 × N / 10  
0.4 × N / 12  
0.4 × N / 16  
750  
500  
600  
400  
300  
266.6  
240  
200  
150  
133  
120  
100  
75  
Divide-by-6  
complex  
Divide-by-8  
complex  
375  
Divide-by-9  
complex  
333.3  
300  
Divide-by-10  
complex  
86.3 N / 10 complex  
86.4 N / 12 complex  
86.4 N / 16 complex  
87.0 N / 18 complex  
87.0 N / 20 complex  
86.9 N / 24 complex  
86.8 N / 32 complex  
Divide-by-12  
complex  
250  
Divide-by-16  
complex  
187.5  
166.6  
150  
Divide-by-18  
complex  
Divide-by-20  
complex  
Divide-by-24  
complex  
125  
Divide-by-32  
complex  
93.75  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Links: ADC32RF80 ADC32RF83  
 
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
A dual-band example with a divide-by-8 complex is shown in Figure 96.  
NCO 1,  
16 Bits  
Band 1  
Filter  
8
IQ  
750 MSPS  
IQ Output  
Band 1  
3 GSPS  
IQ 3 GSPS  
IQ 3 GSPS  
ADC  
IQ  
750 MSPS  
IQ Output  
Band 2  
8
fS/16  
Filter  
NCO 2,  
16 Bits  
Band 2  
Band 2  
fS/4  
Band 1  
fS/16  
fS/2  
NCO 2  
NCO 1  
Figure 96. Dual-Band Example  
The decimation filter responses normalized to the ADC sampling clock are illustrated in Figure 96 to Figure 119  
and can be interpreted as follows:  
Each figure contains the filter pass-band, transition bands, and alias bands, as shown in Figure 97. The x-axis in  
Figure 97 shows the offset frequency (after the NCO frequency shift) normalized to the ADC sampling clock  
frequency.  
For example, in the divide-by-4 complex, the output data rate is an fS / 4 complex with a Nyquist zone of fS / 8 or  
0.125 × fS. The transition band is centered around 0.125 × fS and the alias transition band is centered at 0.375 ×  
fS. The alias bands that alias on top of the wanted signal band are centered at 0.25 × fS and 0.5 × fS (and are  
colored in red).  
The decimation filters of the ADC32RF8x provide greater than 90-dB attenuation for the alias bands.  
.and Çhat Colds .ack ꢀn  
Cilter  
Çransition  
.and  
Çop of Çransition .and  
.ands Çhat !liases ꢀn  
Çop of {ignal .and  
Figure 97. Interpretation of the Decimation Filter Plots  
40  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
 
 
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
8.3.4.3.1 Divide-by-4  
Peak-to-peak pass-band ripple: approximately 0.22 dB  
0
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
-0.9  
-1  
Passband  
Attn Spec  
Transition Band  
Alias Band  
Pass Band  
Transition Band  
-20  
-40  
-60  
-80  
-100  
-120  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0
0.02  
0.04  
0.06  
0.08  
0.1  
0.12  
Frequency  
Frequency  
D023  
D024  
Figure 98. Divide-by-4 Filter Response  
Figure 99. Divide-by-4 Filter Response (Zoomed)  
8.3.4.3.2 Divide-by-6  
Peak-to-peak pass-band ripple: approximately 0.38 dB  
0
0
Pass Band  
Transition Band  
Alias Band  
Attn Spec  
Pass Band  
Transition Band  
-0.1  
-20  
-40  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
-0.9  
-1  
-60  
-80  
-100  
-120  
0
0.1  
0.2  
Frequency  
0.3  
0.4  
0.5  
0
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08  
Frequency  
D025  
D026  
Figure 100. Divide-by-6 Filter Response  
Figure 101. Divide-by-6 Filter Response (Zoomed)  
8.3.4.3.3 Divide-by-8  
Peak-to-peak pass-band ripple: approximately 0.25 dB  
0
0
Pass Band  
Attn Spec  
Transition Band  
Alias Band  
Pass Band  
Transition Band  
-0.1  
-20  
-40  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
-0.9  
-1  
-60  
-80  
-100  
-120  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0
0.01  
0.02  
0.03  
0.04  
0.05  
0.06  
Frequency  
Frequency  
D027  
D028  
Figure 102. Divide-by-8 Filter Response  
Figure 103. Divide-by-8 Filter Response (Zoomed)  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
8.3.4.3.4 Divide-by-9  
Peak-to-peak pass-band ripple: approximately 0.39 dB  
0
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
-0.9  
-1  
Pass Band  
Transition Band  
Alias Band  
Attn Spec  
Pass Band  
Transition Band  
-20  
-40  
-60  
-80  
-100  
-120  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0
0.01  
0.02  
0.03  
0.04  
0.05  
Frequency  
Frequency  
D029  
D030  
Figure 104. Divide-by-9 Filter Response  
Figure 105. Divide-by-9 Filter Response (Zoomed)  
8.3.4.3.5 Divide-by-10  
Peak-to-peak pass-band ripple: approximately 0.39 dB  
0
0
Pass Band  
Attn Spec  
Transition Band  
Alias Band  
Pass Band  
Transition Band  
-0.1  
-20  
-40  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
-0.9  
-1  
-60  
-80  
-100  
-120  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0
0.01  
0.02  
0.03  
0.04  
0.05  
Frequency  
Frequency  
D029  
D032  
Figure 106. Divide-by-10 Filter Response  
Figure 107. Divide-by-10 Filter Response (Zoomed)  
8.3.4.3.6 Divide-by-12  
Peak-to-peak pass-band ripple: approximately 0.36 dB  
0
0
Passband  
Attn Spec  
Transition Band  
Alias Band  
Pass Band  
Transition Band  
-0.1  
-20  
-40  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
-0.9  
-1  
-60  
-80  
-100  
-120  
0
0.1  
0.2  
Frequency  
0.3  
0.4  
0.5  
0
0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04  
Frequency  
D033  
D034  
Figure 108. Divide-by-12 Filter Response  
Figure 109. Divide-by-12 Filter Response (Zoomed)  
42  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
8.3.4.3.7 Divide-by-16  
Peak-to-peak pass-band ripple: approximately 0.29 dB  
0
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
-0.9  
-1  
Pass Band  
Attn Spec  
Transition Band  
Alias Band  
Pass Band  
Transition Band  
-20  
-40  
-60  
-80  
-100  
-120  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0
0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04  
Frequency  
Frequency  
D035  
D036  
Figure 110. Divide-by-16 Filter Response  
Figure 111. Divide-by-16 Filter Response (Zoomed)  
8.3.4.3.8 Divide-by-18  
Peak-to-peak pass-band ripple: approximately 0.33 dB  
0
0
Pass Band  
Attn Spec  
Transition Band  
Alias Band  
Pass Band  
Transition Band  
-0.1  
-20  
-40  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
-0.9  
-1  
-60  
-80  
-100  
-120  
0
0.1  
0.2  
Frequency  
0.3  
0.4  
0.5  
0
0.005  
0.01  
Frequency  
0.015  
0.02  
0.025  
D038  
D037  
Figure 112. Divide-by-18 Filter Response  
Figure 113. Divide-by-18 Filter Response (Zoomed)  
8.3.4.3.9 Divide-by-20  
Peak-to-peak pass-band ripple: approximately 0.32 dB  
0
0
Pass Band  
Attn Spec  
Transition Band  
Alias Band  
Pass Band  
Transition Band  
-0.2  
-20  
-40  
-0.4  
-0.6  
-0.8  
-1  
-60  
-80  
-100  
-120  
-1.2  
-1.4  
0
0.1  
0.2  
Frequency  
0.3  
0.4  
0.5  
0
0.005  
0.01  
Frequency  
0.015  
0.02  
0.025  
D040  
D039  
Figure 114. Divide-by-20 Filter Response  
Figure 115. Divide-by-20 Filter Response (Zoomed)  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
8.3.4.3.10 Divide-by-24  
Peak-to-peak pass-band ripple: approximately 0.30 dB  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
Pass Band  
Attn Spec  
Transition Band  
Alias Band  
Pass Band  
Transition Band  
-20  
-40  
-60  
-80  
-100  
-120  
-1.2  
-1.4  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0
0.005  
0.01  
0.015  
0.02  
0.025  
Frequency  
Frequency  
D041  
D042  
Figure 116. Divide-by-24 Filter Response  
Figure 117. Divide-by-24 Filter Response (Zoomed)  
8.3.4.3.11 Divide-by-32  
Peak-to-peak pass-band ripple: approximately 0.24 dB  
0
0
Pass Band  
Attn Spec  
Transition Band  
Alias Band  
Pass Band  
Transition Band  
-0.1  
-20  
-40  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
-0.9  
-1  
-60  
-80  
-100  
-120  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0
0.005  
0.01  
0.015  
0.02  
Frequency  
Frequency  
D043  
D044  
Figure 118. Divide-by-32 Filter Response  
Figure 119. Divide-by-32 Filter Response (Zoomed)  
44  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
8.3.4.3.12 Latency with Decimation Options  
Device latency in 12-bit bypass mode (with LMFS = 8224) is 424 clock cycles. When the DDC option is used,  
latency increases as a result of decimation filters, as described in Table 5.  
Table 5. Latency with different Decimation options  
DECIMATION OPTION  
Divide-by-4  
TOTAL LATENCY, DEVICE CLOCK CYCLES  
516  
746  
Divide-by-6  
Divide-by-8  
621  
Divide-by-9  
763.5  
811  
Divide-by-10  
Divide-by-12  
Divide-by-16  
Divide-by-18  
Divide-by-20  
Divide-by-24  
Divide-by-32  
897  
1045  
1164  
1256  
1443  
1773  
8.3.4.4 Digital Multiplexer (MUX)  
The ADC32RF8x supports a mode where the output data of the ADC channel A can be routed internally to the  
digital blocks of both channel A and channel B. The ADC channel B can be powered down as shown in  
Figure 120. In this manner, the ADC32RF8x can be configured as a single-channel ADC with up to four  
independent DDC chains or two wideband DDC chains. All decimation filters and JESD204B format  
configurations are identical to the two ADC channel operation.  
N
ADC A  
To JESD ChA  
N
NCO  
NCO  
N
N
ADC B  
To JESD ChB  
NCO  
NCO  
Figure 120. Digital Multiplexer Option  
8.3.4.5 Numerically-Controlled Oscillators (NCOs) and Mixers  
The ADC32RF8x is equipped with three independent, complex NCOs per ADC channel. The oscillator generates  
a complex exponential sequence, as shown in Equation 2.  
x[n] = e–jωn  
where  
frequency (ω) is specified as a signed number by the 16-bit register setting  
(2)  
45  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: ADC32RF80 ADC32RF83  
 
 
 
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
The complex exponential sequence is multiplied by the real input from the ADC to mix the desired carrier down  
to 0 Hz.  
Each ADC channel has two DDCs. The first DDC has three NCOs and the second DDC has one NCO. The first  
DDC can dynamically select one of the three NCOs based on the GPIO pin or SPI selection. In wide-bandwidth  
mode (lower decimation factors, for example, 4 and 6), there can only be one DDC for each ADC channel. The  
NCO frequencies can be programmed independently through the DDCx, NCO[4:1], and the MSB and LSB  
register settings.  
The NCO frequency setting is set by the 16-bit register value given by Equation 3:  
DDCxNCOy ì fS  
fNCO  
=
216  
where  
x = 0, 1  
y = 1 to 4  
(3)  
(4)  
For example:  
If fS = 2949.12 MSPS, then the NCO register setting = 38230 (decimal).  
Thus, fNCO is defined by Equation 4:  
2949.12 MSPS  
fNCO = 38230ì  
= 1720.35 MHz  
216  
Any register setting changes that occur after the JESD204B interface is operational results in a non-deterministic  
NCO phase. If a deterministic phase is required, the JESD204B interface must be reinitialized after changing the  
register setting.  
8.3.5 NCO Switching  
The first DDC (DDC0) on each ADC channel provides three different NCOs that can be used for phase-coherent  
frequency hopping. This feature is available in both single-band and dual-band mode, but only affects DDC0.  
The NCOs can be switched through an SPI control or by using the GPIO pins with the register configurations  
shown in Table 6 for channel A (50xxh) and channel B (58Xxh). The assignment of which GPIO pin to use for  
INSEL0 and INSEL1 is done based on Table 7, using registers 5438h and 5C38h. The NCO selection is done  
based on the logic selection on the GPIO pins; see Table 8 and Figure 121.  
Table 6. NCO Register Configurations  
REGISTER  
ADDRESS  
DESCRIPTION  
NCO CONTROL THROUGH GPIO PINS  
NCO SEL pin  
500Fh, 580Fh  
5438h, 5C38h  
Selects the NCO control through the SPI (default) or a GPIO pin.  
Selects which two GPIO pins are used to control the NCO.  
INSEL0, INSEL1  
NCO CONTROL THROUGH SPI CONTROL  
NCO SEL pin  
NCO SEL  
500Fh, 580Fh  
5010h, 5810h  
Selects the NCO control through the SPI (default) or a GPIO pin.  
Selects which NCO to use for DDC0.  
Table 7. GPIO Pin Assignment  
INSELx[1:0] (Where x = 0 or 1)  
GPIO PIN SELECTED  
GPIO4  
00  
01  
10  
11  
GPIO1  
GPIO3  
GPIO2  
46  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
 
 
 
 
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
Table 8. NCO Selection  
NCO SEL[1]  
NCO SEL[0]  
NCO SELECTED  
NCO1  
0
0
1
1
0
1
0
1
NCO2  
NCO3  
n/a  
NCO for DDC1 of  
channel x  
NCO1  
NCO2  
NCO3  
N/A  
0
1
2
3
GPIO4  
GPIO1  
DtLh3  
GPIO2  
0
1
2
3
NCO SEL[1:0]  
0
1
INSEL1[1:0]  
NCO SEL PIN  
GPIO4  
GPIO1  
GPIO3  
GPIO2  
0
1
2
3
INSEL0[1:0]  
Figure 121. NCO Switching from GPIO and SPI  
8.3.6 SerDes Transmitter Interface  
Each 12.3-Gbps serializer, deserializer (SerDes) LVDS transmitter output requires ac-coupling between the  
transmitter and receiver. Terminate the differential pair with 100-Ω resistance (that is, two 50-Ω resistors) as  
close to the receiving device as possible to avoid unwanted reflections and signal degradation, as shown in  
Figure 122.  
0.1 mF  
DA[3:0]P,  
DB[3:0]P  
Rt = ZO  
Transmission Line,  
VCM  
Receiver  
ZO  
Rt = ZO  
DA[3:0]M,  
DB[3:0]M  
0.1 mF  
Figure 122. External Serial JESD204B Interface Connection  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
Product Folder Links: ADC32RF80 ADC32RF83  
 
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
8.3.7 Eye Diagrams  
Figure 123 and Figure 124 show the serial output eye diagrams of the ADC32RF8x at 5.0 Gbps and 12 Gbps  
against the JESD204B mask.  
Figure 123. Data Eye at 5 Gbps  
Figure 124. Data Eye at 12 Gbps  
8.3.8 Alarm Outputs: Power Detectors for AGC Support  
The GPIO pins can be configured as alarm outputs for channels A and B. The ADC32RF8x supports three  
different power detectors (an absolute peak power detector, crossing detector, and RMS power detector) as well  
as fast overrange from the ADC. The power detectors operate off the full-rate ADC output prior to the decimation  
filters.  
8.3.8.1 Absolute Peak Power Detector  
In this detector mode, the peak is computed over eight samples of the ADC output. Next, the peak for a block of  
N samples (N × S`) is computed over a programmable block length and then compared against a threshold to  
either set or reset the peak detector output (Figure 125 and Figure 126). There are two sets of thresholds and  
each set has two thresholds for hysteresis. The programmable DWELL-time counter is used for clearing the  
block detector alarm output.  
BLKTHHH,  
BLKTHHL,  
BLKTHLH,  
BLKTHLL  
BLKPKDET  
N = [1..216  
]
>THHigh  
>THLow  
Hysteresis  
and DWELL  
BLKPKDETH  
BLKPKDETL  
S`  
fS / 8  
Block:  
Peak over N  
Samples (S`)  
fS / (8N)  
fS  
Output  
of ADC  
Peak over 8  
Samples  
>TLHigh  
>TLLow  
Hysteresis  
and DWELL  
DWELL  
Figure 125. Peak Power Detector Implementation  
48  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
 
 
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
DWELL Time  
THHH  
THHL  
BLKPKDET  
Figure 126. Peak Power Detector Timing Diagram  
Table 9 shows the register configurations required to set up the absolute peak power detector. The detector  
operates in the fS / 8 clock domain; one peak sample is calculated over eight actual samples.  
The automatic gain control (AGC) modes can be configured separately for channel A (54xxh) and channel B  
(5Cxxh), although some registers are common in 54xxh (such as the GPIO pin selection).  
Table 9. Registers Required for the Peak Power Detector  
REGISTER  
ADDRESS  
DESCRIPTION  
PKDET EN  
5400, 5C00h  
Enables peak detector  
5401h, 5402h,  
5403h, 5C01h,  
5C02h, 5C03h  
Sets the block length N of number of samples (S`). Number of actual ADC samples is 8X this  
value: N is 17 bits: 1 to 216  
BLKPKDET  
.
BLKTHHH,  
BLKTHHL,  
BLKTHLH,  
BLKTHLL  
5407h, 5408h,  
5409h, 540Ah,  
5C07h, 5C08h,  
5C09h, 5C0Ah  
Sets the different thresholds for the hysteresis function values from 0 to 256 (where 256 is  
equivalent to the peak amplitude).  
For example: if BLKTHHH is to –2 dBFS from peak, 10(–2 / 20) × 256 = 203, then set 5407h and  
5C07h = CBh.  
When the computed block peak crosses the upper thresholds BLKTHHH or BLKTHLH, the peak  
detector output flags are set. In order to be reset, the computed block peak must remain  
continuously lower than the lower threshold (BLKTHHL or BLKTHLL) for the period specified by  
the DWELL value. This threshold is 16 bits and is specified in terms of fS / 8 clock cycles.  
540Bh, 540Ch,  
5C0Bh, 5C0Ch  
DWELL  
OUTSEL  
GPIO[4:1]  
5432h, 5433h,  
5434h, 5435h  
Connects the BLKPKDETH, BLKPKDETL alarms to the GPIO pins; common register.  
IODIR  
5437h  
Selects the direction for the four GPIO pins; common register.  
After configuration, reset the AGC module to start operation.  
RESET AGC  
542Bh, 5C2Bh  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
49  
Product Folder Links: ADC32RF80 ADC32RF83  
 
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
8.3.8.2 Crossing Detector  
In this detector mode the peak is computed over eight samples of the ADC output. Next, the peak for a block of  
N samples (N × S`) is computed over a programmable block length and then the peak is compared against two  
sets of programmable thresholds (with hysteresis). The crossing detector counts how many fS / 8 clock cycles  
that the block detector outputs are set high over a programmable time period and compares the counter value  
against the programmable thresholds. The alarm outputs are updated at the end of the time period, routed to the  
GPIO pins, and held in that state through the next cycle, as shown in Figure 127 and Figure 128. Alternatively, a  
2-bit format can be used but (because the ADC32RF8x has four GPIO pins available) this feature uses all four  
pins for a single channel.  
BLKTHHH,  
FILT0LP  
SEL  
2-Bit Mode  
10: High  
00: Mid  
BLKTHHL,  
BLKTHLH,  
BLKTHLL  
1 or 2-Bit  
Mode  
BLKPKDET  
Time  
N = [1..216  
]
Constant  
01: Low  
>THHigh  
>THLow  
Hysteresis  
and DWELL  
BLKPKDETH  
2-Bit Mode  
S`  
fS/8  
>FIL0THH  
>FIL0THL  
IIR LPF  
IIR LPF  
IIR PK DET0  
IIR PK DET1  
fS/(8N)  
Block:  
Peak Over N  
Samples (S`)  
fS  
ADC  
Output  
Peak Over  
8 Samples  
Combine  
>TLHigh  
>TLLow  
Hysteresis  
and DWELL  
BLKPKDETHL  
>FIL1THH  
>FIL1THL  
BLKPKDETL  
1-Bit Mode  
DWELL  
With Hysteresis and Dwell  
1: High  
Time  
Constant  
1 or 2-Bit  
Mode  
0: Low  
Figure 127. Crossing Detector Implementation  
Crossing Detector Time Period  
THHH  
THHL  
BLKPKDET  
Crossing Detector Counter Threshold  
Crossing Detector Counter  
IIR PK DET  
Figure 128. Crossing Detector Timing Diagram  
50  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
 
 
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
Table 10 shows the register configurations required to set up the crossing detector. The detector operates in the  
fS / 8 clock domain. The AGC modes can be configured separately for channel A (54xxh) and channel B (5Cxxh),  
although some registers are common in 54xxh (such as the GPIO pin selection).  
Table 10. Registers Required for the Crossing Detector Operation  
REGISTER  
ADDRESS  
DESCRIPTION  
PKDET EN  
5400h, 5C00h  
Enables peak detector  
5401h, 5402h, 5403h,  
5C01h, 5C02h, 5C03h  
Sets the block length N of number of samples (S`).  
BLKPKDET  
Number of actual ADC samples is 8X this value: N is 17 bits: 1 to 216  
.
Sets the different thresholds for the hysteresis function values from 0 to 256  
(where 256 is equivalent to the peak amplitude).  
5407h, 5408h, 5409h,  
540Ah, 5C07h, 5C08h,  
5C09h, 5C0Ah  
BLKTHHH, BLKTHHL,  
BLKTHLH, BLKTHLL  
For example: if BLKTHHH is to –2 dBFS from peak, 10(–2 / 20) × 256 = 203, then  
set 5407h and 5C07h = CBh.  
Select block detector output or 2-bit output mode as the input to the interrupt  
identification register (IIR) filter.  
FILT0LPSEL  
TIMECONST  
540Dh, 5C0Dh  
Sets the crossing detector time period for N = 0 to 15 as 2N × fS / 8 clock cycles.  
The maximum time period is 32768 × fS / 8 clock cycles (approximately 87 µs at  
3 GSPS).  
540Eh, 540Fh,  
5C0Eh, 5C0Fh  
540Fh-5412h, 5C0Fh-  
5C12h, 5416h-5419h,  
5C16h-5C19h  
Comparison thresholds for the crossing detector counter. These thresholds are 16-  
bit thresholds in 2.14-signed notation. A value of 1 (4000h) corresponds to 100%  
crossings, a value of 0.125 (0800h) corresponds to 12.5% crossings.  
FIL0THH, FIL0THL,  
FIL1THH, FIL1THL  
541Dh, 541Eh, 5C1Dh,  
5C1Eh  
DWELLIIR  
DWELL counter for the IIR filter hysteresis.  
IIR0 2BIT EN,  
IIR1 2BIT EN  
5413h, 54114h,  
5C13h, 5C114h  
Enables 2-bit output format for the crossing detector.  
5432h, 5433h,  
5434h, 5435h  
OUTSEL GPIO[4:1]  
Connects the IIRPKDET0, IIRPKDET1 alarms to the GPIO pins; common register.  
IODIR  
5437h  
Selects the direction for the four GPIO pins; common register.  
After configuration, reset the AGC module to start operation.  
RESET AGC  
542Bh, 5C2Bh  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
51  
Product Folder Links: ADC32RF80 ADC32RF83  
 
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
8.3.8.3 RMS Power Detector  
In this detector mode the peak power is computed for a block of N samples over a programmable block length  
and then compared against two sets of programmable thresholds (with hysteresis).  
The RMS power detector circuit provides configuration options, as shown in Figure 129. The RMS power value  
(1 or 2 bit) can be output onto the GPIO pins. In 2-bit output mode, two different thresholds are used whereas the  
1-bit output provides one threshold together with hysteresis.  
M = [1..216  
]
2-M  
2-Bit Mode  
10: High  
00: Mid  
01: Low  
fS/8  
Randomly  
Pick 1 Out of  
8 Samples  
Accumulate  
Over 2^M  
Inputs  
>THHigh  
>THLow  
Hysteresis  
fS  
Output  
of ADC  
^2  
PWR DET  
1-Bit Mode  
With Hysteresis  
1: High  
0: Low  
1 or 2-Bit  
Mode  
Figure 129. RMS Power Detector Implementation  
Table 11 shows the register configurations required to set up the RMS power detector. The detector operates in  
the fS / 8 clock domain. The AGC modes can be configured separately for channel A (54xxh) and channel B  
(5Cxxh), although some registers are common in 54xxh (such as the GPIO pin selection).  
Table 11. Registers Required for Using the RMS Power Detector Feature  
REGISTER  
ADDRESS  
DESCRIPTION  
RMSDET EN  
5420h, 5C20h  
Enables RMS detector  
Programs the block length to be used for RMS power computation. The block length  
is defined in terms of fS / 8 clocks.  
PWRDETACCU  
5421h, 5C21h  
The block length can be programmed as 2M with M = 0 to 16.  
The computed average power is compared against these high and low thresholds.  
One LSB of the thresholds represents 1 / 216. For example: is PWRDETH is set to  
–14 dBFS from peak, [10(–14 / 20)]2 × 216 = 2609, then set 5422h, 5423h, 5C22h,  
5C23h = 0A31h.  
5422h, 5423h, 5424h,  
5425h, 5C22h, 5C23h,  
5C24h, 5C25h  
PWRDETH,  
PWRDETL  
RMS2BIT EN  
5427h, 5C27h  
Enables 2-bit output format for the RMS detector output.  
5432h, 5433h,  
5434h, 5435h  
OUTSEL GPIO[4:1]  
Connects the PWRDET alarms to the GPIO pins; common register.  
IODIR  
5437h  
Selects the direction for the four GPIO pins; common register.  
After configuration, reset the AGC module to start operation.  
RESET AGC  
542Bh, 5C2Bh  
52  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
 
 
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
8.3.8.4 GPIO AGC MUX  
The GPIO pins can be used to control the NCO in wideband DDC mode or as alarm outputs for channel A and B.  
The GPIO pins can be configured through the SPI control to output the alarm from the peak power (1 bit),  
crossing detector (1 or 2 bit), faster overrange, or the RMS power output, as shown in Figure 130.  
The programmable output MUX allows connecting any signal (including the NCO control) to any of the four GPIO  
pins. These pins can be configured as outputs (AGC alarm) or inputs (NCO control) through SPI programming.  
IIR PK DET0 [2]  
IIR PK DET1 [2]  
BLKPKDETH [1]  
To GPIO  
BLKPKDETL [1]  
AGC Pins  
FOVR  
PWR DET [2]  
OUTSEL GPIO[4:1]  
Figure 130. GPIO Output MUX Implementation  
8.3.9 Power-Down Mode  
The ADC32RF8x provides a lot of configurability for the power-down mode. Power-down can be enabled using  
the PDN pin or the SPI register writes.  
8.3.10 ADC Test Pattern  
The ADC32RF8x provides several different options to output test patterns instead of the actual output data of the  
ADC in order to simplify the serial interface and system debug of the JESD204B digital interface link. The output  
data path is shown in Figure 131.  
Digital Block  
ADC Section  
Transport Layer  
Link Layer  
PHY Layer  
Interleaving  
Engine  
Data Mapping  
Frame  
ADC  
DDC  
Decimation  
12-bit  
Construction  
Filter Block  
RAMP  
Scrambler  
1 + x14 + x15  
8b, 10b  
Encoding  
Serializer  
JESD204B Long  
Transport Layer  
Test Pattern  
Test  
Patterns  
JESD204B  
Link Layer  
Test Pattern  
Figure 131. Test Pattern Generator Implementation  
8.3.10.1 Digital Block  
The ADC test pattern replaces the actual output data of the ADC. The test patterns listed in Table 12 are  
available when the DDC is enabled and located in register 37h of the decimation filter page. When programmed,  
the test patterns are output for each converter (M) stream. The number of converter streams per channel  
increases by 2 when complex (I, Q) output or dual-band DDC is selected. The test patterns can be synchronized  
for both ADC channels using the SYSREF signal.  
Additionally, a 12-bit test pattern is also available.  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
53  
Product Folder Links: ADC32RF80 ADC32RF83  
 
 
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
NOTE  
The number of converters increases in dual-band DDC mode and with a complex output.  
Table 12. Test Pattern Options (Register 37h and 38h in Decimation Filter Page)  
BIT  
NAME  
DEFAULT  
DESCRIPTION  
Test pattern outputs onI and Q stream of channel A and B when DDC  
option is chosen.  
0000 = Normal operation using ADC output data  
0001 = Outputs all 0s  
0010 = Outputs all 1s  
TEST PATTERN DDC1 I-  
DATA,  
TEST PATTERN DDC1 Q-  
DATA,  
TEST PATTERN DDC2 I-  
DATA,  
0011 = Outputs toggle pattern: output data are an alternating sequence of  
10101010101010 and 01010101010101  
0100 = Output digital ramp: output data increment by one LSB every  
clock cycle from code 0 to 65535  
Address 37h,  
38h (bits 7-0)  
0000  
TEST PATTERN DDC2 Q-  
DATA,  
0110 = Single pattern: output data are a custom pattern 1 (75h and 76h)  
0111 Double pattern: output data alternate between custom pattern 1 and  
custom pattern 2  
1000 = Deskew pattern: output data are AAAAh  
1001 = SYNC pattern: output data are FFFFh  
8.3.10.2 Transport Layer  
The transport layer maps the ADC output data into 8-bit octets and constructs the JESD204B frames using the  
LMFS parameters. Tail bits or 0's are added when needed. Alternatively, the JESD204B long transport layer test  
pattern can be substituted instead of the ADC data with the JESD frame, as shown in Table 13.  
Table 13. Transport Layer Test Mode EN (Register 01h)  
BIT  
NAME  
DEFAULT  
DESCRIPTION  
Generates long transport layer test pattern mode according  
to section 5.1.6.3 of the JESD204B specification.  
0 = Test mode disabled  
4
TESTMODE EN  
0
1 = Test mode disabled  
8.3.10.3 Link Layer  
The link layer contains the scrambler and the 8b, 10b encoding of any data passed on from the transport layer.  
Additionally, the link layer also handles the initial lane alignment sequence that can be manually restarted.  
The link layer test patterns are intended for testing the quality of the link (jitter testing and so forth). The test  
patterns do not pass through the 8b, 10b encoder and contain the options listed in Table 14.  
Table 14. Link Layer Test Mode (Register 03h)  
BIT  
NAME  
DEFAULT  
DESCRIPTION  
Generates a pattern according to section 5.3.3.8.2 of the  
JESD204B document.  
000 = Normal ADC data  
001 = D21.5 (high-frequency jitter pattern)  
010 = K28.5 (mixed-frequency jitter pattern)  
011 = Repeat the initial lane alignment (generates a K28.5  
character and repeats lane alignment sequences  
continuously)  
7-5  
LINK LAYER TESTMODE  
000  
100 = 12-octet random pattern (RPAT) jitter pattern  
Furthermore, a 215 pseudo-random binary sequence (PRBS) can be enabled by setting up a custom test pattern  
(AAAAh) in the ADC section and running AAAAh through the 8b, 10b encoder with scrambling enabled.  
54  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
 
 
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
8.4 Device Functional Modes  
8.4.1 Device Configuration  
The ADC32RF8x can be configured using a serial programming interface, as described in the Serial Interface  
section. In addition, the device has one dedicated parallel pin (PDN) for controlling the power-down modes.  
8.4.2 JESD204B Interface  
The ADC32RF8x supports device subclass 1 with a maximum output data rate of 12.5 Gbps for each serial  
transmitter.  
An external SYSREF signal is used to align all internal clock phases and the local multiframe clock to a specific  
sampling clock edge. This alignment allows synchronization of multiple devices in a system and minimizes timing  
and alignment uncertainty. The SYNCB input is used to control the JESD204B SerDes blocks, as shown in  
Figure 132.  
Depending on the ADC sampling rate, the JESD204B output interface can be operated with one, two, or four  
lanes per ADC channel. The JESD204B setup and configuration of the frame assembly parameters is controlled  
through the SPI interface.  
SysRef  
SYNCB  
JESD  
204B  
JESD204B  
D[3:0]  
INA  
INB  
JESD  
204B  
JESD204B  
D[3:0]  
Sample Clock  
Copyright © 2016, Texas Instruments Incorporated  
Figure 132. JESD Signal Overview  
The JESD204B transmitter block consists of the transport layer, the data scrambler, and the link layer, as shown  
in Figure 133. The transport layer maps the ADC output data into the selected JESD204B frame data format and  
manages if the ADC output data or test patterns are transmitted. The link layer performs the 8b, 10b data  
encoding as well as the synchronization and initial lane alignment using the SYNC input signal. Optionally, data  
from the transport layer can be scrambled.  
JESD204B Block  
Transport Layer  
Link Layer  
Frame Data  
Mapping  
Scrambler  
1+x14+x15  
8b, 10b  
Encoding  
D[3:0]  
Comma Characters  
Initial Lane  
Alignment  
Test Patterns  
SYNCB  
Copyright © 2016, Texas Instruments Incorporated  
Figure 133. JESD Digital Block Implementation  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
55  
Product Folder Links: ADC32RF80 ADC32RF83  
 
 
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
Device Functional Modes (continued)  
8.4.2.1 JESD204B Initial Lane Alignment (ILA)  
The receiving device starts the initial lane alignment process by deasserting the SYNCB signal. The SYNCB  
signal can be issued using the SYNCB input pins or by setting the proper SPI bits. When a logic low is detected  
on the SYNCB input, the ADC32RF8x starts transmitting comma (K28.5) characters to establish the code group  
synchronization, as shown in Figure 134.  
When synchronization completes, the receiving device reasserts the SYNCB signal and the ADC32RF8x starts  
the initial lane alignment sequence with the next local multiframe clock boundary. The ADC32RF8x transmits four  
multiframes, each containing K frames (K is SPI programmable). Each of the multiframes contains the frame start  
and end symbols. The second multiframe also contains the JESD204 link configuration data.  
SYSREF  
LMFC Clock  
LMFC Boundary  
Multi  
Frame  
SYNCb  
Transmit Data  
xxx  
K28.5  
K28.5  
ILA  
ILA  
DATA  
DATA  
Code Group  
Synchronization  
Initial Lane Alignment  
Data Transmission  
Figure 134. JESD Internal Timing Information  
8.4.2.2 JESD204B Frame Assembly  
The JESD204B standard defines the following parameters:  
F is the number of octets per frame clock period  
L is the number of lanes per link  
M is the number of converters for the device  
S is the number of samples per frame  
56  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
 
 
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
Device Functional Modes (continued)  
8.4.2.3 JESD204B Frame Assembly with Decimation (Single-Band DDC): Complex Output  
Table 15 lists the available JESD204B interface formats and valid ranges for the ADC32RF8x with decimation  
(single-band DDC) when using a complex output format. The ranges are limited by the SerDes line rate and the  
maximum ADC sample frequency. The sample alignment on the different lanes is shown in Table 16.  
Table 15. JESD Mode Options: Single-Band Complex Output  
DECIMATION  
SETTING  
(Complex)  
RATIO  
[fSerDes / fCLK  
(Gbps / GSPS)]  
NUMBER OF  
ACTIVE DDCS  
PLL  
MODE  
JESD  
MODE0  
JESD  
MODE1  
JESD  
MODE2  
L
M
F
S
8
8
4
4
8
8
4
4
4
2
4
2
4
2
4
2
4
2
4
2
4
2
2
2
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
1
2
2
4
1
2
2
4
2
4
2
4
2
4
2
4
2
4
2
4
2
4
4
4
1
2
1
2
1
2
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
20X  
20X  
40X  
40X  
20X  
20X  
40X  
40X  
20X  
40X  
20X  
40X  
20X  
40X  
20X  
40X  
20X  
40X  
20X  
40X  
20X  
40X  
20X  
40X  
1
1
0
2
1
1
0
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2.5  
5
Divide-by-4  
Divide-by-6  
1 per channel  
1 per channel  
1.67  
3.33  
2.5  
5
Divide-by-8  
Divide-by-9  
Divide-by-10  
Divide-by-12  
Divide-by-16  
Divide-by-18  
Divide-by-20  
1 per channel  
1 per channel  
1 per channel  
1 per channel  
1 per channel  
1 per channel  
1 per channel  
2.22  
4.44  
2
4
1.67  
3.33  
1.25  
2.5  
1.11  
2.22  
1
2
Divide-by-24  
Divide-by-32  
1 per channel  
1 per channel  
1.67  
1.25  
Table 16. JESD Sample Lane Alignments: Single-Band Complex Output  
OUTPUT  
LANE  
LMFS  
= 8411  
LMFS = 4421  
20X  
LMFS = 4421  
40X  
LMFS = 8422  
LMFS = 4442  
LMFS = 2441  
AI0  
[15:8]  
AI0  
[15:8]  
AI0  
[7:0]  
AI0  
[15:8]  
AI0  
[7:0]  
DA0  
AI0  
[7:0]  
AI1  
[15:8]  
AI1  
[7:0]  
AQ0  
[15:8]  
AQ0  
[7:0]  
AI0  
[15:8]  
AI0  
[7:0]  
AI0  
[15:8]  
AI0  
[7:0]  
AI1  
[15:8]  
AI1  
[7:0]  
AI0  
[15:8]  
AI0  
[7:0]  
AQ0  
[15:8]  
AQ0  
[7:0]  
DA1  
DA2  
DA3  
DB0  
DB1  
DB2  
DB3  
AQ0  
[15:8]  
AQ0  
[15:8]  
AQ0  
[7:0]  
AQ0  
[15:8]  
AQ0  
[7:0]  
AQ0  
[15:8]  
AQ0  
[7:0]  
AQ1  
[15:8]  
AQ1  
[7:0]  
AQ0  
[7:0]  
AQ1  
[15:8]  
AQ1  
[7:0]  
BI0  
[15:8]  
BI0  
[15:8]  
BI0  
[7:0]  
BI0  
[15:8]  
BI0  
[7:0]  
BI0  
[7:0]  
BI1  
[15:8]  
BI1  
[7:0]  
BQ0  
[15:8]  
BQ0  
[7:0]  
BI0  
[15:8]  
BI0  
[7:0]  
BI0  
[15:8]  
BI0  
[7:0]  
BI1  
[15:8]  
BI1  
[7:0]  
BI0  
[15:8]  
BI0  
[7:0]  
BQ0  
[15:8]  
BQ0  
[7:0]  
BQ0  
[15:8]  
BQ0  
[15:8  
BQ0  
[7:0]  
BQ0  
[15:8]  
BQ0  
[7:0]  
BQ0  
[15:8]  
BQ0  
[7:0]  
BQ1  
[15:8]  
BQ1  
[7:0]  
BQ0  
[7:0]  
BQ1  
[15:8]  
BQ1  
[7:0]  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
57  
Product Folder Links: ADC32RF80 ADC32RF83  
 
 
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
8.4.2.4 JESD204B Frame Assembly with Decimation (Single-Band DDC): Real Output  
Table 17 lists the available JESD204B formats and valid ranges for the ADC32RF8x with decimation (single-  
band DDC) when using real output format. The ranges are limited by the SerDes line rate and the maximum  
ADC sample frequency. The sample alignment on the different lanes is shown in Table 18.  
Table 17. JESD Mode Options: Single-Band Real Output (Wide Bandwidth)  
DECIMATION  
SETTING  
(Complex)  
RATIO  
[fSerDes / fCLK  
(Gbps / GSPS)]  
NUMBER OF  
ACTIVE DDCS  
PLL  
MODE  
JESD  
MODE0  
JESD  
MODE1  
JESD  
MODE2  
L
M
F
S
8
4
4
8
4
4
2
2
2
2
2
2
2
4
1
2
4
1
4
4
1
4
4
1
20X  
40X  
40X  
20X  
40X  
40X  
1
2
0
1
2
0
0
0
0
0
0
0
0
0
1
0
0
1
2.5  
Divide-by-4  
(Divide-by-2 real)  
1 per channel  
1 per channel  
5
1.67  
3.33  
Divide-by-6  
(Divide-by-3 real)  
Table 18. JESD Sample Lane Alignment: Single-Band Real Output (Wide Bandwidth)  
OUTPUT  
LANE  
LMFS = 8224  
LMFS = 4244  
LMFS = 4211  
DA0  
DA1  
DA2  
DA3  
DB0  
DB1  
DB2  
DB3  
A0[15:8]  
A0[7:0]  
A1[7:0]  
A2[7:0]  
A3[7:0]  
B0[7:0]  
B1[7:0]  
B2[7:0]  
B3[7:0]  
A1[15:8]  
A2[15:8]  
A3[15:8]  
B0[15:8]  
B1[15:8]  
B2[15:8]  
B3[15:8]  
A0[15:8]  
A2[15:8]  
A0[7:0]  
A1[15:8]  
A3[15:8]  
A1[7:0]  
A3[7:0]  
A0[15:8]  
A0[7:0]  
A2[7:0]  
B0[15:8]  
B0[15:8]  
B0[7:0]  
B2[7:0]  
B1[15:8]  
B3[15:8]  
B1[7:0]  
B3[7:0]  
B0[15:8]  
B0[7:0]  
58  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
 
 
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
8.4.2.5 JESD204B Frame Assembly with Decimation (Single-Band DDC): Real Output  
Table 19 lists the available JESD204B formats and valid ranges for the ADC32RF8x with decimation (dual-band  
DDC) when using a complex output format. The sample alignment on the different lanes is shown in Table 20.  
Table 19. JESD Mode Options: Single-Band Real Output  
DECIMATION  
SETTING  
(Complex)  
RATIO  
[fSerDes / fCLK  
(Gbps / GSPS)]  
NUMBER OF  
ACTIVE DDCS  
PLL  
MODE  
JESD  
MODE0  
JESD  
MODE1  
JESD  
MODE2  
L
M
F
S
4
4
2
2
4
4
2
2
4
4
2
2
4
4
2
2
4
4
2
2
4
4
2
2
4
4
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
2
2
4
1
2
2
4
1
2
2
4
1
2
2
4
1
2
2
4
1
2
2
4
1
2
2
4
2
4
2
4
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
20X  
20X  
40X  
40X  
20X  
20X  
40X  
40X  
20X  
20X  
40X  
40X  
20X  
20X  
40X  
40X  
20X  
20X  
40X  
40X  
20X  
20X  
40X  
40X  
20X  
20X  
40X  
40X  
40X  
40X  
40X  
40X  
1
1
0
2
1
1
0
2
1
1
0
2
1
1
0
2
1
1
0
2
1
1
0
2
1
1
0
2
0
2
0
2
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
1
0
1
0
2.5  
5
Divide-by-8  
(Divide-by-4 real)  
1 per channel  
1 per channel  
1 per channel  
1 per channel  
1 per channel  
1 per channel  
1 per channel  
2.22  
4.44  
2
Divide-by-9  
(Divide-by-4.5 real)  
Divide-by-10  
(Divide-by-5 real)  
4
1.67  
3.33  
1.25  
2.5  
1.11  
2.22  
1
Divide-by-12  
(Divide-by-6 real)  
Divide-by-16  
(Divide-by-8 real)  
Divide-by-18  
(Divide-by-9 real)  
Divide-by-20  
(Divide-by-10 real)  
2
Divide-by-24  
(Divide-by-12 real)  
1 per channel  
1 per channel  
1.67  
1.25  
Divide-by-32  
(Divide-by-16 real)  
Table 20. JESD Sample Lane Assignment: Single-Band Real Output  
OUTPUT  
LANE  
LMFS =  
4211  
LMFS = 4222  
LMFS = 2221  
LMFS = 2242  
DA0  
DA1  
DB0  
DB1  
A0[15:8]  
A0[7:0]  
B0[15:8]  
B0[7:0]  
A0[15:8]  
A0[7:0]  
A1[7:0]  
B0[7:0]  
B1[7:0]  
A1[15:8]  
B0[15:8]  
B1[15:8]  
A0 [15:8]  
A0[7:0]  
B0[7:0]  
A0[15:8]  
B0[15:8]  
A0[7:0]  
A1[15:8]  
B1[15:8]  
A1[7:0]  
B1[7:0]  
B0[15:8]  
B0[7:0]  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
59  
Product Folder Links: ADC32RF80 ADC32RF83  
 
 
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
8.4.2.6 JESD204B Frame Assembly with Decimation (Dual-Band DDC): Complex Output  
Table 21 lists the available JESD204B formats and valid ranges for the ADC32RF8x with decimation (dual-band  
DDC) when using a complex output format. The ranges are limited by the SerDes line rate and the maximum  
ADC sample frequency. The sample alignment on the different lanes is shown in Table 22.  
Table 21. JESD Mode Options: Dual-Band Complex Output  
DECIMATION  
SETTING  
(Complex)  
RATIO  
[fSerDes / fCLK  
(Gbps / GSPS)]  
NUMBER OF  
ACTIVE DDCS  
PLL  
MODE  
JESD  
MODE0  
JESD  
MODE1  
JESD  
MODE2  
L
M
F
S
8
4
8
4
8
4
8
4
8
4
8
4
8
4
4
4
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
2
4
2
4
2
4
2
4
2
4
2
4
2
4
4
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
20X  
40X  
20X  
40X  
20X  
40X  
20X  
40X  
20X  
40X  
20X  
40X  
20X  
40X  
40X  
40X  
1
2
1
2
1
2
1
2
1
2
1
2
1
2
2
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2.5  
5
Divide-by-8  
Divide-by-9  
Divide-by-10  
Divide-by-12  
Divide-by-16  
Divide-by-18  
Divide-by-20  
2 per channel  
2 per channel  
2 per channel  
2 per channel  
2 per channel  
2 per channel  
2 per channel  
2.22  
4.44  
2
4
1.67  
3.33  
1.25  
2.5  
1.11  
2.22  
1
2
Divide-by-24  
Divide-by-32  
2 per channel  
2 per channel  
1.67  
1.25  
Table 22. JESD Sample Lane Assignment: Dual-Band Complex Output(1)  
OUTPUT LANE  
DA0  
LMFS = 8821  
A10[15:8]  
LMFS = 4841  
A10[7:0]  
A1Q0[7:0]  
A2I0[7:0]  
A2Q0[7:0]  
B1I0[7:0]  
B1Q0[7:0]  
B2I0[7:0]  
B2Q0[7:0]  
DA1  
A1Q0[15:8]  
A2I0[15:8]  
A2Q0[15:8]  
B1I0[15:8]  
B1Q0[15:8]  
B2I0[15:8]  
B2Q0[15:8]  
A1I0[15:8]  
A2I0[15:8]  
A1I0[7:0]  
A1Q0[15:8]  
A2Q0[15:8]  
A1Q0[7:0]  
A2Q0[7:0]  
DA2  
A2I0[7:0]  
DA3  
DB0  
DB1  
B1I0[15:8]  
B2I0[15:8]  
B1I0[7:0]  
B2I0[7:0]  
B1Q0[15:8]  
B2Q0[15:8]  
B1Q0[7:0]  
B2Q0[7:0]  
DB2  
DB3  
(1) Blue and green shading indicates the two bands for channel A; yellow and orange shading indicates the two bands for channel B.  
60  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
 
 
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
8.4.2.7 JESD204B Frame Assembly with Decimation (Dual-Band DDC): Real Output  
Table 23 lists the available JESD204B formats and valid ranges for the ADC32RF8x with decimation (dual-band  
DDC) when using real output format. The ranges are limited by the SerDes line rate and the maximum ADC  
sample frequency. The sample alignment on the different lanes is shown in Table 24.  
Table 23. JESD Mode Options: Dual-Band Real Output  
DECIMATION  
SETTING  
(Complex)  
RATIO  
[fSerDes / fCLK  
(Gbps / GSPS)]  
NUMBER OF  
ACTIVE DDCS  
PLL  
MODE  
JESD  
MODE0  
JESD  
MODE1  
JESD  
MODE2  
L
M
F
S
8
8
4
4
8
8
4
4
8
8
4
4
8
8
4
4
8
8
4
4
8
8
4
4
8
8
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
1
2
2
4
1
2
2
4
1
2
2
4
1
2
2
4
1
2
2
4
1
2
2
4
1
2
2
4
2
4
2
4
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
20X  
20X  
40X  
40X  
20X  
20X  
40X  
40X  
20X  
20X  
40X  
40X  
20X  
20X  
40X  
40X  
20X  
20X  
40X  
40X  
20X  
20X  
40X  
40X  
20X  
20X  
40X  
40X  
40X  
40X  
40X  
40X  
1
1
0
2
1
1
0
2
1
1
0
2
1
1
0
2
1
1
0
2
1
1
0
2
1
1
0
2
0
2
0
2
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
1
0
1
0
2.5  
5
Divide-by-8  
(Divide-by-4 real)  
2 per channel  
2 per channel  
2 per channel  
2 per channel  
2 per channel  
2 per channel  
2 per channel  
2.22  
4.44  
2
Divide-by-9  
(Divide-by-4.5 real)  
Divide-by-10  
(Divide-by-5 real)  
4
1.67  
3.33  
1.25  
2.5  
1.11  
2.22  
1
Divide-by-12  
(Divide-by-6 real)  
Divide-by-16  
(Divide-by-8 real)  
Divide-by-18  
(Divide-by-9 real)  
Divide-by-20  
(Divide-by-10 real)  
2
Divide-by-24  
(Divide-by-12 real)  
2 per channel  
2 per channel  
1.67  
1.25  
Divide-by-32  
(Divide-by-16 real)  
Table 24. JESD Sample Lane Assignment: Dual-Band Complex Output(1)  
OUTPUT  
LMFS = 8411  
LMFS = 8422  
A10[15:8]  
LMFS = 4421  
LMFS = 4442  
LANE  
DA0  
DA1  
DA2  
DA3  
DB0  
DB1  
DB2  
DB3  
A10[15:8]  
A10[7:0]  
A20[15:8]  
A20[7:0]  
B10[15:8]  
B10[7:0]  
B20[15:8]  
B20[7:0]  
A10[7:0]  
A11[7:0]  
A20[7:0]  
A21[7:0]  
B10[7:0]  
B11[7:0]  
B20[7:0]  
B21[7:0]  
A11[15:8]  
A20[15:8]  
A21[15:8]  
B10[15:8]  
B11[15:8]  
B20[15:8]  
B21[15:8]  
A10[15:8]  
A10[7:0]  
A20[7:0]  
A10[15:8]  
A20[15:8]  
A10[7:0]  
A11[15:8]  
A21[15:8]  
A11[7:0]  
A21[7:0]  
A20[15:8]  
A20[7:0]  
B10[15:8]  
B20[15:8]  
B10[7:0]  
B20[7:0]  
B10[15:8]  
B20[15:8]  
B10[7:0]  
B20[7:0]  
B11[15:8]  
B21[15:8]  
B11[7:0]  
B21[7:0]  
(1) Blue and green shading indicates the two bands for channel A; yellow and orange shading indicates the two bands for channel B.  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
61  
Product Folder Links: ADC32RF80 ADC32RF83  
 
 
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
8.4.3 Serial Interface  
The ADC has a set of internal registers that can be accessed by the serial interface formed by the SEN (serial  
interface enable), SCLK (serial interface clock), and SDIN (serial interface data) pins. Serially shifting bits into the  
device is enabled when SEN is low. SDIN serial data are latched at every SCLK rising edge when SEN is active  
(low), as shown in Figure 135. The interface can function with SCLK frequencies from 20 MHz down to low  
speeds (of a few hertz) and also with a non-50% SCLK duty cycle, as shown in Table 25.  
The SPI access uses 24 bits consisting of eight register data bits, 12 register address bits, and four special bits  
to distinguish between read/write, page and register, and individual channel access, as described in Table 26.  
Register Address [11:0]  
Register Data [7:0]  
SDIN  
SCLK  
R/W  
M
P
CH A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0  
tDH  
tSCLK  
tDSU  
tSLOADH  
tSLOADS  
SEN  
RESET  
Figure 135. SPI Timing Diagram  
Table 25. SPI Timing Information  
MIN  
TYP  
MAX  
UNIT  
MHz  
ns  
fSCLK  
SCLK frequency (equal to 1 / tSCLK  
SEN to SCLK setup time  
SCLK to SEN hold time  
SDIN setup time  
)
1
50  
50  
10  
10  
20  
tSLOADS  
tSLOADH  
tDSU  
ns  
ns  
tDH  
SDIN hold time  
ns  
tSDOUT  
Delay between SCLK falling edge to SDOUT  
10  
ns  
62  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
 
 
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
Table 26. SPI Input Description  
SPI BIT  
DESCRIPTION  
OPTIONS  
0 = SPI write  
1 = SPI read back  
R/W bit  
M bit  
Read/write bit  
0 = Analog SPI bank (master)  
1 = All digital SPI banks (main digital, interleaving,  
decimation filter, JESD digital, and so forth)  
SPI bank access  
JESD page selection bit  
0 = Page access  
1 = Register access  
P bit  
SPI access for a specific channel of the JESD SPI  
bank  
0 = Channel A  
1 = Channel B  
CH bit  
ADDR[11:0]  
DATA[7:0]  
SPI address bits  
SPI data bits  
Figure 136 shows the SDOUT timing when data are read back from a register. Data are placed on the SDOUT  
bus at the SCLK falling edge so that the data can be latched at the SCLK rising edge by the external receiver.  
SCLK  
tSDOUT  
SDOUT  
Figure 136. SDOUT Timing  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
63  
Product Folder Links: ADC32RF80 ADC32RF83  
 
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
8.4.3.1 Serial Register Write: Analog Bank  
The internal register of the ADC32RF8x analog bank (Figure 137) can be programmed by:  
1. Driving the SEN pin low.  
2. Initiating a serial interface cycle selecting the page address of the register whose content must be written. To  
select the master page: write address 0012h with 04h. To select the ADC page: write address 0011h with  
FFh.  
3. Writing the register content. When a page is selected, multiple registers located in the same page can be  
programmed.  
Register Address [11:0]  
Register Data [7:0]  
0
0
0
0
SDIN  
SCLK  
R/W  
M
P
CH A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0  
SEN  
RESET  
Figure 137. SPI Write Timing Diagram for the Analog Bank  
8.4.3.2 Serial Register Readout: Analog Bank  
Contents of the registers located in the two pages of the analog bank (Figure 138) can be readback by:  
1. Driving the SEN pin low.  
2. Selecting the page address of the register whose content must be read. Master page: write address 0012h  
with 04h. ADC page: write address 0011h with FFh.  
3. Setting the R/W bit to 1 and writing the address to be read back.  
4. Reading back the register content on the SDOUT pin. When a page is selected, the contents of multiple  
registers located in same page can be readback.  
Register Address [11:0]  
Register Data [7:0] = XX  
1
0
0
0
SDIN  
SCLK  
R/W  
M
P
CH A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0  
SEN  
RESET  
SDOUT  
D7 D6 D5 D4 D3 D2 D1 D0  
SDOUT [7:0]  
Figure 138. SPI Read Timing Diagram for the Analog Bank  
64  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
 
 
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
8.4.3.3 Serial Register Write: Digital Bank  
The digital bank contains seven pages (Offset Corrector Page for channel A and B; Digital Gain Page for channel  
A and B; Main digital Page for channel A and B; and JESD Digital Page). The timing for the individual page  
selection is shown in Figure 139. The registers located in the pages of the digital bank can be programmed by:  
1. Driving the SEN pin low.  
2. Setting the M bit to 1 and specifying the page with with the desired register. There are seven pages in Digital  
Bank. These pages can be selected by appropriately programming register bits DIGITAL BANK PAGE SEL,  
located in addresses 002h, 003h, and 004h, using three consecutive SPI cycles. Addressing in a SPI cycle  
begins with 4xxx when selecting a page from digital bank because the M bit must be set to 1.  
To select the offset corrector page channel A: write address 4004h with 61h, 4003h with 00h, and 4002h  
with 00h.  
To select the offset corrector page channel B: write address 4004h with 61h, 4003h with 01h, and 4002h  
with 00h.  
To select the digital gain page channel A: write address 4004h with 61h, 4003h with 00h, and 4002h with  
05h.  
To select the digital gain page channel B: write address 4004h with 61h, 4003h with 01h, and 4002h with  
05h.  
To select the main digital page channel A: write address 4004h with 68h, 4003h with 00h, and 4002h with  
00h.  
To select the main digital page channel B: write address 4004h with 68h, 4003h with 01h, and 4002h with  
00h.  
To select the JESD digital page: write address 4004h with 69h, 4003h with 00h, and 4002h with 00h.  
Register Address [11:0]  
Register Data [7:0]  
0
1
0
0
SDIN  
SCLK  
R/W  
M
P
CH A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0  
SEN  
RESET  
Figure 139. SPI Write Timing Diagram for Digital Bank Page Selection  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
65  
Product Folder Links: ADC32RF80 ADC32RF83  
 
 
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
3. Writing into the desired register by setting both the M bit and P bit to 1. Write register content. When a page  
is selected, multiple writes into the same page can be done. Addressing in an SPI cycle begins with 6xxx  
when selecting a page from the digital bank because the M bit must be set to 1, as shown in Figure 140.  
Note that the JESD digital page is common for both channels. The CH bit can be used to distinguish  
between two channels when programming registers in the JESD digital page. When CH = 0, registers are  
programmed for channel B; when CH = 1, registers are programmed for channel A. Thus, an SPI cycle to  
program registers for channel B begins with 6xxx and channel A begins with 7xxx.  
Register Address [11:0]  
Register Data [7:0]  
0
1
1
0
SDIN  
SCLK  
R/W  
M
P
CH  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SEN  
RESET  
Figure 140. SPI Write Timing Diagram for Digital Bank Register Write  
66  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
 
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
8.4.3.4 Serial Register Readout: Digital Bank  
Readback of the register in one of the digital banks (as shown in Figure 141) can be accomplished by:  
1. Driving the SEN pin low.  
2. Selecting the page in the digital page: follow step 2 in the Serial Register Write: Digital Bank section.  
3. Set the R/W, M, and P bits to 1, select channel A or channel B, and write the address to be read back.  
JESD digital page: use the CH bit to select channel B (CH = 0) or channel A (CH = 1).  
4. Read back the register content on the SDOUT pin. When a page is selected, multiple read backs from the  
same page can be done.  
Register Address [11:0]  
Register Data [7:0] = XX  
1
1
1
0
SDIN  
SCLK  
R/W  
M
P
CH  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SEN  
RESET  
SDOUT  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDOUT [7:0]  
Figure 141. SPI Read Timing Diagram for the Digital Bank  
8.4.3.5 Serial Register Write: Decimation Filter and Power Detector Pages  
The decimation filter and power detector pages are special pages that accept direct addressing. The sampling  
clock and SYSREF signal are required to properly configure the decimation settings. Registers located in these  
pages can be programmed in one SPI cycle (Figure 142).  
1. Drive the SEN pin low.  
2. Directly write to the decimation filter or power detector pages. To program registers in these pages, set M = 1  
and CH = 1. Additionally, address bit A[10] selects the decimation filter page (A[10] = 0) or the power  
detector page (A[10] = 1). Address bit A[11] selects channel A (A[11] = 0) or channel B (A[11] = 1).  
Decimation filter page: write address 50xxh for channel A or 58xxh for channel B.  
Power detector page: write address 54xxh for channel A or 5Cxxh for channel B.  
Example: Writing address 5001h with 02h selects the decimation filter page for channel A and programs  
decimation factor of divide-by-8 (complex output).  
Register Address [7:0]  
Register Data [7:0]  
0
1
0
1
0/1 0/1  
0
0
R/W  
SDIN  
SCLK  
M
P
CH A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0  
SEN  
RESET  
Figure 142. SPI Write Timing Diagram for the Decimation and Power Detector Pages  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
67  
Product Folder Links: ADC32RF80 ADC32RF83  
 
 
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
8.5 Register Maps  
The ADC32RF8x contains two main SPI banks. The analog SPI bank provides access to the ADC core and the digital SPI bank controls the digital blocks  
(including the serial JESD interface). Figure 143 and Figure 144 provide a conceptual view of the SPI registers inside the ADC32RF8x. The analog SPI  
bank contains the master and ADC pages. The digital SPI bank is divided into multiple pages (the main digital, digital gain, decimation filter, JESD digital,  
and power detector pages).  
Register Address[11:0]  
Register Data[7:0]  
R/W  
M
P
CH  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDIN  
SPI Cycle  
SCLK  
SEN  
Initiate an SPI Cycle(1)  
R/W, M, P, CH, Bits Decoder  
M = 0  
M = 1  
Analog Bank(3)  
Digital Bank  
General Register  
General Register  
(Address 00h,  
Keep M, P = 0)  
(Global Reset)  
Select Master Page  
(Address 12h, value 04h,  
Keep M, P = 0)  
Select ADC Page  
(Address 11h, Value FFh,  
Keep M, P = 0)  
1st SPI Cycle:  
Page Selection  
Select DIGITAL Bank Page  
(Address 04h, Address 03h, and Address 02h bits DIGITAL BANK PAGE SEL[23:0],  
Keep M = 1, P = 0)  
(Address 05h,  
Keep M = 1, P = 0)  
Value 04h  
Value FFh  
SPI cycle:  
These Pages  
are directly  
programmed  
in one SPI  
cycle.  
Value 610000h  
Value 610100h  
Value 610005h  
Value 610105h  
Value 690000h  
Value 680000h  
Value 680100h  
Master Page  
(PDN,  
ADC Page  
(Slow Speed  
Enable,  
Initialization  
Registers)  
Direct  
Addressing  
Pages:  
Offset Corr Page  
ChA  
(Offset Corr)  
Offset Corr Page  
ChB  
(Offset Corr)  
Digital Gain Page  
ChA  
(Digital Gain)  
Digital Gain Page  
ChB  
(Digital Gain)  
Main  
Digital Page for  
ChA  
Main  
Digital Page for  
ChB  
JESD  
Digital Page  
(JESD  
DC Coupling,  
SYSREF Delay,  
JESD Swing,  
initialization  
Registers)  
DDC and  
Power  
Configuration)  
2nd SPI Cycle:  
Page Programing  
Keep  
M, P, CH bits =  
(1, 1, 0).  
R/W = 0 when  
writing to this  
page, and = 1  
when reading from  
this page  
Keep  
M, P, CH bits =  
(1, 1, 0).  
R/W = 0 when  
writing to this  
page, and = 1  
when reading from  
this page  
(Nyquist Zone)  
(Nyquist Zone)  
Keep M, P, R/W =  
0 when writing to  
this page, and  
keep these bits =  
1 when reading  
from this page  
Detector(2)  
Keep  
M, P, CH bits =  
(1, 1, 0).  
R/W = 0 when  
writing to this  
page, and = 1  
when reading from  
this page  
Keep  
M, P, CH bits =  
(1, 1, 0).  
R/W = 0 when  
writing to this  
page, and = 1  
when reading from  
this page  
Keep M, P = 1,  
CH = 0 for ChB,  
CH = 1 for ChA  
Keep  
M, P, CH bits =  
(1, 1, 0).  
R/W = 0 when  
writing to this  
page, and = 1  
when reading  
from this page  
Keep  
M, P, CH bits =  
(1, 1, 0).  
R/W = 0 when  
writing to this  
page, and = 1  
when reading from  
this page  
Keep M, P, R/W =  
0 when writing to  
this page, and  
keep these bits =  
1 when reading  
from this page  
Keep R/W = 0  
when writing to  
this page, and = 1  
when reading  
from this page  
(1) In general, SPI writes are completed in two steps. The first step is to access the necessary page. The second step is to program the desired register in that page. When  
a page is accessed, the registers in that page can be programmed multiple times.  
(2) Registers in the decimation filter page and the power detector page can be directly programmed in one SPI cycle.  
(3) The CH bit is a don't care bit and is recommended to be kept at 0.  
Figure 143. SPI Registers, Two-Step Addressing  
68  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
 
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
Register Maps (continued)  
Register Address[11:0]  
Register Data[7:0]  
R/W  
M
P
CH  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDIN  
SPI Cycle  
SCLK  
SEN  
Initiate an SPI Cycle  
R/W, M, P, CH, Bits Decoder  
M = 0  
Direct Addressing Pages  
M = 1  
Digital Bank  
Analog Bank  
1st SPI Cycle:  
M=1,P=0, CH=1,  
A11=1, A10=0  
M=1,P=0, CH=1,  
M=1,P=0, CH=1,  
A11=1, A10=1  
A11=0, A10=1  
M=1,P=0, CH=1,  
A11=0, A10=0  
Page Selection  
SPI cycle(1)  
These pages  
are directly  
:
Addr  
Addr  
Addr  
00h(3)  
00h(3)  
Addr  
00h(3)  
00h(3)  
programmed  
in one SPI  
cycle.  
Program  
Decimation  
Program  
Program  
Program  
Power  
Decimation  
Filter Page for  
ChB(2)  
Power  
Detector Page  
for ChA(3)  
2nd SPI Cycle:  
Page Programing  
Filter Page for  
Detector Page  
ChA(2)  
for ChB(3)  
(DDC modes)  
(DDC modes)  
Addr  
3Ah  
Addr  
25h  
Addr  
25h  
Addr  
3Ah  
(1) Registers in the decimation filter page and the power detector page can be directly programmed in one SPI cycle.  
(2) To program registers in the decimation filter page, aet M = 1, CH = 1, A[10] = 0, and A[11] = 0 or 1 for channel A or B. Addressing begins at 50xx for channel A and  
58xx for channel B.  
(3) To program registers in power detector page, set M = 1, CH = 1, A[10] = 1, and A[11] = 0 or 1 for channel A or B. Addressing begins at 54xx for channel A and 5Cxx for  
channel B.  
Figure 144. SPI Registers: Direct Addressing  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
69  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
Register Maps (continued)  
Table 27 lists the register map for the ADC32RF8x.  
Table 27. Register Map  
REGISTER  
ADDRESS  
A[11:0] (Hex)  
REGISTER DATA  
4
7
6
5
3
2
1
0
GENERAL REGISTERS  
000  
002  
003  
004  
010  
011  
RESET  
0
0
0
0
0
0
RESET  
DIGITAL BANK PAGE SEL[7:0]  
DIGITAL BANK PAGE SEL[15:8]  
DIGITAL BANK PAGE SEL[23:16]  
0
0
0
0
0
0
0
0
0
0
0
0
3 or 4 WIRE  
0
ADC PAGE SEL  
MASTER PAGE  
SEL  
012  
0
0
MASTER PAGE (M = 0)  
020  
0
0
0
0
PDN SYSREF  
0
0
0
0
0
PDN CHB  
0
GLOBAL PDN  
0
INCR CM  
IMPEDANCE  
032  
039  
03C  
03D  
05A  
0
0
0
ALWAYS WRITE 1  
SYSREF DEL EN  
0
0
0
0
ALWAYS WRITE 1  
0
0
0
0
0
0
PDN CHB EN  
SYNC TERM DIS  
0
0
0
SYSREF DEL[4:3]  
JESD OUTPUT SWING  
0
SYSREF DEL[2:0]  
0
0
0
0
0
0
ASSERT SYSREF  
REG  
057  
0
0
0
0
0
SEL SYSREF REG  
0
0
0
058  
SYNCB POL  
0
ADC PAGE (FFh, M = 0)  
03F  
042  
0
0
0
0
0
0
0
0
0
SLOW SP EN1  
0
0
0
0
0
SLOW SP EN2  
Offset Corr Page Channel A (610000h, M = 1)  
FREEZE OFFSET  
DIS OFFSET  
CORR  
68  
0
ALWAYS WRITE 1  
0
0
0
ALWAYS WRITE 1  
ALWAYS WRITE 1  
0
0
CORR  
Offset Corr Page Channel B (610100h, M = 1)  
FREEZE OFFSET  
DIS OFFSET  
CORR  
68  
0
0
ALWAYS WRITE 1  
0
0
0
CORR  
Digital Gain Page Channel A (610005, M = 1)  
0A6  
0
DIGITAL GAIN  
70  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
 
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
Register Maps (continued)  
Table 27. Register Map (continued)  
REGISTER  
ADDRESS  
A[11:0] (Hex)  
REGISTER DATA  
7
6
5
4
3
2
1
0
Digital Gain Page Channel B (610105, M = 1)  
0A6  
0
0
0
0
DIGITAL GAIN  
Main Digital Page Channel A (680000h, M = 1)  
DIG CORE RESET  
GBL  
000  
0A2  
0
0
0
0
0
0
0
0
0
0
0
0
NQ ZONE EN  
NYQUIST ZONE  
Main Digital Page Channel B (680001h, M = 1)  
000  
0A2  
0
0
0
0
0
0
0
0
0
0
0
NQ ZONE EN  
NYQUIST ZONE  
JESD DIGITAL PAGE (690000h, M = 1)  
001  
002  
CTRL K  
0
0
0
TESTMODE EN  
0
0
LANE ALIGN  
JESD MODE1  
FRAME ALIGN  
JESD MODE2  
TX LINK DIS  
SYNC REG  
SYNC REG EN  
12BIT MODE  
JESD MODE0  
LMFC MASK  
RESET  
003  
LINK LAYER TESTMODE  
LINK LAY RPAT  
RAMP 12BIT  
004  
006  
007  
016  
0
0
0
0
0
0
0
0
0
0
0
REL ILA SEQ  
SCRAMBLE EN  
0
0
0
0
0
0
0
0
FRAMES PER MULTIFRAME (K)  
0
40X MODE  
0
LANE0  
POL  
LANE1  
POL  
LANE2  
POL  
LANE3  
POL  
017  
0
0
0
0
032  
033  
034  
035  
036  
037  
03C  
SEL EMP LANE 0  
0
0
0
0
0
0
0
0
0
0
SEL EMP LANE 1  
SEL EMP LANE 2  
SEL EMP LANE 3  
0
0
0
CMOS SYNCB  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PLL MODE  
0
0
EN CMOS SYNCB  
MASK CLKDIV  
SYSREF  
MASK NCO  
SYSREF  
03E  
0
0
0
0
0
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
71  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
Register Maps (continued)  
Table 27. Register Map (continued)  
REGISTER  
ADDRESS  
A[11:0] (Hex)  
REGISTER DATA  
7
6
5
4
3
2
1
0
DECIMATION FILTER PAGE (Direct Addressing, 16-Bit Address, 5000h for Channel A and 5800h for Channel B)  
000  
001  
002  
005  
006  
007  
008  
009  
00A  
00B  
00C  
00D  
00E  
00F  
010  
011  
014  
016  
01E  
01F  
033  
034  
035  
036  
037  
038  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DDC EN  
DECIM FACTOR  
0
0
0
0
0
0
0
0
0
DUAL BAND EN  
REAL OUT EN  
DDC MUX  
DDC0 NCO1 LSB  
DDC0 NCO1 MSB  
DDC0 NCO2 LSB  
DDC0 NCO2 MSB  
DDC0 NCO3 LSB  
DDC0 NCO3 MSB  
DDC1 NCO4 LSB  
DDC1 NCO4 MSB  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
NCO SEL PIN  
0
NCO SEL  
LMFC RESET MODE  
0
0
0
DDC0 6DB GAIN  
DDC1 6DB GAIN  
0
0
0
0
0
DDC DET LAT  
0
0
0
WBF 6DB GAIN  
CUSTOM PATTERN1[7:0]  
CUSTOM PATTERN1[15:8]  
CUSTOM PATTERN2[7:0]  
CUSTOM PATTERN2[15:8]  
TEST PATTERN DDC1 Q-DATA  
TEST PATTERN DDC2 Q-DATA  
TEST PATTERN DDC1 I-DATA  
TEST PATTERN DDC2 I -DATA  
USE COMMON  
TEST PATTERN  
039  
03A  
0
0
0
0
0
0
0
0
0
0
0
0
0
TEST PAT RES  
TP RES EN  
72  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
Register Maps (continued)  
Table 27. Register Map (continued)  
REGISTER  
ADDRESS  
A[11:0] (Hex)  
REGISTER DATA  
7
6
5
4
3
2
1
0
POWER DETECTOR PAGE (Direct Addressing, 16-Bit Address, 5400h for Channel A and 5C00h for Channel B)  
000  
001  
002  
003  
007  
008  
009  
00A  
00B  
00C  
00D  
00E  
00F  
010  
011  
012  
013  
016  
017  
018  
019  
01A  
01D  
01E  
020  
021  
022  
023  
024  
025  
0
0
0
0
0
0
0
PKDET EN  
BLKPKDET [7:0]  
BLKPKDET [15:8]  
0
0
0
0
0
0
0
BLKPKDET [16]  
BLKTHHH  
BLKTHHL  
BLKTHLH  
BLKTHLL  
DWELL[7:0]  
DWELL[15:8]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
FILT0LPSEL  
TIMECONST  
FIL0THH[7:0]  
FIL0THH[15:8]  
FIL0THL[7:0]  
FIL0THL[15:8]  
0
0
0
0
0
0
0
IIR0 2BIT EN  
FIL1THH[7:0]  
FIL1THH[15:8]  
FIL1THL[7:0]  
FIL1THL[15:8]  
0
0
0
0
0
0
0
0
IIR1 2BIT EN  
IIR0 2BIT EN  
DWELLIIR[7:0]  
DWELLIIR[15:8]  
0
0
0
0
0
0
PWRDETACCU  
PWRDETH[7:0]  
PWRDETH[15:8]  
PWRDETL[7:0]  
PWRDETL[15:8]  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
73  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
Register Maps (continued)  
Table 27. Register Map (continued)  
REGISTER  
ADDRESS  
A[11:0] (Hex)  
REGISTER DATA  
7
6
5
4
3
2
1
0
POWER DETECTOR PAGE (continued)  
027  
02B  
032  
033  
034  
035  
037  
038  
0
0
0
0
0
0
0
0
0
0
0
0
0
RMS 2BIT EN  
RESET AGC  
0
OUTSEL GPIO1  
OUTSEL GPIO2  
OUTSEL GPIO3  
OUTSEL GPIO4  
0
0
0
0
0
0
IODIR GPIO4  
0
IODIR GPIO3  
0
IODIR GPIO2  
IODIR GPIO1  
INSEL1  
INSEL0  
74  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
8.5.1 Example Register Writes  
This section provides three different example register writes. Table 28 describes a global power-down register  
write, Table 29 describes the register writes when the scrambler is enabled, and Table 30 describes the register  
writes for 8X decimation for channels A and B (complex output, 1 DDC mode) with the NCO set to 1.8 GHz (fS =  
3 GSPS) and the JESD format configured to LMFS = 4421.  
Table 28. Global Power-Down  
ADDRESS  
12h  
DATA  
04h  
COMMENT  
Set the master page  
20h  
01h  
Set the global power-down  
Table 29. Scrambler Enable  
ADDRESS  
4004h  
DATA  
69h  
COMMENT  
Select the digital JESD page  
4003h  
00h  
6006h  
80h  
Scrambler enable, channel A  
Scrambler enable, channel B  
7006h  
80h  
Table 30. 8X Decimation for Channel A and B  
ADDRESS  
4004h  
4003h  
6000h  
6000h  
4003h  
6000h  
6000h  
4004h  
4003h  
6002h  
7002h  
5000h  
5001h  
5007h  
5008h  
5014h  
5801h  
5807h  
5808h  
5814h  
DATA  
COMMENT  
68h  
00h  
01h  
00h  
01h  
01h  
00h  
69h  
00h  
01h  
01h  
01h  
02h  
9Ah  
99h  
01h  
02h  
9Ah  
99h  
01h  
Select the main digital page for channel A  
Issue a digital reset for channel A  
Clear the digital for reset channel A  
Select the main digital page for channel B  
Issue a digital reset for channel B  
Clear the digital reset for channel B  
Select the digital JESD page  
Set JESD MODE0 = 1, channel A  
Set JESD MODE0 = 1, channel B  
Enable the DDC, channel A  
Set decimation to 8X complex  
Set the LSB of DDC0, NCO1 to 9Ah (fNCO = 1.8 GHz, fS = 3 GSPS)  
Set the MSB of DDC0, NCO1 to 99h (fNCO = 1.8 GHz, fS = 3 GSPS)  
Enable the 6-dB digital gain of DDC0  
Set decimation to 8X complex  
Set the LSB of DDC0, NCO1 to 9Ah (fNCO = 1.8 GHz, fS = 3 GSPS)  
Set the MSB of DDC0, NCO1 to 99h (fNCO = 1.8 GHz, fS = 3 GSPS)  
Enable the 6-dB digital gain of DDC0  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
75  
Product Folder Links: ADC32RF80 ADC32RF83  
 
 
 
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
8.5.2 Register Descriptions  
8.5.2.1 General Registers  
8.5.2.1.1 Register 000h (address = 000h), General Registers  
Figure 145. Register 000h  
7
6
0
5
0
4
0
3
0
2
0
1
0
0
RESET  
R/W-0h  
RESET  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 31. Register 000h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RESET  
R/W  
0h  
0 = Normal operation  
1 = Internal software reset, clears back to 0  
6-1  
0
0
W
0h  
0h  
Must write 0  
0 = Normal operation(1)  
RESET  
R/W  
1 = Internal software reset, clears back to 0  
(1) Both bits (7, 0) must be set simultaneously to perform a reset.  
8.5.2.1.2 Register 002h (address = 002h), General Registers  
Figure 146. Register 002h  
7
6
5
4
3
2
1
0
DIGITAL BANK PAGE SEL[7:0]  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 32. Register 002h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DIGITAL BANK PAGE SEL[7:0]  
R/W  
0h  
Program the JESD BANK PAGE SEL[23:0] bits to access the  
desired page in the JESD bank.  
680000h = Main digital page CHA selected  
680100h = Main digital page CHB selected  
610000h = Digital function page CHA selected  
610100h = Digital function page CHB selected  
690000h = JESD digital page selected  
76  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
8.5.2.1.3 Register 003h (address = 003h), General Registers  
Figure 147. Register 003h  
7
6
5
4
3
2
1
0
DIGITAL BANK PAGE SEL[15:8]  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 33. Register 003h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DIGITAL BANK PAGE SEL[15:8]  
R/W  
0h  
Program the JESD BANK PAGE SEL[23:0] bits to access the  
desired page in the JESD bank.  
680000h = Main digital page CHA selected  
680100h = Main digital page CHB selected  
610000h = Digital function page CHA selected  
610100h = Digital function page CHB selected  
690000h = JESD digital page selected  
8.5.2.1.4 Register 004h (address = 004h), General Registers  
Figure 148. Register 004h  
7
6
5
4
3
2
1
0
DIGITAL BANK PAGE SEL[23:16]  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 34. Register 004h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DIGITAL BANK PAGE SEL[23:16]  
R/W  
0h  
Program the JESD BANK PAGE SEL[23:0] bits to access the  
desired page in the JESD bank.  
680000h = Main digital page CHA selected  
680100h = Main digital page CHB selected  
610000h = Digital function page CHA selected  
610100h = Digital function page CHB selected  
690000h = JESD digital page selected  
8.5.2.1.5 Register 010h (address = 010h), General Registers  
Figure 149. Register 010h  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
0
3 or 4 WIRE  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write; -n = value after reset  
Table 35. Register 010h Field Descriptions  
Bit  
7-1  
0
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
3 or 4 WIRE  
R/W  
0h  
0 = 4-wire SPI (default)  
1 = 3-wire SPI where SDIN become input or output  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
77  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
8.5.2.1.6 Register 011h (address = 011h), General Registers  
Figure 150. Register 011h  
7
6
5
4
3
2
1
0
ADC PAGE SEL  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 36. Register 011h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
ADC PAGE SEL  
R/W  
0h  
00000000 = Normal operation, ADC page is not selected  
11111111 = ADC page is selected; MASTER PAGE SEL must  
be set to 0  
8.5.2.1.7 Register 012h (address = 012h), General Registers  
Figure 151. Register 012h  
7
0
6
0
5
0
4
3
2
1
0
0
0
0
0
MASTER PAGE SEL  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 37. Register 012h Field Descriptions  
Bit  
7-3  
2
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
MASTER PAGE SEL  
R/W  
0h  
0 = Normal operation  
1 = Selects the master page address; ADC PAGE must be set  
to 0  
1-0  
0
W
0h  
Must write 0  
78  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
8.5.3 Master Page (M = 0)  
8.5.3.1 Register 020h (address = 020h), Master Page  
Figure 152. Register 020h  
7
0
6
0
5
0
4
3
0
2
0
1
0
PDN SYSREF  
R/W-0h  
PDN CHB  
R/W-0h  
GLOBAL PDN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 38. Register 020h Field Descriptions  
Bit  
7-5  
4
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
PDN SYSREF  
R/W  
0h  
This bit powers down the SYSREF input buffer.  
0 = Normal operation  
1 = SYSREF input capture buffer is powered down and further  
SYSREF input pulses are ignored  
3-2  
1
0
W
0h  
0h  
Must write 0  
PDN CHB  
R/W  
This bit powers down channel B.  
0 = Normal operation  
1 = Channel B is powered down  
0
GLOBAL PDN  
R/W  
0h  
This bit enables the global power-down.  
0 = Normal operation  
1 = Global power-down enabled  
8.5.3.2 Register 032h (address = 032h), Master Page  
Figure 153. Register 032h  
7
0
6
0
5
4
3
2
0
1
0
0
0
INCR CM  
IMPEDANCE  
0
0
W-0h  
W-0h  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 39. Register 032h Field Descriptions  
Bit  
7-6  
5
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
INCR CM IMPEDANCE  
R/W  
0h  
Only use this bit when analog inputs are dc-coupled to the  
driver.  
0 = VCM buffer directly drives the common point of biasing  
resistors.  
1 = VCM buffer drives the common point of biasing resistors with  
> 5 kΩ  
4-0  
0
W
0h  
Must write 0  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
79  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
8.5.3.3 Register 039h (address = 039h), Master Page  
Figure 154. Register 039h  
7
0
6
5
0
4
3
0
2
0
1
0
ALWAYS  
WRITE 1  
ALWAYS  
WRITE 1  
PDN CHB EN  
R/W-0h  
SYNC TERM DIS  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 40. Register 039h Field Descriptions  
Bit  
7
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
6
ALWAYS WRITE 1  
W
0h  
Always set this bit to 1  
Must write 0  
5
0
W
0h  
4
ALWAYS WRITE 1  
W
0h  
Always set this bit to 1  
Must write 0  
3-2  
1
0
W
0h  
PDN CHB EN  
R/W  
0h  
This bit enables the power-down control of channel B through  
the SPI in register 20h.  
0 = PDN control disabled  
1 = PDN control enabled  
0
SYNC TERM DIS  
R/W  
0h  
This bit disables the on-chip, 100-Ω termination resistors on the  
SYNCB input.  
0 = On-chip, 100-Ω termination enabled  
1 = On-chip, 100-Ω termination disabled  
8.5.3.4 Register 03Ch (address = 03Ch), Master Page  
Figure 155. Register 03Ch  
7
0
6
5
4
3
2
0
1
0
SYSREF DEL EN  
R/W-0h  
0
0
0
SYSREF DEL[4:3]  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 41. Register 03Ch Field Descriptions  
Bit  
7
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
6
SYSREF DEL EN  
R/W  
0h  
This bit allows an internal delay to be added to the SYSREF  
input.  
0 = SYSREF delay disabled  
1 = SYSREF delay enabled through register settings [3Ch (bits  
1-0), 5Ah (bits 7-5)]  
5-2  
1-0  
0
W
0h  
0h  
Must write 0  
SYSREF DEL[4:3]  
R/W  
When the SYSREF delay feature is enabled (3Ch, bit 6) the  
delay can be adjusted in 25-ps steps; the first step is 175 ps.  
The PVT variation of each 25-ps step is ±10 ps. The 175-ps step  
is ±50 ps; see Table 43.  
80  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
8.5.3.5 Register 05Ah (address = 05Ah), Master Page  
Figure 156. Register 05Ah  
7
6
5
4
0
3
0
2
0
1
0
0
0
SYSREF DEL[2:0]  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 42. Register 05Ah Field Descriptions  
Bit  
7
Field  
Type  
W
Reset  
Description  
SYSREF DEL2  
SYSREF DEL1  
SYSREF DEL0  
0
0h  
When the SYSREF delay feature is enabled (3Ch, bit 6) the  
delay can be adjusted in 25-ps steps; the first step is 175 ps.  
The PVT variation of each 25-ps step is ±10 ps. The 175-ps step  
is ±50 ps; see Table 43.  
6
R/W  
W
5
4-0  
W
0h  
Must write 0  
Table 43. SYSREF DEL[2:0] Bit Settings  
STEP  
SETTING  
01000  
00111  
00110  
00101  
00100  
00011  
STEP (NOM)  
175 ps  
25 ps  
TOTAL DELAY (NOM)  
175 ps  
1
2
3
4
5
6
200 ps  
25 ps  
225 ps  
25 ps  
250 ps  
25 ps  
275 ps  
25 ps  
300 ps  
8.5.3.6 Register 03Dh (address = 3Dh), Master Page  
Figure 157. Register 03Dh  
7
0
6
0
5
0
4
0
3
0
2
1
0
JESD OUTPUT SWING  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 44. Register 03Dh Field Descriptions  
Bit  
7-3  
2-0  
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
JESD OUTPUT SWING  
R/W  
0h  
These bits select the output amplitude, VOD (mVPP), of the JESD  
transmitter for all lanes.  
0 = 860 mVPP  
1= 810 mVPP  
2 = 770 mVPP  
3 = 745 mVPP  
4 = 960 mVPP  
5 = 930 mVPP  
6 = 905 mVPP  
7 = 880 mVPP  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
81  
Product Folder Links: ADC32RF80 ADC32RF83  
 
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
8.5.3.7 Register 057h (address = 057h), Master Page  
Figure 158. Register 057h  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
SEL SYSREF REG  
R/W-0h  
ASSERT SYSREF REG  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 45. Register 057h Field Descriptions  
Bit  
7-5  
4
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
SEL SYSREF REG  
R/W  
0h  
SYSREF can be asserted using this bit. Ensure that the SEL  
SYSREF REG register bit is set high before using this bit; see  
Using SYSREF .  
0 = SYSREF is logic low  
1 = SYSREF is logic high  
3
ASSERT SYSREF REG  
R/W  
W
0h  
0h  
Set this bit to use the SPI register to assert SYSREF.  
0 = SYSREF is asserted by device pins  
1 = SYSREF can be asserted by the ASSERT SYSREF REG  
register bit  
Other bits = 0  
2-0  
0
Must write 0  
8.5.3.8 Register 058h (address = 058h), Master Page  
Figure 159. Register 058h  
7
0
6
0
5
4
3
2
0
1
0
0
0
SYNCB POL  
R/W-0h  
0
0
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 46. Register 058h Field Descriptions  
Bit  
7-6  
5
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
SYNCB POL  
R/W  
0h  
This bit inverts the SYNCB polarity.  
0 = Polarity is not inverted; this setting matches the timing  
diagrams in this document and is the proper setting to use  
1 = Polarity is inverted  
4-0  
0
W
0h  
Must write 0  
82  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
8.5.4 ADC Page (FFh, M = 0)  
8.5.4.1 Register 03Fh (address = 03Fh), ADC Page  
Figure 160. Register 03Fh  
7
0
6
0
5
0
4
0
3
0
2
1
0
0
0
SLOW SP EN1  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 47. Register 03Fh Field Descriptions  
Bit  
7-3  
2
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
SLOW SP EN1  
R/W  
0h  
This bit must be enabled for clock rates below 2.5 GSPS.  
0 = ADC sampling rates are faster than 2.5 GSPS  
1 = ADC sampling rates are slower than 2.5 GSPS  
1-0  
0
W
0h  
Must write 0  
8.5.4.2 Register 042h (address = 042h), ADC Page  
Figure 161. Register 042h  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
SLOW SP EN2  
R/W-0h  
0
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 48. Register 042h Field Descriptions  
Bit  
7-5  
4
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
SLOW SP EN2  
R/W  
0h  
This bit must be enabled for clock rates below 2.5 GSPS.  
0 = ADC sampling rates are faster than 2.5 GSPS  
1 = ADC sampling rates are slower than 2.5 GSPS  
3-0  
0
W
0h  
Must write 0  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
83  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
8.5.5 Digital Function Page (610000h, M = 1 for Channel A and 610100h, M = 1 for Channel B)  
8.5.5.1 Register A6h (address = 0A6h), Digital Function Page  
Figure 162. Register 0A6h  
7
0
6
0
5
0
4
0
3
2
1
0
DIG GAIN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 49. Register 0A6h Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
DIG GAIN  
R/W  
0h  
These bits set the digital gain of the ADC output data prior to  
decimation up to 11 dB; see Table 50.  
Table 50. DIG GAIN Bit Settings  
SETTING  
0000  
0001  
0010  
DIGITAL GAIN  
0 dB  
1 dB  
2 dB  
1010  
1011  
10 dB  
11 dB  
8.5.6 Offset Corr Page Channel A (610000h, M = 1)  
8.5.6.1 Register 034h (address = 034h), Offset Corr Page Channel A  
Figure 163. Register 034h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
SEL EXT EST  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 51. Register 034h Field Descriptions  
Bit  
7-1  
0
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
SEL EXT EST  
R/W  
0h  
This bit selects the external estimate for the offset correction  
block; see the Using DC Coupling in the ADC32RF8x section.  
84  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
 
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
8.5.6.2 Register 068h (address = 068h), Offset Corr Page Channel A  
Figure 164. Register 068h  
7
6
0
5
4
0
3
0
2
1
0
0
DIS  
OFFSET  
CORR  
FREEZE OFFSET  
CORR  
ALWAYS WRITE 1  
R/W-0h  
ALWAYS WRITE 1  
R/W-0h  
R/W-0h  
W-0h  
W-0h  
W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 52. Register 068h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
FREEZE OFFSET CORR  
R/W  
0h  
Use this bit and bits 5 and 1 to freeze the offset estimation  
process of the offset corrector; see the Using DC Coupling in  
the ADC32RF8x section.  
011 = Apply this setting after powering up the device  
111 = Offset corrector is frozen, does not estimate offset  
anymore, and applies the last computed value.  
Others = Do not use  
6
5
0
W
0h  
0h  
Must write 0  
ALWAYS WRITE 1  
R/W  
Always write this bit as 1 for the offset correction block to work  
properly.  
4-3  
2
0
W
0h  
0h  
Must write 0  
DIS OFFSET CORR  
R/W  
0 = Offset correction block works and removes fS / 8, fS / 4,  
3fS / 8, and fS / 2 spurs  
1 = Offset correction block is disabled  
1
0
ALWAYS WRITE 1  
0
R/W  
W
0h  
0h  
Always write this bit as 1 for the offset correction block to work  
properly.  
Must write 0  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
85  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
8.5.7 Offset Corr Page Channel B (610000h, M = 1)  
8.5.7.1 Register 068h (address = 068h), Offset Corr Page Channel B  
Figure 165. Register 068h  
7
6
0
5
4
0
3
0
2
1
0
0
DIS  
OFFSET  
CORR  
FREEZE OFFSET  
CORR  
ALWAYS WRITE 1  
R/W-0h  
ALWAYS WRITE 1  
R/W-0h  
R/W-0h  
W-0h  
W-0h  
W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 53. Register 068h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7,5,1  
FREEZE OFFSET CORR  
R/W  
0h  
Use this bit and bits 5 and 1 to freeze the offset estimation  
process of the offset corrector; see the Using DC Coupling in  
the ADC32RF8x section.  
011 = Apply this setting after powering up the device  
111 = Offset corrector is frozen, does not estimate offset  
anymore, and applies the last computed value.  
Others = Do not use  
6
5
0
W
0h  
0h  
Must write 0  
ALWAYS WRITE 1  
R/W  
Always write this bit as 1 for the offset correction block to work  
properly.  
4-3  
2
0
W
0h  
0h  
Must write 0  
DIS OFFSET CORR  
R/W  
0 = Offset correction block works and removes fS / 8, fS / 4,  
3fS / 8, and fS / 2 spurs  
1 = Offset correction block is disabled  
1
0
ALWAYS WRITE 1  
0
R/W  
W
0h  
0h  
Always write this bit as 1 for the offset correction block to work  
properly.  
Must write 0  
86  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
8.5.8 Digital Gain Page (610005h, M = 1 for Channel A and 610105h, M = 1 for Channel B)  
8.5.8.1 Register 0A6h (address = 0A6h), Digital Gain Page  
Figure 166. Register 0A6h  
7
0
6
0
5
0
4
0
3
2
1
0
DIGITAL GAIN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 54. Register 0A6h Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
DIGITAL GAIN  
R/W  
0h  
These bits apply a digital gain to the ADC data (before the DDC)  
up to 11 dB.  
0000 = Default  
0001 = 1 dB  
1011 = 11 dB  
Others = Do not use  
8.5.9 Main Digital Page Channel A (680000h, M = 1)  
8.5.9.1 Register 000h (address = 000h), Main Digital Page Channel A  
Figure 167. Register 000h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
DIG CORE RESET GBL  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 55. Register 000h Field Descriptions  
Bit  
7-1  
0
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
DIG CORE RESET GBL  
R/W  
0h  
Pulse this bit (0 1 0) to reset the digital core (applies to both  
channel A and B).  
All Nyquist zone settings take effect when this bit is pulsed.  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
87  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
8.5.9.2 Register 0A2h (address = 0A2h), Main Digital Page Channel A  
Figure 168. Register 0A2h  
7
0
6
0
5
0
4
0
3
2
1
0
NQ ZONE EN  
R/W-0h  
NYQUIST ZONE  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 56. Register 0A2h Field Descriptions  
Bit  
7-4  
3
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
NQ ZONE EN  
R/W  
0h  
This bit allows for specification of the operating Nyquist zone.  
0 = Nyquist zone specification disabled  
1 = Nyquist zone specification enabled  
2-0  
NYQUIST ZONE  
R/W  
0h  
These bits specify the operating Nyquist zone for the analog  
correction loop.  
Set the NQ ZONE EN bit before programming these bits.  
For example, at s 3-GSPS chip clock, the first Nyquist zone is  
from dc to 1.5 GHz, the second Nyquist zone is from 1.5 GHz to  
3 GHz, and so on.  
000 = First Nyquist zone (dc – fS / 2)  
001 = Second Nyquist zone (fS / 2 – fS)  
010 = Third Nyquist zone  
011 = Fourth Nyquist zone  
8.5.10 Main Digital Page Channel B (680001h, M = 1)  
8.5.10.1 Register 000h (address = 000h), Main Digital Page Channel B  
Figure 169. Register 000h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
DIG CORE RESET GBL  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 57. Register 000h Field Descriptions  
Bit  
7-1  
0
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
DIG CORE RESET GBL  
R/W  
0h  
Pulse this bit (0 1 0) to reset the digital core (applies to both  
channel A and B).  
All Nyquist zone settings take effect when this bit is pulsed.  
88  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
8.5.10.2 Register 0A2h (address = 0A2h), Main Digital Page Channel B  
Figure 170. Register 0A2h  
7
0
6
0
5
0
4
0
3
2
1
0
NQ ZONE EN  
R/W-0h  
NYQUIST ZONE  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 58. Register 0A2h Field Descriptions  
Bit  
7-4  
3
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
NQ ZONE EN  
R/W  
0h  
This bit allows for specification of the operating Nyquist zone.  
0 = Nyquist zone specification disabled  
1 = Nyquist zone specification enabled  
2-0  
NYQUIST ZONE  
R/W  
0h  
These bits specify the operating Nyquist zone for the analog  
correction loop.  
Set the NQ ZONE EN bit before programming these bits.  
For example, at a 3-GSPS chip clock, first Nyquist zone is from  
dc to 1.5 GHz, the second Nyquist zone is from 1.5 GHz to 3  
GHz, and so on.  
000 = First Nyquist zone (dc – fS / 2)  
001 = Second Nyquist zone (fS / 2 – fS)  
010 = Third Nyquist zone  
011 = Fourth Nyquist zone  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
89  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
8.5.11 JESD Digital Page (6900h, M = 1)  
8.5.11.1 Register 001h (address = 001h), JESD Digital Page  
Figure 171. Register 001h  
7
6
0
5
0
4
3
0
2
1
0
CTRL K  
R/W-0h  
TESTMODE EN  
R/W-0h  
LANE ALIGN  
R/W-0h  
FRAME ALIGN  
R/W-0h  
TX LINK DIS  
R/W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 59. Register 001h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CTRL K  
R/W  
0h  
This bit is the enable bit for the number of frames per  
multiframe.  
0 = Default is five frames per multiframe  
1 = Frames per multiframe can be set in register 06h  
6-5  
4
0
R/W  
0h  
0
Must write 0  
TESTMODE EN  
This bit generates a long transport layer test pattern mode  
according to section 5.1.6.3 of the JESD204B specification.  
0 = Test mode disabled  
1 = Test mode enabled  
3
2
0
W
0h  
0h  
Must write 0  
LANE ALIGN  
R/W  
This bit inserts a lane alignment character (K28.3) for the  
receiver to align to the lane boundary per section 5.3.3.5 of the  
JESD204B specification.  
0 = Normal operation  
1 = Inserts lane alignment characters  
1
0
FRAME ALIGN  
TX LINK DIS  
R/W  
R/W  
0h  
0h  
This bit inserts a frame alignment character (K28.7) for the  
receiver to align to the frame boundary per section 5.3.35 of the  
JESD204B specification.  
0 = Normal operation  
1 = Inserts frame alignment characters  
This bit disables sending the initial link alignment (ILA) sequence  
when SYNC is deasserted.  
0 = Normal operation  
1 = ILA disabled  
90  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
8.5.11.2 Register 002h (address = 002h ), JESD Digital Page  
Figure 172. Register 002h  
7
6
5
0
4
0
3
2
1
0
SYNC REG  
R/W-0h  
SYNC REG EN  
R/W-0h  
12BIT MODE  
R/W-0h  
JESD MODE0  
R/W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 60. Register 002h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
SYNC REG  
R/W  
0h  
This bit provides SYNC control through the SPI.  
0 = Normal operation  
1 = ADC output data are replaced with K28.5 characters  
6
SYNC REG EN  
R/W  
0h  
This bit is the enable bit for SYNC control through the SPI.  
0 = Normal operation  
1 = SYNC control through the SPI is enabled (ignores the  
SYNCB input pins)  
5-4  
3-2  
0
W
0h  
0h  
Must write 0  
12BIT MODE  
R/W  
This bit enables the 12-bit output mode for more efficient data  
packing.  
00 = Normal operation, 14-bit output  
01, 10 = Unused  
11 = High-efficient data packing enabled  
1-0  
JESD MODE0  
R/W  
0h  
These bits select the configuration register to configure the  
correct LMFS frame assemblies for different decimation settings;  
see the JESD frame assembly tables in the JESD204B Frame  
Assembly section.  
00 = 0  
01 = 1  
10 = 2  
11 = 3  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
91  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
8.5.11.3 Register 003h (address = 003h), JESD Digital Page  
Figure 173. Register 003h  
7
6
5
4
3
2
1
0
LMFC MASK  
RESET  
LINK LAYER TESTMODE  
R/W-0h  
LINK LAY RPAT  
R/W-0h  
JESD MODE1  
R/W-1h  
JESD MODE2  
R/W-0h  
RAMP 12BIT  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 61. Register 003h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
LINK LAYER TESTMODE  
R/W  
0h  
These bits generate a pattern according to section 5.3.3.8.2 of  
the JESD204B document.  
000 = Normal ADC data  
001 = D21.5 (high-frequency jitter pattern)  
010 = K28.5 (mixed-frequency jitter pattern)  
011 = Repeat initial lane alignment (generates a K28.5 character  
and repeats lane alignment sequences continuously)  
100 = 12-octet RPAT jitter pattern  
4
LINK LAY RPAT  
R/W  
0h  
This bit changes the running disparity in a modified RPAT  
pattern test mode (only when link layer test mode = 100).  
0 = Normal operation  
1 = Changes disparity  
3
2
LMFC MASK RESET  
JESD MODE1  
R/W  
R/W  
0h  
1h  
0 = Normal operation  
These bits select the configuration register to configure the  
correct LMFS frame assemblies for different decimation settings;  
see the JESD frame assembly tables in the JESD204B Frame  
Assembly section  
1
0
JESD MODE2  
RAMP 12BIT  
R/W  
R/W  
0h  
0h  
These bits select the configuration register to configure the  
correct LMFS frame assemblies for different decimation settings;  
see the JESD frame assembly tables in the JESD204B Frame  
Assembly section  
12-bit RAMP test pattern.  
0 = Normal data output  
1 = Digital output is the RAMP pattern  
8.5.11.4 Register 004h (address = 004h), JESD Digital Page  
Figure 174. Register 004h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
REL ILA SEQ  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 62. Register 004h Field Descriptions  
Bit  
7-2  
1-0  
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
REL ILA SEQ  
R/W  
0h  
These bits delay the generation of the lane alignment sequence  
by 0, 1, 2, or 3 multiframes after the code group synchronization.  
00 = 0 multiframe delays  
01 = 1 multiframe delay  
10 = 2 multiframe delays  
11 = 3 multiframe delays  
92  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
8.5.11.5 Register 006h (address = 006h), JESD Digital Page  
Figure 175. Register 006h  
7
6
0
5
0
4
0
3
0
2
0
1
0
0
0
SCRAMBLE EN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 63. Register 006h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
SCRAMBLE EN  
R/W  
0h  
This bit is the scramble enable bit in the JESD204B interface.  
0 = Scrambling disabled  
1 = Scrambling enabled  
6-0  
0
W
0h  
Must write 0  
8.5.11.6 Register 007h (address = 007h), JESD Digital Page  
Figure 176. Register 007h  
7
0
6
0
5
0
4
3
2
1
0
FRAMES PER MULTIFRAME (K)  
R/W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 64. Register 007h Field Descriptions  
Bit  
7-5  
4-0  
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
FRAMES PER MULTIFRAME (K)  
R/W  
0h  
These bits set the number of multiframes.  
Actual K is the value in hex + 1 (that is, 0Fh is K = 16).  
8.5.11.7 Register 016h (address = 016h), JESD Digital Page  
Figure 177. Register 016h  
7
0
6
5
4
3
0
2
0
1
0
0
0
40x MODE  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 65. Register 016h Field Descriptions  
Bit  
7
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
6-4  
40x MODE  
R/W  
0h  
This register must be set for 40X mode operation.  
000 = Register is set for 20X and 80X mode  
111 = Register must be set for 40X mode  
3-0  
0
W
0h  
Must write 0  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
93  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
8.5.11.8 Register 017h (address = 017h), JESD Digital Page  
Figure 178. Register 017h  
7
0
6
0
5
0
4
0
3
2
1
0
Lane0  
POL  
Lane1  
POL  
Lane2  
POL  
Lane3  
POL  
W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 66. Register 017h Field Descriptions  
Bit  
7
Field  
Type  
W
Reset  
0h  
Description  
Must write 0  
Must write 0  
0
6-4  
3-0  
0
R/W  
W
0h  
Lane[3:0] POL  
0h  
These bits set the polarity of the individual JESD output lanes.  
0 = Polarity as given in the pinout (noninverted)  
1 = Inverts polarity (positive, P, or negative, M)  
8.5.11.9 Register 032h-035h (address = 032h-035h), JESD Digital Page  
Figure 179. Register 032h  
7
6
5
4
3
2
2
2
2
1
0
0
0
SEL EMP LANE 0  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
W-0h  
W-0h  
Figure 180. Register 033h  
7
6
5
4
3
1
0
0
0
SEL EMP LANE 1  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
W-0h  
W-0h  
Figure 181. Register 034h  
7
6
5
4
3
1
0
0
0
SEL EMP LANE 2  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
W-0h  
W-0h  
Figure 182. Register 035h  
7
6
5
4
3
1
0
0
0
SEL EMP LANE 3  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
W-0h  
W-0h  
94  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
Table 67. Register 032h-035h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
SEL EMP LANE  
R/W  
0h  
These bits select the amount of de-emphasis for the JESD  
output transmitter. The de-emphasis value in dB is measured as  
the ratio between the peak value after the signal transition to the  
settled value of the voltage in one bit period.  
0 = 0 dB  
1 = –1 dB  
3 = –2 dB  
7 = –4.1 dB  
15 = –6.2 dB  
31 = –8.2 dB  
63 = –11.5 dB  
1-0  
0
W
0h  
Must write 0  
8.5.11.10 Register 036h (address = 036h), JESD Digital Page  
Figure 183. Register 036h  
7
0
6
5
0
4
0
3
0
2
0
1
0
0
0
CMOS SYNCB  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 68. Register 036h Field Descriptions  
Bit  
7
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
6
CMOS SYNCB  
R/W  
0h  
This bit enables single-ended control of SYNCB using the  
GPIO4 pin (pin 63). The differential SYNCB input is ignored. Set  
the EN CMOS SYNCB bit and keep the CH bit high to make this  
bit effective.  
0 = Differential SYNCB input  
1 = Single-ended SYNCB input using pin 63  
5-0  
0
W
0h  
Must write 0  
8.5.11.11 Register 037h (address = 037h), JESD Digital Page  
Figure 184. Register 037h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
PLL MODE  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 69. Register 037h Field Descriptions  
Bit  
7-2  
1-0  
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
PLL MODE  
R/W  
0h  
These bits select the PLL multiplication factor; see the JESD  
tables in the JESD204B Frame Assembly section for settings.  
00 = 20X mode  
01 = 16X mode  
10 = 40x mode (the 40x MODE bit in register 16h must also be  
set)  
11 = 80x mode  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
95  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
8.5.11.12 Register 03Ch (address = 03Ch), JESD Digital Page  
Figure 185. Register 03Ch  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
EN CMOS SYNCB  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 70. Register 03Ch Field Descriptions  
Bit  
7-1  
0
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
EN CMOS SYNCB  
R/W  
0h  
Set this bit and the CMOS SYNCB bit high to provide a single-  
ended SYNC input to the device instead of differential. Also,  
keep the CH bit high. Thus:  
1. Select the JESD digital page.  
2. Write address 7036h with value 40h.  
3. Write address 703Ch with value 01h.  
96  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
8.5.11.13 Register 03Eh (address = 03Eh), JESD Digital Page  
Figure 186. Register 03Eh  
7
0
6
5
4
0
3
0
2
0
1
0
0
0
MASK CLKDIV SYSREF  
R/W-0h  
MASK NCO SYSREF  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 71. Register 03Eh Field Descriptions  
Bit  
7
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
6
MASK CLKDIV SYSREF  
R/W  
0h  
Use this bit to mask the SYSREF going to the input clock  
divider.  
0 = Input clock divider is reset when SYSREF is asserted (that  
is, when SYSREF transitions from low to high)  
1 = Input clock divider ignores SYSREF assertions  
5
MASK NCO SYSREF  
R/W  
W
0h  
0h  
Use this bit to mask the SYSREF going to the NCO in the DDC  
block and LMFC counter of the JESD interface.  
0 = NCO phase and LMFC counter are reset when SYSREF is  
asserted (that is, when SYSREF transitions from low to high)  
1 = NCO and LMFC counter ignore SYSREF assertions  
4-0  
0
Must write 0  
8.5.12 Decimation Filter Page  
Direct Addressing, 16-Bit Address, 5000h for Channel A, 5800h for Channel B  
8.5.12.1 Register 000h (address = 000h), Decimation Filter Page  
Figure 187. Register 000h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
DDC EN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 72. Register 000h Field Descriptions  
Bit  
7-1  
0
Field  
0
Type  
W
Reset  
0h  
Description  
Must write 0  
DDC EN  
R/W  
0h  
This bit enables the decimation filter and disables the bypass  
mode.  
0 = Do not use  
1 = Decimation filter enabled  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
97  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
8.5.12.2 Register 001h (address = 001h), Decimation Filter Page  
Figure 188. Register 001h  
7
0
6
0
5
0
4
0
3
2
1
0
DECIM FACTOR  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 73. Register 001h Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
DECIM FACTOR  
R/W  
0h  
These bits configure the decimation filter setting.  
0000 = Divide-by-4 complex  
0001 = Divide-by-6 complex  
0010 = Divide-by-8 complex  
0011 = Divide-by-9 complex  
0100 = Divide-by-10 complex  
0101 = Divide-by-12 complex  
0110 = Not used  
0111 = Divide-by-16 complex  
1000 = Divide-by-18 complex  
1001 = Divide-by-20 complex  
1010 = Divide-by-24 complex  
1011 = Not used  
1100 = Divide-by-32 complex  
8.5.12.3 Register 002h (address = 2h), Decimation Filter Page  
Figure 189. Register 002h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
DUAL BAND EN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 74. Register 002h Field Descriptions  
Bit  
7-1  
0
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
DUAL BAND EN  
R/W  
0h  
This bit enables the dual-band DDC filter for the corresponding  
channel.  
0 = Single-band DDC; available in both ADC32RF80 and  
ADC32RF83  
1 = Dual-band DDC; available in ADC32RF80 only  
98  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
8.5.12.4 Register 005h (address = 005h), Decimation Filter Page  
Figure 190. Register 005h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
REAL OUT EN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 75. Register 005h Field Descriptions  
Bit  
7-1  
0
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
REAL OUT EN  
R/W  
0h  
This bit converts the complex output to real output at 2x the  
output rate.  
0 = Complex output format  
1 = Real output format  
8.5.12.5 Register 006h (address = 006h), Decimation Filter Page  
Figure 191. Register 006h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
DDC MUX  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 76. Register 006h Field Descriptions  
Bit  
7-1  
0
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
DDC MUX  
R/W  
0h  
This bit connects the DDC to the alternate channel ADC to  
enable up to four DDCs with one ADC and completely turn off  
the other ADC channel.  
0 = Normal operation  
1 = DDC block takes input from the alternate ADC  
8.5.12.6 Register 007h (address = 007h), Decimation Filter Page  
Figure 192. Register 007h  
7
6
5
4
3
2
1
0
DDC0 NCO1 LSB  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 77. Register 007h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DDC0 NCO1 LSB  
R/W  
0h  
These bits are the LSB of the NCO frequency word for NCO1 of  
DDC0 (band 1).  
The LSB represents fS / (216), where fS is the ADC sampling  
frequency.  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
99  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
8.5.12.7 Register 008h (address = 008h), Decimation Filter Page  
Figure 193. Register 008h  
7
6
5
4
3
2
1
0
DDC0 NCO1 MSB  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 78. Register 008h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DDC0 NCO1 MSB  
R/W  
0h  
These bits are the MSB of the NCO frequency word for NCO1 of  
DDC0 (band 1).  
The LSB represents fS / (216), where fS is the ADC sampling  
frequency.  
8.5.12.8 Register 009h (address = 009h), Decimation Filter Page  
Figure 194. Register 009h  
7
6
5
4
3
2
1
0
DDC0 NCO2 LSB  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 79. Register 009h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DDC0 NCO2 MSB  
R/W  
0h  
These bits are the LSB of the NCO frequency word for NCO2 of  
DDC0 (band 1).  
The LSB represents fS / (216), where fS is the ADC sampling  
frequency.  
8.5.12.9 Register 00Ah (address = 00Ah), Decimation Filter Page  
Figure 195. Register 00Ah  
7
6
5
4
3
2
1
0
DDC0 NCO2 MSB  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 80. Register 00Ah Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DDC0 NCO2 MSB  
R/W  
0h  
These bits are the MSB of the NCO frequency word for NCO2 of  
DDC0 (band 1).  
The LSB represents fS / (216), where fS is the ADC sampling  
frequency.  
100  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
8.5.12.10 Register 00Bh (address = 00Bh), Decimation Filter Page  
Figure 196. Register 00Bh  
7
6
5
4
3
2
1
0
DDC0 NCO3 LSB  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 81. Register 00Bh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DDC0 NCO3 LSB  
R/W  
0h  
These bits are the LSB of the NCO frequency word for NCO3 of  
DDC0 (band 1).  
The LSB represents fS / (216), where fS is the ADC sampling  
frequency.  
8.5.12.11 Register 00Ch (address = 00Ch), Decimation Filter Page  
Figure 197. Register 00Ch  
7
6
5
4
3
2
1
0
DDC0 NCO3 MSB  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 82. Register 00Ch Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DDC0 NCO3 MSB  
R/W  
0h  
These bits are the MSB of the NCO frequency word for NCO3 of  
DDC0 (band 1).  
The LSB represents fS / (216), where fS is the ADC sampling  
frequency.  
8.5.12.12 Register 00Dh (address = 00Dh), Decimation Filter Page  
Figure 198. Register 00Dh  
7
6
5
4
3
2
1
0
DDC1 NCO4 LSB  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 83. Register 00Dh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DDC1 NCO4 LSB  
R/W  
0h  
These bits are the LSB of the NCO frequency word for NCO4 of  
DDC1 (band 2, only when dual-band mode is enabled).  
The LSB represents fS / (216), where fS is the ADC sampling  
frequency.  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
101  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
8.5.12.13 Register 00Eh (address = 00Eh), Decimation Filter Page  
Figure 199. Register 00Eh  
7
6
5
4
3
2
1
0
DDC1 NCO4 MSB  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 84. Register 00Eh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DDC1 NCO4 MSB  
R/W  
0h  
These bits are the MSB of the NCO frequency word for NCO4 of  
DDC1 (band 2, only when dual-band mode is enabled).  
The LSB represents fS / (216), where fS is the ADC sampling  
frequency.  
8.5.12.14 Register 00Fh (address = 00Fh), Decimation Filter Page  
Figure 200. Register 00Fh  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
NCO SEL PIN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 85. Register 00Fh Field Descriptions  
Bit  
7-1  
0
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
NCO SEL PIN  
R/W  
0h  
This bit enables NCO selection through the GPIO pins.  
0 = NCO selection through SPI (see address 0h10)  
1 = NCO selection through GPIO pins  
8.5.12.15 Register 010h (address = 010h), Decimation Filter Page  
Figure 201. Register 010h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
NCO SEL  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 86. Register 010h Field Descriptions  
Bit  
7-2  
1-0  
Field  
0
Type  
W
Reset  
0h  
Description  
Must write 0  
NCO SEL  
R/W  
0h  
These bits enable NCO selection through register setting.  
00 = NCO1 selected for DDC 1  
01 = NCO2 selected for DDC 1  
10 = NCO3 selected for DDC 1  
102  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
8.5.12.16 Register 011h (address = 011h), Decimation Filter Page  
Figure 202. Register 011h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
LMFC RESET MODE  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 87. Register 011h Field Descriptions  
Bit  
7-2  
1-0  
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
LMFC RESET MODE  
R/W  
0h  
These bits reset the configuration for all DDCs and NCOs.  
00 = All DDCs and NCOs are reset with every LMFC RESET  
01 = Reset with first LMFC RESET after DDC start. Afterwards,  
reset only when analog clock dividers are resynchronized.  
10 = Reset with first LMFC RESET after DDC start. Afterwards,  
whenever analog clock dividers are resynchronized, use two  
LMFC resets.  
11 = Do not use an LMFC reset at all. Reset the DDCs only  
when a DDC start is asserted and afterwards continue normal  
operation. Deterministic latency is not ensured.  
8.5.12.17 Register 014h (address = 014h), Decimation Filter Page  
Figure 203. Register 014h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
DDC0 6DB GAIN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 88. Register 014h Field Descriptions  
Bit  
7-1  
0
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
DDC0 6DB GAIN  
R/W  
0h  
This bit scales the output of DDC0 by 2 (6 dB) to compensate  
for real-to-complex conversion and image suppression. This  
scaling does not apply to the high-bandwidth filter path (divide-  
by-4 and -6); see register 1Fh.  
0 = Normal operation  
1 = 6-dB digital gain is added  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
103  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
8.5.12.18 Register 016h (address = 016h), Decimation Filter Page  
Figure 204. Register 016h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
DDC1 6DB GAIN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 89. Register 016h Field Descriptions  
Bit  
7-1  
0
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
DDC1 6DB GAIN  
R/W  
0h  
This bit scales the output of DDC1 by 2 (6 dB) to compensate  
for real-to-complex conversion and image suppression. This  
scaling does not apply to the high-bandwidth filter path (divide-  
by-4 and -6); see register 1Fh.  
0 = Normal operation  
1 = 6-dB digital gain is added  
8.5.12.19 Register 01Eh (address = 01Eh), Decimation Filter Page  
Figure 205. Register 01Eh  
7
0
6
5
4
3
0
2
0
1
0
0
0
DDC DET LAT  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 90. Register 01Eh Field Descriptions  
Bit  
7
Field  
Type Reset  
Description  
0
W
0h  
0h  
Must write 0  
6-4  
DDC DET LAT  
R/W  
These bits ensure deterministic latency depending on the decimation setting  
used; see Table 91.  
3-0  
0
W
0h  
Must write 0  
Table 91. DDC DET LAT Bit Settings  
SETTING  
10h  
COMPLEX DECIMATION SETTING  
Divide-by-24, -32 complex  
20h  
Divide-by-16, -18, -20 complex  
Divide-by-by 6, -12 complex  
Divide-by-4, -8, -9, -10 complex  
40h  
50h  
104  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
 
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
8.5.12.20 Register 01Fh (address = 01Fh), Decimation Filter Page  
Figure 206. Register 01Fh  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
WBF 6DB GAIN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 92. Register 01Fh Field Descriptions  
Bit  
7-1  
0
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
WBF 6DB GAIN  
R/W  
0h  
This bit scales the output of the wide bandwidth DDC filter by 2  
(6 dB) to compensate for real-to-complex conversion and image  
suppression. This setting only applies to the high-bandwidth filter  
path (divide-by-4 and -6).  
0 = Normal operation  
1 = 6-dB digital gain is added  
8.5.12.21 Register 033h-036h (address = 033h-036h), Decimation Filter Page  
Figure 207. Register 033h  
7
6
5
4
3
2
2
2
2
1
1
1
1
0
0
0
0
CUSTOM PATTERN1[7:0]  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Figure 208. Register 034h  
7
6
5
4
3
CUSTOM PATTERN1[15:8]  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Figure 209. Register 035h  
7
6
5
4
3
CUSTOM PATTERN2[7:0]  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Figure 210. Register 036h  
7
6
5
4
3
CUSTOM PATTERN2[15:8]  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 93. Register 033h-036h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
CUSTOM PATTERN  
R/W  
0h  
These bits set the custom test pattern in address 33h, 34h, 35h,  
or 36h.  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
105  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
8.5.12.22 Register 037h (address = 037h), Decimation Filter Page  
Figure 211. Register 037h  
7
6
5
4
3
2
1
0
TEST PATTERN DDC1 Q-DATA  
W-0h W-0h  
TEST PATTERN DDC1 I-DATA  
R/W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 94. Register 037h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
TEST PATTERN DDC1 Q-DATA  
W
0h  
These bits select the test patten for the Q stream of the DDC1.  
0000 = Normal operation using ADC output data  
0001 = Outputs all 0s  
0010 = Outputs all 1s  
0011 = Outputs toggle pattern: output data are an alternating  
sequence of 10101010101010 and 01010101010101  
0100 = Output digital ramp: output data increment by one LSB  
every clock cycle from code 0 to 65535  
0110 = Single pattern: output data are a custom pattern 1 (75h  
and 76h)  
0111 Double pattern: output data alternate between custom  
pattern 1 and custom pattern 2  
1000 = Deskew pattern: output data are AAAAh  
1001 = SYNC pattern: output data are FFFFh  
3-0  
TEST PATTERN DDC1 I-DATA  
R/W  
0h  
These bits select the test patten for the I stream of the DDC1.  
0000 = Normal operation using ADC output data  
0001 = Outputs all 0s  
0010 = Outputs all 1s  
0011 = Outputs toggle pattern: output data are an alternating  
sequence of 10101010101010 and 01010101010101  
0100 = Output digital ramp: output data increment by one LSB  
every clock cycle from code 0 to 65535  
0110 = Single pattern: output data are a custom pattern 1 (75h  
and 76h)  
0111 Double pattern: output data alternate between custom  
pattern 1 and custom pattern 2  
1000 = Deskew pattern: output data are AAAAh  
1001 = SYNC pattern: output data are FFFFh  
106  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
8.5.12.22.1 Register 038h (address = 038h), Decimation Filter Page  
Figure 212. Register 038h  
7
6
5
4
3
2
1
0
TEST PATTERN DDC2 Q-DATA  
R/W-0h  
TEST PATTERN DDC2 I -DATA  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 95. Register 038h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
TEST PATTERN DDC2 Q-DATA  
W
0h  
These bits select the test patten for the Q stream of the DDC2.  
0000 = Normal operation using ADC output data  
0001 = Outputs all 0s  
0010 = Outputs all 1s  
0011 = Outputs toggle pattern: output data are an alternating  
sequence of 10101010101010 and 01010101010101  
0100 = Output digital ramp: output data increment by one LSB  
every clock cycle from code 0 to 65535  
0110 = Single pattern: output data are a custom pattern 1 (75h  
and 76h)  
0111 Double pattern: output data alternate between custom  
pattern 1 and custom pattern 2  
1000 = Deskew pattern: output data are AAAAh  
1001 = SYNC pattern: output data are FFFFh  
3-0  
TEST PATTERN DDC2 I -DATA  
R/W  
0h  
These bits select the test patten for the I stream of the DDC2.  
0000 = Normal operation using ADC output data  
0001 = Outputs all 0s  
0010 = Outputs all 1s  
0011 = Outputs toggle pattern: output data are an alternating  
sequence of 10101010101010 and 01010101010101  
0100 = Output digital ramp: output data increment by one LSB  
every clock cycle from code 0 to 65535  
0110 = Single pattern: output data are a custom pattern 1 (75h  
and 76h)  
0111 Double pattern: output data alternate between custom  
pattern 1 and custom pattern 2  
1000 = Deskew pattern: output data are AAAAh  
1001 = SYNC pattern: output data are FFFFh  
8.5.12.22.2 Register 039h (address = 039h), Decimation Filter Page  
Figure 213. Register 039h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
USE COMMON TEST  
PATTERN  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 96. Register 039h Field Descriptions  
Bit  
7-1  
0
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
USE COMMON TEST PATTERN  
R/W  
0h  
0 = Each data stream sends test patterns programmed by  
bits[3:0] of register 37h.  
1 = Test patterns are individually programmed for the I and Q  
stream of each DDC using the TEST PATTERN DDCx y-DATA  
register bits (where x = 1 or 2 and y = I or Q).  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
107  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
8.5.12.23 Register 03Ah (address = 03Ah), Decimation Filter Page  
Figure 214. Register 03Ah  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
TEST PAT RES  
R/W-0h  
TP RES EN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 97. Register 03Ah Field Descriptions  
Bit  
7-2  
1
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
TEST PAT RES  
R/W  
0h  
Pulsing this bit resets the test pattern. The test pattern reset  
must be enabled first (bit D0).  
0 = Normal operation  
1 = Reset the test pattern  
0
TP RES EN  
R/W  
0h  
This bit enables the test pattern reset.  
0 = Reset disabled  
1 = Reset enabled  
108  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
8.5.13 Power Detector Page  
8.5.13.1 Register 000h (address = 000h), Power Detector Page  
Figure 215. Register 000h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
PKDET EN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 98. Register 000h Field Descriptions  
Bit  
7-1  
0
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
PKDET EN  
R/W  
0h  
This bit enables the peak power and crossing detector.  
0 = Power detector disabled  
1 = Power detector enabled  
8.5.13.2 Register 001h-002h (address = 001h-002h), Power Detector Page  
Figure 216. Register 001h  
7
6
5
4
3
2
2
1
1
0
0
BLKPKDET [7:0]  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Figure 217. Register 002h  
7
6
5
4
3
BLKPKDET [15:8]  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 99. Register 001h-002h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
BLKPKDET  
R/W  
0h  
This register specifies the block length in terms of number of  
samples (S`) used for peak power computation. Each sample S`  
is a peak of 8 actual ADC samples. This parameter is a 17-bit  
value directly in linear scale. In decimation mode, the block  
length must be a multiple of a divide-by-4 or -6 complex: length  
= 5 × decimation factor.  
The divide-by-8 to -32 complex: length = 10 × decimation factor.  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
109  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
8.5.13.3 Register 003h (address = 003h), Power Detector Page  
Figure 218. Register 003h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
BLKPKDET[16]  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 100. Register 003h Field Descriptions  
Bit  
7-1  
0
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
BLKPKDET[16]  
R/W  
0h  
This register specifies the block length in terms of number of  
samples (S`) used for peak power computation. Each sample S`  
is a peak of 8 actual ADC samples. This parameter is a 17-bit  
value directly in linear scale. In decimation mode, the block  
length must be a multiple of a divide-by-4 or -6 complex: length  
= 5 × decimation factor.  
The divide-by-8 to -32 complex: length = 10 × decimation factor.  
8.5.13.4 Register 007h-00Ah (address = 007h-00Ah), Power Detector Page  
Figure 219. Register 007h  
7
6
5
4
3
2
2
2
2
1
1
1
1
0
0
0
0
BLKTHHH  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Figure 220. Register 008h  
7
6
5
4
3
BLKTHHL  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Figure 221. Register 009h  
7
6
5
4
3
BLKTHLH  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Figure 222. Register 00Ah  
7
6
5
4
3
BLKTHLL  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 101. Register 007h-00Ah Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
BLKTHHH  
BLKTHHL  
BLKTHLH  
BLKTHLL  
R/W  
0h  
These registers set the four different thresholds for the  
hysteresis function threshold values from 0 to 256 (2TH), where  
256 is equivalent to the peak amplitude.  
Example: BLKTHHH is set to –2 dBFS from peak: 10(-2 / 20) × 256  
= 203, then set 5407h, 5C07h = CBh.  
110  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
8.5.13.5 Register 00Bh-00Ch (address = 00Bh-00Ch), Power Detector Page  
Figure 223. Register 00Bh  
7
6
5
4
3
2
2
1
1
0
0
DWELL[7:0]  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Figure 224. Register 00Ch  
7
6
5
4
3
DWELL[15:8]  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 102. Register 00Bh-00Ch Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DWELL  
R/W  
0h  
DWELL time counter.  
When the computed block peak crosses the upper thresholds  
BLKTHHH or BLKTHLH, the peak detector output flags are set.  
In order to be reset, the computed block peak must remain  
continuously lower than the lower threshold (BLKTHHL or  
BLKTHLL) for the period specified by the DWELL value. This  
threshold is 16 bits, is specified in terms of fS / 8 clock cycles,  
and must be set to 0 for the crossing detector. Example: if fS = 3  
GSPS, fS / 8 = 375 MHz, and DWELL = 0100h then the DWELL  
time = 29 / 375 MHz = 1.36 µs.  
8.5.13.6 Register 00Dh (address = 00Dh), Power Detector Page  
Figure 225. Register 00Dh  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
FILT0LPSEL  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 103. Register 00Dh Field Descriptions  
Bit  
7-1  
0
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
FILT0LPSEL  
R/W  
0h  
This bit selects either the block detector output or 2-bit output as  
the input to the IIR filter.  
0 = Use the output of the high comparators (HH and HL) as the  
input of the IIR filter  
1 = Combine the output of the high (HH and HL) and low (LH  
and LL) comparators to generate a 3-level input to the IIR filter  
(–1, 0, 1)  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
111  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
8.5.13.7 Register 00Eh (address = 00Eh), Power Detector Page  
Figure 226. Register 00Eh  
7
0
6
0
5
0
4
0
3
2
1
0
TIMECONST  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 104. Register 00Eh Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
TIMECONST  
R/W  
0h  
These bits set the crossing detector time period for N = 0 to 15  
as 2N × fS / 8 clock cycles. The maximum time period is 32768 ×  
fS / 8 clock cycles (approximately 87 µs at 3 GSPS).  
8.5.13.8 Register 00Fh, 010h-012h, and 016h-019h (address = 00Fh, 010h-012h, and 016h-019h), Power  
Detector Page  
Figure 227. Register 00Fh  
7
6
5
4
3
2
2
2
2
2
1
1
1
1
1
0
0
0
0
0
FIL0THH[7:0]  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Figure 228. Register 010h  
7
6
5
4
3
FIL0THH[15:8]  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Figure 229. Register 011h  
7
6
5
4
3
FIL0THL[7:0]  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Figure 230. Register 012h  
7
6
5
4
3
FIL0THL[15:8]  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Figure 231. Register 016h  
7
6
5
4
3
FIL1THH[7:0]  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
112  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
Figure 232. Register 017h  
7
6
5
4
3
2
2
2
1
1
1
0
0
0
FIL1THH[15:8]  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Figure 233. Register 018h  
7
6
5
4
3
FIL1THL[7:0]  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Figure 234. Register 019h  
7
6
5
4
3
FIL1THL[15:8]  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 105. Register 00Fh, 010h, 011h, 012h, 016h, 017h, 018h, and 019h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
FIL0THH  
FIL0THL  
FIL1THH  
FIL1THL  
R/W  
0h  
Comparison thresholds for the crossing detector counter. This  
threshold is 16 bits in 2.14 signed notation. A value of 1 (4000h)  
corresponds to 100% crossings, a value of 0.125 (0800h)  
corresponds to 12.5% crossings.  
8.5.13.9 Register 013h-01Ah (address = 013h-01Ah), Power Detector Page  
Figure 235. Register 013h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
IIR0 2BIT EN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Figure 236. Register 01Ah  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
IIR1 2BIT EN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 106. Register 013h and 01Ah Field Descriptions  
Bit  
7-1  
0
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
IIR0 2BIT EN  
IIR1 2BIT EN  
R/W  
0h  
This bit enables 2-bit output format of the IIR0 and IIR1 output  
comparators.  
0 = Selects 1-bit output format  
1 = Selects 2-bit output format  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
113  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
8.5.13.10 Register 01Dh-01Eh (address = 01Dh-01Eh), Power Detector Page  
Figure 237. Register 01Dh  
7
6
5
4
3
2
1
1
0
DWELLIIR[7:0]  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Figure 238. Register 01Eh  
7
6
5
4
3
2
0
DWELLIIR[15:8]  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 107. Register 01Dh-01Eh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DWELLIIR  
R/W  
0h  
DWELL time counter for the IIR output comparators. When the  
IIR filter output crosses the upper thresholds FIL0THH or  
FIL1THH, the IIR peak detector output flags are set. In order to  
be reset, the output of the IIR filter must remain continuously  
lower than the lower threshold (FIL0THL or FIL1THL) for the  
period specified by the DWELLIIR value. This threshold is 16  
bits and is specified in terms of fS / 8 clock cycles.  
Example: if fS = 3 GSPS, fS / 8 = 375 MHz, and DWELLIIR =  
0100h, then the DWELL time = 29 / 375 MHz = 1.36 µs.  
8.5.13.11 Register 020h (address = 020h), Power Detector Page  
Figure 239. Register 020h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
RMSDET EN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 108. Register 020h Field Descriptions  
Bit  
7-1  
0
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
RMSDET EN  
R/W  
0h  
This bit enables the RMS power detector.  
0 = Power detector disabled  
1 = Power detector enabled  
114  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
8.5.13.12 Register 021h (address = 021h), Power Detector Page  
Figure 240. Register 021h  
7
0
6
0
5
0
4
3
2
1
0
PWRDETACCU  
R/W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 109. Register 021h Field Descriptions  
Bit  
7-5  
4-0  
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
PWRDETACCU  
R/W  
0h  
These bits program the block length to be used for RMS power  
computation.  
The block length is defined in terms of fS / 8 clocks and can be  
programmed as 2M, where M = 0 to 16.  
8.5.13.13 Register 022h-025h (address = 022h-025h), Power Detector Page  
Figure 241. Register 022h  
7
6
5
4
3
2
2
2
2
1
1
1
1
0
0
0
0
PWRDETH[7:0]  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Figure 242. Register 023h  
7
6
5
4
3
PWRDETH[15:8]  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Figure 243. Register 024h  
7
6
5
4
3
PWRDETL[7:0]  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Figure 244. Register 025h  
7
6
5
4
3
PWRDETL[15:8]  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 110. Register 022h-025h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
PWRDETH[15:0]  
PWRDETL[15:0]  
R/W  
0h  
The computed average power is compared against these high and low  
thresholds. One LSB of the thresholds represents 1 / 216  
.
Example: if PWRDETH is set to –14 dBFS from peak, (10(–14 / 20))2 × 216 = 2609,  
then set 5422h, 5423h, 5C22h, 5C23h = 0A31h.  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
115  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
8.5.13.14 Register 027h (address = 027h), Power Detector Page  
Figure 245. Register 027h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
RMS 2BIT EN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 111. Register 027h Field Descriptions  
Bit  
7-1  
0
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
RMS 2BIT EN  
R/W  
0h  
This bit enables 2-bit output format on the RMS output  
comparators.  
0 = Selects 1-bit output format  
1 = Selects 2-bit output format  
8.5.13.15 Register 02Bh (address = 02Bh), Power Detector Page  
Figure 246. Register 02Bh  
7
0
6
0
5
0
4
3
0
2
0
1
0
0
0
RESET AGC  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 112. Register 02Bh Field Descriptions  
Bit  
7-5  
4
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
RESET AGC  
R/W  
0h  
After configuration, the AGC module must be reset and then  
brought out of reset to start operation.  
0 = Clear AGC reset  
1 = Set AGC reset  
Example: set 542Bh to 10h and then to 00h.  
3-0  
0
W
0h  
Must write 0  
116  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
8.5.13.16 Register 032h-035h (address = 032h-035h), Power Detector Page  
Figure 247. Register 032h  
7
6
5
4
3
2
2
2
2
1
1
1
1
0
0
0
0
OUTSEL GPIO1  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Figure 248. Register 033h  
7
6
5
4
3
OUTSEL GPIO2  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Figure 249. Register 034h  
7
6
5
4
3
OUTSEL GPIO3  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Figure 250. Register 035h  
7
6
5
4
3
OUTSEL GPIO4  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 113. Register 032h-035h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
OUTSEL GPIO1  
OUTSEL GPIO2  
OUTSEL GPIO3  
OUTSEL GPIO4  
R/W  
0h  
These bits set the function or signal for each GPIO pin.  
0 = IIR PK DET0[0] of channel A  
1 = IIR PK DET0[1] of channel A (2-bit mode)  
2 = IIR PK DET1[0] of channel A  
3 = IIR PK DET1[1] of channel A (2-bit mode)  
4 = BLKPKDETH of channel A  
5 = BLKPKDETL of channel A  
6 = PWR Det[0] of channel A  
7 = PWR Det[1] of channel A (2-bit mode)  
8 = FOVR of channel A  
9-17 = Repeat outputs 0-8 but for channel B instead  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
117  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
8.5.13.17 Register 037h (address = 037h), Power Detector Page  
Figure 251. Register 037h  
7
0
6
0
5
0
4
0
3
2
1
0
IODIR GPIO4  
R/W-0h  
IODIR GPIO3  
R/W-0h  
IODIR GPIO2  
R/W-0h  
IODIR GPIO1  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 114. Register 037h Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0  
IODIRGPIO[4:1]  
R/W  
0h  
These bits select the output direction for the GPIO[4:1] pins.  
0 = Input (for the NCO control)  
1 = Output (for the AGC alarm function)  
8.5.13.18 Register 038h (address = 038h), Power Detector Page  
Figure 252. Register 038h  
7
0
6
0
5
4
3
0
2
0
1
0
INSEL1  
R/W-0h  
INSEL0  
R/W-0h  
W-0h  
W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 115. Register 038h Field Descriptions  
Bit  
7-6  
5-4  
Field  
0
Type  
W
Reset  
0h  
Description  
Must write 0  
INSEL1  
R/W  
0h  
These bits select which GPIO pin is used for the INSEL1 bit.  
00 = GPIO4  
01 = GPIO1  
10 = GPIO3  
11 = GPIO2  
Table 116 lists the NCO selection, based on the bit settings of  
the INSEL pins.  
3-2  
1-0  
0
W
0h  
0h  
Must write 0  
INSEL0  
R/W  
These bits select which GPIO pin is used for the INSEL0 bit.  
00 = GPIO4  
01 = GPIO1  
10 = GPIO3  
11 = GPIO2  
Table 116 lists the NCO selection, based on the bit settings of  
the INSEL pins.  
Table 116. INSEL Bit Settings  
INSEL1  
INSEL2  
NCO SELECTED  
NCO1  
0
0
1
1
0
1
0
1
NCO2  
NCO3  
n/a  
118  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
 
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
9.1.1 Start-Up Sequence  
The steps in Table 117 are recommended as the power-up sequence when the ADC32RF8x is in the decimation-  
by-4 complex output mode.  
Table 117. Initialization Sequence  
PAGE, REGISTER  
ADDRESS AND DATA  
STEP  
DESCRIPTION  
COMMENT  
Supply all supply voltages. There is no required  
power-supply sequence for the 1.15 V, 1.2 V,  
and 1.9 V supplies, and can be supplied in any  
order.  
1
2
3
Provide the SYSREF signal.  
Pulse a hardware reset (low-to-high-to-low) on  
pins 33 and 34.  
The Power-up config file contains analog  
trim registers that are required for best  
performance of the ADC. Write these  
registers every time after power up.  
Write the register addresses described in the  
PowerUpConfig file.  
See the files located in  
SBAA226  
4
5
Write the register addresses mentioned in the  
ILConfigNyqX_ChA file, where X is the Nyquist  
zone.  
See the files located in  
SBAA226  
Based on the signal band of interest, provide  
the Nyquist zone information to the device.  
Write the register addresses mentioned in the  
ILConfigNyqX_ChB file, where X is the Nyquist  
zone.  
See the files located in  
SBAA226  
This step optimizes device’ performance by  
reducing interleaving mismatch errors.  
6
Wait for 50 ms for the device to estimate the  
interleaving errors.  
6.1  
Depending upon the Nyquist band of operation,  
choose and write the registers from the  
appropriate file, NLConfigNyqX_ChA, where X  
is the Nyquist zone.  
See the files located in  
SBAA226  
Third-order nonlinearity of the device is  
optimized by this step for channel A.  
7
Depending upon the Nyquist band of operation,  
choose and write the registers from the  
appropriate file, NLConfigNyqX_ChB, where X  
is the Nyquist zone.  
See the files located in  
SBAA226  
Third-order nonlinearity of the device is  
optimized by this step for channel B.  
7.1  
8
Configure the JESD interface and DDC block  
by writing the registers mentioned in the DDC  
Config file.  
Determine the DDC and JESD interface  
LMFS options. Program these options in this  
step.  
See the files located in  
SBAA226  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
119  
Product Folder Links: ADC32RF80 ADC32RF83  
 
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
9.1.2 Hardware Reset  
Timing information for the hardware reset is shown in Figure 253 and Table 118.  
Power Supplies  
t1  
RESET  
t2  
t3  
SEN  
Figure 253. Hardware Reset Timing Diagram  
Table 118. Hardware Reset Timing Information  
MIN  
TYP  
MAX  
UNIT  
ms  
µs  
t1  
t2  
t3  
Power-on delay from power-up to active high RESET pulse  
1
1
Reset pulse duration: active high RESET pulse duration  
Register write delay from RESET disable to SEN active  
100  
ns  
120  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
 
 
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
9.1.3 SNR and Clock Jitter  
The signal-to-noise ratio (SNR) of the ADC is limited by three different factors: quantization noise, thermal noise,  
and jitter, as shown in Equation 5. The quantization noise is typically not noticeable in pipeline converters and is  
84 dB for a 14-bit ADC. The thermal noise limits the SNR at low input frequencies and the clock jitter sets the  
SNR for higher input frequencies.  
2
2
2
SNRQuantization Noise  
SNRThermal Noise  
SNRJitter  
20  
÷
÷
÷
÷
÷
-
-
-
20  
20  
SNRADC dBc = -20log 10  
+ 10  
+ 10  
»
ÿ
«
«
«
÷
(5)  
(6)  
The SNR limitation resulting from sample clock jitter can be calculated by Equation 6:  
SNRJitter dBc = -20log 2p ì f ì tJitter  
»
ÿ
(
)
IN  
The total clock jitter (TJitter) has two components: the internal aperture jitter (90 fS) is set by the noise of the clock  
input buffer and the external clock jitter. TJitter can be calculated by Equation 7:  
2
2
tJitter  
=
t
,
+ t  
(
(
)
)
Jitter Ext _Clock _Input  
Aperture_ ADC  
(7)  
External clock jitter can be minimized by using high-quality clock sources and jitter cleaners as well as band-pass  
filters at the clock input. A faster clock slew rate also improves the ADC aperture jitter.  
The ADC32RF8x has a thermal noise of approximately 63 dBFS and an internal aperture jitter of 90 fS. The SNR,  
depending on the amount of external jitter for different input frequencies, is shown in Figure 254.  
63  
62  
61  
60  
59  
58  
57  
35 fs  
50 fs  
56  
100 fs  
150 fs  
200 fs  
55  
54  
53  
52  
10  
100  
1000  
5000  
Input Frequency (MHz)  
D048  
Figure 254. ADC SNR vs Input Frequency and External Clock Jitter  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
121  
Product Folder Links: ADC32RF80 ADC32RF83  
 
 
 
 
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
9.1.3.1 External Clock Phase Noise Consideration  
External clock jitter can be calculated by integrating the phase noise of the clock source out to approximately two  
times of the ADC sampling rate (2 × fS), as shown in Figure 255. In order to maximize the ADC SNR, an external  
band-pass filter is recommended to be used on the clock input. This filter reduces the jitter contribution from the  
broadband clock phase noise floor by effectively reducing the integration bandwidth to the pass band of the  
band-pass filter. This method is suitable when estimating the overall ADC SNR resulting from clock jitter at a  
certain input frequency.  
Clock Phase Noise  
Integration Bandwidth  
Frequency Offset  
fmin  
2 ì fS  
Figure 255. Integration Bandwidth for Extracting Jitter from Clock Phase Noise  
However, when estimating the affect of a nearby blocker (such as a strong in-band interferer to the sensitivity,  
the phase noise information can be used directly to estimate the noise budget contribution at a certain offset  
frequency, as shown in Figure 256.  
Inband Blocker  
Clock Phase Noise  
Modulated Onto the Blocker  
ADC Noise Floor  
Wanted Signal  
Figure 256. Small Wanted Signal in Presence of Interferer  
At the sampling instant, the phase noise profile of the clock source convolves with the input signal (for example,  
the small wanted signal and the strong interferer merge together). If the power of the clock phase noise in the  
signal band of interest is too large, the wanted signal cannot not be recovered.  
The resulting equivalent phase noise at the ADC input is also dependent on the sampling rate of the ADC and  
frequency of the input signal. The ADC sampling rate scales the clock phase noise, as shown in Equation 8.  
«
÷
fS  
ADCNSD dBc / Hz = PN  
dBc / Hz - 20 ì log  
(
)
(
)
CLK  
f
IN  
(8)  
Using this information, the noise contribution resulting from the phase noise profile of the ADC sampling clock  
can be calculated.  
122  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
 
 
 
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
9.1.4 Power Consumption in Different Modes  
The ADC32RF8x consumes approximately 6.6 W of power when both channels are active with a divide-by-4  
complex output. When different DDC options are used, the power consumption on the DVDD supply changes by  
a small amount but remains unaffected on other supplies. In the applications requiring just one channel to be  
active, channel A must be chosen as the active channel and channel B can be powered down. Power  
consumption reduces to approximately 4 W in single-channel operation with a divide-by-4 option at a 2949.12-  
MSPS device clock rate.  
Table 119 shows power consumption in different DDC modes for dual-channel and single-channel operation.  
Table 119. Power Consumption in Different DDC Modes (Sampling Clock Frequency, fS = 3 GSPS)  
DECIMATION  
OPTION  
ACTIVE  
CHANNEL  
TOTAL POWER  
(mW)  
ACTIVE DDC  
AVDD19 (mA)  
AVDD (mA)  
DVDD (mA)  
Divide-by-4  
Divide-by-8  
Divide-by-8  
Divide-by-16  
Divide-by-16  
Divide-by-24  
Divide-by-24  
Divide-by-32  
Divide-by-32  
Divide-by-4  
Divide-by-8  
Divide-by-8  
Divide-by-16  
Divide-by-16  
Divide-by-24  
Divide-by-24  
Divide-by-32  
Divide-by-32  
Channels A, B  
Channels A, B  
Channels A, B  
Channels A, B  
Channels A, B  
Channels A, B  
Channels A, B  
Channels A, B  
Channels A, B  
Channel A  
Single  
Dual  
1777  
1777  
1777  
1777  
1777  
1771  
1771  
1768  
1768  
961  
970  
973  
973  
972  
972  
975  
972  
972  
970  
796  
790  
786  
789  
786  
785  
787  
788  
786  
1785  
1960  
1730  
1971  
1705  
1938  
1667  
1835  
1574  
1096  
1168  
1047  
1172  
1045  
1155  
1016  
1104  
978  
6545  
6749  
6485  
6761  
6455  
6715  
6400  
6587  
6285  
4002  
4078  
3934  
4081  
3932  
4051  
3894  
3992  
3845  
Single  
Dual  
Single  
Dual  
Single  
Dual  
Single  
Single  
Dual  
Channel A  
961  
Channel A  
Single  
Dual  
961  
Channel A  
961  
Channel A  
Single  
Dual  
961  
Channel A  
958  
Channel A  
Single  
Dual  
958  
Channel A  
956  
Channel A  
Single  
956  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
123  
Product Folder Links: ADC32RF80 ADC32RF83  
 
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
9.1.5 Using DC Coupling in the ADC32RF8x  
The ADC32RF8x can be used in dc-coupling applications. However, the following points must be considered  
when designing the system:  
1. Ensure that the correct common-mode voltage is used at the ADC analog inputs.  
The analog inputs are internally self-biased to VCM through approximately a 33-Ω resistor. The internal  
biasing resistors also function as a termination resistor. However, if a different termination is required, the  
external resistor RTERM can be differentially placed between the analog inputs, as shown in Figure 257. The  
amplifier VOCM pin is recommended to be driven from the CM pin of the ADC to help the amplifier output  
common-mode voltage track the required common-mode voltage of the ADC.  
ADC32RF80  
ADC  
Digital  
INxP  
OUTP  
RS / 2  
RDC/2(2)  
JESD  
204B  
Interface  
Digital  
Ouput  
Low-Pass  
Filter  
Offset  
Corrector  
Interleaving  
Engine  
DDC  
Block  
RTERM  
Driving Amp  
(1)  
RCM  
VCM  
RDC / 2  
RS / 2  
OUTM  
VOCM  
INxM  
CM  
Copyright © 2016, Texas Instruments Incorporated  
(1) Set the INCR CM IMPEDANCE bit to increase the RCM from 0 Ω to > 5000 Ω.  
(2) RDC is approximately 65 Ω.  
Figure 257. The ADC32RF8x in a DC-Coupling Application  
2. Ensure that the correct SPI settings are written to the ADC.  
As shown in Figure 258, the ADC32RF8x has a digital block that estimates and corrects the offset mismatch  
among four interleaving ADC cores for a given channel.  
Offset Corrector  
Data Out  
Data In  
+
+
œ
Freeze  
Correction  
Disable  
Correction  
Estimator  
Figure 258. Offset Corrector in the ADC32RF8x  
The offset corrector block nullifies dc, fS / 8, fS / 4, 3 fS / 8, and fS / 2. The resulting spectrum becomes free  
from static spurs at these frequencies. The corrector continuously processes the data coming from the  
interleaving ADC cores and cannot distinguish if the tone at these frequencies is part of signal or if the tone  
originated from a mismatch among the interleaving ADC cores. Thus, in applications where the signal is  
present at these frequencies, the offset corrector block can be bypassed.  
124  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
 
 
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
9.1.5.1 Bypassing the Offset Corrector Block  
When the offset corrector is bypassed, offset mismatch among interleaving ADC cores appears in the ADC  
output spectrum. To correct the effects of mismatch, place the ADC in an idle channel state (no signal at the  
ADC inputs) and the corrector must be allowed to run for some time to estimate the mismatch, then the corrector  
is frozen so that the last estimated value is held. Required register writes are provided in Table 120.  
Table 120. Freezing and Bypassing the Offset Corrector Block  
STEP  
REGISTER WRITE  
COMMENT  
STEPS FOR FREEZING THE CORRECTOR BLOCK  
1
2
Signal source is turned off. The device detects an idle channel at its input.  
Wait for at least 0.4 ms for the corrector to estimate the internal offset  
Address 4001h, value 00h  
Address 4002h, value 00h  
Address 4003h, value 00h  
Address 4004h, value 61h  
Address 6068h, value C2h  
Address 4003h, value 01h  
Address 6068h, value C2h  
Select Offset Corr Page Channel A  
3
Freeze the corrector for channel A  
Select Offset Corr Page Channel B  
Freeze the corrector for channel B  
Signal source can now be turned on  
4
STEPS FOR BYPASSING THE CORRECTOR BLOCK  
Address 4001h, value 00h  
Address 4002h, value 00h  
Address 4003h, value 00h  
Address 4004h, value 61h  
Address 6068h, value 46h  
Address 4003h, value 01h  
Address 6068h, value 46h  
1
Select Offset Corr Page Channel A  
Disable the corrector for channel A  
Select Offset Corr Page Channel B  
Disable the corrector for channel B  
9.1.5.1.1 Effect of Temperature  
Figure 259 and Figure 260 show the behavior of nfS / 8 tones with respect to temperature when the offset  
corrector block is frozen or disabled.  
-40  
-50  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
Average of fS/8  
Average of 3fS/8  
Average of fS/4  
Average of fS/4  
Average of fS/8  
Average of 3fS/8  
-60  
-70  
-80  
-90  
-100  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
Figure 259. Offset Corrector Block Frozen at Room  
Temperature  
Figure 260. Offset Corrector Block Disabled  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
125  
Product Folder Links: ADC32RF80 ADC32RF83  
 
 
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
9.2 Typical Application  
The ADC32RF8x is designed for wideband receiver applications demanding high dynamic range over a large  
input frequency range. A typical schematic for an ac-coupled receiver is shown in Figure 261.  
Decoupling capacitors with low ESL are recommended to be placed as close as possible at the pins indicated in  
Figure 261. Additional capacitors can be placed on the remaining power pins.  
DVDD  
Matching Network  
10 k  
0.1 F  
Driver  
SPI Master  
GND  
DVDD  
0.1 F  
0.1 F  
0.1 F  
0.1 F  
10 nF  
AVDD19  
AVDD  
AVDD19  
AVDD  
DVDD  
100-Differential  
18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
10 nF  
DB2P  
DB2M  
DVDD  
DB1P  
DB1M  
GND  
GPIO1  
GPIO2  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
DVDD  
10 nF  
GND  
GPIO3  
10 nF  
10 nF  
VCM  
0.1 F  
GND  
0.1 F  
AVDD19  
AVDD19  
AVDD  
DB0P  
DB0M  
DVDD  
GPIO4  
DA0M  
DA0P  
GND  
Matching  
Network  
AVDD  
0.1 F  
GND  
DVDD  
CLKINP  
CLKINM  
GND  
0.1 F  
ADC32RF80  
GND PAD (backside)  
GND  
10 nF  
0.1 F  
AVDD  
Low Jitter Clock  
Generator  
AVDD19  
GND  
AVDD19  
0.1 F  
10 nF  
10 nF  
DA1M  
DA1P  
DVDD  
DA2M  
DA2P  
FPGA  
SYSREFP  
SYSREFM  
SYNCBP  
SYNCBM  
DVDD  
10 nF  
GND  
10 nF  
10 nF  
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54  
100-Differential  
AVDD19  
AVDD  
DVDD  
AVDD  
AVDD19  
0.1 F  
DVDD  
0.1 F  
0.1 F  
GND  
Driver  
0.1 F  
Matching Network  
Copyright © 2016, Texas Instruments Incorporated  
Figure 261. Typical Application Implementation Diagram  
126  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
 
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
Typical Application (continued)  
9.2.1 Design Requirements  
9.2.1.1 Transformer-Coupled Circuits  
Typical applications involving transformer-coupled circuits are discussed in this section. To ensure good  
amplitude and phase balance at the analog inputs, transformers (such as TC1-1-13 and TC1-1-43) can be used  
from the dc to 1000-MHz range and from the 1000-MHz to 4-GHz range of input frequencies, respectively. When  
designing the driving circuits, the ADC input impedance (or SDD11) must be considered.  
By using the simple drive circuit of Figure 262, uniform performance can be obtained over a wide frequency  
range. The buffers present at the analog inputs of the device help isolate the external drive source from the  
switching currents of the sampling circuit.  
5  
(Optional)  
0.1 F  
T2  
CHx_INP  
T1  
0.1 F  
RIN  
CIN  
5 ꢀ  
(Optional)  
0.1 F  
CHx_INM  
1:1  
1:1  
TI Device  
Copyright © 2016, Texas Instruments Incorporated  
Figure 262. Input Drive Circuit  
9.2.2 Detailed Design Procedure  
For optimum performance, the analog inputs must be driven differentially. This architecture improves common-  
mode noise immunity and even-order harmonic rejection. A small resistor (5 Ω to 10 Ω) in series with each input  
pin is recommended to damp out ringing caused by package parasitics, as shown in Figure 262.  
9.2.3 Application Curves  
Figure 263 and Figure 264 show the typical performance at 100 MHz and 1780 MHz, respectively.  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
300  
600  
900  
1200  
1500  
0
300  
600  
900  
1200  
1500  
Input Frequency (MHz)  
Input Frequency (MHz)  
D001  
D003  
SNR = 61.8 dBFS, SINAD = 61.2 dBFS,  
HD2 = 71 dBc, HD3 = 75 dBc, SFDR = 71 dBc,  
SNR = 57.9 dBFS, SINAD = 57.1 dBFS,  
HD2 = 63 dBc, HD3 = 66 dBc, SFDR = 63 dBc,  
THD = 68 dBc, IL spur = 77 dBc, worst spur = 73 dBc  
THD = 60 dBc, IL spur = 79 dBc, worst spur = 77 dBc  
Figure 263. FFT for 100-MHz Input Frequency  
Figure 264. FFT for 1780-MHz Input Frequency  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
127  
Product Folder Links: ADC32RF80 ADC32RF83  
 
 
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
10 Power Supply Recommendations  
The DVDD power supply (1.15 V) must be stable before ramping up the AVDD19 supply (1.9 V), as shown in  
Figure 265. The AVDD supply (1.15 V) can come up in any order during the power sequence. The power  
supplies can ramp up at any rate and there is no hard requirement for the time delay between DVDD (1.15 V)  
ramping up to AVDD (1.9 V) ramping up (which can be in orders of microseconds but is recommended to be a  
few milliseconds).  
AVDD  
(1.15 V)  
DVDD  
(1.15 V)  
AVDD19  
(1.9 V)  
Figure 265. Power Sequencing for the ADC32RF8x Family of devices  
11 Layout  
11.1 Layout Guidelines  
The device evaluation module (EVM) layout can be used as a reference layout to obtain the best performance. A  
layout diagram of the EVM top layer is provided in Figure 266. The ADC32RF45/RF80 EVM Quick Startup Guide  
provides a complete layout of the EVM. Some important points to remember during board layout are:  
Analog inputs are located on opposite sides of the device pinout to ensure minimum crosstalk on the package  
level. To minimize crosstalk onboard, the analog inputs must exit the pinout in opposite directions, as shown  
in the reference layout of Figure 266 as much as possible.  
In the device pinout, the sampling clock is located on a side perpendicular to the analog inputs in order to  
minimize coupling. This configuration is also maintained on the reference layout of Figure 266 as much as  
possible.  
Keep digital outputs away from the analog inputs. When these digital outputs exit the pinout, the digital output  
traces must not be kept parallel to the analog input traces because this configuration can result in coupling  
from the digital outputs to the analog inputs and degrade performance. All digital output traces to the receiver  
[such as field-programmable gate arrays (FPGAs) or application-specific integrated circuits (ASICs)] must be  
matched in length to avoid skew among outputs.  
At each power-supply pin (AVDD, DVDD, or AVDD19), keep a 0.1-µF decoupling capacitor close to the  
device. A separate decoupling capacitor group consisting of a parallel combination of 10-µF, 1-µF, and 0.1-µF  
capacitors can be kept close to the supply source.  
128  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
 
ADC32RF80, ADC32RF83  
www.ti.com  
SBAS774A MAY 2016REVISED DECEMBER 2016  
11.2 Layout Example  
Figure 266. ADC32RF8xEVM Layout  
Copyright © 2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
129  
Product Folder Links: ADC32RF80 ADC32RF83  
ADC32RF80, ADC32RF83  
SBAS774A MAY 2016REVISED DECEMBER 2016  
www.ti.com  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation see the following:  
ADC32RF45/RF80 EVM Quick Startup Guide (SLAU620)  
Configuration Files for the ADC32RF45 (SBAA226)  
12.2 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to sample or buy.  
Table 121. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
SAMPLE & BUY  
ADC32RF80  
ADC32RF83  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
12.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
12.4 Community Resources  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.5 Trademarks  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
12.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
130  
Submit Documentation Feedback  
Copyright © 2016, Texas Instruments Incorporated  
Product Folder Links: ADC32RF80 ADC32RF83  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Aug-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
1500  
250  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADC32RF80IRMPR  
ADC32RF80IRMPT  
ACTIVE  
VQFN  
VQFN  
RMP  
72  
72  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
AZ32RF80  
ACTIVE  
RMP  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
AZ32RF80  
ADC32RF80IRRHR  
ADC32RF80IRRHT  
ADC32RF83IRMPR  
PREVIEW  
PREVIEW  
ACTIVE  
VQFN  
VQFN  
VQFN  
RRH  
RRH  
RMP  
72  
72  
72  
1500  
250  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
-40 to 85  
-40 to 85  
-40 to 85  
1500  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
Level-3-260C-168 HR  
AZ32RF83  
AZ32RF83  
ADC32RF83IRMPT  
ACTIVE  
VQFN  
RMP  
72  
250  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
Level-3-260C-168 HR  
-40 to 85  
ADC32RF83IRRHR  
ADC32RF83IRRHT  
PREVIEW  
PREVIEW  
VQFN  
VQFN  
RRH  
RRH  
72  
72  
1500  
250  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
-40 to 85  
-40 to 85  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Aug-2020  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Feb-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADC32RF80IRMPR  
ADC32RF80IRMPT  
ADC32RF83IRMPR  
ADC32RF83IRMPT  
VQFN  
VQFN  
VQFN  
VQFN  
RMP  
RMP  
RMP  
RMP  
72  
72  
72  
72  
1500  
250  
330.0  
180.0  
330.0  
180.0  
24.4  
24.4  
24.4  
24.4  
10.25 10.25 2.25  
10.25 10.25 2.25  
10.25 10.25 2.25  
10.25 10.25 2.25  
16.0  
16.0  
16.0  
16.0  
24.0  
24.0  
24.0  
24.0  
Q2  
Q2  
Q2  
Q2  
1500  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Feb-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ADC32RF80IRMPR  
ADC32RF80IRMPT  
ADC32RF83IRMPR  
ADC32RF83IRMPT  
VQFN  
VQFN  
VQFN  
VQFN  
RMP  
RMP  
RMP  
RMP  
72  
72  
72  
72  
1500  
250  
350.0  
213.0  
350.0  
213.0  
350.0  
191.0  
350.0  
191.0  
43.0  
55.0  
43.0  
55.0  
1500  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RMP0072A  
VQFN - 0.9 mm max height  
SCALE 1.700  
VQFN  
10.1  
9.9  
A
B
PIN 1 ID  
10.1  
9.9  
0.9 MAX  
0.05  
0.00  
C
SEATING PLANE  
0.08 C  
(0.2)  
4X (45 X0.42)  
19  
36  
18  
37  
SYMM  
4X  
8.5  
8.5 0.1  
PIN 1 ID  
(R0.2)  
1
54  
0.30  
0.18  
72X  
72  
55  
68X 0.5  
SYMM  
0.5  
0.3  
0.1  
C B  
A
72X  
0.05  
C
4221047/B 02/2014  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RMP0072A  
VQFN - 0.9 mm max height  
VQFN  
(
8.5)  
SYMM  
72X (0.6)  
SEE DETAILS  
55  
72  
1
54  
72X (0.24)  
(0.25) TYP  
SYMM  
(9.8)  
(1.315) TYP  
68X (0.5)  
(
0.2) TYP  
VIA  
37  
18  
19  
36  
(1.315) TYP  
(9.8)  
LAND PATTERN EXAMPLE  
SCALE:8X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4221047/B 02/2014  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see QFN/SON PCB application report  
in literature No. SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RMP0072A  
VQFN - 0.9 mm max height  
VQFN  
(9.8)  
72X (0.6)  
(1.315) TYP  
72  
55  
1
54  
72X (0.24)  
(1.315)  
TYP  
(0.25) TYP  
SYMM  
(9.8)  
(1.315)  
TYP  
68X (0.5)  
METAL  
TYP  
37  
18  
(
0.2) TYP  
VIA  
19  
36  
36X ( 1.115)  
(1.315) TYP  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
62% PRINTED SOLDER COVERAGE BY AREA  
SCALE:8X  
4221047/B 02/2014  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY