ADC3423IRTQR [TI]

四通道、12 位、80MSPS 模数转换器 (ADC) | RTQ | 56 | -40 to 85;
ADC3423IRTQR
型号: ADC3423IRTQR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

四通道、12 位、80MSPS 模数转换器 (ADC) | RTQ | 56 | -40 to 85

转换器 模数转换器
文件: 总80页 (文件大小:4673K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
ADC3421, ADC3422, ADC3423, ADC3424  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
ADC342x 四通道、12 位、25MSPS 125MSPS 模数转换器  
1 特性  
3 说明  
1
四通道  
ADC342x 属于高线性度、超低功耗、四通道、12 位、  
25MSPS 125MSPS 模数转换器 (ADC) 系列。 此  
类器件专门设计用于支持具有宽动态范围需求且要求苛  
刻的高输入频率信号。 当 SYSREF 输入实现整个系统  
同步时,时钟输入分频器将给予系统时钟架构设计更高  
的灵活性。 ADC342x 系列支持串行低压差分信号  
(LVDS),从而减少接口线路的数量,实现高系统集成  
度。 串行 LVDS 接口为双线制,通过两个 LVDS 对串  
行输出每个 ADC 数据。 内部锁相环 (PLL) 会将传入  
ADC 采样时钟加倍,以获得串行输出各通道的 12  
位输出数据时所使用的位时钟。 除了串行数据流之  
外,数据帧和位时钟也作为 LVDS 输出进行传送。  
12 位分辨率  
单电源:1.8V  
串行低压差分信号 (LVDS) 接口  
支持 1 分频、2 分频和 4 分频的灵活输入时钟缓冲  
fIN = 70MHz 时,信噪比 (SNR) = 70.2dBFS,无杂  
散动态范围 (SFDR) = 87dBc  
超低功耗:  
125MSPS 时为每通道 98mW  
通道隔离:105dB  
内部抖动和斩波  
器件信息(1)  
支持多芯片同步  
部件号  
ADC342x  
封装  
VQFN (56)  
封装尺寸(标称值)  
14 位版本器件引脚到引脚兼容  
8.00mm x 8.00mm  
封装:超薄四方扁平无引线 (VQFN)-56 (8mm x  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
8mm)  
空白  
空白  
空白  
空白  
空白  
空白  
2 应用  
多载波、多模式蜂窝基站  
雷达和智能天线阵列  
炮弹制导  
电机控制反馈  
网络和矢量分析器  
通信测试设备  
无损检测  
微波接收器  
软件定义无线电 (SDR)  
正交和分集无线电接收器  
10MHz 中频 (IF) 时的频谱  
SFDR = 97dBcSNR = 70.4dBFSSINAD = 70.4dBFS,  
THD = 98dBcHD2 = 95dBcHD3 = 97dBc)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
D201  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBAS673  
 
 
 
 
ADC3421, ADC3422, ADC3423, ADC3424  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
www.ti.com.cn  
目录  
7.19 Typical Characteristics: Common ......................... 38  
7.20 Typical Characteristics: Contour ........................... 39  
Parameter Measurement Information ................ 39  
8.1 Timing Diagrams..................................................... 39  
Detailed Description ............................................ 41  
9.1 Overview ................................................................. 41  
9.2 Functional Block Diagram ....................................... 41  
9.3 Feature Description................................................. 42  
9.4 Device Functional Modes........................................ 46  
9.5 Programming........................................................... 47  
9.6 Register Maps......................................................... 51  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 6  
7.5 Electrical Characteristics: General............................ 6  
7.6 Electrical Characteristics: ADC3421, ADC3422 ....... 7  
7.7 Electrical Characteristics: ADC3423, ADC3424 ....... 7  
7.8 AC Performance: ADC3421...................................... 8  
7.9 AC Performance: ADC3422.................................... 10  
7.10 AC Performance: ADC3423.................................. 12  
7.11 AC Performance: ADC3424.................................. 14  
7.12 Digital Characteristics ........................................... 16  
7.13 Timing Requirements: General ............................. 16  
7.14 Timing Requirements: LVDS Output..................... 17  
7.15 Typical Characteristics: ADC3421 ........................ 18  
7.16 Typical Characteristics: ADC3422 ........................ 23  
7.17 Typical Characteristics: ADC3423 ........................ 28  
7.18 Typical Characteristics: ADC3424 ........................ 33  
8
9
10 Applications and Implementation...................... 66  
10.1 Application Information.......................................... 66  
10.2 Typical Applications .............................................. 67  
11 Power Supply Recommendations ..................... 69  
12 Layout................................................................... 70  
12.1 Layout Guidelines ................................................. 70  
12.2 Layout Example .................................................... 70  
13 器件和文档支持 ..................................................... 71  
13.1 相关链接................................................................ 71  
13.2 社区资源................................................................ 71  
13.3 ....................................................................... 71  
13.4 静电放电警告......................................................... 71  
13.5 Glossary................................................................ 71  
14 机械、封装和可订购信息....................................... 71  
4 修订历史记录  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Original (July 2014) to Revision A  
Page  
已发布为量产数................................................................................................................................................................... 1  
2
Copyright © 2014–2015, Texas Instruments Incorporated  
 
ADC3421, ADC3422, ADC3423, ADC3424  
www.ti.com.cn  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
5 Device Comparison Table  
RESOLUTION  
INTERFACE  
(Bits)  
25 MSPS  
ADC3421  
ADC3441  
50 MSPS  
ADC3422  
ADC3442  
ADC34J22  
ADC34J42  
80 MSPS  
ADC3423  
ADC3443  
ADC34J23  
ADC34J43  
125 MSPS  
ADC3424  
ADC3444  
ADC34J24  
ADC34J44  
160 MSPS  
12  
Serial LVDS  
14  
12  
ADC34J25  
ADC34J45  
JESD204B  
14  
6 Pin Configuration and Functions  
RTQ Package  
VQFN-56  
Top View  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
1
2
42  
DA1P  
DA1M  
DA0P  
DA0M  
DVDD  
AVDD  
AVDD  
INAM  
INAP  
DD0M  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
DD0P  
DD1M  
DD1P  
DVDD  
PDN  
3
4
5
6
7
GND Pad  
AVDD  
INDM  
INDP  
AVDD  
AVDD  
INCP  
INCM  
AVDD  
8
(Back Side)  
9
10  
11  
12  
13  
14  
AVDD  
AVDD  
INBP  
INBM  
AVDD  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
Copyright © 2014–2015, Texas Instruments Incorporated  
3
ADC3421, ADC3422, ADC3423, ADC3424  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
www.ti.com.cn  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
AVDD  
NO.  
6, 7, 10, 11, 14,  
15, 20, 23, 28, 29,  
32, 33, 36  
I
Analog 1.8-V power supply  
CLKM  
CLKP  
DA0M  
DA0P  
DA1M  
DA1P  
DB0M  
DB0P  
DB1M  
DB1P  
DC0M  
DC0P  
DC1M  
DC1P  
DD0M  
DD0P  
DD1M  
DD1P  
DCLKM  
DCLKP  
DVDD  
FCLKM  
FCLKP  
GND  
21  
I
Negative differential clock input for the ADC  
Positive differential clock input for the ADC  
Negative serial LVDS output for wire-0 of channel A  
Positive serial LVDS output for wire-0 of channel A  
Negative serial LVDS output for wire-1 of channel A  
Positive serial LVDS output for wire-1 of channel A  
Negative serial LVDS output for wire-0 of channel B  
Positive serial LVDS output for wire-0 of channel B  
Negative serial LVDS output for wire-1 of channel B  
Positive serial LVDS output for wire-1 of channel B  
Negative serial LVDS output for wire-0 of channel C  
Positive serial LVDS output for wire-0 of channel C  
Negative serial LVDS output for wire-1 of channel C  
Positive serial LVDS output for wire-1 of channel C  
Negative serial LVDS output for wire-0 of channel D  
Positive serial LVDS output for wire-0 of channel D  
Negative serial LVDS output for wire-1 of channel D  
Positive serial LVDS output for wire-1 of channel D  
Negative bit clock output  
22  
I
4
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
I
3
2
1
56  
55  
54  
53  
46  
45  
44  
43  
42  
41  
40  
39  
51  
50  
Positive bit clock output  
5, 38, 47, 52  
Digital 1.8-V power supply  
49  
O
O
I
Negative frame clock output  
48  
Positive frame clock output  
PowerPAD™  
Ground, 0 V  
INAM  
INAP  
8
I
Negative differential analog input for channel A  
Positive differential analog input for channel A  
Negative differential analog input for channel B  
Positive differential analog input for channel B  
Negative differential analog input for channel C  
Positive differential analog input for channel C  
Negative differential analog input for channel D  
Positive differential analog input for channel D  
9
I
INBM  
INBP  
13  
12  
30  
31  
35  
34  
I
I
INCM  
INCP  
I
I
INDM  
INDP  
I
I
Power-down control. This pin can be configured via the SPI. This pin has an internal  
150-kΩ pulldown resistor.  
PDN  
37  
I
RESET  
SCLK  
24  
16  
17  
19  
I
I
Hardware reset; active high. This pin has an internal 150-kΩ pulldown resistor.  
Serial interface clock input. This pin has an internal 150-kΩ pulldown resistor.  
Serial interface data input. This pin has an internal 150-kΩ pulldown resistor.  
Serial interface data output  
SDATA  
SDOUT  
I
O
Serial interface enable; active low.  
This pin has an internal 150-kΩ pullup resistor to AVDD.  
SEN  
18  
I
SYSREFM  
SYSREFP  
VCM  
26  
25  
27  
I
I
Negative external SYSREF input  
Positive external SYSREF input  
O
Common-mode voltage for analog inputs  
4
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC3421, ADC3422, ADC3423, ADC3424  
www.ti.com.cn  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–40  
MAX  
UNIT  
V
Analog supply voltage range, AVDD  
2.1  
Digital supply voltage range, DVDD  
2.1  
V
INAP, INBP, INCP, INDP, INAM, INBM, INCM, INDM  
min (1.9, AVDD + 0.3)  
CLKP, CLKM  
AVDD + 0.3  
Voltage applied to  
input pins  
V
SYSREFP, SYSREFM  
SCLK, SEN, SDATA, RESET, PDN  
Operating free-air, TA  
Operating junction, TJ  
Storage, Tstg  
AVDD + 0.3  
3.9  
85  
Temperature  
125  
150  
ºC  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
V(ESD)  
Electrostatic discharge  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
SUPPLIES  
AVDD  
Analog supply voltage range  
Digital supply voltage range  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
V
V
DVDD  
ANALOG INPUT  
For input frequencies < 450 MHz  
For input frequencies < 600 MHz  
2
1
VID  
Differential input voltage  
VPP  
V
VIC  
Input common-mode voltage  
VCM ± 0.025  
CLOCK INPUT  
Input clock frequency  
Sampling clock frequency  
Sine wave, ac-coupled  
LPECL, ac-coupled  
15(2)  
125(3)  
MSPS  
VPP  
0.2  
1.5  
1.6  
Input clock amplitude (differential)  
LVDS, ac-coupled  
0.7  
Input clock duty cycle  
35%  
50%  
0.95  
65%  
Input clock common-mode voltage  
V
DIGITAL OUTPUTS  
Maximum external load capacitance  
from each output pin to GND  
CLOAD  
RLOAD  
3.3  
pF  
Single-ended load resistance  
100  
Ω
(1) After power-up, use only the RESET pin to reset the device for the first time; see the Register Initialization section for details.  
(2) See Table 3 for details.  
(3) With the clock divider enabled by default for divide-by-1. Maximum sampling clock frequency for the divide-by-4 option is 500 MSPS.  
Copyright © 2014–2015, Texas Instruments Incorporated  
5
ADC3421, ADC3422, ADC3423, ADC3424  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
www.ti.com.cn  
7.4 Thermal Information  
ADC342x  
RTQ (VQFN)  
56 PINS  
25.3  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
9.5  
3.4  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
3.3  
RθJC(bot)  
0.5  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
7.5 Electrical Characteristics: General  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = –40°C to TMAX  
= 85°C, maximum sampling rate, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless  
otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ANALOG INPUT  
Differential input full-scale  
Input resistance  
2.0  
6.6  
3.7  
0.95  
10  
VPP  
kΩ  
ri  
Differential at dc  
Differential at dc  
ci  
Input capacitance  
pF  
VOC(VCM)  
VCM common-mode voltage output  
VCM output current capability  
Input common-mode current  
V
mA  
Per analog input pin  
1.5  
µA/MSPS  
50-Ω differential source driving 50-Ω termination  
across INP and INM  
Analog input bandwidth (3 dB)  
540  
MHz  
DC ACCURACY  
EO  
Offset error  
–25  
–2  
25  
2
mV  
αEO  
Temperature coefficient of offset error  
± 0.024  
mV/°C  
Gain error as a result of internal  
reference inaccuracy alone  
EG(REF)  
%FS  
EG(CHAN)  
Gain error of channel alone  
–2  
%FS  
α(EGCHAN)  
Temperature coefficient of EG(CHAN)  
±0.008  
Δ%FS/Ch  
CHANNEL-TO-CHANNEL ISOLATION  
Near channel  
fIN = 10 MHz  
105  
105  
95  
Far channel  
Near channel  
fIN = 100 MHz  
Far channel  
105  
94  
Near channel  
fIN = 200 MHz  
Crosstalk(1)  
dB  
Far channel  
105  
92  
Near channel  
fIN = 230 MHz  
Far channel  
105  
85  
Near channel  
fIN = 300 MHz  
Far channel  
105  
(1) Crosstalk is measured with a –1-dBFS input signal on the aggressor channel and no input on the victim channel.  
6
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC3421, ADC3422, ADC3423, ADC3424  
www.ti.com.cn  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
7.6 Electrical Characteristics: ADC3421, ADC3422  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = –40°C to TMAX  
= 85°C, maximum sampling rate, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless  
otherwise noted.  
ADC3421  
TYP  
ADC3422  
TYP  
PARAMETER  
ADC clock frequency  
MIN  
MAX  
MIN  
MAX  
UNIT  
MSPS  
Bits  
25  
50  
Resolution  
12  
12  
1.8-V analog supply current  
1.8-V digital supply current  
Total power dissipation  
Global power-down dissipation  
Standby power-down dissipation  
54  
45  
177  
5
71  
71  
71  
56  
228  
5
90  
90  
mA  
mA  
240  
17  
305  
17  
mW  
mW  
mW  
34  
75  
35  
75  
7.7 Electrical Characteristics: ADC3423, ADC3424  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = –40°C to TMAX  
= 85°C, maximum sampling rate, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless  
otherwise noted.  
ADC3423  
TYP  
ADC3424  
TYP  
PARAMETER  
ADC clock frequency  
MIN  
MAX  
MIN  
MAX  
UNIT  
MSPS  
Bits  
80  
125  
Resolution  
12  
12  
1.8-V analog supply current  
1.8-V digital supply current  
Total power dissipation  
Global power-down dissipation  
Standby power-down dissipation  
92  
68  
288  
5
107  
100  
365  
17  
119  
98  
391  
5
145  
145  
475  
17  
mA  
mA  
mW  
mW  
mW  
40  
88  
43  
103  
Copyright © 2014–2015, Texas Instruments Incorporated  
7
ADC3421, ADC3422, ADC3423, ADC3424  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
www.ti.com.cn  
7.8 AC Performance: ADC3421  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = –40°C to TMAX  
= 85°C, ADC sampling rate = 25 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless  
otherwise noted.  
ADC3421 (fS = 25 MSPS)  
DITHER ON  
MIN  
DITHER OFF  
MIN  
PARAMETER  
TEST CONDITIONS  
fIN = 10 MHz  
TYP  
70.9  
70.7  
70.4  
70.3  
69.7  
68.9  
70.2  
70.1  
69.8  
69.6  
69.2  
68.3  
–141.5  
MAX  
TYP  
71.1  
70.9  
70.6  
70.5  
69.9  
69.1  
70.5  
70.3  
70.0  
69.8  
69.3  
68.5  
–141.7  
–141.5  
–141.2  
–141.1  
–140.5  
–139.7  
71.1  
70.9  
70  
MAX  
UNIT  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
68.9  
Signal-to-noise ratio  
(from 1-MHz offset)  
dBFS  
SNR  
Signal-to-noise ratio  
(full Nyquist band)  
dBFS  
dBFS/Hz  
dBFS  
Bits  
–141.3 –139.5  
–141.0  
–140.9  
–140.3  
–139.5  
71  
Noise spectral density  
(averaged across Nyquist zone)  
NSD(1)  
67.9  
70.8  
69.5  
70.5  
69.6  
68.7  
11.5  
11.4  
11.4  
11.4  
11.3  
11.1  
93  
Signal-to-noise and distortion  
ratio  
SINAD(1)  
ENOB(1)  
SFDR  
70.7  
69.8  
68.7  
11.5  
11.4  
11.4  
11.4  
11.3  
11.1  
90  
11  
Effective number of bits  
84  
91  
85  
93  
88  
Spurious-free dynamic range  
dBc  
85  
82  
86  
85  
82  
82  
(1) Reported from a 1-MHz offset.  
8
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC3421, ADC3422, ADC3423, ADC3424  
www.ti.com.cn  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
AC Performance: ADC3421 (continued)  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = –40°C to TMAX  
= 85°C, ADC sampling rate = 25 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless  
otherwise noted.  
ADC3421 (fS = 25 MSPS)  
DITHER ON  
MIN  
DITHER OFF  
MIN  
PARAMETER  
TEST CONDITIONS  
fIN = 10 MHz  
TYP  
93  
100  
93  
94  
86  
86  
96  
91  
93  
85  
89  
82  
99  
98  
96  
95  
92  
97  
90  
90  
89  
84  
84  
80  
MAX  
TYP  
92  
94  
92  
93  
85  
82  
90  
85  
88  
82  
89  
82  
92  
91  
92  
93  
90  
91  
86  
83  
85  
80  
83  
79  
MAX  
UNIT  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
84  
84  
87  
81  
Second-order harmonic  
distortion  
HD2  
dBc  
HD3  
Non  
Third-order harmonic distortion  
dBc  
dBc  
Spurious-free dynamic range  
HD2, HD3 (excluding HD2, HD3)  
THD  
Total harmonic distortion  
dBc  
fIN1 = 45 MHz,  
fIN2 = 50 MHz  
–98  
–91  
–98  
–91  
Two-tone, third-order  
intermodulation distortion  
IMD3  
dBFS  
fIN1 = 185 MHz,  
fIN2 = 190 MHz  
Copyright © 2014–2015, Texas Instruments Incorporated  
9
ADC3421, ADC3422, ADC3423, ADC3424  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
www.ti.com.cn  
7.9 AC Performance: ADC3422  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = –40°C to TMAX  
= 85°C, ADC sampling rate = 50 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless  
otherwise noted.  
ADC3422 (fS = 50 MSPS)  
DITHER ON  
MIN  
DITHER OFF  
PARAMETER  
TEST CONDITIONS  
fIN = 10 MHz  
TYP  
70.8  
70.6  
70.5  
70.4  
69.8  
68.8  
70.2  
69.8  
69.7  
69.8  
69.3  
68.2  
–144.6  
MAX  
MIN  
TYP  
71  
MAX  
UNIT  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
68.9  
70.8  
70.7  
70.6  
70.1  
69  
Signal-to-noise ratio  
(from 1-MHz offset)  
SNR  
dBFS  
70.4  
70.0  
69.9  
70.1  
69.5  
68.4  
–144.8  
–144.6  
–144.5  
–144.4  
–143.9  
–142.8  
71  
Signal-to-noise ratio  
(full Nyquist band)  
–144.4 –142.7  
–144.3  
–144.2  
–143.6  
–142.6  
70.8  
70.7  
70.3  
70.6  
69.7  
68.6  
11.5  
11.4  
11.4  
11.4  
11.3  
11.1  
90  
Noise spectral density  
(averaged across Nyquist zone)  
NSD(1)  
dBFS/Hz  
dBFS  
Bits  
67.9  
70.9  
70.6  
70.8  
69.9  
68.8  
11.5  
11.5  
11.5  
11.5  
11.3  
11.1  
92  
Signal-to-noise and distortion  
ratio  
SINAD(1)  
ENOB(1)  
SFDR  
11  
Effective number of bits  
82  
95  
90  
93  
92  
Spurious-free dynamic range  
dBc  
87  
87  
87  
86  
83  
83  
(1) Reported from a 1-MHz offset.  
10  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC3421, ADC3422, ADC3423, ADC3424  
www.ti.com.cn  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
AC Performance: ADC3422 (continued)  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = –40°C to TMAX  
= 85°C, ADC sampling rate = 50 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless  
otherwise noted.  
ADC3422 (fS = 50 MSPS)  
DITHER ON  
MIN  
DITHER OFF  
MIN  
PARAMETER  
TEST CONDITIONS  
fIN = 10 MHz  
TYP  
95  
98  
93  
94  
87  
85  
90  
94  
94  
87  
88  
83  
99  
99  
98  
95  
96  
96  
88  
89  
90  
86  
84  
81  
MAX  
TYP  
92  
95  
92  
92  
86  
83  
92  
92  
92  
87  
89  
88  
93  
93  
92  
94  
89  
90  
87  
89  
87  
85  
83  
81  
MAX  
UNIT  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
83  
82  
87  
79  
Second-order harmonic  
distortion  
HD2  
dBc  
HD3  
Non  
Third-order harmonic distortion  
dBc  
dBc  
Spurious-free dynamic range  
HD2, HD3 (excluding HD2, HD3)  
THD  
Total harmonic distortion  
dBc  
fIN1 = 45 MHz,  
fIN2 = 50 MHz  
–95  
–88  
–95  
–88  
Two-tone, third-order  
intermodulation distortion  
IMD3  
dBFS  
fIN1 = 185 MHz,  
fIN2 = 190 MHz  
Copyright © 2014–2015, Texas Instruments Incorporated  
11  
ADC3421, ADC3422, ADC3423, ADC3424  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
www.ti.com.cn  
7.10 AC Performance: ADC3423  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = –40°C to TMAX  
= 85°C, ADC sampling rate = 80 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless  
otherwise noted.  
ADC3423 (fS = 80 MSPS)  
DITHER ON  
DITHER OFF  
MIN  
PARAMETER  
TEST CONDITIONS  
fIN = 10 MHz  
MIN  
TYP  
70.7  
70.5  
70.3  
70.1  
69.6  
70.3  
70.1  
69.9  
69.7  
69.3  
–146.6  
MAX  
TYP  
70.9  
70.7  
70.5  
70.3  
69.9  
70.5  
70.4  
70.2  
69.9  
69.6  
–146.8  
–146.6  
–146.4  
–146.2  
–145.8  
70.8  
70.4  
70.7  
70.2  
69.7  
11.5  
11.4  
11.5  
11.4  
11.3  
90  
MAX  
UNIT  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
68.7  
Signal-to-noise ratio  
(from 1-MHz offset)  
SNR  
dBFS  
Signal-to-noise ratio  
(full Nyquist band)  
–146.4 –144.6  
–146.2  
–146.0  
–145.5  
70.7  
70.3  
70.4  
70  
Noise spectral density  
(averaged across Nyquist zone)  
NSD(1)  
dBFS/Hz  
dBFS  
Bits  
67.7  
Signal-to-noise and distortion  
ratio  
SINAD(1)  
ENOB(1)  
SFDR  
69.5  
11.5  
11.4  
11.4  
11.3  
11.3  
90  
11  
Effective number of bits  
81  
91  
90  
Spurious-free dynamic range  
93  
93  
dBc  
88  
86  
87  
85  
(1) Reported from a 1-MHz offset.  
12  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC3421, ADC3422, ADC3423, ADC3424  
www.ti.com.cn  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
AC Performance: ADC3423 (continued)  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = –40°C to TMAX  
= 85°C, ADC sampling rate = 80 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless  
otherwise noted.  
ADC3423 (fS = 80 MSPS)  
DITHER ON  
MIN  
DITHER OFF  
MIN  
PARAMETER  
TEST CONDITIONS  
fIN = 10 MHz  
TYP  
94  
96  
97  
88  
87  
90  
91  
93  
96  
87  
99  
98  
94  
95  
94  
88  
89  
91  
87  
84  
MAX  
TYP  
91  
92  
93  
86  
85  
90  
90  
99  
93  
87  
94  
93  
94  
92  
91  
86  
86  
90  
84  
82  
MAX  
UNIT  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
81  
81  
86  
78  
Second-order harmonic  
distortion  
HD2  
dBc  
HD3  
Non  
Third-order harmonic distortion  
Spurious-free dynamic range  
dBc  
dBc  
HD2, HD3 (excluding HD2, HD3)  
THD  
Total harmonic distortion  
dBc  
fIN1 = 45 MHz,  
fIN2 = 50 MHz  
–97  
–92  
–97  
–92  
Two-tone, third-order  
intermodulation distortion  
IMD3  
dBFS  
fIN1 = 185 MHz,  
fIN2 = 190 MHz  
Copyright © 2014–2015, Texas Instruments Incorporated  
13  
ADC3421, ADC3422, ADC3423, ADC3424  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
www.ti.com.cn  
7.11 AC Performance: ADC3424  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = –40°C to TMAX  
= 85°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input,  
unless otherwise noted.  
ADC3424 (fS = 125 MSPS)  
DITHER ON  
DITHER OFF  
MIN  
PARAMETER  
TEST CONDITIONS  
fIN = 10 MHz  
MIN  
TYP  
70.5  
70.3  
70.1  
69.8  
69.2  
70.3  
70.1  
70.0  
69.6  
69.0  
–148.4  
MAX  
TYP  
70.7  
70.6  
70.4  
70.3  
69.9  
70.5  
70.4  
70.2  
70.1  
69.7  
–148.6  
–148.5  
–148.3  
–148.2  
–147.8  
70.6  
70.5  
70.5  
70.1  
69.1  
11.4  
11.4  
11.4  
11.4  
11.3  
89  
MAX  
UNIT  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
68  
Signal-to-noise ratio  
(from 1-MHz offset)  
SNR  
dBFS  
Signal-to-noise ratio  
(full Nyquist band)  
–148.2 –145.9  
–148.0  
–147.7  
–147.1  
70.5  
Noise spectral density  
(averaged across Nyquist zone)  
NSD(1)  
dBFS/Hz  
dBFS  
Bits  
67  
10.8  
80  
70.3  
Signal-to-noise and distortion  
ratio  
SINAD(1)  
ENOB(1)  
SFDR  
70.1  
69.7  
68.6  
11.4  
11.4  
Effective number of bits  
11.4  
11.3  
11.2  
93  
94  
90  
Spurious-free dynamic range  
90  
87  
dBc  
86  
85  
81  
80  
(1) Reported from a 1-MHz offset.  
14  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC3421, ADC3422, ADC3423, ADC3424  
www.ti.com.cn  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
AC Performance: ADC3424 (continued)  
Typical values are over the operating free-air temperature range, at TA = 25°C, full temperature range is TMIN = –40°C to TMAX  
= 85°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input,  
unless otherwise noted.  
ADC3424 (fS = 125 MSPS)  
DITHER ON  
MIN  
DITHER OFF  
MIN  
PARAMETER  
TEST CONDITIONS  
fIN = 10 MHz  
TYP  
93  
94  
90  
86  
81  
96  
95  
97  
93  
87  
100  
99  
94  
95  
94  
90  
90  
88  
85  
80  
MAX  
TYP  
92  
91  
91  
85  
80  
88  
89  
90  
87  
86  
93  
94  
93  
92  
90  
85  
85  
86  
82  
78  
MAX  
UNIT  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
80  
81  
86  
77  
Second-order harmonic  
distortion  
HD2  
dBc  
HD3  
Non  
Third-order harmonic distortion  
Spurious-free dynamic range  
dBc  
dBc  
HD2, HD3 (excluding HD2, HD3)  
THD  
Total harmonic distortion  
dBc  
fIN1 = 45 MHz,  
fIN2 = 50 MHz  
95  
89  
95  
89  
Two-tone, third-order  
intermodulation distortion  
IMD3  
dBFS  
fIN1 = 185 MHz,  
fIN2 = 190 MHz  
Copyright © 2014–2015, Texas Instruments Incorporated  
15  
ADC3421, ADC3422, ADC3423, ADC3424  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
www.ti.com.cn  
7.12 Digital Characteristics  
The dc specifications refer to the condition where the digital outputs are not switching, but are permanently at a valid logic  
level 0 or 1. AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DIGITAL INPUTS (RESET, SCLK, SDATA, SEN, PDN)  
All digital inputs support 1.8-V and  
3.3-V CMOS logic levels  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
1.3  
V
V
All digital inputs support 1.8-V and  
3.3-V CMOS logic levels  
0.4  
RESET, SDATA, SCLK,  
PDN  
SEN(1)  
VHIGH = 1.8 V  
VHIGH = 1.8 V  
VLOW = 0 V  
10  
0
µA  
µA  
µA  
µA  
High-level input  
current  
IIH  
RESET, SDATA, SCLK,  
PDN  
0
Low-level input  
current  
IIL  
SEN  
VLOW = 0 V  
10  
DIGITAL INPUTS (SYSREFP, SYSREFM)  
VIH  
VIL  
High-level input voltage  
1.3  
0.5  
0.9  
V
V
V
Low-level input voltage  
Common-mode voltage for SYSREF  
DIGITAL OUTPUTS (CMOS Interface, SDOUT)  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
DVDD – 0.1  
DVDD  
0
V
V
0.1  
DIGITAL OUTPUTS (LVDS Interface)  
VODH  
VODL  
VOCM  
High-level output differential voltage  
With an external 100-Ω termination  
With an external 100-Ω termination  
280  
350  
–350  
1.05  
460  
mV  
mV  
V
Low-level output differential voltage  
Output common-mode voltage  
–460  
–280  
(1) SEN has an internal 150-kΩ pullup resistor to AVDD. SPI pins (SEN, SCLK, SDATA) can be driven by 1.8 V or 3.3 V CMOS buffers.  
7.13 Timing Requirements: General  
Typical values are at TA = 25°C, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless otherwise noted. Minimum  
and maximum values are across the full temperature range: TMIN = –40°C to TMAX = 85°C.  
MIN  
TYP  
1.44  
±70  
±150  
130  
35  
MAX  
UNIT  
ns  
tA  
Aperture delay  
1.24  
1.64  
Aperture delay matching between two channels of the same device  
Aperture delay variation between two devices at same temperature and supply voltage  
Aperture jitter  
ps  
ps  
tJ  
fS rms  
µs  
Time to valid data after exiting standby power-down mode  
200  
450  
Wake-up time:  
ADC latency(1)  
Time to valid data after exiting global power-down mode  
(in this mode, both channels power down)  
85  
9
µs  
Clock  
cycles  
2-wire mode (default)  
1-wire mode  
:
Clock  
cycles  
8
tSU_SYSREF  
Setup time for SYSREF referenced to input clock rising edge  
Hold time for SYSREF referenced to input clock rising edge  
1000  
100  
ps  
ps  
SYSREF reference time:  
tH_SYSREF  
(1) Overall latency = ADC latency + tPDI  
.
16  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC3421, ADC3422, ADC3423, ADC3424  
www.ti.com.cn  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
7.14 Timing Requirements: LVDS Output(1)(2)  
Typical values are at TA = 25°C, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, 6x Serialization (2-Wire Mode),  
CLOAD = 3.3 pF(3), and RLOAD = 100 Ω(4), unless otherwise noted.. Minimum and maximum values are across the full  
temperature range: TMIN = –40°C to TMAX = 85°C.  
MIN  
TYP  
MAX  
UNIT  
Data setup time: data valid to zero-crossing of differential output clock  
(CLKOUTP – CLKOUTM)(5)  
tSU  
tHO  
0.43  
0.5  
ns  
Data hold time: zero-crossing of differential output clock  
(CLKOUTP – CLKOUTM) to data becoming invalid(5)  
0.48  
2.7  
0.58  
4.5  
ns  
Clock propagation delay: input clock falling edge cross-over to 1-wire mode  
frame clock rising edge cross-over  
6.5  
5.9  
ns  
ns  
ns  
tPDI  
2-wire mode  
0.44 × tS + tDELAY  
(15 MSPS < sampling frequency < 125 MSPS)  
tDELAY  
Delay time  
3
4.5  
LVDS bit clock duty cycle: duty cycle of differential clock  
(CLKOUTP – CLKOUTM)  
49%  
tFALL  
tRISE  
,
Data fall time, data rise time: rise time measured from –100 mV to 100 mV,  
15 MSPS Sampling frequency 125 MSPS  
0.11  
0.11  
ns  
ns  
tCLKRISE  
tCLKFALL  
,
Output clock rise time, output clock fall time: rise time measured from  
–100 mV to 100 mV, 15 MSPS Sampling frequency 125 MSPS  
(1) Measurements are done with a transmission line of a 100-Ω characteristic impedance between the device and load. Setup and hold time  
specifications take into account the effect of jitter on the output data and clock.  
(2) Timing parameters are ensured by design and characterization and are not tested in production.  
(3) CLOAD is the effective external single-ended load capacitance between each output pin and ground.  
(4) RLOAD is the differential load resistance between the LVDS output pair.  
(5) Data valid refers to a logic high of 100 mV and a logic low of –100 mV.  
Table 1. LVDS Timing at Lower Sampling Frequencies: 6X Serialization (2-Wire Mode)  
SETUP TIME  
(tSU, ns)  
HOLD TIME  
(tHO, ns)  
SAMPLING FREQUENCY  
(MSPS)  
MIN  
2.61  
1.69  
1.11  
0.81  
0.6  
TYP  
MAX  
MIN  
2.75  
1.8  
TYP  
MAX  
25  
40  
3.06  
1.9  
3.12  
1.98  
1.31  
0.97  
0.77  
60  
1.23  
0.89  
0.68  
1.18  
0.88  
0.68  
80  
100  
Table 2. LVDS Timings at Lower Sampling Frequencies: 12X Serialization (1-Wire Mode)  
SETUP TIME  
(tSU, ns)  
HOLD TIME  
(tHO, ns)  
SAMPLING FREQUENCY  
(MSPS)  
MIN  
1.3  
TYP  
MAX  
MIN  
1.32  
0.79  
0.61  
0.45  
0.4  
TYP  
MAX  
25  
40  
50  
60  
70  
80  
1.48  
0.88  
0.68  
0.55  
0.44  
0.35  
1.57  
0.97  
0.77  
0.62  
0.51  
0.43  
0.76  
0.57  
0.42  
0.35  
0.26  
0.35  
Copyright © 2014–2015, Texas Instruments Incorporated  
17  
ADC3421, ADC3422, ADC3423, ADC3424  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
www.ti.com.cn  
7.15 Typical Characteristics: ADC3421  
Typical values are at TA = 25°C, ADC sampling rate = 25 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled, unless otherwise noted.  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
2.5  
5
7.5  
10  
12.5  
0
2.5  
5
7.5  
10  
12.5  
Frequency (MHz)  
Frequency (MHz)  
D801  
D802  
SFDR = 95 dBc, SNR = 71 dBFS, SINAD = 71 dBFS,  
THD = 94 dBc, HD2 = 106 dBc, HD3 = 95 dBc  
SFDR = 90 dBc, SNR = 71.2 dBFS, SINAD = 71.1 dBFS,  
THD = 89 dBc, HD2 = 90 dBc, HD3 = 106 dBc  
Figure 1. FFT for 10-MHz Input Signal (Dither On)  
Figure 2. FFT for 10-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
2.5  
5
7.5  
10  
12.5  
0
2.5  
5
7.5  
10  
12.5  
Frequency (MHz)  
Frequency (MHz)  
D803  
D804  
SFDR = 92 dBc, SNR = 70.5 dBFS, SINAD = 70.3 dBFS,  
THD = 91 dBc, HD2 = 105 dBc, HD3 = 92 dBc  
SFDR = 91 dBc, SNR = 70.7 dBFS, SINAD = 70.6 dBFS,  
THD = 88 dBc, HD2 = 91 dBc, HD3 = 101 dBc  
Figure 3. FFT for 70-MHz Input Signal (Dither On)  
Figure 4. FFT for 70-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
2.5  
5
7.5  
10  
12.5  
0
2.5  
5
7.5  
10  
12.5  
Frequency (MHz)  
Frequency (MHz)  
D805  
D806  
SFDR = 87 dBc, SNR = 69.8 dBFS, SINAD = 69.7 dBFS,  
THD = 85 dBc, HD2 = 90 dBc, HD3 = 87 dBc  
SFDR = 85 dBc, SNR = 70 dBFS, SINAD = 69.8 dBFS,  
THD = 86 dBc, HD2 = 85 dBc, HD3 = 92 dBc  
Figure 5. FFT for 170-MHz Input Signal (Dither On)  
Figure 6. FFT for 170-MHz Input Signal (Dither Off)  
18  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC3421, ADC3422, ADC3423, ADC3424  
www.ti.com.cn  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
Typical Characteristics: ADC3421 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 25 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled, unless otherwise noted.  
0
0
-10  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
2.5  
5
7.5  
10  
12.5  
0
2.5  
5
7.5  
10  
12.5  
Frequency (MHz)  
Frequency (MHz)  
D807  
D808  
SFDR = 77 dBc, SNR = 68.2 dBFS, SINAD = 67.7 dBFS,  
THD = 75 dBc, HD2 = 77 dBc, HD3 = 83 dBc  
SFDR = 75 dBc, SNR = 68.4 dBFS, SINAD = 67.5 dBFS,  
THD = 74 dBc, HD2 = 75 dBc, HD3 = 80 dBc  
Figure 7. FFT for 270-MHz Input Signal (Dither On)  
Figure 8. FFT for 270-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
2.5  
5
7.5  
10  
12.5  
0
2.5  
5
7.5  
10  
12.5  
Frequency (MHz)  
Frequency (MHz)  
D809  
D810  
SFDR = 67 dBc, SNR = 66.4 dBFS, SINAD = 66.4 dBFS,  
THD = 93 dBc, HD2 = 67 dBc, HD3 = 88 dBc  
SFDR = 66 dBc, SNR = 66.5 dBFS, SINAD = 66.5 dBFS,  
THD = 87 dBc, HD2 = 66 dBc, HD3 = 93 dBc  
Figure 9. FFT for 450-MHz Input Signal (Dither On)  
Figure 10. FFT for 450-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
2.5  
5
7.5  
10  
12.5  
0
2.5  
5
7.5  
10  
12.5  
Frequency (MHz)  
Frequency (MHz)  
D811  
D812  
fIN1 = 46 MHz, fIN2 = 50 MHz, IMD3 = 90,  
each tone at = –7 dBFS  
fIN1 = 46 MHz, fIN2 = 50 MHz, IMD3 = 105,  
each tone at = –36 dBFS  
Figure 11. FFT for Two-Tone Input Signal  
(–7 dBFS at 46 MHz and 50 MHz)  
Figure 12. FFT for Two-Tone Input Signal  
(–36 dBFS at 46 MHz and 50 MHz)  
Copyright © 2014–2015, Texas Instruments Incorporated  
19  
ADC3421, ADC3422, ADC3423, ADC3424  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
www.ti.com.cn  
Typical Characteristics: ADC3421 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 25 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled, unless otherwise noted.  
0
0
-10  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
2.5  
5
7.5  
10  
12.5  
0
2.5  
5
7.5  
10  
12.5  
Frequency (MHz)  
Frequency (MHz)  
D813  
D814  
fIN1 = 184.5 MHz, fIN2 = 189.5 MHz, IMD3 = 91,  
each tone at = –7 dBFS  
fIN1 = 184.5 MHz, fIN2 = 189.5 MHz, IMD3 = 98 dBFS,  
each tone at –36 dBFS  
Figure 13. FFT for Two-Tone Input Signal  
(–7 dBFS at 185 MHz and 190 MHz)  
Figure 14. FFT for Two-Tone Input Signal  
(–36 dBFS at 185 MHz and 190 MHz)  
-85  
-85  
-90  
-90  
-95  
-95  
-100  
-105  
-110  
-100  
-105  
-35  
-31  
-27  
-23  
-19  
-15  
-11  
-7  
-35  
-31  
-27  
-23  
-19  
-15  
-11  
-7  
Each Tone Amplitude (dBFS)  
Each Tone Amplitude (dBFS)  
D815  
D816  
Figure 15. Intermodulation Distortion vs Input Amplitude  
(46 MHz and 50 MHz)  
Figure 16. Intermodulation Distortion vs Input Amplitude  
(185 MHz and 190 MHz)  
72  
100  
Dither_EN  
Dither_EN  
Dither_DIS  
Dither_DIS  
95  
90  
85  
80  
75  
70  
65  
60  
71  
70  
69  
68  
67  
66  
0
50  
100  
150  
200  
250  
300  
350  
400  
0
50  
100  
150  
200  
250  
300  
350  
400  
Frequency (MHz)  
Frequency (MHz)  
D80117  
D818  
Figure 17. Signal-to-Noise Ratio vs Input Frequency  
Figure 18. Spurious-Free Dynamic Range vs  
Input Frequency  
20  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC3421, ADC3422, ADC3423, ADC3424  
www.ti.com.cn  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
Typical Characteristics: ADC3421 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 25 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled, unless otherwise noted.  
73  
72  
71  
70  
69  
68  
250  
200  
150  
100  
50  
72.5  
280  
240  
200  
160  
120  
80  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
72  
71.5  
71  
70.5  
70  
69.5  
69  
40  
0
0
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
Amplitude (dBFS)  
Amplitude (dBFS)  
D819  
D820  
Figure 19. Performance vs Input Amplitude (30 MHz)  
Figure 20. Performance vs Input Amplitude (170 MHz)  
78  
76  
74  
72  
70  
68  
105  
SNR  
SFDR  
76  
88  
86  
84  
82  
80  
78  
SNR  
SFDR  
100  
95  
74  
72  
70  
68  
66  
90  
85  
80  
0.85  
0.9  
0.95  
1
1.05  
1.1  
0.85  
0.9  
0.95  
1
1.05  
1.1  
Input Common-Mode Voltage (V)  
Input Common-Mode Voltage (V)  
D821  
D822  
Figure 21. Performance vs Input Common-Mode Voltage  
(30 MHz)  
Figure 22. Performance vs Input Common-Mode Voltage  
(170 MHz)  
95  
72  
AVDD = 1.7 V  
AVDD = 1.75 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.7 V  
AVDD = 1.75 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
93  
91  
89  
87  
85  
83  
71.6  
71.2  
70.8  
70.4  
70  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D823  
D824  
Figure 23. Spurious-Free Dynamic Range vs  
AVDD Supply and Temperature (30 MHz)  
Figure 24. Signal-to-Noise Ratio vs  
AVDD Supply and Temperature (30 MHz)  
Copyright © 2014–2015, Texas Instruments Incorporated  
21  
ADC3421, ADC3422, ADC3423, ADC3424  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
www.ti.com.cn  
Typical Characteristics: ADC3421 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 25 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled, unless otherwise noted.  
92  
91  
90  
89  
88  
87  
86  
72  
71.6  
71.2  
70.8  
70.4  
70  
DVDD = 1.7 V  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
DVDD = 1.7 V  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D825  
D826  
Figure 25. Spurious-Free Dynamic Range vs  
DVDD Supply and Temperature (30 MHz)  
Figure 26. Signal-to-Noise Ratio vs  
DVDD Supply and Temperature (30 MHz)  
75  
74  
73  
72  
71  
70  
69  
68  
67  
100  
76  
100  
90  
80  
70  
60  
50  
40  
SNR  
SFDR  
SNR  
SFDR  
96  
92  
88  
84  
80  
76  
72  
68  
73  
70  
67  
64  
61  
58  
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2  
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2  
Differential Clock Amplitude (Vpp)  
Differential Clock Amplitude (Vpp)  
D827  
D828  
Figure 27. Performance vs Clock Amplitude (40 MHz)  
Figure 28. Performance vs Clock Amplitude (150 MHz)  
70.6  
90  
88  
86  
84  
82  
80  
78  
71.5  
100  
98  
96  
94  
92  
90  
SNR  
SFDR  
SNR  
SFDR  
70.4  
70.2  
70  
71.3  
71.1  
70.9  
70.7  
70.5  
69.8  
69.6  
69.4  
30  
35  
40  
45  
50  
55  
60  
65  
70  
30  
35  
40  
45  
50  
55  
60  
65  
70  
Input Clock Duty Cycle (%)  
Input Clock Duty Cycle (%)  
D829  
D830  
Figure 29. Performance vs Clock Duty Cycle (30 MHz)  
Figure 30. Performance vs Clock Duty Cycle (150 MHz)  
22  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC3421, ADC3422, ADC3423, ADC3424  
www.ti.com.cn  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
7.16 Typical Characteristics: ADC3422  
Typical values are at TA = 25°C, ADC sampling rate = 50 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled, unless otherwise noted.  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Frequency (MHz)  
Frequency (MHz)  
D601  
D602  
SFDR = 89 dBc, SNR = 70.9 dBFS, SINAD = 70.8 dBFS,  
THD = 88 dBc, HD2 = 110 dBc, HD3 = 89 dBc  
SFDR = 85 dBc, SNR = 71.2 dBFS, SINAD = 70.9 dBFS,  
THD = 83 dBc, HD2 = 92 dBc, HD3 = 85 dBc  
Figure 31. FFT for 10-MHz Input Signal (Dither On)  
Figure 32. FFT for 10-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Frequency (MHz)  
Frequency (MHz)  
D603  
D604  
SFDR = 101 dBc, SNR = 70.6 dBFS, SINAD = 70.5 dBFS,  
THD = 98 dBc, HD2 = 106 dBc, HD3 = 101 dBc  
SFDR = 90 dBc, SNR = 70.8 dBFS, SINAD = 70.6 dBFS,  
THD = 87 dBc, HD2 = 91 dBc, HD3 = 90 dBc  
Figure 33. FFT for 70-MHz Input Signal (Dither On)  
Figure 34. FFT for 70-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Frequency (MHz)  
Frequency (MHz)  
D605  
D606  
SFDR = 86 dBc, SNR = 69.9 dBFS, SINAD = 69.8 dBFS,  
THD = 85 dBc, HD2 = 93 dBc, HD3 = 86 dBc  
SFDR = 85 dBc, SNR = 70.1 dBFS, SINAD = 70 dBFS,  
THD = 86 dBc, HD2 = 85 dBc ,HD3 = 112 dBc  
Figure 35. FFT for 170-MHz Input Signal (Dither On)  
Figure 36. FFT for 170-MHz Input Signal (Dither Off)  
Copyright © 2014–2015, Texas Instruments Incorporated  
23  
ADC3421, ADC3422, ADC3423, ADC3424  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
www.ti.com.cn  
Typical Characteristics: ADC3422 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 50 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled, unless otherwise noted.  
0
0
-10  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Frequency (MHz)  
Frequency (MHz)  
D607  
D608  
SFDR = 75 dBc, SNR = 69 dBFS, SINAD = 67.9 dBFS,  
THD = 74 dBc, HD2 = 75 dBc, HD3 = 81 dBc  
SFDR = 75 dBc, SNR = 69.2 dBFS, SINAD = 67.9 dBFS,  
THD = 73 dBc, HD2 = 75 dBc, HD3 = 81 dBc  
Figure 37. FFT for 270-MHz Input Signal (Dither On)  
Figure 38. FFT for 270-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Frequency (MHz)  
Frequency (MHz)  
D609  
D610  
SFDR = 68 dBc, SNR = 67.2 dBFS, SINAD = 67.1 dBFS,  
THD = –86 dBc, HD2 = 75 dBc, HD3 = 73 dBc  
SFDR = 68 dBc, SNR = 67.5 dBFS, SINAD = 67.4 dBFS,  
THD = –87 dBc, HD2 = –68 dBc, HD3 = –87 dBc  
Figure 39. FFT for 450-MHz Input Signal (Dither On)  
Figure 40. FFT for 450-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Frequency (MHz)  
Frequency (MHz)  
D611  
D612  
fIN1 = 46 MHz, fIN2 = 50 MHz, IMD3 = 102 dBFS,  
each tone at –7 dBFS  
fIN1 = 46.3 MHz, fIN2 = 50.3 MHz, IMD3 = 110 dBFS,  
each tone at –36 dBFS  
Figure 41. FFT for Two-Tone Input Signal  
(–7 dBFS at 46 MHz and 50 MHz)  
Figure 42. FFT for Two-Tone Input Signal  
(–36 dBFS at 46 MHz and 50 MHz)  
24  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC3421, ADC3422, ADC3423, ADC3424  
www.ti.com.cn  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
Typical Characteristics: ADC3422 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 50 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled, unless otherwise noted.  
0
0
-10  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Frequency (MHz)  
Frequency (MHz)  
D613  
D614  
fIN1 = 185 MHz, fIN2 = 190 MHz, IMD3 = 95 dBFS,  
each tone at –7 dBFS  
fIN1 = 185 MHz, fIN2 = 190 MHz, IMD3 = 105 dBFS,  
each tone at –36 dBFS  
Figure 43. FFT for Two-Tone Input Signal  
(–7 dBFS at 185 MHz and 190 MHz)  
Figure 44. FFT for Two-Tone Input Signal  
(–36 dBFS at 185 MHz and 190 MHz)  
-80  
-85  
-90  
-95  
-80  
-85  
-90  
-95  
-100  
-100  
-105  
-110  
-105  
-110  
-35  
-31  
-27  
-23  
-19  
-15  
-11  
-7  
-35  
-31  
-27  
-23  
-19  
-15  
-11  
-7  
Each Tone Amplitude (dBFS)  
Each Tone Amplitude (dBFS)  
D615  
D616  
Figure 45. Intermodulation Distortion vs Input Amplitude  
(46 MHz and 50 MHz)  
Figure 46. Intermodulation Distortion vs Input Amplitude  
(185 MHz and 190 MHz)  
72  
100  
Dither_EN  
Dither_DIS  
Dither_EN  
Dither_DIS  
95  
90  
85  
80  
75  
70  
65  
60  
71  
70  
69  
68  
67  
0
50  
100  
150  
200  
250  
300  
350  
400  
0
50  
100  
150  
200  
250  
300  
350  
400  
Frequency (MHz)  
Frequency (MHz)  
D617  
D618  
Figure 47. Signal-to-Noise Ratio vs Input Frequency  
Figure 48. Spurious-Free Dynamic Range vs  
Input Frequency  
Copyright © 2014–2015, Texas Instruments Incorporated  
25  
ADC3421, ADC3422, ADC3423, ADC3424  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
www.ti.com.cn  
Typical Characteristics: ADC3422 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 50 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled, unless otherwise noted.  
72  
71.5  
71  
240  
200  
160  
120  
80  
71.5  
240  
200  
160  
120  
80  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
SNR  
SFDR  
SFDR  
71  
70.5  
70  
70.5  
70  
69.5  
69  
69.5  
40  
40  
69  
0
68.5  
0
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
Amplitude (dBFS)  
Amplitude (dBFS)  
D619  
D620  
Figure 49. Performance vs Input Amplitude (30 MHz)  
Figure 50. Performance vs Input Amplitude (170 MHz)  
78  
96  
94  
92  
90  
88  
86  
76  
88  
86  
84  
82  
80  
78  
SNR  
SFDR  
SNR  
SFDR  
76  
74  
72  
70  
68  
74  
72  
70  
68  
66  
0.85  
0.9  
0.95  
1
1.05  
1.1  
0.85  
0.9  
0.95  
1
1.05  
1.1  
Input Common-Mode Voltage (V)  
Input Common-Mode Voltage (V)  
D621  
D622  
Figure 51. Performance vs Input Common-Mode Voltage  
(30 MHz)  
Figure 52. Performance vs Input Common-Mode Voltage  
(170 MHz)  
96  
71.5  
AVDD = 1.7 V  
AVDD = 1.75 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.7 V  
AVDD = 1.75 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
94  
92  
90  
88  
86  
84  
71.1  
70.7  
70.3  
69.9  
69.5  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D623  
D624  
Figure 53. Spurious-Free Dynamic Range vs  
AVDD Supply and Temperature (30 MHz)  
Figure 54. Signal-to-Noise Ratio vs  
AVDD Supply and Temperature (30 MHz)  
26  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC3421, ADC3422, ADC3423, ADC3424  
www.ti.com.cn  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
Typical Characteristics: ADC3422 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 50 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled, unless otherwise noted.  
74  
73  
72  
71  
70  
69  
68  
94  
92  
90  
88  
86  
84  
DVDD = 1.7 V  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
DVDD = 1.7 V  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D625  
Figure 56. Signal-to-Noise Ratio vs  
DVDD Supply and Temperature (30 MHz)  
Figure 55. Spurious-Free Dynamic Range vs  
DVDD Supply and Temperature (30 MHz)  
74  
96  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
99  
SNR  
SFDR  
SNR  
SFDR  
96  
93  
90  
87  
84  
81  
78  
75  
72  
73  
72  
71  
70  
69  
68  
93  
90  
87  
84  
81  
78  
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2  
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2  
Differential Clock Amplitude (Vpp)  
Differential Clock Amplitude (Vpp)  
D627  
D628  
Figure 57. Performance vs Clock Amplitude (40 MHz)  
Figure 58. Performance vs Clock Amplitude (150 MHz)  
71.3  
94  
92  
90  
88  
86  
84  
70.6  
90  
88  
86  
84  
82  
80  
SNR  
SFDR  
SNR  
SFDR  
71.1  
70.9  
70.7  
70.5  
70.3  
70.4  
70.2  
70  
69.8  
69.6  
30  
35  
40  
45  
50  
55  
60  
65  
70  
30  
35  
40  
45  
50  
55  
60  
65  
70  
Input Clock Duty Cycle (%)  
Input Clock Duty Cycle (%)  
D629  
D630  
Figure 59. Performance vs Clock Duty Cycle (30 MHz)  
Figure 60. Performance vs Clock Duty Cycle (150 MHz)  
Copyright © 2014–2015, Texas Instruments Incorporated  
27  
ADC3421, ADC3422, ADC3423, ADC3424  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
www.ti.com.cn  
7.17 Typical Characteristics: ADC3423  
Typical values are at TA = 25°C, ADC sampling rate = 80 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled, unless otherwise noted.  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
8
16  
24  
32  
40  
0
8
16  
24  
32  
40  
Frequency (MHz)  
Frequency (MHz)  
D401  
D402  
SFDR = 89 dBc, SNR = 70.7 dBFS, SINAD = 70.6 dBFS,  
THD = 89 dBc, HD2 = 108 dBc, HD3 = 89 dBc  
SFDR = 84 dBc, SNR = 70.9 dBFS, SINAD = 70.7 dBFS,  
THD = 83 dBc, HD2 = 92 dBc, HD3 = 84 dBc  
Figure 61. FFT for 10-MHz Input Signal (Dither On)  
Figure 62. FFT for 10-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
8
16  
24  
32  
40  
0
8
16  
24  
32  
40  
Frequency (MHz)  
Frequency (MHz)  
D403  
D404  
SFDR = 92 dBc, SNR = 70.5 dBFS, SINAD = 70.4 dBFS,  
THD = 91 dBc, HD2 = 112 dBc, HD3 = 92 dBc  
SFDR = 86 dBc, SNR = 70.7 dBFS, SINAD = 70.5 dBFS,  
THD = 84 dBc, HD2 = 92 dBc, HD3 = 86 dBc  
Figure 63. FFT for 70-MHz Input Signal (Dither On)  
Figure 64. FFT for 70-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
8
16  
24  
32  
40  
0
8
16  
24  
32  
40  
Frequency (MHz)  
Frequency (MHz)  
D405  
D406  
SFDR = 87 dBc, SNR = 70.2 dBFS, SINAD = 70.1 dBFS,  
THD = 93 dBc, HD2 = 102 dBc, HD3 = 87 dBc  
SFDR = 86 dBc, SNR = 70.5 dBFS, SINAD = 70.4 dBFS,  
THD = 88 dBc, HD2 = 86 dBc, HD3 = 97 dBc  
Figure 65. FFT for 170-MHz Input Signal (Dither On)  
Figure 66. FFT for 170-MHz Input Signal (Dither Off)  
28  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC3421, ADC3422, ADC3423, ADC3424  
www.ti.com.cn  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
Typical Characteristics: ADC3423 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 80 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled, unless otherwise noted.  
0
0
-10  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
8
16  
24  
32  
40  
0
8
16  
24  
32  
40  
Frequency (MHz)  
Frequency (MHz)  
D407  
D408  
SFDR = 76 dBc, SNR = 69.2 dBFS, SINAD = 68.3 dBFS,  
THD = 75 dBc, HD2 = 76 dBc, HD3 = 81 dBc  
SFDR = 75 dBc, SNR = 69.5 dBFS, SINAD = 68.4 dBFS,  
THD = 75 dBc, HD2 = 75 dBc, HD3 = 82 dBc  
Figure 67. FFT for 270-MHz Input Signal (Dither On)  
Figure 68. FFT for 270-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
8
16  
24  
32  
40  
0
8
16  
24  
32  
40  
Frequency (MHz)  
Frequency (MHz)  
D409  
D410  
SFDR = 68 dBc, SNR = 67.5 dBFS, SINAD = 67.1 dBFS,  
THD = 77 dBc, HD2 = 68 dBc, HD3 = 89 dBc  
SFDR = 67 dBc SNR = 67.7 dBFS, SINAD = 67.3 dBFS,  
THD = 77 dBc, HD2 = 67 dBc, HD3 = 84 dBc  
Figure 69. FFT for 450-MHz Input Signal (Dither On)  
Figure 70. FFT for 450-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
8
16  
24  
32  
40  
0
8
16  
24  
32  
40  
Frequency (MHz)  
Frequency (MHz)  
D411  
D412  
fIN1 = 46 MHz, fIN2 = 50 MHz, IMD3 = 98 dBFS,  
each tone at –7 dBFS  
fIN1 = 46 MHz, fIN2 = 50 MHz, IMD3 = 105 dBFS,  
each tone at –36 dBFS  
Figure 71. FFT for Two-Tone Input Signal  
(–7 dBFS at 46 MHz and 50 MHz)  
Figure 72. FFT for Two-Tone Input Signal  
(–36 dBFS at 46 MHz and 50 MHz)  
Copyright © 2014–2015, Texas Instruments Incorporated  
29  
ADC3421, ADC3422, ADC3423, ADC3424  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
www.ti.com.cn  
Typical Characteristics: ADC3423 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 80 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled, unless otherwise noted.  
0
0
-10  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
8
16  
24  
32  
40  
0
8
16  
24  
32  
40  
Frequency (MHz)  
Frequency (MHz)  
D413  
D414  
fIN1 = 185 MHz, fIN2 = 190 MHz, IMD3 = 90 dBFS,  
each tone at –7 dBFS  
fIN1 = 185 MHz, fIN2 = 190 MHz, IMD3 = 105 dBFS,  
each tone at –36 dBFS  
Figure 73. FFT FOR Two-Tone Input Signal  
(–7 dBFS at 185 MHz and 190 MHz)  
Figure 74. FFT FOR Two-Tone Input Signal  
(–36 dBFS at 185 MHz and 190 MHz)  
-85  
-90  
-95  
-80  
-85  
-90  
-95  
-100  
-100  
-105  
-110  
-105  
-110  
-35  
-31  
-27  
-23  
-19  
-15  
-11  
-7  
-35  
-31  
-27  
-23  
-19  
-15  
-11  
-7  
Each Tone Amplitude (dBFS)  
Each Tone Amplitude (dBFS)  
D415  
D416  
Figure 75. Intermodulation Distortion vs Input Amplitude  
(46 MHz and 50 MHz)  
Figure 76. Intermodulation Distortion vs Input Amplitude  
(185 MHz and 190 MHz)  
72  
100  
Dither_EN  
Dither_DIS  
Dither_EN  
Dither_DIS  
95  
71  
70  
69  
68  
67  
90  
85  
80  
75  
70  
0
50  
100  
150  
200  
250  
300  
350  
400  
0
50  
100  
150  
200  
250  
300  
350  
400  
Frequency (MHz)  
Frequency (MHz)  
D417  
D418  
Figure 77. Signal-to-Noise Ratio vs Input Frequency  
Figure 78. Spurious-Free Dynamic Range vs  
Input Frequency  
30  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC3421, ADC3422, ADC3423, ADC3424  
www.ti.com.cn  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
Typical Characteristics: ADC3423 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 80 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled, unless otherwise noted.  
72  
71.5  
71  
240  
200  
160  
120  
80  
72  
71.5  
71  
180  
160  
140  
120  
100  
80  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
70.5  
70  
70.5  
70  
69.5  
69  
60  
69.5  
40  
68.5  
68  
40  
69  
0
20  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
Amplitude (dBFS)  
Amplitude (dBFS)  
D419  
D4210  
Figure 79. Performance vs Input Amplitude (30 MHz)  
Figure 80. Performance vs Input Amplitude (170 MHz)  
76  
92  
90  
88  
86  
84  
82  
76  
90  
88  
86  
84  
82  
80  
SNR  
SFDR  
SNR  
SFDR  
74  
72  
70  
68  
66  
74  
72  
70  
68  
66  
0.85  
0.9  
0.95  
1
1.05  
1.1  
0.85  
0.9  
0.95  
1
1.05  
1.1  
Input Common-Mode Voltage (V)  
Input Common-Mode Voltage (V)  
D421  
D422  
Figure 81. Performance vs Input Common-Mode Voltage  
(30 MHz)  
Figure 82. Performance vs Input Common-Mode Voltage  
(170 MHz)  
95  
71  
AVDD = 1.7 V  
AVDD = 1.75 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.7 V  
AVDD = 1.75 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
93  
91  
89  
87  
85  
70.8  
70.6  
70.4  
70.2  
70  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D423  
D424  
Figure 83. Spurious-Free Dynamic Range vs  
AVDD Supply and Temperature (170 MHz)  
Figure 84. Signal-to-Noise Ratio vs  
AVDD Supply and Temperature (170 MHz)  
Copyright © 2014–2015, Texas Instruments Incorporated  
31  
ADC3421, ADC3422, ADC3423, ADC3424  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
www.ti.com.cn  
Typical Characteristics: ADC3423 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 80 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled, unless otherwise noted.  
100  
96  
92  
88  
84  
80  
71.5  
71.1  
70.7  
70.3  
69.9  
69.5  
DVDD = 1.7 V  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
DVDD = 1.7 V  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D425  
D426  
Figure 85. Spurious-Free Dynamic Range vs  
DVDD Supply and Temperature (170 MHz)  
Figure 86. Signal-to-Noise Ratio vs  
DVDD Supply and Temperature (170 MHz)  
76  
105  
74  
96  
SNR  
SNR  
SFDR  
SFDR  
74  
72  
70  
68  
66  
102  
99  
72  
70  
68  
66  
64  
92  
88  
84  
80  
96  
93  
90  
76  
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2  
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2  
Differential Clock Amplitude (Vpp)  
Differential Clock Amplitude (Vpp)  
D427  
D428  
Figure 87. Performance vs Clock Amplitude (40 MHz)  
Figure 88. Performance vs Clock Amplitude (150 MHz)  
71.3  
92  
90  
88  
86  
84  
82  
70.8  
92  
90  
88  
86  
84  
82  
SNR  
SFDR  
SNR  
SFDR  
71.1  
70.9  
70.7  
70.5  
70.3  
70.6  
70.4  
70.2  
70  
69.8  
30  
35  
40  
45  
50  
55  
60  
65  
70  
30  
35  
40  
45  
50  
55  
60  
65  
70  
Input Clock Duty Cycle (%)  
Input Clock Duty Cycle (%)  
D429  
D430  
Figure 89. Performance vs Clock Duty cycle (30 MHz)  
Figure 90. Performance vs Clock Duty Cycle (150 MHz)  
32  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC3421, ADC3422, ADC3423, ADC3424  
www.ti.com.cn  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
7.18 Typical Characteristics: ADC3424  
Typical values are at TA = 25°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled, unless otherwise noted.  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
D201  
D202  
SFDR = 97 dBc, SNR = 70.4 dBFS, SINAD = 70.4 dBFS,  
THD = 98 dBc, HD2 = 95 dBc, HD3 = 97 dBc  
SFDR = 91 dBc, SNR = 70.7 dBFS, SINAD = 70.6 dBFS,  
THD = 86 dBc, HD2 = 92 dBc, HD3 = 91 dBc  
Figure 91. FFT for 10-MHz Input Signal  
(Chopper On, Dither On)  
Figure 92. FFT for 10-MHz Input Signal  
(Chopper On, Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
D203  
D204  
SFDR = 99 dBc, SNR = 70.3 dBFS, SINAD = 70.3 dBFS,  
THD = 95 dBc, HD2 = 103 dBc, HD3 = 99 dBc  
SFDR = 91 dBc, SNR = 70.6 dBFS, SINAD = 70.6 dBFS,  
THD = 87 dBc, HD2 = 91 dBc, HD3 = 95 dBc  
Figure 93. FFT for 70-MHz Input Signal (Dither On)  
Figure 94. FFT for 70-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
D205  
D206  
SFDR = 86 dBc, SNR = 69.8 dBFS, SINAD = 69.8 dBFS,  
THD = 91 dBc, HD2 = 86 dBc, HD3 = 101 dBc  
SFDR = 85 dBc, SNR = 70.3 dBFS, SINAD = 70.2 dBFS,  
THD = 88 dBc, HD2 = 99 dBc, HD3 = 85 dBc  
Figure 95. FFT for 170-MHz Input Signal (Dither On)  
Figure 96. FFT for 170-MHz Input Signal (Dither Off)  
Copyright © 2014–2015, Texas Instruments Incorporated  
33  
ADC3421, ADC3422, ADC3423, ADC3424  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
www.ti.com.cn  
Typical Characteristics: ADC3424 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled, unless otherwise noted.  
0
0
-10  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
D207  
D208  
SFDR = 76 dBc, SNR = 68.94 dBFS, SINAD = 68.4 dBFS,  
THD = 75 dBc, HD2 = 76 dBc, HD3 = 81 dBc  
SFDR = 76 dBc, SNR = 69.3 dBFS, SINAD = 68.6 dBFS,  
THD = 75 dBc, HD2 = 76 dBc, HD3 = 82 dBc  
Figure 97. FFT for 270-MHz Input Signal (Dither On)  
Figure 98. FFT for 270-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
D209  
D210  
SFDR = 71 dBc, SNR = 67.2 dBFS, SINAD = 66.5 dBFS,  
THD = 74 dBc, HD2 = 71 dBc, HD3 = 79 dBc  
SFDR = 69 dBc, SNR = 67.8 dBFS, SINAD = 66.8 dBFS,  
THD = 73 dBc, HD2 = 77 dBc, HD3 = 69 dBc  
Figure 99. FFT for 450-MHz Input Signal (Dither On)  
Figure 100. FFT for 450-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
D211  
D212  
fIN1 = 46 MHz, fIN2 = 50 MHz, IMD3 = 100 dBFS,  
each tone at –7 dBFS  
fIN1 = 46 MHz, fIN2 = 50 MHz, IMD3 = 99 dBFS,  
each tone at –36 dBFS  
Figure 101. FFT for Two-Tone Input Signal  
(–7 dBFS at 46 MHz and 50 MHz)  
Figure 102. FFT for Two-Tone Input Signal  
(–36 dBFS at 46 MHz and 50 MHz)  
34  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC3421, ADC3422, ADC3423, ADC3424  
www.ti.com.cn  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
Typical Characteristics: ADC3424 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled, unless otherwise noted.  
0
0
-10  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
D213  
D214  
fIN1 = 185 MHz, fIN2 = 190 MHz, IMD3 = 86 dBFS,  
each tone at –7 dBFS  
fIN1 = 185 MHz, fIN2 = 190 MHz, IMD3 = 102 dBFS,  
each tone at –36 dBFS  
Figure 103. FFT for Two-Tone Input Signal  
(–7 dBFS at 185 MHz and 190 MHz)  
Figure 104. FFT for Two-Tone Input Signal  
(–36 dBFS at 185 MHz and 190 MHz)  
-80  
-85  
-90  
-95  
-80  
-85  
-90  
-95  
-100  
-100  
-105  
-110  
-105  
-110  
-35  
-31  
-27  
-23  
-19  
-15  
-11  
-7  
-35  
-31  
-27  
-23  
-19  
-15  
-11  
-7  
Each Tone Amplitude (dBFS)  
Each Tone Amplitude (dBFS)  
D215  
D216  
Figure 105. Intermodulation Distortion vs Input Amplitude  
(46 MHz and 50 MHz)  
Figure 106. Intermodulation Distortion vs Input Amplitude  
(185 MHz and 190 MHz)  
100  
72  
Dither_EN  
Dither_DIS  
Dither_EN  
Dither_DIS  
95  
71  
70  
69  
68  
67  
90  
85  
80  
75  
70  
0
50  
100  
150  
200  
250  
300  
350  
400  
0
50  
100  
150  
200  
250  
300  
350  
400  
Frequency (MHz)  
Frequency (MHz)  
D217  
D218  
Figure 107. Signal-to-Noise Ratio vs Input Frequency  
Figure 108. Spurious-Free Dynamic Range vs  
Input Frequency  
Copyright © 2014–2015, Texas Instruments Incorporated  
35  
ADC3421, ADC3422, ADC3423, ADC3424  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
www.ti.com.cn  
Typical Characteristics: ADC3424 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled, unless otherwise noted.  
72  
71.5  
71  
240  
200  
160  
120  
80  
72  
71.5  
71  
180  
160  
140  
120  
100  
80  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
70.5  
70  
70.5  
70  
69.5  
69  
60  
69.5  
40  
68.5  
68  
40  
69  
0
20  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
Amplitude (dBFS)  
Amplitude (dBFS)  
D219  
D220  
Figure 109. Performance vs Input Amplitude (30 MHz)  
Figure 110. Performance vs Input Amplitude (170 MHz)  
76  
96  
94  
92  
90  
88  
86  
76  
74  
72  
70  
68  
66  
88  
86  
84  
82  
80  
78  
SNR  
SFDR  
SNR  
SFDR  
74  
72  
70  
68  
66  
0.85  
0.9  
0.95  
1
1.05  
1.1  
0.85  
0.9  
0.95  
1
1.05  
1.1  
Input Common-Mode Voltage (V)  
Input Common-Mode Voltage (V)  
D221  
D222  
Figure 111. Performance vs Input Common-Mode Voltage  
(30 MHz)  
Figure 112. Performance vs Input Common-Mode Voltage  
(170 MHz)  
94  
72.5  
AVDD = 1.7 V  
AVDD = 1.75 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.7 V  
AVDD = 1.75 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
92  
90  
88  
86  
84  
71.7  
70.9  
70.1  
69.3  
68.5  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D223  
D224  
Figure 113. Spurious-Free Dynamic Range vs  
AVDD Supply and Temperature (170 MHz)  
Figure 114. Signal-to-Noise Ratio vs  
AVDD Supply and Temperature (170 MHz)  
36  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC3421, ADC3422, ADC3423, ADC3424  
www.ti.com.cn  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
Typical Characteristics: ADC3424 (continued)  
Typical values are at TA = 25°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled, unless otherwise noted.  
94  
92  
90  
88  
86  
84  
71.5  
71.1  
70.7  
70.3  
69.9  
69.5  
DVDD = 1.7 V  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
DVDD = 1.7 V  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D225  
D226  
Figure 115. Spurious-Free Dynamic Range vs  
DVDD Supply and Temperature (170 MHz)  
Figure 116. Signal-to-Noise Ratio vs  
DVDD Supply and Temperature (170 MHz)  
73  
105  
100  
95  
72.5  
105  
SNR  
SFDR  
SNR  
SFDR  
72  
71  
70  
69  
68  
67  
66  
65  
72  
71.5  
71  
100  
95  
90  
85  
80  
75  
70  
65  
90  
85  
70.5  
70  
80  
75  
69.5  
69  
70  
65  
68.5  
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2  
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2  
Differential Clock Amplitude (Vpp)  
Differential Clock Amplitude (Vpp)  
D227  
D228  
Figure 117. Performance vs Clock Amplitude (40 MHz)  
Figure 118. Performance vs Clock Amplitude (150 MHz)  
71.5  
96  
94  
92  
90  
88  
86  
70.5  
90  
SNR  
SFDR  
SNR  
SFDR  
71.1  
70.7  
70.3  
69.9  
69.5  
70.3  
70.1  
69.9  
69.7  
69.5  
87.5  
85  
82.5  
80  
77.5  
30  
35  
40  
45  
50  
55  
60  
65  
70  
30  
35  
40  
45  
50  
55  
60  
65  
70  
Input Clock Duty Cycle (%)  
Input Clock Duty Cycle (%)  
D229  
D230  
Figure 119. Performance vs Clock Duty Cycle (30 MHz)  
Figure 120. Performance vs Clock Duty Cycle (150 MHz)  
Copyright © 2014–2015, Texas Instruments Incorporated  
37  
ADC3421, ADC3422, ADC3423, ADC3424  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
www.ti.com.cn  
7.19 Typical Characteristics: Common  
Typical values are at TA = 25°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when chopper is enabled, unless otherwise noted.  
0
-10  
0
-5  
-20  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
0
12ꢀ5  
25  
37ꢀ5  
50  
62ꢀ5  
0
50  
100  
150  
200  
250  
300  
Crequency (aIz)  
Frequency of Signal on Supply (MHz)  
D001  
D002  
fIN = 30 MHz, AIN = –1 dBFS,  
test signal amplitude = 50 mVPP  
fIN = 30.1 MHz, fPSRR = 3 MHz, APSRR = 50 mVPP  
,
SINAD = 58.51 dBFS, SFDR = 60 dBc  
Figure 121. Power-Supply Rejection Ratio vs  
Test Signal Frequency  
Figure 122. Power-Supply Rejection Ratio Spectrum  
0
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
0
12ꢀ5  
25  
37ꢀ5  
50  
62ꢀ5  
0
50  
100  
150  
200  
250  
300  
Crequency (aIz)  
Frequency of Input Common-Mode Signal (MHz)  
D003  
D004  
fIN = 30 MHz, AIN = –1 dBFS,  
test signal amplitude = 50 mVPP  
fIN = 170.1 MHz, fCMRR = 5 MHz, ACMRR = 50 mVPP  
,
SINAD = 69.66 dBFS, SFDR = 75 dBc  
Figure 123. Common-Mode Rejection Ratio vs  
Test Signal Frequency  
Figure 124. Common-Mode Rejection Ratio Spectrum  
400  
320  
Analog Power  
Digital Power  
Total Power  
Analog Power  
Digital Power  
Total Power  
240  
360  
280  
320  
280  
240  
200  
160  
120  
80  
200  
160  
120  
80  
40  
5
15 25 35 45 55 65 75 85 95 105 115 125  
Sampling Speed (MSPS)  
10  
20  
30  
40  
50  
60  
70  
80  
Sampling Speed (MSPS)  
D009  
D010  
Figure 125. Power vs Sampling Frequency  
(Two-Wire Mode)  
Figure 126. Power vs Sampling Frequency  
(One-Wire Mode)  
38  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC3421, ADC3422, ADC3423, ADC3424  
www.ti.com.cn  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
7.20 Typical Characteristics: Contour  
Typical values are at TA= 25°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, and SNR reported with a 1-MHz offset from dc  
when chopper is disabled and from fS / 2 when is chopper enabled, unless otherwise noted.  
120  
110  
100  
90  
120  
110  
100  
90  
85  
81 77  
73  
70.5  
69.5  
89  
68.5  
69  
67.5  
70  
68  
69  
80  
80  
85  
73  
70.5  
69.5  
81 77  
89  
70  
70  
68.5  
70  
69  
69  
67.5  
68  
60  
60  
50  
50  
40  
40  
85  
69.5  
73  
68.5  
70  
70.5  
67.5  
69  
67  
89  
68  
81 77  
30  
30  
85  
66.5  
69  
50  
100  
150  
200  
250  
300  
350  
400  
450  
50  
100  
150  
200  
250  
300  
350  
400  
450  
Input Frequency, MHz  
Input Frequency, MHz  
70  
75  
80  
85  
66  
66.5  
67  
67.5  
68  
68.5  
69  
69.5  
70  
70.5  
Figure 127. Spurious-Free Dynamic Range (SFDR)  
Figure 128. Signal-to-Noise Ratio (SNR)  
8 Parameter Measurement Information  
8.1 Timing Diagrams  
DAn_P  
DBn_P  
Logic 0  
VODL = -350 mV(1)  
Logic 1  
VODH = +350 mV(1)  
DAn_M  
DBn_M  
VOCM  
GND  
(1) With an external 100-Ω termination.  
Figure 129. Serial LVDS Output Voltage Levels  
Copyright © 2014–2015, Texas Instruments Incorporated  
39  
ADC3421, ADC3422, ADC3423, ADC3424  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
www.ti.com.cn  
Timing Diagrams (continued)  
CLKIN  
FCLK  
DCLK  
Dx0P  
1-Wire (12x Serialization)  
D
9
D
D
D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
7
D
8
D
9
D
D
D
0
10 11  
10 11  
Dx0M  
DCLK  
Dx0P  
Dx0M  
D
5
D
0
D
1
D
2
D
3
D
4
D
5
D
0
2-Wire (6x Serialization)  
Dx1P  
Dx1M  
D
11  
D
6
D
7
D
8
D
9
D
10  
D
11  
D
6
SAMPLE N-1  
SAMPLE N  
SAMPLE N+1  
Figure 130. Output Timing Diagram  
DCLK  
t HO  
Dx0P  
Dx0M  
t SU  
Figure 131. Setup and Hold Time  
40  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC3421, ADC3422, ADC3423, ADC3424  
www.ti.com.cn  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
9 Detailed Description  
9.1 Overview  
The ADC342x are a high-linearity, ultra-low power, quad-channel, 12-bit, 25-MSPS to 125-MSPS, analog-to-  
digital converter (ADC) family. The devices are designed specifically to support demanding, high input frequency  
signals with large dynamic range requirements. An input clock divider allows more flexibility for system clock  
architecture design and the SYSREF input enables complete system synchronization. The ADC342x family  
supports a serial low-voltage differential signaling (LVDS) interface in order to reduce the number of interface  
lines, thus allowing for high system integration density. The serial LVDS interface is two-wire, where each ADC  
data are serialized and output over two LVDS pairs. An internal phase-locked loop (PLL) multiplies the incoming  
ADC sampling clock to derive the bit clock that is used to serialize the 12-bit output data from each channel. In  
addition to the serial data streams, the frame and bit clocks are also transmitted as LVDS outputs.  
9.2 Functional Block Diagram  
DA0P  
DA0M  
INAP  
INAM  
12-Bit  
ADC  
Digital Encoder  
and Serializer  
DA1P  
DA1M  
DB0P  
DB0M  
Digital Encoder  
and Serializer  
INBP  
INBM  
12-Bit  
ADC  
DB1P  
DB1M  
Bit Clock  
CLKP  
CLKM  
Divide  
by 1,2,4  
DCLKP  
DCLKM  
PLL  
Frame Clock  
FCLKP  
FCLKM  
SYSREFP  
SYSREFM  
DC0P  
DC0M  
INCP  
INCM  
12-Bit  
ADC  
Digital Encoder  
and Serializer  
DC1P  
DC1M  
DD0P  
DD0M  
INDP  
INDM  
12-Bit  
ADC  
Digital Encoder  
and Serializer  
DD1P  
DD1M  
Common  
Mode  
Configuration  
Registers  
VCM  
Copyright © 2014–2015, Texas Instruments Incorporated  
41  
ADC3421, ADC3422, ADC3423, ADC3424  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
www.ti.com.cn  
9.3 Feature Description  
9.3.1 Analog Inputs  
The ADC342x analog signal inputs are designed to be driven differentially. Each input pin (INP, INM) must swing  
symmetrically between (VCM + 0.5 V) and (VCM – 0.5 V), resulting in a 2-VPP (default) differential input swing.  
The input sampling circuit has a 3-dB bandwidth that extends up to 540 MHz (50-Ω source driving 50-Ω  
termination between INP and INM).  
9.3.2 Clock Input  
The device clock inputs can be driven differentially (sine, LVPECL, or LVDS) or single-ended (LVCMOS), with  
little or no difference in performance between them. The common-mode voltage of the clock inputs is set to  
0.95 V using internal 5-kΩ resistors. The self-bias clock inputs of the ADC342x can be driven by the transformer-  
coupled, sine-wave clock source or by the ac-coupled, LVPECL and LVDS clock sources, as shown in  
Figure 132, Figure 133, and Figure 134. See Figure 135 for details regarding the internal clock buffer.  
0.1 mF  
0.1 mF  
Zo  
CLKP  
CLKP  
Differential  
Sine-Wave  
Clock Input  
RT  
Typical LVDS  
Clock Input  
100 W  
0.1 mF  
CLKM  
Device  
0.1 mF  
Zo  
CLKM  
NOTE: RT = termination resistor, if necessary.  
Device  
Figure 132. Differential Sine-Wave Clock Driving  
Circuit  
Figure 133. LVDS Clock Driving Circuit  
0.1 mF  
Zo  
CLKP  
150 W  
Typical LVPECL  
Clock Input  
100 W  
0.1 mF  
Zo  
CLKM  
Device  
150 W  
Figure 134. LVPECL Clock Driving Circuit  
42  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
 
ADC3421, ADC3422, ADC3423, ADC3424  
www.ti.com.cn  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
Clock Buffer  
LPKG  
2 nH  
20  
CLKP  
CBOND  
1 pF  
5 kΩ  
CEQ  
CEQ  
RESR  
100 Ω  
0.95 V  
CEQ  
LPKG  
2 nH  
5 kΩ  
20 Ω  
CLKM  
CBOND  
1 pF  
RESR  
100 Ω  
NOTE: CEQ is 1 pF to 3 pF and is the equivalent input capacitance of the clock buffer.  
Figure 135. Internal Clock Buffer  
A single-ended CMOS clock can be ac-coupled to the CLKP input, with CLKM connected to ground with a 0.1-μF  
capacitor, as shown in Figure 136. However, for best performance the clock inputs must be driven differentially,  
thereby reducing susceptibility to common-mode noise. For high input frequency sampling, TI recommends using  
a clock source with very low jitter. Band-pass filtering of the clock source can help reduce the effects of jitter.  
There is no change in performance with a non-50% duty cycle clock input.  
0.1 mF  
CMOS  
Clock Input  
CLKP  
0.1 mF  
CLKM  
Device  
Figure 136. Single-Ended Clock Driving Circuit  
9.3.2.1 SNR and Clock Jitter  
The signal-to-noise ratio of the ADC is limited by three different factors, as shown in Equation 1. Quantization  
noise (typically 74 dB for a 12-bit ADC) and thermal noise limit SNR at low input frequencies, and the clock jitter  
sets SNR for higher input frequencies.  
2
2
2
SNRQuantizatoin  
SNR  
SNR  
Jitter  
Noise  
÷
Thermal Noise  
÷
÷
-
-
-
20  
20  
20  
SNRADC[dBc] = -20log 10  
+ 10  
+ 10  
«
÷
«
÷
«
÷
(1)  
(2)  
The SNR limitation resulting from sample clock jitter can be calculated with Equation 2.  
SNRJitter[dBc] = -20log(2p fin TJitter )  
Copyright © 2014–2015, Texas Instruments Incorporated  
43  
 
 
 
ADC3421, ADC3422, ADC3423, ADC3424  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
www.ti.com.cn  
The total clock jitter (TJitter) has two components: the internal aperture jitter (130 fs for the device) which is set by  
the noise of the clock input buffer and the external clock. TJitter can be calculated with Equation 3.  
2
TJitter = (TJitter,Ext.Clock _ Input )2 +(TAperture_ ADC  
)
(3)  
External clock jitter can be minimized by using high-quality clock sources and jitter cleaners as well as band-pass  
filters at the clock input; a faster clock slew rate improves the ADC aperture jitter. The devices have a typical  
thermal noise of 72.7 dBFS and internal aperture jitter of 130 fs. The SNR, depending on the amount of external  
jitter for different input frequencies, is shown in Figure 137.  
71.0  
70.5  
70.0  
69.5  
69.0  
68.5  
Ext Clock Jitter  
68.0  
35 fs  
50 fs  
67.5  
67.0  
66.5  
66.0  
65.5  
65.0  
100 fs  
150 fs  
200 fs  
10  
100  
Input Frequency (MHz)  
1000  
D00316  
Figure 137. SNR vs Frequency for Different Clock Jitter  
9.3.3 Digital Output Interface  
The devices offer two different output format options, thus making interfacing to a field-programmable gate array  
(FPGA) or an application-specific integrated circuit (ASIC) easy. Each option can be easily programmed using  
the serial interface, as shown in Table 3. The output interface options are:  
One-wire, 1x frame clock, 12x serialization with the DDR bit clock and  
Two-wire, 1x frame clock, 6x serialization with the DDR bit clock.  
Table 3. Interface Rates  
RECOMMENDED SAMPLING  
FREQUENCY (MSPS)  
BIT CLOCK  
FREQUENCY  
(MHz)  
FRAME CLOCK  
FREQUENCY  
(MHz)  
SERIAL DATA  
RATE PER  
WIRE (Mbps)  
INTERFACE  
OPTIONS  
SERIALIZATION  
MINIMUM  
MAXIMUM  
15  
90  
480  
60  
15  
80  
20  
180  
960  
120  
One-wire  
12x  
6x  
80  
Two-wire  
(Default after  
Reset)  
20(1)  
125  
375  
125  
750  
(1) Use the LOW SPEED ENABLE register bits for low speed operation; see Table 21.  
9.3.3.1 One-Wire Interface: 12x Serialization  
In this interface option, the device outputs the data of each ADC serially on a single LVDS pair (one-wire). The  
data are available at the rising and falling edges of the bit clock (DDR bit clock). The ADC outputs a new word at  
the rising edge of every frame clock, starting with the LSB. The data rate is 12x sample frequency (12x  
serialization).  
44  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
 
 
ADC3421, ADC3422, ADC3423, ADC3424  
www.ti.com.cn  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
9.3.3.2 Two-Wire Interface: 6x Serialization  
The two-wire interface is recommended for sampling frequencies above 65 MSPS. The output data rate is 6x  
sample frequency because six data bits are output every clock cycle on each differential pair. Each ADC sample  
is sent over the two wires with the six MSBs on Dx1P, Dx1M and the six LSBs on Dx0P, Dx0M, as shown in  
Figure 138.  
CLKIN  
FCLK  
DCLK  
1-Wire (12x Serialization)  
Dx0P  
D
9
D
D
D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
7
D
8
D
9
D
D
D
0
10 11  
10 11  
Dx0M  
DCLK  
Dx0P  
Dx0M  
D
5
D
0
D
1
D
2
D
3
D
4
D
5
D
0
2-Wire (6x Serialization)  
Dx1P  
Dx1M  
D
11  
D
6
D
7
D
8
D
9
D
10  
D
11  
D
6
SAMPLE N-1  
SAMPLE N  
SAMPLE N+1  
Figure 138. Output Timing Diagram  
Copyright © 2014–2015, Texas Instruments Incorporated  
45  
 
ADC3421, ADC3422, ADC3423, ADC3424  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
www.ti.com.cn  
9.4 Device Functional Modes  
9.4.1 Input Clock Divider  
The devices are equipped with an internal divider on the clock input. The clock divider allows operation with a  
faster input clock, thus simplifying the system clock distribution design. The clock divider can be bypassed for  
operation with a 125-MHz clock and the divide-by-2 option supports a maximum input clock of 250 MHz and the  
divide-by-4 option provides a maximum input clock frequency of 500 MHz.  
9.4.2 Chopper Functionality  
The devices are equipped with an internal chopper front-end. Enabling the chopper function swaps the ADC  
noise spectrum by shifting the 1/f noise from dc to fS / 2. Figure 139 shows the noise spectrum with the chopper  
off and Figure 140 shows the noise spectrum with the chopper on. This function is especially useful in  
applications requiring good ac performance at low input frequencies or in dc-coupled applications. The chopper  
can be enabled via SPI register writes and is recommended for input frequencies below 30 MHz. The chopper  
function creates a spur at fS / 2 that must be filtered out digitally.  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
Frequency (MHz)  
Frequency (MHz)  
D016  
D017  
fS = 125 MSPS, SNR = 70.4 dBFS,  
fIN = 10 MHz, SFDR = 98 dBc  
fS = 125 MSPS, SNR = 70.4 dBFS,  
fIN = 10 MHz, SFDR = 97 dBc  
Figure 139. Chopper Off  
Figure 140. Chopper On  
9.4.3 Power-Down Control  
The power-down functions of the ADC342x can be controlled either through the parallel control pin (PDN) or  
through an SPI register setting (see register 15h). The PDN pin can also be configured via SPI to a global power-  
down or standby functionality, as shown in Table 4.  
Table 4. Power-Down Modes  
FUNCTION  
Global power-down  
Standby  
POWER CONSUMPTION (mW)  
WAKE-UP TIME (µs)  
5
85  
35  
45  
46  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
 
ADC3421, ADC3422, ADC3423, ADC3424  
www.ti.com.cn  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
9.4.4 Internal Dither Algorithm  
The ADC342x use an internal dither algorithm to achieve high SFDR and a clean spectrum. However, the dither  
algorithm marginally degrades SNR, creating a trade-off between SNR and SFDR. If desired, the dither algorithm  
can be turned off by using the DIS DITH CHx registers bits. Figure 141 and Figure 142 show the effect of using  
dither algorithms.  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
D201  
D202  
SFDR = 95 dBc, SNR = 70.4 dBFS, SINAD = 70.4 dBFS,  
THD = 98 dBc, HD2 = 95 dBc, HD3 = 97 dBc  
SFDR = 91 dBc, SNR = 70.7 dBFS, SINAD = 70.6 dBFS,  
THD = 86 dBc, HD2 = 92 dBc, HD3 = 91 dBc  
Figure 141. FFT for 10-MHz Input Signal  
(Chopper On, Dither On)  
Figure 142. FFT for 10-MHz Input Signal  
(Chopper On, Dither Off)  
9.4.5 Summary of Performance Mode Registers  
Table 5 lists the location, value, and functions of performance mode registers in the device.  
Table 5. Performance Modes  
MODE  
REGISTER SETTINGS  
DESCRIPTION  
Special modes  
Registers 139 (bit 3), 239 (bit 3), 439 (bit 3), and 539 (bit 3)  
Always write 1 for best performance  
Registers 1 (bits 7:0), 134 (bits 5 and 3), 234 (bits 5 and 3),  
434 (bits 5 and 3), and 534 (bits 5 and 3)  
Disable dither  
Disable dither to improve SNR  
Disable chopper Registers 122 (bit 1), 222 (bit 1), 422 (bit 1), and 522 (bit 1)  
Disable chopper (shifts 1/f noise floor at dc)  
Improves HD3 by a couple of dB for IF > 100 MHz  
Registers 11Dh (bit 1), 21Dh (bit 1), 41Dh (bit 1), 51Dh (bit 1),  
High IF modes  
308h (bits 7-6) and 608h (bits 7-6)  
9.5 Programming  
The ADC342x can be configured using a serial programming interface, as described in this section.  
9.5.1 Serial Interface  
The device has a set of internal registers that can be accessed by the serial interface formed by the SEN (serial  
interface enable), SCLK (serial interface clock), SDATA (serial interface data), and SDOUT (serial interface data  
output) pins. Serially shifting bits into the device is enabled when SEN is low. Serial data SDATA are latched at  
every SCLK rising edge when SEN is active (low). The serial data are loaded into the register at every 24th  
SCLK rising edge when SEN is low. When the word length exceeds a multiple of 24 bits, the excess bits are  
ignored. Data can be loaded in multiples of 24-bit words within a single active SEN pulse. The interface can  
function with SCLK frequencies from 20 MHz down to very low speeds (of a few hertz) and also with a non-50%  
SCLK duty cycle.  
Copyright © 2014–2015, Texas Instruments Incorporated  
47  
 
 
ADC3421, ADC3422, ADC3423, ADC3424  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
www.ti.com.cn  
Programming (continued)  
9.5.1.1 Register Initialization  
After power-up, the internal registers must be initialized to their default values through a hardware reset by  
applying a high pulse on the RESET pin (of durations greater than 10 ns), as shown in Figure 143. If required,  
the serial interface registers can be cleared during operation either:  
1. Through a hardware reset, or  
2. By applying a software reset. When using the serial interface, set the RESET bit (D0 in register address 06h)  
high. This setting initializes the internal registers to the default values and then self-resets the RESET bit low.  
In this case, the RESET pin is kept low.  
9.5.1.1.1 Serial Register Write  
The device internal register can be programmed with these steps:  
1. Drive the SEN pin low,  
2. Set the R/W bit to 0 (bit A15 of the 16-bit address),  
3. Set bit A14 in the address field to 1,  
4. Initiate a serial interface cycle by specifying the address of the register (A13 to A0) whose content must be  
written, and  
5. Write the 8-bit data that are latched in on the SCLK rising edge.  
Figure 143 and Table 6 show the timing requirements for the serial register write operation.  
Register Address [13:0]  
A13 A12 A11 A1  
Register Data [7:0]  
SDATA  
R/W  
= 0  
1
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
tDH  
D0  
tSCLK  
tDSU  
SCLK  
SEN  
tSLOADS  
tSLOADH  
RESET  
Figure 143. Serial Register Write Timing Diagram  
Table 6. Serial Interface Timing(1)  
MIN  
> dc  
25  
TYP  
MAX  
UNIT  
MHz  
ns  
fSCLK  
tSLOADS  
tSLOADH  
tDSU  
SCLK frequency (equal to 1 / tSCLK  
SEN to SCLK setup time  
SCLK to SEN hold time  
SDIO setup time  
)
20  
25  
ns  
25  
ns  
tDH  
SDIO hold time  
25  
ns  
(1) Typical values are at 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, and AVDD = DVDD = 1.8 V, unless otherwise  
noted.  
48  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
 
ADC3421, ADC3422, ADC3423, ADC3424  
www.ti.com.cn  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
9.5.1.1.2 Serial Register Readout  
The device includes a mode where the contents of the internal registers can be read back using the SDOUT pin.  
This readback mode may be useful as a diagnostic check to verify the serial interface communication between  
the external controller and the ADC. The procedure to read the contents of the serial registers is as follows:  
1. Drive the SEN pin low.  
2. Set the R/W bit (A15) to 1. This setting disables any further writes to the registers.  
3. Set bit A14 in the address field to 1.  
4. Initiate a serial interface cycle specifying the address of the register (A13 to A0) whose content must be read.  
5. The device outputs the contents (D7 to D0) of the selected register on the SDOUT pin.  
6. The external controller can latch the contents at the SCLK rising edge.  
7. To enable register writes, reset the R/W register bit to 0.  
When READOUT is disabled, the SDOUT pin is in a high-impedance mode. If serial readout is not used, the  
SDOUT pin must float. Figure 144 shows a timing diagram of the serial register read operation. Data appear on  
the SDOUT pin at the SCLK falling edge with an approximate delay (tSD_DELAY) of 20 ns, as shown in Figure 145.  
Register Address [13:0]  
A13 A12 A11 A1  
Register Data: Don‘t Care  
D5 D4 D3 D2  
SDATA  
R/W  
= 1  
A0  
D7  
D7  
D6  
D6  
D1  
D1  
D0  
D0  
1
Register Read Data [7:0]  
SDOUT  
SCLK  
D5  
D4  
D3  
D2  
SEN  
Figure 144. Serial Register Read Timing Diagram  
SCLK  
tSD_DELAY  
SDOUT  
Figure 145. SDOUT Timing Diagram  
Copyright © 2014–2015, Texas Instruments Incorporated  
49  
 
 
ADC3421, ADC3422, ADC3423, ADC3424  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
www.ti.com.cn  
9.5.2 Register Initialization  
After power-up, the internal registers must be initialized to their default values through a hardware reset by  
applying a high pulse on the RESET pin, as shown in Figure 146 and Table 7.  
Power  
Supplies  
t1  
RESET  
t2  
t3  
SEN  
Figure 146. Initialization of Serial Registers after Power-Up  
Table 7. Power-Up Timing  
MIN  
1
TYP  
MAX  
UNIT  
ms  
ns  
t1  
t2  
t3  
Power-on delay from power-up to active high RESET pulse  
Reset pulse duration: active high RESET pulse duration  
Register write delay from RESET disable to SEN active  
10  
100  
ns  
If required, the serial interface registers can be cleared during operation either:  
1. Through hardware reset, or  
2. By applying a software reset. When using the serial interface, set the RESET bit (D0 in register address 06h)  
high. This setting initializes the internal registers to the default values and then self-resets the RESET bit low.  
In this case, the RESET pin is kept low.  
50  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
 
ADC3421, ADC3422, ADC3423, ADC3424  
www.ti.com.cn  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
9.6 Register Maps  
Table 8. Register Map Summary  
REGISTER  
REGISTER DATA  
ADDRESS,  
A[13:0] (Hex)  
7
6
5
4
3
2
1
0
Register 01h  
Register 03h  
Register 04h  
Register 05h  
DIS DITH CHA  
DIS DITH CHB  
DIS DITH CHC  
DIS DITH CHD  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
ODD EVEN  
FLIP WIRE  
1W-2W  
TEST  
PATTERN EN  
Register 06h  
Register 07h  
Register 09h  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
0
OVR ON LSB  
ALIGN TEST  
PATTERN  
DATA  
FORMAT  
Register 0Ah  
Register 0Bh  
Register 0Eh  
Register 0Fh  
Register 13h  
CHA TEST PATTERN  
CHB TEST PATTERN  
CHD TEST PATTERN  
CHC TEST PATTERN 0  
CUSTOM PATTERN[11:4]  
0
CUSTOM PATTERN[3:0]  
0
0
0
0
0
0
0
0
0
LOW SPEED ENABLE  
CONFIG PDN  
Register 15h  
CHA PDN  
CHB PDN  
CHC PDN  
CHD PDN  
STANDBY  
GLOBAL PDN  
0
PIN  
Register 25h  
Register 27h  
LVDS SWING  
CLK DIV  
0
0
0
0
0
0
0
0
0
0
0
HIGH IF  
MODE0  
Register 11Dh  
Register 122h  
0
0
0
0
DIS CHOP  
CHA  
0
0
0
0
0
Register 134h  
Register 139h  
0
0
0
0
DIS DITH CHA  
0
0
0
DIS DITH CHA  
SP1 CHA  
0
0
0
0
0
0
HIGH IF  
MODE1  
Register 21Dh  
Register 222h  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DIS CHOP  
CHD  
Register 234h  
Register 239h  
Register 308  
0
0
0
0
DIS DITH CHD  
0
0
0
DIS DITH CHD  
0
0
0
0
0
0
0
0
0
0
0
SP1 CHD  
0
HIGH IF MODE <5:4>  
HIGH IF  
MODE2  
Register 41Dh  
Register 422h  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DIS CHOP  
CHB  
Register 434h  
Register 439h  
0
0
0
0
DIS DITH CHB  
0
0
0
DIS DITH CHB  
SP1 CHB  
0
0
0
0
0
0
HIGH IF  
MODE3  
Register 51Dh  
Register 522h  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DIS CHOP  
CHC  
Register 534h  
Register 539h  
Register 608h  
Register 70Ah  
0
0
0
0
DIS DITH CHC  
0
0
0
0
DIS DITH CHC  
0
0
0
0
0
0
0
0
0
0
0
0
SP1 CHC  
0
HIGH IF MODE <7:6>  
0
0
0
0
0
PDN SYSREF  
Copyright © 2014–2015, Texas Instruments Incorporated  
51  
ADC3421, ADC3422, ADC3423, ADC3424  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
www.ti.com.cn  
9.6.1 Serial Register Description  
9.6.1.1 Register 01h (address = 01h)  
Figure 147. Register 01h  
7
6
5
4
3
2
1
0
DIS DITH CHA  
R/W-0h  
DIS DITH CHB  
R/W-0h  
DIS DITH CHC  
R/W-0h  
DIS DITH CHD  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 9. Register 01h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
DIS DITH CHA  
R/W  
0h  
These bits enable or disable the on-chip dither. Control this bit  
along with bits 5 and 3 of register 134h.  
00 = Default  
11 = Dither is disabled for channel A. In this mode, SNR typically  
improves by 0.2 dB at 70 MHz.  
5-4  
3-2  
1-0  
DIS DITH CHB  
DIS DITH CHC  
DIS DITH CHD  
R/W  
R/W  
R/W  
0h  
0h  
0h  
These bits enable or disable the on-chip dither. Control this bit  
along with bits 5 and 3 of register 434h.  
00 = Default  
11 = Dither is disabled for channel B. In this mode, SNR typically  
improves by 0.2 dB at 70 MHz.  
These bits enable or disable the on-chip dither. Control this bit  
along with bits 5 and 3 of register 534h.  
00 = Default  
11 = Dither is disabled for channel B. In this mode, SNR typically  
improves by 0.2 dB at 70 MHz.  
These bits enable or disable the on-chip dither. Control this bit  
along with bits 5 and 3 of register 234h.  
00 = Default  
11 = Dither is disabled for channel B. In this mode, SNR typically  
improves by 0.2 dB at 70 MHz.  
9.6.1.2 Register 03h (address = 03h)  
Figure 148. Register 03h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
ODD EVEN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 10. Register 03h Field Descriptions  
Bit  
7-6  
0
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
ODD EVEN  
R/W  
0h  
This bit selects the bit sequence on the output wires (in 2-wire  
mode only).  
0 = Bits 0, 1, 2, and so forth appear on wire-0; bits 7, 8, 9, and  
so forth appear on wire-1.  
1 = Bits 0, 2, 4, and so forth appear on wire-0; bits 1, 3, 5, and  
so forth appear on wire-1.  
52  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC3421, ADC3422, ADC3423, ADC3424  
www.ti.com.cn  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
9.6.1.3 Register 04h (address = 04h)  
Figure 149. Register 04h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
FLIP WIRE  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 11. Register 04h Field Descriptions  
Bit  
7-1  
0
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
FLIP WIRE  
R/W  
0h  
This bit flips the data on the output wires. Valid only in two wire  
configuration.  
0 = Default  
1 = Data on output wires is flipped. Pin D0x becomes D1x, and  
vice versa.  
9.6.1.4 Register 05h (address = 05h)  
Figure 150. Register 05h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
1W-2W  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 12. Register 05h Field Descriptions  
Bit  
7-1  
0
Field  
0
Type  
W
Reset  
0h  
Description  
Must write 0.  
1W-2W  
R/W  
0h  
This bit transmits output data on either one or two wires.  
0 = Output data are transmitted on two wires (Dx0P, Dx0M and  
Dx1P, Dx1M)  
1 = Output data are transmitted on one wire (Dx0P, Dx0M). In  
this mode, the recommended fS is less than 80 MSPS.  
9.6.1.5 Register 06h (address = 06h)  
Figure 151. Register 06h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
TEST PATTERN EN  
R/W-0h  
RESET  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 13. Register 06h Field Descriptions  
Bit  
7-2  
1
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
TEST PATTERN EN  
R/W  
0h  
This bit enables test pattern selection for the digital outputs.  
0 = Normal output  
1 = Test pattern output enabled  
0
RESET  
R/W  
0h  
This bit applies a software reset.  
This bit resets all internal registers to the default values and self-  
clears to 0.  
Copyright © 2014–2015, Texas Instruments Incorporated  
53  
ADC3421, ADC3422, ADC3423, ADC3424  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
www.ti.com.cn  
9.6.1.6 Register 07h (address = 07h)  
Figure 152. Register 07h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
OVR ON LSB  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 14. Register 07h Field Descriptions  
Bit  
7-1  
0
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
OVR ON LSB  
R/W  
0h  
This bit provides OVR information on the LSB bits.  
0 = Output data bit 0 functions as the LSB of the 12-bit data  
1 = Output data bit 0 carries the overrange (OVR) information  
9.6.1.7 Register 09h (address = 09h)  
Figure 153. Register 09h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
ALIGN TEST PATTERN  
R/W-0h  
DATA FORMAT  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 15. Register 09h Field Descriptions  
Bit  
7-2  
1
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
ALIGN TEST PATTERN  
R/W  
0h  
This bit aligns the test patterns across the outputs of both  
channels.  
0 = Test patterns of both channels are free running  
1 = Test patterns of both channels are aligned  
0
DATA FORMAT  
R/W  
0h  
This bit selects th digital output data format.  
0 = Twos complement  
1 = Offset binary  
54  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC3421, ADC3422, ADC3423, ADC3424  
www.ti.com.cn  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
9.6.1.8 Register 0Ah (address = 0Ah)  
Figure 154. Register 0Ah  
7
6
5
4
3
2
1
0
CHA TEST PATTERN  
R/W-0h  
CHB TEST PATTERN  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 16. Register 0Ah Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
CHA TEST PATTERN  
R/W  
0h  
These bits control the test pattern for channel A after the TEST  
PATTERN EN bit is set.  
0000 = Normal operation  
0001 = All 0's  
0010 = All 1's  
0011 = Toggle pattern: data alternate between 101010101010  
and 010101010101  
0100 = Digital ramp: data increment by 1 LSB every clock cycle  
from code 0 to 4095  
0101 = Custom pattern: output data are the same as  
programmed by the CUSTOM PATTERN register bits  
0110 = Deskew pattern: data are AAAh  
1000 = PRBS pattern: data are a sequence of pseudo random  
numbers  
1001 = 8-point sine-wave: data are a repetitive sequence of the  
following eight numbers that form a sine-wave: 0, 599, 2048,  
3496, 4095, 3496, 2048, and 599  
Others = Do not use  
3-0  
CHB TEST PATTERN  
R/W  
0h  
These bits control the test pattern for channel B after the TEST  
PATTERN EN bit is set.  
0000 = Normal operation  
0001 = All 0's  
0010 = All 1's  
0011 = Toggle pattern: data alternate between 101010101010  
and 010101010101  
0100 = Digital ramp: data increment by 1 LSB every clock cycle  
from code 0 to 4095  
0101 = Custom pattern: output data are the same as  
programmed by the CUSTOM PATTERN register bits  
0110 = Deskew pattern: data are AAAh  
1000 = PRBS pattern: data are a sequence of pseudo random  
numbers  
1001 = 8-point sine-wave: data are a repetitive sequence of the  
following eight numbers that form a sine-wave: 0, 599, 2048,  
3496, 4095, 3496, 2048, and 599  
Others = Do not use  
Copyright © 2014–2015, Texas Instruments Incorporated  
55  
ADC3421, ADC3422, ADC3423, ADC3424  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
www.ti.com.cn  
9.6.1.9 Register 0Bh (address = 0Bh)  
Figure 155. Register 0Bh  
7
6
5
4
3
2
1
0
CHC TEST PATTERN  
R/W-0h  
CHD TEST PATTERN  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 17. Register 0Bh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
CHC TEST PATTERN  
R/W  
0h  
These bits control the test pattern for channel C after the TEST  
PATTERN EN bit is set.  
0000 = Normal operation  
0001 = All 0's  
0010 = All 1's  
0011 = Toggle pattern: data alternate between 101010101010  
and 010101010101.  
0100 = Digital ramp: data increment by 1 LSB every clock cycle  
from code 0 to 4095.  
0110 = Custom pattern: output data are the same as  
programmed by the CUSTOM PATTERN register bits.  
1000 = Deskew pattern: data are AAAh.  
1010 = PRBS pattern: data are a sequence of pseudo random  
numbers.  
1011 = 8-point sine wave: data are a repetitive sequence of the  
following eight numbers that form a sine-wave: 0, 599, 2048,  
3496, 4095, 3496, 2048, 599.  
Others = Do not use  
3-0  
CHD TEST PATTERN  
R/W  
0h  
These bits control the test pattern for channel D after the TEST  
PATTERN EN bit is set.  
0000 = Normal operation  
0001 = All 0's  
0010 = All 1's  
0011 = Toggle pattern: data alternate between 101010101010  
and 010101010101.  
0100 = Digital ramp: data increment by 1 LSB every clock cycle  
from code 0 to 4095.  
0110 = Custom pattern: output data are the same as  
programmed by the CUSTOM PATTERN register bits.  
1000 = Deskew pattern: data are AAAh.  
1010 = PRBS pattern: data are a sequence of pseudo random  
numbers.  
1011 = 8-point sine wave: data are a repetitive sequence of the  
following eight numbers that form a sine-wave: 0, 599, 2048,  
3496, 4095, 3496, 2048, 599.  
Others = Do not use  
9.6.1.10 Register 0Eh (address = 0Eh)  
Figure 156. Register 0Eh  
7
6
5
4
3
2
1
0
CUSTOM PATTERN[11:4]  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 18. Register 0Eh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
CUSTOM PATTERN[11:4]  
R/W  
0h  
These bits set the 12-bit custom pattern (bits 11-4) for all  
channels.  
56  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC3421, ADC3422, ADC3423, ADC3424  
www.ti.com.cn  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
9.6.1.11 Register 0Fh (address = 0Fh)  
Figure 157. Register 0Fh  
7
6
5
4
3
0
2
0
1
0
0
0
CUSTOM PATTERN[3:0]  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 19. Register 0Fh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
CUSTOM PATTERN[3:0]  
R/W  
0h  
These bits set the 12-bit custom pattern (bits 3-0) for all  
channels.  
3-0  
0
W
0h  
Must write 0.  
9.6.1.12 Register 13h (address = 13h)  
Figure 158. Register 13h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
LOW SPEED ENABLE  
W-0h R/W-0h  
W-0h  
R/W-0h  
R/W-0h  
W-0h  
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 20. Register 13h Field Descriptions  
Bit  
7-2  
1-0  
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
LOW SPEED ENABLE  
R/W  
0h  
Enables low speed operation in 1-wire and 2-wire mode.  
Depending upon sampling frequency, write this bit as per  
Table 21.  
Table 21. LOW SPEED ENABLE Register Settings Across fS  
fS, MSPS  
REGISTER BIT LOW SPEED ENABLE  
MIN  
25  
MAX  
125  
25  
1-WIRE MODE  
2-WIRE MODE  
00  
10  
10  
00  
11  
20  
15  
20  
Not supported  
Copyright © 2014–2015, Texas Instruments Incorporated  
57  
 
ADC3421, ADC3422, ADC3423, ADC3424  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
www.ti.com.cn  
9.6.1.13 Register 15h (address = 15h)  
Figure 159. Register 15h  
7
6
5
4
3
2
1
0
0
CONFIG PDN  
PIN  
CHA PDN  
W-0h  
CHB PDN  
R/W-0h  
CHC PDN  
R/W-0h  
CHD PDN  
W-0h  
STANDBY  
R/W-0h  
GLOBAL PDN  
R/W-0h  
W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 22. Register 15h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CHA PDN  
W
0h  
0 = Normal operation  
1 = Power-down channel A  
6
5
4
3
CHB PDN  
CHC PDN  
CHD PDN  
STANDBY  
R/W  
R/W  
W
0h  
0h  
0h  
0h  
0 = Normal operation  
1 = Power-down channel B  
0 = Normal operation  
1 = Power-down channel C  
0 = Normal operation  
1 = Power-down channel D  
R/W  
The ADCs of both channels enter standby.  
0 = Normal operation  
1 = Standby  
2
GLOBAL PDN  
R/W  
0h  
0 = Normal operation  
1 = Global power-down  
1
0
0
W
0h  
0h  
Must write 0.  
CONFIG PDN PIN  
R/W  
This bit configures the PDN pin as either a global power-down or  
standby pin.  
0 = Logic high voltage on the PDN pin sends the device into  
global power-down  
1 = Logic high voltage on the PDN pin sends the device into  
standby  
9.6.1.14 Register 25h (address = 25h)  
Figure 160. Register 25h  
7
6
5
4
3
2
1
0
LVDS SWING  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 23. Register 25h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LVDS SWING  
R/W  
0h  
These bits control the swing of the LVDS outputs (including the  
data output, bit clock, and frame clock).  
58  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC3421, ADC3422, ADC3423, ADC3424  
www.ti.com.cn  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
9.6.1.15 Register 27h (address = 27h)  
Figure 161. Register 27h  
7
6
5
0
4
0
3
0
2
0
1
0
0
0
CLK DIV  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 24. Register 27h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
CLK DIV  
R/W  
0h  
These bits select the internal clock divider for the input sampling  
clock.  
00 = Divide-by-1  
01 = Divide-by-1  
10 = Divide-by-2  
11 = Divide-by-4  
5-0  
0
W
0h  
Must write 0.  
9.6.1.16 Register 11Dh (address = 11Dh)  
Figure 162. Register 11Dh  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
HIGH IF MODE0  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 25. Register 11Dh Field Descriptions  
Bit  
7-2  
1
Field  
Type  
Reset  
Description  
0
W
0h  
Must write 0.  
HIGH IF MODE0  
Set the HIGH IF MODE[7:0] bits together to 1111.  
Improves HD3 by a couple of dB for IF > 100 MHz.  
0
0
W
0h  
Must write 0.  
9.6.1.17 Register 122h (address = 122h)  
Figure 163. Register 122h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
DIS CHOP CHA  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 26. Register 122h Field Descriptions  
Bit  
7-2  
1
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
DIS CHOP CHA  
R/W  
0h  
This bit disables the chopper.  
Set this bit to shift the 1/f noise floor at dc.  
0 = 1/f noise floor is centered at fS / 2 (default)  
1 = Chopper mechanism is disabled; 1/f noise floor is centered  
at dc  
0
0
W
0h  
Must write 0.  
Copyright © 2014–2015, Texas Instruments Incorporated  
59  
ADC3421, ADC3422, ADC3423, ADC3424  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
www.ti.com.cn  
9.6.1.18 Register 134h (address = 134h)  
Figure 164. Register 134h  
7
0
6
0
5
4
0
3
2
0
1
0
0
0
DIS DITH CHA  
R/W-0h  
DIS DITH CHA  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 27. Register 134h Field Descriptions  
Bit  
7-6  
5
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
DIS DITH CHA  
R/W  
0h  
Set this bit along with bits 7 and 6 of register 01h.  
00 = Default  
11 = Dither is disabled for channel A. In this mode, SNR typically  
improves by 0.2 dB at 70 MHz.  
4
3
0
W
0h  
0h  
Must write 0.  
DIS DITH CHA  
R/W  
Set this bit along with bits 7 and 6 of register 01h.  
00 = Default  
11 = Dither is disabled for channel A. In this mode, SNR typically  
improves by 0.2 dB at 70 MHz.  
2-0  
0
W
0h  
Must write 0.  
9.6.1.19 Register 139h (address = 139h)  
Figure 165. Register 139h  
7
0
6
0
5
0
4
0
3
2
0
1
0
0
0
SP1 CHA  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 28. Register 139h Field Descriptions  
Bit  
7-4  
3
Field  
0
Type  
W
Reset  
0h  
Description  
Must write 0.  
SP1 CHA  
R/W  
0h  
This bit sets the special mode for best performance on channel  
A.  
Always write 1 after reset.  
2-0  
0
W
0h  
Must write 0.  
9.6.1.20 Register 21Dh (address = 21Dh)  
Figure 166. Register 21Dh  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
HIGH IF MODE1  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 29. Register 21Dh Field Descriptions  
Bit  
7-2  
1
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
HIGH IF MODE1  
R/W  
0h  
Set the HIGH IF MODE[7:0] bits together to 1111.  
Improves HD3 by a couple of dB for IF > 100 MHz.  
0
0
W
0h  
Must write 0.  
60  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC3421, ADC3422, ADC3423, ADC3424  
www.ti.com.cn  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
9.6.1.21 Register 222h (address = 222h)  
Figure 167. Register 222h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
DIS CHOP CHD  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 30. Register 222h Field Descriptions  
Bit  
7-2  
1
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
DIS CHOP CHD  
R/W  
0h  
This bit disables the chopper.  
Set this bit to shift the 1/f noise floor at dc.  
0 = 1/f noise floor is centered at fS / 2 (default)  
1 = Chopper mechanism is disabled; 1/f noise floor is centered  
at dc  
0
0
W
0h  
Must write 0.  
9.6.1.22 Register 234h (address = 234h)  
Figure 168. Register 234h  
7
0
6
0
5
4
0
3
2
0
1
0
0
0
DIS DITH CHD  
R/W-0h  
DIS DITH CHD  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 31. Register 234h Field Descriptions  
Bit  
7-6  
5
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
DIS DITH CHD  
R/W  
0h  
Set this bit with bits 1 and 0 of register 01h.  
00 = Default  
11 = Dither is disabled for channel D. In this mode, SNR  
typically improves by 0.2 dB at 70 MHz.  
4
3
0
W
0h  
0h  
Must write 0.  
DIS DITH CHD  
R/W  
Set this bit with bits 1 and 0 of register 01h.  
00 = Default  
11 = Dither is disabled for channel D. In this mode, SNR  
typically improves by 0.2 dB at 70 MHz.  
2-0  
0
W
0h  
Must write 0.  
Copyright © 2014–2015, Texas Instruments Incorporated  
61  
ADC3421, ADC3422, ADC3423, ADC3424  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
www.ti.com.cn  
9.6.1.23 Register 239h (address = 239h)  
Figure 169. Register 239h  
7
0
6
0
5
0
4
0
3
2
0
1
0
0
0
SP1 CHD  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 32. Register 239h Field Descriptions  
Bit  
7-4  
3
Field  
0
Type  
W
Reset  
0h  
Description  
Must write 0.  
SP1 CHD  
R/W  
0h  
This bit sets the special mode for best performance on channel  
D.  
Always write 1 after reset.  
2-0  
0
W
0h  
Must write 0.  
9.6.1.24 Register 308h (address = 308h)  
Figure 170. Register 308h  
7
6
5
0
4
0
3
0
2
0
1
0
0
0
HIGH IF MODE<5:4>  
W-0h W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
R/W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 33. Register 308h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
HIGH IF MODE<5:4>  
R/W  
0h  
Set the HIGH IF MODE[7:0] bits together to FFh.  
Improves HD3 by a couple of dB for IF > 100 MHz.  
5-0  
0
W
0h  
Must write 0.  
9.6.1.25 Register 41Dh (address = 41Dh)  
Figure 171. Register 41Dh  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
HIGH IF MODE2  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 34. Register 41Dh Field Descriptions  
Bit  
7-2  
1
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
HIGH IF MODE2  
R/W  
0h  
Set the HIGH IF MODE[7:0] bits together to FFh.  
Improves HD3 by a couple of dB for IF > 100 MHz.  
0
0
W
0h  
Must write 0.  
62  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC3421, ADC3422, ADC3423, ADC3424  
www.ti.com.cn  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
9.6.1.26 Register 422h (address = 422h)  
Figure 172. Register 422h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
DIS CHOP CHB  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 35. Register 422h Field Descriptions  
Bit  
7-2  
1
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
DIS CHOP CHB  
R/W  
0h  
This bit disables the chopper.  
Set this bit to shift the 1/f noise floor at dc.  
0 = 1/f noise floor is centered at fS / 2 (default)  
1 = Chopper mechanism is disabled; 1/f noise floor is centered  
at dc  
0
0
W
0h  
Must write 0.  
9.6.1.27 Register 434h (address = 434h)  
Figure 173. Register 434h  
7
0
6
0
5
4
0
3
2
0
1
0
0
0
DIS DITH CHB  
R/W-0h  
DIS DITH CHB  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 36. Register 434h Field Descriptions  
Bit  
7-6  
5
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
DIS DITH CHB  
R/W  
0h  
Set this bit with bits 5 and 4 of register 01h.  
00 = Default  
11 = Dither is disabled for channel B. In this mode, SNR typically  
improves by 0.2 dB at 70 MHz.  
4
3
0
W
0h  
0h  
Must write 0.  
DIS DITH CHB  
R/W  
Set this bit with bits 5 and 4 of register 01h.  
00 = Default  
11 = Dither is disabled for channel B. In this mode, SNR typically  
improves by 0.2 dB at 70 MHz.  
2-0  
0
W
0h  
Must write 0.  
Copyright © 2014–2015, Texas Instruments Incorporated  
63  
ADC3421, ADC3422, ADC3423, ADC3424  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
www.ti.com.cn  
9.6.1.28 Register 439h (address = 439h)  
Figure 174. Register 439h  
7
0
6
0
5
0
4
0
3
2
0
1
0
0
0
SP1 CHB  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 37. Register 439h Field Descriptions  
Bit  
7-4  
3
Field  
0
Type  
W
Reset  
0h  
Description  
Must write 0.  
SP1 CHB  
R/W  
0h  
This bit sets the special mode for best performance on channel  
B.  
Always write 1 after reset.  
2-0  
0
W
0h  
Must write 0.  
9.6.1.29 Register 51Dh (address = 51Dh)  
Figure 175. Register 51Dh  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
HIGH IF MODE3  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 38. Register 51Dh Field Descriptions  
Bit  
7-2  
1
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
HIGH IF MODE3  
R/W  
0h  
Set the HIGH IF MODE[7:0] bits together to FFh.  
Improves HD3 by a couple of dB for IF > 100 MHz.  
0
0
W
0h  
Must write 0.  
9.6.1.30 Register 522h (address = 522h)  
Figure 176. Register 522h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
DIS CHOP CHC  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 39. Register 522h Field Descriptions  
Bit  
7-2  
1
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
DIS CHOP CHC  
R/W  
0h  
This bit disables the chopper.  
Set this bit to shift the 1/f noise floor at dc.  
0 = 1/f noise floor is centered at fS / 2 (default)  
1 = Chopper mechanism is disabled; 1/f noise floor is centered  
at dc  
0
0
W
0h  
Must write 0.  
64  
Copyright © 2014–2015, Texas Instruments Incorporated  
ADC3421, ADC3422, ADC3423, ADC3424  
www.ti.com.cn  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
9.6.1.31 Register 534h (address = 534h)  
Figure 177. Register 534h  
7
0
6
0
5
4
0
3
2
0
1
0
0
0
DIS DITH CHC  
R/W-0h  
DIS DITH CHC  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 40. Register 534h Field Descriptions  
Bit  
7-6  
5
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
DIS DITH CHC  
R/W  
0h  
Set this bit with bits 3 and 2 of register 01h.  
00 = Default  
11 = Dither is disabled for channel C. In this mode, SNR  
typically improves by 0.2 dB at 70 MHz.  
4
3
0
W
0h  
0h  
Must write 0.  
DIS DITH CHC  
R/W  
Set this bit with bits 3 and 2 of register 01h.  
00 = Default  
11 = Dither is disabled for channel C. In this mode, SNR  
typically improves by 0.2 dB at 70 MHz.  
2-0  
0
W
0h  
Must write 0.  
9.6.1.32 Register 539h (address = 539h)  
Figure 178. Register 539h  
7
0
6
0
5
0
4
0
3
2
0
1
0
0
0
SP1 CHC  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 41. Register 539h Field Descriptions  
Bit  
7-4  
3
Field  
0
Type  
W
Reset  
0h  
Description  
Must write 0.  
SP1 CHC  
R/W  
0h  
This bit sets the special mode for best performance on channel  
C.  
Always write 1 after reset.  
2-0  
0
W
0h  
Must write 0.  
9.6.1.33 Register 608h (address = 608h)  
Figure 179. Register 608h  
7
6
5
0
4
0
3
0
2
0
1
0
0
0
HIGH IF MODE<7:6>  
W-0h W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
R/W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 42. Register 608h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
HIGH IF MODE<7:6>  
R/W  
0h  
Set the HIGH IF MODE[7:0] bits together to FFh.  
Improves HD3 by a couple of dB for IF > 100 MHz.  
5-0  
0
W
0h  
Must write 0.  
Copyright © 2014–2015, Texas Instruments Incorporated  
65  
ADC3421, ADC3422, ADC3423, ADC3424  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
www.ti.com.cn  
9.6.1.34 Register 70Ah (address = 70Ah)  
Figure 180. Register 70Ah  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
PDN SYSREF  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 43. Register 70Ah Field Descriptions  
Bit  
7-1  
0
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
PDN SYSREF  
R/W  
0h  
If the SYSREF pins are not used in the system, the SYSREF  
buffer must be powered down by setting this bit.  
0 = Normal operation  
1 = Powers down the SYSREF buffer  
10 Applications and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
Typical applications involving transformer-coupled circuits are discussed in this section. Transformers (such as  
ADT1-1WT or WBC1-1) can be used up to 250 MHz to achieve good phase and amplitude balances at ADC  
inputs. When designing the dc driving circuits, the ADC input impedance must be considered. Figure 181 and  
Figure 182 show the impedance (Zin = Rin || Cin) across the ADC input pins.  
10  
6
5
4
3
2
1
1
0.1  
0.01  
0
100 200 300 400 500 600 700 800 900 1000  
Frequency (MHz)  
0
100 200 300 400 500 600 700 800 900 1000  
Frequency (MHz)  
D024  
D00215  
Figure 181. Differential Input Resistance, RIN  
Figure 182. Differential Input Capacitance, CIN  
66  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
ADC3421, ADC3422, ADC3423, ADC3424  
www.ti.com.cn  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
10.2 Typical Applications  
10.2.1 Driving Circuit Design: Low Input Frequencies  
39 nH  
0.1 mF  
INP  
0.1 mF  
50  
50 Ω  
25 Ω  
25 Ω  
0.1 mF  
22 pF  
50 Ω  
50 Ω  
INM  
1:1  
1:1  
0.1 mF  
39 nH  
VCM  
Device  
Figure 183. Driving Circuit for Low Input Frequencies  
10.2.1.1 Design Requirements  
For optimum performance, the analog inputs must be driven differentially. An optional 5-to 15-resistor in  
series with each input pin can be kept to damp out ringing caused by package parasitic. The drive circuit may  
have to be designed to minimize the impact of kick-back noise generated by sampling switches opening and  
closing inside the ADC, as well as ensuring low insertion loss over the desired frequency range and matched  
impedance to the source.  
10.2.1.2 Detailed Design Procedure  
A typical application involving using two back-to-back coupled transformers is illustrated in Figure 183. The circuit  
is optimized for low input frequencies. An external R-C-R filter using 50-Ω resistors and a 22-pF capacitor is used  
with the series inductor (39 nH), this combination helps absorb the sampling glitches.  
10.2.1.3 Application Curve  
Figure 184 shows the performance obtained by using the circuit shown in Figure 183.  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
D201  
SFDR = 97 dBc, SNR = 70.4 dBFS, SINAD = 70.4 dBFS,  
THD = 98 dBc, HD2 = 95 dBc, HD3 = 97 dBc  
Figure 184. Performance FFT at 10 MHz (Low Input Frequency)  
Copyright © 2014–2015, Texas Instruments Incorporated  
67  
 
 
 
ADC3421, ADC3422, ADC3423, ADC3424  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
www.ti.com.cn  
Typical Applications (continued)  
10.2.2 Driving Circuit Design: Input Frequencies Between 100 MHz to 230 MHz  
0.1 mF  
10 Ω  
INP  
0.1 mF  
15 Ω  
25 Ω  
0.1 mF  
56 nH  
10 pF  
25 Ω  
15 Ω  
INM  
10 Ω  
1:1  
1:1  
0.1 mF  
VCM  
Device  
Figure 185. Driving Circuit for Mid-Range Input Frequencies (100 MHz < fIN < 230 MHz)  
10.2.2.1 Design Requirements  
See the Design Requirements section for further details.  
10.2.2.2 Detailed Design Procedure  
When input frequencies are between 100 MHz to 230 MHz, an R-LC-R circuit can be used to optimize  
performance, as shown in Figure 185.  
10.2.2.3 Application Curve  
Figure 186 shows the performance obtained by using the circuit shown in Figure 185.  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
D205  
SFDR = 86 dBc, SNR = 69.8 dBFS, SINAD = 69.8 dBFS,  
THD = 91 dBc, HD2 = 86 dBc, HD3 = 101 dBc  
Figure 186. Performance FFT at 170 MHz (Mid Input Frequency)  
68  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
 
ADC3421, ADC3422, ADC3423, ADC3424  
www.ti.com.cn  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
Typical Applications (continued)  
10.2.3 Driving Circuit Design: Input Frequencies Greater than 230 MHz  
0.1 mF  
0.1 mF  
10  
INP  
25 Ω  
0.1 mF  
25 Ω  
INM  
1:1  
1:1  
10 Ω  
0.1 mF  
VCM  
Device  
Figure 187. Driving Circuit for High Input Frequencies (fIN > 230 MHz)  
10.2.3.1 Design Requirements  
See the Design Requirements section for further details.  
10.2.3.2 Detailed Design Procedure  
For high input frequencies (> 230 MHz), using the R-C-R or R-LC-R circuit does not show significant  
improvement in performance. However, a series resistance of 10 Ω can be used as shown in Figure 187.  
10.2.3.3 Application Curve  
Figure 188 shows the performance obtained by using the circuit shown in Figure 187.  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
D209  
SFDR = 71 dBc, SNR = 67.2 dBFS, SINAD = 66.5 dBFS,  
THD = 74 dBc, HD2 = 71 dBc, HD3 = 79 dBc  
Figure 188. Performance FFT at 450 MHz (High Input Frequency)  
11 Power Supply Recommendations  
The device requires a 1.8-V nominal supply for AVDD and DVDD. There are no specific sequence power-supply  
requirements during device power-up. AVDD and DVDD can power up in any order.  
Copyright © 2014–2015, Texas Instruments Incorporated  
69  
 
 
ADC3421, ADC3422, ADC3423, ADC3424  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
www.ti.com.cn  
12 Layout  
12.1 Layout Guidelines  
The ADC342x EVM layout can be used as a reference layout to obtain the best performance. A layout diagram  
of the EVM top layer is provided in Figure 189. Some important points to remember during laying out the board  
are:  
1. Analog inputs are located on opposite sides of the device pin out to ensure minimum crosstalk on the  
package level. To minimize crosstalk onboard, the analog inputs must exit the pin out in opposite directions,  
as shown in the reference layout of Figure 189 as much as possible.  
2. In the device pin out, the sampling clock is located on a side perpendicular to the analog inputs in order to  
minimize coupling between them. This configuration is also maintained on the reference layout of Figure 189  
as much as possible.  
3. Keep digital outputs away from the analog inputs. When these digital outputs exit the pin out, the digital  
output traces must not be kept parallel to the analog input traces because this configuration can result in  
coupling from digital outputs to analog inputs and degrade performance. All digital output traces to the  
receiver [such as a field-programmable gate array (FPGA) or an application-specific integrated circuit (ASIC)]  
must be matched in length to avoid skew among outputs.  
4. At each power-supply pin (AVDD and DVDD), keep a 0.1-µF decoupling capacitor close to the device. A  
separate decoupling capacitor group consisting of a parallel combination of 10-µF, 1-µF, and 0.1-µF  
capacitors can be kept close to the supply source.  
12.2 Layout Example  
{ampling  
/lock  
wouting  
!nalog  
Lnput  
wouting  
!5/34xx  
5igital  
hutput  
wouting  
Figure 189. Typical Layout of the ADC342x Board  
70  
版权 © 2014–2015, Texas Instruments Incorporated  
 
ADC3421, ADC3422, ADC3423, ADC3424  
www.ti.com.cn  
ZHCSE81A JULY 2014REVISED OCTOBER 2015  
13 器件和文档支持  
13.1 相关链接  
下面的表格列出了快速访问链接。 范围包括技术文档、支持与社区资源、工具和软件,以及样片或购买的快速访  
问。  
44. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
ADC3421  
ADC3422  
ADC3423  
ADC3424  
13.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
13.3 商标  
E2E is a trademark of Texas Instruments.  
PowerPAD is a trademark of Texas Instruments, Inc.  
All other trademarks are the property of their respective owners.  
13.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
13.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2014–2015, Texas Instruments Incorporated  
71  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADC3421IRTQR  
ADC3421IRTQT  
ADC3422IRTQR  
ADC3422IRTQT  
ADC3423IRTQR  
ADC3423IRTQT  
ADC3424IRTQR  
ADC3424IRTQT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
RTQ  
RTQ  
RTQ  
RTQ  
RTQ  
RTQ  
RTQ  
RTQ  
56  
56  
56  
56  
56  
56  
56  
56  
2000 RoHS & Green  
250 RoHS & Green  
2000 RoHS & Green  
250 RoHS & Green  
2000 RoHS & Green  
250 RoHS & Green  
2000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
AZ3421  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
AZ3421  
AZ3422  
AZ3422  
AZ3423  
AZ3423  
AZ3424  
AZ3424  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Sep-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADC3421IRTQR  
ADC3422IRTQR  
ADC3423IRTQR  
ADC3424IRTQR  
QFN  
QFN  
QFN  
QFN  
RTQ  
RTQ  
RTQ  
RTQ  
56  
56  
56  
56  
2000  
2000  
2000  
2000  
330.0  
330.0  
330.0  
330.0  
16.4  
16.4  
16.4  
16.4  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
2.25  
2.25  
2.25  
2.25  
12.0  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
Q2  
Q2  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Sep-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ADC3421IRTQR  
ADC3422IRTQR  
ADC3423IRTQR  
ADC3424IRTQR  
QFN  
QFN  
QFN  
QFN  
RTQ  
RTQ  
RTQ  
RTQ  
56  
56  
56  
56  
2000  
2000  
2000  
2000  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
43.0  
43.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RTQ 56  
8 x 8, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224653/A  
www.ti.com  
PACKAGE OUTLINE  
RTQ0056C  
VQFN - 1 mm max height  
S
C
A
L
E
1
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
8.15  
7.85  
A
B
PIN 1 INDEX AREA  
8.15  
7.85  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 6.5  
SYMM  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
28  
15  
14  
29  
SYMM  
57  
2X 6.5  
6.6 0.1  
1
42  
52X 0.5  
PIN 1 ID  
0.30  
0.18  
56  
43  
56X  
0.5  
0.3  
0.1  
C A B  
56X  
0.05  
4224872/A 03/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RTQ0056C  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(3.05) TYP  
SEE SOLDER MASK  
DETAIL  
(0.62) TYP  
(1.24)  
TYP  
56X (0.6)  
56X (0.24)  
56  
43  
1
42  
52X (0.5)  
(3.05) TYP  
(1.24) TYP  
(R0.05) TYP  
57  
SYMM  
(7.8)  
(0.62) TYP  
(
6.6)  
0.2) TYP  
VIA  
14  
29  
28  
15  
SYMM  
(7.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4224872/A 03/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RTQ0056C  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.24) TYP  
43  
56X (0.6)  
56X (0.24)  
56  
1
42  
52X (0.5)  
(R0.05) TYP  
(1.24) TYP  
(7.8)  
57  
SYMM  
25X ( 1.04)  
14  
29  
15  
28  
SYMM  
(7.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 10X  
EXPOSED PAD 57  
62% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4224872/A 03/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY