ADC3443IRTQT [TI]

四通道、14 位、80MSPS 模数转换器 (ADC) | RTQ | 56 | -40 to 85;
ADC3443IRTQT
型号: ADC3443IRTQT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

四通道、14 位、80MSPS 模数转换器 (ADC) | RTQ | 56 | -40 to 85

转换器 模数转换器
文件: 总88页 (文件大小:4868K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
ADC3441, ADC3442, ADC3443, ADC3444  
ZHCSE80B JULY 2014REVISED APRIL 2017  
ADC344x 四通道、14 位、25MSPS 125MSPS 模数转换器  
1 特性  
3 说明  
1
四通道  
ADC344x 器件属于高线性度、超低功耗、四通道、14  
位、25MSPS 125MSPS 模数转换器 (ADC) 系列。  
此类器件专门设计用于支持具有宽动态范围需求且要求  
苛刻的高输入频率信号。输入时钟分频器可给予系统时  
钟架构设计更高的灵活性,同时 SYSREF 输入可实现  
整个系统同步。  
14 位分辨率  
单电源:1.8V  
串行低压差分信号 (LVDS) 接口  
支持 1 分频、2 分频和 4 分频的灵活输入时钟缓冲  
fIN = 70MHz 时,信噪比 (SNR) = 72.4dBFS,无杂  
散动态范围 (SFDR) = 87dBc  
ADC344x 系列支持串行低压差分信令 (LVDS),从而  
减少接口线路的数量,实现高系统集成密度。串行  
LVDS 接口为双线制,通过两个 LVDS 对串行输出每  
ADC 数据。此外,也可提供单线制串行 LVDS 接  
口。内部锁相环 (PLL) 会将传入的 ADC 采样时钟加  
倍,以获得串行输出各通道的 14 位输出数据时所使用  
的位时钟。除了串行数据流之外,数据帧和位时钟也作  
LVDS 输出进行传送。  
超低功耗:  
125MSPS 时为每通道 98mW  
通道隔离:105dB  
内部抖动和斩波  
支持多芯片同步  
12 位版本器件之间具有引脚到引脚兼容性  
封装:超薄四方扁平无引线 (VQFN)-56 (8mm x  
8mm)  
器件信息  
器件型号  
ADC344x  
封装  
VQFN (56)  
封装尺寸(标称值)  
2 应用  
8.00mm x 8.00mm  
多载波、多模式蜂窝基站  
(1) 要了解所有可用封装,请参阅数据表末尾的可订购产品附录。  
雷达和智能天线阵列  
炮弹制导  
电机控制反馈  
网络和矢量分析器  
通信测试设备  
无损检测  
微波接收器  
软件定义无线电 (SDR)  
正交和分集无线电接收器  
10MHz 时的频谱  
0
-10  
SFDR = 95 dBc  
SNR = 72.7 dBFS  
SINAD = 72.6 dBFS  
THD = 100 dBc  
HD2 = 95 dBc  
-20  
-30  
HD3 = 96 dBc  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBAS670  
 
 
 
 
 
ADC3441, ADC3442, ADC3443, ADC3444  
ZHCSE80B JULY 2014REVISED APRIL 2017  
www.ti.com.cn  
目录  
7.20 Typical Characteristics: Contour ........................... 44  
Parameter Measurement Information ................ 44  
8.1 Timing Diagrams..................................................... 44  
Detailed Description ............................................ 47  
9.1 Overview ................................................................. 47  
9.2 Functional Block Diagram ....................................... 47  
9.3 Feature Description................................................. 48  
9.4 Device Functional Modes........................................ 53  
9.5 Programming........................................................... 54  
9.6 Register Maps......................................................... 59  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 4  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 6  
7.1 Absolute Maximum Ratings ...................................... 6  
7.2 ESD Ratings.............................................................. 6  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 7  
7.5 Electrical Characteristics: General............................ 7  
7.6 Electrical Characteristics: ADC3441, ADC3442 ....... 8  
7.7 Electrical Characteristics: ADC3443, ADC3444 ....... 8  
7.8 AC Performance: ADC3441...................................... 9  
7.9 AC Performance: ADC3442.................................... 11  
7.10 AC Performance: ADC3443.................................. 13  
7.11 AC Performance: ADC3444.................................. 15  
7.12 Digital Characteristics ........................................... 17  
7.13 Timing Requirements: General ............................. 17  
7.14 Timing Requirements: LVDS Output..................... 18  
7.15 Typical Characteristics: ADC3441 ........................ 19  
7.16 Typical Characteristics: ADC3442 ........................ 25  
7.17 Typical Characteristics: ADC3443 ........................ 31  
7.18 Typical Characteristics: ADC3444 ........................ 37  
7.19 Typical Characteristics: Common ......................... 43  
8
9
10 Application and Implementation........................ 74  
10.1 Application Information.......................................... 74  
10.2 Typical Applications .............................................. 75  
11 Power Supply Recommendations ..................... 77  
12 Layout................................................................... 78  
12.1 Layout Guidelines ................................................. 78  
12.2 Layout Example .................................................... 78  
13 器件和文档支持 ..................................................... 79  
13.1 相关链接................................................................ 79  
13.2 接收文档更新通知 ................................................. 79  
13.3 社区资源................................................................ 79  
13.4 ....................................................................... 79  
13.5 静电放电警告......................................................... 79  
13.6 Glossary................................................................ 79  
14 机械、封装和可订购信息....................................... 79  
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (October 2015) to Revision B  
Page  
已添加 在 说明部分添加了有关可提供单线制串行 LVDS 接口的说明..................................................................................... 1  
已更改 10MHz 时的频谱图,显示曲线内的情况 ..................................................................................................................... 1  
Changed description of AVDD, DVDD, and GND pins and added active high to description of PDN pin in Pin  
Functions table ....................................................................................................................................................................... 5  
Deleted maximum from parameter description in Recommended Operating Conditions table ............................................ 6  
Changed Digital Outputs, RLOAD parameter description in Recommended Operating Conditions table ............................... 6  
Changed conditions of all Electrical Characteristics and AC Performance tables ................................................................. 7  
Added minimum and maximum specifications to Analog Input, VOC(VCM) parameter in Electrical Characteristics:  
General table .......................................................................................................................................................................... 7  
Changed description of Analog Input, Analog input bandwidth parameter in Electrical Characteristics: General table........ 7  
Deleted footnote 1 from Electrical Characteristics: General table.......................................................................................... 7  
Added DC Accuracy, EG parameter with its test conditions and footnote 3 to Electrical Characteristics: General table....... 7  
Deleted EG(REF) and EG(CHAN) from DC Accuracy in Electrical Characteristics: General table ............................................... 7  
Changed DC Accuracy, α(EGCHAN) to αEG and updated its parameter in Electrical Characteristics: General table ................. 7  
Changed Channel-to-Channel Isolation, Crosstalk parameter in Electrical Characteristics: General table: changed  
test conditions, added footnote 2............................................................................................................................................ 7  
Changed test conditions for IMD3 parameter in AC Performance: ADC3441 table ............................................................ 10  
Added INL and DNL rows to all AC Performance tables...................................................................................................... 10  
Changed Digital Inputs (SYSREFP, SYSREFM) subsection in Digital Characteristics table, added footnote 2 ................. 17  
2
版权 © 2014–2017, Texas Instruments Incorporated  
 
ADC3441, ADC3442, ADC3443, ADC3444  
www.ti.com.cn  
ZHCSE80B JULY 2014REVISED APRIL 2017  
修订历史记录 (接下页)  
Changed specifications of Digital Outputs (LVDS Interface), VOCM parameter in Digital Characteristics table.................... 17  
Changed rising to falling in description of SYSREF reference time parameter in Timing Requirements: General table ... 17  
Changed Typical Characteristics sections: added dither on to all section condition statements, changed Non 23 to  
excluding HD2, HD3 ............................................................................................................................................................. 19  
Added INL and DNL plots in Typical Characteristics: ADC3441 section ............................................................................. 24  
Changed conditions of Figure 34, Figure 35 ........................................................................................................................ 25  
Added INL and DNL plots in Typical Characteristics: ADC3442 section ............................................................................ 30  
Changed conditions of Figure 67, Figure 68 ........................................................................................................................ 31  
Added INL and DNL plots in Typical Characteristics: ADC3443 section ............................................................................ 36  
Changed conditions of Figure 100, Figure 101 .................................................................................................................... 37  
Added INL and DNL plots in Typical Characteristics: ADC3444 section. ........................................................................... 42  
Changed conditions of Figure 134 ...................................................................................................................................... 43  
Added Figure 141 to Timing Diagrams section .................................................................................................................... 44  
Added Using the SYSREF Input section.............................................................................................................................. 50  
Changed the description about synchronization of the phase of the divided clock in each device to the common  
sampling clock in Using the SYSREF Input section. ........................................................................................................... 50  
Added ADC3441 Power-Up Requirements section, deleted the Register Initialization section........................................... 57  
Added last sentence to Detailed Design Procedure section of first typical application........................................................ 75  
Added Chopper On to caption of Figure 198 ...................................................................................................................... 75  
Added Chopper Off to caption of Figure 200 ...................................................................................................................... 76  
Changed the caption of Figure 202 from FFT for 450-MHz Input Signal (Dither On) to FFT for 450-MHz Input Signal  
(Chopper Off, Dither On) ...................................................................................................................................................... 77  
Changes from Original (July 2014) to Revision A  
Page  
已发布量产.............................................................................................................................................................................. 1  
Copyright © 2014–2017, Texas Instruments Incorporated  
3
ADC3441, ADC3442, ADC3443, ADC3444  
ZHCSE80B JULY 2014REVISED APRIL 2017  
www.ti.com.cn  
5 Device Comparison Table  
RESOLUTION  
INTERFACE  
(Bits)  
25 MSPS  
ADC3421  
ADC3441  
50 MSPS  
ADC3422  
ADC3442  
ADC34J22  
ADC34J42  
80 MSPS  
ADC3423  
ADC3443  
ADC34J23  
ADC34J43  
125 MSPS  
ADC3424  
ADC3444  
ADC34J24  
ADC34J44  
160 MSPS  
12  
Serial LVDS  
14  
12  
ADC34J25  
ADC34J45  
JESD204B  
14  
6 Pin Configuration and Functions  
RTQ Package  
56-Pin VQFN  
Top View  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
1
2
42  
DA1P  
DA1M  
DA0P  
DA0M  
DVDD  
AVDD  
AVDD  
INAM  
INAP  
DD0M  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
DD0P  
DD1M  
DD1P  
DVDD  
PDN  
3
4
5
6
7
GND Pad  
AVDD  
INDM  
INDP  
AVDD  
AVDD  
INCP  
INCM  
AVDD  
8
(Back Side)  
9
10  
11  
12  
13  
14  
AVDD  
AVDD  
INBP  
INBM  
AVDD  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
4
Copyright © 2014–2017, Texas Instruments Incorporated  
 
ADC3441, ADC3442, ADC3443, ADC3444  
www.ti.com.cn  
ZHCSE80B JULY 2014REVISED APRIL 2017  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
6, 7, 10, 11, 14,  
15, 20, 23, 28, 29,  
32, 33, 36  
AVDD  
I
Analog 1.8-V power supply, decoupled with capacitors  
CLKM  
CLKP  
DA0M  
DA0P  
DA1M  
DA1P  
DB0M  
DB0P  
DB1M  
DB1P  
DC0M  
DC0P  
DC1M  
DC1P  
DD0M  
DD0P  
DD1M  
DD1P  
DCLKM  
DCLKP  
DVDD  
FCLKM  
FCLKP  
GND  
21  
I
Negative differential clock input for the ADC  
Positive differential clock input for the ADC  
22  
I
4
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
I
Negative serial LVDS output for wire-0 of channel A  
Positive serial LVDS output for wire-0 of channel A  
Negative serial LVDS output for wire-1 of channel A  
Positive serial LVDS output for wire-1 of channel A  
Negative serial LVDS output for wire-0 of channel B  
Positive serial LVDS output for wire-0 of channel B  
Negative serial LVDS output for wire-1 of channel B  
Positive serial LVDS output for wire-1 of channel B1  
Negative serial LVDS output for wire-0 of channel C  
Positive serial LVDS output for wire-0 of channel C  
Negative serial LVDS output for wire-1 of channel C  
Positive serial LVDS output for wire-1 of channel C  
Negative serial LVDS output for wire-0 of channel D  
Positive serial LVDS output for wire-0 of channel D  
Negative serial LVDS output for wire-1 of channel D  
Positive serial LVDS output for wire-1 of channel D  
Negative bit clock output  
3
2
1
56  
55  
54  
53  
46  
45  
44  
43  
42  
41  
40  
39  
51  
50  
Positive bit clock output  
5, 38, 47, 52  
Digital 1.8-V power supply, decoupled with capacitors  
Negative frame clock output  
49  
O
O
I
48  
Positive frame clock output  
PowerPAD™  
Ground, 0 V. Connect to the printed circuit board (PCB) ground plane.  
Negative differential analog input for channel A  
Positive differential analog input for channel A  
Negative differential analog input for channel B  
Positive differential analog input for channel B  
Negative differential analog input for channel C  
Positive differential analog input for channel C  
Negative differential analog input for channel D  
Positive differential analog input for channel D  
INAM  
INAP  
8
I
9
I
INBM  
INBP  
13  
12  
30  
31  
35  
34  
I
I
INCM  
INCP  
I
I
INDM  
INDP  
I
I
Power-down control; active high. This pin may be configured through the SPI.  
This pin has an internal 150-kΩ pulldown resistor.  
PDN  
37  
I
RESET  
SCLK  
24  
16  
17  
19  
I
I
Hardware reset; active high. This pin has an internal 150-kΩ pulldown resistor.  
Serial interface clock input. This pin has an internal 150-kΩ pulldown resistor.  
Serial interface data input. This pin has an internal 150-kΩ pulldown resistor.  
Serial interface data output  
SDATA  
SDOUT  
I
O
Serial interface enable; active low.  
This pin has an internal 150-kΩ pullup resistor to AVDD.  
SEN  
18  
I
SYSREFM  
SYSREFP  
VCM  
26  
25  
27  
I
I
Negative external SYSREF input  
Positive external SYSREF input  
O
Common-mode voltage for analog inputs  
Copyright © 2014–2017, Texas Instruments Incorporated  
5
ADC3441, ADC3442, ADC3443, ADC3444  
ZHCSE80B JULY 2014REVISED APRIL 2017  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–40  
MAX  
UNIT  
V
Analog supply voltage range, AVDD  
Digital supply voltage range, DVDD  
INAP, INBP, INAM, INBM  
2.1  
2.1  
V
min (1.9, AVDD + 0.3)  
CLKP, CLKM  
AVDD + 0.3  
Voltage applied to  
input pins  
V
SYSREFP, SYSREFM  
SCLK, SEN, SDATA, RESET, PDN  
Operating free-air, TA  
Operating junction, TJ  
Storage, Tstg  
AVDD + 0.3  
3.9  
85  
Temperature  
125  
150  
ºC  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
V(ESD)  
Electrostatic discharge  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
NOM  
MAX  
UNIT  
SUPPLIES  
AVDD  
Analog supply voltage range  
Digital supply voltage range  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
V
V
DVDD  
ANALOG INPUT  
For input frequencies < 450 MHz  
For input frequencies < 600 MHz  
2
1
VID  
Differential input voltage  
VPP  
V
VIC  
Input common-mode voltage  
VCM ± 0.025  
CLOCK INPUT  
Input clock frequency  
Sampling clock frequency  
Sine wave, ac-coupled  
LPECL, ac-coupled  
15(2)  
125(3)  
MSPS  
VPP  
0.2  
1.5  
1.6  
Input clock amplitude (differential)  
LVDS, ac-coupled  
0.7  
Input clock duty cycle  
35%  
50%  
0.95  
65%  
Input clock common-mode voltage  
V
DIGITAL OUTPUTS  
CLOAD  
External load capacitance from each output pin to GND  
3.3  
pF  
Differential load resistance to be placed across the positive and negative  
pins of the LVDS output pair  
RLOAD  
100  
Ω
(1) After power-up, only use the RESET pin to reset the device for the first time; see the Register Initialization section for details.  
(2) See Table 3 for details.  
(3) With the clock divider enabled by default for divide-by-1. Maximum sampling clock frequency for the divide-by-4 option is 500 MSPS.  
6
Copyright © 2014–2017, Texas Instruments Incorporated  
ADC3441, ADC3442, ADC3443, ADC3444  
www.ti.com.cn  
ZHCSE80B JULY 2014REVISED APRIL 2017  
7.4 Thermal Information  
ADC344x  
THERMAL METRIC(1)  
RTQ (VQFN)  
UNIT  
56 PINS  
25.3  
9.5  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
3.4  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
3.3  
RθJC(bot)  
0.5  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics: General  
at maximum sampling rate, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input (unless otherwise  
noted); typical values are specified at an ambient temperature of 25°C; minimum and maximum values are specified over an  
ambient temperature range of –40°C to +85°C  
PARAMETER  
ANALOG INPUT  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Differential input full-scale  
Input resistance  
2.0  
6.6  
3.7  
VPP  
kΩ  
pF  
ri  
Differential at dc  
ci  
Input capacitance  
Differential at dc  
VCM common-mode voltage  
output  
VOC(VCM)  
0.8  
0.95  
1.1  
V
VCM output current capability  
Input common-mode current  
10  
mA  
Per analog input pin  
1.5  
µA/MSPS  
Analog input bandwidth  
(–3-dB point)  
50-Ω differential source driving 50-Ω  
termination across INP and INM  
540  
±0.024  
0.005  
MHz  
DC ACCURACY  
EO  
Offset error  
–25  
25  
mV  
Temperature coefficient of offset  
error  
αEO  
mV/°C  
ADC3441  
–2  
2
Overall dc gain error of a  
channel  
EG  
%FS  
ADC3442, ADC3443, ADC3444  
-2.5  
2.5  
Temperature coefficient of  
overall gain error  
αEG  
Δ%FS/°C  
CHANNEL-TO-CHANNEL ISOLATION  
Between near channels  
fIN = 10 MHz  
105  
105  
95  
Between far channels  
Between near channels  
fIN = 100 MHz  
Between far channels  
105  
94  
Between near channels  
fIN = 200 MHz  
Crosstalk(1)(2)  
dB  
Between far channels  
105  
92  
Between near channels  
fIN = 230 MHz  
Between far channels  
105  
85  
Between near channels  
fIN = 300 MHz  
Between far channels  
105  
(1) Crosstalk is measured with a –1-dBFS input signal on the aggressor channel and no input on the victim channel.  
(2) Channels A and B are near to each other but far from channels C and D. Similarly, channels C and D are near to each other but far  
from channels A and B; see the Pin Configuration and Functions section for more information.  
Copyright © 2014–2017, Texas Instruments Incorporated  
7
ADC3441, ADC3442, ADC3443, ADC3444  
ZHCSE80B JULY 2014REVISED APRIL 2017  
www.ti.com.cn  
7.6 Electrical Characteristics: ADC3441, ADC3442  
at maximum sampling rate, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input (unless otherwise  
noted); typical values are specified at an ambient temperature of 25°C; minimum and maximum values are specified over an  
ambient temperature range of –40°C to +85°C  
ADC3441  
TYP  
ADC3442  
TYP  
PARAMETER  
ADC clock frequency  
MIN  
MAX  
MIN  
MAX  
UNIT  
MSPS  
Bits  
25  
50  
Resolution  
14  
14  
1.8-V analog supply current  
1.8-V digital supply current  
Total power dissipation  
Global power-down dissipation  
Standby power-down dissipation  
54  
45  
177  
5
74  
67  
71  
56  
228  
5
97  
83  
mA  
mA  
215  
17  
277  
17  
mW  
mW  
mW  
34  
103  
35  
103  
7.7 Electrical Characteristics: ADC3443, ADC3444  
at maximum sampling rate, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input (unless otherwise  
noted); typical values are specified at an ambient temperature of 25°C; minimum and maximum values are specified over an  
ambient temperature range of –40°C to +85°C  
ADC3443  
TYP  
ADC3444  
TYP  
PARAMETER  
ADC clock frequency  
MIN  
MAX  
MIN  
MAX  
UNIT  
MSPS  
Bits  
80  
125  
Resolution  
14  
14  
1.8-V analog supply current  
1.8-V digital supply current  
Total power dissipation  
Global power-down dissipation  
Standby power-down dissipation  
92  
68  
288  
5
125  
101  
350  
17  
119  
98  
391  
5
162  
145  
475  
17  
mA  
mA  
mW  
mW  
mW  
40  
103  
43  
103  
8
Copyright © 2014–2017, Texas Instruments Incorporated  
ADC3441, ADC3442, ADC3443, ADC3444  
www.ti.com.cn  
ZHCSE80B JULY 2014REVISED APRIL 2017  
7.8 AC Performance: ADC3441  
at maximum sampling rate, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input (unless otherwise  
noted); typical values are specified at an ambient temperature of 25°C; minimum and maximum values are specified over an  
ambient temperature range of –40°C to +85°C  
ADC3441 (fS = 25 MSPS)  
DITHER ON  
MIN  
DITHER OFF  
PARAMETER  
TEST CONDITIONS  
fIN = 10 MHz  
TYP  
73.1  
72.9  
72.5  
72.4  
71.4  
70.3  
72.4  
72.2  
71.9  
71.7  
70.9  
69.7  
–143.7  
MAX  
MIN  
TYP  
73.5  
73.4  
73  
MAX  
UNIT  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
70.9  
Signal-to-noise ratio  
(from 1-MHz offset)  
72.7  
71.7  
70.5  
72.9  
72.7  
72.4  
72.0  
71.1  
69.9  
–144.1  
–143.9  
–143.6  
–143.3  
–142.3  
–141.1  
73.4  
73.2  
71.9  
72.8  
71.4  
70.1  
11.9  
11.8  
11.8  
11.8  
11.6  
11.4  
89  
SNR  
dBFS  
Signal-to-noise ratio  
(full Nyquist band)  
–143.5 –141.5  
–143.1  
–143.0  
–142.0  
–140.9  
73.1  
72.9  
71.7  
72.6  
71.2  
69.9  
11.9  
11.8  
11.7  
11.8  
11.5  
11.3  
91  
Noise spectral density  
(averaged across Nyquist zone)  
NSD(1)  
dBFS/Hz  
dBFS  
Bits  
69.9  
11.3  
82  
Signal-to-noise and distortion  
ratio  
SINAD(1)  
ENOB(1)  
SFDR  
Effective number of bits  
91  
85  
92  
87  
Spurious-free dynamic range  
dBc  
85  
82  
86  
85  
81  
81  
(1) Reported from a 1-MHz offset.  
Copyright © 2014–2017, Texas Instruments Incorporated  
9
ADC3441, ADC3442, ADC3443, ADC3444  
ZHCSE80B JULY 2014REVISED APRIL 2017  
www.ti.com.cn  
AC Performance: ADC3441 (continued)  
at maximum sampling rate, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input (unless otherwise  
noted); typical values are specified at an ambient temperature of 25°C; minimum and maximum values are specified over an  
ambient temperature range of –40°C to +85°C  
ADC3441 (fS = 25 MSPS)  
DITHER ON  
MIN  
DITHER OFF  
MIN  
PARAMETER  
TEST CONDITIONS  
fIN = 10 MHz  
TYP  
92  
92  
92  
96  
86  
84  
96  
93  
93  
85  
89  
82  
100  
97  
97  
97  
92  
98  
90  
90  
90  
84  
84  
80  
MAX  
TYP  
93  
91  
91  
94  
85  
84  
90  
89  
88  
82  
89  
82  
93  
92  
92  
94  
90  
92  
86  
85  
85  
80  
83  
80  
MAX  
UNIT  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
82  
82  
87  
79  
Second-order harmonic  
distortion  
HD2  
dBc  
HD3  
Non  
Third-order harmonic distortion  
dBc  
dBc  
Spurious-free dynamic range  
HD2, HD3 (excluding HD2, HD3)  
THD  
Total harmonic distortion  
dBc  
fIN1 = 45 MHz,  
fIN2 = 50 MHz,  
each tone at –7 dBFS  
–97  
–88  
–97  
–88  
Two-tone, third-order  
intermodulation distortion  
IMD3  
dBFS  
fIN1 = 185 MHz,  
fIN2 = 190 MHz,  
each tone at –7 dBFS  
INL  
Integral nonlinearity  
fIN = 20 MHz  
fIN = 20 MHz  
±0.75  
±0.6  
±3  
±0.75  
±0.6  
LSBs  
LSBs  
DNL  
Differential nonlinearity  
–0.95  
10  
Copyright © 2014–2017, Texas Instruments Incorporated  
ADC3441, ADC3442, ADC3443, ADC3444  
www.ti.com.cn  
ZHCSE80B JULY 2014REVISED APRIL 2017  
7.9 AC Performance: ADC3442  
at maximum sampling rate, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input (unless otherwise  
noted); typical values are specified at an ambient temperature of 25°C; minimum and maximum values are specified over an  
ambient temperature range of –40°C to +85°C  
ADC3442 (fS = 50 MSPS)  
DITHER ON  
MIN  
DITHER OFF  
MIN  
PARAMETER  
TEST CONDITIONS  
fIN = 10 MHz  
TYP  
73.1  
72.9  
72.7  
71.9  
71.5  
70.4  
72.5  
72.3  
71.9  
71.3  
71.0  
69.8  
–146.9  
MAX  
TYP  
73.5  
73.3  
73.1  
72.6  
71.8  
70.8  
72.9  
72.7  
72.3  
72.1  
71.2  
70.2  
–147.3  
–146.9  
–146.9  
–146.4  
–145.6  
–144.6  
73.4  
72.7  
72.7  
73.2  
71.8  
70.1  
11.9  
11.8  
11.8  
11.9  
11.6  
11.4  
90  
MAX  
UNIT  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
70.7  
Signal-to-noise ratio  
(from 1-MHz offset)  
SNR  
dBFS  
Signal-to-noise ratio  
(full Nyquist band)  
–146.7 –144.5  
–146.5  
–145.7  
–145.3  
–144.2  
73  
Noise spectral density  
(averaged across Nyquist zone)  
NSD(1)  
dBFS/Hz  
dBFS  
Bits  
69.7  
11.3  
82  
72.2  
72.2  
72.1  
71.4  
69.8  
11.9  
11.8  
11.8  
11.7  
11.6  
11.4  
90  
Signal-to-noise and distortion  
ratio  
SINAD(1)  
ENOB(1)  
SFDR  
Effective number of bits  
92  
90  
92  
90  
Spurious-free dynamic range  
dBc  
87  
87  
86  
84  
83  
82  
(1) Reported from a 1-MHz offset.  
Copyright © 2014–2017, Texas Instruments Incorporated  
11  
ADC3441, ADC3442, ADC3443, ADC3444  
ZHCSE80B JULY 2014REVISED APRIL 2017  
www.ti.com.cn  
AC Performance: ADC3442 (continued)  
at maximum sampling rate, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input (unless otherwise  
noted); typical values are specified at an ambient temperature of 25°C; minimum and maximum values are specified over an  
ambient temperature range of –40°C to +85°C  
ADC3442 (fS = 50 MSPS)  
DITHER ON  
MIN  
DITHER OFF  
MIN  
PARAMETER  
TEST CONDITIONS  
fIN = 10 MHz  
TYP  
95  
99  
93  
92  
87  
85  
90  
94  
94  
87  
88  
83  
99  
99  
99  
92  
97  
97  
89  
90  
90  
86  
85  
81  
MAX  
TYP  
92  
94  
91  
92  
85  
83  
92  
91  
91  
87  
89  
88  
95  
93  
93  
94  
89  
91  
87  
87  
87  
85  
83  
81  
MAX  
UNIT  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 20 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
83  
82  
87  
79  
Second-order harmonic  
distortion  
HD2  
dBc  
HD3  
Non  
Third-order harmonic distortion  
dBc  
dBc  
Spurious-free dynamic range  
HD2, HD3 (excluding HD2, HD3)  
THD  
Total harmonic distortion  
dBc  
fIN1 = 45 MHz,  
fIN2 = 50 MHz  
–92  
–87  
–92  
–87  
Two-tone, third-order  
intermodulation distortion  
IMD3  
dBFS  
fIN1 = 185 MHz,  
fIN2 = 190 MHz  
INL  
Integral nonlinearity  
fIN = 20 MHz  
fIN = 20 MHz  
±0.8  
±0.6  
±3  
±0.8  
±0.6  
LSBs  
LSBs  
DNL  
Differential nonlinearity  
–0.95  
12  
Copyright © 2014–2017, Texas Instruments Incorporated  
ADC3441, ADC3442, ADC3443, ADC3444  
www.ti.com.cn  
ZHCSE80B JULY 2014REVISED APRIL 2017  
7.10 AC Performance: ADC3443  
at maximum sampling rate, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input (unless otherwise  
noted); typical values are specified at an ambient temperature of 25°C; minimum and maximum values are specified over an  
ambient temperature range of –40°C to +85°C  
ADC3443 (fS = 80 MSPS)  
DITHER ON  
DITHER OFF  
MIN  
PARAMETER  
TEST CONDITIONS  
fIN = 10 MHz  
MIN  
TYP  
72.9  
72.8  
72.5  
72.1  
71.4  
72.5  
72.4  
72.1  
71.7  
71.1  
–148.8  
MAX  
TYP  
73.2  
73.1  
72.9  
72.4  
71.7  
72.8  
72.8  
72.6  
72.0  
71.4  
–149.1  
–149.0  
–148.8  
–148.3  
–147.6  
73.2  
72.4  
73  
MAX  
UNIT  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
70.7  
Signal-to-noise ratio  
(from 1-MHz offset)  
SNR  
dBFS  
Signal-to-noise ratio  
(full Nyquist band)  
–148.7 –146.6  
–148.4  
–148.0  
–147.3  
72.8  
Noise spectral density  
(averaged across Nyquist zone)  
NSD(1)  
dBFS/Hz  
dBFS  
Bits  
69.7  
11.3  
81  
72.2  
Signal-to-noise and distortion  
ratio  
SINAD(1)  
ENOB(1)  
SFDR  
72.7  
71.9  
72.2  
71.4  
11.9  
11.8  
11.8  
11.7  
11.6  
89  
71.2  
11.8  
11.8  
Effective number of bits  
11.8  
11.7  
11.5  
89  
90  
89  
Spurious-free dynamic range  
92  
92  
dBc  
88  
86  
86  
84  
(1) Reported from a 1-MHz offset.  
Copyright © 2014–2017, Texas Instruments Incorporated  
13  
ADC3441, ADC3442, ADC3443, ADC3444  
ZHCSE80B JULY 2014REVISED APRIL 2017  
www.ti.com.cn  
AC Performance: ADC3443 (continued)  
at maximum sampling rate, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input (unless otherwise  
noted); typical values are specified at an ambient temperature of 25°C; minimum and maximum values are specified over an  
ambient temperature range of –40°C to +85°C  
ADC3443 (fS = 80 MSPS)  
DITHER ON  
MIN  
DITHER OFF  
MIN  
PARAMETER  
TEST CONDITIONS  
fIN = 10 MHz  
TYP  
94  
96  
97  
88  
87  
89  
91  
94  
95  
87  
100  
98  
95  
95  
94  
88  
89  
91  
87  
84  
MAX  
TYP  
91  
91  
94  
86  
85  
90  
90  
100  
93  
87  
95  
94  
94  
94  
92  
86  
87  
90  
84  
82  
MAX  
UNIT  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
81  
81  
86  
78  
Second-order harmonic  
distortion  
HD2  
dBc  
HD3  
Non  
Third-order harmonic distortion  
Spurious-free dynamic range  
dBc  
dBc  
HD2, HD3 (excluding HD2, HD3)  
THD  
Total harmonic distortion  
dBc  
fIN1 = 45 MHz,  
fIN2 = 50 MHz  
–98  
–88  
–98  
–88  
Two-tone, third-order  
intermodulation distortion  
IMD3  
dBFS  
fIN1 = 185 MHz,  
fIN2 = 190 MHz  
INL  
Integral nonlinearity  
fIN = 70 MHz  
fIN = 70 MHz  
±0.8  
±0.7  
±3  
±0.8  
±0.7  
LSBs  
LSBs  
DNL  
Differential nonlinearity  
–0.95  
14  
Copyright © 2014–2017, Texas Instruments Incorporated  
ADC3441, ADC3442, ADC3443, ADC3444  
www.ti.com.cn  
ZHCSE80B JULY 2014REVISED APRIL 2017  
7.11 AC Performance: ADC3444  
at maximum sampling rate, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input (unless otherwise  
noted); typical values are specified at an ambient temperature of 25°C; minimum and maximum values are specified over an  
ambient temperature range of –40°C to +85°C  
ADC3444 (fS = 125 MSPS)  
DITHER ON  
DITHER OFF  
PARAMETER  
TEST CONDITIONS  
fIN = 10 MHz  
MIN  
TYP  
72.6  
72.5  
72.2  
71.7  
70.8  
72.4  
72.3  
72.1  
71.5  
70.6  
–150.4  
MAX  
MIN  
TYP  
73  
MAX  
UNIT  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
70.2  
72.9  
72.7  
72.3  
71.7  
72.8  
72.7  
72.5  
72.1  
71.5  
–150.9  
–150.8  
–150.5  
–150.2  
–149.6  
72.9  
72.7  
72.7  
72  
Signal-to-noise ratio  
(from 1-MHz offset)  
SNR  
dBFS  
Signal-to-noise ratio  
(full Nyquist band)  
–150.4 –148.1  
–150.1  
–149.5  
–148.7  
72.6  
Noise spectral density  
(averaged across Nyquist zone)  
NSD(1)  
dBFS/Hz  
dBFS  
Bits  
69.3  
11.2  
80  
72.3  
Signal-to-noise and distortion  
ratio  
SINAD(1)  
ENOB(1)  
SFDR  
72.3  
71.5  
69.9  
70.6  
11.8  
11.8  
11.8  
11.7  
11.6  
87  
11.8  
11.8  
Effective number of bits  
11.7  
11.6  
11.4  
92  
93  
88  
Spurious-free dynamic range  
89  
89  
dBc  
86  
84  
82  
82  
(1) Reported from a 1-MHz offset.  
Copyright © 2014–2017, Texas Instruments Incorporated  
15  
ADC3441, ADC3442, ADC3443, ADC3444  
ZHCSE80B JULY 2014REVISED APRIL 2017  
www.ti.com.cn  
AC Performance: ADC3444 (continued)  
at maximum sampling rate, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input (unless otherwise  
noted); typical values are specified at an ambient temperature of 25°C; minimum and maximum values are specified over an  
ambient temperature range of –40°C to +85°C  
ADC3444 (fS = 125 MSPS)  
DITHER ON  
MIN  
DITHER OFF  
MIN  
PARAMETER  
TEST CONDITIONS  
fIN = 10 MHz  
TYP  
93  
94  
90  
86  
81  
96  
95  
95  
93  
87  
100  
99  
94  
96  
94  
91  
91  
88  
85  
80  
MAX  
TYP  
93  
91  
90  
85  
80  
88  
89  
89  
87  
86  
93  
94  
92  
93  
90  
85  
85  
86  
82  
78  
MAX  
UNIT  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 230 MHz  
80  
81  
86  
77  
Second-order harmonic  
distortion  
HD2  
dBc  
HD3  
Non  
Third-order harmonic distortion  
Spurious-free dynamic range  
dBc  
dBc  
HD2, HD3 (excluding HD2, HD3)  
THD  
Total harmonic distortion  
dBc  
fIN1 = 45 MHz,  
fIN2 = 50 MHz  
–97  
–87  
–97  
–87  
Two-tone, third-order  
intermodulation distortion  
IMD3  
dBFS  
fIN1 = 185 MHz,  
fIN2 = 190 MHz  
INL  
Integral nonlinearity  
fIN = 70 MHz  
fIN = 70 MHz  
±0.75  
±0.7  
±3  
±0.75  
±0.7  
LSBs  
LSBs  
DNL  
Differential nonlinearity  
–0.95  
16  
Copyright © 2014–2017, Texas Instruments Incorporated  
ADC3441, ADC3442, ADC3443, ADC3444  
www.ti.com.cn  
ZHCSE80B JULY 2014REVISED APRIL 2017  
7.12 Digital Characteristics  
the dc specifications refer to the condition where the digital outputs are not switching, but are permanently at a valid logic  
level 0 or 1; AVDD = DVDD = 1.8 V, and –1-dBFS differential input (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DIGITAL INPUTS (RESET, SCLK, SDATA, SEN, PDN)  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
1.3  
V
V
All digital inputs support 1.8-V and  
3.3-V CMOS logic levels  
0.4  
RESET, SDATA, SCLK,  
PDN  
SEN(1)  
VHIGH = 1.8 V  
VHIGH = 1.8 V  
VLOW = 0 V  
10  
0
High-level input  
current  
IIH  
µA  
µA  
RESET, SDATA, SCLK,  
PDN  
0
Low-level input  
current  
IIL  
SEN  
VLOW = 0 V  
10  
DIGITAL INPUTS (SYSREFP, SYSREFM)  
Differential swing  
0.2  
0.8  
0.9  
1.0  
0.1  
V
V
Common-mode voltage for SYSREF(2)  
DIGITAL OUTPUTS (CMOS Interface, SDOUT)  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
DVDD – 0.1  
DVDD  
0
V
V
DIGITAL OUTPUTS (LVDS Interface)  
VODH  
VODL  
VOCM  
High-level output differential voltage  
With an external 100-Ω termination  
With an external 100-Ω termination  
280  
–460  
0.9  
350  
–350  
1.05  
–280  
–460  
1.2  
mV  
mV  
V
Low-level output differential voltage  
Output common-mode voltage  
(1) SEN has an internal 150-kΩ pullup resistor to AVDD. SPI pins (SEN, SCLK, SDATA) may be driven by 1.8 V or 3.3 V CMOS buffers.  
(2) SYSREF is internally biased to 0.9 V.  
7.13 Timing Requirements: General  
typical values are at TA = 25°C, AVDD = DVDD = 1.8 V, and –1-dBFS differential input (unless otherwise noted); minimum  
and maximum values are across the full temperature range: TMIN = –40°C to TMAX = +85°C  
MIN  
TYP  
1.44  
±70  
MAX  
UNIT  
ns  
tA  
Aperture delay  
1.24  
1.64  
Aperture delay matching between two channels of the same device  
ps  
Variation of aperture delay between two devices at the same temperature and  
supply voltage  
±150  
ps  
fS rms  
µs  
tJ  
Aperture jitter  
130  
35  
Time to valid data after exiting standby power-  
200  
450  
down mode  
Wake-up time  
Time to valid data after exiting global power-down  
85  
9
µs  
mode (in this mode, both channels power down)  
Clock  
cycles  
2-wire mode (default)  
ADC latency(1)  
Clock  
cycles  
1-wire mode  
8
Setup time for SYSREF referenced to input clock  
falling edge  
tSU_SYSREF  
1000  
100  
ps  
ps  
SYSREF reference time  
Hold time for SYSREF referenced to input clock  
falling edge  
tH_SYSREF  
(1) Overall latency = ADC latency + tPDI; see Figure 141.  
Copyright © 2014–2017, Texas Instruments Incorporated  
17  
ADC3441, ADC3442, ADC3443, ADC3444  
ZHCSE80B JULY 2014REVISED APRIL 2017  
www.ti.com.cn  
7.14 Timing Requirements: LVDS Output  
typical values are at 25°C, AVDD = DVDD = 1.8 V, –1-dBFS differential input, 7x serialization (2-wire mode), CLOAD  
=
3.3 pF(1), and RLOAD = 100 Ω(2) (unless otherwise noted); minimum and maximum values are across the full temperature  
range: TMIN = –40°C to TMAX = +85°C(3)(4)  
MIN  
TYP  
MAX  
UNIT  
Data setup time: data valid to zero-crossing of differential output clock  
(CLKOUTP – CLKOUTM)(5)  
tSU  
tHO  
0.36  
0.42  
ns  
Data hold time: zero-crossing of differential output clock (CLKOUTP – CLKOUTM) to data  
becoming invalid(5)  
0.36  
0.47  
ns  
LVDS bit clock duty cycle: duty cycle of differential clock (CLKOUTP – CLKOUTM)  
49%  
4.5  
Clock propagation delay: input clock falling edge cross-over to frame 1-wire mode  
clock rising edge cross-over 15 MSPS < sampling frequency <  
2.7  
6.5  
ns  
ns  
ns  
tPDI  
2-wire mode  
125 MSPS  
0.44 × tS + tDELAY  
tDELAY  
Delay time  
3
4.5  
5.9  
tFALL  
tRISE  
,
Data fall time, data rise time: rise time measured from –100 mV to 100 mV,  
15 MSPS Sampling frequency 125 MSPS  
0.11  
ns  
ns  
tCLKRISE  
tCLKFALL  
,
Output clock rise time, output clock fall time: rise time measured from –100 mV to 100 mV,  
15 MSPS Sampling frequency 125 MSPS  
0.11  
(1) CLOAD is the effective external single-ended load capacitance between each output pin and ground  
(2) RLOAD is the differential load resistance between the LVDS output pair.  
(3) Measurements are done with a transmission line of a 100-Ω characteristic impedance between the device and load. Setup and hold time  
specifications take into account the effect of jitter on the output data and clock.  
(4) Timing parameters are ensured by design and characterization and are not tested in production.  
(5) Data valid refers to a logic high of +100 mV and a logic low of –100 mV.  
Table 1. LVDS Timings at Lower Sampling Frequencies: 7x Serialization (2-Wire Mode)  
SETUP TIME  
(tSU, ns)  
HOLD TIME  
(tHO, ns)  
SAMPLING FREQUENCY  
(MSPS)  
MIN  
2.27  
1.44  
1.2  
TYP  
MAX  
MIN  
2.41  
1.51  
1.24  
0.97  
0.72  
0.53  
TYP  
MAX  
25  
40  
2.6  
1.6  
2.6  
1.7  
50  
1.32  
1.04  
0.75  
0.57  
1.4  
60  
0.95  
0.68  
0.5  
1.09  
0.81  
0.62  
80  
100  
Table 2. LVDS Timings at Lower Sampling Frequencies: 14x Serialization (1-Wire Mode)  
SETUP TIME  
(tSU, ns)  
HOLD TIME  
(tHO, ns)  
SAMPLING FREQUENCY  
(MSPS)  
MIN  
1.1  
TYP  
MAX  
MIN  
1.19  
0.74  
0.54  
0.42  
0.3  
TYP  
MAX  
25  
40  
50  
60  
80  
1.24  
0.72  
0.55  
0.41  
0.24  
1.34  
0.82  
0.64  
0.51  
0.38  
0.66  
0.48  
0.35  
0.17  
18  
Copyright © 2014–2017, Texas Instruments Incorporated  
ADC3441, ADC3442, ADC3443, ADC3444  
www.ti.com.cn  
ZHCSE80B JULY 2014REVISED APRIL 2017  
7.15 Typical Characteristics: ADC3441  
typical values are at TA = 25°C, ADC sampling rate = 25 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, SNR reported with a 1-MHz offset from dc when  
chopper is disabled and from fS / 2 when chopper is enabled, and dither on (unless otherwise noted)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
2.5  
5
7.5  
10  
12.5  
0
2.5  
5
7.5  
10  
12.5  
Frequency (MHz)  
Frequency (MHz)  
D701  
D702  
SFDR = 98 dBc, SNR = 73.1 dBFS, SINAD = 73 dBFS,  
THD = 97 dBc, HD2 = 110.0 dBc,  
SFDR = 90 dBc, SNR = 73.5 dBFS, SINAD = 73.2 dBFS,  
THD = 88 dBc, HD2 = 90 dBc,  
HD3 = 98 dBc, SFDR = 100 dBc (excluding HD2, HD3)  
HD3 = 100 dBc, SFDR = 92 dBc (excluding HD2, HD3)  
Figure 1. FFT for 10-MHz Input Signal (Dither On)  
Figure 2. FFT for 10-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
2.5  
5
7.5  
10  
12.5  
0
2.5  
5
7.5  
10  
12.5  
Frequency (MHz)  
Frequency (MHz)  
D703  
D704  
SFDR = 92 dBc, SNR = 72.5 dBFS, SINAD = 72.3 dBFS,  
THD = 91 dBc, HD2 = 108 dBc,  
SFDR = 90 dBc, SNR = 72.9 dBFS, SINAD = 72.7 dBFS,  
THD = 89 dBc, HD2 = 90 dBc,  
HD3 = 92 dBc, SFDR = 101 dBc (excluding HD2, HD3)  
HD3 = 101 dBc, SFDR = 93 dBc (excluding HD2, HD3)  
Figure 3. FFT for 70-MHz Input Signal (Dither On)  
Figure 4. FFT for 70-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
2.5  
5
7.5  
10  
12.5  
0
2.5  
5
7.5  
10  
12.5  
Frequency (MHz)  
Frequency (MHz)  
D705  
D706  
SFDR = 87 dBc, SNR = 71.5 dBFS, SINAD = 71.1 dBFS,  
THD = 85 dBc, HD2 = 90 dBc,  
SFDR = 88 dBc, SNR = 71.7 dBFS, SINAD = 71.4 dBFS,  
THD = 85 dBc, HD2 = 88 dBc,  
HD3 = 87 dBc, SFDR = 100 dBc (excluding HD2, HD3)  
HD3 = 91 dBc, SFDR = 93 dBc (excluding HD2, HD3)  
Figure 5. FFT for 170-MHz Input Signal (Dither On)  
Figure 6. FFT for 170-MHz Input Signal (Dither Off)  
Copyright © 2014–2017, Texas Instruments Incorporated  
19  
ADC3441, ADC3442, ADC3443, ADC3444  
ZHCSE80B JULY 2014REVISED APRIL 2017  
www.ti.com.cn  
Typical Characteristics: ADC3441 (continued)  
typical values are at TA = 25°C, ADC sampling rate = 25 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, SNR reported with a 1-MHz offset from dc when  
chopper is disabled and from fS / 2 when chopper is enabled, and dither on (unless otherwise noted)  
0
0
-10  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
2.5  
5
7.5  
10  
12.5  
0
2.5  
5
7.5  
10  
12.5  
Frequency (MHz)  
Frequency (MHz)  
D707  
D708  
SFDR = 76 dBc, SNR = 69.4 dBFS, SINAD = 68.8 dBFS,  
THD = 75 dBc, HD2 = 76 dBc,  
SFDR = 75 dBc, SNR = 69.6 dBFS, SINAD = 68.6 dBFS,  
THD = 74 dBc, HD2 = 75 dBc,  
HD3 = 83 dBc, SFDR = 96 dBc (excluding HD2, HD3)  
HD3 = 80 dBc, SFDR = 91 dBc (excluding HD2, HD3)  
Figure 7. FFT for 270-MHz Input Signal (Dither On)  
Figure 8. FFT for 270-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
2.5  
5
7.5  
10  
12.5  
0
2.5  
5
7.5  
10  
12.5  
Frequency (MHz)  
Frequency (MHz)  
D709  
D710  
SFDR = 68 dBc, SNR = 66.7 dBFS, SINAD = 66.5 dBFS,  
THD = 92 dBc, HD2 = 68 dBc,  
SFDR = 66 dBc, SNR = 66.8 dBFS, SINAD = 66.5 dBFS,  
THD = 88 dBc, HD2 = 66 dBc,  
HD3 = 90 dBc, SFDR = 91 dBc (excluding HD2, HD3)  
HD3 = 97 dBc, SFDR = 90 dBc (excluding HD2, HD3)  
Figure 9. FFT for 450-MHz Input Signal (Dither On)  
Figure 10. FFT for 450-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
2.5  
5
7.5  
10  
12.5  
0
2.5  
5
7.5  
10  
12.5  
Frequency (MHz)  
Frequency (MHz)  
D710  
D712  
fIN1 = 46.3 MHz, fIN2 = 50.3 MHz, IMD3 = 86 dBFS,  
each tone at –7 dBFS  
fIN1 = 46.3 MHz, fIN2 = 50.3 MHz, IMD3 = 105 dBFS,  
each tone at –36 dBFS  
Figure 11. FFT for Two-Tone Input Signal  
(–7 dBFS at 46 MHz and 50 MHz)  
Figure 12. FFT for Two-Tone Input Signal  
(–36 dBFS at 46 MHz and 50 MHz)  
20  
Copyright © 2014–2017, Texas Instruments Incorporated  
ADC3441, ADC3442, ADC3443, ADC3444  
www.ti.com.cn  
ZHCSE80B JULY 2014REVISED APRIL 2017  
Typical Characteristics: ADC3441 (continued)  
typical values are at TA = 25°C, ADC sampling rate = 25 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, SNR reported with a 1-MHz offset from dc when  
chopper is disabled and from fS / 2 when chopper is enabled, and dither on (unless otherwise noted)  
0
0
-10  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
2.5  
5
7.5  
10  
12.5  
0
2.5  
5
7.5  
10  
12.5  
Frequency (MHz)  
Frequency (MHz)  
D713  
D714  
fIN1 = 184.5 MHz, fIN2 = 189.5 MHz, IMD3 = 93 dBFS,  
each tone at –7 dBFS  
fIN1 = 184.5 MHz, fIN2 = 189.5 MHz, IMD3 = 109 dBFS,  
each tone at –36 dBFS  
Figure 13. FFT for Two-Tone Input Signal  
(–7 dBFS at 185 MHz and 190 MHz)  
Figure 14. FFT for Two-Tone Input Signal  
(–36 dBFS at 185 MHz and 190 MHz)  
-90  
-95  
-80  
-85  
-90  
-100  
-105  
-110  
-115  
-95  
-100  
-105  
-110  
-35  
-31  
-27  
-23  
-19  
-15  
-11  
-7  
-35  
-31  
-27  
-23  
-19  
-15  
-11  
-7  
Each Tone Amplitude (dBFS)  
Each Tone Amplitude (dBFS)  
D715  
D716  
Figure 15. Intermodulation Distortion vs Input Amplitude  
(46 MHz and 50 MHz)  
Figure 16. Intermodulation Distortion vs Input Amplitude  
(185 MHz and 190 MHz)  
75  
104  
Dither_EN  
Dither_DIS  
Dither_EN  
Dither_DIS  
74  
73  
72  
71  
70  
69  
68  
67  
96  
88  
80  
72  
64  
56  
0
50  
100  
150  
200  
250  
300  
350  
400  
0
50  
100  
150  
200  
250  
300  
350  
400  
Frequency (MHz)  
Frequency (MHz)  
D717  
D718  
Figure 17. Signal-to-Noise Ratio vs Input Frequency  
Figure 18. Spurious-Free Dynamic Range vs  
Input Frequency  
Copyright © 2014–2017, Texas Instruments Incorporated  
21  
ADC3441, ADC3442, ADC3443, ADC3444  
ZHCSE80B JULY 2014REVISED APRIL 2017  
www.ti.com.cn  
Typical Characteristics: ADC3441 (continued)  
typical values are at TA = 25°C, ADC sampling rate = 25 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, SNR reported with a 1-MHz offset from dc when  
chopper is disabled and from fS / 2 when chopper is enabled, and dither on (unless otherwise noted)  
75  
74.5  
74  
180  
160  
140  
120  
100  
80  
75.5  
74.5  
73.5  
72.5  
71.5  
70.5  
69.5  
68.5  
280  
240  
200  
160  
120  
80  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
73.5  
73  
72.5  
72  
60  
40  
71.5  
71  
40  
20  
0
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
Amplitude (dBFS)  
Amplitude (dBFS)  
D719  
D720  
Figure 19. Performance vs Input Amplitude (30 MHz)  
Figure 20. Performance vs Input Amplitude (170 MHz)  
80  
78  
76  
74  
72  
70  
97.5  
SNR  
SFDR  
78  
76  
74  
72  
70  
68  
87.5  
SNR  
SFDR  
95  
85  
92.5  
90  
82.5  
80  
87.5  
77.5  
85  
75  
0.85  
0.9  
0.95  
1
1.05  
1.1  
0.85  
0.9  
0.95  
1
1.05  
1.1  
Input Common-Mode Voltage (V)  
Input Common-Mode Voltage (V)  
D721  
D722  
Figure 21. Performance vs Input Common-Mode Voltage  
(30 MHz)  
Figure 22. Performance vs Input Common-Mode Voltage  
(170 MHz)  
100  
74  
AVDD = 1.7 V  
AVDD = 1.75 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.7 V  
AVDD = 1.75 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
96  
92  
88  
84  
80  
73.7  
73.4  
73.1  
72.8  
72.5  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D723  
D724  
Figure 23. Spurious-Free Dynamic Range vs  
AVDD Supply and Temperature (30 MHz)  
Figure 24. Signal-to-Noise Ratio vs  
AVDD Supply and Temperature (30 MHz)  
22  
Copyright © 2014–2017, Texas Instruments Incorporated  
ADC3441, ADC3442, ADC3443, ADC3444  
www.ti.com.cn  
ZHCSE80B JULY 2014REVISED APRIL 2017  
Typical Characteristics: ADC3441 (continued)  
typical values are at TA = 25°C, ADC sampling rate = 25 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, SNR reported with a 1-MHz offset from dc when  
chopper is disabled and from fS / 2 when chopper is enabled, and dither on (unless otherwise noted)  
92  
91  
90  
89  
88  
87  
86  
74  
73.6  
73.2  
72.8  
72.4  
72  
DVDD = 1.7 V  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
DVDD = 1.7 V  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D725  
D726  
Figure 25. Spurious-Free Dynamic Range vs  
DVDD Supply and Temperature (30 MHz)  
Figure 26. Signal-to-Noise Ratio vs  
DVDD Supply and Temperature (30 MHz)  
85  
120  
110  
100  
90  
78  
95  
SNR  
SFDR  
SNR  
SFDR  
81  
77  
73  
69  
65  
61  
57  
76  
74  
72  
70  
68  
66  
64  
90  
85  
80  
75  
70  
65  
60  
80  
70  
60  
50  
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2  
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2  
Differential Clock Amplitude (Vpp)  
Differential Clock Amplitude (Vpp)  
D727  
D728  
Figure 27. Performance vs Clock Amplitude (40 MHz)  
Figure 28. Performance vs Clock Amplitude (150 MHz)  
74  
99  
74  
73.2  
72.4  
71.6  
70.8  
70  
90  
88  
86  
84  
82  
80  
SNR  
SFDR  
SNR  
SFDR  
73.8  
73.6  
73.4  
73.2  
73  
97.5  
96  
94.5  
93  
91.5  
72.8  
90  
30  
35  
40  
45  
50  
55  
60  
65  
70  
30  
35  
40  
45  
50  
55  
60  
65  
70  
Input Clock Duty Cycle (%)  
Input Clock Duty Cycle (%)  
D729  
D730  
Figure 29. Performance vs Clock Duty Cycle (30 MHz)  
Figure 30. Performance vs Clock Duty Cycle (150 MHz)  
Copyright © 2014–2017, Texas Instruments Incorporated  
23  
ADC3441, ADC3442, ADC3443, ADC3444  
ZHCSE80B JULY 2014REVISED APRIL 2017  
www.ti.com.cn  
Typical Characteristics: ADC3441 (continued)  
typical values are at TA = 25°C, ADC sampling rate = 25 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, SNR reported with a 1-MHz offset from dc when  
chopper is disabled and from fS / 2 when chopper is enabled, and dither on (unless otherwise noted)  
1
0.6  
0.2  
-0.2  
-0.6  
-1  
15  
12.5  
10  
7.5  
5
2.5  
0
0
2048 4096 6144 8192 10240 12288 14336 16384  
Output Code (LSB)  
D901  
D731  
Output Code (LSB)  
RMS Noise = 1.33 LSBs  
Figure 32. Integral Nonlinearity for 20-MHz Input  
Figure 31. Idle Channel Histogram  
1
0.6  
0.2  
-0.2  
-0.6  
-1  
0
2048 4096 6144 8192 10240 12288 14336 16384  
Output Code (LSB)  
D902  
Figure 33. Differential Nonlinearity for 20-MHz Input  
24  
Copyright © 2014–2017, Texas Instruments Incorporated  
ADC3441, ADC3442, ADC3443, ADC3444  
www.ti.com.cn  
ZHCSE80B JULY 2014REVISED APRIL 2017  
7.16 Typical Characteristics: ADC3442  
typical values are at TA = 25°C, ADC sampling rate = 50 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, SNR reported with a 1-MHz offset from dc when  
chopper is disabled and from fS / 2 when chopper is enabled, and dither on (unless otherwise noted)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Frequency (MHz)  
Frequency (MHz)  
D501  
D502  
SFDR = 89 dBc, SNR = 73.1 dBFS, SINAD = 73 dBFS,  
THD = 89 dBc, HD2 = 111 dBc,  
SFDR = 85 dBc, SNR = 73.5 dBFS, SINAD = 73.3 dBFS,  
THD = 84 dBc, HD2 = 92 dBc,  
HD3 = 89 dBc, SFDR = 100 dBc (excluding HD2, HD3)  
HD3 = 85 dBc, SFDR = 96 dBc (excluding HD2, HD3)  
Figure 34. FFT for 10-MHz Input Signal  
(Chopper On, Dither On)  
Figure 35. FFT for 10-MHz Input Signal  
(Chopper On, Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Frequency (MHz)  
Frequency (MHz)  
D503  
D504  
SFDR = 86 dBc, SNR = 72.7 dBFS, SINAD = 72.5 dBFS,  
THD = 85 dBc, HD2 = 92 dBc,  
SFDR = 90 dBc, SNR = 73.1 dBFS, SINAD = 73 dBFS,  
THD = 88 dBc, HD2 = 92 dBc,  
HD3 = 86 dBc, SFDR = 100 dBc (excluding HD2, HD3)  
HD3 = 90 dBc, SFDR = 95 dBc (excluding HD2, HD3)  
Figure 36. FFT for 70-MHz Input Signal (Dither On)  
Figure 37. FFT for 70-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Frequency (MHz)  
Frequency (MHz)  
D505  
D506  
SFDR = 86 dBc, SNR = 71.6 dBFS, SINAD = 71.4 dBFS,  
THD = 85 dBc, HD2 = 92 dBc,  
SFDR = 90 dBc, SNR = 71.8 dBFS, SINAD = 71.6 dBFS,  
THD = 87 dBc, HD2 = 90 dBc,  
HD3 = 86 dBc, SFDR = 99 dBc (excluding HD2, HD3)  
HD3 = 108 dBc, SFDR = 93 dBc (excluding HD2, HD3)  
Figure 38. FFT for 170-MHz Input Signal (Dither On)  
Figure 39. FFT for 170-MHz Input Signal (Dither Off)  
Copyright © 2014–2017, Texas Instruments Incorporated  
25  
ADC3441, ADC3442, ADC3443, ADC3444  
ZHCSE80B JULY 2014REVISED APRIL 2017  
www.ti.com.cn  
Typical Characteristics: ADC3442 (continued)  
typical values are at TA = 25°C, ADC sampling rate = 50 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, SNR reported with a 1-MHz offset from dc when  
chopper is disabled and from fS / 2 when chopper is enabled, and dither on (unless otherwise noted)  
0
0
-10  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Frequency (MHz)  
Frequency (MHz)  
D507  
D508  
SFDR = 75 dBc, SNR = 70.3 dBFS, SINAD = 69.1 dBFS,  
THD = 74 dBc, HD2 = -75 dBc,  
SFDR = 75 dBc, SNR = 70.6 dBFS, SINAD = 69.6 dBFS,  
THD = 73 dBc, HD2 = 75 dBc,  
HD3 = 81 dBc, SFDR = 95 dBc (excluding HD2, HD3)  
HD3 = 78 dBc, SFDR = 91 dBc (excluding HD2, HD3)  
Figure 40. FFT for 270-MHz Input Signal (Dither On)  
Figure 41. FFT for 270-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Frequency (MHz)  
Frequency (MHz)  
D509  
D510  
SFDR = 68 dBc, SNR = 68.2 dBFS, SINAD = 68 dBFS,  
THD = 86 dBc, HD2 = 68 dBc, HD3 = 87 dBc  
SFDR = 68 dBc, SNR = 68.5 dBFS, SINAD = 68.3 dBFS,  
THD = 86 dBc, HD2 = 68 dBc, HD3 = 90 dBc  
Figure 42. FFT for 450-MHz Input Signal (Dither On)  
Figure 43. FFT for 450-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Frequency (MHz)  
Frequency (MHz)  
D511  
D512  
fIN1 = 46.3 MHz, fIN2 = 50.3 MHz, IMD3 = 102 dBFS,  
each tone at –7 dBFS  
fIN1 = 46.3 MHz, fIN2 = 50.3 MHz, IMD3 = 110 dBFS,  
each tone at –36 dBFS  
Figure 44. FFT for Two-Tone Input Signal  
(–7 dBFS at 46 MHz and 50 MHz)  
Figure 45. FFT for Two-Tone Input Signal  
(–36 dBFS at 46 MHz and 50 MHz)  
26  
Copyright © 2014–2017, Texas Instruments Incorporated  
ADC3441, ADC3442, ADC3443, ADC3444  
www.ti.com.cn  
ZHCSE80B JULY 2014REVISED APRIL 2017  
Typical Characteristics: ADC3442 (continued)  
typical values are at TA = 25°C, ADC sampling rate = 50 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, SNR reported with a 1-MHz offset from dc when  
chopper is disabled and from fS / 2 when chopper is enabled, and dither on (unless otherwise noted)  
0
0
-10  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
Frequency (MHz)  
Frequency (MHz)  
D513  
D514  
fIN1 = 185 MHz, fIN2 = 190 MHz, IMD3 = 93 dBFS,  
each tone at –7 dBFS  
fIN1 = 185 MHz, fIN2 = 190 MHz, IMD3 = 105 dBFS,  
each tone at –36 dBFS  
Figure 46. FFT for Two-Tone Input Signal  
(–7 dBFS at 185 MHz and 190 MHz)  
Figure 47. FFT for Two-Tone Input Signal  
(–36 dBFS at 185 MHz and 190 MHz)  
-85  
-90  
-95  
-80  
-85  
-90  
-95  
-100  
-100  
-105  
-110  
-105  
-110  
-35  
-31  
-27  
-23  
-19  
-15  
-11  
-7  
-35  
-31  
-27  
-23  
-19  
-15  
-11  
-7  
Each Tone Amplitude (dBFS)  
Each Tone Amplitude (dBFS)  
D515  
D516  
Figure 48. Intermodulation Distortion vs Input Amplitude  
(46 MHz and 50 MHz)  
Figure 49. Intermodulation Distortion vs Input Amplitude  
(185 MHz and 190 MHz)  
74  
104  
Dither_EN  
Dither_EN  
Dither_DIS  
Dither_DIS  
73  
96  
72  
71  
70  
69  
68  
88  
80  
72  
64  
56  
0
50  
100  
150  
200  
250  
300  
350  
400  
0
50  
100  
150  
200  
250  
300  
350  
400  
Frequency (MHz)  
Frequency (MHz)  
D517  
D518  
Figure 50. Signal-to-Noise Ratio vs Input Frequency  
Figure 51. Spurious-Free Dynamic Range vs  
Input Frequency  
Copyright © 2014–2017, Texas Instruments Incorporated  
27  
ADC3441, ADC3442, ADC3443, ADC3444  
ZHCSE80B JULY 2014REVISED APRIL 2017  
www.ti.com.cn  
Typical Characteristics: ADC3442 (continued)  
typical values are at TA = 25°C, ADC sampling rate = 50 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, SNR reported with a 1-MHz offset from dc when  
chopper is disabled and from fS / 2 when chopper is enabled, and dither on (unless otherwise noted)  
74.5  
180  
160  
140  
120  
100  
80  
75.5  
74.5  
73.5  
72.5  
71.5  
70.5  
69.5  
68.5  
280  
240  
200  
160  
120  
80  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
74  
73.5  
73  
72.5  
72  
71.5  
71  
60  
40  
40  
70.5  
20  
0
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
Amplitude (dBFS)  
Amplitude (dBFS)  
D519  
D520  
Figure 52. Performance vs Input Amplitude (30 MHz)  
Figure 53. Performance vs Input Amplitude (170 MHz)  
80  
78  
76  
74  
72  
70  
95  
78  
76  
74  
72  
70  
68  
90  
SNR  
SFDR  
SNR  
SFDR  
92.5  
90  
87.5  
85  
87.5  
85  
82.5  
80  
82.5  
77.5  
0.85  
0.9  
0.95  
1
1.05  
1.1  
0.85  
0.9  
0.95  
1
1.05  
1.1  
Input Common-Mode Voltage (V)  
Input Common-Mode Voltage (V)  
D521  
D522  
Figure 54. Performance vs Input Common-Mode Voltage  
(30 MHz)  
Figure 55. Performance vs Input Common-Mode Voltage  
(170 MHz)  
98  
73.7  
AVDD = 1.7 V  
AVDD = 1.75 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.7 V  
AVDD = 1.75 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
96  
94  
92  
90  
88  
86  
84  
82  
73.4  
73.1  
72.8  
72.5  
72.2  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D523  
D524  
Figure 56. Spurious-Free Dynamic Range vs  
AVDD Supply and Temperature (30 MHz)  
Figure 57. Signal-to-Noise Ratio vs  
AVDD Supply and Temperature (30 MHz)  
28  
Copyright © 2014–2017, Texas Instruments Incorporated  
ADC3441, ADC3442, ADC3443, ADC3444  
www.ti.com.cn  
ZHCSE80B JULY 2014REVISED APRIL 2017  
Typical Characteristics: ADC3442 (continued)  
typical values are at TA = 25°C, ADC sampling rate = 50 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, SNR reported with a 1-MHz offset from dc when  
chopper is disabled and from fS / 2 when chopper is enabled, and dither on (unless otherwise noted)  
100  
96  
92  
88  
84  
80  
74  
73.6  
73.2  
72.8  
72.4  
72  
DVDD = 1.7V  
DVDD = 1.75V  
DVDD = 1.8V  
DVDD = 1.85V  
DVDD = 1.9V  
DVDD = 1.7V  
DVDD = 1.75V  
DVDD = 1.8V  
DVDD = 1.85V  
DVDD = 1.9V  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D525  
D526  
Figure 58. Spurious-Free Dynamic Range vs  
DVDD Supply and Temperature (30 MHz)  
Figure 59. Signal-to-Noise Ratio vs  
DVDD Supply and Temperature (30 MHz)  
79  
102  
81  
100  
95  
90  
85  
80  
75  
70  
65  
SNR  
SFDR  
SNR  
SFDR  
78  
75  
72  
69  
66  
63  
60  
77  
75  
73  
71  
69  
96  
90  
84  
78  
72  
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2  
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2  
Differential Clock Amplitude (Vpp)  
Differential Clock Amplitude (Vpp)  
D528  
Figure 60. Performance vs Clock Amplitude (40 MHz)  
Figure 61. Performance vs Clock Amplitude (150 MHz)  
74.2  
94.5  
72.4  
90  
88  
86  
84  
82  
80  
SNR  
SFDR  
SNR  
SFDR  
73.8  
73.4  
73  
93  
72.2  
72  
91.5  
90  
71.8  
71.6  
71.4  
72.6  
88.5  
72.2  
87  
30  
35  
40  
45  
50  
55  
60  
65  
70  
30  
35  
40  
45  
50  
55  
60  
65  
70  
Input Clock Duty Cycle (%)  
Input Clock Duty Cycle (%)  
D529  
D530  
Figure 62. Performance vs Clock Duty Cycle (30 MHz)  
Figure 63. Performance vs Clock Duty Cycle (150 MHz)  
Copyright © 2014–2017, Texas Instruments Incorporated  
29  
ADC3441, ADC3442, ADC3443, ADC3444  
ZHCSE80B JULY 2014REVISED APRIL 2017  
www.ti.com.cn  
Typical Characteristics: ADC3442 (continued)  
typical values are at TA = 25°C, ADC sampling rate = 50 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, SNR reported with a 1-MHz offset from dc when  
chopper is disabled and from fS / 2 when chopper is enabled, and dither on (unless otherwise noted)  
1
0.6  
0.2  
-0.2  
-0.6  
-1  
20  
16  
12  
8
4
0
D531  
0
2048 4096 6144 8192 10240 12288 14336 16384  
Output Code (LSB)  
Output Code (LSB)  
D903  
RMS noise = 1.3 LSBs  
Figure 64. Idle Channel Histogram  
Figure 65. Integral Nonlinearity for 20-MHz Input  
1
0.6  
0.2  
-0.2  
-0.6  
-1  
0
2048 4096 6144 8192 10240 12288 14336 16384  
Output Code (LSB)  
D904  
Figure 66. Differential Nonlinearity for 20-MHz Input  
30  
Copyright © 2014–2017, Texas Instruments Incorporated  
ADC3441, ADC3442, ADC3443, ADC3444  
www.ti.com.cn  
ZHCSE80B JULY 2014REVISED APRIL 2017  
7.17 Typical Characteristics: ADC3443  
typical values are at TA = 25°C, ADC sampling rate = 80 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, SNR reported with a 1-MHz offset from dc when  
chopper is disabled and from fS / 2 when chopper is enabled, and dither on (unless otherwise noted)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
8
16  
24  
32  
40  
0
8
16  
24  
32  
40  
Frequency (MHz)  
Frequency (MHz)  
D301  
D302  
SFDR = 89 dBc, SNR = 73.1 dBFS, SINAD = 73 dBFS,  
THD = 89 dBc, HD2 = 110 dBc, HD3 = 89 dBc  
SFDR = 84 dBc, SNR = 73.2 dBFS, SINAD = 73.1 dBFS,  
THD = 83 dBc, HD2 = 94 dBc, HD3 = 84 dBc  
Figure 67. FFT for 10-MHz Input Signal  
(Chopper On, Dither On)  
Figure 68. FFT for 10-MHz Input Signal  
(Chopper On, Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
8
16  
24  
32  
40  
0
8
16  
24  
32  
40  
Frequency (MHz)  
Frequency (MHz)  
D303  
D304  
SFDR = 91 dBc, SNR = 72.9 dBFS, SINAD = 72.8 dBFS,  
THD = 91 dBc, HD2 = 110 dBc, HD3 = 91 dBc  
SFDR = 85 dBc, SNR = 73.1 dBFS, SINAD = 72.9 dBFS,  
THD = 84 dBc, HD2 = 91 dBc, HD3 = 85 dBc  
Figure 69. FFT for 70-MHz Input Signal (Dither On)  
Figure 70. FFT for 70-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
8
16  
24  
32  
40  
0
8
16  
24  
32  
40  
Frequency (MHz)  
Frequency (MHz)  
D305  
D306  
SFDR = 95 dBc, SNR = 72.1 dBFS, SINAD = 71.9 dBFS,  
THD = 93 dBc, HD2 = 106 dBc, HD3 = 95 dBc  
SFDR = 92 dBc, SNR = 72.4 dBFS, SINAD = 72.2 dBFS,  
THD = 88 dBc, HD2 = 92 dBc, HD3 = 95 dBc  
Figure 71. FFT for 170-MHz Input Signal (Dither On)  
Figure 72. FFT for 170-MHz Input Signal (Dither Off)  
Copyright © 2014–2017, Texas Instruments Incorporated  
31  
ADC3441, ADC3442, ADC3443, ADC3444  
ZHCSE80B JULY 2014REVISED APRIL 2017  
www.ti.com.cn  
Typical Characteristics: ADC3443 (continued)  
typical values are at TA = 25°C, ADC sampling rate = 80 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, SNR reported with a 1-MHz offset from dc when  
chopper is disabled and from fS / 2 when chopper is enabled, and dither on (unless otherwise noted)  
0
0
-10  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
8
16  
24  
32  
40  
0
8
16  
24  
32  
40  
Frequency (MHz)  
Frequency (MHz)  
D307  
D308  
SFDR = 75 dBc, SNR = 70.5 dBFS, SINAD = 69.6 dBFS,  
THD = 74 dBc, HD2 = 75 dBc, HD3 = 81 dBc  
SFDR = 75 dBc, SNR = 71 dBFS, SINAD = 69.7 dBFS,  
THD = 74 dBc, HD2 = 75 dBc, HD3 = 81 dBc  
Figure 73. FFT for 270-MHz Input Signal (Dither On)  
Figure 74. FFT for 270-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
8
16  
24  
32  
40  
0
8
16  
24  
32  
40  
Frequency (MHz)  
Frequency (MHz)  
D309  
D310  
SFDR = 66 dBc, SNR = 68.4 dBFS, SINAD = 64.6 dBFS,  
THD = 66 dBc, HD2 = 66 dBc, HD3 = 89 dBc  
SFDR = 65 dBc, SNR = 68.7 dBFS, SINAD = 64.4 dBFS,  
THD = 65 dBc, HD2 = 65 dBc, HD3 = 82 dBc  
Figure 75. FFT for 450-MHz Input Signal (Dither On)  
Figure 76. FFT for 450-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
8
16  
24  
32  
40  
0
8
16  
24  
32  
40  
Frequency (MHz)  
Frequency (MHz)  
D311  
D312  
fIN1 = 46 MHz, fIN2 = 50 MHz, IMD3 = 99 dBFS,  
each tone at –7 dBFS  
fIN1 = 46 MHz, fIN2 = 50 MHz, IMD3 = 105 dBFS,  
each tone at –36 dBFS  
Figure 77. FFT for Two-Tone Input Signal  
(–7 dBFS at 46 MHz and 50 MHz)  
Figure 78. FFT for Two-Tone Input Signal  
(–36 dBFS at 46 MHz and 50 MHz)  
32  
Copyright © 2014–2017, Texas Instruments Incorporated  
ADC3441, ADC3442, ADC3443, ADC3444  
www.ti.com.cn  
ZHCSE80B JULY 2014REVISED APRIL 2017  
Typical Characteristics: ADC3443 (continued)  
typical values are at TA = 25°C, ADC sampling rate = 80 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, SNR reported with a 1-MHz offset from dc when  
chopper is disabled and from fS / 2 when chopper is enabled, and dither on (unless otherwise noted)  
0
0
-10  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
8
16  
24  
32  
40  
0
8
16  
24  
32  
40  
Frequency (MHz)  
Frequency (MHz)  
D313  
D314  
fIN1 = 185 MHz, fIN2 = 190 MHz, IMD3 = 90 dBFS,  
each tone at –7 dBFS  
fIN1 = 185 MHz, fIN2 = 190 MHz, IMD3 = 106 dBFS,  
each tone at –36 dBFS  
Figure 79. FFT FOR Two-Tone Input Signal  
(–7 dBFS at 185 MHz and 190 MHz)  
Figure 80. FFT FOR Two-Tone Input Signal  
(–36 dBFS at 185 MHz and 190 MHz)  
-85  
-90  
-95  
-80  
-85  
-90  
-95  
-100  
-100  
-105  
-110  
-105  
-110  
-35  
-31  
-27  
-23  
-19  
-15  
-11  
-7  
-35  
-31  
-27  
-23  
-19  
-15  
-11  
-7  
Each Tone Amplitude (dBFS)  
Each Tone Amplitude (dBFS)  
D315  
D316  
Figure 81. Intermodulation Distortion vs Input Amplitude  
(46 MHz and 50 MHz)  
Figure 82. Intermodulation Distortion vs Input Amplitude  
(185 MHz and 190 MHz)  
100  
74.5  
Dither_EN  
Dither_EN  
Dither_DIS  
Dither_DIS  
95  
73.5  
90  
85  
80  
75  
70  
65  
60  
72.5  
71.5  
70.5  
69.5  
68.5  
0
50  
100  
150  
200  
250  
300  
350  
400  
0
50  
100  
150  
200  
250  
300  
350  
400  
Frequency (MHz)  
Frequency (MHz)  
D317  
D318  
Figure 83. Signal-to-Noise Ratio vs Input Frequency  
Figure 84. Spurious-Free Dynamic Range vs  
Input Frequency  
Copyright © 2014–2017, Texas Instruments Incorporated  
33  
ADC3441, ADC3442, ADC3443, ADC3444  
ZHCSE80B JULY 2014REVISED APRIL 2017  
www.ti.com.cn  
Typical Characteristics: ADC3443 (continued)  
typical values are at TA = 25°C, ADC sampling rate = 80 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, SNR reported with a 1-MHz offset from dc when  
chopper is disabled and from fS / 2 when chopper is enabled, and dither on (unless otherwise noted)  
74.5  
180  
160  
140  
120  
100  
80  
74.5  
180  
160  
140  
120  
100  
80  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
74  
74  
73.5  
73  
73.5  
73  
72.5  
72  
72.5  
72  
71.5  
71  
60  
71.5  
71  
60  
40  
40  
70.5  
20  
70.5  
20  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
Amplitude (dBFS)  
Amplitude (dBFS)  
D319  
D320  
Figure 85. Performance vs Input Amplitude (30 MHz)  
Figure 86. Performance vs Input Amplitude (170 MHz)  
78  
92  
90  
88  
86  
84  
82  
78  
92  
90  
88  
86  
84  
82  
SNR  
SFDR  
SNR  
SFDR  
76  
74  
72  
70  
68  
76  
74  
72  
70  
68  
0.85  
0.9  
0.95  
1
1.05  
1.1  
0.85  
0.9  
0.95  
1
1.05  
1.1  
Input Common-Mode Voltage (V)  
Input Common-Mode Voltage (V)  
D321  
D322  
Figure 87. Performance vs Input Common-Mode Voltage  
(30 MHz)  
Figure 88. Performance vs Input Common-Mode Voltage  
(170 MHz)  
95  
75  
AVDD = 1.7 V  
AVDD = 1.75 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.7 V  
AVDD = 1.75 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
74.5  
74  
93  
91  
89  
87  
85  
73.5  
73  
72.5  
72  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D323  
D324  
Figure 89. Spurious-Free Dynamic Range vs  
AVDD Supply and Temperature (170 MHz)  
Figure 90. Signal-to-Noise Ratio vs  
AVDD Supply and Temperature (170 MHz)  
34  
Copyright © 2014–2017, Texas Instruments Incorporated  
ADC3441, ADC3442, ADC3443, ADC3444  
www.ti.com.cn  
ZHCSE80B JULY 2014REVISED APRIL 2017  
Typical Characteristics: ADC3443 (continued)  
typical values are at TA = 25°C, ADC sampling rate = 80 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, SNR reported with a 1-MHz offset from dc when  
chopper is disabled and from fS / 2 when chopper is enabled, and dither on (unless otherwise noted)  
100  
96  
92  
88  
84  
80  
74.5  
DVDD = 1.7 V  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
DVDD = 1.7 V  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
74  
73.5  
73  
72.5  
72  
71.5  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D325  
D326  
Figure 91. Spurious-Free Dynamic Range vs  
DVDD Supply and Temperature (170 MHz)  
Figure 92. Signal-to-Noise Ratio vs  
DVDD Supply and Temperature (170 MHz)  
78  
135  
78  
96  
SNR  
SNR  
SFDR  
SFDR  
76  
74  
72  
70  
68  
66  
64  
93  
76  
74  
72  
70  
68  
120  
105  
90  
90  
87  
84  
81  
75  
78  
60  
75  
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2  
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2  
Differential Clock Amplitude (Vpp)  
Differential Clock Amplitude (Vpp)  
D327  
D328  
Figure 93. Performance vs Clock Amplitude (40 MHz)  
Figure 94. Performance vs Clock Amplitude (150 MHz)  
74.2  
90  
89  
88  
87  
86  
85  
72.8  
92  
90  
88  
86  
84  
82  
SNR  
SFDR  
SNR  
SFDR  
73.8  
73.4  
73  
72.6  
72.4  
72.2  
72  
72.6  
72.2  
71.8  
30  
35  
40  
45  
50  
55  
60  
65  
70  
30  
35  
40  
45  
50  
55  
60  
65  
70  
Input Clock Duty Cycle (%)  
Input Clock Duty Cycle (%)  
D329  
D330  
Figure 95. Performance vs Clock Duty cycle (30 MHz)  
Figure 96. Performance vs Clock Duty Cycle (150 MHz)  
Copyright © 2014–2017, Texas Instruments Incorporated  
35  
ADC3441, ADC3442, ADC3443, ADC3444  
ZHCSE80B JULY 2014REVISED APRIL 2017  
www.ti.com.cn  
Typical Characteristics: ADC3443 (continued)  
typical values are at TA = 25°C, ADC sampling rate = 80 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, SNR reported with a 1-MHz offset from dc when  
chopper is disabled and from fS / 2 when chopper is enabled, and dither on (unless otherwise noted)  
1
0.6  
0.2  
-0.2  
-0.6  
-1  
24  
22  
20  
18  
16  
14  
12  
10  
8
6
4
2
0
D331  
0
2048 4096 6144 8192 10240 12288 14336 16384  
Output Code (LSB)  
Output Code (LSB)  
D905  
RMS noise = 1.28 LSBs  
Figure 97. Idle Channel Histogram  
Figure 98. Integral Nonlinearity for 70-MHz Input  
1
0.6  
0.2  
-0.2  
-0.6  
-1  
0
2048 4096 6144 8192 10240 12288 14336 16384  
Output Code (LSB)  
D906  
Figure 99. Differential Nonlinearity for 70-MHz Input  
36  
Copyright © 2014–2017, Texas Instruments Incorporated  
ADC3441, ADC3442, ADC3443, ADC3444  
www.ti.com.cn  
ZHCSE80B JULY 2014REVISED APRIL 2017  
7.18 Typical Characteristics: ADC3444  
typical values are at TA = 25°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, SNR reported with a 1-MHz offset from dc when  
chopper is disabled and from fS / 2 when chopper is enabled, and dither on (unless otherwise noted)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
D101  
D102  
SFDR = 95 dBc, SNR = 72.7 dBFS, SINAD = 72.6 dBFS,  
THD = 100 dBc, HD2 = 95 dBc, HD3 = 96 dBc  
SFDR = 91.8 dBc, SNR = 73.1 dBFS, SINAD = 73 dBFS,  
THD = 87 dBc, HD2 = 94 dBc, HD3 = 92 dBc  
Figure 100. FFT for 10-MHz Input Signal  
(Chopper On, Dither On)  
Figure 101. FFT for 10-MHz Input Signal  
(Chopper On, Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
D103  
D104  
SFDR = 96 dBc, SNR = 72.5 dBFS, SINAD = 72.4 dBFS,  
THD = 94 dBc, HD2 = 101 dBc, HD3 = 96 dBc  
SFDR = 91 dBc, SNR = 73 dBFS, SINAD = 72.8 dBFS,  
THD = 87 dBc, HD2 = 91 dBc, HD3 = 95 dBc  
Figure 102. FFT for 70-MHz Input Signal (Dither On)  
Figure 103. FFT for 70-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
D105  
D106  
SFDR = 86 dBc, SNR = 71.7 dBFS, SINAD = 71.6 dBFS,  
THD = 93 dBc, HD2 = 86 dBc, HD3 = 99 dBc  
SFDR = 85 dBc, SNR = 72.3 dBFS, SINAD = 72.1 dBFS,  
THD = 87 dBc, HD2 = 97 dBc, HD3 = 85 dBc  
Figure 104. FFT for 170-MHz Input Signal (Dither On)  
Figure 105. FFT for 170-MHz Input Signal (Dither Off)  
Copyright © 2014–2017, Texas Instruments Incorporated  
37  
ADC3441, ADC3442, ADC3443, ADC3444  
ZHCSE80B JULY 2014REVISED APRIL 2017  
www.ti.com.cn  
Typical Characteristics: ADC3444 (continued)  
typical values are at TA = 25°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, SNR reported with a 1-MHz offset from dc when  
chopper is disabled and from fS / 2 when chopper is enabled, and dither on (unless otherwise noted)  
0
0
-10  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
D107  
D108  
SFDR = 77 dBc, SNR = 70.4 dBFS, SINAD = 69.6 dBFS,  
THD = 75 dBc, HD2 = 77 dBc, HD3 = 81 dBc  
SFDR = 74 dBc, SNR = 71 dBFS, SINAD = 70.1 dBFS,  
THD = 75 dBc, HD2 = 76 dBc, HD3 = 82 dBc  
Figure 106. FFT for 270-MHz Input Signal (Dither On)  
Figure 107. FFT for 270-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
D109  
D110  
SFDR = 72 dBc, SNR = 68.2 dBFS, SINAD = 67.3 dBFS,  
THD = 74 dBc, HD2 = 72 dBc, HD3 = 79 dBc  
SFDR = 70 dBc, SNR = 68.9 dBFS, SINAD = 67.6 dBFS,  
THD = 73 dBc, HD2 = 77 dBc, HD3 = 70 dBc  
Figure 108. FFT for 450-MHz Input Signal (Dither On)  
Figure 109. FFT for 450-MHz Input Signal (Dither Off)  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
D111  
D112  
fIN1 = 46 MHz, fIN2 = 50 MHz, IMD3 = 102 dBFS,  
each tone at –7 dBFS  
fIN1 = 46 MHz, fIN2 = 50 MHz, IMD3 = 100 dBFS,  
each tone at –36 dBFS  
Figure 110. FFT for Two-Tone Input Signal  
(–7 dBFS at 46 MHz and 50 MHz)  
Figure 111. FFT for Two-Tone Input Signal  
(–36 dBFS at 46 MHz and 50 MHz)  
38  
Copyright © 2014–2017, Texas Instruments Incorporated  
ADC3441, ADC3442, ADC3443, ADC3444  
www.ti.com.cn  
ZHCSE80B JULY 2014REVISED APRIL 2017  
Typical Characteristics: ADC3444 (continued)  
typical values are at TA = 25°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, SNR reported with a 1-MHz offset from dc when  
chopper is disabled and from fS / 2 when chopper is enabled, and dither on (unless otherwise noted)  
0
0
-10  
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
Frequency (MHz)  
D113  
D114  
fIN1 = 185 MHz, fIN2 = 190 MHz, IMD3 = 88 dBFS,  
each tone at –7 dBFS  
fIN1 = 185 MHz, fIN2 = 190 MHz, IMD3 = 104 dBFS,  
each tone at –36 dBFS  
Figure 112. FFT for Two-Tone Input Signal  
(–7 dBFS at 185 MHz and 190 MHz)  
Figure 113. FFT for Two-Tone Input Signal  
(–36 dBFS at 185 MHz and 190 MHz)  
-85  
-90  
-95  
-80  
-85  
-90  
-95  
-100  
-100  
-105  
-110  
-105  
-110  
-35  
-31  
-27  
-23  
-19  
-15  
-11  
-7  
-35  
-31  
-27  
-23  
-19  
-15  
-11  
-7  
Each Tone Amplitude (dBFS)  
Each Tone Amplitude (dBFS)  
D115  
D116  
Figure 114. Intermodulation Distortion vs Input Amplitude  
(46 MHz and 50 MHz)  
Figure 115. Intermodulation Distortion vs Input Amplitude  
(185 MHz and 190 MHz)  
74  
100  
Dither_EN  
Dither_DIS  
Dither_EN  
Dither_DIS  
73  
95  
72  
71  
70  
69  
68  
90  
85  
80  
75  
70  
0
50  
100  
150  
200  
250  
300  
350  
400  
0
50  
100  
150  
200  
250  
300  
350  
400  
Frequency (MHz)  
Frequency (MHz)  
D117  
D118  
Figure 116. Signal-to-Noise Ratio vs Input Frequency  
Figure 117. Spurious-Free Dynamic Range vs  
Input Frequency  
Copyright © 2014–2017, Texas Instruments Incorporated  
39  
ADC3441, ADC3442, ADC3443, ADC3444  
ZHCSE80B JULY 2014REVISED APRIL 2017  
www.ti.com.cn  
Typical Characteristics: ADC3444 (continued)  
typical values are at TA = 25°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, SNR reported with a 1-MHz offset from dc when  
chopper is disabled and from fS / 2 when chopper is enabled, and dither on (unless otherwise noted)  
74.5  
180  
160  
140  
120  
100  
80  
74  
73.5  
73  
180  
160  
140  
120  
100  
80  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
74  
73.5  
73  
72.5  
72  
72.5  
72  
71.5  
71  
71.5  
71  
60  
60  
40  
70.5  
70  
40  
70.5  
20  
20  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
Amplitude (dBFS)  
Amplitude (dBFS)  
D119  
D120  
Figure 118. Performance vs Input Amplitude (30 MHz)  
Figure 119. Performance vs Input Amplitude (170 MHz)  
78  
96  
94  
92  
90  
88  
86  
78  
76  
74  
72  
70  
68  
88  
86  
84  
82  
80  
78  
SNR  
SFDR  
SNR  
SFDR  
76  
74  
72  
70  
68  
0.85  
0.9  
0.95  
1
1.05  
1.1  
0.85  
0.9  
0.95  
1
1.05  
1.1  
Input Common-Mode Voltage (V)  
Input Common-Mode Voltage (V)  
D121  
D122  
Figure 120. Performance vs Input Common-Mode Voltage  
(30 MHz)  
Figure 121. Performance vs Input Common-Mode Voltage  
(170 MHz)  
94  
74  
AVDD = 1.7 V  
AVDD = 1.75 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
AVDD = 1.7 V  
AVDD = 1.75 V  
AVDD = 1.8 V  
AVDD = 1.85 V  
AVDD = 1.9 V  
73.5  
73  
92  
90  
88  
86  
84  
72.5  
72  
71.5  
71  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D123  
D124  
Figure 122. Spurious-Free Dynamic Range vs  
AVDD Supply and Temperature (170 MHz)  
Figure 123. Signal-to-Noise Ratio vs  
AVDD Supply and Temperature (170 MHz)  
40  
Copyright © 2014–2017, Texas Instruments Incorporated  
ADC3441, ADC3442, ADC3443, ADC3444  
www.ti.com.cn  
ZHCSE80B JULY 2014REVISED APRIL 2017  
Typical Characteristics: ADC3444 (continued)  
typical values are at TA = 25°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, SNR reported with a 1-MHz offset from dc when  
chopper is disabled and from fS / 2 when chopper is enabled, and dither on (unless otherwise noted)  
94  
92  
90  
88  
86  
84  
73.5  
73.1  
72.7  
72.3  
71.9  
71.5  
DVDD = 1.7 V  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
DVDD = 1.7 V  
DVDD = 1.75 V  
DVDD = 1.8 V  
DVDD = 1.85 V  
DVDD = 1.9 V  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
D125  
D126  
Figure 124. Spurious-Free Dynamic Range vs  
DVDD Supply and Temperature (170 MHz)  
Figure 125. Signal-to-Noise Ratio vs  
DVDD Supply and Temperature (170 MHz)  
80  
78  
76  
74  
72  
70  
68  
66  
120  
77  
100  
95  
90  
85  
80  
75  
70  
SNR  
SFDR  
SNR  
SFDR  
110  
75  
73  
71  
69  
67  
65  
100  
90  
80  
70  
60  
50  
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2  
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2  
Differential Clock Amplitude (Vpp)  
Differential Clock Amplitude (Vpp)  
D127  
D128  
Figure 126. Performance vs Clock Amplitude (40 MHz)  
Figure 127. Performance vs Clock Amplitude (150 MHz)  
74.2  
95  
94  
93  
92  
91  
90  
72.4  
90  
SNR  
SFDR  
SNR  
SFDR  
73.8  
73.4  
73  
72.2  
72  
87.5  
85  
71.8  
71.6  
71.4  
82.5  
80  
72.6  
72.2  
77.5  
30  
35  
40  
45  
50  
55  
60  
65  
70  
30  
35  
40  
45  
50  
55  
60  
65  
70  
Input Clock Duty Cycle (%)  
Input Clock Duty Cycle (%)  
D129  
D130  
Figure 128. Performance vs Clock Duty Cycle (30 MHz)  
Figure 129. Performance vs Clock Duty Cycle (150 MHz)  
Copyright © 2014–2017, Texas Instruments Incorporated  
41  
ADC3441, ADC3442, ADC3443, ADC3444  
ZHCSE80B JULY 2014REVISED APRIL 2017  
www.ti.com.cn  
Typical Characteristics: ADC3444 (continued)  
typical values are at TA = 25°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, SNR reported with a 1-MHz offset from dc when  
chopper is disabled and from fS / 2 when chopper is enabled, and dither on (unless otherwise noted)  
1
0.6  
0.2  
-0.2  
-0.6  
-1  
20  
16  
12  
8
4
0
D131  
0
2048 4096 6144 8192 10240 12288 14336 16384  
Output Code (LSB)  
Output Code (LSB)  
D907  
RMS noise = 1.4 LSBs  
Figure 130. Idle Channel Histogram  
Figure 131. Integral Nonlinearity for 70-MHz Input  
1
0.6  
0.2  
-0.2  
-0.6  
-1  
0
2048 4096 6144 8192 10240 12288 14336 16384  
Output Code (LSB)  
D908  
Figure 132. Differential Nonlinearity for 70-MHz Input  
42  
Copyright © 2014–2017, Texas Instruments Incorporated  
ADC3441, ADC3442, ADC3443, ADC3444  
www.ti.com.cn  
ZHCSE80B JULY 2014REVISED APRIL 2017  
7.19 Typical Characteristics: Common  
typical values are at TA = 25°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, SNR reported with a 1-MHz offset from dc when  
chopper is disabled and from fS / 2 when chopper is enabled, and dither on (unless otherwise noted)  
0
-10  
0
-5  
-20  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
0
12ꢀ5  
25  
37ꢀ5  
50  
62ꢀ5  
0
50  
100  
150  
200  
250  
300  
Crequency (aIz)  
Frequency of Signal on Supply (MHz)  
D001  
D006  
fIN = 30 MHz, AIN = –1 dBFS,  
test signal amplitude = 50 mVPP  
fIN = 30.1 MHz, fPSRR = 3 MHz, APSRR = 50 mVPP  
,
SINAD = 58.63 dBFS, SFDR = 61.57 dBc  
Figure 133. Power-Supply Rejection Ratio vs  
Test Signal Frequency  
Figure 134. Power-Supply Rejection Ratio Spectrum  
(Chopper On)  
0
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
0
12ꢀ5  
25  
37ꢀ5  
50  
62ꢀ5  
0
50  
100  
150  
200  
250  
300  
Crequency (aIz)  
Frequency of Input Common-Mode Signal (MHz)  
D007  
D008  
fIN = 170 MHz, AIN = –1 dBFS,  
test signal amplitude = 50 mVPP, input VCM = 0.95 V  
fIN = 170.1 MHz, fCMRR = 5 MHz, ACMRR = 50 mVPP  
,
SINAD = 69.66 dBFS, SFDR = 75.66 dBc  
Figure 135. Common-Mode Rejection Ratio vs  
Test Signal Frequency  
Figure 136. Common-Mode Rejection Ratio Spectrum  
400  
320  
Analog Power  
Digital Power  
Total Power  
Analog Power  
Digital Power  
Total Power  
240  
360  
320  
280  
240  
200  
160  
120  
80  
280  
200  
160  
120  
80  
40  
5
15 25 35 45 55 65 75 85 95 105 115 125  
Sampling Speed (MSPS)  
10  
20  
30  
40  
50  
60  
70  
80  
Sampling Speed (MSPS)  
D009  
D010  
Figure 137. Power vs Sampling Frequency  
(Two-Wire Mode)  
Figure 138. Power vs Sampling Frequency  
(One-Wire Mode)  
Copyright © 2014–2017, Texas Instruments Incorporated  
43  
ADC3441, ADC3442, ADC3443, ADC3444  
ZHCSE80B JULY 2014REVISED APRIL 2017  
www.ti.com.cn  
7.20 Typical Characteristics: Contour  
typical values are at TA = 25°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = 1.8 V, DVDD = 1.8 V, –1-  
dBFS differential input, 2-VPP full-scale, 32k-point FFT, chopper disabled, SNR reported with a 1-MHz offset from dc when  
chopper is disabled and from fS / 2 when is chopper enabled, and dither on (unless otherwise noted)  
120  
110  
100  
90  
120  
110  
100  
90  
85  
81  
77  
72.5  
70.5  
89  
73  
71  
70  
68.5  
69  
69.5  
69  
72  
71.5  
80  
80  
85  
72.5  
77  
70.5  
81  
73  
89  
70  
70  
71  
70  
72  
69  
68.5  
69  
69.5  
60  
60  
71.5  
50  
50  
40  
40  
85  
71.5  
150  
73  
72.5  
70.5  
69.5  
72  
68.5  
67.5  
68  
89  
73  
71  
77  
70  
69  
81  
30  
30  
85  
69  
67  
50  
100  
150  
200  
250  
300  
350  
400  
450  
50  
100  
68  
200  
250  
300  
350  
400  
450  
Input Frequency, MHz  
Input Frequency, MHz  
70  
75  
80  
85  
67  
69  
70  
71  
72  
73  
Figure 139. Spurious-Free Dynamic Range (SFDR)  
Figure 140. Signal-to-Noise Ratio (SNR)  
8 Parameter Measurement Information  
8.1 Timing Diagrams  
tA  
Analog  
Input  
CLKIN  
tPDI  
CLKIN  
FCLK  
D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
7
D
8
D
9
D
D
D
D
Dx0P  
10 11 12 13  
tA  
Latency = 8 x CLKIN Cycles + tPDI - tA  
CLKIN  
FCLK  
Dx0P  
D[N-8]  
D[N-7]  
D[N-6]  
D[N-5]  
D[N-4]  
D[N-3]  
D[N-2]  
D[N-1]  
D[N]  
D[N+1]  
Figure 141. Latency Timing Diagram  
44  
Copyright © 2014–2017, Texas Instruments Incorporated  
ADC3441, ADC3442, ADC3443, ADC3444  
www.ti.com.cn  
ZHCSE80B JULY 2014REVISED APRIL 2017  
Timing Diagrams (continued)  
DAn_P  
DBn_P  
Logic 0  
VODL = -350 mV(1)  
Logic 1  
VODH = +350 mV(1)  
DAn_M  
DBn_M  
VOCM  
GND  
(1) With an external 100-Ω termination.  
Figure 142. Serial LVDS Output Voltage Levels  
CLKIN  
FCLK  
DCLK  
1-Wire (14x Serialization)  
Dx0P  
Dx0M  
D
1
D
2
D
3
D
4
D
5
D
6
D
7
D
8
D
9
D
D
D
D
D
0
D
13  
D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
7
D
8
D
9
D
D
D
D
D
0
10 11 12 13  
10 11 12 13  
CLKIN  
FCLK  
DCLK  
Dx0P  
D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
0
2-Wire (7x Serialization)  
Dx0M  
Dx1P  
Dx1M  
D
7
D
8
D
9
D
10  
D
11  
D
12  
D
13  
D
7
D
8
D
9
D
10  
D
11  
D
12  
D
13  
D
7
SAMPLE N-1  
SAMPLE N  
SAMPLE N+1  
Figure 143. Output Timing Diagram  
Copyright © 2014–2017, Texas Instruments Incorporated  
45  
ADC3441, ADC3442, ADC3443, ADC3444  
ZHCSE80B JULY 2014REVISED APRIL 2017  
www.ti.com.cn  
Timing Diagrams (continued)  
DCLK  
t HO  
Dx0P  
Dx0M  
t SU  
Figure 144. Setup and Hold Time  
46  
Copyright © 2014–2017, Texas Instruments Incorporated  
ADC3441, ADC3442, ADC3443, ADC3444  
www.ti.com.cn  
ZHCSE80B JULY 2014REVISED APRIL 2017  
9 Detailed Description  
9.1 Overview  
The ADC344x devices are a high-linearity, ultra-low power, quad-channel, 14-bit, 25-MSPS to 125-MSPS,  
analog-to-digital converter (ADC) family. The devices are designed specifically to support demanding, high input  
frequency signals with large dynamic range requirements. An input clock divider allows more flexibility for system  
clock architecture design while the SYSREF input enables complete system synchronization. The ADC344x  
family supports serial LVDS interface in order to reduce the number of interface lines, thus allowing for high  
system integration density. The serial LVDS interface is two-wire, where each ADC data are serialized and  
output over two LVDS pairs. An internal phase-locked loop (PLL) multiplies the incoming ADC sampling clock to  
derive the bit clock that is used to serialize the 14-bit output data from each channel. In addition to the serial data  
streams, the frame and bit clocks are also transmitted as LVDS outputs.  
9.2 Functional Block Diagram  
DA0P  
DA0M  
INAP  
INAM  
14-Bit  
ADC  
Digital Encoder  
and Serializer  
DA1P  
DA1M  
DB0P  
DB0M  
Digital Encoder  
and Serializer  
INBP  
INBM  
14-Bit  
ADC  
DB1P  
DB1M  
Bit Clock  
CLKP  
CLKM  
Divide  
by 1,2,4  
DCLKP  
DCLKM  
PLL  
Frame Clock  
FCLKP  
FCLKM  
SYSREFP  
SYSREFM  
DC0P  
DC0M  
INCP  
INCM  
14-Bit  
ADC  
Digital Encoder  
and Serializer  
DC1P  
DC1M  
DD0P  
DD0M  
INDP  
INDM  
14-Bit  
ADC  
Digital Encoder  
and Serializer  
DD1P  
DD1M  
Common  
Mode  
Configuration  
Registers  
VCM  
Copyright © 2014–2017, Texas Instruments Incorporated  
47  
ADC3441, ADC3442, ADC3443, ADC3444  
ZHCSE80B JULY 2014REVISED APRIL 2017  
www.ti.com.cn  
9.3 Feature Description  
9.3.1 Analog Inputs  
The ADC344x analog signal inputs are designed to be driven differentially. Each input pin (INP, INM) must swing  
symmetrically between (VCM + 0.5 V) and (VCM – 0.5 V), resulting in a 2-VPP (default) differential input swing.  
The input sampling circuit has a 3-dB bandwidth that extends up to 540 MHz (50-Ω source driving 50-Ω  
termination between INP and INM).  
9.3.2 Clock Input  
The device clock inputs may be driven differentially (sine, LVPECL, or LVDS) or single-ended (LVCMOS), with  
little or no difference in performance between them. The common-mode voltage of the clock inputs is set to  
0.95 V using internal 5-kΩ resistors. The ADC344x self-bias clock inputs may be driven by the transformer-  
coupled, sine-wave clock source or by the ac-coupled, LVPECL and LVDS clock sources, as shown in  
Figure 145, Figure 146, and Figure 147. See Figure 148 for details regarding the internal clock buffer.  
0.1 mF  
0.1 mF  
Zo  
CLKP  
CLKP  
Differential  
Sine-Wave  
Clock Input  
RT  
Typical LVDS  
Clock Input  
100 W  
0.1 mF  
CLKM  
Device  
0.1 mF  
Zo  
CLKM  
NOTE: RT = termination resistor, if necessary.  
Device  
Figure 145. Differential Sine-Wave Clock Driving  
Circuit  
Figure 146. LVDS Clock Driving Circuit  
0.1 mF  
Zo  
CLKP  
150 W  
Typical LVPECL  
Clock Input  
100 W  
0.1 mF  
Zo  
CLKM  
Device  
150 W  
Figure 147. LVPECL Clock Driving Circuit  
48  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
ADC3441, ADC3442, ADC3443, ADC3444  
www.ti.com.cn  
ZHCSE80B JULY 2014REVISED APRIL 2017  
Clock Buffer  
LPKG  
2 nH  
20  
CLKP  
CBOND  
1 pF  
5 kΩ  
CEQ  
CEQ  
RESR  
100 Ω  
0.95 V  
CEQ  
LPKG  
2 nH  
5 kΩ  
20 Ω  
CLKM  
CBOND  
1 pF  
RESR  
100 Ω  
NOTE: CEQ is 1 pF to 3 pF and is the equivalent input capacitance of the clock buffer.  
Figure 148. Internal Clock Buffer  
A single-ended CMOS clock may be ac-coupled to the CLKP input, with CLKM connected to ground with a  
0.1-μF capacitor, as shown in Figure 149. However, for best performance the clock inputs must be driven  
differentially, thereby reducing susceptibility to common-mode noise. For high input frequency sampling, TI  
recommends using a clock source with low jitter. Band-pass filtering of the clock source may help reduce the  
effects of jitter. There is no change in performance with a non-50% duty cycle clock input.  
0.1 mF  
CMOS  
Clock Input  
CLKP  
0.1 mF  
CLKM  
Device  
Figure 149. Single-Ended Clock Driving Circuit  
Copyright © 2014–2017, Texas Instruments Incorporated  
49  
 
ADC3441, ADC3442, ADC3443, ADC3444  
ZHCSE80B JULY 2014REVISED APRIL 2017  
www.ti.com.cn  
9.3.2.1 Using the SYSREF Input  
The ADC344x has a SYSREF input pin that can be used when the clock-divider feature is used. A logic low-to-  
high transition on the SYSREF pin aligns the falling edge of the divided clock with the next falling edge of the  
input clock, essentially resetting the phase of the divided clock, as shown in Figure 150. When multiple ADC344x  
devices are onboard and the clock divider option is used, the phase of the divided clock among the devices may  
not be the same. The phase of the divided clock in each device can be synchronized to the common sampling  
clock by using the SYSREF pins. SYSREF can applied as mono-shot or periodic waveform. When applied as  
periodic waveform, its period must be integer multiple of period of the divided clock. When not used, the  
SYSREFP and SYSREFM pins can be connected to AVDD and GND, respectively. Alternatively, the SYSREF  
buffer inside the device can be powered down using the PDN SYSREF register bit.  
TI Device  
Input Clock  
(CLKP-CLKM)  
Clock Divider  
(Divide-by-2,  
-4)  
Divided Clock  
SYSREF  
(SYSREFP-SYSREFM)  
The falling edge of the input clock  
and the divided clock are aligned  
after a sampling low-to-high  
transition on SYSREF.  
SYSREF is sampled by this edge.  
SYSREF  
Input Clock  
Divided  
Clock  
Copyright © 2016, Texas Instruments Incorporated  
Figure 150. Using SYSREF for Synchronization  
9.3.2.2 SNR and Clock Jitter  
The signal-to-noise ratio of the ADC is limited by three different factors, as shown in Equation 1. Quantization  
noise (typically 86 dB for a 14-bit ADC) and thermal noise limit SNR at low input frequencies while the clock jitter  
sets SNR for higher input frequencies.  
2
2
2
SNRQuantizatoin  
SNR  
SNR  
Jitter  
Noise  
÷
Thermal Noise  
÷
÷
-
-
-
20  
20  
20  
SNRADC[dBc] = -20log 10  
+ 10  
+ 10  
«
÷
«
÷
«
÷
(1)  
(2)  
The SNR limitation resulting from sample clock jitter may be calculated with Equation 2.  
SNRJitter[dBc] = -20log(2p fin TJitter )  
The total clock jitter (TJitter) has two components: the internal aperture jitter (130 fs for the device) which is set by  
the noise of the clock input buffer and the external clock. TJitter may be calculated with Equation 3.  
2
TJitter = (TJitter,Ext.Clock _ Input )2 +(TAperture_ ADC  
)
(3)  
50  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
 
 
ADC3441, ADC3442, ADC3443, ADC3444  
www.ti.com.cn  
ZHCSE80B JULY 2014REVISED APRIL 2017  
External clock jitter may be minimized by using high-quality clock sources and jitter cleaners as well as band-  
pass filters at the clock input while a faster clock slew rate improves the ADC aperture jitter. The devices have a  
typical thermal noise of 72.7 dBFS and internal aperture jitter of 130 fs. The SNR, depending on the amount of  
external jitter for different input frequencies, is shown in Figure 151.  
73.0  
Ext Clock Jitter  
72.5  
35 fs  
72.0  
71.5  
71.0  
70.5  
70.0  
69.5  
69.0  
68.5  
68.0  
67.5  
67.0  
50 fs  
100 fs  
150 fs  
200 fs  
10  
100  
1000  
Input Frequency (MHz)  
D03061  
Figure 151. SNR vs Frequency for Different Clock Jitter  
9.3.3 Digital Output Interface  
The devices offer two different output format options, thus making interfacing to a field-programmable gate array  
(FPGA) or an application-specific integrated circuit (ASIC) easy. Each option may be easily programmed using  
the serial interface, as shown in Table 3. The output interface options are:  
One-wire, 1x frame clock, 14x serialization with the DDR bit clock  
Two-wire, 1x frame clock, 7x serialization with the DDR bit clock.  
Table 3. Interface Rates  
RECOMMENDED SAMPLING  
FREQUENCY (MSPS)  
BIT CLOCK  
FREQUENCY  
(MHz)  
FRAME CLOCK  
FREQUENCY  
(MHz)  
INTERFACE  
OPTIONS  
SERIAL DATA  
RATE (Mbps)  
SERIALIZATION  
MINIMUM  
15(1)  
MAXIMUM  
80  
105  
560  
15  
80  
210  
1120  
140  
1-wire  
14x  
7x  
20(1)  
70  
10  
2-wire (default  
after reset)  
125  
437.5  
62.5  
875  
(1) Use the LOW SPEED ENABLE register bits for low speed operation; see Table 20.  
Copyright © 2014–2017, Texas Instruments Incorporated  
51  
 
 
ADC3441, ADC3442, ADC3443, ADC3444  
ZHCSE80B JULY 2014REVISED APRIL 2017  
www.ti.com.cn  
9.3.3.1 One-Wire Interface: 14x Serialization  
In this interface option, the device outputs the data of each ADC serially on a single LVDS pair (one-wire). The  
data are available at the rising and falling edges of the bit clock (DDR bit clock). The ADC outputs a new word at  
the rising edge of every frame clock, starting with the LSB. The data rate is 14x sample frequency (14x  
serialization).  
9.3.3.2 Two-Wire Interface: 7x Serialization  
The two-wire interface is recommended for sampling frequencies above 65 MSPS. The output data rate is 7x  
sample frequency because seven data bits are output every clock cycle on each differential pair. Each ADC  
sample is sent over the two wires with the seven MSBs on Dx1P, Dx1M and the seven LSBs on Dx0P, Dx0M, as  
shown in Figure 152.  
CLKIN  
FCLK  
DCLK  
1-Wire (14x Serialization)  
Dx0P  
D
1
D
2
D
3
D
4
D
5
D
6
D
7
D
8
D
9
D
D
D
D
D
0
D
13  
D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
7
D
8
D
9
D
D
D
D
D
0
10 11 12 13  
10 11 12 13  
Dx0M  
CLKIN  
FCLK  
DCLK  
Dx0P  
D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
0
2-Wire (7x Serialization)  
Dx0M  
Dx1P  
Dx1M  
D
7
D
8
D
9
D
10  
D
11  
D
12  
D
13  
D
7
D
8
D
9
D
10  
D
11  
D
12  
D
13  
D
7
SAMPLE N-1  
SAMPLE N  
SAMPLE N+1  
Figure 152. Output Timing Diagram  
52  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
ADC3441, ADC3442, ADC3443, ADC3444  
www.ti.com.cn  
ZHCSE80B JULY 2014REVISED APRIL 2017  
9.4 Device Functional Modes  
9.4.1 Input Clock Divider  
The devices are equipped with an internal divider on the clock input. The clock divider allows operation with a  
faster input clock, thus simplifying the system clock distribution design. The clock divider may be bypassed for  
operation with a 125-MHz clock while the divide-by-2 option supports a maximum input clock of 250 MHz and the  
divide-by-4 option provides a maximum input clock frequency of 500 MHz.  
9.4.2 Chopper Functionality  
The devices are equipped with an internal chopper front-end. Enabling the chopper function swaps the ADC  
noise spectrum by shifting the 1/f noise from dc to fS / 2. Figure 153 shows the noise spectrum with the chopper  
off and Figure 154 shows the noise spectrum with the chopper on. This function is especially useful in  
applications requiring good ac performance at low input frequencies or in dc-coupled applications. The chopper  
may be enabled through SPI register writes and is recommended for input frequencies below 30 MHz. The  
chopper function creates a spur at fS / 2 that must be filtered out digitally.  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
Frequency (MHz)  
Frequency (MHz)  
D016  
D017  
fS = 125 MSPS, SNR = 72.7 dBFS,  
fIN = 10 MHz, SFDR = 94 dBc  
fS = 125 MSPS, SNR = 72.7 dBFS,  
fIN = 10 MHz, SFDR = 94 dBc  
Figure 153. Chopper Off  
Figure 154. Chopper On  
9.4.3 Power-Down Control  
The ADC344x power-down functions may be controlled either through the parallel control pin (PDN) or through  
an SPI register setting (see register 15h). The PDN pin may also be configured through SPI to a global power-  
down or standby functionality, as shown in Table 4.  
Table 4. Power-Down Modes  
FUNCTION  
Global power-down  
Standby  
POWER CONSUMPTION (mW)  
WAKE-UP TIME (µs)  
5
85  
35  
45  
Copyright © 2014–2017, Texas Instruments Incorporated  
53  
 
 
ADC3441, ADC3442, ADC3443, ADC3444  
ZHCSE80B JULY 2014REVISED APRIL 2017  
www.ti.com.cn  
9.4.4 Internal Dither Algorithm  
The ADC344x family uses an internal dither algorithm to achieve high SFDR and a clean spectrum. However, the  
dither algorithm marginally degrades SNR, creating a trade-off between SNR and SFDR. If desired, the dither  
algorithm may be turned off by using the DIS DITH CHx registers bits. Figure 155 and Figure 156 show the effect  
of using dither algorithms.  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
2.5  
5
7.5  
10  
12.5  
0
2.5  
5
7.5  
10  
12.5  
Frequency (MHz)  
Frequency (MHz)  
D701  
D702  
SFDR = 98 dBc, SNR = 73.1 dBFS, SINAD = 73 dBFS,  
THD = 97 dBc, HD2 = 110.0 dBc,  
SFDR = 90 dBc, SNR = 73.5 dBFS, SINAD = 73.2 dBFS,  
THD = 88 dBc, HD2 = 90 dBc,  
HD3 = 98 dBc, SFDR = 100 dBc (excluding HD2, HD3)  
HD3 = 100 dBc, SFDR = 92 dBc (excluding HD2, HD3)  
Figure 155. FFT for 10-MHz Input Signal (Dither On)  
Figure 156. FFT for 10-MHz Input Signal (Dither Off)  
9.4.5 Summary of Performance Mode Registers  
Table 5 lists the location, value, and functions of performance mode registers in the device.  
Table 5. Performance Modes  
MODE  
LOCATION  
FUNCTION  
Special modes  
Registers 139 (bit 3), 239 (bit 3), 439 (bit 3), and 539 (bit 3)  
Always write 1 for best performance.  
Registers 1 (bits 7-0), 134 (bits 5 and 3), 234 (bits 5 and 3),  
434 (bits 5 and 3), and 534 (bits 5 and 3)  
Disable dither  
Disables the dither to improve SNR.  
Disable chopper Registers 122 (bit 1), 222 (bit 1), 422 (bit 1), and 522 (bit 1)  
Disables the chopper (shifts the 1/f noise floor at dc).  
Improves HD3 by a couple of dB for IF > 100 MHz  
Registers 11Dh (bit 1), 21Dh (bit 1), 41Dh (bit 1), 51Dh (bit 1),  
High IF modes  
308h (bits 7-6) and 608h (bits 7-6)  
9.5 Programming  
The ADC344x device may be configured using a serial programming interface, as described in this section.  
9.5.1 Serial Interface  
The device has a set of internal registers that may be accessed by the serial interface formed by the SEN (serial  
interface enable), SCLK (serial interface clock), SDATA (serial interface data), and SDOUT (serial interface data  
output) pins. Serially shifting bits into the device is enabled when SEN is low. Serial data SDATA are latched at  
every SCLK rising edge when SEN is active (low). The serial data are loaded into the register at every 24th  
SCLK rising edge when SEN is low. When the word length exceeds a multiple of 24 bits, the excess bits are  
ignored. Data may be loaded in multiples of 24-bit words within a single active SEN pulse. The interface may  
function with SCLK frequencies from 20 MHz down to very low speeds (of a few hertz) and also with a non-50%  
SCLK duty cycle.  
54  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
ADC3441, ADC3442, ADC3443, ADC3444  
www.ti.com.cn  
ZHCSE80B JULY 2014REVISED APRIL 2017  
Programming (continued)  
9.5.1.1 Register Initialization  
After power-up, the internal registers must be initialized to their default values through a hardware reset by  
applying a high pulse on the RESET pin (of durations greater than 10 ns), as shown in Figure 157. If required,  
the serial interface registers may be cleared during operation either:  
1. Through a hardware reset, or  
2. By applying a software reset. When using the serial interface, set the RESET bit (D0 in register address 06h)  
to high. This setting initializes the internal registers to the default values and then self-resets the RESET bit  
low. In this case, the RESET pin is kept low.  
9.5.1.1.1 Serial Register Write  
The device internal register may be programmed with these steps:  
1. Drive the SEN pin low,  
2. Set the R/W bit to 0 (bit A15 of the 16-bit address),  
3. Set bit A14 in the address field to 1,  
4. Initiate a serial interface cycle by specifying the address of the register (A13 to A0) whose content must be  
written, and  
5. Write the 8-bit data that are latched in on the SCLK rising edge.  
Figure 157 and Table 6 show the timing requirements for the serial register write operation.  
Register Address [13:0]  
A13 A12 A11 A1  
Register Data [7:0]  
SDATA  
R/W  
= 0  
1
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
tDH  
D0  
tSCLK  
tDSU  
SCLK  
SEN  
tSLOADS  
tSLOADH  
RESET  
Figure 157. Serial Register Write Timing Diagram  
Table 6. Serial Interface Timing(1)  
MIN  
> DC  
25  
TYP  
MAX  
UNIT  
MHz  
ns  
fSCLK  
tSLOADS  
tSLOADH  
tDSU  
SCLK frequency (equal to 1 / tSCLK  
SEN to SCLK setup time  
SCLK to SEN hold time  
SDIO setup time  
)
20  
25  
ns  
25  
ns  
tDH  
SDIO hold time  
25  
ns  
(1) Typical values are at 25°C, full temperature range is from TMIN = –40°C to TMAX = 85°C, and AVDD = DVDD = 1.8 V, unless otherwise  
noted.  
Copyright © 2014–2017, Texas Instruments Incorporated  
55  
 
 
ADC3441, ADC3442, ADC3443, ADC3444  
ZHCSE80B JULY 2014REVISED APRIL 2017  
www.ti.com.cn  
9.5.1.1.2 Serial Register Readout  
The device includes a mode where the contents of the internal registers may be read back using the SDOUT pin.  
This readback mode may be useful as a diagnostic check to verify the serial interface communication between  
the external controller and the ADC. The procedure to read the contents of the serial registers is as follows:  
1. Drive the SEN pin low.  
2. Set the R/W bit (A15) to 1. This setting disables any further writes to the registers.  
3. Set bit A14 in the address field to 1.  
4. Initiate a serial interface cycle specifying the address of the register (A13 to A0) whose content must be read.  
5. The device outputs the contents (D7 to D0) of the selected register on the SDOUT pin.  
6. The external controller may latch the contents at the SCLK rising edge.  
7. To enable register writes, reset the R/W register bit to 0.  
When READOUT is disabled, the SDOUT pin is in a high-impedance mode. If serial readout is not used, the  
SDOUT pin must float. Figure 158 shows a timing diagram of the serial register read operation. Data appear on  
the SDOUT pin at the SCLK falling edge with an approximate delay (tSD_DELAY) of 20 ns, as shown in Figure 159.  
Register Address [13:0]  
A13 A12 A11 A1  
Register Data: Don‘t Care  
D5 D4 D3 D2  
SDATA  
R/W  
= 1  
A0  
D7  
D7  
D6  
D6  
D1  
D1  
D0  
D0  
1
Register Read Data [7:0]  
SDOUT  
SCLK  
D5  
D4  
D3  
D2  
SEN  
Figure 158. Serial Register Read Timing Diagram  
SCLK  
tSD_DELAY  
SDOUT  
Figure 159. SDOUT Timing Diagram  
56  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
ADC3441, ADC3442, ADC3443, ADC3444  
www.ti.com.cn  
ZHCSE80B JULY 2014REVISED APRIL 2017  
9.5.2 ADC3441 Power-Up Requirements  
Power-up begins with the application of AVDD and DVDD. The exact sequencing and ramp rate of AVDD and  
DVDD are not important as long as the parameters in Table 7 are met.  
After power-up, the RESET pin must be pulsed high to reset the internal registers to the default values.  
Figure 160 and Table 7 show a power-up sequence.  
During operation, the device registers can be restored to the default values by either pulsing the RESET pin high  
or by issuing a software reset via the SPI interface. A software reset can be issued by writing bit 0 of register 06h  
high. This bit is self-clearing.  
t3  
t1  
!ë55  
t2  
5ë55  
t4  
t5  
t6  
w9{9Ç  
{9b  
5evice ready for  
register readꢀꢁrite  
Lnternal pull-up to !ë55  
ëalid  
conversions  
t7  
t8  
/[Y frequency has staꢂilized  
/[Y  
Figure 160. Power-Up Timing  
Table 7. Power-Up Timing Table  
MIN  
NOM  
MAX  
10  
UNIT  
ms  
ms  
ms  
ms  
ns  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
AVDD supply power-up ramp time  
DVDD supply power-up ramp time  
AVDD to DVDD power-up delay  
10  
-10  
1
10  
Device power-up to RESET assertion  
RESET assertion duration  
10  
RESET deassertion to SEN assertion  
RESET deassertion to valid conversions  
CLK stable frequency to valid conversions  
10  
µs  
150  
150  
µs  
µs  
After the power supplies are valid, enable the sample clock. The sampling clock can be enabled before or after  
reset, but conversions are not valid until at least a minimum time after reset and the time that the sample clock  
reaches a stable frequency, as shown in Table 7.  
Copyright © 2014–2017, Texas Instruments Incorporated  
57  
 
 
ADC3441, ADC3442, ADC3443, ADC3444  
ZHCSE80B JULY 2014REVISED APRIL 2017  
www.ti.com.cn  
Before using samples from the device, a minimum register write sequence must be applied, as described in  
Table 8. Apply this register write sequence after any further application of the hardware or software reset.  
Table 8. Required Register Writes after Power-up or Reset  
ADDRESS  
139h  
439h  
539h  
239h  
137h  
437h  
537h  
237h  
137h  
437h  
537h  
237h  
DATA  
08h  
08h  
08h  
08h  
40h  
40h  
40h  
40h  
00h  
00h  
00h  
00h  
NOTE  
Channel A - best performance default  
Channel B - best performance default  
Channel C - best performance default  
Channel D - best performance default  
ADC core latch reset  
These register writes configure the optimal settings for ADC performance and apply a reset to the internal latches  
inside the ADC core that are not part of the device reset function. After the register writes of Table 8 are written,  
any use-case-specific registers must be applied before using the conversion values.  
58  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
ADC3441, ADC3442, ADC3443, ADC3444  
www.ti.com.cn  
ZHCSE80B JULY 2014REVISED APRIL 2017  
9.6 Register Maps  
Table 9. Register Map Summary  
REGISTER  
REGISTER DATA  
ADDRESS,  
A[13:0] (Hex)  
7
6
5
4
3
2
1
0
Register 01h  
Register 03h  
Register 04h  
Register 05h  
DIS DITH CHA  
DIS DITH CHB  
DIS DITH CHC  
DIS DITH CHD  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
ODD EVEN  
FLIP WIRE  
1W-2W  
TEST  
PATTERN EN  
Register 06h  
Register 07h  
Register 09h  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
0
OVR ON LSB  
ALIGN TEST  
PATTERN  
DATA  
FORMAT  
Register 0Ah  
Register 0Bh  
Register 13h  
Register 0Eh  
Register 0Fh  
CHA TEST PATTERN  
CHC TEST PATTERN  
CHB TEST PATTERN  
CHD TEST PATTERN  
0
0
0
0
0
0
LOW SPEED ENABLE  
CUSTOM PATTERN[13:6]  
CUSTOM PATTERN[5:0]  
0
0
0
CONFIG PDN  
PIN  
Register 15h  
CHA PDN  
CHB PDN  
CHC PDN  
CHD PDN  
STANDBY  
GLOBAL PDN  
Register 25h  
Register 27h  
LVDS SWING  
CLK DIV  
0
0
0
0
0
0
0
0
0
0
0
HIGH IF  
MODE0  
Register 11Dh  
Register 122h  
0
0
0
0
DIS CHOP  
CHA  
0
0
0
0
0
Register 134h  
Register 139h  
0
0
0
0
DIS DITH CHA  
0
0
0
DIS DITH CHA  
SP1 CHA  
0
0
0
0
0
0
HIGH IF  
MODE1  
Register 21Dh  
Register 222h  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DIS CHOP  
CHD  
Register 234h  
Register 239h  
Register 308  
0
0
0
0
DIS DITH CHD  
0
0
0
DIS DITH CHD  
0
0
0
0
0
0
0
0
0
0
0
SP1 CHD  
0
HIGH IF MODE <5:4>  
HIGH IF  
MODE2  
Register 41Dh  
Register 422h  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DIS CHOP  
CHB  
Register 434h  
Register 439h  
0
0
0
0
DIS DITH CHB  
0
0
0
DIS DITH CHB  
SP1 CHB  
0
0
0
0
0
0
HIGH IF  
MODE3  
Register 51Dh  
Register 522h  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DIS CHOP  
CHC  
Register 534h  
Register 539h  
Register 608h  
Register 70Ah  
0
0
0
0
DIS DITH CHC  
0
0
0
0
DIS DITH CHC  
0
0
0
0
0
0
0
0
0
0
0
0
SP1 CHC  
0
HIGH IF MODE <7:6>  
0
0
0
0
0
PDN SYSREF  
Copyright © 2014–2017, Texas Instruments Incorporated  
59  
ADC3441, ADC3442, ADC3443, ADC3444  
ZHCSE80B JULY 2014REVISED APRIL 2017  
www.ti.com.cn  
9.6.1 Serial Register Description  
9.6.1.1 Register 01h (address = 01h)  
Figure 161. Register 01h  
7
6
5
4
3
2
1
0
DIS DITH CHA  
R/W-0h  
DIS DITH CHB  
R/W-0h  
DIS DITH CHC  
R/W-0h  
DIS DITH CHD  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 10. Register 01h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
DIS DITH CHA  
R/W  
0h  
These bits enable or disable the on-chip dither. Control this bit  
along with bits 5 and 3 of register 134h.  
00 = Default  
11 = Dither is disabled for channel A. In this mode, SNR typically  
improves by 0.5 dB at 70 MHz.  
5-4  
3-2  
1-0  
DIS DITH CHB  
DIS DITH CHC  
DIS DITH CHD  
R/W  
R/W  
R/W  
0h  
0h  
0h  
These bits enable or disable the on-chip dither. Control this bit  
along with bits 5 and 3 of register 434h.  
00 = Default  
11 = Dither is disabled for channel B. In this mode, SNR typically  
improves by 0.5 dB at 70 MHz.  
These bits enable or disable the on-chip dither. Control this bit  
along with bits 5 and 3 of register 534h.  
00 = Default  
11 = Dither is disabled for channel B. In this mode, SNR typically  
improves by 0.5 dB at 70 MHz.  
These bits enable or disable the on-chip dither. Control this bit  
along with bits 5 and 3 of register 234h.  
00 = Default  
11 = Dither is disabled for channel B. In this mode, SNR typically  
improves by 0.5 dB at 70 MHz.  
60  
Copyright © 2014–2017, Texas Instruments Incorporated  
ADC3441, ADC3442, ADC3443, ADC3444  
www.ti.com.cn  
ZHCSE80B JULY 2014REVISED APRIL 2017  
9.6.1.2 Register 03h (address = 03h)  
Figure 162. Register 03h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
ODD EVEN  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 11. Register 03h Field Descriptions  
Bit  
7-1  
0
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
ODD EVEN  
R/W  
0h  
This bit selects the bit sequence on the output wires (in 2-wire mode only).  
0 = Bits 0, 1, 2, and so forth appear on wire-0; bits 7, 8, 9, and so forth appear  
on wire-1.  
1 = Bits 0, 2, 4, and so forth appear on wire-0; bits 1, 3, 5, and so forth appear  
on wire-1.  
9.6.1.3 Register 04h (address = 04h)  
Figure 163. Register 04h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
FLIP WIRE  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 12. Register 04h Field Descriptions  
Bit  
7-1  
0
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
FLIP WIRE  
R/W  
0h  
This bit flips the data on the output wires. Valid only in two wire  
configuration.  
0 = Default  
1 = Data on output wires is flipped. Pin D0x becomes D1x, and  
vice versa.  
9.6.1.4 Register 05h (address = 05h)  
Figure 164. Register 05h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
1W-2W  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 13. Register 05h Field Descriptions  
Bit  
7-1  
0
Field  
0
Type  
W
Reset  
0h  
Description  
Must write 0.  
1W-2W  
R/W  
0h  
This bit transmits output data on either one or two wires.  
0 = Output data are transmitted on two wires (Dx0P, Dx0M and  
Dx1P, Dx1M)  
1 = Output data are transmitted on one wire (Dx0P, Dx0M). In  
this mode, the recommended fS is less than 80 MSPS.  
Copyright © 2014–2017, Texas Instruments Incorporated  
61  
ADC3441, ADC3442, ADC3443, ADC3444  
ZHCSE80B JULY 2014REVISED APRIL 2017  
www.ti.com.cn  
9.6.1.5 Register 06h (address = 06h)  
Figure 165. Register 06h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
TEST PATTERN EN  
R/W-0h  
RESET  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 14. Register 06h Field Descriptions  
Bit  
7-2  
1
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
TEST PATTERN EN  
R/W  
0h  
Enables test pattern selection for the digital outputs.  
0 = Normal output  
1 = Test pattern output enabled  
0
RESET  
R/W  
0h  
Software reset applied.  
This bit resets all internal registers to the default values and self-  
clears to 0.  
9.6.1.6 Register 07h (address = 07h)  
Figure 166. Register 07h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
OVR ON LSB  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 15. Register 07h Field Descriptions  
Bit  
7-1  
0
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
OVR ON LSB  
R/W  
0h  
OVR information on the LSB bits.  
0 = Output data bit 0 functions as the LSB of the 14-bit data  
1 = Output data bit 0 carries the overrange (OVR) information.  
9.6.1.7 Register 09h (address = 09h)  
Figure 167. Register 09h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
ALIGN TEST PATTERN  
R/W-0h  
DATA FORMAT  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 16. Register 09h Field Descriptions  
Bit  
7-2  
1
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
ALIGN TEST PATTERN  
R/W  
0h  
This bit aligns the test patterns across the outputs of both  
channels.  
0 = Test patterns of both channels are free running  
1 = Test patterns of both channels are aligned  
0
DATA FORMAT  
R/W  
0h  
Digital output data format.  
0 = Twos complement  
1 = Offset binary  
62  
Copyright © 2014–2017, Texas Instruments Incorporated  
ADC3441, ADC3442, ADC3443, ADC3444  
www.ti.com.cn  
ZHCSE80B JULY 2014REVISED APRIL 2017  
9.6.1.8 Register 0Ah (address = 0Ah)  
Figure 168. Register 0Ah  
7
6
5
4
3
2
1
0
CHA TEST PATTERN  
R/W-0h  
CHB TEST PATTERN  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 17. Register 0Ah Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
CHA TEST PATTERN  
R/W  
0h  
These bits control the test pattern for channel A after the TEST  
PATTERN EN bit is set.  
0000 = Normal operation  
0001 = All 0's  
0010 = All 1's  
0011 = Toggle pattern: data alternate between 10101010101010  
and 01010101010101  
0100 = Digital ramp: data increment by 1 LSB every clock cycle  
from code 0 to 16383  
0101 = Custom pattern: output data are the same as  
programmed by the CUSTOM PATTERN register bits  
0110 = Deskew pattern: data are 2AAAh  
1000 = PRBS pattern: data are a sequence of pseudo random  
numbers  
1001 = 8-point sine-wave: data are a repetitive sequence of the  
following eight numbers that form a sine-wave: 0, 2399, 8192,  
13984, 16383, 13984, 8192, 2399.  
Others = Do not use  
3-0  
CHB TEST PATTERN  
R/W  
0h  
These bits control the test pattern for channel B after the TEST  
PATTERN EN bit is set.  
0000 = Normal operation  
0001 = All 0's  
0010 = All 1's  
0011 = Toggle pattern: data alternate between 10101010101010  
and 01010101010101  
0100 = Digital ramp: data increment by 1 LSB every clock cycle  
from code 0 to 16383  
0101 = Custom pattern: output data are the same as  
programmed by the CUSTOM PATTERN register bits  
0110 = Deskew pattern: data are 2AAAh  
1000 = PRBS pattern: data are a sequence of pseudo random  
numbers  
1001 = 8-point sine-wave: data are a repetitive sequence of the  
following eight numbers that form a sine-wave: 0, 2399, 8192,  
13984, 16383, 13984, 8192, 2399.  
Others = Do not use  
Copyright © 2014–2017, Texas Instruments Incorporated  
63  
ADC3441, ADC3442, ADC3443, ADC3444  
ZHCSE80B JULY 2014REVISED APRIL 2017  
www.ti.com.cn  
9.6.1.9 Register 0Bh (address = 0Bh)  
Figure 169. Register 0Bh  
7
6
5
4
3
2
1
0
CHC TEST PATTERN  
R/W-0h  
CHD TEST PATTERN  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 18. Register 0Bh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
CHC TEST PATTERN  
R/W  
0h  
These bits control the test pattern for channel C after the TEST  
PATTERN EN bit is set.  
0000 = Normal operation  
0001 = All 0's  
0010 = All 1's  
0011 = Toggle pattern: data alternate between 10101010101010  
and 01010101010101  
0100 = Digital ramp: data increment by 1 LSB every clock cycle  
from code 0 to 16383  
0101 = Custom pattern: output data are the same as  
programmed by the CUSTOM PATTERN register bits  
0110 = Deskew pattern: data are 2AAAh  
1000 = PRBS pattern: data are a sequence of pseudo random  
numbers  
1001 = 8-point sine-wave: data are a repetitive sequence of the  
following eight numbers that form a sine-wave: 0, 2399, 8192,  
13984, 16383, 13984, 8192, 2399.  
Others = Do not use  
3-0  
CHD TEST PATTERN  
R/W  
0h  
These bits control the test pattern for channel D after the TEST  
PATTERN EN bit is set.  
0000 = Normal operation  
0001 = All 0's  
0010 = All 1's  
0011 = Toggle pattern: data alternate between 10101010101010  
and 01010101010101  
0100 = Digital ramp: data increment by 1 LSB every clock cycle  
from code 0 to 16383  
0101 = Custom pattern: output data are the same as  
programmed by the CUSTOM PATTERN register bits  
0110 = Deskew pattern: data are 2AAAh  
1000 = PRBS pattern: data are a sequence of pseudo random  
numbers  
1001 = 8-point sine-wave: data are a repetitive sequence of the  
following eight numbers that form a sine-wave: 0, 2399, 8192,  
13984, 16383, 13984, 8192, 2399.  
Others = Do not use  
64  
Copyright © 2014–2017, Texas Instruments Incorporated  
ADC3441, ADC3442, ADC3443, ADC3444  
www.ti.com.cn  
ZHCSE80B JULY 2014REVISED APRIL 2017  
9.6.1.10 Register 13h (address = 13h)  
Figure 170. Register 13h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
LOW SPEED ENABLE  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 19. Register 13h Field Descriptions  
Bit  
7-2  
1-0  
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
LOW SPEED ENABLE  
R/W  
0h  
Enables low speed operation in 1-wire and 2-wire mode.  
Depending upon sampling frequency, write this bit as per  
Table 20.  
Table 20. LOW SPEED ENABLE Register Settings Across fS  
fS, MSPS  
REGISTER BIT LOW SPEED ENABLE  
MIN  
25  
MAX  
125  
25  
1-WIRE MODE  
2-WIRE MODE  
00  
00  
10  
00  
10  
20  
15  
20  
Not supported  
9.6.1.11 Register 0Eh (address = 0Eh)  
Figure 171. Register 0Eh  
7
6
5
4
3
2
1
0
CUSTOM PATTERN[13:6]  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 21. Register 0Eh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
CUSTOM PATTERN[13:6]  
R/W  
0h  
These bits set the 14-bit custom pattern (bits 13-6) for all  
channels.  
9.6.1.12 Register 0Fh (address = 0Fh)  
Figure 172. Register 0Fh  
7
6
5
4
3
2
1
0
0
0
CUSTOM PATTERN[5:0]  
R/W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 22. Register 0Fh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
CUSTOM PATTERN[5:0]  
R/W  
0h  
These bits set the 14-bit custom pattern (bits 5-0) for all  
channels.  
1-0  
0
W
0h  
Must write 0.  
Copyright © 2014–2017, Texas Instruments Incorporated  
65  
 
ADC3441, ADC3442, ADC3443, ADC3444  
ZHCSE80B JULY 2014REVISED APRIL 2017  
www.ti.com.cn  
9.6.1.13 Register 15h (address = 15h)  
Figure 173. Register 15h  
7
6
5
4
3
2
1
0
0
CONFIG PDN  
PIN  
CHA PDN  
W-0h  
CHB PDN  
R/W-0h  
CHC PDN  
R/W-0h  
CHD PDN  
W-0h  
STANDBY  
R/W-0h  
GLOBAL PDN  
R/W-0h  
W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 23. Register 15h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CHA PDN  
W
0h  
0 = Normal operation  
1 = Power-down channel A  
6
5
4
3
CHB PDN  
CHC PDN  
CHD PDN  
STANDBY  
R/W  
R/W  
W
0h  
0h  
0h  
0h  
0 = Normal operation  
1 = Power-down channel B  
0 = Normal operation  
1 = Power-down channel C  
0 = Normal operation  
1 = Power-down channel D  
R/W  
ADCs of both channels enter standby.  
0 = Normal operation  
1 = Standby  
2
GLOBAL PDN  
R/W  
0h  
0 = Normal operation  
1 = Global power-down  
1
0
0
W
0h  
0h  
Must write 0.  
CONFIG PDN PIN  
R/W  
This bit configures the PDN pin as either a global power-down or  
standby pin.  
0 = Logic high voltage on PDN pin sends the device into global  
power-down  
1 = Logic high voltage on PDN pin sends the device into  
standby  
9.6.1.14 Register 25h (address = 25h)  
Figure 174. Register 25h  
7
6
5
4
3
2
1
0
LVDS SWING  
R/W-0h  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 24. Register 25h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LVDS SWING  
R/W  
0h  
These bits control the swing of the LVDS outputs (including the  
data output, bit clock, and frame clock).  
66  
Copyright © 2014–2017, Texas Instruments Incorporated  
ADC3441, ADC3442, ADC3443, ADC3444  
www.ti.com.cn  
ZHCSE80B JULY 2014REVISED APRIL 2017  
9.6.1.15 Register 27h (address = 27h)  
Figure 175. Register 27h  
7
6
5
0
4
0
3
0
2
0
1
0
0
0
CLK DIV  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 25. Register 27h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
CLK DIV  
R/W  
0h  
Internal clock divider for the input sampling clock.  
00 = Divide-by-1  
01 = Divide-by-1  
10 = Divide-by-2  
11 = Divide-by-4  
5-0  
0
W
0h  
Must write 0.  
9.6.1.16 Register 11Dh (address = 11Dh)  
Figure 176. Register 11Dh  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
HIGH IF MODE0  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 26. Register 11Dh Field Descriptions  
Bit  
7-2  
1
Field  
Type  
Reset  
Description  
0
W
0h  
Must write 0.  
HIGH IF MODE0  
Set the HIGH IF MODE[7:0] bits together to 1111.  
Improves HD3 by a couple of dB for IF > 100 MHz.  
0
0
W
0h  
Must write 0.  
9.6.1.17 Register 122h (address = 122h)  
Figure 177. Register 122h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
DIS CHOP CHA  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 27. Register 122h Field Descriptions  
Bit  
7-2  
1
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
DIS CHOP CHA  
R/W  
0h  
Disables the chopper.  
Set this bit to shift 1/f noise floor at dc.  
0 = 1/f noise floor is centered at fS / 2 (default)  
1 = Chopper mechanism is disabled; 1/f noise floor is centered at dc  
0
0
W
0h  
Must write 0.  
Copyright © 2014–2017, Texas Instruments Incorporated  
67  
ADC3441, ADC3442, ADC3443, ADC3444  
ZHCSE80B JULY 2014REVISED APRIL 2017  
www.ti.com.cn  
9.6.1.18 Register 134h (address = 134h)  
Figure 178. Register 134h  
7
0
6
0
5
4
0
3
2
0
1
0
0
0
DIS DITH CHA  
R/W-0h  
DIS DITH CHA  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 28. Register 134h Field Descriptions  
Bit  
7-6  
5
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
DIS DITH CHA  
R/W  
0h  
Set this bit with bits 7 and 6 of register 01h.  
00 = Default  
11 = Dither is disabled for channel A. In this mode, SNR typically  
improves by 0.5 dB at 70 MHz.  
4
3
0
W
0h  
0h  
Must write 0.  
DIS DITH CHA  
R/W  
Set this bit with bits 7 and 6 of register 01h.  
00 = Default  
11 = Dither is disabled for channel A. In this mode, SNR typically  
improves by 0.5 dB at 70 MHz.  
2-0  
0
W
0h  
Must write 0.  
9.6.1.19 Register 139h (address = 139h)  
Figure 179. Register 139h  
7
0
6
0
5
0
4
0
3
2
0
1
0
0
0
SP1 CHA  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 29. Register 139h Field Descriptions  
Bit  
7-4  
3
Field  
0
Type  
W
Reset  
0h  
Description  
Must write 0.  
SP1 CHA  
R/W  
0h  
Special mode for best performance on channel A.  
Always write 1 after reset.  
2-0  
0
W
0h  
Must write 0.  
9.6.1.20 Register 21Dh (address = 21Dh)  
Figure 180. Register 21Dh  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
HIGH IF MODE1  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 30. Register 21Dh Field Descriptions  
Bit  
7-2  
1
Field  
Type  
Reset  
Description  
0
W
0h  
Must write 0.  
HIGH IF MODE1  
Set the HIGH IF MODE[7:0] bits together to 1111.  
Improves HD3 by a couple of dB for IF > 100 MHz.  
0
0
W
0h  
Must write 0.  
68  
Copyright © 2014–2017, Texas Instruments Incorporated  
ADC3441, ADC3442, ADC3443, ADC3444  
www.ti.com.cn  
ZHCSE80B JULY 2014REVISED APRIL 2017  
9.6.1.21 Register 222h (address = 222h)  
Figure 181. Register 222h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
DIS CHOP CHD  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 31. Register 222h Field Descriptions  
Bit  
7-2  
1
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
DIS CHOP CHD  
R/W  
0h  
Disables the chopper.  
Set this bit to shift 1/f noise floor at dc.  
0 = 1/f noise floor is centered at fS / 2 (default)  
1 = Chopper mechanism is disabled; 1/f noise floor is centered at dc  
0
0
W
0h  
Must write 0.  
9.6.1.22 Register 234h (address = 234h)  
Figure 182. Register 234h  
7
0
6
0
5
4
0
3
2
0
1
0
0
0
DIS DITH CHD  
R/W-0h  
DIS DITH CHD  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 32. Register 234h Field Descriptions  
Bit  
7-6  
5
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
DIS DITH CHD  
R/W  
0h  
Set this bit with bits 1 and 0 of register 01h.  
00 = Default  
11 = Dither is disabled for channel D. In this mode, SNR  
typically improves by 0.5 dB at 70 MHz.  
4
3
0
W
0h  
0h  
Must write 0.  
DIS DITH CHD  
R/W  
Set this bit with bits 1 and 0 of register 01h.  
00 = Default  
11 = Dither is disabled for channel D. In this mode, SNR  
typically improves by 0.5 dB at 70 MHz.  
2-0  
0
W
0h  
Must write 0.  
Copyright © 2014–2017, Texas Instruments Incorporated  
69  
ADC3441, ADC3442, ADC3443, ADC3444  
ZHCSE80B JULY 2014REVISED APRIL 2017  
www.ti.com.cn  
9.6.1.23 Register 239h (address = 239h)  
Figure 183. Register 239h  
7
0
6
0
5
0
4
0
3
2
0
1
0
0
0
SP1 CHD  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 33. Register 239h Field Descriptions  
Bit  
7-4  
3
Field  
0
Type  
W
Reset  
0h  
Description  
Must write 0.  
SP1 CHD  
R/W  
0h  
Special mode for best performance on channel D.  
Always write 1 after reset.  
2-0  
0
W
0h  
Must write 0.  
9.6.1.24 Register 308h (address = 308h)  
Figure 184. Register 308h  
7
6
5
0
4
0
3
0
2
0
1
0
0
0
HIGH IF MODE<5:4>  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
R/W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 34. Register 308h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
HIGH IF MODE<5:4>  
W
0h  
Set the HIGH IF MODE[7:0] bits together to FFh.  
Improves HD3 by a couple of dB for IF > 100 MHz.  
5-0  
0
W
0h  
Must write 0.  
9.6.1.25 Register 41Dh (address = 41Dh)  
Figure 185. Register 41Dh  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
HIGH IF MODE2  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 35. Register 41Dh Field Descriptions  
Bit  
7-2  
1
Field  
Type  
Reset  
Description  
0
W
0h  
Must write 0.  
HIGH IF MODE2  
Set the HIGH IF MODE[7:0] bits together to FFh.  
Improves HD3 by a couple of dB for IF > 100 MHz.  
0
0
W
0h  
Must write 0.  
70  
Copyright © 2014–2017, Texas Instruments Incorporated  
ADC3441, ADC3442, ADC3443, ADC3444  
www.ti.com.cn  
ZHCSE80B JULY 2014REVISED APRIL 2017  
9.6.1.26 Register 422h (address = 422h)  
Figure 186. Register 422h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
DIS CHOP CHB  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 36. Register 422h Field Descriptions  
Bit  
7-2  
1
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
DIS CHOP CHB  
R/W  
0h  
Disables the chopper.  
Set this bit to shift 1/f noise floor at dc.  
0 = 1/f noise floor is centered at fS / 2 (default)  
1 = Chopper mechanism is disabled; 1/f noise floor is centered at dc  
0
0
W
0h  
Must write 0.  
9.6.1.27 Register 434h (address = 434h)  
Figure 187. Register 434h  
7
0
6
0
5
4
0
3
2
0
1
0
0
0
DIS DITH CHB  
R/W-0h  
DIS DITH CHB  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 37. Register 434h Field Descriptions  
Bit  
7-6  
5
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
DIS DITH CHB  
R/W  
0h  
Set this bit with bits 5 and 4 of register 01h.  
00 = Default  
11 = Dither is disabled for channel B. In this mode, SNR typically  
improves by 0.5 dB at 70 MHz.  
4
3
0
W
0h  
0h  
Must write 0.  
DIS DITH CHB  
R/W  
Set this bit with bits 5 and 4 of register 01h.  
00 = Default  
11 = Dither is disabled for channel B. In this mode, SNR typically  
improves by 0.5 dB at 70 MHz.  
2-0  
0
W
0h  
Must write 0.  
9.6.1.28 Register 439h (address = 439h)  
Figure 188. Register 439h  
7
0
6
0
5
0
4
0
3
2
0
1
0
0
0
SP1 CHB  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 38. Register 439h Field Descriptions  
Bit  
7-4  
3
Field  
0
Type  
W
Reset  
0h  
Description  
Must write 0.  
SP1 CHB  
R/W  
0h  
Special mode for best performance on channel B.  
Always write 1 after reset.  
2-0  
0
W
0h  
Must write 0.  
Copyright © 2014–2017, Texas Instruments Incorporated  
71  
ADC3441, ADC3442, ADC3443, ADC3444  
ZHCSE80B JULY 2014REVISED APRIL 2017  
www.ti.com.cn  
9.6.1.29 Register 51Dh (address = 51Dh)  
Figure 189. Register 51Dh  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
HIGH IF MODE3  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 39. Register 51Dh Field Descriptions  
Bit  
7-2  
1
Field  
Type  
Reset  
Description  
0
W
0h  
Must write 0.  
HIGH IF MODE3  
Set the HIGH IF MODE[7:0] bits together to FFh.  
Improves HD3 by a couple of dB for IF > 100 MHz.  
0
0
W
0h  
Must write 0.  
9.6.1.30 Register 522h (address = 522h)  
Figure 190. Register 522h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
DIS CHOP CHC  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 40. Register 522h Field Descriptions  
Bit  
7-2  
1
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
DIS CHOP CHC  
R/W  
0h  
Disables the chopper.  
Set this bit to shift 1/f noise floor at dc.  
0 = 1/f noise floor is centered at fS / 2 (default)  
1 = Chopper mechanism is disabled; 1/f noise floor is centered at dc  
0
0
W
0h  
Must write 0.  
9.6.1.31 Register 534h (address = 534h)  
Figure 191. Register 534h  
7
0
6
0
5
4
0
3
2
0
1
0
0
0
DIS DITH CHC  
R/W-0h  
DIS DITH CHC  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 41. Register 534h Field Descriptions  
Bit  
7-6  
5
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
DIS DITH CHC  
R/W  
0h  
Set this bit with bits 3 and 2 of register 01h.  
00 = Default  
11 = Dither is disabled for channel C. In this mode, SNR  
typically improves by 0.5 dB at 70 MHz.  
4
3
0
W
0h  
0h  
Must write 0.  
DIS DITH CHC  
R/W  
Set this bit with bits 3 and 2 of register 01h.  
00 = Default  
11 = Dither is disabled for channel C. In this mode, SNR  
typically improves by 0.5 dB at 70 MHz.  
2-0  
0
W
0h  
Must write 0.  
72  
Copyright © 2014–2017, Texas Instruments Incorporated  
ADC3441, ADC3442, ADC3443, ADC3444  
www.ti.com.cn  
ZHCSE80B JULY 2014REVISED APRIL 2017  
9.6.1.32 Register 539h (address = 539h)  
Figure 192. Register 539h  
7
0
6
0
5
0
4
0
3
2
0
1
0
0
0
SP1 CHC  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 42. Register 539h Field Descriptions  
Bit  
7-4  
3
Field  
0
Type  
W
Reset  
0h  
Description  
Must write 0.  
SP1 CHC  
R/W  
0h  
Special mode for best performance on channel C.  
Always write 1 after reset.  
2-0  
0
W
0h  
Must write 0.  
9.6.1.33 Register 608h (address = 608h)  
Figure 193. Register 608h  
7
6
5
0
4
0
3
0
2
0
1
0
0
0
HIGH IF MODE<7:6>  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
R/W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 43. Register 608h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
HIGH IF MODE<7:6>  
Set the HIGH IF MODE[7:0] bits together to FFh.  
Improves HD3 by a couple of dB for IF > 100 MHz.  
5-0  
0
W
0h  
Must write 0.  
9.6.1.34 Register 70Ah (address = 70Ah)  
Figure 194. Register 70Ah  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
PDN SYSREF  
R/W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
W-0h  
LEGEND: R/W = Read/Write; W = Write only; -n = value after reset  
Table 44. Register 70Ah Field Descriptions  
Bit  
7-1  
0
Field  
Type  
W
Reset  
0h  
Description  
0
Must write 0.  
PDN SYSREF  
R/W  
0h  
If the SYSREF pins are not used in the system, the SYSREF  
buffer must be powered down by setting this bit.  
0 = Normal operation  
1 = Powers down the SYSREF buffer  
Copyright © 2014–2017, Texas Instruments Incorporated  
73  
ADC3441, ADC3442, ADC3443, ADC3444  
ZHCSE80B JULY 2014REVISED APRIL 2017  
www.ti.com.cn  
10 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
Typical applications involving transformer-coupled circuits are discussed in this section. Transformers (such as  
ADT1-1WT or WBC1-1) may be used up to 250 MHz to achieve good phase and amplitude balances at ADC  
inputs. While designing the dc driving circuits, the ADC input impedance must be considered. Figure 195 and  
Figure 196 show the impedance (Zin = Rin || Cin) across the ADC input pins.  
10  
6
5
4
3
2
1
1
0.1  
0.01  
0
100 200 300 400 500 600 700 800 900 1000  
Frequency (MHz)  
0
100 200 300 400 500 600 700 800 900 1000  
Frequency (MHz)  
D024  
D00215  
Figure 195. Differential Input Resistance, RIN  
Figure 196. Differential Input Capacitance, CIN  
74  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
ADC3441, ADC3442, ADC3443, ADC3444  
www.ti.com.cn  
ZHCSE80B JULY 2014REVISED APRIL 2017  
10.2 Typical Applications  
10.2.1 Driving Circuit Design: Low Input Frequencies  
39 nH  
0.1 mF  
INP  
0.1 mF  
50  
50 Ω  
25 Ω  
25 Ω  
0.1 mF  
22 pF  
50 Ω  
50 Ω  
INM  
1:1  
1:1  
0.1 mF  
39 nH  
VCM  
Device  
Figure 197. Driving Circuit for Low Input Frequencies  
10.2.1.1 Design Requirements  
For optimum performance, the analog inputs must be driven differentially. An optional 5-to 15-resistor in  
series with each input pin may be kept to damp out ringing caused by package parasitic. The drive circuit may  
have to be designed to minimize the impact of kick-back noise generated by sampling switches opening and  
closing inside the ADC, as well as ensuring low insertion loss over the desired frequency range and matched  
impedance to the source.  
10.2.1.2 Detailed Design Procedure  
A typical application involving using two back-to-back coupled transformers is shown in Figure 197. The circuit is  
optimized for low input frequencies. An external R-C-R filter using 50-Ω resistors and a 22-pF capacitor is used  
with the series inductor (39 nH), this combination helps absorb the sampling glitches. To improve phase and  
amplitude balance of first transformer, the termination resistors can be split between two transformers. For  
example, 25-Ω to 25-Ω termination across the secondary winding of the second transformer can be changed to  
50-Ω to 50-Ω termination and another 50-Ω to 50-Ω resistor can be placed inside the dashed box between the  
transformers in Figure 197.  
10.2.1.3 Application Curve  
Figure 198 shows the performance obtained by using the circuit shown in Figure 197.  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
D101  
SFDR = 95 dBc, SNR = 72.7 dBFS, SINAD = 72.6 dBFS,  
THD = 100 dBc, HD2 = 95 dBc, HD3 = 96 dBc  
Figure 198. FFT for 10-MHz Input Signal  
(Chopper On, Dither On)  
Copyright © 2014–2017, Texas Instruments Incorporated  
75  
 
 
 
ADC3441, ADC3442, ADC3443, ADC3444  
ZHCSE80B JULY 2014REVISED APRIL 2017  
www.ti.com.cn  
Typical Applications (continued)  
10.2.2 Driving Circuit Design: Input Frequencies Between 100 MHz to 230 MHz  
0.1 mF  
10 Ω  
INP  
0.1 mF  
15 Ω  
25 Ω  
0.1 mF  
56 nH  
10 pF  
25 Ω  
15 Ω  
INM  
10 Ω  
1:1  
1:1  
0.1 mF  
VCM  
Device  
Figure 199. Driving Circuit for Mid-Range Input Frequencies (100 MHz < fIN < 230 MHz)  
10.2.2.1 Design Requirements  
See the Design Requirements section for further details.  
10.2.2.2 Detailed Design Procedure  
When input frequencies are between 100 MHz to 230 MHz, an R-LC-R circuit may be used to optimize  
performance, as shown in Figure 199.  
10.2.2.3 Application Curve  
Figure 200 shows the performance obtained by using the circuit shown in Figure 199.  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
D105  
SFDR = 86 dBc, SNR = 71.7 dBFS, SINAD = 71.6 dBFS,  
THD = 93 dBc, HD2 = 86 dBc, HD3 = 99 dBc  
Figure 200. FFT for 170-MHz Input Signal (Chopper Off, Dither On)  
76  
Copyright © 2014–2017, Texas Instruments Incorporated  
 
 
ADC3441, ADC3442, ADC3443, ADC3444  
www.ti.com.cn  
ZHCSE80B JULY 2014REVISED APRIL 2017  
Typical Applications (continued)  
10.2.3 Driving Circuit Design: Input Frequencies Greater than 230 MHz  
0.1 mF  
0.1 mF  
10  
INP  
25 Ω  
0.1 mF  
25 Ω  
INM  
1:1  
1:1  
10 Ω  
0.1 mF  
VCM  
Device  
Figure 201. Driving Circuit for High Input Frequencies (fIN > 230 MHz)  
10.2.3.1 Design Requirements  
See the Design Requirements section for further details.  
10.2.3.2 Detailed Design Procedure  
For high input frequencies (> 230 MHz), using the R-C-R or R-LC-R circuit does not show significant  
improvement in performance. However, a series resistance of 10 Ω may be used as shown in Figure 201.  
10.2.3.3 Application Curve  
Figure 202 shows the performance obtained by using the circuit shown in Figure 201.  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
0
12.5  
25  
37.5  
50  
62.5  
Frequency (MHz)  
D109  
SFDR = 72 dBc, SNR = 68.2 dBFS, SINAD = 67.3 dBFS,  
THD = 74 dBc, HD2 = 72 dBc, HD3 = 79 dBc  
Figure 202. FFT for 450-MHz Input Signal (Chopper Off, Dither On)  
11 Power Supply Recommendations  
The device requires a 1.8-V nominal supply for AVDD and DVDD. There are no specific sequence power-supply  
requirements during device power-up. AVDD and DVDD may power up in any order. See Figure 160 for other  
power-up requirements.  
Copyright © 2014–2017, Texas Instruments Incorporated  
77  
 
 
ADC3441, ADC3442, ADC3443, ADC3444  
ZHCSE80B JULY 2014REVISED APRIL 2017  
www.ti.com.cn  
12 Layout  
12.1 Layout Guidelines  
The ADC344x EVM layout may be used as a reference layout to obtain the best performance. A layout diagram  
of the EVM top layer is provided in Figure 203. Some important points to remember during laying out the board  
are:  
1. Analog inputs are located on opposite sides of the device pin out to ensure minimum crosstalk on the  
package level. To minimize crosstalk onboard, the analog inputs must exit the pin out in opposite directions,  
as shown in the reference layout of Figure 203 as much as possible.  
2. In the device pin out, the sampling clock is located on a side perpendicular to the analog inputs in order to  
minimize coupling between them. This configuration is also maintained on the reference layout of Figure 203  
as much as possible.  
3. Keep digital outputs away from the analog inputs. When these digital outputs exit the pin out, the digital  
output traces must not be kept parallel to the analog input traces because this configuration may result in  
coupling from digital outputs to analog inputs and degrade performance. All digital output traces to the  
receiver [such as a field-programmable gate array (FPGA) or an application-specific integrated circuit (ASIC)]  
must be matched in length to avoid skew among outputs.  
4. At each power-supply pin (AVDD and DVDD), keep a 0.1-µF decoupling capacitor close to the device. A  
separate decoupling capacitor group consisting of a parallel combination of 10-µF, 1-µF, and 0.1-µF  
capacitors may be kept close to the supply source.  
12.2 Layout Example  
{ampling  
/lock  
wouting  
!nalog  
Lnput  
wouting  
!5/34xx  
5igital  
hutput  
wouting  
Figure 203. Typical Layout of the ADC344x Board  
78  
版权 © 2014–2017, Texas Instruments Incorporated  
 
ADC3441, ADC3442, ADC3443, ADC3444  
www.ti.com.cn  
ZHCSE80B JULY 2014REVISED APRIL 2017  
13 器件和文档支持  
13.1 相关链接  
下面的表格列出了快速访问链接。范围包括技术文档、支持与社区资源、工具和软件,并且可通过快速访问立刻订  
购。  
45. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
ADC3441  
ADC3442  
ADC3443  
ADC3444  
13.2 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册  
后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
13.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
13.4 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
13.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2014–2017, Texas Instruments Incorporated  
79  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADC3441IRTQR  
ADC3441IRTQT  
ADC3442IRTQR  
ADC3442IRTQT  
ADC3443IRTQR  
ADC3443IRTQT  
ADC3444IRTQR  
ADC3444IRTQT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
RTQ  
RTQ  
RTQ  
RTQ  
RTQ  
RTQ  
RTQ  
RTQ  
56  
56  
56  
56  
56  
56  
56  
56  
2000 RoHS & Green  
250 RoHS & Green  
2000 RoHS & Green  
250 RoHS & Green  
2000 RoHS & Green  
250 RoHS & Green  
2000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
AZ3441  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
AZ3441  
AZ3442  
AZ3442  
AZ3443  
AZ3443  
AZ3444  
AZ3444  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Sep-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ADC3441IRTQR  
ADC3442IRTQR  
ADC3443IRTQR  
ADC3444IRTQR  
QFN  
QFN  
QFN  
QFN  
RTQ  
RTQ  
RTQ  
RTQ  
56  
56  
56  
56  
2000  
2000  
2000  
2000  
330.0  
330.0  
330.0  
330.0  
16.4  
16.4  
16.4  
16.4  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
2.25  
2.25  
2.25  
2.25  
12.0  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
Q2  
Q2  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Sep-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ADC3441IRTQR  
ADC3442IRTQR  
ADC3443IRTQR  
ADC3444IRTQR  
QFN  
QFN  
QFN  
QFN  
RTQ  
RTQ  
RTQ  
RTQ  
56  
56  
56  
56  
2000  
2000  
2000  
2000  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
43.0  
43.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RTQ 56  
8 x 8, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224653/A  
www.ti.com  
PACKAGE OUTLINE  
RTQ0056C  
VQFN - 1 mm max height  
S
C
A
L
E
1
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
8.15  
7.85  
A
B
PIN 1 INDEX AREA  
8.15  
7.85  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 6.5  
SYMM  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
28  
15  
14  
29  
SYMM  
57  
2X 6.5  
6.6 0.1  
1
42  
52X 0.5  
PIN 1 ID  
0.30  
0.18  
56  
43  
56X  
0.5  
0.3  
0.1  
C A B  
56X  
0.05  
4224872/A 03/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RTQ0056C  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(3.05) TYP  
SEE SOLDER MASK  
DETAIL  
(0.62) TYP  
(1.24)  
TYP  
56X (0.6)  
56X (0.24)  
56  
43  
1
42  
52X (0.5)  
(3.05) TYP  
(1.24) TYP  
(R0.05) TYP  
57  
SYMM  
(7.8)  
(0.62) TYP  
(
6.6)  
0.2) TYP  
VIA  
14  
29  
28  
15  
SYMM  
(7.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4224872/A 03/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RTQ0056C  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.24) TYP  
43  
56X (0.6)  
56X (0.24)  
56  
1
42  
52X (0.5)  
(R0.05) TYP  
(1.24) TYP  
(7.8)  
57  
SYMM  
25X ( 1.04)  
14  
29  
15  
28  
SYMM  
(7.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 10X  
EXPOSED PAD 57  
62% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4224872/A 03/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY